Local class field theory: perfect residue field case

Ivan Fesenko

.

Sanct-Petersburg University Department of Mathematics 198904 Russia St. Petergof Bibliotechnaja pl. 2

Russia

Max-Planck-Institut für Mathematik Gottfried-Claren-Straße 26 D-5300 Bonn 3

Germany

. 4 .

LOCAL CLASS FIELD THEORY: PERFECT RESIDUE FIELD CASE

IVAN FESENKO

Let F be a complete (or Henselian) discrete valuation field with a perfect residue field \overline{F} of characteristic p > 0. Let $\wp(X)$ denote as usually the polynomial $X^p - X$. It induces the additive homomorphism $\wp: \overline{F} \to \overline{F}$. Let

$$\kappa = \dim_{\mathbf{F}_{\bullet}} \overline{F} / \wp(\overline{F}).$$

Further it will be assumed that $\kappa \neq 0$, the case $\kappa = 0$ when the field \overline{F} is algebraically *p*-closed may be treated similarly to Serre's geometric class field theory [Sr].

Let F^{ur} be the maximal unramified extension of F in the fixed separable closure F^{sep} of F, F^{abur}/F the maximal abelian subextension in F^{ur}/F , F^{ab}/F the maximal abelian extension in F^{sep}/F . Recall that for totally ramified abelian extensions L_1/F , L_2/F there is a totally ramified abelian extension L_3/F such that $L_3^{ur} = (L_1L_2)^{ur}$ (see [Hz1, (2.8.G)]). Thus, one may introduce the group

$$G_F^{\mathrm{abr}} = \lim \mathrm{Gal}(L/F)$$

where the projective limit is taken over the directed system of abelian totally ramified extensions L/F. Then G_F^{abr} is isomorphic to $\operatorname{Gal}(T/F)$ where T/F is any maximal totally ramified subextension in F^{ab}/F (see [Hz2, Subsection 2.4]) and

$$\operatorname{Gal}(F^{\operatorname{ab}}/F) \simeq \operatorname{Gal}(F^{\operatorname{abur}}/F) \times G_F^{\operatorname{abr}},$$

the group $\operatorname{Gal}(F^{\operatorname{abur}}/F)$ is canonically isomorphic to $\operatorname{Gal}(\overline{F}^{\operatorname{ab}}/\overline{F})$.

To describe the maximal abelian extension F^{ab}/F one must study abelian non-*p*-extensions and abelian *p*-extensions. Totally tamely ramified abelian extensions over F are easily described by the Kummer theory, since any such extension L/F is generated by adjoining a root $\sqrt[4]{\pi}$ for a suitable prime element π in F and a primitive *l*th root of unity belongs to F.

Treating abelian *p*-extensions one deduces at once the description of the maximal unramified abelian *p*-extension using the Witt theory. Thus, one is reduced to the study of abelian totally ramified *p*-extensions of *F*. A variant of description of the group G_F^{abr} in terms of constant pro-quasi-algebraic groups was furnished by M. Hazewinkel ([Hz1, Hz2]).

¹⁹⁹¹ Mathematics Subject Classification. Primary 11S31; Secondary 12E10.

Another description of abelian totally ramified *p*-extensions which is cohomology-free and of more explicit nature will be established below.

Let \tilde{F} denote the maximal abelian unramified *p*-extension of F and let L/F be a Galois totally ramified *p*-extension. For a character

$$\chi \in \operatorname{Hom}_{\mathbb{Z}_p} \left(\operatorname{Gal}(L/L), \operatorname{Gal}(L/F) \right)$$

let Σ_{χ} be the fixed field of all $\chi(\varphi)\varphi \in \operatorname{Gal}(\widetilde{L}/F)$, where φ runs a topological \mathbb{Z}_p -basis of $\operatorname{Gal}(\widetilde{L}/L)$. Let π_{χ} be a prime element in Σ_{χ} , and π_L be a prime element in L. Let U_L be the group of units of L. Put

$$\Upsilon_{L/F}(\chi) = N_{\Sigma_{\chi}/F} \pi_{\chi} N_{L/F} \pi_L^{-1} \mod N_{L/F} U_L.$$

We show in Theorem (1.7) below that $\Upsilon_{L/F}$ induces an isomorphism of

 $\operatorname{Hom}_{\mathbf{Z}_{p}}\left(\operatorname{Gal}(\widetilde{L}/L),\operatorname{Gal}(L/F)^{\mathbf{ab}}\right)$

onto $U_F/N_{L/F}U_L$ where $\operatorname{Gal}(L/F)^{\operatorname{ab}}$ is the maximal abelian quotient of $\operatorname{Gal}(L/F)$. This construction of $\Upsilon_{L/F}$ can be regarded as a generalization of the Neukirch construction in the classical cases ([N1],[N2]). We describe the inverse isomorphism to $\Upsilon_{L/F}$ as well. Passing to the projective limit one obtains the reciprocity map

$$\Psi_F \colon U_{1,F} \to \operatorname{Hom}_{\mathbb{Z}_p} \left(\operatorname{Gal}(\widetilde{F}/F), \operatorname{Gal}(F^{\operatorname{abp}}/\widetilde{F}) \right)$$

where $U_{1,F}$ is the group of principal units, F^{abp}/F is the maximal *p*-subextension in F^{ab}/F . The existence theorem deduced in Section 3 describes norm subgroups in $U_{1,F}$ and clarifies the properties of Ψ_F . For its proof theory of decomposable additive polynomials over \overline{F} derived in Section 2 will be used.

The local class field theory exposed has a lot of applications. Among them in ramification theory it justifies the metatheorem that a statement about ramification groups of normal totally ramified extension of a local field which holds in classical cases when the residue field is finite or quasi-finite is true in general ([Sn],[L1], [Ma]), in theory of fields of norms it connects the its constructions by class field theory ([FW],[Wn], [L2], see also [D]).

The part of this work was done during my stay at Max-Planck-Institut für Mathematik, which I would like to thank for its hospitality.

§1. RECIPROCITY MAP

1.1. The Witt theory immediately shows that if $\kappa = \dim_{\mathbf{F}_{\bullet}} \overline{F} / \rho(\overline{F})$, then

$$\operatorname{Gal}(\widetilde{F}/F)\simeq\prod_{\kappa} \mathbb{Z}_p.$$

Let L/F be a finite Galois totally ramified *p*-extension. Then $\operatorname{Gal}(L/F)$ can be identified with $\operatorname{Gal}(\widetilde{L}/\widetilde{F})$, and $\operatorname{Gal}(\widetilde{L}/F)$ is isomorphic with $\operatorname{Gal}(\widetilde{L}/\widetilde{F}) \times \operatorname{Gal}(\widetilde{L}/L)$. Let $\operatorname{Gal}(L/F)^* = \operatorname{Hom}_{\mathbb{Z}_p}(\operatorname{Gal}(\widetilde{L}/L), \operatorname{Gal}(L/F))$ denote the group of continuous homomorphisms of \mathbb{Z}_p -module $\operatorname{Gal}(\widetilde{L}/L)$ $(a \cdot \sigma = \sigma^a, a \in \mathbb{Z}_p)$ to the discrete \mathbb{Z}_p -module $\operatorname{Gal}(L/F)$. This group is isomorphic (non-canonically) with $\bigoplus_{\kappa} \operatorname{Gal}(L/F)$. Let $\chi \in \operatorname{Gal}(L/F)^*$ and $\Sigma_{\dot{\chi}}$ be the fixed field of $\{\chi(\varphi)\varphi\}$ where φ runs through $\operatorname{Gal}(\widetilde{L}/L)$ and the element $\chi(\varphi)$ of $\operatorname{Gal}(L/F)$ is identified with the corresponding element in $\operatorname{Gal}(\widetilde{L}/\widetilde{F})$. Then, obviously, $\Sigma_{\chi} \cap \widetilde{F} = F$, i.e., Σ_{χ}/F is a totally ramified *p*-extension. Let U_F and U_L be the groups of units of F and L respectively. Let π_{χ} be a prime element of Σ_{χ} . Put

$$\Upsilon_{L/F}(\chi) = N_{\Sigma_{\chi}/F} \pi_{\chi} N_{L/F} \pi_L^{-1} \mod N_{L/F} U_L$$

where π_L is a prime element in L;

1.2. Lemma. The map $\Upsilon_{L/F}$: $\operatorname{Gal}(L/F)^* \to U_F/N_{L/F}U_L$ is well defined.

Proof. $\Upsilon_{L/F}$ does not depend on the choice of π_L . Let M be the compositum of Σ_{χ} and L. Then M/Σ_{χ} is unramified and any prime element in Σ_{χ} can be written as $\pi_{\chi}N_{M/\Sigma_{\chi}}\varepsilon$ for a suitable $\varepsilon \in U_M$. As $N_{M/F}\varepsilon = N_{L/F}(N_{M/L}\varepsilon) \in N_{L/F}U_L$ we complete the proof. \Box

Let $U_{i,F}$ denote the subgroup of principal units $\equiv 1 \mod \pi_F^i$. Then $\Upsilon_{L/F}$ acts in fact from $(\operatorname{Gal}(L/F)^{\mathrm{ab}})^*$ to $U_{1,F}/N_{L/F}U_{1,L}$.

