Local class field theory: perfect residue field case

Ivan Fesenko

Sanct-Petersburg University	Max-Planck-Institut für Mathematik
Department of Mathematics	Gottfried-Claren-Straße 26
198904 Russia St. Petergof	D-5300 Bonn 3
Bibliotechnaja pl.2	
Russia	Germany

LOCAL CLASS FIELD THEORY: PERFECT RESIDUE FIELD CASE

Ivan Fesenko

Let F be a complete (or Henselian) discrete valuation field with a perfect residue field \bar{F} of characteristic $p>0$. Let $\rho(X)$ denote as usually the polynomial $X^{p}-X$. It induces the additive homomorphism $\wp: \bar{F} \rightarrow \bar{F}$. Let

$$
\kappa=\operatorname{dim}_{\mathbf{F}_{\mathrm{P}}} \bar{F} / \varphi(\bar{F})
$$

Further it will be assumed that $\kappa \neq 0$, the case $\kappa=0$ when the field \bar{F} is algebraically p-closed may be treated similarly to Serre's geometric class field theory [Sr].

Let $F^{\text {ur }}$ be the maximal unramified extension of F in the fixed separable closure $F^{\text {sep }}$ of $F, F^{\text {abur }} / F$ the maximal abelian subextension in $F^{\mathrm{ur}} / F, F^{\mathrm{ab}} / F$ the maximal abelian extension in $F^{\text {sep }} / F$. Recall that for totally ramified abelian extensions $L_{1} / F, L_{2} / F$ there is a totally ramified abelian extension L_{3} / F such that $L_{3}^{\mathrm{ur}}=\left(L_{1} L_{2}\right)^{\mathrm{ur}}$ (see [Hz1, (2.8.G)]). Thus, one may introduce the group

$$
G_{F}^{\mathrm{abr}}=\lim _{\leftrightarrows} \operatorname{Gal}(L / F)
$$

where the projective limit is taken over the directed system of abelian totally ramified extensions L / F. Then G_{F}^{abr} is isomorphic to $\operatorname{Gal}(T / F)$ where T / F is any maximal totally ramified subextension in F^{ab} / F (see $[\mathrm{Hz} 2$, Subsection 2.4]) and

$$
\operatorname{Gal}\left(F^{\mathrm{ab}} / F\right) \simeq \operatorname{Gal}\left(F^{\mathrm{abur}} / F\right) \times G_{F}^{\mathrm{abr}}
$$

the group $\mathrm{Gal}\left(F^{\mathrm{abur}} / F\right)$ is canonically isomorphic to $\mathrm{Gal}\left(\bar{F}^{\mathrm{ab}} / \bar{F}\right)$.
To describe the maximal abelian extension F^{ab} / F one must study abelian non- p extensions and abelian p-extensions. Totally tamely ramified abelian extensions over F are easily described by the Kummer theory, since any such extension L / F is generated by adjoining a root $\sqrt[l]{\pi}$ for a suitable prime element π in F and a primitive l th root of unity belongs to F.

Treating abelian p-extensions one deduces at once the description of the maximal unramified abelian p-extension using the Witt theory. Thus, one is reduced to the study of abelian totally ramified p-extensions of F. A variant of description of the group G_{F}^{abr} in terms of constant pro-quasi-algebraic groups was furnished by M. Hazewinkel ([Hz1, Hz2]).

[^0]Another description of abelian totally ramified p-extensions which is cohomology-free and of more explicit nature will be established below.

Let \tilde{F} denote the maximal abelian unramified p-extension of F and let L / F be a Galois totally ramified p-extension. For a character

$$
\chi \in \operatorname{Hom}_{\mathrm{Z}}(\operatorname{Gal}(\tilde{L} / L), \operatorname{Gal}(L / F))
$$

let Σ_{χ} be the fixed field of all $\chi(\varphi) \varphi \in \operatorname{Gal}(\tilde{L} / F)$, where φ runs a topological \mathbb{Z}_{p}-basis of $\operatorname{Gal}(\tilde{L} / L)$. Let π_{χ} be a prime element in Σ_{χ}, and π_{L} be a prime element in L. Let U_{L} be the group of units of L. Put

$$
\Upsilon_{L / F}(\chi)=N_{\Sigma_{\chi} / F} \pi_{\chi} N_{L / F} \pi_{L}^{-1} \quad \bmod N_{L / F} U_{L}
$$

We show in Theorem (1.7) below that $\Upsilon_{L / F}$ induces an isomorphism of

$$
\operatorname{Hom}_{\mathbf{Z}_{\mathbf{p}}}\left(\operatorname{Gal}(\widetilde{L} / L), \operatorname{Gal}(L / F)^{\mathbf{a b}}\right)
$$

onto $U_{F} / N_{L / F} U_{L}$ where $\operatorname{Gal}(L / F)^{\mathrm{ab}}$ is the maximal abelian quotient of $\operatorname{Gal}(L / F)$. This construction of $\Upsilon_{L / F}$ can be regarded as a generalization of the Neukirch construction in the classical cases ([N1],[N2]). We describe the inverse isomorphism to $\Upsilon_{L / F}$ as well. Passing to the projective limit one obtains the reciprocity map

$$
\Psi_{F}: U_{1, F} \rightarrow \operatorname{Hom}_{\mathbf{z}_{\mathrm{p}}}\left(\operatorname{Gal}(\widetilde{F} / F), \operatorname{Gal}\left(F^{\mathrm{abp}} / \widetilde{F}\right)\right)
$$

where $U_{1, F}$ is the group of principal units, F^{abp} / F is the maximal p-subextension in F^{ab} / F. The existence theorem deduced in Section 3 describes norm subgroups in $U_{1, F}$ and clarifies the properties of Ψ_{F}. For its proof theory of decomposable additive polynomials over \bar{F} derived in Section 2 will be used.

The local class field theory exposed has a lot of applications. Among them in ramification theory it justifies the metatheorem that a statement about ramification groups of normal totally ramified extension of a local field which holds in classical cases when the residue field is finite or quasi-finite is true in general ([Sn], $[\mathrm{L} 1],[\mathrm{Ma}]$), in theory of fields of norms it connects the its constructions by class field theory ([FW],[Wn], [L2], see also [D]).

The part of this work was done during my stay at Max-Planck-Institut für Mathematik, which I would like to thank for its hospitality.

§1. Reciprocity map

1.1. The Witt theory immediately shows that if $\kappa=\operatorname{dim}_{P_{p}} \bar{F} / \wp(\bar{F})$, then

$$
\operatorname{Gal}(\tilde{F} / F) \simeq \prod_{\kappa} \mathbb{Z}_{p}
$$

Let L / F be a finite Galois totally ramified p-extension. Then $\operatorname{Gal}(L / F)$ can be identified with $\operatorname{Gal}(\widetilde{L} / \widetilde{F})$, and $\operatorname{Gal}(\widetilde{L} / F)$ is isomorphic with $\operatorname{Gal}(\widetilde{L} / \widetilde{F}) \times \operatorname{Gal}(\widetilde{L} / L)$. Let
$\operatorname{Gal}(L / F)^{*}=\operatorname{Hom}_{\mathcal{Z}_{p}}(\operatorname{Gal}(\tilde{L} / L), \operatorname{Gal}(L / F))$ denote the group of continuous homomorphisms of \mathbb{Z}_{p}-module $\operatorname{Gal}(\widetilde{L} / L)\left(a \cdot \sigma=\sigma^{a}, a \in \mathbf{Z}_{p}\right)$ to the discrete \mathbb{Z}_{p}-module $\mathrm{Gal}(L / F)$. This group is isomorphic (non-canonically) with $\oplus_{\kappa} \operatorname{Gal}(L / F)$. Let $\chi \in \operatorname{Gal}(L / F)^{*}$ and $\Sigma_{\dot{\chi}}$ be the fixed field of $\{\chi(\varphi) \varphi\}$ where φ runs through $\operatorname{Gal}(\tilde{L} / L)$ and the element $\chi(\varphi)$ of $\operatorname{Gal}(L / F)$ is identified with the corresponding element in $\operatorname{Gal}(\widetilde{L} / \widetilde{F})$. Then, obviously, $\Sigma_{\chi} \cap \widetilde{F}=F$, i.e., Σ_{χ} / F is a totally ramified p-extension. Let U_{F} and U_{L} be the groups of units of F and L respectively. Let π_{χ} be a prime element of Σ_{χ}. Put

$$
\Upsilon_{L / F}(\chi)=N_{\Sigma_{\chi} / F} \pi_{\chi} N_{L / F} \pi_{L}^{-1} \quad \bmod N_{L / F} U_{L}
$$

where π_{L} is a prime element in L;

1.2. Lemma. The map $\Upsilon_{L / F}: \operatorname{Gal}(L / F)^{*} \rightarrow U_{F} / N_{L / F} U_{L}$ is well defined.

Proof. $\Upsilon_{L / F}$ does not depend on the choice of π_{L}. Let M be the compositum of Σ_{X} and L. Then M / Σ_{χ} is unramified and any prime element in Σ_{χ} can be written as $\pi_{\chi} N_{M / \Sigma_{x}} \varepsilon$ for a suitable $\varepsilon \in U_{M}$. As $N_{M / F} \varepsilon=N_{L / F}\left(N_{M / L} \varepsilon\right) \in N_{L / F} U_{L}$ we complete the proof.

