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LOCAL CLASS FIELD THEORY:
PERFECT RESIDUE FIELD CASE

IvaN FESENKO

__ Let F be a complete (or Henselian) discrete valuation field with a perfect residue field
F of characteristic p > 0. Let p(X) denote as usually the polynomial X? — X. It induces
the additive homomorphism p: F — F'. Let

x = dimg, F/p(F).

Further it will be assumed that x # 0, the case x = 0 when the field F is algebraically
p-closed may be treated similarly to Serre’s geometric class field theory [Sr].

Let F"' be the maximal unramified extension of F in the fixed separable closure F**P
of F, F**'T/F the maximal abelian subextension in FUT/F, F**/F the maximal abelian
extension in F*°P/F. Recall that for totally ramified abelian extensions L, /F, L, /F there
is a totally ramified abelian extension L3/F such that L§" = (L, L3)"" (see [Hzl, (2.8.G)]).
Thus, one may introduce the group

G¥" = lim Gal(L/F)

where the projective limit is taken over the directed system of abelian totally ramified
extensions L/F. Then G is isomorphic to Gal(T/F) where T/F is any maximal totally
ramified subextension in F2P/F (see [Hz2, Subsection 2.4]) and

Gal(F*/F) ~ Gal(F*™ " /F) x G¥,

the group Gal(F**"/F) is canonically isomorphic to Ga.l(?ab /F).

To describe the maximal abelian extension F*®/F one must study abelian non-p-
extensions and abelian p-extensions. Totally tamely ramified abelian extensions over F
are easily described by the Kummer theory, since any such extension L/F is generated by
adjoining a root /7 for a suitable prime element 7 in F and a primitive /th root of unity
belongs to F'.

Treating abelian p-extensions one deduces at once the description of the maximal un-
ramified abelian p-extension using the Witt theory. Thus, one is reduced to the study of
abelian totally ramified p-extensions of F. A variant of description of the group G3T in
terms of constant pro-quasi-algebraic groups was furnished by M. Hazewinkel ([Hz1, Hz2]).
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2 IVAN FESENKO

Another description of abelian totally ramified p-extensions which is cohomology-free and
of more explicit nature will be established below.

Let F' denote the maximal abelian unramified p-extension of F' and let L/F be a Galois
totally ramified p-extension. For a character

x € Homg, (Gal(L/L), Gal(L/F))

let £, be the fixed field of all x(¢)y € Gal(E/F), where ¢ runs a topological Z,-basis of

Gal(L/L). Let 7y be a prime element in ¥, and 71, be a prime element in L. Let UL be
the group of units of L. Put

Yr/r(x) = Ng,ypmyNypry' mod NppUy.

We show in Theorem (1.7) below that T,z induces an isomorphism of
Homgz, (Gal(L/L), Gal(L/F)*")

onto Up/Np,;rUL where Gal(L/F)*® is the maximal abelian quotient of Gal(L/F). This
construction of Yp,r can be regarded as a generalization of the Neukirch construction
in the classical cases ([N1],[N2]). We describe the inverse isomorphism to Y /r as well.
Passing to the projective limit one obtains the reciprocity map

Up: Uy p — Homg, (Gal(F/F), Gal(F*P? /F))

where U] F is the group of principal units, F*®P/F is the maximal p-subextension in F*?/F.
The existence theorem deduced in Section 3 describes norm subgroups in U; r and clarifies
the properties of ¥ . For its proof theory of decomposable additive polynomials over F
derived in Section 2 will be used.

The local class field theory exposed has a lot of applications. Among them in ramifi-
cation theory it justifies the metatheorem that a statement about ramification groups of
normal totally ramified extension of a local field which holds in classical cases when the
residue field is finite or quasi-finite is true in general ([Sn],(L1], [Ma]), in theory of fields
of norms it connects the its constructions by class field theory ([FW],[Wn], [L2], see also
[D)).

The part of this work was done during my stay at Max-Planck-Institut fiir Mathematik,
which I would like to thank for its hospitality.

§1. RECIPROCITY MAP
1.1. The Witt theory immediately shows that if x = dimg, F/p(F), then

Gal(F/F) ~ [| Z,.

Let L/F be a finite Galois totally ramified p-extension. Then Gal(L/F) can be iden-
tified with Gal(L/F), and Gal(L/F) is isomorphic with Gal(L/F) x Gal(L/L). Let
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Gal(L/F)* = Homg, (Gal(z/L),Ga.l(L/F)) denote the group of continuous homomor-
phisms of Z,-module Gal(L/L) (a- o = 0°, a € Z,) to the discrete Z,-module Gal(L/F).
This group is isomorphic (non-canonically) with @, Gal(L/F). Let x € Gal(L/F)* and
Xy be the fixed field of {x(¢)p} where ¢ runs through Ga.l(z/L) and the element x(¢)
of Gal(L/F) is identified with the corresponding element in Gal(Z/F). Then, obviously,
N F= F,ie., Z,/F is a totally ramified p-extension. Let Ur and UL be the groups of
units of F' and L respectively. Let 7, be a prime element of X,.. Put

Yir(x) = Ng, jpmyNyprp! mod N pUp

where 7y is a prime element in L;
1.2. Lemma. The map Ty r: Gal(L/F)* — Up/Np,;rUL is well defined.

