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RANDOM WALKS IN HYPERBOLIC SPACES:

MARTIN BOUNDARIES AND BISECTORS

WERNER BALLMANN AND PANAGIOTIS POLYMERAKIS

Abstract. We discuss certain random walks on discrete groups of isome-
tries of hyperbolic spaces and their Martin boundaries.

introduction

In this note, we discuss an error in the article [3], which is about a relation
between the Martin boundary of a connected and complete Riemannian
manifold H and random walks on discrete subsets of the manifold, obtained
by the Lyons-Sullivan discretization procedure of Brownian motion [8]. The
error concerns the nature of elements of the Martin boundary of random
walks, namely whether they are harmonic or only super-harmonic. Here
we correct the error in the case where H is a Riemannian symmetric space
with negative sectional curvature, that is, where H is a hyperbolic space,
H = Hk

F with F ∈ {R,C,H,O}, endowed with its standard metric. The
most important application in [3] is covered by our discussion, namely the
corollary on [3, page 80], which is Corollary B here.

From now on, let H = Hk
F and normalize the metric of H so that the

maximum of its sectional curvature equals −1, and choose an origin x0 ∈ H.
The geometric compactification H̄ of H is homeomorphic to the closed

Euclidean unit ball such that the unit sphere corresponds to the geometric
boundary ∂geoH of H.

Brownian motion B on H is the diffusion process associated to the Laplace
operator ∆ of H. Recall that B is transient. Therefore it has a positive
Green’s function G = G(x, y) and Martin kernel

K = K(x, y) = G(x, y)/G(x0, y).

Equating points x ∈ H with Martin kernels K(., x) induces an identification
of the Martin compactification of H with H̄ such that the Martin boundary
∂∆H is identified with the geometric boundary of H; see [1, 2, 7]. In this
sense, we write ∂∆H = ∂geoH.

Let Γ be a discrete subgroup of isometries of H with volume |Γ\H| <∞.
Let X = Γx0 and µ = (µx)x∈X be a Γ-equivariant family of probability
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2 WERNER BALLMANN AND PANAGIOTIS POLYMERAKIS

measures on X. Assume that the associated random walk R on X is non-
degenerate and transient with Green’s function g = g(x, y) > 0. Axiom-
atizing the corresponding notion from [4], we say that R is adapted if the
Martin kernel

k = k(x, y) = g(x, y)/g(x0, y)

of R satisfy k(x, y) = K(x, y) for all y 6= x, x0 in X. The Martin boundary
of X with respect to µ is denoted by ∂µX.

Remark 1.1. In the case at hand, Lyons and Sullivan construct a family µ,
the LS-discretization of B, depending on the choice of specific data, LS-data
[8]. Since B is transient, they can be chosen so that the corresponding µ is
adapted, symmetric, has finite first moment (w.r.t. the geometric norm on
Γ) and finite entropy; see [3, Theorem 3.1 and Theorem 3.2(b)]. To avoid
technicalities, we choose the above more axiomatic approach. Nevertheless,
in Section 2, we discuss some aspects of LS-discretization.

The following result corrects [3, Theorem 3.2(a)] in the case of hyperbolic
spaces.

Theorem A. If R is adapted, then restriction to X induces a homeomor-
phism ∂geoH → ∂µX.

Recall that the free group Fk with k ≥ 2 generators admits actions on
the real hyperbolic plane with cofinite volume (and corresponding geometric
norm). As in [3], we obtain therefore the following application of Theorem A.

Corollary B. There exists a symmetric random walk R on the free group
Fk with k ≥ 2 generators which has finite first moment (w.r.t. a geometric
norm on Fk as above) and finite entropy such that the Martin boundary of
R is equal to a circle.

The error underlying the discussions of Martin boundaries of random
walks in [3, 4] is the implicit assumption that Martin kernels k(., ξ) are
µ-harmonic for all ξ ∈ ∂µX. In fact, rethinking the matter, we have the
following result in that direction.

Theorem C. If R is adapted and a horoball with center ξ ∈ ∂geoH is
precisely invariant under Γ, then k(., ξ) is not µ-harmonic.

Recall that a horoball B is said to be precisely invariant under Γ if gB ∩
B 6= ∅ implies that gB = B, for any g ∈ Γ. Notice that ξ has precisely Γ-
invariant horoballs centered at ξ if ξ corresponds to a cusp of Γ\H. The set
of such points is non-empty if Γ is not cocompact, and then it is a countable
dense subset of ∂geoH.