Let $U_{i, F}$ denote the subgroup of principal units $\equiv 1 \bmod \pi_{F}^{i}$. Then $\Upsilon_{L / F}$ acts in fact from $\left(\operatorname{Gal}(L / F)^{\mathrm{ab}}\right)^{*}$ to $U_{1, F} / N_{L / F} U_{1, L}$.
1.3. In order to go further we consider the behavior of the norm map. Let L / F be a cyclic totally ramified extension of degree p. Let π_{L} be a prime element in L. Then $\pi_{F}=N_{L / F} \pi_{L}$ is prime in F. Let σ be a generator of $\operatorname{Gal}(L / F)$,

$$
\frac{\sigma \pi_{L}}{\pi_{L}}=1+\theta_{0} \pi_{L}^{s}+\ldots
$$

with $\theta_{0} \in U_{L}, s=s(L \mid F)>0$. Then it is well known that

$$
\begin{aligned}
N_{L / F}\left(1+\theta \pi_{L}^{i}\right) & =1+\theta^{p} \pi_{F}^{i}+\ldots & & \text { for } i<s, \theta \in U_{F} \\
N_{L / F}\left(1+\theta \pi_{L}^{s}\right) & =1+\left(\theta^{p}-\theta_{0}^{p-1} \theta\right) \pi_{F}^{s}+\ldots & & \text { for } \theta \in U_{F} \\
N_{L / F}\left(1+\theta \pi_{L}^{s+p i}\right) & =1-\theta_{0}^{p-1} \theta \pi_{F}^{s+i}+\ldots & & \text { for } i>0, \theta \in U_{F} .
\end{aligned}
$$

Then $U_{1, F} / N_{L / F} U_{1, L}$ is generated by $1+\theta \pi_{F}^{s}$ when θ runs element of U_{F} the residues of which are linearly independent over $\bar{\theta}_{0}^{p} \rho(\bar{F})$. Hence $U_{1, F} / N_{L / F} U_{1, L}$ is isomorphic to $\bar{F} / \bar{\theta}_{0}^{p} \varphi(\bar{F}) \simeq \oplus_{\kappa} \mathbf{F}_{p}$.
1.4. Let \widehat{F} denote the completion of \widetilde{F}. If L / F is a Galois totally ramified p-extension, then $\operatorname{Gal}(L / F)$ is solvable. We will assume always when it is necessary that $\widehat{F} \subset \widehat{L}$. It follows from (1.3) that $N_{\widehat{L} / \hat{F}} U_{1, \widehat{L}}=U_{1, \widehat{F}}$. For $\sigma \in \operatorname{Gal}(L / F)$ put

$$
i(\sigma)=\frac{\sigma \pi_{L}}{\pi_{L}} \bmod V(L \mid F)
$$

where π_{L} is a prime element in L, and

$$
V(L \mid F)=\left\{\frac{\sigma(\varepsilon)}{\varepsilon}: \varepsilon \in U_{1, \hat{L}} ; \sigma \in \operatorname{Gal}(L / F)\right\}
$$

Then the sequence

$$
1 \rightarrow \operatorname{Gal}(L / F)^{\mathrm{ab}} \rightarrow U_{1, \hat{L}} / V(L \mid F) \xrightarrow{N_{\widehat{L} / \widehat{F}}} U_{1, \widehat{F}} \rightarrow 1
$$

is exact (see [Hz1, (2.7)] or [I, Subsection 2.2]).
If M / F is a Galois subextension in L / F, then $V(M \mid F)=N_{L / M} V(L \mid F)$ because $U_{1, \widehat{M}}=$ $N_{\widehat{L} / \widehat{M}} U_{1, \widehat{L}}$.
Lemma. Assume that L / F is a Galois totally ramified p-extension. Let $\varphi_{\nu}, \nu \in I$, be elements in $\operatorname{Gal}(\widetilde{F} / F)$ which are \mathbb{Z}_{p}-linearly independent, and $\psi_{\nu}, \nu \in I$, be their extensions on \widehat{L}. Let $\psi \in \operatorname{Gal}(\tilde{L} / F)$ be such that its restriction on \widetilde{F} is \mathbf{Z}_{p}-linearly independent with $\left\{\varphi_{\nu}\right\}_{\nu \in I}$. We will use the same notation for the continuous extension of ψ on \widehat{L}. Let E be the fixed subfield of $\left\{\psi_{\nu}\right\}_{\nu \in I}$ and $\varepsilon \in U_{i, E}$. Then there exists $\eta \in U_{i, E}$ such that $\varepsilon=\eta^{\psi-1}$.
Proof. Note that E is a complete field and one can construct the desired element η step by step modulo higher principal units. For instance, let $\varepsilon \equiv 1+\theta \pi_{L}^{i} \bmod \pi_{L}^{i+1}$ where $\theta \in U_{E}$, $\bar{\psi}_{\nu}(\bar{\theta})=\bar{\theta}$ for $\nu \in I$. Then there is $\xi \in U_{E}$ such that $\bar{\psi}(\bar{\xi})-\bar{\xi}=\bar{\theta}$. Then for $\eta \equiv 1+\xi \pi_{L}^{i}$ $\bmod \pi_{L}^{i+1}$ we deduce that $\varepsilon \equiv \eta^{\psi-1} \bmod \pi_{L}^{i+1}$.
1.5. Now we introduce the map inverse to $\Upsilon_{L / F}$. Let L / F be a Galois totally ramified p-extension. Let $\varepsilon \in U_{1, F}$. According to (1.4) there exists an element $\eta \in U_{1, \hat{L}}$ such that $N_{\widehat{L} / F} \eta=\varepsilon$. Let φ be a continuous extension of $\varphi \in \operatorname{Gal}(\widetilde{L} / L)$ on \widehat{L}. Since $N_{\widehat{L} / \hat{F}}\left(\eta^{-1} \varphi(\eta)\right)=1$, we deduce from the exact sequence of (1.4) that $\eta^{-1} \varphi(\eta) \equiv \pi_{L} \sigma\left(\pi_{L}^{-1}\right)$ $\bmod V(L \mid F)$ for a suitable $\sigma \in \operatorname{Gal}(\widehat{L} / \widehat{F})$ where π_{L} is a prime element in L. Set $\chi(\varphi)=\sigma$. Then it is easy to verify that $\chi\left(\varphi_{1} \varphi_{2}\right)=\sigma_{1} \sigma_{2}$. This means $\chi \in \operatorname{Gal}(L / F)^{*}$. Put $\Psi_{L / F}(\varepsilon)=\chi$.
Lemma. The map $\Psi_{L / F}: U_{1, F} / N_{L / F} U_{1, L} \rightarrow \operatorname{Gal}(L / F)^{*}$ is well defined and a homomorphism.
Proof. If $N_{\hat{L} / \hat{F}} \rho=\varepsilon$, then for $\mu=\eta^{-1} \rho$ the element $\mu^{-1} \varphi(\mu)$ belongs to $V(L \mid F)$. If $\varepsilon=\varepsilon_{1} \varepsilon_{2}$, then one may assume $\eta=\eta_{1} \eta_{2}$, consequently $\sigma=\sigma_{1} \sigma_{2}$ in $\operatorname{Gal}(L / F)^{\mathrm{ab}}$. Thus, $\Psi_{L / F}\left(\varepsilon_{1} \varepsilon_{2}\right)=\Psi_{L / F}\left(\varepsilon_{1}\right) \Psi_{L / F}\left(\varepsilon_{2}\right)$.

In fact $\Psi_{L / F}$ acts from $U_{1, F} / N_{L / F} U_{1, L}$ to $\left(\operatorname{Gal}(L / F)^{\mathrm{ab}}\right)^{*}$.
1.6. For Theorem to follow we need to consider the following

Proposition. Assume that L / F is a Galois totally ramified p-extension, M / F is a Galois subextension in $L / F, M \neq L$. Let $\varphi_{\nu}, \nu \in I$, be \mathbf{Z}_{p}-linearly independent in $\operatorname{Gal}(\tilde{F} / F)$, and ψ_{ν} be their continuous extensions on \widehat{L}. Let $\psi \in \operatorname{Gal}(\widetilde{L} / F)$ be such that $\left.\psi\right|_{\widetilde{F}}$ is \mathbf{Z}_{p}-linearly
independent with $\left\{\psi_{\nu}\right\}_{\nu \in I}$. For a set $S \subset \widehat{L}$ let $S^{\left(\psi_{\nu}\right)}$ denote the set of the fixed elements under the action of all ψ_{ν}. Let $\alpha \in \hat{L}$. Then

1) $V(L \mid M)^{\left\langle\psi_{\nu}\right\rangle}=\left(V(L \mid M)^{\left(\psi_{\nu}\right\rangle}\right)^{\psi-1}$;
2) if $\alpha^{\psi_{\nu}-1} \in V(L \mid M)$ for all $\nu \in I$, then $\alpha \in V(L \mid M) \widehat{L}^{\left(\psi_{\nu}\right)}$;
3) $V(M \mid F)^{\left\langle\psi_{\nu}\right\rangle}=N_{\widehat{L} / \widehat{M}}\left(V(L \mid F)^{\left(\psi_{\nu}\right)}\right)$.

Proof. First assume that $|L: M|=p$.

1) Let $E=\widehat{L}\left(\psi_{\nu}\right)$ be the fixed field of $\psi_{\nu}, \nu \in I$. Let σ be a generator of $\operatorname{Gal}(\widehat{L} / \widehat{M})$. If $\varepsilon \in V(L \mid M)^{\left(\psi_{\nu}\right)}$, then $\varepsilon=\varepsilon_{1}^{\sigma-1}$ for some $\varepsilon_{1} \in U_{1, E}$, and it follows from (1.3) that $\varepsilon \in U_{s+1, E}$ where $s=s(\widehat{L} \mid \widehat{M})$. By Lemma of (1.4) there exists an element $\eta \in U_{s+1, E}$ such that $\varepsilon=\eta^{\psi-1}$. Then for $\rho=N_{\widehat{L} / \widehat{M}^{\eta}}$ we obtain $\rho \in U_{s+1, \widehat{M}} \cap E^{\langle\psi\rangle}$. Applying (1.3) once again we deduce that $\rho=N_{\widehat{L} / \widehat{M}^{\xi}}$ for some $\xi \in E^{(\psi)} \cap U_{s+1, E}$. Then $N_{\widehat{L} /\left(\mathcal{M}^{\left(\eta \xi^{-1}\right.}\right)=1}$ and $\eta \xi^{-1} \in U_{s+1, E}$. Therefore, $\eta=\xi \mu^{\sigma-1}$ for some $\mu \in U_{1, E}$. Thus, $\varepsilon=\mu^{(\sigma-1)(\psi-1)} \in$ $\left(V(L \mid M)^{\left\langle\psi_{\nu}\right\rangle}\right)^{\psi-1}$.
2) Proceed by induction on the cardinality of I. Let $\alpha=\alpha_{1} \alpha_{2}$ with $\alpha_{1} \in V(L \mid M)$, $\alpha_{2} \in \widehat{L}_{J}^{\left(\psi_{\nu^{\prime}}\right)}, \nu \in J, J=I-\{i\}$. Then $\alpha_{2}^{\psi_{i}-1} \in V(L \mid M)^{\left(\psi_{\nu}\right)}, \nu \in J$, and by 1$)$ we deduce $\alpha_{2}^{\psi_{i}-1}=\alpha_{3}^{\psi_{i}-1}$ for a suitable $\alpha_{3} \in V(L \mid M)^{\left(\psi_{v}\right)}, \nu \in J$. Then $\alpha_{2} \alpha_{3}^{-1} \in \hat{L}^{\left(\psi_{v}\right)}, \nu \in I$, and $\alpha=\left(\alpha_{1} \alpha_{3}\right)\left(\alpha_{2} \alpha_{3}^{-1}\right) \in V(L \mid M) \hat{L}^{\left(\psi_{\psi}\right)}$.
3) Let $\alpha \in V(M \mid F)^{\left\langle\psi_{\nu}\right\rangle}$. By (1.4) we get $\alpha=N_{\widehat{L} / \widehat{M}} \beta$ with $\beta \in V(L \mid F)$. As $\beta^{\psi_{\nu}-1} \in V(L \mid M)$, we deduce using 2) that $\beta \in V(L \mid M) V(L \mid F)^{\left(\psi_{\nu}\right)}$. Therefore, $\alpha \in$ $N_{\widehat{L} / \widehat{M}}\left(V(L \mid F)^{\left\langle\psi_{\nu}\right\rangle}\right)$, as desired.

