Max-Planck-Institut für Mathematik Bonn

Superelliptic Jacobians and central simple representations

by

Yuri G. Zarhin

Max-Planck-Institut für Mathematik Preprint Series 2024 (12)

Superelliptic Jacobians and central simple representations

by
Yuri G. Zarhin

Max-Planck-Institut für Mathematik	Department of Mathematics
Vivatsgasse 7	Pennsylvania State University
53111 Bonn	University Park, PA 16802
Germany	USA

SUPERELLIPTIC JACOBIANS AND CENTRAL SIMPLE REPRESENTATIONS

YURI G. ZARHIN

Abstract

Let $f(x)$ be a polynomial of degree at least 5 with complex coefficients and without repeated roots. Suppose that all the coefficients of $f(x)$ lie in a subfield K of \mathbb{C} such that: - K contains a primitive p-th root of unity; - $f(x)$ is irreducible over K; - the Galois group $\operatorname{Gal}(f)$ of $f(x)$ acts doubly transitively on the set of roots of $f(x)$; - the index of every maximal subgroup of $\operatorname{Gal}(f)$ does not divide $\operatorname{deg}(f)-1$. Then the endomorphism ring of the Jacobian of the superelliptic curve $y^{p}=f(x)$ is isomorphic to the p th cyclotomic ring for all primes $p>\operatorname{deg}(f)$.

1. Introduction

The aim of this paper is to explain how to compute the endomorphism algebra of Jacobians of smooth projective models of superelliptic curves $y^{q}=f(x)$ where $q=p^{r}$ is a prime power and $f(x)$ a polynomial of degree $n \geq 5$ with complex coefficients that is in "general position". Here "general position" means that there is a (sub)field K such that all the coefficients of $f(x)$ lie in K and the Galois group of $f(x)$ acts doubly transitively on the set of its roots (in particular, $f(x)$ is irreducible over K). It turns out that for a broad class of the doubly transitive Galois groups (and under certain mild restrictions on q) the corresponding endomorphism algebra is "as small as possible", i.e., is canonically isomorphic to a product of cyclotomic fields $\mathbb{Q}\left(\zeta_{p^{i}}\right)(1 \leq i \leq r)$.

In order to state explicitly our results, let us start with the notation and some basic facts related to cyclotomic fields and cyclotomic polynomials. As usual, $\mathbb{Z}, \mathbb{Q}, \mathbb{C}$ denote the ring of integers, the field of rational numbers and the field of complex numbers respectively.

Let p be an odd prime and \mathbb{F}_{p} the corresponding (finite) prime field of characteristic p. We write \mathbb{Z}_{p} and \mathbb{Q}_{p} for the ring of p-adic integers and the field \mathbb{Q}_{p} of p-adic numbers respectively. Let r be a positive

Partially supported by the Simons Foundation Collaboration grant \# 585711. Part of this work was done in December 2023 during my stay at the Max-Planck Institut für Mathematik (Bonn, Germany), whose hospitality and support are gratefully acknowledged.
integer and $q=p^{r}$. Let

$$
\zeta_{q} \in \mathbb{C}
$$

be a primitive q th root of unity. We write $\mathbb{Q}\left(\zeta_{q}\right)$ be the q th cyclotomic field and

$$
\mathbb{Z}\left[\zeta_{q}\right]=\sum_{i=0}^{\phi(q)-1} \mathbb{Z} \cdot \zeta_{q}^{i}
$$

for its ring of integers. (Hereafter $\phi(q):=(p-1) p^{r-1}$ is the Euler function.)

Let us consider the polynomial

$$
\mathcal{P}_{q}(t):=\sum_{j=0}^{q-1} t^{j}=\prod_{i=1}^{r} \Phi_{p^{i}}(t) \in \mathbb{Z}[t]
$$

where

$$
\Phi_{p^{i}}(t)=\sum_{j=0}^{p-1} t^{i p^{r-1}} \in \mathbb{Z}[t]
$$

is the p^{i} th cyclotomic polynomial.
Let $f(x) \in \mathbb{C}[x]$ be a polynomial of degree $n \geq 4$ without repeated roots. In what follows we always assume that either p does not divide n or q divides n.
Let $C_{f, q}$ be a smooth projective model of the smooth affine curve