Question 1.2. Are there natural assumptions which allow for a geometric
characterization of those points ξ ∈ ∂geoH such that k(., ξ) is µ-harmonic?

In our proofs of Theorem A and Theorem C, we use that the Martin
kernels K(., ξ) are constant along horospheres centered at ξ, for all ξ in
∂geoH. More precisely, we have, with m = dimH and d = dimR F,

K(x, ξ) = e−hb(x),(1.3)
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where

h = m− d+ 2(d− 1) = m+ d− 2 > 0(1.4)

and b is the Busemann function associated to ξ such that b(x0) = 0.
For two points x, y in a metric space, their bisector is the set of points

in the space of equal distance to x and y. Here we need a geometric de-
scription of bisectors of pairs of different points in hyperbolic spaces. In real
hyperbolic geometry, the bisector is the hyperbolic hyperplane through the
midpoint between the two points and perpendicular to the geodesic segment
connecting them. In complex hyperbolic geometry, the situation is more
complex, and bisectors are described in Goldman’s [6, Section 5]. There
is a corresponding description for quaternionic hyperbolic spaces and the
hyperbolic octonionic plane, and this might be known to experts. However,
we were not able to locate a reference for the latter two cases and discuss
bisectors in an appendix. The analog of Goldman’s description is as follows.

Proposition D. Let H = Hk
F with F ∈ {C,H,O} and x 6= y be points in H.

Let L be the unique totally geodesic real hyperbolic space in H of dimension
dimR F containing x and y of sectional curvature −4, and let z be a point
in H \L. Then there is a unique totally geodesic real hyperbolic plane in H
of curvature −1 containing x, z, and πz. In particular,

cosh(d(x, z)) = cosh(d(x, πz)) cosh(d(z, πz)),

where π : H → L is the nearest point projection.

The above L is also called an F-line. It is spanned by x 6= y. If, in the real
hyperbolic case, the geodesic through x and y is understood to be the R-line
spanned by x and y, the following consequence holds in all four hyperbolic
geometries.

Corollary E. The bisector between x 6= y in H is equal to the preimage,
under the nearest point projection onto the F-line L spanned by x and y, of
the bisector between x and y in L.

Recall that totally geodesic submanifolds of H = Hk
F are of codimension

at least d so that bisectors are not totally geodesic unless F = R. This is one
of the reasons that the geometry of H is more difficult for F ∈ {C,H,O}.

2. On Lyons-Sullivan discretization

In what follows, we use mostly the notation and terminology from [3, 4]:
We let M be a connected Riemannian manifold, ∆ its Laplacian, B its
Brownian motion, and X a discrete subset of M . Given M and X, we
denote by (F, V ) ∼ (Fx, Vx)x∈X (regular Lyons-Sullivan) LS-data for X.
That is, we have

(D1) x ∈ F̊x and Fx ⊆ Vx for all x ∈ X;
(D2) Fx ∩ Vy = ∅ for all x 6= y in X;
(D3) F = ∪x∈XFx is closed and recurrent with respect to B;
(D4) for all x ∈ X and y ∈ Fx, the exit measures from Vx satisfy

1/C < dεy/dεx < C

for some constant C > 1, which does not depend on x and y.
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Suppose from now on that Brownian motion B is transient. For that case,
the notion of balanced LS-data was introduced in [3]; cf. [4, (D5) in Section
3]. The additional requirement is that there is a constant B such that the
Green’s functions of the Vx satisfy

(D5) GVx(z, x) = B for all x ∈ X and z ∈ ∂Fx.

For a properly discontinuous group Γ of isometries of M and an orbit X
of Γ in M we say that LS-data (F, V ) for X are Γ-adapted if X is an orbit
of Γ and the data are Γ-equivariant.

Proposition 2.1. For a properly discontinuous group Γ of isometries of M ,
an orbit X ⊆ M admits Γ-adapted LS-data if B is recurrent modulo Γ. If,
in addition, B is transient on M , then the data can be chosen balanced and
Γ-adapted.

Proof. Let X = Γx0 and Γ0 be the stabilizer of x0. Let F0 ⊆ V0 be compact
respectively relatively compact open neighborhoods of x0 which are invariant
under the stabilizer Γ0 of x0 in Γ and such that gF0 ∩ V0 = ∅ unless g ∈ Γ0.
For g ∈ Γ and x = gx0, let Fx = gF0 and Vx = γV0. Since B is recurrent
modulo Γ, F = ∪x∈XFx is B-recurrent. Hence (Fx, Vx)x∈X are Γ-adapted
LS-data. The assertion that the data can be chosen balanced follows as in
the (short) proof of [3, Theorem 3.2]. �

Since B is transient, M admits a Green’s function, Martin kernels, and
Martin boundary ∂∆M . Suppose that (F, V ) are Γ-adapted and balanced
LS-data. Denote by µ = (µy)y∈M the associated family of LS-measures and
by R the associated random walk on X. It is shown in [4, Theorem 3.29]
that R is transient, and hence X has an associated Martin boundary ∂µX.