1.3. In order to go further we consider the behavior of the norm map. Let L/F be a cyclic totally ramified extension of degree p. Let π_L be a prime element in L. Then $\pi_F = N_{L/F}\pi_L$ is prime in F. Let σ be a generator of $\operatorname{Gal}(L/F)$,

$$\frac{\sigma\pi_L}{\pi_L} = 1 + \theta_0 \pi_L^s + \dots$$

with $\theta_0 \in U_L$, s = s(L|F) > 0. Then it is well known that

$$\begin{split} N_{L/F}(1+\theta\pi_L^i) &= 1+\theta^p\pi_F^i+\dots & \text{for } i < s, \ \theta \in U_F \\ N_{L/F}(1+\theta\pi_L^s) &= 1+(\theta^p-\theta_0^{p-1}\theta)\pi_F^s+\dots & \text{for } \theta \in U_F \\ N_{L/F}(1+\theta\pi_L^{s+pi}) &= 1-\theta_0^{p-1}\theta\pi_F^{s+i}+\dots & \text{for } i > 0, \ \theta \in U_F. \end{split}$$

Then $U_{1,F}/N_{L/F}U_{1,L}$ is generated by $1 + \theta \pi_F^{\bullet}$ when θ runs element of U_F the residues of which are linearly independent over $\overline{\theta}_0^P \varphi(\overline{F})$. Hence $U_{1,F}/N_{L/F}U_{1,L}$ is isomorphic to $\overline{F}/\overline{\theta}_0^P \varphi(\overline{F}) \simeq \bigoplus_{\kappa} \mathbf{F}_p$.

1.4. Let \widehat{F} denote the completion of \widetilde{F} . If L/F is a Galois totally ramified *p*-extension, then $\operatorname{Gal}(L/F)$ is solvable. We will assume always when it is necessary that $\widehat{F} \subset \widehat{L}$. It follows from (1.3) that $N_{\widehat{L}/\widehat{F}}U_{1,\widehat{L}} = U_{1,\widehat{F}}$. For $\sigma \in \operatorname{Gal}(L/F)$ put

$$i(\sigma) = \frac{\sigma \pi_L}{\pi_L} \mod V(L|F),$$

where π_L is a prime element in L, and

$$V(L|F) = \left\{ \frac{\sigma(\varepsilon)}{\varepsilon} : \varepsilon \in U_{1,\widehat{L}}, \sigma \in \operatorname{Gal}(L/F) \right\}.$$

Then the sequence

$$1 \to \operatorname{Gal}(L/F)^{\operatorname{ab}} \to U_{1,\widehat{L}}/V(L|F) \xrightarrow{N_{\widehat{L}/\widehat{F}}} U_{1,\widehat{F}} \to 1$$

is exact (see [Hz1, (2.7)] or [I, Subsection 2.2]).

If M/F is a Galois subextension in L/F, then $V(M|F) = N_{L/M}V(L|F)$ because $U_{1,\widehat{M}} = N_{\widehat{L}/\widehat{M}}U_{1,\widehat{L}}$.

Lemma. Assume that L/F is a Galois totally ramified p-extension. Let $\varphi_{\nu}, \nu \in I$, be elements in $\operatorname{Gal}(\widetilde{F}/F)$ which are \mathbb{Z}_p -linearly independent, and $\psi_{\nu}, \nu \in I$, be their extensions on \widehat{L} . Let $\psi \in \operatorname{Gal}(\widetilde{L}/F)$ be such that its restriction on \widetilde{F} is \mathbb{Z}_p -linearly independent with $\{\varphi_{\nu}\}_{\nu\in I}$. We will use the same notation for the continuous extension of ψ on \widehat{L} . Let E be the fixed subfield of $\{\psi_{\nu}\}_{\nu\in I}$ and $\varepsilon \in U_{i,E}$. Then there exists $\eta \in U_{i,E}$ such that $\varepsilon = \eta^{\psi-1}$.

Proof. Note that E is a complete field and one can construct the desired element η step by step modulo higher principal units. For instance, let $\varepsilon \equiv 1 + \theta \pi_L^i \mod \pi_L^{i+1}$ where $\theta \in U_E$, $\bar{\psi}_{\nu}(\bar{\theta}) = \bar{\theta}$ for $\nu \in I$. Then there is $\xi \in U_E$ such that $\bar{\psi}(\bar{\xi}) - \bar{\xi} = \bar{\theta}$. Then for $\eta \equiv 1 + \xi \pi_L^i \mod \pi_L^{i+1}$ we deduce that $\varepsilon \equiv \eta^{\psi-1} \mod \pi_L^{i+1}$. \Box

1.5. Now we introduce the map inverse to $\Upsilon_{L/F}$. Let L/F be a Galois totally ramified *p*-extension. Let $\varepsilon \in U_{1,F}$. According to (1.4) there exists an element $\eta \in U_{1,\hat{L}}$ such that $N_{\hat{L}/\hat{F}}\eta = \varepsilon$. Let φ be a continuous extension of $\varphi \in \operatorname{Gal}(\hat{L}/L)$ on \hat{L} . Since $N_{\hat{L}/\hat{F}}(\eta^{-1}\varphi(\eta)) = 1$, we deduce from the exact sequence of (1.4) that $\eta^{-1}\varphi(\eta) \equiv \pi_L \sigma(\pi_L^{-1})$ mod V(L|F) for a suitable $\sigma \in \operatorname{Gal}(\hat{L}/\hat{F})$ where π_L is a prime element in L. Set $\chi(\varphi) = \sigma$. Then it is easy to verify that $\chi(\varphi_1\varphi_2) = \sigma_1\sigma_2$. This means $\chi \in \operatorname{Gal}(L/F)^*$. Put $\Psi_{L/F}(\varepsilon) = \chi$.

Lemma. The map $\Psi_{L/F}: U_{1,F}/N_{L/F}U_{1,L} \to \operatorname{Gal}(L/F)^*$ is well defined and a homomorphism.

Proof. If $N_{\widehat{L}/\widehat{F}}\rho = \varepsilon$, then for $\mu = \eta^{-1}\rho$ the element $\mu^{-1}\varphi(\mu)$ belongs to V(L|F). If $\varepsilon = \varepsilon_1\varepsilon_2$, then one may assume $\eta = \eta_1\eta_2$, consequently $\sigma = \sigma_1\sigma_2$ in $\operatorname{Gal}(L/F)^{\operatorname{ab}}$. Thus, $\Psi_{L/F}(\varepsilon_1\varepsilon_2) = \Psi_{L/F}(\varepsilon_1)\Psi_{L/F}(\varepsilon_2)$. \Box

In fact $\Psi_{L/F}$ acts from $U_{1,F}/N_{L/F}U_{1,L}$ to $(\operatorname{Gal}(L/F)^{\mathrm{ab}})^*$.

1.6. For Theorem to follow we need to consider the following

Proposition. Assume that L/F is a Galois totally ramified p-extension, M/F is a Galois subextension in L/F, $M \neq L$. Let $\varphi_{\nu}, \nu \in I$, be \mathbb{Z}_p -linearly independent in $\operatorname{Gal}(\widetilde{F}/F)$, and ψ_{ν} be their continuous extensions on \widehat{L} . Let $\psi \in \operatorname{Gal}(\widetilde{L}/F)$ be such that $\psi|_{\widetilde{F}}$ is \mathbb{Z}_p -linearly

independent with $\{\psi_{\nu}\}_{\nu \in I}$. For a set $S \subset \widehat{L}$ let $S^{\langle \psi_{\nu} \rangle}$ denote the set of the fixed elements under the action of all ψ_{ν} . Let $\alpha \in \widehat{L}$. Then

- 1) $V(L|M)^{\langle \psi_{\mathbf{r}} \rangle} = \left(V(L|M)^{\langle \psi_{\mathbf{r}} \rangle} \right)^{\psi-1};$
- 2) if $\alpha^{\psi_{\nu}-1} \in V(L|M)$ for all $\nu \in I$, then $\alpha \in V(L|M)\widehat{L}^{\langle\psi_{\nu}\rangle}$;
- 3) $V(M|F)^{\langle \psi_{\nu} \rangle} = N_{\widehat{L}/\widehat{M}}(V(L|F)^{\langle \psi_{\nu} \rangle}).$

Proof. First assume that |L:M| = p.

1) Let $E = \widehat{L}^{\langle \psi_{\nu} \rangle}$ be the fixed field of ψ_{ν} , $\nu \in I$. Let σ be a generator of $\operatorname{Gal}(\widehat{L}/\widehat{M})$. If $\varepsilon \in V(L|M)^{\langle \psi_{\nu} \rangle}$, then $\varepsilon = \varepsilon_{1}^{\sigma-1}$ for some $\varepsilon_{1} \in U_{1,E}$, and it follows from (1.3) that $\varepsilon \in U_{s+1,E}$ where $s = s(\widehat{L}|\widehat{M})$. By Lemma of (1.4) there exists an element $\eta \in U_{s+1,E}$ such that $\varepsilon = \eta^{\psi-1}$. Then for $\rho = N_{\widehat{L}/\widehat{M}}\eta$ we obtain $\rho \in U_{s+1,\widehat{M}} \cap E^{\langle \psi \rangle}$. Applying (1.3) once again we deduce that $\rho = N_{\widehat{L}/\widehat{M}}\xi$ for some $\xi \in E^{\langle \psi \rangle} \cap U_{s+1,E}$. Then $N_{\widehat{L}/\widehat{M}}(\eta\xi^{-1}) = 1$ and $\eta\xi^{-1} \in U_{s+1,E}$. Therefore, $\eta = \xi\mu^{\sigma-1}$ for some $\mu \in U_{1,E}$. Thus, $\varepsilon = \mu^{(\sigma-1)(\psi-1)} \in (V(L|M)^{\langle \psi_{\nu} \rangle})^{\psi-1}$.

2) Proceed by induction on the cardinality of *I*. Let $\alpha = \alpha_1 \alpha_2$ with $\alpha_1 \in V(L|M)$, $\alpha_2 \in \hat{L}_J^{(\psi_\nu)}, \nu \in J, J = I - \{i\}$. Then $\alpha_2^{\psi_i - 1} \in V(L|M)^{(\psi_\nu)}, \nu \in J$, and by 1) we deduce $\alpha_2^{\psi_i - 1} = \alpha_3^{\psi_i - 1}$ for a suitable $\alpha_3 \in V(L|M)^{(\psi_\nu)}, \nu \in J$. Then $\alpha_2 \alpha_3^{-1} \in \hat{L}^{(\psi_\nu)}, \nu \in I$, and $\alpha = (\alpha_1 \alpha_3)(\alpha_2 \alpha_3^{-1}) \in V(L|M)\hat{L}^{(\psi_\nu)}$.