In the general case we proceed by induction on $|L: M|$ using the solvability of totally ramified extensions.

1) If $\alpha \in V(L \mid M)^{\left\langle\psi_{\nu}\right\rangle}$, then by the inductional assumption $N_{\widehat{L} / \widehat{K}^{\alpha}}=\beta^{\psi-1}$ for some $\beta \in$ $V(K \mid M)^{\left\langle\psi_{\nu}\right\rangle}$ where K / M is a non-trivial subextension in L / M. Applying 3) for the extension L / K, we obtain that $\beta=N_{\overparen{L} / R} \gamma$ for some $\gamma \in V(L \mid K)^{\left\langle\psi_{\nu}\right\rangle}$. Then $N_{\overparen{L} / R}\left(\alpha \gamma^{1-\psi}\right)=1$ and $\alpha \gamma^{1-\psi} \in V(L \mid K)$. Applying 1) for the extension L / K, we conclude $\alpha \gamma^{1-\psi}=\delta^{1-\psi}$ with some $\delta \in V(L \mid K)^{\left\langle\psi_{\nu}\right\rangle}$ and $\alpha \in\left(V(L \mid M)^{\left\langle\psi_{\nu}\right\rangle}\right)^{\psi-1}$.

Now 2) formally follows from 1) and 3) follows from 2) as just above.
1.7. Theorem. Assume that L / F is a Galois totally ramified p-extension. The map $\Upsilon_{L / F}:\left(\operatorname{Gal}(L / F)^{\mathrm{ab}}\right)^{*} \rightarrow U_{1, F} / N_{L / F} U_{1, L}$ is an isomorphism, and the map $\Psi_{L / F}$ is the inverse one.

Proof. First we verify that $\Psi_{L / F} \circ \Upsilon_{L / F}=$ id. Indeed, let $\pi_{\chi}=\pi_{L} \eta$ with $\eta \in U_{\hat{L}}$. Let $\varphi \in \operatorname{Gal}(\widetilde{L} / L), \sigma=\chi(\varphi) \in \operatorname{Gal}(\widetilde{L} / \widetilde{F})$. Then

$$
\pi_{L}^{1-\sigma}=\eta^{\varphi \sigma-1}=\eta^{\varphi-1} \eta^{\varphi(\sigma-1)} \equiv \eta^{\varphi-1} \quad \bmod V(L \mid F)
$$

and $N_{\hat{L} / \hat{F}} \eta=N_{\Sigma_{\chi} / F} \pi_{\chi} N_{L / F} \pi_{L}^{-1}$. Therefore, $\chi=\Psi_{L / F}\left(\Upsilon_{L / F} \chi\right)$.
Next we show that $\Upsilon_{L / F} \circ \Psi_{L / F}=$ id. Let $\varepsilon \in U_{1, F}$ and $\varepsilon=N_{\widehat{L} / \hat{F}} \eta$ for some $\eta \in U_{1, \hat{L}}$. Assume that $\eta^{\varphi_{\nu}-1} \equiv \pi_{L}^{1-\sigma_{\nu}} \bmod V(L \mid F)$ for $\varphi_{\nu} \in \operatorname{Gal}(\tilde{L} / L), \sigma_{\nu} \in \operatorname{Gal}(\tilde{L} / \tilde{F})$. Put
$\psi_{\nu}=\varphi_{\nu} \sigma_{\nu}$ and apply 2) of the previous Proposition. Then, as $\left(\pi_{L} \eta\right)^{\psi_{\nu}-1} \in V(L \mid F)$, we obtain that $\pi_{L} \eta=\eta_{1} \eta_{2}$ with $\eta_{1} \in V(L \mid F), \eta_{2} \in \widehat{L}^{\left\langle\psi_{\nu}\right\rangle}$. This means that $\pi_{L} \eta_{1}^{-1} \in \Sigma_{\boldsymbol{x}}$ where $\chi\left(\varphi_{\nu}\right)=\sigma_{\nu}$, and

$$
\varepsilon \equiv N_{\Sigma_{x} / F}\left(\pi_{L} \eta \eta_{1}^{-1}\right) N_{L / F} \pi_{L}^{-1} \quad \bmod N_{L / F} U_{1, L}
$$

Thus, $\Upsilon_{L / F} \circ \Psi_{L / F}=\mathrm{id}$.
Corollary. Let M / F be the maximal abelian subextension in a Galois totally ramified p-extension L / F. Then $N_{M / F} U_{1, M}=N_{L / F} U_{1, L}$.
1.8. Now we establish functorial properties of $\Upsilon_{L / F}$ and $\Psi_{L / F}$.

Proposition.

1) Let $L / F, L^{\prime} / F^{\prime}$ be Galois totally ramified p-extensions, $F^{\prime} / F, L^{\prime} / L$ be totally ramified. Then the diagram

is commutative where the left vertical homomorphism is induced by the natural restriction $\operatorname{Gal}\left(L^{\prime} / F^{\prime}\right) \rightarrow \operatorname{Gal}(L / F)$ and the canonical isomorphism $\operatorname{Gal}\left(\tilde{L}^{\prime} / L^{\prime}\right) \xrightarrow{\sim} \operatorname{Gal}(\widetilde{L} / L)$.
2) Let L / F be a Galois totally ramified p-extension, and let σ be an automorphism. Then the diagram

is commutative, where $\left(\sigma^{*} \chi\right)\left(\sigma \varphi \sigma^{-1}\right)=\sigma \chi(\varphi) \sigma^{-1}$.
3) Let L / F be a Galois totally ramified p-extension and M / F be its subextension. Then the diagram

is commutative, where Ver^{*} is induced by $\operatorname{Ver}: \operatorname{Gal}(L / F)^{\mathrm{ab}} \rightarrow \operatorname{Gal}(L / M)^{\mathrm{ab}}$.
Proof.
4) Let $\chi^{\prime} \in \operatorname{Gal}\left(L^{\prime} / F^{\prime}\right)^{*}$ and $\chi \in \operatorname{Gal}(L / F)^{*}$ be the corresponding character. Put $\Sigma^{\prime}=\Sigma_{\chi^{\prime}}$. Then $\Sigma_{\chi}=\Sigma^{\prime} \cap \tilde{L}$ and Σ / Σ_{χ} is totally ramified. Therefore, $\pi=N_{\Sigma^{\prime} / \Sigma_{\chi}} \pi_{\Sigma^{\prime}}$ is a prime element in Σ_{X} and $N_{\Sigma_{X} / F} \pi=N_{F^{\prime} / F} N_{\Sigma^{\prime} / F^{\prime}} \pi_{\Sigma^{\prime}}$.
5) It follows from $\Sigma_{\sigma^{*} \chi}=\sigma \Sigma_{x}$.
6) Let $\varepsilon=N_{\widehat{L} / \hat{F}} \eta$ and $\eta^{\varphi-1}=\pi_{L}^{1-\sigma} \gamma$ for a prime element π_{L} in $L, \sigma \in \operatorname{Gal}(\widehat{L} / \widehat{F})$, $\gamma \in V(L \mid F)$. Then $\sigma=\chi(\varphi), \chi=\Psi_{L / F}(\varepsilon)$. Let $\tau_{i} \in \operatorname{Gal}(\widehat{L} / \widehat{F})$ be a set of representatives of $\operatorname{Gal}(\widehat{L} / \widehat{F})$ over $\operatorname{Gal}(\widehat{L} / \widehat{M})$. Then $\varepsilon=N_{\widehat{L} / \mathbb{M}_{1}} \eta_{1}$ with $\eta_{1}=\Pi \eta^{\tau_{i}}$ and $\eta_{1}^{\varphi-1}=\Pi \pi_{L}^{(1-\sigma) r_{i}} \Pi \eta^{\tau_{i}}$. Let $\sigma \tau_{i}=\tau_{i^{\prime}} h_{i}(\sigma)$ with $h_{i}(\sigma) \in \operatorname{Gal}(\widehat{L} / \widehat{M})$. Now we deduce

$$
\prod \pi_{L}^{(1-\sigma) \tau_{i}}=\prod \pi_{L}^{\tau_{i}^{\prime\left(1-h_{i}(\sigma)\right)}} \equiv \pi_{L}^{\Pi 1-h_{i}(\sigma)}=\pi_{L}^{1-\operatorname{Ver}(\sigma)} \bmod V(L \mid M)
$$

Since $\Pi \eta^{\tau_{i}} \in V(L \mid M)$ we deduce that $\eta_{1}^{\varphi-1} \equiv \pi_{L}^{1-\operatorname{Ver}(\sigma)} \bmod V(L \mid M)$, as desired.
Corollary. Let $L_{1} / F, L_{2} / F, L_{1} L_{2} / F$ be abelian totally ramified p-extensions. Put $L_{3}=$ $L_{1} L_{2}, L_{4}=L_{1} \cap L_{2}$. Then

$$
\begin{aligned}
& N_{L_{3} / F} U_{1, L_{3}}=N_{L_{1} / F} U_{1, L_{1}} \cap N_{L_{2} / F} U_{1, L_{2}}, \\
& N_{L_{4} / F} U_{1, L_{4}}=N_{L_{1} / F} U_{1, L_{1}} N_{L_{2} / F} U_{1, L_{2}} .
\end{aligned}
$$

Moreover, $N_{L_{1} / F} U_{1, L_{1}} \subset N_{L_{2} / F} U_{1, L_{2}}$ if and only if $L_{1} \supset L_{2}$.
Proof. Put $H_{i}=\operatorname{Gal}\left(L_{3} / L_{i}\right), i=1,2$. Then

$$
\begin{aligned}
N_{L_{3} / F} U_{1, L_{3}} & =\Psi_{L_{3} / F}^{-1}(1)=\Psi_{L_{3} / F}^{-1}\left(H_{1} \cap H_{2}\right)=\Psi_{L_{3} / F}^{-1}\left(H_{1}\right) \cap \Psi_{L_{3} / F}^{-1}\left(H_{2}\right) \\
& =N_{L_{1} / F} U_{1, L_{1}} \cap N_{L_{2} / F} U_{1, L_{2}} \\
N_{L_{4} / F} U_{1, L_{4}} & =\Psi_{L_{3} / F}^{-1}\left(H_{1} H_{2}\right)=N_{L_{1} / F} U_{1, L_{1}} N_{L_{2} / F} U_{1, L_{2}} .
\end{aligned}
$$

If $N_{L_{1} / F} U_{1, L_{1}} \subset N_{L_{2} / F} U_{1, L_{2}}$, then $N_{L_{1} / F} U_{1, L_{1}}=N_{L_{3} / F} U_{1, L_{3}}$ and $\left|L_{1}: F\right|=\left|L_{3}: F\right|$, i.e., $L_{2} \subset L_{1}$.