Proof. T, r does not depend on the choice of 7;. Let M be the compositum of Iy and
L. Then M/, is unramified and any prime element in X, can be written as 7, Nps/x, €
for a suitable e € Uy. As Nprype = Nyjp(NpyLe) € NpyrpUL we complete the proof. 0O

Let U; r denote the subgroup of principal units =1 mod wj,. Then Y1 ;p acts in fact
from (Ga.l(L/F)“b)‘ to Ul,F/NL/FUl,L-

1.3. In order to go further we consider the behavior of the norm map. Let L/F be a cyclic
totally ramified extension of degree p. Let 77, be a prime element in L. Then np = Ny pmy,
is prime in F. Let o be a generator of Gal(L/F),

ﬂ=1+6?0:rri+...
L

with 8y € U, s = s(L|F) > 0. Then it is well known that

NL/F(1+011'2)=1+9PW}-+... fori<s, §eUp
Npp(l+6n))=1+4+ (6" —67'0)np +... forbeUr
Npjp(1+6nitP )y =165 05t + ... fori >0, 8 € Ur.

Then Uy p/NpsrUy,L is generated by 1 + 67% when 6 runs element of Up the residues
of which are linearly independent over ?gp(j*"—). Hence Uy r/Np;rU, 1 is isomorphic to
F[6p(F) ~ ©«F,.

1.4. Let F denote the completion of F. If L/F is a Galois totally ramified p-extension,
then Gal(L/F) is solvable. We will assume always when it is necessary that FF C L. It
follows from (1.3) that NipUiz=U, p- Foro e Gal(L/F) put

i(o) = % mod V(L|F),
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where 7y, is a prime element in L, and
a(e) ,
V(L|F) = — e eV, z,0€ Gal(L/F); .

Then the sequence

L/F

1 Gal(L/F)*® = U, ;/V(LIF) ——= U p — 1

is exact (see [Hzl, (2.7)] or [I, Subsection 2.2]).

If M/F is a Galois subextension in L/F, then V(M|F) = Np;pV(L|F) because U, 7 =
Nyl i
Lemma. Assume that L/F is a Galois totally ramified p-extension. Let ¢,, v € I, be
elements in Gal(F/F) which are Z,-linearly independent, and,, v € I, be their extensions
on L. Let Y E Ga.l(L/F) be such that its restriction on F is Z p-linearly Jndependent with

{pv}ver. We will use the same notation for the continuous extension of ¢ on L. Let E be
the fixed subfield of {1, },er and € € U; g. Then there exists n € U; g such that ¢ = n¥-1L.

Proof. Note that E is a complete field and one can construct the desired element n step by
step modulo higher principal units. For instance, let ¢ = 1+6x} mod 1rr"|'.;:H where 6 € Ug,
$,(0) = 8 for v € I. Then there is £ € Ug such that $(£) — £ = . Then for n =1+ £l
mod 7r'+1 we deduce that € = n¥~! mod 7r'+1. a

1.5. Now we introduce the map inverse to Tr/p. Let L/F be a Galois totally rami-
fied p-extension. Let ¢ € Uj,r. According to (1.4) there exists an element n € U,
such that N7, g = €. Let ¢ be a continuous extension of ¢ € Gal(E/L) on L. Since
Ng/p (77 2¢(n)) = 1, we deduce from the exact sequence of (1.4) that = ¢(n) = rpo(rgt)
mod V(L|F) for a suitable o € Gal(L/F) where 7, is a prime element in L. Set x(¢) = 0.
Then it is easy to verify that x(¢192) = o102. This means y € Gal(L/F)*. Put
Yrr(e)=x
Lemma. Themap ¥ r: Uy p/Np/pUy 1 — Gal(L/F)* is well defined and a homomor-
phism.
Proof. 1f N3 LFP = & then for 4 = n™!p the element u~'¢(u) belongs to V(L|F). If
€ = €,€,, then one may assume 1 = 1;7,, consequently o = 0,0, in Gal(L/F)*®. Thus,
Vypr(e162) = Y r(e1)¥ryr(e2). O

In fact ¥, r acts from Uy p/Ny/pUs L to (Ga.l(L/F)“b)*.

1.6. For Theorem to follow we need to consider the following

Proposition. Assume that L/F is a Galois totally ramified p-extension, M/ F is a Galois
subextensionin L/F, M # L. Let @v, v € I, be Zy-linearly independent in Gal(F/F), and
1, be their continuous extensions on L. Let v € Gal(L/F) be such that 1/;| = is Z,-linearly
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independent with {1, },er. For a set S C L let S denote the set of the fixed elements
under the action of all ¥,. Let a € L. Then

1) V(LIM)®) = (V(ZIM)W) ¥

2) if a¥ =1 € V(L|M) for all v € I, then a € V(L|M)L{¥);

3) V(MIF)%) = Ny o (V (L|F)%).

Proof. First assume that |L:M| = p.

1) Let E = L) be the fixed field of 1,, v € I. Let o be a generator of Gal(L/M).
Ife € V(LlM)(‘b’), then ¢ = €]™' for some ¢; € Uy g, and it follows from (1.3) that
€ € Us41,E where s = s(i|ﬁ) By Lemma of (1.4) there exists an element n € U,41,E
such that ¢ = n¥~!. Then for p = Nz/j'iﬂ we obtain p€ U, , 57 N E). Applying (1.3)
once again we deduce that p = Ni/ﬁf for some £ € EY NU,41,5. Then Nzlﬁ(ﬂf_l) =1
and né~' € U,41,g. Therefore, n = £u~! for some p € Uy,g. Thus, ¢ = plo- N1 ¢
(VM)

2) Proceed by induction on the cardinality of I. Let a = ayaz with a; € V(L|M),
ay € ES'#-)’ velJ,J=1TI-{i}. Then of'~' € V(LIM)¥), v € J, and by 1) we deduce
ayi™! = a¥*7! for a suitable ag € V(L|M)¥}, v € J. Then azaj’ € L) v el and
a = (ayas)(aza;?) € V(LML)

3) Let « € V(M|F)"¥). By (14) we get @ = Ny B8 with § € V(L|F). As
B¥*~1 € V(L|M), we deduce using 2) that 8 € V(L|M)V(L|F)¥). Therefore, a €
Nz/ﬁ(V(L|F)(¢'")), as desired.

