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LOCAL CLASS FIELD THEORY:

PERFECT RESIDUE FIELD CASE

IVAN FESENKO

Let F be a eomplete (or Henseliau) diserete valuation field with a perfeet residue fl.eld
F of charaeteristic p > O. Let p(X) denote as usually the polynomial XP - X. It induees
the additive homomorphism pe: F -.. F. Let

FUrther it will be assumed that '" f:. 0, the ease '" = 0 when the field F is algebraieally
p-closed may be treated similarly to Serre's geometrie class field theory [Sr].

Let Fur be the maximal unramified extension of F in the fixed separable closure pep
of F, FaburIF the maximal abelian subextension in rrIF, FabIF the maximal abelian
extension in FsepIF. Reeall that for ~otally ramified abelian extensions L1IF, L21F there
is a totally ramified abelian extension LaiF such that L~r = (L1 L2 )ur (see [Hzl, (2.8.G)]).
Thus, one may introduee the group

Gj?r = lim Gal(LIF)
+--

where the projeetive limit is taken over the direeted system of abelian totally ramified
extensions LIF. Then Gpbr is isomorphie to Gal(TIF) where TI F is auy maximal totally
ramified subextension in pab IF (see [Hz2, Subseetion 2.4]) and

Gal(F ab IF) ~ Gal(F abur IF) X G}br,

the group Gal(pabur IF) is eanonieally isomorphie to Gal(ybI F).
To deseribe the maximal abelian extension FabIF one must study abelian non-p

extensions and abelian p-extensions. Totally tamely ramified abelian extensions over F
are easily deseribed by the Kummer theory, sinee any such extension LIFis generated by
adjoining a root ~ for a suitable prime element 1r in F and a primitive [th root of urnty
belongs to F.

Treating abeliau p-extensions one deduces at onee the deseription of the maximal un
ramified abelian p-extension using the Witt theory. Thus, one is redueed to the study of
abelian totally ramified p-extensions of F. A variant of description of the group G}br in
terms of constant pro-quasi-algebraic groups was furnished by M. Hazewinkel ([Hzl, Hz2]).

1991 MathematiC! Subjeet Classification. Primary 11531; 5econdary 12EI0.
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2 IVAN FESENKO

Another description of abelian totally ramified p-extensions which is cohomology-free and
of more_explicit nature will be established below.

Let F denote the maximal abelian unramified p-extension of F and let LIF be a Galois
totally ramified p-extension. For a character

X E Homz, (Gal(ilL), Gal(LIF))

let Ex be the fixed field of all X(4')4' E Gal(ilF), where 'P runs a topological Zp-basis of
Gal(LI L ). Let 1rx be a prime element in Ex, and 1rL be a prime element in L. Let UL be
the group of units of L. Put

TL/F(X) = NEx/F1rxNL/F7ril mod NL/FUL.

We show in Theorem (1.7) below that T L/F induces an isomorphism of

Homzp (Gal(ilL), Gal(LIF)&b)

onto UFINL/pUL where Gal(LIFy~·b is the maximal abelian quotient of Gal(LIF). This
eonstruetion of Y L / F can be regarded as a generalization of the Neukireh eonstruetion
in the classieal cases ([Nl],[N2]). We deseribe the inverse isomorphism to Y L/F as weIl.
Passing to the projeetive limit one obtains the reciproeity map

where U1,F is the group of principal units, Fl.bp IFis the maximal p-suhextension in F8.bI F.
The existence theorem dedueed in Seetion 3 deseribes norm subgroups in U1,F and darifies
the properties of '11 p. For its proof theory of deeomposable additive polynomials over F
derived in Section 2 will be used.

The loeal dass field theory exposed has a lot of applieations. Among them in ramifi
cation theory it justifies the metatheorem that a statement about ramification groups of
normal totally ramified extension of a Ioeal field whieh holds in classieal cases when the
residue field is finite or quasi-finite is true in general ([Sn],[Ll], [Mal), in theory of fields
of norms it eonneets the its constructions by dass field theory ([FW],[Wn], [L2], see also
[D]).

The part of this work was done during my stay at Max-Planck-Institut für Mathematik,
whieh I would Iike to thank for its hospitality.

§l. RECIPROCITY MAP

1.1. The Witt theory immediately shows that if K. = dimFp F I p(F), then

Gal(FIF) ~ IIZp.

Let LIF be a finite Galois tota11y ramified p-extension. Then Gal(L/F) can be iden
tified with Gal(LIF), and Gal(LjF) is isomorphie with Gal(LjF) x Gal(ijL). Let
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Gal(L/F)* = Homzp (Gal(L/ L), Gal(LIF») denote the group of eontinuous homomor

phisms of Zp-module Gal(iIL) (a' u = U
Q

t a E Zp) to the diserete Zp-module Gal(LIF).
This group is isomorphie (non-eanonieally) with ffi" Gal(LIF). Let X E Gal(LIF)* and
Ex be the fixed field of {X( Cf')Cf'} where Cf' runs through Gal(lIL) and the element X( Cf')
of Gal(LIF) is identified with the eorresponding element in Gal(LIF). Then, obviouslYt
Ex n F = F, i.e. t ExlF is a totally ramified ]rextension. Let UF and UL be the groups of
units of F and L respeetively. Let 1rx be a prime element of Ex' Put

where 1rL is a prime element in L;

1.2. Lemma. Tbe map lL/F: Gal(LIF)* -+ UFINL/FUL is wen defined.

Proof. T L/F does not depend on the ehoiee of 1rL. Let M be the eompositum of Ex and
L. Then MIEx is tmramified and any prime element in Ex ean be written as 1rxN M / Ex c
for a suitable c E UM. As NM/Fe = NL/F(NM/Le) E NL/FUL we eomplete the proof. 0

Let Ui,F denote the subgroup of principal units =1 mod 1r}. Then i L/F aets in faet

from (Gal(LIF)8.b)* to UI,FINL/FUI,L.