Remark. Let F^{abp} / F be the maximal p-subextension in F^{ab} / F. Let $\left\{\psi_{\nu}\right\}$ be a set of automorphisms in $\operatorname{Gal}\left(F^{\mathrm{abp}} / F\right)$ such that $\left.\psi_{\nu}\right|_{\tilde{F}}$ are linearly independent and generate $\operatorname{Gal}(\tilde{F} / F)$. Then the group $\operatorname{Gal}(\Sigma / F)$ for the fixed field Σ of ψ_{ν} is isomorphic to the group $\mathrm{Gal}\left(F^{\mathrm{abp}} / \widetilde{F}\right)$.

In the definition of $\Psi_{L / F}$ one can replace the group $\operatorname{Hom}_{\mathrm{Z}_{p}}(\operatorname{Gal}(\tilde{L} / L), \mathrm{Gal}(L / F))$ by the $\operatorname{group}_{\operatorname{Hom}_{\mathrm{Z}_{\mathrm{p}}}}(\operatorname{Gal}(\tilde{F} / F), \operatorname{Gal}(L / F))$. Indeed, let $\psi_{1}, \psi_{2} \in \operatorname{Gal}(\tilde{L} / F)$ be such that $\left.\psi_{1}\right|_{\widetilde{F}}=\left.\psi_{2}\right|_{\widetilde{F}}$. Then $\psi_{2}^{-1} \psi_{1}=\tau \in \operatorname{Gal}(\widetilde{L} / \widetilde{F})$, and

$$
\eta^{\psi_{1}-1}=\eta^{\psi_{2} r-1}=\eta^{\psi_{2}-1} \eta^{\psi_{2}(r-1)} \equiv \eta^{\psi_{2}-1} \bmod V(L \mid F) .
$$

Thus, we get an isomorphism

$$
\Psi_{L / F}: U_{1, F} / N_{L / F} U_{1, L} \rightarrow \operatorname{Hom}_{\mathbf{Z}_{\mathrm{p}}}\left(\operatorname{Gal}(\tilde{F} / F), \operatorname{Gal}(L / F)^{\mathrm{ab}}\right)
$$

Passing to the projective limit we obtain the reciprocity map

$$
\Psi_{F}: U_{1, F} \rightarrow \operatorname{Hom}_{\mathbf{Z}_{p}}\left(\operatorname{Gal}(\tilde{F} / F), \operatorname{Gal}\left(F^{\mathrm{abp}} / \tilde{F}\right)\right)
$$

This map possesses functional properties analogous to stated in Proposition. The kernel of Ψ_{F} coincides with the intersection of all norm groups $N_{L / F} U_{1, L}$ for abelian totally ramified p-extensions $L / F, L \subset \Sigma$.
1.9. The following assertion can be applied to the study of ramification groups.

Proposition. Assume that L / F is an abelian totally ramified p-extension and $G=$ $\operatorname{Gal}(L / F)$. Let $h=\psi_{L / F}$ be the Hasse-Herbrand function. Then $\Psi_{L / F}$ maps the quotient group $U_{i, F} / N_{L / F} U_{h(i), L}$ isomorphically onto the ramification group $G_{h(i)}$.
Proof. Let $\sigma \in G_{h(i)}$. Then $\pi^{-1} \sigma(\pi) \in U_{h(i), L}$ for a prime element π in L. According to Lemma of (1.4) there exists an element $\beta \in U_{h(i), \hat{L}}$ such that $\beta^{\varphi-1}=\pi^{1-\sigma}$ for a continuous extension φ on \widehat{L} of $\varphi \in \operatorname{Gal}(\tilde{L} / L)$. Then $N_{\hat{L} / \hat{F}} \beta \in U_{i, \hat{F}}$ and $\Upsilon_{L / F}(\chi) \in U_{i, F} N_{L / F} U_{h(i), L}$ for $\chi \in \operatorname{Gal}(L / F)^{*}, \chi(\varphi)=\sigma$. Thus, $\Upsilon_{L / F}$ induces the homomorphisms

$$
G_{h(i)} / G_{h(i)+1} \rightarrow U_{i, F} / U_{i+1, F} N_{L / F} U_{h(i), L}
$$

Since $\Upsilon_{L / F}$ is an isomorphism, we obtain the required assertion.
Remark. One can deduce from the proof of the previous Proposition that $G_{h(i)+1}=G_{h(i+1)}$ (so-called Hasse-Arf theorem) .
1.10. We finally consider pairings of $U_{1, F}$.

The first pairing is the Hilbert norm residue symbol. Assume that $\operatorname{char}(F)=0$ and a primitive p^{m} th root of unity belongs to F. Let $\mu_{p^{m}}$ be the group of p^{m} th roots. For $\alpha \in U_{1, F}, \beta \in F^{*}$ put

$$
(\alpha, \beta)_{m}(\varphi)=\gamma^{\Psi_{F}(\alpha)(\varphi)-1}
$$

where $\gamma^{p^{m}}=\beta, \varphi \in \operatorname{Gal}(\widetilde{F} / F), \Psi_{F}(\alpha)(\varphi) \in \operatorname{Gal}(\widetilde{F}(\gamma) / \widetilde{F})$. Thus, we obtain the pairing

$$
(\cdot, \cdot)_{m}: U_{1, F} \times F^{*} \rightarrow \operatorname{Hom}_{\mathbf{Z}}\left(\operatorname{Gal}(\tilde{F} / F), \mu_{p^{m}}\right)
$$

(note that the last group is non-canonically isomorphic to $\oplus_{\kappa} \mu_{p^{m}}$).

Proposition.

1) Let $F(\cdot \sqrt[m]{\beta}) / F$ be totally ramified. Then $(\alpha, \beta)_{m}=1$ if and only if

$$
\alpha \in N_{F\left(P^{m} \sqrt{\beta}\right) / F} U_{1, F\left(P^{m} \sqrt{\beta}\right)} .
$$

2) $(\alpha, \beta)_{m}=1$ for all $\alpha \in U_{1, F}$ if and only if $F(\sqrt[P^{m}]{\beta}) / F$ is unramified.
3) $(1-\beta, \beta)_{m}=1$ for $1-\beta \in U_{1, F}$.
4) $(-\beta, \beta)_{m}=1$ for $-\beta \in U_{1, F}$.
5) $(\alpha, \beta)_{m}=(\beta, \alpha)_{m}^{-1}$ for $\alpha, \beta \in U_{1, F}$.
6) $(\alpha, \beta)_{m}=1$ for all $\beta \in F^{*}$ if and only if $\alpha \in U_{1, F}^{p^{m}}$.

Proof. 1) immediately follows. If $F(\sqrt[\rho^{m}]{\beta}) / F$ is not unramified, then $\widetilde{F}(\gamma) \neq \widetilde{F}$ for $\gamma^{p^{m}}=$ β and one can take $\alpha \notin N_{\Sigma / F} U_{1, \Sigma}$, where Σ / F is a totally ramified extension such that $\tilde{\Sigma}=\tilde{F}(\gamma)$. Then $(\alpha, \beta)_{m} \neq 1$, and we get 2). 3) and 4) follow from 1). If $\alpha, \beta \in U_{1, F}$, then

$$
1=(\alpha \beta,-\alpha \beta)_{m}=(\alpha,-\alpha)_{m}(\beta,-\beta)_{m}(\alpha, \beta)_{m}(\beta, \alpha)_{m}=(\alpha, \beta)_{m}(\beta, \alpha)_{m}
$$

If $(\alpha, \beta)_{m}=1$ for all $\beta \in F^{*}$, then $(\beta, \alpha)_{m}=1$ for all $\beta \in U_{1, F}$ and $F(\sqrt[2]{\alpha}) / F$ is unramified. If $\alpha \notin F^{* p}$, then in the case under consideration $\alpha \equiv 1+\theta \pi_{F}^{p e /(p-1)} \bmod \pi_{F}^{p e /(p-1)+1}$ where e is the absolute index of ramification of F. Then $\alpha \notin N_{F\left(\sqrt[2]{\pi_{F}}\right) / F} F\left(\sqrt[8]{\pi_{F}}\right)^{*}$ as it follows from (1.3). Therefore, $\alpha=\alpha_{1}^{p}$ for some $\alpha_{1} \in U_{1, F}$. Now ($\left.\alpha_{1}^{p}, \beta\right)_{m}=\left(\alpha_{1}, \beta\right)_{m-1}=1$. Proceeding by induction on m, we conclude that $\alpha \in U_{1, F}^{p^{m}}$.
Remark. One can extend the Hilbert symbol on $F^{*} \times F^{*}$: for $\alpha=\pi^{a} \theta \varepsilon, \beta=\pi^{b} \theta^{\prime} \eta$ with $\varepsilon, \eta \in U_{1, F}$ and $\theta, \eta \in \mathcal{R}^{*}$, where \mathcal{R}^{*} is the set of multiplicative representatives of \bar{F}^{*} in F, put

$$
(\alpha, \beta)_{m}= \begin{cases}\left(\varepsilon^{b} \eta^{a}, \pi\right)_{m}(\varepsilon, \eta)_{m} & \text { for } p>2 \\ \left(-1, \pi^{a b}\right)_{m}\left(\varepsilon^{b} \eta^{a}, \pi\right)_{m}(\varepsilon, \eta)_{m} & \text { for } p=2\end{cases}
$$

Proposition implies that this pairing is well defined. It induces a non-degenerate pairing

$$
F^{*} / F^{* p^{m}} \times F^{*} / F^{* p^{m}} \rightarrow \operatorname{Hom}_{Z_{p}}\left(\operatorname{Gal}(\tilde{F} / F), \mu_{p^{m}}\right)
$$

There is another way to determine this pairing as

$$
F^{*} / F^{* p^{m}} \times F^{*} / F^{* p^{m}} \rightarrow H^{2}\left(F, \mu_{p^{m}}\right){\underset{\rightarrow p^{m}}{ }}_{\sim_{B r}}(F) \otimes \mu_{p^{m}}
$$

via the natural isomorphism between the last group in the preceding line and the group

$$
\operatorname{Hom}_{\mathbf{Z}_{p}}\left(\operatorname{Gal}(\widetilde{F} / F), \mu_{p^{m}}\right)
$$

see [Wt]. Employing the description of p^{m}-primary elements ([$\left.\mathrm{Hs}, \mathrm{Sh}\right]$) one can deduce explicit formula for the Hilbert symbol ([Sh],[V]).
1.11. The second pairing is the Artin-Schreier pairing. Let F be of characteristic p. For $\alpha \in U_{1, F}, \beta \in F$ put

$$
(\alpha, \beta](\varphi)=\Psi_{F}(\alpha)(\varphi)(\gamma)-\gamma
$$

where $\varphi \in \operatorname{Gal}(\tilde{F} / F), \gamma$ is a root of the polynomial $\varphi(X)-\beta$. We get the pairing

$$
(\cdot, \cdot]: U_{1, F} \times F \rightarrow \operatorname{Hom}_{Z}\left(\operatorname{Gal}(\widetilde{F} / F), \mathbb{F}_{p}\right)
$$

In the same way as in the previous Proposition one can verify that:

1) Let $F(\gamma) / F$ be a totally ramified extension. Then $(\alpha, \beta]=0$ if and only if $\alpha \in$ $N_{F(\gamma) / F} F(\gamma)^{*}$.
2) $(\alpha,-\alpha]=0$ for $\alpha \in U_{1, F}$.
3) $(\alpha, \beta]=0$ for all $\alpha \in U_{1, F}$ if and only if $F(\gamma) / F$ is unramified.