In the general case we proceed by induction on |L:M| using the solvability of totally
ramified extensions.

1) If @ € V(L|M){¥ ), then by the inductional assumption Nijga= Y1 for some B €
V(K|M){¥) where K/M is a non-trivial subextension in L/M. Applying 3) for the exten-
sion L/ K, we obtain that 8 = NE/R'Y for some v € V(L|K)<“’"). Then Nﬁlk(a'yl“") =1
and ay'~¥ € V(L|K). Applying 1) for the extension L/K, we conclude ay!~¥ = §1-¥
with some § € V(L|K)¥*) and a € (V(L|M)®)¥7",

Now 2) formally follows from 1) and 3) follows from 2) as just above. O

1.7. Theorem. Assume that L/F is a Galois totally ramified p-extension. The map
Ti/F: (Ga.l(L/F)“b)‘ — Uy, r/NryrUs,L is an isomorphism, and the map ¥y p is the
inverse one.

Proof. First we verify that ¥y p 0 T p = id. Indeed, let 7y = mpn with n € Up. Let
¢ € Gal(L/L), o = x(¢) € Gal(L/F). Then

rl=0 = ol = n¢ 19?1 = =1 mod V(L|F)

and NE/?" = N):x/pﬂ'xNL/Fﬂ'El. Therefore, x = V1, r(T1/FX)-
Next we show that Y jpo W /p =id. Let e € Uy r and e = NE/F” for some 5 € Ul,E'

Assume that 71 = 737°* mod V(L|F) for ¢, € Gal(L/L), o, € Gal(L/F). Put
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¥, = ¢,0, and apply 2) of the previous Proposition. Then, as (7 n)¥* ™! € V(L|F), we
obtain that mpn = mine with ;1 € V(L|F), n2 € L¥*). This means that mpnn;' € Iy
where x(¢,) = 0., and

£= NEX/F(WLﬂﬂl_l)NL/F"TEl mod Np,rUh, L.

Thus, TL/F o ‘I’L/F =id. O

Corollary. Let M/F be the maximal abelian subextension in a Galois totally ramified
p-extension L/F. Then NyypUs v = NpypUs L.

1.8. Now we establish functorial properties of Y1,/ and ¥ /p.

Proposition.
1) Let L/F, L' | F' be Galois totally ramified p-extensions, F'/F, L' [L be totally ram-
ified. Then the diagram

Gal(L'/F'y —— Uy [Ny ypUs i

| [

Gal(L/F)" —_— Ul,F/NL/FUl,L

is commutative where the left vertical homomorphism is induced by the natural restriction
Gal(L'/F'") — Gal(L/F) and the canonical isomorphism Gal(L'/L') = Gal(L/L).
2) Let L/F be a Galois totally ramified p-extension, and let o be an automorphism.

Then the diagram
Gal(L/F)* ——— Uy, r/NyrUss

g !

Gal(¢L/oF)* —— Uy,or/NorjerUr oL

is commutative, where (0*x)(apo™!) = ox(p)o™!.
3) Let L/F be a Galois totally ramified p-extension and M/ F be its subextension. Then
the diagram
(Gal(L/F)**)" —— Uy,¢/NyrUsL

] 1

(Gal(L/M)**)" —— Uy m/NpmUs L
is commutative, where Ver® is induced by Ver: Gal(L/F)*® — Gal(L/M)>>.

Proof.

1) Let x' € Gal(L'/F')* and x € Gal(L/F)* be the corresponding character. Put
Y =%y ThenEZ, =Z'N L and I/Z, is totally ramified. Therefore, # = Ny//p 7y is
a prime element in £, and Ny ;7 = Npiyp Ny jpimgs.

2) It follows from L,., = 0 L,.
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3) Let ¢ = szﬁq and n®*~! = 7, % for a prime element 7z, in L, o € Gal(f/f’),
¥ € V(L|F). Then o = x(¢), x = ¥y r(e). Let 7; € Gal(L/F) be a set of rep-
resentatives of Gal(L/F) over Gal(L/M). Then ¢ = Nz, mm with ;= [I17™ and
¥t = H‘rr(Ll_o)f" [In%. Let or; = 7 hi(o) with hi(c) € Gal(L/M). Now we deduce

H ﬂ_gl—a)r.- — H‘K?:(l—h.‘(a)) = ﬂ_}':[ 1-h;(o) - TrL]—Ver(d) mod V(LIM)

Since []n™ € V(L|M) we deduce that n¥~' = 1rL1—V"(°) mod V(L|M), as desired. O
Corollary. Let L, /F, Ly/F, Ly L/ F be abelian totally ramified p-extensions. Put Ly =
LILQ, L4 = Ll n Lz. Then
NipsypUnLy = NpyypUs, N Ny rUy L,
NpgrUin, = NpyypUs 0, Ny pUs .
Moreover, N, ypUs,1, C Np,yrUs L, if and only if L; D L,.
Proof. Put H; = Gal(L3/L;),i=1,2. Then
NpypUs g = ‘I’Z:/F(l) = \p;:/F(Hl NH,) = w;:/F(H,) N \I’Z:/F(Hz)
- NL[/FUI,Ll N NL:/FUI,LQ,
NpyrUvre =97, p(HiHz) = Ny pUs, L, Niy Uy g,
If NL;/FUI,Ll C NL,/FUI,ng then NLIIFU]'LI = NL3/FU1,L3 and lLI:F‘ = |L3:F|,
ie,LoCcL,. O

Remark. Let F*PP/F be the maximal p-subextension in F*®/F. Let {1,} be a set of
automorphisms in Gal(F*PP/F) such that t/).,l 7 are linearly independent and generate
Gal(F'/F). Then the group Gal(L/F) for the fixed field £ of 1, is isomorphic to the
group Gal(F?bP/F),

In the definition of ¥, one can replace the group Homgz, (Gal(z/ L),Gal(L/F)) by
the group Homgz, (Ga.l(ﬁ/F), Gal(L/F)). Indeed, let ¥;,9, € Gal(L/F) be such that
1|z = ¥2|z Then ¥; ', = 7 € Gal(L/F), and

g¥171 = p¥am-1 = nd)z—l,’,wz(f—l) =9¥"1 mod V(L|F).
Thus, we get an isomorphism
Oy p: Up,p/NppUs, — Homg, (Gal(F/F), Gal(L/F)™).
Passing to the projective limit we obtain the reciprocity map
Up: Up,p — Homg, (Gal(F/F), Gal(F™*? /).