3) Let $\alpha \in V(M|F)^{\langle \psi_{\nu} \rangle}$. By (1.4) we get $\alpha = N_{\widehat{L}/\widehat{M}}\beta$ with $\beta \in V(L|F)$. As $\beta^{\psi_{\nu}-1} \in V(L|M)$, we deduce using 2) that $\beta \in V(L|M)V(L|F)^{\langle \psi_{\nu} \rangle}$. Therefore, $\alpha \in N_{\widehat{L}/\widehat{M}}(V(L|F)^{\langle \psi_{\nu} \rangle})$, as desired.

In the general case we proceed by induction on |L:M| using the solvability of totally ramified extensions.

1) If $\alpha \in V(L|M)^{\langle \psi_{\nu} \rangle}$, then by the inductional assumption $N_{\widehat{L}/\widehat{K}} \alpha = \beta^{\psi-1}$ for some $\beta \in V(K|M)^{\langle \psi_{\nu} \rangle}$ where K/M is a non-trivial subextension in L/M. Applying 3) for the extension L/K, we obtain that $\beta = N_{\widehat{L}/\widehat{K}} \gamma$ for some $\gamma \in V(L|K)^{\langle \psi_{\nu} \rangle}$. Then $N_{\widehat{L}/\widehat{K}} (\alpha \gamma^{1-\psi}) = 1$ and $\alpha \gamma^{1-\psi} \in V(L|K)$. Applying 1) for the extension L/K, we conclude $\alpha \gamma^{1-\psi} = \delta^{1-\psi}$ with some $\delta \in V(L|K)^{\langle \psi_{\nu} \rangle}$ and $\alpha \in (V(L|M)^{\langle \psi_{\nu} \rangle})^{\psi-1}$.

Now 2) formally follows from 1) and 3) follows from 2) as just above. \Box

1.7. Theorem. Assume that L/F is a Galois totally ramified p-extension. The map $\Upsilon_{L/F}: (\operatorname{Gal}(L/F)^{ab})^* \to U_{1,F}/N_{L/F}U_{1,L}$ is an isomorphism, and the map $\Psi_{L/F}$ is the inverse one.

Proof. First we verify that $\Psi_{L/F} \circ \Upsilon_{L/F} = \text{id.}$ Indeed, let $\pi_{\chi} = \pi_L \eta$ with $\eta \in U_{\widehat{L}}$. Let $\varphi \in \text{Gal}(\widetilde{L}/L), \ \sigma = \chi(\varphi) \in \text{Gal}(\widetilde{L}/\widetilde{F})$. Then

$$\pi_L^{1-\sigma} = \eta^{\varphi\sigma-1} = \eta^{\varphi-1}\eta^{\varphi(\sigma-1)} \equiv \eta^{\varphi-1} \mod V(L|F)$$

and $N_{\widehat{L}/\widehat{F}}\eta = N_{\Sigma_{\chi}/F}\pi_{\chi}N_{L/F}\pi_{L}^{-1}$. Therefore, $\chi = \Psi_{L/F}(\Upsilon_{L/F}\chi)$.

Next we show that $\Upsilon_{L/F} \circ \Psi_{L/F} = \text{id. Let } \varepsilon \in U_{1,F} \text{ and } \varepsilon = N_{\widehat{L}/\widehat{F}} \eta \text{ for some } \eta \in U_{1,\widehat{L}}.$ Assume that $\eta^{\varphi_{\nu}-1} \equiv \pi_L^{1-\sigma_{\nu}} \mod V(L|F)$ for $\varphi_{\nu} \in \text{Gal}(\widetilde{L}/L), \ \sigma_{\nu} \in \text{Gal}(\widetilde{L}/\widetilde{F}).$ Put $\psi_{\nu} = \varphi_{\nu}\sigma_{\nu}$ and apply 2) of the previous Proposition. Then, as $(\pi_L\eta)^{\psi_{\nu}-1} \in V(L|F)$, we obtain that $\pi_L\eta = \eta_1\eta_2$ with $\eta_1 \in V(L|F)$, $\eta_2 \in \widehat{L}^{\langle\psi_{\nu}\rangle}$. This means that $\pi_L\eta\eta_1^{-1} \in \Sigma_{\chi}$ where $\chi(\varphi_{\nu}) = \sigma_{\nu}$, and

$$\varepsilon \equiv N_{\Sigma_{\chi}/F}(\pi_L \eta \eta_1^{-1}) N_{L/F} \pi_L^{-1} \mod N_{L/F} U_{1,L}.$$

Thus, $\Upsilon_{L/F} \circ \Psi_{L/F} = \mathrm{id.}$

Corollary. Let M/F be the maximal abelian subextension in a Galois totally ramified p-extension L/F. Then $N_{M/F}U_{1,M} = N_{L/F}U_{1,L}$.

1.8. Now we establish functorial properties of $\Upsilon_{L/F}$ and $\Psi_{L/F}$.

Proposition.

1) Let L/F, L'/F' be Galois totally ramified p-extensions, F'/F, L'/L be totally ramified. Then the diagram

is commutative where the left vertical homomorphism is induced by the natural restriction $\operatorname{Gal}(L'/F') \to \operatorname{Gal}(L/F)$ and the canonical isomorphism $\operatorname{Gal}(\widetilde{L}'/L') \xrightarrow{\sim} \operatorname{Gal}(\widetilde{L}/L)$.

2) Let L/F be a Galois totally ramified p-extension, and let σ be an automorphism. Then the diagram

$$\begin{array}{cccc} \operatorname{Gal}(L/F)^{\bullet} & \longrightarrow & U_{1,F}/N_{L/F}U_{1,L} \\ & & & & \downarrow \\ & & & & \downarrow \\ \operatorname{Gal}(\sigma L/\sigma F)^{\ast} & \longrightarrow & U_{1,\sigma F}/N_{\sigma L/\sigma F}U_{1,\sigma L} \end{array}$$

is commutative, where $(\sigma^*\chi)(\sigma\varphi\sigma^{-1}) = \sigma\chi(\varphi)\sigma^{-1}$.

3) Let L/F be a Galois totally ramified p-extension and M/F be its subextension. Then the diagram

is commutative, where Ver^{*} is induced by Ver: $\operatorname{Gal}(L/F)^{ab} \to \operatorname{Gal}(L/M)^{ab}$.

1

Proof.

1) Let $\chi' \in \operatorname{Gal}(L'/F')^*$ and $\chi \in \operatorname{Gal}(L/F)^*$ be the corresponding character. Put $\Sigma' = \Sigma_{\chi'}$. Then $\Sigma_{\chi} = \Sigma' \cap \widetilde{L}$ and Σ/Σ_{χ} is totally ramified. Therefore, $\pi = N_{\Sigma'/\Sigma_{\chi}} \pi_{\Sigma'}$ is a prime element in Σ_{χ} and $N_{\Sigma_{\chi}/F} \pi = N_{F'/F} N_{\Sigma'/F'} \pi_{\Sigma'}$.

2) It follows from $\Sigma_{\sigma^*\chi} = \sigma \Sigma_{\chi}$.

3) Let $\varepsilon = N_{\widehat{L}/\widehat{F}}\eta$ and $\eta^{\varphi-1} = \pi_L^{1-\sigma}\gamma$ for a prime element π_L in $L, \sigma \in \operatorname{Gal}(\widehat{L}/\widehat{F})$, $\gamma \in V(L|F)$. Then $\sigma = \chi(\varphi), \ \chi = \Psi_{L/F}(\varepsilon)$. Let $\tau_i \in \operatorname{Gal}(\widehat{L}/\widehat{F})$ be a set of representatives of $\operatorname{Gal}(\widehat{L}/\widehat{F})$ over $\operatorname{Gal}(\widehat{L}/\widehat{M})$. Then $\varepsilon = N_{\widehat{L}/\widehat{M}}\eta_1$ with $\eta_1 = \prod \eta^{\tau_i}$ and $\eta_1^{\varphi-1} = \prod \pi_L^{(1-\sigma)\tau_i} \prod \eta^{\tau_i}$. Let $\sigma\tau_i = \tau_{i'}h_i(\sigma)$ with $h_i(\sigma) \in \operatorname{Gal}(\widehat{L}/\widehat{M})$. Now we deduce

$$\prod \pi_L^{(1-\sigma)\tau_i} = \prod \pi_L^{\tau_{i'}(1-h_i(\sigma))} \equiv \pi_L^{\prod 1-h_i(\sigma)} = \pi_L^{1-\operatorname{Ver}(\sigma)} \mod V(L|M).$$

Since $\prod \eta^{\tau_i} \in V(L|M)$ we deduce that $\eta_1^{\varphi-1} \equiv \pi_L^{1-\operatorname{Ver}(\sigma)} \mod V(L|M)$, as desired. \square Corollary. Let L_1/F , L_2/F , L_1L_2/F be abelian totally ramified p-extensions. Put $L_3 = L_1L_2$, $L_4 = L_1 \cap L_2$. Then

$$N_{L_3/F}U_{1,L_3} = N_{L_1/F}U_{1,L_1} \cap N_{L_2/F}U_{1,L_2},$$

$$N_{L_4/F}U_{1,L_4} = N_{L_1/F}U_{1,L_1}N_{L_2/F}U_{1,L_2}.$$

Moreover, $N_{L_1/F}U_{1,L_1} \subset N_{L_2/F}U_{1,L_2}$ if and only if $L_1 \supset L_2$. Proof. Put $H_i = \text{Gal}(L_3/L_i)$, i = 1, 2. Then

$$\begin{split} N_{L_3/F}U_{1,L_3} &= \Psi_{L_3/F}^{-1}(1) = \Psi_{L_3/F}^{-1}(H_1 \cap H_2) = \Psi_{L_3/F}^{-1}(H_1) \cap \Psi_{L_3/F}^{-1}(H_2) \\ &= N_{L_1/F}U_{1,L_1} \cap N_{L_2/F}U_{1,L_2}, \\ N_{L_4/F}U_{1,L_4} &= \Psi_{L_3/F}^{-1}(H_1H_2) = N_{L_1/F}U_{1,L_1}N_{L_2/F}U_{1,L_2}. \end{split}$$

If $N_{L_1/F}U_{1,L_1} \subset N_{L_2/F}U_{1,L_2}$, then $N_{L_1/F}U_{1,L_1} = N_{L_3/F}U_{1,L_3}$ and $|L_1:F| = |L_3:F|$, i.e., $L_2 \subset L_1$. \Box

Remark. Let F^{abp}/F be the maximal *p*-subextension in F^{ab}/F . Let $\{\psi_{\nu}\}$ be a set of automorphisms in $\operatorname{Gal}(F^{abp}/F)$ such that $\psi_{\nu}|_{\widetilde{F}}$ are linearly independent and generate $\operatorname{Gal}(\widetilde{F}/F)$. Then the group $\operatorname{Gal}(\Sigma/F)$ for the fixed field Σ of ψ_{ν} is isomorphic to the group $\operatorname{Gal}(F^{abp}/\widetilde{F})$.