Denote by H+
F (M,∆) the space of positive harmonic functions on M , by

H+
F (M,∆) those, which are swept by F , by H+(X,µ) the space of positive

µ-harmonic functions on X, and by ∂∆X the accumulation points of X in
the Martin boundary ∂∆M . By [5, Theorem 2.2] we have

Theorem 2.2. Restriction R : ∂∆X → ∂µX of Martin kernels from M to
X is Γ-equivariant, continuous, and surjective. Furthermore,

R : ∂∆X ∩H+
F (M,∆)→ ∂µX ∩H+(X,µ)

is a Γ-equivariant homeomorphism.

3. Negative curvature

In this section, we let H be a complete and simply connected Riemannian
manifold with pinched negative sectional curvature, −b2 ≤ K ≤ −a2 < 0.
Recall that the geometric compactification H̄ of H is homeomorphic to the
closed Euclidean unit ball such that the unit sphere corresponds to the
geometric boundary ∂geoH of H. We choose an origin x0 ∈ H.

Brownian motion B on H is transient, and therefore it has a positive
Green’s function G = G(x, y) and Martin kernels K = K(x, y). Identify-
ing points x ∈ H with the corresponding Martin kernels K(., x) induces an
identification of the geometric compactification H̄ with the Martin compact-
ification of H, such that the Martin boundary ∂∆H is identified ∂geoH; see
[1, 2, 7]. Moreover, ∂∆H is equal to the space of minimal positive harmonic
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functions on H, normalized to be equal to one at x0. We identify ξ ∈ ∂geoH
with the corresponding positive harmonic function K(., ξ) ∈ ∂∆H.

For a subset A ⊆ H, we denote by ∂geoA the closed set of accumulation
points of A in ∂geoH.

Lemma 3.1. If X ⊆ H is a discrete subset which admits LS-data (F, V ),
then ∂geoF = ∂geoH.

Proof. Suppose that X admits LS-data (F, V ) = (Fx, Vx)x∈X and that
∂geoF 6= ∂geoH. Then there is a cone

C = C(x, ξ, α) = {y ∈ H \ {x} | ∠x(y, ξ) < α},

where x ∈ H, ξ ∈ ∂geoH, and α > 0, such that F ∩C = ∅. By the geometry
of H, the exit measure of Brownian motion from C starting at any point
z ∈ C is positive on the boundary ∂geoC of C at infinity; cf. [10, (2) and
(3) on page 730]. Hence there is a positive probability that a Brownian
path starting at z does not hit F before leaving H. Therefore F is not
B-recurrent, which is a contradiction. �

Remark 3.2. If there is a uniform bound on the diameters of the Fx, as in
the equivariant case below, then ∂geoX = ∂geoF .

We now consider a properly discontinuous group Γ of isometries of M and
let X be an orbit of Γ in H.

Corollary 3.3. If B is recurrent modulo Γ, then ∂geoX = ∂geoH.

Remark 3.4. By the Poincaré recurrence theorem, if |Γ\H| < ∞, then
Brownian motion on H is recurrent modulo Γ.

Proof of Corollary 3.3. Since B is transient on H, Proposition 2.1 implies
that X admits Γ-adapted LS-data. Hence the assertion, by Lemma 3.1. �

Our corrected version of [3, Theorem 3.2(a)] follows now immediately
from Theorem 2.2.

Corollary 3.5. Suppose that (F, V ) are balanced Γ-adapted and balanced
LS-data for X. Then restriction of Martin kernels from H to X induces a
Γ-equivariant continuous surjection ∂geoH → ∂µX.

4. Hyperbolic spaces

In this section, let H = Hk
F be a hyperbolic space, Γ a discrete group of

isometries of H, X ⊆ H a Γ-orbit, and µ = (µx)x∈X a Γ-equivariant family
of probability measures on X such that the associated random walk R on
X is non-degenerate and transient.