$$
y^{q}=f(x) .
$$

It is well known ([16], pp. 401-402, [30], Prop. 1 on p. 3359, [21], p. 148) that the genus $g\left(C_{f, p}\right)$ of $C_{f, p}$ is $(q-1)(n-1) / 2$ if p does not divide n and $(q-1)(n-2) / 2$ if q divides n. The map

$$
(x, y) \mapsto\left(x, \zeta_{p} y\right)
$$

gives rise to a non-trivial biregular automorphism

$$
\delta_{q}: C_{f, q} \rightarrow C_{f, q}
$$

of period q.
Let $J\left(C_{f, q}\right)$ be the Jacobian of $C_{f, q}$; it is a $g\left(C_{f, q}\right)$-dimensional abelian variety. We write $\operatorname{End}\left(J\left(C_{f, q}\right)\right)$ for the ring of endomorphisms of $J\left(C_{f, q}\right)$ and $\operatorname{End}^{0}\left(J\left(C_{f, q}\right)\right)=\operatorname{End}\left(J\left(C_{f, q}\right)\right) \otimes \mathbb{Q}$ for the endomorphism algebra of $J\left(C_{f, q}\right)$. By functoriality, δ_{q} induces an automorphism of $J\left(C_{f, q}\right)$, which we still denote by δ_{q}. It is known ([21, p. 149], [23, p. 448], [34, Lemma 4.8]) that

$$
\begin{equation*}
\mathcal{P}_{q}\left(\delta_{q}\right)=0 \tag{1}
\end{equation*}
$$

in $\operatorname{End}\left(J\left(C_{f, q}\right)\right)$. Then (1) gives rise to the ring homomorphism,

$$
\begin{equation*}
\mathbf{i}_{q, f}: \mathbb{Z}[t] / \mathcal{P}_{q}(t) \mathbb{Z}[t] \hookrightarrow \mathbb{Z}\left[\delta_{q}\right] \subset \operatorname{End}\left(J\left(C_{f, q}\right)\right), t+\mathcal{P}_{q}(t) \mathbb{Z}[t] \mapsto \delta_{q}, \tag{2}
\end{equation*}
$$

which is a ring embedding ([21, p. 149], [23, p. 448], [34, Lemma 4.8]). (The first map in (2) is actually a ring isomorphism.) This implies
that the subring $\mathbb{Z}\left[\delta_{q}\right]$ of $\operatorname{End}\left(J\left(C_{f, q}\right)\right)$ generated by δ_{q} is isomorphic to $\mathbb{Z}[t] / \mathcal{P}_{q}(t) \mathbb{Z}[t]$. It follows that the \mathbb{Q}-subalgebra

$$
\begin{equation*}
\mathbb{Q}\left[\delta_{q}\right] \subset \operatorname{End}^{0}\left(J\left(C_{f, q}\right)\right) \tag{3}
\end{equation*}
$$

generated by δ_{q} has \mathbb{Q}-dimension $q-1$, is isomorphic to

$$
\mathbb{Q}[t] / \mathcal{P}_{q}(t) \mathbb{Q}[t] \cong \prod_{i=1}^{r} \mathbb{Q}\left(\zeta_{p^{i}}\right)
$$

and therefore has dimension $q-1$.
We will need the following elementary observation.
Remark 1.1. (i) Suppose that a prime p is greater than n. Then p does not divide $n!$. Since every subgroup H of $\operatorname{Gal}(f)$ is isomorphic to a subgroup of \mathbf{S}_{n}, its order $|H|$ divides n ! and therefore is not divisible by p. Hence, if $p>n$, then $|H|$ is not divisible by p.
(ii) Suppose that H is a transitive subgroup of $\operatorname{Gal}(f)$ with respect to the action on the roots of $f(x)$. Then its order $|H|$ is divisible by n.

Let us formulate our main results.
First, we start with the case $q=p$. Then $\mathcal{P}_{p}(t)$ coincides with $\Phi_{p}(t)$ and there is a natural ring isomorphism

$$
\mathbb{Z}[t] / \mathcal{P}_{p}(t) \mathbb{Z}[t] \cong \mathbb{Z}\left[\zeta_{p}\right]
$$

that sends (the coset of) t to ζ_{p}. This gives us the the ring embedding

$$
\begin{equation*}
\mathbf{i}_{p, f}: \mathbb{Z}\left[\zeta_{p}\right] \hookrightarrow \mathbb{Z}\left[\delta_{p}\right] \subset \operatorname{End}\left(J\left(C_{f, p}\right)\right), \zeta_{p} \mapsto \delta_{p} \tag{4}
\end{equation*}
$$

Notice also that the rings $\mathbb{Z}\left[\delta_{p}\right]$ and $\mathbb{Z}\left[\zeta_{p}\right]$ are isomorphic.
Theorem 1.2. Let $n \geq 5$ be an integer and p an odd prime such that K contains a primitive pth root of unity.