1.3. In order to go further we eonsider the behavior of the norm map. Let LIF be a eyelie
totally ramified extension of degree p. Let 1rL be a prime element in L. Then 1rF = N L/ F1rL

is prime in F. Let u be a generator of Ga1(LIF),

U1rL 8 3-- = 1 + 01rL + ...
1rL

with 80 E UL, s = s(L IF) > O. Then it is weil known that

NL/F(l + 81ri) = 1 + 8P1r~ + ...
NL/F(l + 81riJ = 1 + (8P- 8~-18)1rF + ...

N (1 8 3+pi) 1 np-IB 3+i +
L/ F + 1rL = - (7"0 1rF ...

for i < s, 8 E UF

for 8 E UF

for i > 0, 8 E UF.

Then UI,FINL/FUI,L is generated by 1 + 81rp. when () runs element of UF the residues

of which are linearly independent over 8~p(F). Henee UI, F INL / F UI, L is isomorphie to

F/~p(F) ~ ffiKFp •

1.4. Let F denote the eompletion of F. If LIF is a Galois totally ramified p-extension,
then Gal(LIF) is solvable. We will assume always when it is neeessary that F c L. It
foilows from (1.3) that NZ/FUIJ

J
= UI,F. For u E Gal(LIF) put

i(u) = Cf1rL mod V(LIF),
1rL
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where trL is a prime element in L, and

V(LIF) = {u~c) : c E U1,Z,u E Gal(L/F)}.

Then the sequence

is exact (see [Hz1, (2.7)] or [I, Subsection 2.2]).
H MIFis a Galois subextension in LIF, then V(MIF) = N L/M V(LIF) because Ut M =

NE/MUt,E" '

Lemma. Assume tbat LIF is a Galois totally ramified p-extension. Let 'Pli' v E I, be
elements in Gal(FIF) whicb are Zp-linearly independent, and,pll' v E I, be tbeir extensions

on L. Let ,p E Gal(LIF) be such that its restrietion on F is Zp-linearly independent witb

{'Pli} vEI. We will use tbe same notation for the continuous extension of tf; on L. Let E be
the nxed subfield of {,pli} IIEI and e E Ui,E. Tben there exists 1] E Ui,E such that C = 1]r/J-l .

Proof. Note that E is a complete field and one can construct the desired element 7] step by
step modulo higher principal unitB. For instance, let c =1 +8·".-t mod tr~+l where 8 E UE,
1fi1l(6) = 8 for v E I. Then there is ~ E UE such that tf;(e) - e= 6. Then for 1] =1 + ~tri
mod tri+l we deduce that c =7]r/J-l mod tri+ l . 0

1.5. Now we introduce the map inverse to T L/ F. Let LIF be a Galois totally rami
fied p--extension. Let c E Ul,F. According to (1.4) there exists an element 7] E Ul,L

such that NL/p1] = c. Let 'P be a continuous extension of 'P E Gal(iIL) on L. Since

NE/F(7]- l 'P(7])) = 1, we deduce from the exact sequence of (1.4) that 7]- 1'P(7]) = 7rLO"(7rLl )

mod V (L IF) for a suitable 0" E Gal(LIF) where 7rL is a prime element in L. Set x( 'P) = 0".

Then it is easy to verify that X('Pl'P2) = 0"10"2. This means X E Gal(LIF)*. Put
'ItL/F(e) = x·
Lemma. The map \I! L/F: Ul,FINL/FU1,L -+ Gal(LIF)* is well defined and a bomomor
phism.

Proof. If NE/FP = c, then for p = 7]- l p the element /i-1'P(/i) belongs to V(LIF). H

c = CICZ, then one mayassume 1] = fJt''72, consequently u = 0"10"2 in Gal(LIF)a.b. Thus,
WL/F(CIC2) = WL/F(Cl)WL/F(C2)' 0

In fact WL/F acts from U1,FINL/FU1,L to (Gal(LIF)a.b)*.

1.6. For Theorem to follow we need to consider the following

Proposition. Assume that LIF is a Galois totally ramified p-extension, MIF is a Galois

subextension in LIF, M f. L. Let 'Pli' v E I, be Zp-linearly independent in Gal(FIF), and

"pli be their continuous extensions on L. Let tP E Gal(LIF) be such that tPl F is Zp-linearly
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independent with {"pli} IIEI. For a set S c L let S(t/J,,) denote the set oE the fixed elements

under tbe action oE all "pli' Let a E L. Tben
1) V(LIM)(tjI,,) = (V(L1M)(tjI,,»)"'-1;

2) if at/;" -1 E V(LIM) for all v E I, then a E V(LIM)L(\b·);
3) V(MIF)(t/;,,) = NL/M(V(LIF)(\b,,»).

Proof. First assume that IL:MI = p.

1) Let E = j;(t/J,,) be the fixed field of ,pli' v E I. Let (7 be a generator of Gal(L/M).
If e E V(LIM)(t/J,,), then c = c~-l for same Cl E U1,E, and it follows from (1.3) that

C E Ua+1,E where s = s(LIM). By Lemma of (1.4) there exists an element TJ E Ua+1,E

such that e = 7]11'-1. Then for p = N'l/M7] we obtain p E Ua+1J';i n E(t/J). Applying (1.3)

ooee again we deduee that p = NL/M~ for some ~ E E(tP) nUa+1,E. Then NL/M(7]~-l)= 1

and TJe-1 E Ua+1,E. Therefore, TJ = eJltr - 1 for sorne Jl E U1,E. Thus, € = Jl(tr-1)(t/J-1) E

(V(LIM)(t/J" » tP-1.
2) Proceed by induetion on the eardinality of I. Let a = a1 a2 with a1 E V(LIM),

0:2 E L~\b,,>, v E J, J = 1- {i}. Then or i
-

1 E V(LIM)(t/J.. ), v E J, and by 1) we deduee
o:r i

-
1 = or i

-
1 for a suitable 03 E V(LIM)(t/Jp), v E J. Then 0203"1 E j;(t/Jp>, v E I, and

0= (0103)(020;-1) E V(LIM)L<,p,,>.
3) Let 0 E V(MIF)<t/J.. ). By (1.4) we get 0 = NL/Mß with ß E V(LIF). As

ßt/J.. -1 E V(LIM), we deduce using 2) that ß E V(LIM)V(LIF)<t/J.. ). Therefore, 0 E
NL/M(V(LIF)<t/J.. »), as desired.