In the definition of $\Psi_{L/F}$ one can replace the group $\operatorname{Hom}_{\mathbb{Z}_p}(\operatorname{Gal}(\widetilde{L}/L), \operatorname{Gal}(L/F))$ by the group $\operatorname{Hom}_{\mathbb{Z}_p}(\operatorname{Gal}(\widetilde{F}/F), \operatorname{Gal}(L/F))$. Indeed, let $\psi_1, \psi_2 \in \operatorname{Gal}(\widetilde{L}/F)$ be such that $\psi_1|_{\widetilde{F}} = \psi_2|_{\widetilde{F}}$. Then $\psi_2^{-1}\psi_1 = \tau \in \operatorname{Gal}(\widetilde{L}/\widetilde{F})$, and

$$\eta^{\psi_1-1} = \eta^{\psi_2\tau-1} = \eta^{\psi_2-1}\eta^{\psi_2(\tau-1)} \equiv \eta^{\psi_2-1} \mod V(L|F).$$

Thus, we get an isomorphism

$$\Psi_{L/F} \colon U_{1,F}/N_{L/F}U_{1,L} \to \operatorname{Hom}_{\mathbb{Z}_{p}}(\operatorname{Gal}(\widetilde{F}/F), \operatorname{Gal}(L/F)^{\operatorname{ab}}).$$

Passing to the projective limit we obtain the reciprocity map

$$\Psi_F \colon U_{1,F} \to \operatorname{Hom}_{\mathbb{Z}_p} \left(\operatorname{Gal}(\widetilde{F}/F), \operatorname{Gal}(F^{\operatorname{abp}}/\widetilde{F}) \right)$$

This map possesses functional properties analogous to stated in Proposition. The kernel of Ψ_F coincides with the intersection of all norm groups $N_{L/F}U_{1,L}$ for abelian totally ramified *p*-extensions L/F, $L \subset \Sigma$.

1.9. The following assertion can be applied to the study of ramification groups.

Proposition. Assume that L/F is an abelian totally ramified p-extension and G = Gal(L/F). Let $h = \psi_{L/F}$ be the Hasse-Herbrand function. Then $\Psi_{L/F}$ maps the quotient group $U_{i,F}/N_{L/F}U_{h(i),L}$ isomorphically onto the ramification group $G_{h(i)}$.

Proof. Let $\sigma \in G_{h(i)}$. Then $\pi^{-1}\sigma(\pi) \in U_{h(i),L}$ for a prime element π in L. According to Lemma of (1.4) there exists an element $\beta \in U_{h(i),\hat{L}}$ such that $\beta^{\varphi-1} = \pi^{1-\sigma}$ for a continuous extension φ on \hat{L} of $\varphi \in \operatorname{Gal}(\tilde{L}/L)$. Then $N_{\hat{L}/\hat{F}}\beta \in U_{i,\hat{F}}$ and $\Upsilon_{L/F}(\chi) \in U_{i,F}N_{L/F}U_{h(i),L}$ for $\chi \in \operatorname{Gal}(L/F)^*$, $\chi(\varphi) = \sigma$. Thus, $\Upsilon_{L/F}$ induces the homomorphisms

$$G_{h(i)}/G_{h(i)+1} \rightarrow U_{i,F}/U_{i+1,F}N_{L/F}U_{h(i),L}$$

Since $\Upsilon_{L/F}$ is an isomorphism, we obtain the required assertion. \Box

Remark. One can deduce from the proof of the previous Proposition that $G_{h(i)+1} = G_{h(i+1)}$ (so-called Hasse-Arf theorem).

1.10. We finally consider pairings of $U_{1,F}$.

The first pairing is the Hilbert norm residue symbol. Assume that $\operatorname{char}(F) = 0$ and a primitive p^m th root of unity belongs to F. Let μ_{p^m} be the group of p^m th roots. For $\alpha \in U_{1,F}, \beta \in F^*$ put

$$(\alpha,\beta)_m(\varphi) = \gamma^{\Psi_F(\alpha)(\varphi)-1}$$

where $\gamma^{p^m} = \beta, \varphi \in \operatorname{Gal}(\widetilde{F}/F), \Psi_F(\alpha)(\varphi) \in \operatorname{Gal}(\widetilde{F}(\gamma)/\widetilde{F})$. Thus, we obtain the pairing

$$(\cdot, \cdot)_m : U_{1,F} \times F^* \to \operatorname{Hom}_{\mathbb{Z}_p} \left(\operatorname{Gal}(\widetilde{F}/F), \mu_{p^m} \right)$$

(note that the last group is non-canonically isomorphic to $\bigoplus_{\kappa} \mu_{p^m}$).

Proposition.

1) Let $F(\sqrt[p^m]{\beta})/F$ be totally ramified. Then $(\alpha, \beta)_m = 1$ if and only if

$$\alpha \in N_{F(\mathcal{P}^{m}\mathcal{A})/F}U_{1,F(\mathcal{P}^{m}\mathcal{A})}.$$

- 2) (α,β)_m = 1 for all α ∈ U_{1,F} if and only if F(^{pm}√β)/F is unramified.
 3) (1 − β, β)_m = 1 for 1 − β ∈ U_{1,F}.
 4) (−β,β)_m = 1 for −β ∈ U_{1,F}.
- 5) $(\alpha, \beta)_m = (\beta, \alpha)_m^{-1}$ for $\alpha, \beta \in U_{1,F}$.
- 6) $(\alpha, \beta)_m = 1$ for all $\beta \in F^*$ if and only if $\alpha \in U_{1,F}^{p^m}$.

Proof. 1) immediately follows. If $F(\sqrt[p^m]{\beta})/F$ is not unramified, then $\widetilde{F}(\gamma) \neq \widetilde{F}$ for $\gamma^{p^m} = \beta$ and one can take $\alpha \notin N_{\Sigma/F}U_{1,\Sigma}$, where Σ/F is a totally ramified extension such that $\widetilde{\Sigma} = \widetilde{F}(\gamma)$. Then $(\alpha, \beta)_m \neq 1$, and we get 2). 3) and 4) follow from 1). If $\alpha, \beta \in U_{1,F}$, then

$$1 = (\alpha\beta, -\alpha\beta)_m = (\alpha, -\alpha)_m (\beta, -\beta)_m (\alpha, \beta)_m (\beta, \alpha)_m = (\alpha, \beta)_m (\beta, \alpha)_m.$$

If $(\alpha, \beta)_m = 1$ for all $\beta \in F^*$, then $(\beta, \alpha)_m = 1$ for all $\beta \in U_{1,F}$ and $F(\sqrt[p]{\alpha})/F$ is unramified. If $\alpha \notin F^{*p}$, then in the case under consideration $\alpha \equiv 1 + \theta \pi_F^{pe/(p-1)} \mod \pi_F^{pe/(p-1)+1}$ where e is the absolute index of ramification of F. Then $\alpha \notin N_{F(\sqrt[p]{\pi_F})/F}F(\sqrt[p]{\pi_F})^*$ as it follows from (1.3). Therefore, $\alpha = \alpha_1^p$ for some $\alpha_1 \in U_{1,F}$. Now $(\alpha_1^p, \beta)_m = (\alpha_1, \beta)_{m-1} = 1$. Proceeding by induction on m, we conclude that $\alpha \in U_{1,F}^{pm}$. \Box

Remark. One can extend the Hilbert symbol on $F^* \times F^*$: for $\alpha = \pi^a \theta \varepsilon$, $\beta = \pi^b \theta' \eta$ with $\varepsilon, \eta \in U_{1,F}$ and $\theta, \eta \in \mathcal{R}^*$, where \mathcal{R}^* is the set of multiplicative representatives of \overline{F}^* in F, put

$$(\alpha,\beta)_m = \begin{cases} (\varepsilon^b \eta^a, \pi)_m (\varepsilon,\eta)_m & \text{for } p > 2, \\ (-1,\pi^{ab})_m (\varepsilon^b \eta^a, \pi)_m (\varepsilon,\eta)_m & \text{for } p = 2. \end{cases}$$

Proposition implies that this pairing is well defined. It induces a non-degenerate pairing

$$F^*/F^{*p^m} \times F^*/F^{*p^m} \to \operatorname{Hom}_{\mathbb{Z}_p}(\operatorname{Gal}(\widetilde{F}/F), \mu_{p^m}).$$

There is another way to determine this pairing as

$$F^*/F^{*p^m} \times F^*/F^{*p^m} \to H^2(F,\mu_{p^m}) \xrightarrow{\sim}_{p^m} \operatorname{Br}(F) \otimes \mu_{p^m}$$

via the natural isomorphism between the last group in the preceding line and the group

$$\operatorname{Hom}_{\mathbb{Z}_p}(\operatorname{Gal}(\widetilde{F}/F),\mu_{p^m}),$$

see [Wt]. Employing the description of p^m -primary elements ([Hs, Sh]) one can deduce explicit formula for the Hilbert symbol ([Sh],[V]).