Moreover, it is easy to deduce an explicit formula for $(\cdot, \cdot]$:
Proposition. $(\alpha, \beta](\varphi)=\varphi(\lambda)-\lambda$ where λ is a root of the polynomial $\varphi(X)-\delta$ and $\delta=\operatorname{res}_{\pi}\left(\alpha^{-1} \frac{d \alpha}{d \pi} \beta\right)$.
Proof. Let $\varphi(\lambda)-\lambda$ be denoted as $d_{\pi}(\alpha, \beta)(\varphi)$. It suffices to verify the assertion for $\beta=\eta \pi^{-i}, \eta \in \bar{F}, p \nmid i, i>0$. Let $L=F(\gamma)$, where $\gamma^{p}-\gamma=\eta \pi^{-i}$. Let π_{L} be a prime
element in L. Then $\gamma \equiv \eta_{1} \pi_{L}^{-i} \bmod \pi_{L}^{-i+1} \mathcal{O}_{L}$ with $\eta_{1} \in \bar{F}$ such that $\eta_{1}^{p}=\eta$. Let σ be a generator of $\operatorname{Gal}(L / F)$ and

$$
\frac{\sigma \pi_{L}}{\pi_{L}}=1+\theta_{0} \pi_{L}^{i}+\ldots \quad, \quad \theta_{0} \in \bar{F}
$$

It follows from (1.3) that $U_{1, F} / N_{L / F} U_{1, L}$ is generated by units $1+\theta \pi^{i}$ with $\theta \in \bar{F}$, $\notin \theta_{0}^{P} \varphi(\bar{F})$. Then $\left(\alpha, \eta \pi^{-i}\right)$ is determined by its values on $\alpha=1+\theta \pi^{i}$ where $\theta \in \bar{F}$ because of the first property of $(\cdot, \cdot]$. We also obtain that for $\alpha=N_{L / F} \alpha^{\prime}$

$$
\begin{aligned}
d_{\pi}(\alpha, \beta)=d_{\pi}\left(N_{L / F} \alpha^{\prime}, \beta\right)= & d_{\pi}\left(N_{L / F} \alpha^{\prime}, \operatorname{Tr}_{L / F} \beta^{\prime}\right) \\
& =d_{\pi_{L}}\left(N_{L / F} \alpha^{\prime}, \beta^{\prime}\right)=d_{\pi_{L}}\left(\alpha^{\prime}, \operatorname{Tr}_{L / F} \beta^{\prime}\right)=d_{\pi_{L}}\left(\alpha^{\prime}, \beta\right)=0
\end{aligned}
$$

where β^{\prime} is an element in L with $\operatorname{Tr}_{L / F} \beta^{\prime}=\beta$. These equalities follow from the properties of residues and from the relation $\beta \in \wp(L)$.

Thus, it remains to verify the assertion for $\alpha=1+\theta \pi^{i}, \beta=\eta \pi^{-i}$. In this case

$$
d_{\pi}(\alpha, \beta)(\varphi)=(\varphi-1) \lambda \quad \text { where } \lambda^{P}-\lambda=i \theta \eta
$$

 $\wp\left(i \xi \eta_{1}\right)=i \theta \eta=\wp(\lambda)$. Therefore, $\lambda-i \xi \eta_{1} \in \mathbb{F}_{p}$ and $(\varphi-1) \lambda=i \eta_{1}(\varphi-1)(\xi)=-i \eta_{1} \theta_{0}$ because

$$
\pi_{L}^{-1} \sigma\left(\pi_{L}\right)=1+\theta_{0} \pi_{L}^{i}+\cdots \equiv\left(1+\xi \pi_{L}^{i}+\cdots\right)^{1-\varphi} \bmod V(L \mid F)
$$

On another hand, $\sigma\left(\pi_{L}^{-i}\right)=\pi_{L}^{-i}-i \theta_{0} \bmod \pi_{L}$, hence $\sigma(\gamma)-\gamma=-i \eta_{1} \theta_{0}$ and $d_{\pi}(\alpha, \beta)=$ $(\alpha, \beta]$.
Corollary. If $(\alpha, \beta]=0$ for all $\beta \in F$, then $\alpha \in U_{1, F}^{p}$. The pairing $(\cdot, \cdot]$ induces the non-degenerate pairing

$$
U_{1, F} / U_{1, F}^{p} \times F /(\varphi(F)+\bar{F}) \rightarrow \operatorname{Hom}_{\mathbf{z}}\left(\operatorname{Gal}(\tilde{F} / F), \mathbb{F}_{p}\right)
$$

Remark. One can generalize $(\cdot, \cdot]$ using Witt vectors to obtain the non-degenerate pairing

$$
U_{1, F} / U_{1, F}^{p^{m}} \times W_{m}(F) /\left(\wp W_{m}(F)+W_{m}(\bar{F})\right) \rightarrow \operatorname{Hom}_{z_{p}}\left(\operatorname{Gal}(\tilde{F} / F), W_{m}\left(\mathbf{F}_{p}\right)\right)
$$

§2. Additive polynomials

In this section we extend the properties of additive polynomials over quasi-finite fields ($[\mathrm{Wh} 2, \mathrm{CW}]$) on perfect fields.
2.1. Let K be a perfect field of characteristic $p>0$. A polynomial $f(X)$ over K is called additive if $f(a+b)=f(a)+f(b)$ for any $a, b \in K$. It is easy to show that if $\operatorname{deg} f(X) \leqslant \operatorname{card}(K)$, then $f(X)$ is additive if and only if $f(X+Y)=f(X)+f(Y)$ in the ring $K[X][Y]$, i.e., $f(X)=\sum_{m=o}^{m=n} a_{m} X^{p^{m}}, a_{m} \in K$.

Furhter we will assume that K is infinite. The ring of additive polynomials with respect to addition and composition is isomorphic to the ring $K[\Lambda]$ of non-commutative polynomials: $\sum a_{m} X^{p^{m}} \rightarrow \sum a_{m} \Lambda^{m},(a \Lambda)(b \Lambda)=a b^{p} \Lambda^{2}$ for $a, b \in K$.

In the decomposition $f=g \circ h$ the polynomial g (resp. h) is called an outer (resp. inner) component of f, and f is called an outer (resp. inner) multiple of g (resp. h). For any two additive polynomials $f(X), g(X)$ there exist and uniquely determined additive polynomials $h_{1}(X), q_{1}(X)$ (resp. $h_{2}(X), q_{2}(X)$) such that $f=h_{1} \circ g+q_{1}$ (resp. $f=g \circ h_{2}+q_{2}$), $\operatorname{deg} q_{i}<\operatorname{deg} g$. The ring of additive polynomials is a left and a right Euclidean principal ideal ring. If $f_{3}(X)$ is a least common outer multiple of additive polynomials $f_{1}(X), f_{2}(X)$, then $f_{3}(K) \subset f_{1}(K) \cap f_{2}(K)$. If $f_{4}(X)$ is a greatest common outer component of f_{1}, f_{2}, then $f_{4}=f_{1} \circ g_{1}+f_{2} \circ g_{2}$ for a suitable additive polynomials g_{1}, g_{2} and $f_{4}(K)=f_{1}(K)+f_{2}(K)$.

One can also introduce the notion of a generalized additive polynomial over K as a finite sum $\sum a_{m} X^{p^{m}}$ with $a_{m} \in K, m \in \mathbb{Z}$. There is an involution $f \rightarrow f^{*}$ in the ring of generalized additive polynomials, for $f(X)=\sum a_{m} X^{p^{m}}$ put $f^{*}(X)=\sum a_{m}^{p^{-m}} X^{p^{-m}}$.
2.2. For a non-zero additive polynomial $f(X)$ over K its set of roots is an additive finite subgroup in $K^{\text {sep }}$. Conversely, for an additive finite subgroup H in $K^{\text {sep }}$ the polynomial $f_{H}(X)=\prod_{\alpha_{i} \in H}\left(X-\alpha_{i}\right)$ is an additive polynomial with ker $f_{H}=H$. If $f(X), g(X)$ are non-zero additive polynomials and $f^{\prime}(0) \neq 0$, $\operatorname{ker} f \subset K$, $\operatorname{ker} g \subset K$, then $\operatorname{ker} f \subset \operatorname{ker} g$ if and only if $f(X)$ is an inner component of $g(X)$.

We call an additive polynomial $f(X)$ over K with ker $f \subset K K$-decomposable. We denote the set of K-decomposable polynomials by $D P_{K}$.
Lemma. If $f(X) \in D P_{K}$ and $f^{\prime}(0) \neq 0$, then

$$
f(X)=d_{1} X \circ \wp(X) \circ d_{2} X \circ \cdots \circ \wp(X) \circ d_{n+1} X
$$

where $d_{i}^{-1} \in\left(\wp(X) \circ d_{i+1} X \circ \cdots \circ d_{n+1} X\right)(K)$. Conversely, any such polynomial is K decomposable.
Proof. Let $\alpha \in \operatorname{ker} f$. Then $\wp\left(\alpha^{-1} X\right)$ is an inner component of $f(X)$ and one can put $d_{n+1}=\alpha^{-1}$. If $f(X)=g(X) \circ \wp\left(\alpha^{-1} X\right)$, then $g \in D P_{K}$ and by inductional arguements we deduce a decomposition of $f(X)$. The conditions on d_{i} follow from the condition $\operatorname{ker} f \subset K$.
2.3. Let G_{K}^{abp} denote the group $\mathrm{Gal}\left(K^{\mathrm{abp}} / K\right)$.