In the general case we proeeed by induetion on IL:MI using the sohrability of totally
ramified extensions.

1) If 0 E V(LIM)<t/J.. ), then by the induetional assumption NL/Ro = ßt/J-1 for same ß E

V(KIM)<t/J.. ) where K/M is a non-trivial subextension in L/M. Applying 3) for the exten
sion L/K, we obtain that ß = NL/Rj for some j E V(LIK)<t/J.. >. Then N L/R(aj1-t/J) = 1

and aj1-t/; E V(LIK). Applying 1) for the extension L/K, we conclude Oj1-,p = 81-,p
with some 8 E V(LIK)<,p" > and a: E (V(LIM)<,p" » ,p-1.

Now 2) formally follows from 1) and 3) follows from 2) as just above. 0

1.7. Theorem. Assume tbat L / F is a Galois totally ramified p-extension. The map
T L/F : (Gal(L/F)&b)* -+ U1,F/NL/FU1,L is an isomorpbism, and the map WL/F is tbe
Jnverse one.

Proof. First we verify that WL/F 0 T L/F = id. Indeed, let 1rx = 1rLTJ with TJ E UL. Let

I.{) E Gal(i/L), (7 = X(I.{) E Gal(i/F). Then

and NL/pTJ = NEx/F1rxNL/F1r[;l. Therefore, X = 'l!L/F(TL/FX)'
Next we show that T L/F 0 'l!L/F = id. Let cE U1,F and e = NL/pTJ for some TJ E U1,L'

Assume that TJII'JI-1 == 1rl-tr.. mod V(LIF) for I.{)II E Gal(i/L), (711 E Gal(i/F). Put
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tPv == <pvav and apply 2) of the previous Proposition. Then, RB (7rL '7 ) t/JJI -1 E V (L IF), we
obtain that 7rL '7 == '71 '72 with '71 E V (LIF), 112 E L(t/J., ). This means that 7rL 11111"1 E ~x
where X(CPv) == O'v, and

Thus, i L/F 0 iM L/F == id. 0

Corollary. Let MIF be the maximal abe1ian subextension in a Galois totally ramified
p~exteDsioD LIF. Tben NM / F U1,M = NL / F U1,L.

1.8. Now we establish functorial properties of i L/ F and 'I! L/ F.

Proposition.
1) Let LIF, L' IF' be Galois totally ramified p-extensions, F' IF, L' IL be totally ram

ified. Tben the diagram

Gal(L'IF')·

1
Gal{LIF)·

---+1 U1,F' INL' /F' U1,L'

1NFI 1F

U1,pINL / F U1,L

is commutative wbere the left vertical homomorphism is induced by the natural restnction
Gal{L' IF') -+ Gal{LIF) and the canonical isomorphism Gal(i' IL') ~ Gal(ilL).

2) Let LIF be a Galois totally ramified p-extension, and let a be an automorphism.
Then the diagram

Gal{LIF)·

a-l
Gal(0'LI0'F)·

is commu tative, where (u· X){ 0'<pu -1) == (1X{ cP )(1-1 .
3) Let LIF be a Galois totally ramified p-extension and MIF be its subextension. .Then

the diagram
(Gal(LIF)&b)·

ver-l
(Gal(LIM)&b) •

1
is commutative, where Ver· is induced by Ver: Gal{LIF)&b -+ Gal{LIM)&b.

Proof.
1) Let X' E Gal{L' IF')* and X E Gal{LIF)* be the corresponding character. Put

I::' == I::x" Then ~x == ~' n Land ~/~x is totally ramified. Therefore, 7r == NE, /Ex 'frE' is
a prime element in ~x and NEx / F 7r == NFI/FNE'/F1'FrE',

2) It follows from ~a- x == aEx'
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3) Let € = NZ/pTJ and TJV'-1 = 1r1-17
')' for a prime element 1rL in L, q E Ga1(L/F),

')' E V(LIF). Then u = X(<p), X = 'VL/F(e). Let Ti E Ga1(i/F) be a set of rep

resentatives of Ga1(i/F) over Gal(i/M). Then € = N Z/ MTJl with TJ1 = TI TJTi and
1 (1 (7)T' ..... -

TJr- = TI 1rL - l TITJ Ti . Let UTi = T;th;(u) with h;(u) E Gal(L/M). Now we deduce

TI (1-17)Ti - TI Ti
'
(l-h i(17» - TI I-h i(17) - I-Ver(17) d V(LIM)

1rL - 1rL = 1rL - 1rL mo .

Sinee nTJTi E V(LjM) we deduee that Tjj-l =1rLI-Ver(17) mod V(LIM), as desired. 0

Corollary. Let L1/F, L 2 /F, L1L'2/F be abelian totally ram.ifi.ed p-extensions. Put L3 =
L 1L'2' L4 = LI n L 2 • Tben

NLa/FUl,La = NLt/FUl,Lt n N L2 / FU1,L2,

NL-4/FU1,L-4 = NLt/FUl,LtNL2/FUI,L'r

Moreover, NLt/FUl,Lt C N L2 / FU1,L2 if and only if LI :> L2.