This map possesses functional properties analogous to stated in Proposition. The kernel of
¥ F coincides with the intersection of all norm groups Ny ,zUy 1, for abelian totally ramified
p-extensions L/F, L C .
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1.9. The following assertion can be applied to the study of ramification groups.

Proposition. Assume that L/F is an abelian totally ramified p-extension and G =
Gal(L/F). Let h = ¢ ;r be the Hasse-Herbrand function. Then ¥,y maps the quotient
group U; p [Ny rUpniy, 1 isomorphically onto the ramification group G-

Proof. Let o € Gp(;y. Then n~1o(w) € Up(y,L for a prime element 7 in L. According to
Lemma of (1.4) there exists an element 3 € U, ,, 7 such that B?~1 = 71~ for a continuous
extension ¢ on L of @€ Ga.l(f/L). Then NE/F‘/B €U, p and Tr/r(x) € Ui pNL pUnGiy,L
for x € Gal(L/F)*, x(¢) = 0. Thus, T1,r induces the homomorphisms

Gh(i)/Gh(i)+1 — Ui,F/Ui+1,FNL/FUh(i),L-

Since T /F is an isomorphism, we obtain the required assertion. 0O

Remark. One can deduce from the proof of the previous Proposition that Gieiy+1 = Gu(i+1)
(so-called Hasse-Arf theorem) .

1.10. We finally consider pairings of U; p.

The first pairing is the Hilbert norm residue symbol. Assume that char(F) = 0 and
a primitive p™th root of unity belongs to F. Let u,m be the group of p™th roots. For
ae(Jl,FW/BGF"I put

(aaﬁ)m(fp) = 7‘1'1"(“)(99)-1

where v7" =8, ¢ € Ga.l(f/F), Ur(a)(e) € Gal(f('y)/f’) Thus, we obtain the pairing
() Us,r x F* — Homg, (Gal(F/F), ppm)

(note that the last group is non-canonically isomorphic to @xppm ).

Proposition.
1) Let F(*Y/B)/F be totally ramified. Then (a, ), =1 if and only if

@ € NecorymypUrr vy

2) (o, B)m =1 for all @ € Uy r if and only if F( *\/B)/F is unramified.
Q-8B m=1forl~pBelU,F.

4) (=B, B)m =1 for —f € Uy F.

5) (a,B)m = (B,a);! for a,B € Uy .

6) (a, B)m = 1 for all § € F* if and only if a € Ul ..

Proof. 1) immediately follows. If F( *3/B)/F is not unramified, then ﬁ('y) # Ffor v»" =
B and one can take o ¢ Ny pU, x, where Z/F is a totally ramified extension such that

¥ = F(v). Then (e, 8)m # 1, and we get 2). 3) and 4) follow from 1). If a, 8 € Uy, then

1= (aﬂi _aﬂ)m = (a’ _a)m(ﬂ7_ﬂ)m(av ﬂ)m(ﬂaa)m = (CY, ﬂ)m(ﬂ1a)m-
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If (o, f)m = 1forall § € F*, then (8, a)n = 1 for all B € Uy r and F({/a)/F is unramified.
If « ¢ F*P, then in the case under consideration a = 1+01r;.°/ ®=1) mod rrl’:/ (P=1+1 where
e is the absolute index of ramification of F. Then a ¢ Np(¢77)/ pF({/Fr'E)* as it follows
from (1.3). Therefore, @ = o} for some a; € Uy r. Now (af,B)m = (a1,8)m-1 = 1.
Proceeding by induction on m, we conclude that a € Uf,';. O

Remark. One can extend the Hilbert symbol on F* x F*: for « = 7%f¢, 8 = wbﬁ’n with
g, € Uy r and 8,7 € R*, where R* is the set of multiplicative representatives of F in F,
put
(a ﬂ) — { (56'7as7r)m(5a’7)m for p > 23
e (_laﬂab)m(ebnaﬂr)m(ea ﬂ)m for p=2.
Proposition implies that this pairing is well defined. It induces a non-degenerate pairing

F*/F**" x F*|F**" — Homg, (Gal(F/F), ppm).
There is another way to determine this pairing as
F*/F*" x F*|F**" — H*(F,ppm) <5pm Br(F) ® ppm
via the natural isomorphism between the last group in the preceding line and the group
Homgz, (Gal(F/F), upm),

see [Wt]. Employing the description of p™-primary elements ([Hs, Sh]) one can deduce
explicit formula for the Hilbert symbol ([Sh},[V]).

1.11. The second pairing is the Artin-Schreier pairing. Let F' be of characteristic p. For

a €U, F, B €F put
(o, B)(¢) = ¥r(a)(p)(7) — 7,
where ¢ € Gal(F/F), 7 is a root of the polynomial p(X)— 8. We get the pairing

(-y-]: Ur,r x F = Homg, (Gal(F/F),F,).