1.11. The second pairing is the Artin-Schreier pairing. Let F be of characteristic p. For $\alpha \in U_{1,F}, \beta \in F$ put

$$(\alpha,\beta](\varphi) = \Psi_F(\alpha)(\varphi)(\gamma) - \gamma,$$

where $\varphi \in \operatorname{Gal}(\widetilde{F}/F)$, γ is a root of the polynomial $p(X) - \beta$. We get the pairing

$$(\cdot, \cdot]: U_{1,F} \times F \to \operatorname{Hom}_{\mathbb{Z}_p}(\operatorname{Gal}(\widetilde{F}/F), \mathbb{F}_p).$$

In the same way as in the previous Proposition one can verify that:

1) Let $F(\gamma)/F$ be a totally ramified extension. Then $(\alpha, \beta] = 0$ if and only if $\alpha \in N_{F(\gamma)/F}F(\gamma)^*$.

2) $(\alpha, -\alpha] = 0$ for $\alpha \in U_{1,F}$.

3) $(\alpha, \beta] = 0$ for all $\alpha \in U_{1,F}$ if and only if $F(\gamma)/F$ is unramified.

Moreover, it is easy to deduce an explicit formula for $(\cdot, \cdot]$:

Proposition. $(\alpha, \beta](\varphi) = \varphi(\lambda) - \lambda$ where λ is a root of the polynomial $\varphi(X) - \delta$ and $\delta = \operatorname{res}_{\pi}(\alpha^{-1}\frac{d\alpha}{d\pi}\beta).$

Proof. Let $\varphi(\lambda) - \lambda$ be denoted as $d_{\pi}(\alpha, \beta)(\varphi)$. It suffices to verify the assertion for $\beta = \eta \pi^{-i}, \eta \in \overline{F}, p \nmid i, i > 0$. Let $L = F(\gamma)$, where $\gamma^p - \gamma = \eta \pi^{-i}$. Let π_L be a prime

element in L. Then $\gamma \equiv \eta_1 \pi_L^{-i} \mod \pi_L^{-i+1} \mathcal{O}_L$ with $\eta_1 \in \overline{F}$ such that $\eta_1^p = \eta$. Let σ be a generator of $\operatorname{Gal}(L/F)$ and

$$\frac{\sigma\pi_L}{\pi_L} = 1 + \theta_0 \pi_L^i + \dots , \qquad \theta_0 \in \overline{F}.$$

It follows from (1.3) that $U_{1,F}/N_{L/F}U_{1,L}$ is generated by units $1 + \theta \pi^i$ with $\theta \in \overline{F}$, $\notin \theta_0^p \wp(\overline{F})$. Then $(\alpha, \eta \pi^{-i})$ is determined by its values on $\alpha = 1 + \theta \pi^i$ where $\theta \in \overline{F}$ because of the first property of $(\cdot, \cdot]$. We also obtain that for $\alpha = N_{L/F}\alpha'$

$$d_{\pi}(\alpha,\beta) = d_{\pi} \left(N_{L/F} \alpha',\beta \right) = d_{\pi} \left(N_{L/F} \alpha', \operatorname{Tr}_{L/F} \beta' \right)$$
$$= d_{\pi_{L}} \left(N_{L/F} \alpha',\beta' \right) = d_{\pi_{L}} \left(\alpha', \operatorname{Tr}_{L/F} \beta' \right) = d_{\pi_{L}} \left(\alpha',\beta \right) = 0$$

where β' is an element in L with $\operatorname{Tr}_{L/F} \beta' = \beta$. These equalities follow from the properties of residues and from the relation $\beta \in \wp(L)$.

Thus, it remains to verify the assertion for $\alpha = 1 + \theta \pi^i$, $\beta = \eta \pi^{-i}$. In this case

$$d_{\pi}(\alpha,\beta)(\varphi) = (\varphi-1)\lambda$$
 where $\lambda^p - \lambda = i\theta\eta$.

Let $\alpha = N_{\widehat{L}/\widehat{F}}\widehat{\alpha}$, $\widehat{\alpha} = 1 + \xi \pi_{\widehat{L}}^{i} + \dots$, $\xi \in \overline{F}^{abp}$. Then $\xi^{p} - \xi \theta_{0}^{p-1} = \theta$ by (1.3) and $\wp(i\xi\eta_{1}) = i\theta\eta = \wp(\lambda)$. Therefore, $\lambda - i\xi\eta_{1} \in \mathbb{F}_{p}$ and $(\varphi - 1)\lambda = i\eta_{1}(\varphi - 1)(\xi) = -i\eta_{1}\theta_{0}$ because

$$\pi_L^{-1}\sigma(\pi_L) = 1 + \theta_0 \pi_L^i + \cdots \equiv (1 + \xi \pi_L^i + \dots)^{1-\varphi} \mod V(L|F).$$

On another hand, $\sigma(\pi_L^{-i}) = \pi_L^{-i} - i\theta_0 \mod \pi_L$, hence $\sigma(\gamma) - \gamma = -i\eta_1\theta_0$ and $d_{\pi}(\alpha, \beta) = (\alpha, \beta]$. \Box

Corollary. If $(\alpha, \beta] = 0$ for all $\beta \in F$, then $\alpha \in U_{1,F}^p$. The pairing $(\cdot, \cdot]$ induces the non-degenerate pairing

$$U_{1,F}/U_{1,F}^p \times F/(\wp(F) + \overline{F}) \to \operatorname{Hom}_{\mathbb{Z}_p}(\operatorname{Gal}(\widetilde{F}/F), \mathbb{F}_p).$$

Remark. One can generalize $(\cdot, \cdot]$ using Witt vectors to obtain the non-degenerate pairing

$$U_{1,F}/U_{1,F}^{p^m} \times W_m(F)/(\wp W_m(F) + W_m(\overline{F})) \to \operatorname{Hom}_{\mathbb{Z}_p}(\operatorname{Gal}(\widetilde{F}/F), W_m(\mathbb{F}_p)).$$

§2. Additive polynomials

In this section we extend the properties of additive polynomials over quasi-finite fields ([Wh2, CW]) on perfect fields.

2.1. Let K be a perfect field of characteristic p > 0. A polynomial f(X) over K is called *additive* if f(a + b) = f(a) + f(b) for any $a, b \in K$. It is easy to show that if deg $f(X) \leq \operatorname{card}(K)$, then f(X) is additive if and only if f(X + Y) = f(X) + f(Y) in the ring K[X][Y], i.e., $f(X) = \sum_{m=0}^{m=n} a_m X^{p^m}$, $a_m \in K$.

Further we will assume that K is infinite. The ring of additive polynomials with respect to addition and composition is isomorphic to the ring $K[\Lambda]$ of non-commutative polynomials: $\sum a_m X^{p^m} \to \sum a_m \Lambda^m$, $(a\Lambda)(b\Lambda) = ab^p \Lambda^2$ for $a, b \in K$.

In the decomposition $f = g \circ h$ the polynomial g (resp. h) is called an outer (resp. inner) component of f, and f is called an outer (resp. inner) multiple of g (resp. h). For any two additive polynomials f(X), g(X) there exist and uniquely determined additive polynomials $h_1(X)$, $q_1(X)$ (resp. $h_2(X)$, $q_2(X)$) such that $f = h_1 \circ g + q_1$ (resp. $f = g \circ h_2 + q_2$), deg $q_i < \deg g$. The ring of additive polynomials is a left and a right Euclidean principal ideal ring. If $f_3(X)$ is a least common outer multiple of additive polynomials $f_1(X)$, $f_2(X)$, then $f_3(K) \subset f_1(K) \cap f_2(K)$. If $f_4(X)$ is a greatest common outer component of f_1, f_2 , then $f_4 = f_1 \circ g_1 + f_2 \circ g_2$ for a suitable additive polynomials g_1, g_2 and $f_4(K) = f_1(K) + f_2(K)$.

One can also introduce the notion of a generalized additive polynomial over K as a finite sum $\sum a_m X^{p^m}$ with $a_m \in K$, $m \in \mathbb{Z}$. There is an involution $f \to f^*$ in the ring of generalized additive polynomials, for $f(X) = \sum a_m X^{p^m}$ put $f^*(X) = \sum a_m^{p^{-m}} X^{p^{-m}}$.

2.2. For a non-zero additive polynomial f(X) over K its set of roots is an additive finite subgroup in K^{sep} . Conversely, for an additive finite subgroup H in K^{sep} the polynomial $f_H(X) = \prod_{\alpha_i \in H} (X - \alpha_i)$ is an additive polynomial with ker $f_H = H$. If f(X), g(X) are non-zero additive polynomials and $f'(0) \neq 0$, ker $f \subset K$, ker $g \subset K$, then ker $f \subset \ker g$ if and only if f(X) is an inner component of g(X).

We call an additive polynomial f(X) over K with ker $f \subset K$ K-decomposable. We denote the set of K-decomposable polynomials by DP_K .

Lemma. If $f(X) \in DP_K$ and $f'(0) \neq 0$, then

$$f(X) = d_1 X \circ \wp(X) \circ d_2 X \circ \cdots \circ \wp(X) \circ d_{n+1} X$$

where $d_i^{-1} \in (p(X) \circ d_{i+1}X \circ \cdots \circ d_{n+1}X)(K)$. Conversely, any such polynomial is K-decomposable.

Proof. Let $\alpha \in \ker f$. Then $\wp(\alpha^{-1}X)$ is an inner component of f(X) and one can put $d_{n+1} = \alpha^{-1}$. If $f(X) = g(X) \circ \wp(\alpha^{-1}X)$, then $g \in DP_K$ and by inductional arguments we deduce a decomposition of f(X). The conditions on d_i follow from the condition $\ker f \subset K$. \square

2.3. Let G_K^{abp} denote the group $\text{Gal}(K^{\text{abp}}/K)$.

Proposition. Let $f(X) \in DP_K$. Then there is a homomorphism

$$\lambda \colon K/f(K) \to \operatorname{Hom}_{\mathbb{Z}_p}(G_K^{\operatorname{abp}}, \ker f),$$
$$\lambda(a)(\varphi) = \varphi b - b \quad \text{where } f(b) = a.$$

The homomorphism λ is an isomorphism.