Proof. Put Bi = Ga1(L3 / Li), i = 1,2. Then

NLa/FUI,Ls = '1IL~/F(l) = WL~/F(HI n H2) = '1IL~/F(Hl) n '1IL~/F(H2)

= NLt/FUI,Lt nNL2/FUI,L2'

N L.. / FU1,L-4 = WL~/F(HIH2) = NLt/FUl,LtNL2/FU1'72'

If N LtfFU1,Lt C NL2/FUI,L2' then NLt/FU1,Lt = NLs/FUI,Ls and IL I :FI = IL3 :FI,
i.e.,L2 C LI. 0

Remark. Let Fabp / P be the maximal p-subextension in pab / F. Let {1/lv} be a set of
automorphisms in Gal(Fabp / F) such that tPv IF are linearly independent and generate

Ga1(F/ P). Then the group Ga1(E/F) for the fixed field E of .,pv is isomorphie to the
group Gal(FELbp / F).

In the definition of \I! L / F one can replaee the group Homz, (Gal(L/L), Ga1(L/ F)) by

the group Homzp (Ga1(F/F), Ga1(L/F)). Indeed, let tPl,1/l2 E Ga1(L/F) be such that

tPllF = tP21F' Then .,p2ItPl = T E Gal(i/F), and

TjtPt- 1 = TjVJ2 T- 1 = TjW2-1Tj'P2(T-l) = TjVJ2- 1 mod V(L1F).

Thus, we get an isomorphism

Passing to the projeetive limit we obtain the reeiproeity map

This map possesses funetional properties analogous to stated in Proposition. The kernel of
'*' F eoineides with the interseetion of a11 norm groups NL/F UI ,L for abelian tota1ly ramified
p-extensions L / F, LeE.
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1.9. The following assertion can be applied to the study of ramification groups.

Proposition. Assume that L / F is an abelian tota11y ramified p-extension and G 
Gal(LIF). Let h = tP L / F be the Hasse-Herbrand function. Then '11 L / F maps the quotient
group Ui,FINL/FUh(i),L isomorphically onto tbe ramHicatioD group Gh(i).

Proof. Let u E Gh(i). Then "..-lU("") E Uh(i),L for a prime element".. in L. According to
Lemma of (1.4) there exists an element ß E Uh(i)J; Buch that ßI{J-l = "..l-a for a eontinuous

extension <p on Lof<p E Gal(lIL). Then NZ/Fß E Ui,F and TL/F(X) E Ui,pNL/FUh(i),L
for X E Gal(LIF)*, X( <p) = u. Thus, T L/F induees the homomorphisms

Sinee T L / F is an isomorphism, we obtain the required assertion. 0

Remark. One ean deduee frorn the proof ofthe previous Proposition that Gh(i)+l = Gh(i+l)

(so-ealled Hasse-An theorem) .

1.10. We finally consider pairings of U1,F.
The first pairing is the Hilbert norm residue symbol. Assume that ehar(P) = 0 and

a primitive pmth root of unity belongs to F. Let Jlpm be the group of pmth roots. For
0' E U1,F, ß E P* put

(0', ß)m(<p) = ...,.'1'F (n)(I{J)-l

where '""(pm = ß, <p E Gal(F/F), 'I1F(O')(<p) E Gal(F('""()/F). Thus, we obtain the pairing

(., ·)m: U1,F X F* ---t Homz, (Gal(F/ F), !,pm)

(note that the last group is non-canonically isomorphie to Ef)K!,pm).

Proposition.
1) Let F( '\f1J) /F be tota11y ramified. Then (0', ß)m = 1 i{ and only j{

2) (0', ß)m = 1 (ar a11 0' E U1,F if and only jf F( P\f1J) / F is unramified.
3) (1 - ß, ß)m = 1 (ar 1 - ß E U1,F.
4) (-ß, ß)m = 1 for -ß E U.,F.
5) (0', ß)m = (ß, 0' );1 for 0', ß E U1,p.

m

6) (0, ß)m = 1 (or an ß E F* iE and only if 0 E Uf p.,

Proo/. 1) immediately follows. H F( '\f1J)/F is not unrammed, then F('""() i:. F for '""(pm =
ß and one can take 0 rt NE/pUl,E, where ElF is a totally ramified extension such that

55 = F(,). Then (0, ß)m f:. 1, and we get 2). 3) and 4) follow from 1). If 0', ß E U1,F, then
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(a ß) = { {c:b.,.,a,tr)m{C:,1])m for p > 2,
, m {-l,trab )m{eb1]a,tr)m(C:,'7)m for p = 2.

Proposition implies that this pairing is well defined. It induces a non-degenerate pairing

H (0', ß)m = 1 for all ß E F*, then (ß, a)m = 1 for all ß E U1,F and F( vta) /Fis unramified.
Hart. F*P, then in the case under consideration Cl' =1+(:hr~e/(p-1) mod ~e/(p-1)+1 where

e is the absolute index of ramification of F. Then 0' rt. N F( fßF)/ FF(~)* as it follows
from (1.3). Therefore, Cl' = ar for sorne 0'1 E U1,F. Now {ar, ß)m == (0'1, ß)m-1 = 1.
Proceeding by induction on m, we conclude that Cl' E Ur;. 0,

Remark. One can extend the Hilbert symbol on F* x F*: for 0' = traBe, ß = trbB'.,., with
e, '7 E U1,F and B, 7] E R.*, where R.. ia the set of multiplicative representatives of F· in F,
put

There is another way to detennine this pairing as

via the natural isomorphism between the last group in the preceding line and the group

Homzp (Gal{E'/ F), J-lp m ),

see [Wt]. Employing the description of pm-primary elements ([Hs, Sh]) one can deduce
explicit formula for the Hilbert symbol ([Sh],[V]).

1.11. The second pairing is the Artin-Schreier pairing. Let F be of characteristic p. For
a E U1 ,F, ß E F put

(a,ß](cp) = WF(a)(cp)("Y) -"

where cp E Gal(E'/ F), "Y is a root of the polynomial p(X) - ß. We get the pairing

In the same way as in the previous Proposition one can verify that:
1) Let F( "Y)/ F be a totally ramified extension. Then (0', ß] = 0 if and oo1y if 0' E

N F("Y)/ FF("Y)*.
2) (0', -0'] = 0 for 0' E U1 ,F.