In the same way as in the previous Proposition one can verify that:
1) Let F(v)/F be a totally ramified extension. Then (a,] = 0 if and only if a €

Nr(yrF(7)"
2) (a,—a]=0for a € U, F.
3) (a, 8] =0 for all @ € Uy r if and only if F(y)/F is unramified.
Moreover, it is easy to deduce an explicit formula for (-, ]:

Proposition. (a,S](¢) = ¢(A) — A where X is a root of the polynomial p(X) — § and
§ =resz(a™! ii—cl{-ﬂ).
¥ dm

Proof. Let ¢(A) — A be denoted as d«(a,B)(p). It suffices to verify the assertion for
B=nr" neFpli i>0. Let L = F(y), where v» — v = nr~*. Let 71 be a prime
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element in L. Then v = mvr;" mod ?‘FZ"+10L with n; € F such that nt = 1. Let 0 be a
generator of Gal(L/F') and

L —146mi+... |, 6 €F.

L
It follows from (1.3) that U, r/Np,rU;,L is generated by units 1 + 6r' with 6§ € F,
¢ 62 p(F). Then (a,n7 "] is determined by its values on a = 1+ 7' where 8 € F because
of the first property of (-,-]. We also obtain that for a = Ny ra’

dr(e, ) = dr(Nyjpa',B) = de(Nypa' , Trp p B')
= er (NLjFa,a ﬂl) = dfr;, (athrL/F /B') = dir;, (a’aﬁ) =0

where ' is an element in L with Try,/r 8' = 8. These equalities follow from the properties
of residues and from the relation g € p(L). 4
Thus, it remains to verify the assertion for & = 1+ é7°, § = p7~". In this case

de(a,B)(p) = (p—1)A  where AP — A =1ifn.
Let o = Np/p@, & = L-énj, +... , €€ F *. Then £ — 62" = 0 by (1.3) and
p(i€m) = 16y = p(A). Therefore, A — ifn € F, and (p — 1)A = in1(p — 1)(§) = —imbo

because ' _
rplo(ry)=1+87y +--- =1 +éry +...)' "% mod V(L|F).
On another hand, a(vrzi) = 'NZ" — 18y mod 7, hence o(y) — v = —in 6y and dn(e, 3) =
(e, 5. O
Corollary. If (a,f] = 0 for all § € F, then a € Uf ;. The pairing (-,-] induces the

non-degenerate pairing

Ur,r/UL p x F/(p(F) + F) — Homg, (Gal(F/F),F,).

Remark. One can generalize (-, -] using Witt vectors to obtain the non-degenerate pairing

Up,r /UL g X Win(F)/(pWin(F) + Wi (F)) — Homg, (Gal(F/F), Win(F,)).

§2. ADDITIVE POLYNOMIALS

In this section we extend the properties of additive polynomials over quasi-finite fields
([Wh2, CW]) on perfect fields.

2.1. Let K be a perfect field of characteristic p > 0. A polynomial f(X) over K is
called additive if f(a + b) = f(a) + f(b) for any a,b € K. It is easy to show that if
deg f(X) < card(K), then f(X) is additive if and only if f(X +Y) = f(X) + f(Y) in the
ring K[X][Y], ie, f(X) =Y "= anX?", am € K.

m=o
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Furhter we will assume that K is infinite. The ring of additive polynomials with re-
spect to addition and composition is isomorphic to the ring K[A] of non-commutative
polynomials: 3 amX?” — Y amA™, (aA)(bA) = abPA? for a,b € K.

In the decomposition f = goh the polynomial g (resp. k) is called an outer (resp. inner)
component of f, and f is called an outer (resp. inner) multiple of ¢ (resp. h). For any two
additive polynomials f(X), g(X) there exist and uniquely determined additive polynomials
hy(X), q1(X) (resp. ha(X), q2(X)) such that f = hyog+ q1 (resp. f = gohs + q2),
deg g; < degg. The ring of additive polynomials is a left and a right Euclidean principal
ideal ring. If f3(X) is a least common outer multiple of additive polynomials f;(X), f2(X),
then fa(K) C fL(K)Nf2(K). If f4(X) is a greatest common outer component of fi, fz, then
f4 = f10g1 + f2 09, for a suitable additive polynomials g;, gz and f4(K) = fL(K)+ f2(K).

One can also introduce the notion of a generalized additive polynomial over K as a

finite sum ¥ a;, XP” with a, € K, m € Z. There is an involution f — f* in the ring of
generalized additive polynomials, for f(X) =Y anX?" put f*(X) =Y a?, " XP ",
2.2. For a non-zero additive polynomial f(X) over K its set of roots is an additive finite
subgroup in K®P. Conversely, for an additive finite subgroup H in K®°P the polynomial
fu(X) = [l4;en(X — ;) is an additive polynomial with ker fg = H. If f(X), g(X) are
non-zero additive polynomials and f'(0) # 0, ker f C K, kerg C K, then ker f C kerg if
and only if f(X) is an inner component of g(X).

We call an additive polynomial f(X) over K with ker f C K K-decomposable. We
denote the set of K-decomposable polynomials by DPgk.

Lemma. If f(X) € DPy and f'(0) # 0, then

f(X) = d1X o] p(X) 0d2X 0-+-0 p(X) Odn+1X
where d! € (p(X) odig1 Xo---0 d,,.HX)(K). Conversely, any such polynomial is K-
decomposable.

Proof. Let o € ker f. Then p(a~'X) is an inner component of f(X) and one can put
dny1 = a” L If f(X) = g(X) o p(a!X), then ¢ € DPg and by inductional arguements
we deduce a decomposition of f(X). The conditions on d; follow from the condition
kerfC K. O

2.3. Let G52P denote the group Gal(K**/K).
Proposition. Let f(X) € DPy. Then there is a homomorphism

X: K/f(K) — Homg, (G%®, ker f),
Aa)p)=pb—~-b  where f(b) = a.