Proposition. Let $f(X) \in D P_{K}$. Then there is a homomorphism

$$
\begin{gathered}
\lambda: K / f(K) \rightarrow \operatorname{Hom}_{\mathbf{z}_{\mathbf{p}}}\left(G_{K}^{\mathrm{abp}}, \operatorname{ker} f\right) \\
\lambda(a)(\varphi)=\varphi b-b \quad \text { where } f(b)=a
\end{gathered}
$$

The homomorphism λ is an isomorphism.
Proof. First note that $b \in K^{\text {abp. Indeed, if } \sigma \tau \in \operatorname{Gal}(K(b) / K) \text {, then } \sigma b=b+c_{1}, \tau b=b+c_{2}, ~}$ with $c_{1}, c_{2} \in \operatorname{ker} f$, and $\sigma \tau b=\tau \sigma b$. The homomorphism λ is evidently injective. If $\chi \in \operatorname{Hom}_{\mathcal{Z}_{p}}\left(G_{K}^{\mathrm{abp}}, \operatorname{ker} f\right)$, then let a_{φ} be an element of K^{abp} such that $(\varphi-1) a_{\varphi}=\chi(\varphi)$
and $(\psi-1) a_{\varphi}=0$ for any $\psi \in G_{K}^{\mathrm{abp}}$ with $\psi \notin\langle\varphi\rangle$. It exists by Lemma (1.4). Then for $b=\sum a_{\varphi}$ where φ runs topological generators of G_{K}^{abp} (the sum contains in fact a finite number of non-zero addends) we obtain that $f(b) \in K$ and $\chi(\varphi)=(\varphi-1) b$ for any $\varphi \in G_{K}^{\mathrm{abp}}$.
Corollary. Let $g \in D P_{K}, g^{\prime}(0) \neq 0$. Let $f(X)$ be an additive polynomial over K. Then g is an outer component of f if and only if $f(K) \subset g(K)$.
Proof. Let $d(X)$ be a greatest common outer component of $f(X)$ and $g(X)$. If $f(K) \subset$ $g(K)$, then $d(K)=f(K)+g(K)=g(K)$. As ker $g \subset K$ we obtain ker $d \subset K$. Then, by Proposition g is an outer component of $d(X)$ and of $f(X)$.
2.4. A generalized additive polynomial over K is called K-decomposable if its kernel belongs to K.
Proposition. An additive polynomial $f(X)$ is K-decomposable if and only if $f^{*}(X)$ is K-decomposable.

Proof. One may assume without loss of generality that $f^{\prime}(0) \neq 0$. By (2.2) $\alpha \in$ ker f^{*} if and only if $\wp\left(\alpha^{-1} X\right)$ is an inner component of $f^{*}(X)$, i.e., $\alpha^{-1} \wp(X)$ is an outer component of $f(X)$, i.e., $\alpha^{-1} \wp(K) \supset f(K)$ by Corollary of (2.3). Therefore, the cardinality of ker $f^{*} \cap K$ coincides with the cardinality of the set $\left\{\alpha \in K: \alpha^{-1} \wp(K) \supset f(K)\right\}$. Let $\operatorname{deg} f=p^{n}$. Since there are $\left(p^{n}-1\right)(p-1)^{-1}$ subgroups of order p in ker f, we deduce applying the previous Proposition that there are $\left(p^{n}-1\right)(p-1)^{-1}$ elements α in K such that all $\alpha^{-1} \vartheta(K)$ are distinct and $\alpha^{-1} \wp(K) \supset f(K)$. Thus, the cardinality of ker $f^{*} \cap K$ is p^{n}, i.e., $\operatorname{ker} f^{*} \subset$ K.

Corollary. Let $f(X) \in D P_{K}$. Then

$$
f(K)=\cap \alpha^{-1} \wp(K)
$$

where α runs a set of the cardinality equal to the cardinality of ker f, such that $\alpha^{-1} \varphi(K) \supset$ $f(K)$.
2.5. Proposition. Let $f_{1}, f_{2} \in D P_{K}$.

1) Let f_{3} (resp. f_{4}) be a least common outer (resp. inner) multiple of $f_{1}, f_{2} ; f_{5}$ (resp. f_{6}) be a greatest common outer (resp. inner) component of f_{1}, f_{2}. Then $f_{i} \in D P_{K}$ and $f_{3}(K)=f_{1}(K) \cap f_{2}(K)$.
2) $\left\{a \in K: f_{1}(a) \in f_{2}(K)\right\}=h(K)$ for some $h \in D P_{K}$.

Proof.

1) Let $f_{3}=f_{1} \circ g_{1}=f_{2} \circ g_{2}$ with additive polynomials g_{1}, g_{2}. First assume that $f_{5}=X$. As ker f_{1}^{*}, $\operatorname{ker} f_{2}^{*}$ are contained in ker f_{3}^{*}, we deduce that ker $f_{3}^{*} \subset K$ and by Proposition (2.4) $f_{3} \in D P_{K}$. According to Proposition (2.3) we get the surjective homomorphism

$$
\begin{aligned}
\operatorname{Hom}_{\mathbf{Z}_{p}}\left(G_{K}^{\mathrm{abp}}, \operatorname{ker} f_{3}\right) & \rightarrow K / f_{3}(K) \rightarrow K / f_{1}(K) \oplus K / f_{2}(K) \\
& \rightarrow \operatorname{Hom}_{\mathbf{Z}_{p}}\left(G_{K}^{\mathrm{abp}}, \operatorname{ker} f_{1} \oplus \operatorname{ker} f_{2}\right)
\end{aligned}
$$

which is injective as well. Therefore, $f_{3}(K)=f_{1}(K) \cap f_{2}(K)$.

Now let $f_{1}=f_{5} \circ h_{1}, f_{2}=f_{5} \circ h_{2}$ and $f_{3}=f_{5} \circ h_{3}$ with $h_{1}, h_{2} \in D P_{K}$. If $a \in f_{1}(K) \cap$ $f_{2}(K)$, then $a=f_{5}\left(h_{1}(c)\right)=f_{5}\left(h_{2}(d)\right)$ and $h_{2}(d)-h_{1}(c) \in \operatorname{ker} f_{5}$. As $\operatorname{ker} f_{5} \subset h_{1}(K)$, we obtain $a=f_{5}(b)$ for some $b \in h_{1}(K) \cap h_{2}(K)=h_{3}(K)$ and $a \in f_{3}(K)$. We deduce also that $f_{3} \in D P_{K}$.

The polynomials f_{4}, f_{5}, f_{6} are K-decomposable by Proposition (2.4).
2) One may assume by 1) that $\operatorname{deg} f_{1}=\operatorname{deg} f_{2}=p$. Then $f_{1}^{-1}\left(f_{2}(K)\right) \cap K=$ $f_{1}^{-1}\left(f_{3}(K)\right) \cap K=g_{1}(K)$, where $f_{3}=f_{1} \circ g_{1}, g_{1} \in D P_{K}$.
2.6. Finally we consider an analog of some remarkable property of additive polynomials.

Lemma. Let $f(X)$ be a polynomial over $K, f(0)=0, f(X) \neq 0$. Let $g(X)$ be a non-zero K-decomposable polynomial. Then there exist finite sequences $q_{i}(X), h_{i}(X)$ of polynomials over K such that $g(X)$ is an outer component of $\sum f\left(q_{i}(X)\right)$ and of $\sum f\left(h_{i}(X)\right)$, where $\sum f\left(q_{i}(X)\right) \neq 0$ and $\sum h_{i}(X)$ is a non-zero K-decomposable polynomial.
Proof. According to Corollary 1.1 of [CW] one can find linear polynomials $g_{i}(X), h_{i}(X)$ such that $\sum f \circ g_{i}$ is a non-zero additive polynomial, $\sum f \circ h_{i}$ is an additive polynomial, and $\sum h_{i}(X)=X$. Hence it suffices to show that for a non-zero additive polynomial $p(X)$ and $g(X) \in D P_{K}$ there exists a non-zero K-decomposable polynomial $r(X)$ such that $p \circ r=g \circ s$ for some additive polynomial $s(X)$. Let $g=g_{1} \circ g_{2}, g_{i} \in D P_{K}$ and $p \circ r_{1}=g_{1} \circ s_{1}, s_{1} \circ r_{2}=g_{2} \circ s$. Then $p \circ r_{1} \circ r_{2}=g \circ s$. Therefore, it remains to consider the case of $\operatorname{deg} g(X)=p$. Let H be a finite additive subgroup in K which contains $p^{*}\left(\operatorname{ker} g^{*}\right)$. Let $r(X)$ be an additive polynomial with $\operatorname{ker} r^{*}=H$. Then $r \in D P_{K}$ and $\operatorname{ker} g^{*} \subset \operatorname{ker}\left(r^{*} \circ p^{*}\right)$. By (2.2) we obtain $r^{*} \circ p^{*}=s^{*} \circ g^{*}$ for some additive polynomial $s(X)$. Then $p \circ r=g \circ s$, as desired.

§3. Existence theorem

In this section we describe the norm groups of totally ramified p-extensions.
3.1. A subgroup H in \bar{F} is called polynomial if

$$
H=f(\bar{F})
$$

for some non-zero \bar{F}-decomposable polynomial $f(X)$. Let π be a prime element in F. A subgroup \mathcal{N} in $U_{1, F}$ is called normic if

1) \mathcal{N} is open;
2) for any $i>0$ there exists a polynomial $f_{i}(X) \in \mathcal{O}_{F}[X]$ such that \bar{f}_{i} is non-zero \bar{F}-decomposable and $1+f_{i}\left(\mathcal{O}_{F}\right) \pi^{i} \subset \mathcal{N}$;
3) for any $i>0$ the image of $\left(U_{i, F} \cap \mathcal{N}\right) U_{i+1, F}$ under the projection

$$
U_{i, F} \rightarrow U_{i, F} / U_{i+1, F} \xrightarrow{\sim} \bar{F},
$$

where $1+\theta \pi^{i} \rightarrow \bar{\theta}$, is polynomial, and for almost all i this image coincides with \bar{F}. It immediately follows that the notion of a normic subgroup does not depend on the choice of a prime element π in F. Our aim is to show that the class of normic subgroup coincides with the class of norm groups of abelian totally ramified p-extensions.

Proposition. Let L / F be an abelian totally ramified p-extension. Then $N_{L / F} U_{1, L}$ is a normic subgroup in $U_{1, F}$.