The limit set ΛΓ is the closed and Γ-invariant subset of points ξ ∈ ∂geoH,
such that ξ = lim gnx for some sequence (gn) in Γ and some or, equivalently,
any x ∈ H. In other words, ΛΓ = ∂geoX, and ∂geoX depends on Γ, but not
on the choice of Γ-orbit X.

Recall that ΛΓ is either finite with at most two points or else infinite.
Recall also that ΛΓ = ∂geoH if |Γ\H| <∞ or, more generally, if the geodesic
flow of H is non-wandering modulo Γ.
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Theorem 4.1. If R is adapted and ΛΓ = ∂geoH, then restriction of Martin
kernels from H to X induces a homeomorphism ∂geoH → ∂µX.

Proof. Since restriction already a continuous surjection and the underlying
spaces are compact, it suffices to show injectivity. That is, given ξ 6= η in
∂geoH, we need to show that K(., ξ) 6= K(., η) on X. Let c be the unit speed
geodesic from ξ = c(−∞) to η = c(∞) and choose c(0) as the origin of M .
By (1.3) it suffices to show that bξ 6= bη.

For any t ∈ R, the bisectors Nt between the points c(t − s) and c(t + s)
do not depend on s > 0, and the family of Nt foliates H. This is obvious in
the real hyperbolic case and follows immediately from Proposition D in the
other cases. Note also that the nearest point projection onto the F-line L
containing c extends continuously to ∂geoH, so that the complement of the
closure of N0 at ∂geoH is non-empty and open.

By the construction of Busemann functions, the difference bξ − bη = 2t
along each of the Nt. Hence N0 is equal to the set of point where bξ = bη. If
the restrictions of bξ and bη would coincide on X, then X would be contained
in N0 and hence ∂geoX in the closure of N0 at ∂geoH. However, since the
limit set of Γ is equal to ∂geoH, we have ∂geoX = ∂geoH, a contradiction. �

We say that a point ξ ∈ ∂geoH is cuspidal (with respect to Γ) if horoballs
with center ξ, which are sufficiently close to ξ, are precisely invariant under
Γ, and if the stabilizer Γξ of ξ in Γ acts uniformly on horospheres centered
at Γ. Cuspidal points correspond to cusps of Γ\H. Note also that cuspidal
points belong to ΛΓ.

Theorem 4.2. If R is adapted, ΛΓ is infinite, and ξ ∈ ∂geoH is cuspidal,
then k(., ξ) is not µ-harmonic.

Proof. Let B be a precisely invariant horoball centered at ξ and b the Buse-
mann function associated to ξ with b(x0) = 0. Then either X does not
intersect B or X ∩ B is non-empty and contained in a horosphere centered
at ξ. In the latter case, it is evident that there exists x ∈ X such that b(x, ξ)
is minimal. In the former case, the existence of such x ∈ X follows from
the fact that Γξ acts uniformly on horospheres centered at ξ and that X is
discrete.

In any case, it is clear that b(., ξ) attains its minimum over X at points
of Γξx. By virtue of (1.3), this means that k(y, ξ) ≤ k(x, ξ) for all y ∈ X
and the equality holds if and only if y ∈ Γξx. Since the limit set of Γ is
infinite and the random walk R is non-degenerate, the support of µx cannot
be contained in Γξx. Hence there is at least one y ∈ X \ Γξx for which
µx(y) > 0. Hence µx(k(., ξ)) < k(x, ξ). �

Appendix A. Hyperbolic planes in symmetric spaces

In this appendix, our presentation follows the standard one in the theory
of symmetric spaces.

Let S be a symmetric space of noncompact type, represented by a sym-
metric pair (G,K), where G is a semisimple Lie group which acts almost
effectively on S = G/K. Let s be a corresponding involution of G, θ = s∗e,
and g = k ⊕ p be the associated Cartan decomposition of the Lie algebra
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of G. Endow g with an AdG-invariant bilinear form 〈., .〉, which is negative
definite on k and positive definite on p, such that the identification TxS = p
is an orthogonal transformation, where x = K/K ∈ S. Then adX is a sym-
metric transformation of g with respect to the positive definite inner product
−〈θ., .〉, for all X ∈ p.

Let a be a maximal abelian subalgebra of p. For a linear map α : a→ R,
let

gα = {X ∈ g | [H,X] = α(H)X for all H ∈ a}.

Then g0 = zka⊕ a and, since all adH , H ∈ a, are symmetric with respect to
the above inner product and pairwise commuting,

g = g0 ⊕
∑
α∈∆

gα,

where the set ∆ of roots consists of those α 6= 0 for which gα 6= {0}. For any
root α, we have the corresponding root vector Hα ∈ a such that α = 〈Hα., .〉.
Straightforward computations show that

θgα = g−α and [gα, gβ] ⊆ gα+β.