The homomorphism A is an isomorphism.

Proof. First note that b € K2P. Indeed, if o7 € Gal(K(b)/K), then ob = b+c;, b = b+c,
with ¢1,¢c; € ker f, and o7b = 70b. The homomorphism A is evidently injective. If
x € Homz, (G‘;}’p,ker f), then let a, be an element of K**P such that (¢ — 1)a, = x(¢)
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and (¢ — 1)a, = 0 for any ¥ € G%P with ¥ ¢ (p). It exists by Lemma (1.4). Then

for b = 3] a, where ¢ runs topological generators of G;}’P (the sum contains in fact a

finite number of non-zero addends) we obtain that f(b) € K and x(y) = (¢ — 1)b for any
abp

peGL”. O

Corollary. Let g € DPg, ¢'(0) # 0. Let f(X) be an additive polynomial over K. Then

g is an outer component of f if and only if f(K) C g(K).

Proof. Let d(X) be a greatest common outer component of f(X) and ¢(X). If f(K) C
g(K), then d(K) = f(K) + g(K) = g(K). As kerg C K we obtain kerd C K. Then, by
Proposition ¢ is an outer component of d(X) and of f(X). O

2.4. A generalized additive polynomial over K is called K-decomposable if its kernel
belongs to K.

Proposition. An additive polynomial f(X) is K-decomposable if and only if f*(X) is
K -decomposable.

Proof. One may assume without loss of generality that f'(0) # 0. By (2.2) a € ker f* if and
only if p(a~'X) is an inner component of f*(X), i.e., @~ p(X) is an outer component of
f(X), ie.,, a1 p(K) D f(K) by Corollary of (2.3). Therefore, the cardinality of ker f*NK
coincides with the cardinality of the set {a« € K : a™'p(K) D f(K)}. Let deg f = p™.
Since there are (p" — 1){(p — 1)~! subgroups of order p in ker f, we deduce applying the
previous Proposition that there are (p" —1)(p—1)~! elements a in K such that all ™! p(K)
are distinet and a™'p(K) D f(K). Thus, the cardinality of ker f* N K is p", i.e., ker f* C
K. D

Corollary. Let f(X) € DPk. Then
fIK) = Na™ p(K)

where a runs a set of the cardinality equal to the cardinality of ker f, such that a~'p(K) D
#(5).
2.5. Proposition. Let f, f, € DPy.

1) Let f3 (resp. fi) be a least common outer (resp. inner) multiple of fy, f2; fs (resp.
fe) be a greatest common outer (resp. inner) component of fy, f;. Then f; € DPg and
f(K) = L(K)N f(K).

2) {a € K : fi(a) € f2(K)} = h(K) for some h € DPy.

Proof.

1) Let f3 = fy0g; = f20g, with additive polynomials g,, g;. First assume that fs = X.
As ker f}, ker f7 are contained in ker f;, we deduce that ker f; C K and by Proposition
(2.4) f» € DPg. According to Proposition (2.3) we get the surjective homomorphism

Homgz, (G}, ker f3) — K/ fs(K) — K/ fi(K) ® K/ f(K)
— Homg, (GP, ker f, @ ker f;),

which is injective as well. Therefore, f3(K) = fi(K) N fa(K).
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Now let fl =f5 Ohl, fg = f5 0h2 and f3 =f5 0h3 VVlth h],hz € DPK Ifa € f1(K)ﬂ
f2(K), then a = f5s(hi(c)) = fs(ha(d)) and ha(d) — hi(c) € ker f5. As ker f5 C hy(K), we
obtain a = fz(b) for some b € h)(K) N hy(K) = h3(K) and a € f3(K). We deduce also
that f3 € DPg.

The polynomials f3, fs, fe are K-decomposable by Proposition (2.4).

2) One may assume by 1) that degf; = degf; = p. Then fi'(f2(K)) N K =

I (f(K)) N K = gi(K), where f = fiog1,91 € DPx. O
2.6. Finally we consider an analog of some remarkable property of additive polynomials.

Lemma. Let f(X) be a polynomial over K, f(0) =0, f(X) # 0. Let g(X) be a non-zero
K -decomposable polynomial. Then there exist finite sequences ¢;(X), hi(X) of polyno-
mials over K such that g(X) is an outer component of 3 f(q:(X)) and of ¥, f(hi(X)),
where 3 f(gi(X)) # 0 and ¥ hi(X) is a non-zero K-decomposable polynomial.

Proof. According to Corollary 1.1 of [CW] one can find linear polynomials ¢;(X), h;(X)
such that }_ f o g; is a non-zero additive polynomial, " f o k; is an additive polynomial,
and > hi(X) = X. Hence it suffices to show that for a non-zero additive polynomial
p(X) and g(X) € DPyg there exists a non-zero K-decomposable polynomial (X)) such
that por = g o s for some additive polynomial s(X). Let g = ¢; 0 g2, i € DPg and
por; =g 08;,80r; =gp0s. Then pory ory, = gos. Therefore, it remains to consider
the case of degg(X) = p. Let H be a finite additive subgroup in K which contains
p*(kerg*). Let r(X) be an additive polynomial with kerr* = H. Then r € DPg and
ker g* C ker(r* o p*). By (2.2) we obtain 7* o p* = 3* o g* for some additive polynomial
s(X). Then por =gos, as desired. O

§3. EXISTENCE THEOREM
In this section we describe the norm groups of totally ramified p-extensions.