Proof. First note that $b \in K^{abp}$. Indeed, if $\sigma \tau \in \text{Gal}(K(b)/K)$, then $\sigma b = b + c_1$, $\tau b = b + c_2$ with $c_1, c_2 \in \ker f$, and $\sigma \tau b = \tau \sigma b$. The homomorphism λ is evidently injective. If $\chi \in \text{Hom}_{\mathbb{Z}_p}(G_K^{abp}, \ker f)$, then let a_{φ} be an element of K^{abp} such that $(\varphi - 1)a_{\varphi} = \chi(\varphi)$

and $(\psi - 1)a_{\varphi} = 0$ for any $\psi \in G_{K}^{abp}$ with $\psi \notin \langle \varphi \rangle$. It exists by Lemma (1.4). Then for $b = \sum a_{\varphi}$ where φ runs topological generators of G_{K}^{abp} (the sum contains in fact a finite number of non-zero addends) we obtain that $f(b) \in K$ and $\chi(\varphi) = (\varphi - 1)b$ for any $\varphi \in G_{K}^{abp}$. \Box

Corollary. Let $g \in DP_K$, $g'(0) \neq 0$. Let f(X) be an additive polynomial over K. Then g is an outer component of f if and only if $f(K) \subset g(K)$.

Proof. Let d(X) be a greatest common outer component of f(X) and g(X). If $f(K) \subset g(K)$, then d(K) = f(K) + g(K) = g(K). As ker $g \subset K$ we obtain ker $d \subset K$. Then, by Proposition g is an outer component of d(X) and of f(X). \Box

2.4. A generalized additive polynomial over K is called K-decomposable if its kernel belongs to K.

Proposition. An additive polynomial f(X) is K-decomposable if and only if $f^*(X)$ is K-decomposable.

Proof. One may assume without loss of generality that $f'(0) \neq 0$. By (2.2) $\alpha \in \ker f^*$ if and only if $\wp(\alpha^{-1}X)$ is an inner component of $f^*(X)$, i.e., $\alpha^{-1}\wp(X)$ is an outer component of f(X), i.e., $\alpha^{-1}\wp(K) \supset f(K)$ by Corollary of (2.3). Therefore, the cardinality of ker $f^* \cap K$ coincides with the cardinality of the set $\{\alpha \in K : \alpha^{-1}\wp(K) \supset f(K)\}$. Let deg $f = p^n$. Since there are $(p^n - 1)(p - 1)^{-1}$ subgroups of order p in ker f, we deduce applying the previous Proposition that there are $(p^n - 1)(p - 1)^{-1}$ elements α in K such that all $\alpha^{-1}\wp(K)$ are distinct and $\alpha^{-1}\wp(K) \supset f(K)$. Thus, the cardinality of ker $f^* \cap K$ is p^n , i.e., ker $f^* \subset K$. \Box

Corollary. Let $f(X) \in DP_K$. Then

$$f(K) = \cap \alpha^{-1} \rho(K)$$

where α runs a set of the cardinality equal to the cardinality of ker f, such that $\alpha^{-1} \wp(K) \supset f(K)$.

2.5. Proposition. Let $f_1, f_2 \in DP_K$.

1) Let f_3 (resp. f_4) be a least common outer (resp. inner) multiple of f_1 , f_2 ; f_5 (resp. f_6) be a greatest common outer (resp. inner) component of f_1 , f_2 . Then $f_i \in DP_K$ and $f_3(K) = f_1(K) \cap f_2(K)$.

2)
$$\{a \in K : f_1(a) \in f_2(K)\} = h(K)$$
 for some $h \in DP_K$.

Proof.

1) Let $f_3 = f_1 \circ g_1 = f_2 \circ g_2$ with additive polynomials g_1, g_2 . First assume that $f_5 = X$. As ker f_1^* , ker f_2^* are contained in ker f_3^* , we deduce that ker $f_3^* \subset K$ and by Proposition (2.4) $f_3 \in DP_K$. According to Proposition (2.3) we get the surjective homomorphism

$$\operatorname{Hom}_{\mathbb{Z}_{p}}(G_{K}^{\operatorname{abp}}, \ker f_{3}) \to K/f_{3}(K) \to K/f_{1}(K) \oplus K/f_{2}(K) \\ \to \operatorname{Hom}_{\mathbb{Z}_{p}}(G_{K}^{\operatorname{abp}}, \ker f_{1} \oplus \ker f_{2}),$$

which is injective as well. Therefore, $f_3(K) = f_1(K) \cap f_2(K)$.

Now let $f_1 = f_5 \circ h_1$, $f_2 = f_5 \circ h_2$ and $f_3 = f_5 \circ h_3$ with $h_1, h_2 \in DP_K$. If $a \in f_1(K) \cap f_2(K)$, then $a = f_5(h_1(c)) = f_5(h_2(d))$ and $h_2(d) - h_1(c) \in \ker f_5$. As ker $f_5 \subset h_1(K)$, we obtain $a = f_5(b)$ for some $b \in h_1(K) \cap h_2(K) = h_3(K)$ and $a \in f_3(K)$. We deduce also that $f_3 \in DP_K$.

The polynomials f_4 , f_5 , f_6 are K-decomposable by Proposition (2.4).

2) One may assume by 1) that deg $f_1 = \deg f_2 = p$. Then $f_1^{-1}(f_2(K)) \cap K = f_1^{-1}(f_3(K)) \cap K = g_1(K)$, where $f_3 = f_1 \circ g_1, g_1 \in DP_K$. \Box

2.6. Finally we consider an analog of some remarkable property of additive polynomials.

Lemma. Let f(X) be a polynomial over K, f(0) = 0, $f(X) \neq 0$. Let g(X) be a non-zero K-decomposable polynomial. Then there exist finite sequences $q_i(X)$, $h_i(X)$ of polynomials over K such that g(X) is an outer component of $\sum f(q_i(X))$ and of $\sum f(h_i(X))$, where $\sum f(q_i(X)) \neq 0$ and $\sum h_i(X)$ is a non-zero K-decomposable polynomial.

Proof. According to Corollary 1.1 of [CW] one can find linear polynomials $g_i(X)$, $h_i(X)$ such that $\sum f \circ g_i$ is a non-zero additive polynomial, $\sum f \circ h_i$ is an additive polynomial, and $\sum h_i(X) = X$. Hence it suffices to show that for a non-zero additive polynomial p(X) and $g(X) \in DP_K$ there exists a non-zero K-decomposable polynomial r(X) such that $p \circ r = g \circ s$ for some additive polynomial s(X). Let $g = g_1 \circ g_2$, $g_i \in DP_K$ and $p \circ r_1 = g_1 \circ s_1$, $s_1 \circ r_2 = g_2 \circ s$. Then $p \circ r_1 \circ r_2 = g \circ s$. Therefore, it remains to consider the case of deg g(X) = p. Let H be a finite additive subgroup in K which contains $p^*(\ker g^*)$. Let r(X) be an additive polynomial with $\ker r^* = H$. Then $r \in DP_K$ and $\ker g^* \subset \ker(r^* \circ p^*)$. By (2.2) we obtain $r^* \circ p^* = s^* \circ g^*$ for some additive polynomial s(X). Then $p \circ r = g \circ s$, as desired. \Box

§3. EXISTENCE THEOREM

In this section we describe the norm groups of totally ramified *p*-extensions.

3.1. A subgroup H in \overline{F} is called *polynomial* if

$$H = f(\overline{F})$$

for some non-zero \overline{F} -decomposable polynomial f(X). Let π be a prime element in F. A subgroup \mathcal{N} in $U_{1,F}$ is called *normic* if

1) \mathcal{N} is open;

2) for any i > 0 there exists a polynomial $f_i(X) \in \mathcal{O}_F[X]$ such that \overline{f}_i is non-zero \overline{F} -decomposable and $1 + f_i(\mathcal{O}_F)\pi^i \subset \mathcal{N}$;

3) for any i > 0 the image of $(U_{i,F} \cap \mathcal{N})U_{i+1,F}$ under the projection

$$U_{i,F} \to U_{i,F}/U_{i+1,F} \xrightarrow{\sim} \overline{F},$$

where $1 + \theta \pi^i \to \overline{\theta}$, is polynomial, and for almost all *i* this image coincides with \overline{F} . It immediately follows that the notion of a normic subgroup does not depend on the choice of a prime element π in F. Our aim is to show that the class of normic subgroup coincides with the class of norm groups of abelian totally ramified *p*-extensions.

Proposition. Let L/F be an abelian totally ramified p-extension. Then $N_{L/F}U_{1,L}$ is a normic subgroup in $U_{1,F}$.