In particular, ∆ = −∆. Choosing a partition ∆ = ∆+ ∪∆−, we get

g = zka⊕ a⊕
∑
α∈∆+

kα ⊕ pα,

with

kα = (gα ⊕ g−α) ∩ k and pα = (gα ⊕ g−α) ∩ p.

For any α ∈ ∆+, dim kα = dim pα. Furthermore, for any X ∈ kα, there is a
unique Y ∈ pα such that X + Y ∈ gα. We say that X and Y are related.
Related vectors satisfy |X| = |Y | and

[H,X] = α(H)Y and [H,Y ] = α(H)X,

for all H ∈ a. Moreover, [X,Y ] = |X||Y |Hα.

Proposition A.1. For any α ∈ ∆+ and unit vector Y ∈ pα, Hα and Y
span a totally geodesic hyperbolic plane in S through x of curvature −|α|2.
In particular, for y = exp(sY ) and z = exp(tHα),

cosh(|α|d(y, z)) = cosh(|α|s) cosh(|α|2t).

Proof. By what we said above, the linear hull q ⊆ p of Hα and Y satisfies

[q, [q, q]] ⊆ q.

Hence q spans a totally geodesic plane through x. Since

|α|2 = |Hα|2 = α(Hα) and −R(Y,Hα)Hα = [Hα, [Hα, Y ]] = |α|4Y,

we obtain the assertion about the curvature. The assertion about the dis-
tance follows from hyperbolic trigonometry, where we note that Hα and Y
are perpendicular. �

Remark A.2. Since R(Y,H)H = −[H, [H,X]], the spaces pα correspond
to the eigenspaces of the curvature endomorphisms R(., H)H, for H ∈ a.
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Appendix B. Bisectors in hyperbolic geometry

In a metric space H, the bisector of points y, z ∈ H is the set

{x ∈ H | d(x, y) = d(x, z)}.
In this section, we give a description of bisectors in hyperbolic geometry.
The description is certainly known to experts and is trivial in the case of
real hyperbolic spaces. However, we were not able to locate a presentation
for quaternionic hyperbolic spaces and the octonionic hyperbolic plane. We
follow the nice account in [6, Section 5], where the case of complex hyperbolic
spaces is treated. Our main contribution is Proposition A.1 respectively its
consequence, Proposition B.1.

Let H = Hk
F with F ∈ {C,H,O} and normalize the standard metric on

H such that its maximal sectional curvature is −1. Set d = dimR F so that
the (real) dimension of Hk

F is equal to m = kd.
Let v be a unit tangent vector of H at a point x ∈ H. Then there is a

unique d-dimensional totally geodesic submanifold L ⊆ H passing through
x with TxL = V , where V ⊆ TxH is the linear hull of v and the subspace
U2 consisting of vectors u ∈ TxH perpendicular to v such that R(u, v)v =
−4u. Metrically, L ∼= Hd

R, but with constant sectional curvature −4. The
orthogonal complement U1 of V in TxH consists of vectors u ∈ TxH such
that R(u, v)v = −u.

Proposition B.1. Any u ∈ U1 determines a totally geodesic real hyperbolic
plane P through x of curvature −1 such that TxP is spanned by u, v.

Proof. With respect to the setup in Appendix A, we choose a = Rv. Then U1

corresponds to a restricted root space p1 with R(u, v)v = −u for all u ∈ U1.
Now the assertion follows from the first part of Proposition A.1. �

Denote by π : H → L be the orthogonal, that is, nearest point projection.

Proposition B.2. Let y ∈ L and z ∈ H. Then

cosh d(y, z) = cosh d(y, πz) cosh d(πz, z)

Proof. We can assume that πz 6= y and that z /∈ L. Then we let v ∈ TπzL be
the unit tangent vector pointing at y and u ∈ TπzH the one pointing at z.
Then u is perpendicular to TπzL, and hence u ∈ U1 in the above notation.
The formula for the distances is now just the formula in Proposition A.1,
since the real hyperbolic plane P in Proposition B.1 has curvature −1. �

For all y1 6= y2 in H, there is a unique totally geodesic subspace L = Ly1,y2
as above containing both of them.

Corollary B.3. The bisector of y1 6= y2 in H is the preimage under the
nearest point projection onto L as above of the bisector of y1, y2 in L.

Proof. This follows readily from Proposition B.2. �
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