3) (o,ß] = 0 for all a E U1,F if and only if F(,)/F is unramified.
Moreover, it is easy to deduce an explicit formula for (', .]:

Proposition. (0', ß] (cp) = cp(.\) - .\ wbere .\ is a root oE tbe polynomial p(X) - 6 and

(
-1 da )6=res",a dtr ß .

Proof. Let cp(.\) -.\ be denoted as d1r(a,ß)(cp). It suffices to verify the assertion for
ß = f]tr- i , .,., E F,p f i, i > O. Let L = F(,), where ,P - "Y = f]tr- i . Let trL be a prime
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element in L. Then, =7]11r'Li mod 7r 'L i+ 10 L with 7]1 E F such that 7]f = 7]. Let U be a
generator of Gal(L/F) and

U7rL .-- = 1 +807rL +...
1rL

80 E F.

It follows from (1.3) that U1,F/NL / F U1 ,L is generated by units 1 + 87ri with 8 E F,
f/:. 8~ p(F). Then (0, 7]7r-

i ] is determined by its values on 0 = 1+81r i where 8 E F because
of the first property of (', .]. We also obtain that für 0 = NL/Fa'

drr(o,ß) = drr(NL/FO',ß) = dJr(NL/FO', Tr L/ Fß')
=dJrL (NL/FO', ß') = drrL (0', TrL / F ß') = dJrL (a', ß) = 0

where ß' is an element in L with TrL / F ß' = ß. These equalities follow from the properties
of residues and from the relation ß E p(L).

Thus, it remwns to verify the assertion for a = 1 + (J7r i , ß = T/7r- i. In this case

d1f (0, ß) ('P) = ('P - 1)A where ,\P - ,\ = i8T/.

Let 0 = Nt/pa, a = 1 + e7rl + ... ,e E pab
p

. Then ~P - ~~-1 = 8 by (1.3) and

P(i~7]I) = i8T/ = p(A). Therefore, A- ieT/l E IFp and ('P - l)A = iT/l('P - 1)(~) = -i7]180

because
7l'Zl U (7l'L) = 1 + (Jo7rl + ... =(1 +e7ri + ... )l-lp fiod V(LIF).

On another hand, u(7r'Li) = 7r'Li - iBo mod 7rL, hence u(,) -, = -i7J18o and drr ( 0, ß) =
(0, ß]. 0

Corollary. H (a, ß] = 0 for a11 ß E F, then 0 E Ur F' The pairjng (".J jnduces the
Don-degenerate pairjng ,

Remark. One can generalize (".] using Witt vectors to obtain the non-degenerate pairing

§2. ADDITIVE POLYNOMIALS

In this section we extend the properties of additive polynomials over quasi-finite fields
([Wh2, CWJ) on perfect fields.

2.1. Let K be a perfect field of characteristic p > O. A polynomial f(X) over K is
called additive if f(a + b) = f(a) + f(b) for any a, b E K. It is easy to show that if
deg f(X) ~ card(K), then f(X) is additive if and only if f(X +V) = f(X) + f(V) in the
ring K[XJ[Y], i.e., f(X) = l::~: amXpm, a m E K.
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Furhter we will assume that K is infinite. The ring of additive polynomials with re
speet to addition and eomposition is isomorphie to the ring K[A] of non-eommutative
polynomials: EamXpJn

--+ L:amAm, (aA)(bA) = abPA2 for a,b E K.
In the deeomposition I = goh the polynomial 9 (resp. h) is ealled an outer (resp. inner)

eomponent of I, and I is ealled an outer (resp. inner) multiple of 9 (resp. h). For any two
additive polynomials I(X), g(X) there exist and uniquely determined additive polynomials
h1(X), Q1(X) (resp. h2(X), Q2(X)) Buch that f = h1 0 9 + Q1 (resp. I = 9 0 h2 + Q2),
deg Qi < deg 9. The ring of additive polynomials is a left and a right Euclidean principal
ideal ring. H 13(X) is aleast common outer multiple of additive polynomials 11 (X), 12(X),
then la(K) C 11 (K)n/2 (K). If 14(X) is a greatest common outer component of 11,/2, then
14 = /1 0 91 +12 0 92 for a suitable additive polynomials gl, g2 and 14(K) = 11 (K) +12(K).

One ean also introduce the notion of a generalized additive polynomial over K as a
finite surn L: amXpm with am E K, mEZ. There is an involution f --+ f* in the ring of

generalized additive polynomials, for feX) = E amXpJn put I*(X) = L: a~-Jn X p -
m

•

2.2. For a non-zero additive polynomial feX) over K its set of roots is an additive finite
subgroup in KtJep. Conversely, for an additive finite subgroup H in Ksep the polynomial
IH(X) = nO'iEH(X - od is an additive polynornial with ker IH = H. If feX), g(X) are
non-zero additive polynomials and f'(O) =1= 0, ker leK, kerg c K, then ker lekerg if
and only if I(X) is an inner component of g(X).

We eall an additiv,e polynomial I(X) over K with ker leK K-decompo.5able. We
denote the set of K-decomposable polynomials by DPK .

Lemma. H I(X) E DPK and 1'(0) =1= 0, tben

where di1 E (p(X) 0 di+1X 0 ... 0 dn+1X)(K). Converse1y, any such polynomial is K
decomposable.

Proof. Let 0 E ker I. Then p(a-1X) is an inner component of I(X) and one can put
dn+1 = 0-1 . H feX) = g(X) 0 p(0-1X), then 9 E DPK and by inductional arguements
we deduee a decomposition of I(X). The conditions on di follow from the condition
ker leK. 0

2.3. Let G~p denote the group Gal(K&bp/ K).

Proposition. Let feX) E DPK. Then there is a homomorphism

A: K/I(K) -4Homz,,(G~p,kerf),

A(a)(ep) = epb - b where f(b) = a.

Tbe homomorphism A is an isomorphism.