Proof. The first and second properties of normic subgroups for $N_{L/F}U_{1,L}$ are verified in the same way as in the proof of Proposition 15 in [Wh1, II]. The third property for an extension L/F of degree p follows from (1.3). Now we proceed by induction on degree of L/F. Let M/F be a subextension in L/F of degree p. The proof of Proposition (1.9) shows that $N_{L/F}U_{1,L} \cap U_{i,F} = N_{L/F}U_{h(i),L}$ where $h = \psi_{L/F}$ is the Hasse-Herbrand function of L/F. Using inductional arguments it suffices to consider the case of i = swhere s = s(M|F) (see (1.3)). Let σ be an element of $\operatorname{Gal}(L/F)$ such that its restriction $\sigma|_M$ is a generator of $\operatorname{Gal}(M/F)$. Let π_L be a prime element in L. Then $\pi_M = N_{L/M}\pi_L$ is prime in M and $\pi_M^{-1}\sigma(\pi_M) = N_{L/M}(\pi_L^{-1}\sigma(\pi_L))$. Let $N_{L/M}$ map $U_{h(s),L}/U_{h(s)+1,L}$ to $U_{s,M}/U_{s+1,M}$ by the polynomial $f_1(X)$ where the residue $\overline{f}_1(X)$ is \overline{F} -decomposable, and let $N_{M/F}$ map $U_{s,M}/U_{s+1,M}$ to $U_{s,F}/U_{s+1,F}$ by the polynomial $f_2(X) = \theta_0^p \varphi(\theta_0^{-1}X)$, where $\pi_M^{-1}\sigma(\pi_M) \equiv 1 + \theta_0 \pi_M^s \mod \pi_M^{s+1}$. Then $\overline{\theta}_0 \in \overline{f}_1(\overline{F})$ and the residue polynomial $\overline{f_2 \circ f_1}$ is \overline{F} -decomposable by Lemma of (2.1). \Box

3.2. Proposition. Let L/F be an abelian totally ramified p-extension. Let \mathcal{N} be a normic subgroup in $U_{1,F}$. Then $N_{L/F}^{-1}(\mathcal{N})$ is a normic subgroup in $U_{1,L}$.

Proof. It suffices to verify the assertion for a cyclic totally ramified extension L/F of degree p. Then the first and second properties of $N_{L/F}^{-1}(\mathcal{N})$ can be established similarly with the proof of Lemma 5 in [Wh1, II] by Lemma (2.6). The third property of $N_{L/F}^{-1}(\mathcal{N})$ follows immediately from (1.3) and Proposition (2.5),2). \Box

3.3. Let π be a prime element in F. Let \mathcal{E}_{π} denote the set of abelian totally ramified p-extensions L/F with $\pi \in N_{L/F}L^*$. If L_1/F , $L_2/F \in \mathcal{E}_{\pi}$, then $L_1 \cap L_2/F \in \mathcal{E}_{\pi}$. Moreover, $L_1L_2/F \in \mathcal{E}_{\pi}$. Indeed, let $M = L_1 \cap L_2$. Assume that $N_{L_1/F}\pi_1 = N_{L_2/F}\pi_2 = \pi$ for prime elements π_1, π_2 in L_1, L_2 . Then $N_{M/F}\varepsilon = 1$ for $\varepsilon = N_{L_1/M}\pi_1N_{L_2/M}\pi_2^{-1}$. Using the first diagram of Proposition (1.8) we deduce that $\varepsilon \in N_{L/M}U_{1,L}$, consequently there is a prime element π_M in M such that $N_{M/F}\pi_M = \pi$ and $\pi_M \in N_{L_1/M}L_1^* \cap N_{L_2/M}L_2^*$. Thus, it suffices to treat the case of $L_1 \cap L_2 = F$ where $L_1/F, L_2/F$ are cyclic of degree p. Assume that L_1L_2/F is not totally ramified. Then there is an unramified cyclic extension E/F of degree $p, E \in L_1L_2$. As $\pi \in N_{L_1/F}L_1^* \cap N_{L_2/F}L_2^*$ one can deduce $\pi \in N_{E/F}E^*$ using Chevalley lemma [C, p. 449], that is impossible. Therefore, L_1L_2/F is totally ramified. By Corollary of (1.8) we obtain $N_{L_1/F}U_{1,L_1} \cap N_{L_2/F}U_{1,L_2} = N_{L_1L_2/F}U_{1,L_1L_2}$. Let $\pi' \in N_{L_1L_2/F}(L_1L_2)^*$ for some prime element π' in F. Then $\pi' \in N_{L_1/F}L_1^* \cap N_{L_2/F}L_2^*$, hence $\varepsilon = \pi'\pi^{-1} \in N_{L_1L_2/F}U_{1,L_1L_2}$. This means that $L_1L_2/F \in \mathcal{E}_{\pi}$.

3.4. Proposition. Let π be a prime element in F, and let \mathcal{N} be a normic subgroup in $U_{1,F}$. Then there is precisely one abelian totally ramified p-extension L/F such that $\mathcal{N} = N_{L/F}U_{1,L}$ and $\pi \in N_{L/F}L^*$.

Proof. First let $U_{1,F}/\mathcal{N}$ be isomorphic with $\bigoplus_{\kappa} \mathbb{F}_{p, \cdot}$. In this case $U_{s+1,F} \subset \mathcal{N}$ for some s > 0 and

$$\mathcal{N} \cap U_{s,F}/U_{s+1,F} \simeq a\wp(\overline{F}), \qquad \mathcal{N}U_{i+1,F} \cap U_{i,F}/U_{i+1,F} \simeq \overline{F}$$

(isomorphisms are given by $1 + \theta \pi^i \to \overline{\theta}$), $a \in \overline{F}$.

It is known that there is an Artin-Schreier extension $M = F(\lambda)$ with $\varphi(\lambda) \in F$ or a Kummer extension M/F such that $U_{s+1,F} \subset N_{M/F}U_{1,M}$, $\pi \in N_{M/F}M^*$, $N_{M/F}U_{1,M} \cap U_{s,F}/U_{s+1,F} \simeq a\varphi(\overline{F})$, $N_{M/F}U_{1,M} \cdot U_{i+1,F} \cap U_{i,F}/U_{i+1,F} \simeq \overline{F}$ for i < s (see Corollary 10.5 in [Wh2] and Lemma 6 in [Wh1, II]). If s = 1, then $N_{M/F}U_{1,M} = \mathcal{N}$. If s > 1 we proceed by induction on s. Assume that $N_{M/F}U_{1,M} \neq \mathcal{N}$. By Proposition (3.2) the group $N_{M/F}^{-1}(\mathcal{N})$ is normic in $U_{1,M}$ and it is easy to verify that $U_{1,M}/N_{M/F}^{-1}(\mathcal{N})$ is isomorphic with $\bigoplus_{\kappa} \mathbb{F}_p$ and $U_{s',M} \subset N_{M/F}^{-1}(\mathcal{N})$ for some s' < s. Then by the inductional arguments $N_{M/F}^{-1}(\mathcal{N}) = N_{E/M}U_{1,E}$ for some cyclic extension E/M of degree p and $\mathcal{N} \supset N_{E/F}U_{1,E}$, $\pi \in N_{E/F}E^*$. As for any $\alpha \in U_{1,F}$ the element $\alpha^{1-\sigma}$ for $\sigma \in \text{Gal}(M/F)$ belongs to $N_{E/M}U_{1,E}$, we deduce from Proposition (1.8),2) and Corollary of (1.8) that E/F is abelian. Now $\mathcal{N} = N_{L/F}U_{1,L}$, $\pi \in N_{L/F}L^*$ for the fixed field L of the subgroup H of Gal(E/F) such that $H^* = \Psi_{E/F}(\mathcal{N}/N_{E/F}U_{1,E})$.

Now let $U_{1,F}/\mathcal{N}$ be isomorphic with $\bigoplus_{\kappa} G$ for an abelian p-group G. We argue by induction on the order of G. Let \mathcal{N}_1 be a normic subgroup which contains \mathcal{N} and such that $U_{1,F}/\mathcal{N}_1 \simeq \bigoplus_{\kappa} \mathbb{F}_p$. Then $\mathcal{N} = N_{M/F}U_{1,M}$ for a suitable cyclic extension M/F of degree p and $\pi = N_{M/F}\pi_M$ for some prime element π_M in M. By the inductional arguments there is an abelian extension L/M with $N_{M/F}^{-1}(\mathcal{N}) = N_{L/M}U_{1,L}$ and such that $\pi_M \in N_{L/M}L^*$. By the same reasons as above L/F is abelian and $N_{L/F}U_{1,L} = \mathcal{N}, L/F \in \mathcal{E}_{\pi}$. The uniqueness follows from (3.3) and Corollary of (1.8). \Box

Corollary. Let F_{π} be the compositum of all fields L with $L/F \in \mathcal{E}_{\pi}$. Then $F_{\pi} \cap \widetilde{F} = F$ and $F_{\pi}\widetilde{F} = F^{abp}$.

Proof. Let $\alpha \in F^{abp}$. There exists an unramified extension $M/F(\alpha)$ such that $\operatorname{Gal}(M/F)$ is isomorphic to $\operatorname{Gal}(M/M_0) \times \operatorname{Gal}(M/E)$, where $M_0 = M \cap \widetilde{F}$, E/F is a suitable abelian totally ramified *p*-extension, $E \subset M$. Let $N_{E/F}\pi_E = \pi\varepsilon$ for a prime element π_E in E and $\varepsilon \in U_F$. It follows from (1.3) that there is a finite abelian unramified *p*-extension F_1/F such that $\varepsilon \in N_{E_1/F_1}U_{E_1}$ where $E_1 = EF_1$. Then $\pi \in N_{E_1/F_1}E_1^*$. The group $N_{E_1/F}U_{1,E_1} = N_{E/F}U_{1,E}$ is normic in $U_{1,F}$. Hence there exists an extension $L/F \in \mathcal{E}_{\pi}$ such that $N_{L/F}U_{1,L} = N_{E_1/F}U_{1,E_1}$. Then $N_{L_1/F}U_{1,L_1} = N_{E_1/F}U_{1,E_1}$ for $L_1 = LF_1$. Since ker $N_{F_1/F}$ is generated by $\eta^{\varphi-1}$ with $\eta \in U_{1,F_1}$, $\varphi \in \operatorname{Gal}(F_1/F)$, the second commutative diagram of Proposition (1.8) implies that ker $N_{F_1/F} \subset N_{L_1/F_1}U_{1,L_1}$. Therefore, $N_{L_1/F_1}U_{1,L_1} = N_{E_1/F_1}U_{1,E_1}$ because |L:F| = |E:F|. We get $L_1/F_1, E_1/F_1 \in \mathcal{E}_{\pi}$. Now by Proposition $L_1 = E_1$. Thus, $E \subset L_1 \subset F_{\pi}\widetilde{F}$. This means that $F^{abp} = F_{\pi}\widetilde{F}$.