3.1. A subgroup H in F is called polynomial if
H = f(F)

for some non-zero F-decomposable polynomial f(X). Let m be a prime element in F. A
subgroup A in U, p is called normic if

1) NV is open;

2) for any ¢ > O there exists a polynomial f;(X) € Op[X] such that f; is non-zero
F-decomposable and 1 + f;(OF)r* C N;

3) for any i > 0 the image of (U;,p N ./V)U.-+1,p under the projection

Uir —= Uip/Uis1,r — F,

where 1 + 6n° — 6, is polynomial, and for almost all i this image coincides with F. It
immediately follows that the notion of a normic subgroup does not depend on the choice
of a prime element 7 in F. Qur aim is to show that the class of normic subgroup coincides
with the class of norm groups of abelian totally ramified p-extensions.
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Proposition. Let L/F be an abelian totally ramified p-extension. Then Ny ,rU, L is a
normic subgroup in Uy f.

Proof. The first and second properties of normic subgroups for Ny rU),1 are verified in
the same way as in the proof of Proposition 15 in [Wh1, II]. The third property for an
extension L/F of degree p follows from (1.3). Now we proceed by induction on degree
of L/F. Let M/F be a subextension in L/F of degree p. The proof of Proposition
(1.9) shows that Np,pU;  NUir = NpjpUniy,L where h = ¢ is the Hasse-Herbrand
function of L/F. Using inductional arguements it suffices to consider the case of ¢ = s
where s = s(M|F) (see (1.3)). Let ¢ be an element of Gal(L/F') such that its restriction

0|, 18 @ generator of Gal(M/F). Let 7 be a prime element in L. Then mp = Ny m7y

is prime in M and 73 o(my) = NL/M(wzla(ﬂ'L)). Let Ny/p map Ungey,/Un(ey+1,L
to Us,m/Us+1,m by the polynomial f;(X) where the residue Tl (X) is F-decomposable,
and let Npg/p map Uy u/Usy1,m to Uy £/Usq1,F by the polynomial f2(X) = 65p(6; " X),
where 73 o(mp) = 1+ 6y}, mod 73f'. Then by € fi(F) and the residue polynomial
f2 0 fr 18 F-decomposable by Lemma of (2.1). O

3.2. Proposition. Let L/F be an abelian totally ramified p-extension. Let N be a
normic subgroup in U, r. Then NE/IF(N') is a normic subgroup in Uy L.

Proof. It suffices to verify the assertion for a cyclic totally ramified extension L/F of degree
p. Then the first and second properties of NE; (N} can be established similarly with the

proof of Lemma 5 in [Wh1, II] by Lemma (2.6). The third property of NE/I p(N) follows
immediately from (1.3) and Proposition (2.5),2). O

3.3. Let 7 be a prime element in F. Let £, denote the set of abelian totally ramified p-
extensions L/F with # € Ny /pL*. If L1/F, Ly/F € &, then Ly N Ly /F € £,. Moreover,
L,Ly/F € &,. Indeed, let M = Ly N Ly. Assume that Ny ,pm = Ny, /pm; = 7 for prime
elements my, 72 in Ly, L. Then Npg/pe = 1fore = NL,/MmNL:/Mw;l. Using the first
diagram of Proposition (1.8) we deduce that € € Ny p U, L, consequently there is a prime
element mar in M such that Npyypmy = 7 and my € N, ym Ly N NpyymL;. Thus, it
suffices to treat the case of Ly N Ly = F where L, /F, L,/ F are cyclic of degree p. Assume
that L, L;/F is not totally ramified. Then there is an unramified cyclic extension E/F
of degree p, E € LyL,. As 7 € Np,;pL} N Ny, pL; one can deduce m € Ng;pE* using
Chevalley lemma [C, p. 449], that is impossible. Therefore, Ly Ls/F is totally ramified.
By Corollary of (1.8) we obtain NL;/FUI,Lx N NL,/FUI,L; = NL,L;/FUI,LlL-.-- Let 7' €
Np,1,/7(L1Ly)* for some prime element #' in F. Then 7' € Ny, /pL] N Np,/rL3, hence
e=n'n"1le Np,1,/FU1,L,L,- This means that LiL,/F € &.

3.4. Proposition. Let 7 be a prime element in F, and let N' be a normic subgroup
in Uy r. Then there is precisely one abelian totally ramified p-extension L/F such that
N = NL/FUI,L andw € NL/FL*.

Proof. First let Uy r/N be isomorphic with &.F,, In this case U,1,7 C N for some s > 0
and

N OU, p/Uss1,F = ap(F), NUip pOUi p/Uis1p =~ F
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(isomorphisms are given by 1 +6x* — ), a € F.

It is known that there is an Artin-Schreier extension M = F(A) with p(A) € F or a
Kummer extension M/F such that U,yy r C NpyypUr,m, m € NpgypM*, NpyypUpm 0
U,'F/U,.;.]]p jasd ap(?), NM/FUI,M . U.'.H,p N U.']F/U,'.H’p jadt 'F fori1 < s (see Corollary
10.5 in [Wh2] and Lemma 6 in [Wh1, II]). If s = 1, then Ny plUypr = N. If s > 1 we
proceed by induction on s. Assume that Np/pUs p # N. By Proposition (3.2) the group
N;;, #(N) is normic in Uy a and it is easy to verify that Uy u /N;dl/ p(N) is isomorphic
with @.F, and Uy s C N ;!1/ F(N ) for some s’ < s. Then by the inductional arguements
N;II/F(N) = Ng/mU, g for some cyclic extension E/M of degree p and N' D Ng/rU E,
7™ € Ng;rE*. As for any a € Uy F the element a'~% for ¢ € Gal(M/F) belongs to
Ng/mUi,E, we deduce from Proposition (1.8),2) and Corollary of (1.8) that E/F is abelian.
Now N = Np;plh 1, 7 € Ny pL* for the fixed field L of the subgroup H of Gal(E/F)
such that H* = ¥ F(N/NE/FUI,E)-