Proof. First note that b E K&bP. Indeed, if aT E Ga1(K(b)/K), then ab = b+C1, Tb = b+C2
with cI, c2 E ker I, and aTb = Tab. The homomorphism A is evidently injective. H
X E Homz" (G~p , ker I), then let aep be an element of Kabp such that (r.p - 1)aep = X( r.p)
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and (t/J - 1)alp = 0 for any t/J E G~p with t/J rt. (rp). It exists by Lemma (1.4). Then
for b = 2: acp where rp runs topological generators of G~p (the SUffi contains in fact a
finite number of non-zero addends) we abtain that I(b) E K and X(rp) = (rp - l)b for any
rp E G~p. 0

Corollary. Let 9 E DPK, g'(O) :j; O. Let I(X) be an additive polynomial over K. Then
9 is an outer component of 1 if and only jf I(K) C g(K).

Praof. Let d(X) be a greatest common outer component of I(X) and 9(X). H f(K) C
g(K), then d(K) = f(K) + 9(K) = 9(K). As kerg C K we obtain kerd C K. Then, by
Proposition 9 is an outer component of d(X) and of f(X). 0

2.4. A generalized additive polynomial over K is called K -decomposable if its kernel
belongs to K.

Proposition. An additive polynomial f(X) is K -decomposable if and only if I·(X) is
K -decomposable.

Praaf. One mayassume without lass of generality that 1'(0) i:- O. By (2.2) 0: E ker 1* if and
only if p(o:-1 X) is an inner component of I*(X), i.e., a-1 p(X) is an outer component of

, I(X), i.e., 0:-1 p(K) ::> I(K) by Corollary of (2.3). Therefore, the cardinality of ker f· nK
coincides with the cardinality of the set {a E K : 0:-1p(K) ::> I(K)}. Let deg I = pn.
Since there are (pn - l)(p - 1)-1 subgroups of order p in ker I, we deduce applying the
previous Proposition that there are (pn_1)(p_l)-1 elements 0: in K such that all o:-l p(K)
are distinct and a-1 p(K) ::> I(K). Thus, the cardinality of ker 1* n K is pO, i.e., ker I· c
K. 0

Corollary. Let I(X) E DPK. Tben

I(J<) = no:-1p(K)

where 0: runs a set of tbe cardinality equal to the cardinali ty ofker I, sueh that 0: -1 p(K) ::>
I(K).

2.5. Proposition. Let 11,12 E DPK .

1) Let 13 (resp. 14) be aleast common outer (resp. inner) multiple of 11, 12; I~ (resp.
'6) be a greatest common outer (resp. inner) component of I}, 12. Then li E DPK and
la(K) = fl(K) n 12(K).

2) {a E K : 11 (a) E 12(K)} = h(K) for same h E DPK .

Praaf.
1) Let la = 11 091 = 12 0 92 with additive polynomials 91, 92' First assume that 15 = X.

As ker I;, ker f; are contained in ker I;, we deduce that ker I; c K and by Proposition
(2.4) Ja E DPK. According to Proposition (2.3) we get the surjective homomorphism

Homzp (G~p, ker fa) -+ K/la(K) -+ K/ll(K) EB K/12(K)

-+ Homzp (G~p, ker 11 ffi ker 12)'

which is injective as weIl. Therefore, la(K) = 11 (K) n J'l(K).
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Now let 11 = 15 0 hl, 12 = 15 0 h2 and Ja = 15 0 ha with h1, h2 E DPK. Ha E 11(K) n
12(K), then a = Is(h1(c)) = 15 (h2(d)) and h2(d) - h1(c) E ker 15. As ker 15 C h1(K), we
obtain a = 15(b) for some b E h 1(K) n h2 (K) = ha(K) and a E la(K). We deduce also
that la E DPK·

The polynomials 14,/5,16 are K-decomposable by Proposition (2.4).
2) One mayassume by 1) that deg/l = deg/2 = p. Then 11-1(f2(K)) n K 

f1
1 (/a(K)) n K = gl(K), where la = /1 0 gt, gl E DPK. 0

2.6. Finally we consider an analog of some remarlmble property of additive polynomials.

Lemma. Let I(X) be a polynomial over K, 1(0) = 0, I(X) ~ O. Let g(X) be a non-zero
K -decomposable polynomial. Tben tbere exist finite sequences qi(X), hi(X) of polyno
mials over K such that g(X) is an outer component ofEf(qi(X)) and ofEf(hi(X)),
where L: f(qi(X)) ~ 0 and L: hi(X) is a non-zero K -decomposable polynomial.

Proof. According to Corollary 1.1 of [CW] aue cau find linear polynomials gi(X), hi(X)
such that L: Jogi is a non-zero additive polynomial, L: I 0 hi is an additive polynomial,
and L: hi(X) = X. Hence it suffices to show that for a non-zero additive polynomial
p(X) and g(X) E DPK there exists a non-zero K-decomposable polynomial r(X) such
that p 0 r = 9 0 .s for some additive polynomial .s(X). Let 9 = gl 0 g2, gi E DPK and
po rl = gl 0 .s], .sI 0 r2 = g2 o.s. Then po Tl 0 r2 = go.s. Therefore, it remains to consider
the case of deg g(X) = p. Let H be a finite additive subgroup in K which contains
p*(ker g*). Let r(X) be an additive polynomial with ker r* = H. Then r E DPK and
ker g* C ker(r· 0 p.). By (2.2) we obtain r· 0 p* = .s* 0 g. for some additive polynomial
.s(X). Then po r = go.s, as desired. 0

§3. EXISTENCE THEOREM

In this section we describe the norm groups of totally ramified p-extensions.