3.5. Existence Theorem. Let π be a prime element in F. There is an order reversing bijection between the lattice of normic subgroups in $U_{1,F}$ with respect to the intersection and product and $L/F \in \mathcal{E}_{\pi}$ with respect to the intersection and compositum: $\mathcal{N} \leftrightarrow N_{L/F}U_{1,L}$.

Proof. It follows from Proposition (3.4) and Corollary of (1.8).

Corollary. The reciprocity map

$$\Psi_F : U_{1,F} \to \operatorname{Hom}_{\mathbb{Z}_p} (\operatorname{Gal}(\widetilde{F}/F), \operatorname{Gal}(F_{\pi}/F))$$

is injective.

Proof. The description of normic subgroups in (3.1) or standard arguments using the Hilbert norm residue symbol and the Artin-Schreier pairing imply the injectivity of Ψ_F . \Box

Remark. Ψ_F is not surjective when \overline{F} is infinite.

3.6. Another description of normic subgroups can be developed by applying the method of K. Sekiguchi [Sk, Subsection 3.2]. Let $E(\cdot, X): W(\overline{F}) \to 1 + X\mathcal{O}_F[[X]]$ be the Artin-Hasse map, c.f. [Wh1, III]. Then, if char(F) = p, one can take as the normic subgroups the finite intersection of the sets

$$E\left(p^{n}W(\overline{F}) + a\wp W(\overline{F}), \pi^{m}\right) \prod_{\substack{(i,p)=1\\i \neq m, i \ge 1}} E\left(W(\overline{F}), \pi^{i}\right)$$

for $n \ge 0$, $m \ge 1$, (m, p) = 1, $a \in W(\overline{F})$ and a prime element π in F. If char(F) = 0 and a group of primitive p^n th roots of unity belongs to F (and n is the maximal number with this property), then one can take as the normic subgroups the finite intersections of the sets

$$E(p^{m}W(\overline{F}) + a\wp W(\overline{F}), \pi^{pe_{1}})E(p^{l}W(\overline{F}) + b\wp W(\overline{F}), \pi^{k}) \prod_{\substack{(i,p)=1\\1\leqslant i < pe_{1}\\i \neq k}} E(W(\overline{F}), \pi^{i})$$

for $m, l \ge 0$, $a, b \in W(\overline{F})$, $1 \le k < pe_1$, $e_1 = e/(p-1)$ and a prime element π in F, where e is the absolute index of ramification of F.

3.7. Now we indicate the connections of the established theory with the Hazewinkel local class field theory [Hz1-Hz2]. Let L/F be a Galois totally ramified extension. Then there is an exact sequence

$$1 \to \operatorname{Gal}(L/F)^{\operatorname{ab}} \to U_{\widehat{L^{\operatorname{ur}}}}/V(L|F) \to U_{\widehat{F^{\operatorname{ur}}}} \to 1$$

(similarly with the exact sequence in (1.4)). Involving the pro-quasi-algebraic structure of the group $U_{\widehat{Fur}}$ and observing that V(L|F) is the maximal reduced subscheme of the connected component of ker $N_{\widehat{Lur}/\widehat{Fur}}$, one deduces the exact sequence

$$\pi_1(U_L) \xrightarrow{N_{L/F}} \pi_1(U_F) \to \operatorname{Gal}(L/F)^{\operatorname{ab}} \to 1.$$

As the quasi-algebraic group $\operatorname{Gal}(L/F)^{ab}$ is constant, we obtain the exact sequence

$$\tilde{\pi}_1(U_L) \xrightarrow{N_{L/F}} \tilde{\pi}_1(U_F) \to \operatorname{Gal}(L/F)^{\mathrm{ab}} \to 1,$$

where $\tilde{\pi}_1$ is the maximal constant quotient of π_1 . Then $\tilde{\pi}_1(U_F)/N_{L/F}\tilde{\pi}_1(U_L)$ is isomorphic with $\operatorname{Gal}(L/F)^{ab}$. Passing to the projective limit we obtain a homomorphism

$$\Psi \colon \tilde{\pi}_1(U_F) \to G_F^{\mathrm{abr}},$$

which is an isomorphism as it was proved by Hazewinkel.

The group $\tilde{\pi}_1(U_F)$ has no an explicit description with except of the case of finite \overline{F} . On the other hand, it is clear that $\operatorname{Gal}(F^{\operatorname{abp}}/\widetilde{F})^*$ is isomorphic with the projective limit $\lim_{t \to \infty} U_{1,F}/N_{L/F}U_{1,L}$ for $L/F \in \mathcal{E}_{\pi}$. The constant pro-quasi-algebraic group $\tilde{\pi}_1(U_F)$ is the projective limit of the constant kernels of isogenies $X \to U_{\widehat{F^{ur}}} \to 1$. If we consider a similar isogeny with $U_{1,F}$ instead of U_F , then one has the commutative diagram

where $\theta(\varepsilon)(\varphi) = \varepsilon^{\varphi-1}$. Then we obtain a homomorphism

$$U_{1,F} \to \operatorname{Hom}_{\mathbb{Z}_{p}}\left(\operatorname{Gal}(\widetilde{F}/F), \tilde{\pi}_{1}(U_{F})\right)$$

and its composition with Ψ gives the reciprocity map Ψ_F .

3.8. Finally we note that an expansion of the method exposed above and methods employed to furnish class field theory of multidimensional local fields with a finite residue field [F1-F3] will provide a description of abelian totally ramified *p*-extensions of multidimensional local fields with a perfect residue field of characteristic *p*.

References

- [C] C. Chevalley, Sur la théorie du corps de classes dans les corps finis et les corps locaux, J. Fac. Sci. Tokyo Imp. Univ. 2 (1933), 363-476.
- [CW] T. H. M. Crampton and G. Whaples, Additive polinomials. II, Trans. Amer. Math. Soc. 78 (1955), 239-252.
- [D] P. Deligne, Les corps locaux des caracteristique p, limites de corps locaux caracteristique 0, J.-N. Bernstein, P. Deligne, D. Kazhdan, M.-F. Vigneras, Representations des groupes réductifs sur un corps local, Hermann, Paris, 1984.
- [F1] I. B. Fesenko, Class field theory of multidimensional local fields of characteristic 0 with the residue field of positive characteristic, Algebra i Analiz 3 (1991), no. 3, 165–196; English transl. in Sankt Petersburg Math. J. 3 (1992).
- [F2] _____, On class field theory of multidimensional local fields of positive characteristic, Adv. Soviet Math. 4 (1991), 103-127.

IVAN FESENKO

- [F3] ____, Multidimensional local class field theory. II, Algebra i Analiz 3 (1991), no. 5, 168–190; English transl. in Sankt Petersburg Math. J. 3 (1992).
- [FW] J.-M. Fontaine and J.-P. Wintenberger, Le "corps des normes" de certaines extensions algebriques de corps locaux, C. R. Acad. Sci. Paris Sér. I Math. 288 (1979), 367-370.
- [Hs] H. Hasse, Gruppe der pⁿ-primären Zahlen für einen Primteiler p von p, J. Reine Angew. Math. 176 (1936), 174–183.
- [Hz1] M. Hazewinkel, Abelian extensions of local fields, Thesis, Amsterdam Univ., 1969.
- [Hz2] _____, Corps de classes local, H. Demasure, P. Gabriel, Groupes Algebriques. T. 1, North Holland, Amsterdam, 1970.
- [Hz3] _____, Local class field theory is easy, Adv. Math. 18 (1975), 148-181.
- K. Iwasawa, Local Class Field Theory, Iwanami-Shoten, Tokyo, 1980 (Japan); Russian transl., Mir, Moscow, 1983.
- [L1] F. Laubie, Sur la ramification des extensions de Lie, Comp. Math. 55 (1985), 253-262.
- [L2] _____, Extensions de Lie et groups d'automorphismes de corps locaux, Comp. Math. 67 (1988), 165-190.
- [Ma] M. A. Marshall, Ramification groups of abelian local field extensions, Canad. J. Math. 23 (1971), 184-203.
- [N1] J. Neukirch, Neubegründung der Klassenkörpertheorie, Math. Z. 186 (1984), 557-574.
- [N2] _____, Class Field Theory, Springer, Berlin etc., 1986.
- [Sh] I. R. Shafarevich, General reciprocity law, Mat. Sbornik 26 (1950), 113-146; English transl. in Amer. Math. Soc. Transl. ser. 4 (1956), 59-72.
- [Sk] K. Sekiguchi, Class field theory of p-extensions over a formal power series field with a p-quasi-finite coefficient field, Tokyo J. Math. 6 (1983), 167–190.
- [Sn] S. Sen, Ramification in p-adic Lie extensions, Invent. Math. 17 (1972), 44-50.
- [Sr] J.-P. Serre, Sur les corps locaux à corps residuel algébriquement clos, Bull. Soc. Math. France 89 (1961), 105–154.
- [V] S.V. Vostokov, Explicit form of the law of reciprocity, Iz. AN SSSR. Ser. math. 42 (1978), 1288– 1231; English transl. in Math. USSR Izv. 13 (1979).
- [Wh1] G. Whaples, Generalised local class field theory. I, Duke Math. J. 19 (1952), 505-517; II, Duke Math. J. 21 (1954), 247-256; III, Duke Math. J. 21 (1954), 575-581; IV, Duke Math. J. 21 (1954), 583-586; V, Proc. Amer. Math. Soc. 8 (1957), 137-140.
- [Wh2] _____, Additive polynomials, Duke Math. J. 21 (1954), 55-66.
- [Wn] J.-P. Wintenberger, Le corps des normes de certaines extensions infinies des corps locaux, applications, Ann. Sci. École Norm. Sup. 16 (1983), 59-89.
- [Wt] E. Witt, Schiefkörper über diskret bewerteten Körpern, J. Reine Angew. Math. 176 (1936), 153-156.