Now let Uy, r/N be isomorphic with .G for an abelian p-group G. We argue by
induction on the order of G. Let A be a normic subgroup which contains A" and such that
Ur,r/M = @Fp. Then N = NypgypU; u for a suitable cyclic extension M/F of degree p
and 7 = Np/pmp for some prime element 7y in M. By the inductional arguements there
is an abelian extension L/M with N;;/F(N) = Ny MU, and such that mpr € Ny pL*.
By the same reasons as above L/F is abelian and Ny pUi,L = N, L/F € &, The
uniqueness follows from (3.3) and Corollary of (1.8). O

Corollary. Let Fr be the compositum of all fields L with L/F € Ex. Then Fx N F=F
and FpF = F*°P,

Proof. Let @ € F?PP, There exists an unramified extension M/F(a) such that Gal(M/F)
is isomorphic to Gal(M/M,) x Gal{M/E), where My = M N F, E/F is a suitable abelian
totally ramified p-extension, E C M. Let Ng/pmg = we¢ for a prime element 7g in E
and ¢ € Up. It follows from (1.3) that there is a finite abelian unramified p-extension
F\/F such that ¢ € Ng,/p,Ug, where E; = EFy. Then n € Ng,;p E;. The group
Ng,/rUr,E, = NgyrUs e is normic in U) r. Hence there exists an extension L/F € &
such that NL/FUI,L = NE,/FUI.El' Then NL;/FUI,Ll = NEI/FUI,El for Ly = LEF;.
Since ker N, /r is generated by n®~! with n € Uy r,, ¢ € Gal(F1/F), the second com-
mutative diagram of Proposition (1.8) implies that ker Np, yp C Ny, /p,Us,L,. Therefore,
Ni,/rUr,L, = Ng, /5, Ur,E, because |L:F| = |E:F|. We get L1/F\,E,/F, € £Ex. Now by
Proposition Ly = E;. Thus, E C Ly C FF. This means that F**? = F,F. O

3.5. Existence Theorem. Let 7 be a prime element in F. There is an order reversing
bijection between the lattice of normic subgroups in Uy r with respect to the intersection
and product and L/F € £, with respect to the intersection and compositum: N
Ni/elUs L.

Proof. It follows from Proposition (3.4) and Corollary of (1.8). O
Corollary. The reciprocity map

Up: Uy, r — Homg, (Gal(F/F), Gal(F,/F))
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is injective.

Proof. The description of normic subgroups in (3.1) or standard arguements using the
Hilbert norm residue symbol and the Artin-Schreier pairing imply the injectivity of ¥ . O
Remark. ¥F is not surjective when F is infinite.

3.6. Another description of normic subgroups can be developed by applying the method of
K. Sekiguchi [Sk, Subsection 3.2]. Let E(-, X): W(F) — 1+ X OF[[X]] be the Artin-Hasse
map, c.f. [Whl, III]. Then, if char(F) = p, one can take as the normic subgroups the finite
intersection of the sets

E(p"W(F)+apW(F),»™) [[ EW(F) =)
_("P)'_"l
i¥m,i21

forn >0, m> 1, (m,p) =1, a € W(F) and a prime element 7 in F. If char(F) = 0 and
a group of primitive p"th roots of unity belongs to F' (and n is the maximal number with
this property) , then one can take as the normic subgroups the finite intersections of the
sets

E(p"W(F) + apW (F),nYE(p'W(F) + bpW(F),=*) [ EW(@F) ')

(i,p)=1
1<i<pey
i#zk

for m,120,a,be W(F),1 <k < pey, e =¢/(p—1) and a prime element 7 in F, where
e is the absolute index of ramification of F.

3.7. Now we indicate the connections of the established theory with the Hazewinkel local
class field theory [Hz1-Hz2]. Let L/F be a Galois totally ramified extension. Then there

is an exact sequence
1 — Gal(L/F)*® — Urs/V(L|IF) = Ups — 1

(similarly with the exact sequence in (1.4)). Involving the pro-quasi-algebraic structure
of the group Uzz and observing that V(L|F) is the maximal reduced subscheme of the
connected component of ker Ny /F > One deduces the exact sequence

i (UL) ~HE, 7 (Up) — Gal(L/F)*® — 1.
As the quasi-algebraic group Gal(L/F)*® is constant, we obtain the exact sequence
71(Uz) ~5 71 (Ur) — Gal(L/F)™® — 1,

where 7, is the maximal constant quotient of m). Then #,(Ur)/Np;p#1(UL) is isomorphic
with Gal(L/F)®P. Passing to the projective limit we obtain a homomorphism

W: #(Up) — G,
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which is an isomorphism as it was proved by Hazewinkel.

The group #1(Ur) has no an explicit description with except of the case of finite F.
On the other hand, it is clear that Gal(F*PP /F)* is isomorphic with the projective limit
IEUI,F/NL/FUI'L for L/F € £x. The constant pro-quasi-algebraic group #;(Up) is the
projective limit of the constant kernels of isogenies X — Uy — 1. If we consider a similar
isogeny with U; r instead of Ur, then one has the commutative diagram

1 1

A —— Homg, (Gal(F/F),A)

- h g

X —— Homg, (Gal(F/F),X)

L 4 ~

\ = —— Homg, (Gal(F/F),U, ;) — 1

where 6(e)(p) = €¥~1. Then we obtain a homomorphism

Uy,r — Homg, (Gal(F/F),#(Ur))

and its composition with ¥ gives the reciprocity map ¥p.

3.8. Finally we note that an expansion of the method exposed above and methods em-
ployed to furnish class field theory of multidimensional local fields with a finite residue
field [F1-F3] will provide a description of abelian totally ramified p-extensions of multidi-
mensional local fields with a perfect residue field of characteristic p.

[
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