Proof. The first and second properties of normic subgroups for $N_{L / F} U_{1, L}$ are verified in the same way as in the proof of Proposition 15 in [Wh1, II]. The third property for an extension L / F of degree p follows from (1.3). Now we proceed by induction on degree of L / F. Let M / F be a subextension in L / F of degree p. The proof of Proposition (1.9) shows that $N_{L / F} U_{1, L} \cap U_{i, F}=N_{L / F} U_{h(i), L}$ where $h=\psi_{L / F}$ is the Hasse-Herbrand function of L / F. Using inductional arguements it suffices to consider the case of $i=s$ where $s=s(M \mid F)($ see (1.3)). Let σ be an element of $\operatorname{Gal}(L / F)$ such that its restriction $\left.\sigma\right|_{M}$ is a generator of $\operatorname{Gal}(M / F)$. Let π_{L} be a prime element in L. Then $\pi_{M}=N_{L / M} \pi_{L}$ is prime in M and $\pi_{M}^{-1} \sigma\left(\pi_{M}\right)=N_{L / M}\left(\pi_{L}^{-1} \sigma\left(\pi_{L}\right)\right)$. Let $N_{L / M}$ map $U_{h(s), L} / U_{h(s)+1, L}$ to $U_{s, M} / U_{s+1, M}$ by the polynomial $f_{1}(X)$ where the residue $\bar{f}_{1}(X)$ is \bar{F}-decomposable, and let $N_{M / F} \operatorname{map} U_{s, M} / U_{s+1, M}$ to $U_{s, F} / U_{s+1, F}$ by the polynomial $f_{2}(X)=\theta_{0}^{p} \varphi\left(\theta_{0}^{-1} X\right)$, where $\pi_{M}^{-1} \sigma\left(\pi_{M}\right) \equiv 1+\theta_{0} \pi_{M}^{s} \bmod \pi_{M}^{s+1}$. Then $\bar{\theta}_{0} \in \bar{f}_{1}(\bar{F})$ and the residue polynomial $\overline{f_{2} \circ f_{1}}$ is \bar{F}-decomposable by Lemma of (2.1).
3.2. Proposition. Let L / F be an abelian totally ramified p-extension. Let \mathcal{N} be a normic subgroup in $U_{1, F}$. Then $N_{L / F}^{-1}(\mathcal{N})$ is a normic subgroup in $U_{1, L}$.

Proof. It suffices to verify the assertion for a cyclic totally ramified extension L / F of degree p. Then the first and second properties of $N_{L / F}^{-1}(\mathcal{N})$ can be established similarly with the proof of Lemma 5 in [Wh1, II] by Lemma (2.6). The third property of $N_{L / F}^{-1}(\mathcal{N})$ follows immediately from (1.3) and Proposition (2.5),2).
3.3. Let π be a prime element in F. Let \mathcal{E}_{π} denote the set of abelian totally ramified p extensions L / F with $\pi \in N_{L / F} L^{*}$. If $L_{1} / F, L_{2} / F \in \mathcal{E}_{\pi}$, then $L_{1} \cap L_{2} / F \in \mathcal{E}_{\pi}$. Moreover, $L_{1} L_{2} / F \in \mathcal{E}_{\pi}$. Indeed, let $M=L_{1} \cap L_{2}$. Assume that $N_{L_{1} / F} \pi_{1}=N_{L_{2} / F} \pi_{2}=\pi$ for prime elements π_{1}, π_{2} in L_{1}, L_{2}. Then $N_{M / F} \varepsilon=1$ for $\varepsilon=N_{L_{1} / M} \pi_{1} N_{L_{2} / M} \pi_{2}^{-1}$. Using the first diagram of Proposition (1.8) we deduce that $\varepsilon \in N_{L / M} U_{1, L}$, consequently there is a prime element π_{M} in M such that $N_{M / F} \pi_{M}=\pi$ and $\pi_{M} \in N_{L_{1} / M} L_{1}^{*} \cap N_{L_{2} / M} L_{2}^{*}$. Thus, it suffices to treat the case of $L_{1} \cap L_{2}=F$ where $L_{1} / F, L_{2} / F$ are cyclic of degree p. Assume that $L_{1} L_{2} / F$ is not totally ramified. Then there is an unramified cyclic extension E / F of degree $p, E \in L_{1} L_{2}$. As $\pi \in N_{L_{1} / F} L_{1}^{*} \cap N_{L_{2} / F} L_{2}^{*}$ one can deduce $\pi \in N_{E / F} E^{*}$ using Chevalley lemma [C, p. 449], that is impossible. Therefore, $L_{1} L_{2} / F$ is totally ramified. By Corollary of (1.8) we obtain $N_{L_{1} / F} U_{1, L_{1}} \cap N_{L_{2} / F} U_{1, L_{2}}=N_{L_{1} L_{2} / F} U_{1, L_{1} L_{2}}$. Let $\pi^{\prime} \in$ $N_{L_{1} L_{2} / F}\left(L_{1} L_{2}\right)^{*}$ for some prime element π^{\prime} in F. Then $\pi^{\prime} \in N_{L_{1} / F} L_{1}^{*} \cap N_{L_{2} / F} L_{2}^{*}$, hence $\varepsilon=\pi^{\prime} \pi^{-1} \in N_{L_{1} L_{2} / F} U_{1, L_{1} L_{2}}$. This means that $L_{1} L_{2} / F \in \mathcal{E}_{\pi}$.
3.4. Proposition. Let π be a prime element in F, and let \mathcal{N} be a normic subgroup in $U_{1, F}$. Then there is precisely one abelian totally ramified p-extension L / F such that $\mathcal{N}=N_{L / F} U_{1, L}$ and $\pi \in N_{L / F} L^{*}$.

Proof. First let $U_{1, F} / \mathcal{N}$ be isomorphic with $\oplus_{\kappa} \mathbb{F}_{p}$, In this case $U_{s+1, F} \subset \mathcal{N}$ for some $s>0$ and

$$
\mathcal{N} \cap U_{s, F} / U_{s+1, F} \simeq a \wp(\bar{F}), \quad \mathcal{N} U_{i+1, F} \cap U_{i, F} / U_{i+1, F} \simeq \bar{F}
$$

(isomorphisms are given by $1+\theta \pi^{i} \rightarrow \bar{\theta}$), $a \in \bar{F}$.
It is known that there is an Artin-Schreier extension $M=F(\lambda)$ with $\varphi(\lambda) \in F$ or a Kummer extension M / F such that $U_{s+1, F} \subset N_{M / F} U_{1, M}, \pi \in N_{M / F} M^{*}, N_{M / F} U_{1, M} \cap$ $U_{s, F} / U_{s+1, F} \simeq a \wp(\bar{F}), N_{M / F} U_{1, M} \cdot U_{i+1, F} \cap U_{i, F} / U_{i+1, F} \simeq \bar{F}$ for $i<s$ (see Corollary 10.5 in [Wh2] and Lemma 6 in [Wh1, II]). If $s=1$, then $N_{M / F} U_{1, M}=\mathcal{N}$. If $s>1$ we proceed by induction on s. Assume that $N_{M / F} U_{1, M} \neq \mathcal{N}$. By Proposition (3.2) the group $N_{M / F}^{-1}(\mathcal{N})$ is normic in $U_{1, M}$ and it is easy to verify that $U_{1, M} / N_{M / F}^{-1}(\mathcal{N})$ is isomorphic with $\oplus_{\kappa} \mathbb{F}_{p}$ and $U_{s^{\prime}, M} \subset N_{M / F}^{-1}(\mathcal{N})$ for some $s^{\prime}<s$. Then by the inductional arguements $N_{M / F}^{-1}(\mathcal{N})=N_{E / M} U_{1, E}$ for some cyclic extension E / M of degree p and $\mathcal{N} \supset N_{E / F} U_{1, E}$, $\pi \in N_{E / F} E^{*}$. As for any $\alpha \in U_{1, F}$ the element $\alpha^{1-\sigma}$ for $\sigma \in \operatorname{Gal}(M / F)$ belongs to $N_{E / M} U_{1, E}$, we deduce from Proposition (1.8),2) and Corollary of (1.8) that E / F is abelian. Now $\mathcal{N}=N_{L / F} U_{1, L}, \pi \in N_{L / F} L^{*}$ for the fixed field L of the subgroup H of $\operatorname{Gal}(E / F)$ such that $H^{*}=\Psi_{E / F}\left(\mathcal{N} / N_{E / F} U_{1, E}\right)$.

Now let $U_{1, F} / \mathcal{N}$ be isomorphic with $\oplus_{\kappa} G$ for an abelian p-group G. We argue by induction on the order of G. Let \mathcal{N}_{1} be a normic subgroup which contains \mathcal{N} and such that $U_{1, F} / \mathcal{N}_{1} \simeq \oplus_{\kappa} \mathbb{F}_{p}$. Then $\mathcal{N}=N_{M / F} U_{1, M}$ for a suitable cyclic extension M / F of degree p and $\pi=N_{M / F} \pi_{M}$ for some prime element π_{M} in M. By the inductional arguements there is an abelian extension L / M with $N_{M / F}^{-1}(\mathcal{N})=N_{L / M} U_{1, L}$ and such that $\pi_{M} \in N_{L / M} L^{*}$. By the same reasons as above L / F is abelian and $N_{L / F} U_{1, L}=\mathcal{N}, L / F \in \mathcal{E}_{\pi}$. The uniqueness follows from (3.3) and Corollary of (1.8).
Corollary. Let F_{π} be the compositum of all fields L with $L / F \in \mathcal{E}_{\pi}$. Then $F_{\pi} \cap \tilde{F}=F$ and $F_{\pi} \tilde{F}=F^{\mathrm{abp}}$.
Proof. Let $\alpha \in F^{\mathrm{abp}}$. There exists an unramified extension $M / F(\alpha)$ such that $\mathrm{Gal}(M / F)$ is isomorphic to $\operatorname{Gal}\left(M / M_{0}\right) \times \operatorname{Gal}(M / E)$, where $M_{0}=M \cap \widetilde{F}, E / F$ is a suitable abelian totally ramified p-extension, $E \subset M$. Let $N_{E / F} \pi_{E}=\pi \varepsilon$ for a prime element π_{E} in E and $\varepsilon \in U_{F}$. It follows from (1.3) that there is a finite abelian unramified p-extension F_{1} / F such that $\varepsilon \in N_{E_{1} / F_{1}} U_{E_{1}}$ where $E_{1}=E F_{1}$. Then $\pi \in N_{E_{1} / F_{1}} E_{1}^{*}$. The group $N_{E_{1} / F} U_{1, E_{1}}=N_{E / F} U_{1, E}$ is normic in $U_{1, F}$. Hence there exists an extension $L / F \in \mathcal{E}_{\pi}$ such that $N_{L / F} U_{1, L}=N_{E_{1} / F} U_{1, E_{1}}$. Then $N_{L_{1} / F} U_{1, L_{1}}=N_{E_{1} / F} U_{1, E_{1}}$ for $L_{1}=L F_{1}$. Since $\operatorname{ker} N_{F_{1} / F}$ is generated by $\eta^{\varphi-1}$ with $\eta \in U_{1, F_{1}}, \varphi \in \operatorname{Gal}\left(F_{1} / F\right)$, the second commutative diagram of Proposition (1.8) implies that ker $N_{F_{1} / F} \subset N_{L_{1} / F_{1}} U_{1, L_{1}}$. Therefore, $N_{L_{1} / F_{1}} U_{1, L_{1}}=N_{E_{1} / F_{1}} U_{1, E_{1}}$ because $|L: F|=|E: F|$. We get $L_{1} / F_{1}, E_{1} / F_{1} \in \mathcal{E}_{\pi}$. Now by Proposition $L_{1}=E_{1}$. Thus, $E \subset L_{1} \subset F_{\pi} \widetilde{F}$. This means that $F^{\mathrm{abp}}=F_{\pi} \widetilde{F}$.
3.5. Existence Theorem. Let π be a prime element in F. There is an order reversing bijection between the lattice of normic subgroups in $U_{1, F}$ with respect to the intersection and product and $L / F \in \mathcal{E}_{\pi}$ with respect to the intersection and compositum: $\mathcal{N} \leftrightarrow$ $N_{L / F} U_{1, L}$.
Proof. It follows from Proposition (3.4) and Corollary of (1.8).
Corollary. The reciprocity map