3.1. A subgroup H in F is called polynomial if

H = f(F)

for some non-zero F-decomposable polynomial I(X). Let 1f' be a prime element in F. A
subgroup N' in U1,F is called normic if

1) .IV is open;
2) for any i > 0 there exists a polynomial li(X) E OF[X] such that f i is non-zero

F -decomposable and 1 + fi (0 F )1f' i C N;
3) for any i > 0 the image of (Ui,F n .IV)Ui+l,F under the projection

where 1 + 81f'i ~ 6, is polynomial, and for almost &11 i this image coincides with F. It
immediately follows that the notion of a normic subgroup does not depend on the choice
of a prime element 1f' in F. Our aim is to show that the dass of normic subgroup coincides
with the dass of norm groups of abelian totally ramified p-extensions.
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Proposition. Let L/F be an abe1ian totally ramiJied p-extension. Then N L/FU1,L is a
normic subgroup in U1,p.

Proof. The first and second properties of normic subgroups for N L/FU1,L are verified in
the same way as in the proof of Proposition 15 in [Wh1, 11]. The third property for an
extension L/F of degree p follows from (1.3). Now we proceed by induction on degree
of L/F. Let M / F be a subextension in L/F of degree p. The proof of Proposition
(1.9) shows that N L/FU1,L n Ui,F = N L/FUh(i),L where h = "pL/F is the Hasse-Herbrand
function of L/F. Using inductional arguements it suffices to consider the case of i = s

where s = s(MIF) (see (1.3)). Let U be an element of Gal(L/F) such that its restrietion
ulM is a generator of Gal(M/F). Let 1rL be a prime element in L. Then 1rM = N L/M 1rL

is prime in M and 1rÄ/U(1rM) = NL/M{1rLlu(1rL)). Let N L/M map Uh(a),L/Uh(a)+l,L
to Ua,M/Ua+1,M by the polynomial /1(X) where the residue /1(X) is F-decomposable,
and let N M / F map Ua,M/Ua+1 ,M to Ua,F/Ua+1,F by the polynomial 12(X) = 9bP(8ö1 X),
where 1rfl)u(1rM) =1 + 90 1rM mod 1r;jl. Then 80 E 11 (F) and the residue polynomial
12011 is F-decomposable by Lemma of (2.1). D

3.2. Proposition. Let L/F be an abe1ian totally ramiJied p-extension. Let N' be a
nonnic subgroup in U1 ,!", Then NiiF(N') is a normic subgroup in U1,L.

Proof. It suffices to verify the assertion for a cyclic totally ramified extension L / F of degree
p. Then the first and seeond properties of Niip(N) can be established similarly with the

proof of Lemma 5 in [Wh1, 11] by Lemma (2.6). The third property of NiiF(N') follows
immediately from (1.3) and Proposition (2.5),2). D

3.3. Let 1r be a prime element in F. Let E-tr denote the set of abelian totally ramified p
extensions L/F with 1r E NL/FL-. H L1/F, L2/F E &1r' then LI n L 2/F E &1r' Moreover,
L 1 L 2/F E &1r' Indeed, let M = LI n L 2. Assume that NL1/F1rl = NL2/F1r2 = 1r for prime
elements 1rl, 1r2 in LI, L 2 • Then NM/Fe = 1 for e = NLl/M1rlNL2/M1r21. Using the first
diagrarn of Proposition (1.8) we deduce that e E NL / M U1 ,L, eonsequently there ia a prime
element 1rM in M such that N M/ P1rM = 1r and 1rM E N Ll /MLi n N L2 /ML;. Thus, it
suffices to treat the case of LI n L2 = F where L1/ F, L2 / F are cyclic of degree p. Assume
that L 1L 2 / F is not totally ramified. Then there is an unramified cyclie extension E/F
of degree p, E E L 1L2. As 1r E N Ll / FLi n N L2 / FLi one can deduce 1r E NE/FE· using
Chevalley lemma [C, p. 449], that is impossible. Therefore, L 1L 2 / F is totally ramified.
By Corollary of (1.8) we obtain NLl/FUI,Ll n NL2/FUI,L2 = NLIL2/FUl,LlL2' Let 1r' E
NLIL2/F(LIL2)- for some prime element 1r' in F. Then 1r' E N L1 / FLi n N L2 / FL;, hence
c = 1r'1r-1 E NLIL2/FUI,LIL2' This means that L1L 2/F E &1('

3.4. Proposition. Let 1r he a prime element in F, and let N' he a normic subgroup
in U1,F. Tben tbere is preeisely one abelian tota1ly ramiJied p-extension L/F such that
N' = NL/FU1,L and 1r E NL/FL-.

Proof. First let U1,F/N be isomorphie with ffi,JFp ,,1n this case Ua+I,F C N for some s > 0
and
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(isomorphisms are given by 1 + 81r i ~ 8), a E F.
It is known that there is an Artin-Schreier extension M = F(A) with p(A) E F or a

Kummer extension M/F such that U6 +t ,F C NM / FU1 ,M' 1r E NM/FM-, NM/FUt,M n
UIJ,F/UIJ+l,F ~ ap(F), NM/FUt,M . Ui+l,F n Ui,F/Ui+t,F ~ F for i < s (see Corollary
10.5 in [Wh2] and Lemma 6 in [Wh1, 11]). H s = 1, then NM/FUI,M = N. If s > 1 we
proceed by induction on s. Assume that NM/FUI,M =f N. By Proposition (3.2) the group

NM/F(N) is normic in Ut,M and it is easy to verify that Ut,M INMiF(N) is isomorphie

with ffilClFp and UIJ',M C NMjp(N) for some s' < s. Then by the induetional arguements

NMjF(N) = NE/MUl,E for some cyelic extension E/M of degree p and N:> NE/FUl,E'
1r E NE/FE-. As for any a E Ut,F the element a 1

-
tr for (j E Gal(MIF) belongs to

NE /M U1 ,E, we deduce from Proposition (1.8) ,2) and Corollary of (1.8) that E / F is abelian.
Now N = NL/FUl,L' 1r E NL/FL- for the fixed field L of the subgroup H of Gal(E/F)
such that H- = 'VEjF(N/NE/FU1 ,E)'

Now let Ul,FIN be isomorphie with ffilCG for an abelian p-group G. We axgue by
induction on the order of G. Let NI be a normic subgroup which contains N aod such that
U1 ,F/Nl ~ ffi"Fp • Then N = NM/FUI,M for a suitable eyclic extension M/F of degree p
and 1T = N M/F1rM for some prime element 1TM in M. By the inductional arguements there
is an abelian extension L/M with N"MiF(N) = NL/MUt,L and such that 1TM E NL/ML-.
By the same reasons as above L/F is abelian and NL/FUt,L = N, LIF E Ew• The
uniqueness follows from (3.3) and Corollary of (1.8). 0

Corollary. Let F rr be tbe compositum oE all neIds L with LIF E Ew• Then Ffr n F = F
and FwF = Fabp.

Proof. Let a E Fabp. There exists an unramified extension M/F(a) such that Gal(M/F)
is isomorphie to Gal(M/Mo) x Gal(MIE), where Mo = MnF, E/F is a suitable abelian
totally ramified p-extension, E C M. Let N E/F1rE = 1r€ for a prime element 1TE in E
and € E UF. It follows from (1.3) that there is a finite abelian unramified p-extension
F t / F such that € E N EI!Ft UEI where EI = EFt . Then 1T E N Etl FtEi. The group
NEt/FUt,Et = NE/FUt,E is normie in Ul,F. Hence there exists an extension L/F E E7r

such that NL/FUl,L = NEtfFUl,Et' Then NLt/FUt,Ll = NEtfFUt,El for Lt = LFI .

Since ker N F1 /F is generated by '711'-1 with '7 E UI,Fp Cf' E Gal(Ft IF), the seeond com
routative diagrarn of Proposition (1.8) implies that ker N Ft / F C N LI/F1 U1,LI' Therefore,
NL1 / F1 UI,L 1 = N E1 / F1 Ul ,El because IL:FI = IE:FI. We get LI/FI,EI/FI E f,w. Now by
Proposition L t = EI' Thus, E c LI c F7rF. This means that Fabp = F 7rF. 0

3.5. Existence Theorem. Let 7r be a prime element in F. Tbere is an order reversing
bijection between tbe lattice oE normic subgroups in UI,F witb respect to the intersection
and product and LIF E f,K witb respect to the intersection and compositum: N +-+

NL/FUI,L.

Proof. It follows from Proposition (3.4) and Corollary of (1.8). 0

Corollary. The reciprocity map
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is injective.

Proof. The deseription of normie subgroups in (3.1) or standard arguements using the
Hilbert norm residue symbol and the Artin-Schreier pairing imply the injeetivity of WF. 0

Remark. '1t F is not surjective when F is infinite.

3.6. Another description of normic subgroups can be developed by applying the method of
K. Sekiguchi [Sk, Subseetion 3.2]. Let E(·, X): W(F) --+ 1+XOF[[X]] be the Artin-Hasse
map, e.f. [Wh1, III]. Then, if ehar(F) = p, one ean take as the normie subgroups the finite
interseetion of the sets

E(pnW(F) +apW(F), 7r
m

) TI E(W(F),7r i
)

(i,p)=l
i#m,i)1

for n ~ 0, m ~ 1, (m,p) = 1, a E W(F) and a prime element 7r in F. H char(F) = 0 and
a group of primitive pnth roots of unity belongs to F (and n is the maximal number with
this property) , then oue eau take as the normie subgroups the finite intersections of the
sets

E(pmW(F) +apW(F), 1I"pe1)E(p1W(F) +bpW(F), 1I"k) TI E(W(F),1I"i)
(i ,P)=l
l~i<pel

i#k

for m, 1~ 0, a, b E W(F), 1 ~ k < pel, Cl = e/(p - 1) and a prime element 11" in F, where
e is the absolute index of ramifieation of F.

3.7. Now we iodieate the connections of the established theory with the Hazewinkelloeal
dass field theory [Hz1-Hz2]. Let LIF be a Galois totally ramified extension. Then there
is an exact sequenee

1 -+ Gal(L/F)ab --+ UzurIV(LIF) --+ UFUi -+ 1

(similarly with the exaet sequence in (1.4)). Involving the pro-quasi-algebraie strueture
of the group UFUi and observing that V(LIF) ia the maximal redueed subscheme of the
eonneeted eomponent of ker Nzur /FUr' one deducea the exact sequenee

As the quasi-algebraic group Gal(L/F)ab is constant, we obtain the exaet sequenee

where 1h is the maximal eonstant quotient of 11"1. Then TrI (UF )/NLI FTrI (UL) is isomorphie
with Gal(L/F)8.b. Passing to the projective limit we obtain a homomorphism

w: TrI (UF) -+ G}br,
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which is an isomorphism BB it WBB proved by Hazewinkel.
The group *1 (UF) hBB no an explicit deseription with exeept of the eBBe of finite P.

On the other hand, it is clear that Gal(p&bp / F)* is isomorphie with the projective limit
Ij:EU1,F/NL / FU1,L for L/F E &1r' The constant pro-quasi-algebraic group *1(UF) is the
projective limit of the constant kernels of isogenies X -+ UJfür -+ 1. H we eonsider a similar
isogeny with U1,F instead of UF, then one has the eommutative diagram

1 1

1 1
A Homzp (Gal(F/ F), A)

1 1
X Homzp (Gal(F/ F), X)

1 1
1 I U1 F I U1 p:;;r

8
~ Homzp (Gal(F/F), U1 ~) I 1, , ,

1 1
1 1

where 8(e)(Cf') = e~-l. Then we obtain a homomorprnsm

U1,F --t Homzp (Gal(F/F), 7Tt(UF))

and its eomposition with \11 gives the reciprocity map \11 F.

3.8. Fina1ly we note that an expansion of the method exposed above and methods em
ployed to fumish class field theory of multidimensional Ioeal fields with a finite residue
field [FI-F3] will provide a deseription of abelian totally ramified p-extensions of multidi
mensionalloeal fields with aperfeet residue field of characteristic p.
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