$$
\Psi_{F}: U_{1, F} \rightarrow \operatorname{Hom}_{Z_{p}}\left(\operatorname{Gal}(\tilde{F} / F), \operatorname{Gal}\left(F_{\pi} / F\right)\right)
$$

is injective.
Proof. The description of normic subgroups in (3.1) or standard arguements using the Hilbert norm residue symbol and the Artin-Schreier pairing imply the injectivity of Ψ_{F}.
Remark. Ψ_{F} is not surjective when \bar{F} is infinite.
3.6. Another description of normic subgroups can be developed by applying the method of K. Sekiguchi [Sk, Subsection 3.2]. Let $E(\cdot, X): W(\bar{F}) \rightarrow 1+X \mathcal{O}_{F}[[X]]$ be the Artin-Hasse map, c.f. [Wh1, III]. Then, if $\operatorname{char}(F)=p$, one can take as the normic subgroups the finite intersection of the sets

$$
E\left(p^{n} W(\bar{F})+a_{\wp} W(\bar{F}), \pi^{m}\right) \prod_{\substack{(i, p)=1 \\ i \neq m, i \geqslant 1}} E\left(W(\bar{F}), \pi^{i}\right)
$$

for $n \geqslant 0, m \geqslant 1,(m, p)=1, a \in W(\bar{F})$ and a prime element π in F. If $\operatorname{char}(F)=0$ and a group of primitive p^{n} th roots of unity belongs to F (and n is the maximal number with this property), then one can take as the normic subgroups the finite intersections of the sets

$$
E\left(p^{m} W(\bar{F})+a \wp W(\bar{F}), \pi^{p e_{1}}\right) E\left(p^{l} W(\bar{F})+b \wp W(\bar{F}), \pi^{k}\right) \prod_{\substack{i, p)=1 \\ 1 \leqslant i<p e_{1} \\ i \neq k}} E\left(W(\bar{F}), \pi^{i}\right)
$$

for $m, l \geqslant 0, a, b \in W(\bar{F}), 1 \leqslant k<p e_{1}, e_{1}=e /(p-1)$ and a prime element π in F, where e is the absolute index of ramification of F.
3.7. Now we indicate the connections of the established theory with the Hazewinkel local class field theory [$\mathrm{Hz} 1-\mathrm{Hz} 2$]. Let L / F be a Galois totally ramified extension. Then there is an exact sequence

$$
1 \rightarrow \operatorname{Gal}(L / F)^{\mathrm{ab}} \rightarrow U_{\widehat{L^{\mathrm{ur}}}} / V(L \mid F) \rightarrow U_{\widehat{F \mathrm{ur}}} \rightarrow 1
$$

(similarly with the exact sequence in (1.4)). Involving the pro-quasi-algebraic structure of the group $U_{\widehat{F u r}}$ and observing that $V(L \mid F)$ is the maximal reduced subscheme of the connected component of ker $N_{\widehat{L^{\mathrm{ur}}} / \widehat{F \mathrm{Fr}}}$, one deduces the exact sequence

$$
\pi_{1}\left(U_{L}\right) \xrightarrow{N_{L / F}} \pi_{1}\left(U_{F}\right) \rightarrow \operatorname{Gal}(L / F)^{\mathbf{a b}} \rightarrow 1 .
$$

As the quasi-algebraic group $\operatorname{Gal}(L / F)^{\text {ab }}$ is constant, we obtain the exact sequence

$$
\tilde{\pi}_{1}\left(U_{L}\right) \xrightarrow{N_{L / F}} \tilde{\pi}_{1}\left(U_{F}\right) \rightarrow \operatorname{Gal}(L / F)^{\mathrm{ab}} \rightarrow 1,
$$

where $\tilde{\pi}_{1}$ is the maximal constant quotient of π_{1}. Then $\tilde{\pi}_{1}\left(U_{F}\right) / N_{L / F} \tilde{\pi}_{1}\left(U_{L}\right)$ is isomorphic with $\operatorname{Gal}(L / F)^{\mathrm{ab}}$. Passing to the projective limit we obtain a homomorphism

$$
\Psi: \tilde{\pi}_{1}\left(U_{F}\right) \rightarrow G_{F}^{\mathrm{abr}},
$$

which is an isomorphism as it was proved by Hazewinkel.
The group $\tilde{\pi}_{1}\left(U_{F}\right)$ has no an explicit description with except of the case of finite \bar{F}. On the other hand, it is clear that $\operatorname{Gal}\left(F^{\mathrm{abp}} / \widetilde{F}\right)^{*}$ is isomorphic with the projective limit $\underset{\rightleftarrows}{\lim } U_{1, F} / N_{L / F} U_{1, L}$ for $L / F \in \mathcal{E}_{\pi}$. The constant pro-quasi-algebraic group $\tilde{\pi}_{1}\left(U_{F}\right)$ is the projective limit of the constant kernels of isogenies $X \rightarrow U_{\widehat{F u r}} \rightarrow 1$. If we consider a similar isogeny with $U_{1, F}$ instead of U_{F}, then one has the commutative diagram

where $\theta(\varepsilon)(\varphi)=\varepsilon^{\varphi-1}$. Then we obtain a homomorphism

$$
U_{1, F} \rightarrow \operatorname{Hom}_{Z_{F}}\left(\operatorname{Gal}(\tilde{F} / F), \tilde{\pi}_{1}\left(U_{F}\right)\right)
$$

and its composition with Ψ gives the reciprocity $\operatorname{map} \Psi_{F}$.
3.8. Finally we note that an expansion of the method exposed above and methods employed to furnish class field theory of multidimensional local fields with a finite residue field [F1-F3] will provide a description of abelian totally ramified p-extensions of multidimensional local fields with a perfect residue field of characteristic p.

References

[C] C. Chevalley, Sur la théorie du corps de classes dans les corps finis et les corps locaur, J. Fac. Sci. Tokyo Imp. Univ. 2 (1933), 363-476.
[CW] T. H. M. Crampton and G. Whaples, Additive polinomials. II, Trans. Amer. Math. Soc. 78 (1955), 239-252.
[D] P. Deligne, Les corps locaux des caracteristique p, limites de corps locaux caracteristique 0, J.-N Bernstein, P. Deligne, D. Kazhdan, M.-F. Vigneras, Representations des groupes réductifs sur un corps local, Hermann, Paris, 1984.
[F1] I. B. Fesenko, Class field theory of multidimensional local fields of characteristic 0 with the residue field of positive characteristic, Algebra i Analiz 3 (1991), no. 3, 165-196; English transl. in Sankt Petersburg Math. J. 3 (1992).
[F2] , On class field theory of multidimensional local fields of positive characteristic, Adv. Soviet Math. 4 (1991), 103-127.
[F3] , Multidimensional local class field theory. II, Algebra i Analiz 3 (1991), no. 5, 168-190; English transl. in Sankt Petersburg Math. J. 3 (1992).
[FW] J.-M. Fontaine and J.-P. Wintenberger, Le "corps des normes" de certaines extensions algebriques de corps locaux, C. R. Acad. Sci. Paris Sér. I Math. 288 (1979), 367-370.
[Hs] H. Hasse, Gruppe der p^{n}-primären Zahlen für einen Primteiler ρ von p, J. Reine Angew. Math. 176 (1936), 174-183.
[Hz1] M. Hazewinkel, Abelian extensions of local fields, Thesis, Amsterdam Univ., 1969.
$[\mathrm{Hz2}] \ldots$, Corps de classes local, H. Demasure, P. Gabriel, Groupes Algebriques. T. 1, North Holland, Amsterdam, 1970.
[Hz3] L_Lecal class field theory is easy, Adv. Math. 18 (1975), 148-181.
[I] K. Iwasawa, Local Class Field Theory, Iwanami-Shoten, Tokyo, 1980 (Japan); Russian transl., Mir, Moscow, 1983.
[L1] F. Laubie, Sur la ramification des extensions de Lie, Comp. Math. 55 (1985), 253-262.
[L2] , Extensions de Lie et groups d'automorphismes de corps locaux, Comp. Math. 67 (1988), 165-190.
[Ma] M. A. Marshall, Ramification groups of abelian local field extensions, Canad. J. Math. 23 (1971), 184-203.
[N1] J. Neukirch, Neubegründung der Klassenkörpertheorie, Math. Z. 186 (1984), 557-574.
[N2] _, Class Field Theory, Springer, Berlin etc., 1986.
[Sh] I. R. Shafarevich, General reciprocity law, Mat. Sbornik 26 (1950), 113-146; English transl. in Amer. Math. Soc. Transl. ser. 4 (1956), 59-72.
[Sk] K. Sekiguchi, Class field theory of p-extensions over a formal power series field with a p-quasi-finite coefficient field, Tokyo J. Math. 6 (1983), 167-190.
[Sn] S. Sen, Ramification in p-adic Lie extensions, Invent. Math. 17 (1972), 44-50.
[Sr] J.-P. Serre, Sur les corps locaux á corps residuel algébriquement clos, Bull. Soc. Math. France 89 (1961), 105-154.
[V] S.V. Vostokov, Explicit form of the law of reciprocity, Iz. AN SSSR. Ser. math. 42 (1978), 12881231; English transl. in Math. USSR Izv. 13 (1979).
[Wh1] G. Whaples, Generalised local class field theory. I, Duke Math. J. 19 (1952), 505-517; II, Duke Math. J. 21 (1954), 247-256; III, Duke Math. J. 21 (1954), 575-581; IV, Duke Math. J. 21 (1954), 583-586; V, Proc. Amer. Math. Soc. 8 (1957), 137-140.
[Wh2] __ Additive polynomials, Duke Math. J. 21 (1954), 55-66.
[Wn] J.-P. Wintenberger, Le corps des normes de certaines extensions infinies des corps locaux, applications, Ann. Sci. École Norm. Sup. 16 (1983), 59-89.
[Wt] E. Witt, Schiefkörper über diskret bewerteten Körpern, J. Reine Angew. Math. 176 (1936), 153-156.

[^0]: 1991 Mathematics Subject Classification. Primary 11S31; Secondary 12E10.