Suppose that the Galois group $\operatorname{Gal}(f)$ of $f(x)$ contains a subgroup H that acts doubly transitively on the n-element set \Re_{f} of roots of the polynomial $f(x)$ and enjoys the following properties.
(i) The index of every maximal subgroup of H does not divide $n-1$.
(ii) p does not divide $|H| .(E . g ., p>n$.)

Then $\operatorname{End}^{0}\left(J\left(C_{f, p}\right)\right)=\mathbb{Q}\left[\delta_{p}\right]$ and $\operatorname{End}\left(J^{(f, p)}\right)=\mathbb{Z}\left[\delta_{p}\right]$.
Theorem 1.3. Let K be a subfield of \mathbb{C} such that all the coefficients of $f(x)$ lie in K. Assume also that $f(x)$ is an irreducible polynomial in $K[x]$ of degree $n \geq 5$ and its Galois group over K is either the full symmetric group \mathbf{S}_{n} or the alternating group \mathbf{A}_{n}. Then

$$
\operatorname{End}\left(J\left(C_{f, p}\right)\right)=\mathbb{Z}\left[\delta_{p}\right] \cong \mathbb{Z}\left[\zeta_{p}\right]
$$

Remark 1.4. Theorem 1.3 was stated in [37, Th. 4.2]. Its proof was based on an assertion that a certain "permutational" representation $\left(\mathbb{F}_{p}^{B}\right)^{00}$ (that is called the heart ${ }^{1}$) of the alternating group $\operatorname{Alt}(B)=\mathbf{A}_{n}$ over \mathbb{F}_{p} is very simple ${ }^{2}[36$, Th. 4.7]. Unfortunately, there is an error in the proof of [36, Th. 4.7] when $n=5, p>5$, caused by an improper use of [36, Cor. 4.4] (see [36, p. 108, lines 4-5]). So, the proof in [37] works only under an additional assumption that either $n>5$ or $p \leq 5$.

In this note we handle the remaining case when $n=5, p>5$. It turns out that if $p \not \equiv \pm 1 \bmod 5$ then the representation of the group \mathbf{A}_{5} is very simple, which allows us to salvage in this case the arguments of [36].

However, if $p \equiv \pm 1 \bmod 5$ then the 4 -dimensional representation $\left(\mathbb{F}_{p}^{B}\right)^{00}$ of \mathbf{A}_{5}, viewed as the representaton of the covering group $\operatorname{SL}\left(2, \mathbb{F}_{5}\right)$, splits into a tensor product of two 2-dimensional representations. In particular, $\left(\mathbb{F}_{p}^{B}\right)^{00}$ is not very simple, and we use a notion of a central simple representation (see Section 4 below), in order to prove Theorem 1.3 in this case.

Remarks 1.5. If $f(x) \in K[x]$ then the curve $C_{f, p}$ and its Jacobian $J\left(C_{f, p}\right)$ are defined over K. Let $K_{a} \subset \mathbb{C}$ be the algebraic closure of K. Then all endomorphisms of $J\left(C_{f, p}\right)$ are defined over K_{a}. Hence, in order to prove Theorems 1.3 and 6.7, it suffices to check that the ring of all K_{a}-endomorphisms of $J\left(C_{f, p}\right)$ coincides with $\mathbb{Z}\left[\delta_{p}\right]$.

Now let us try to relax the restrictions on p, keeping the double transitivity of $\operatorname{Gal}(f)$. Our next result deals with doubly transitive sporadic simple (Galois) groups, whose description may be found in [22], [5, Ch. 6 and Ch. 7, Sect. 7.7, p. 252-253].

Theorem 1.6. Let p be an odd prime and

$$
\operatorname{Gal}(f) \subset \operatorname{Perm}\left(\mathfrak{R}_{f}\right) \cong \mathbf{S}_{n}
$$

a permutation group that acts doubly transitively on the n-element set \mathfrak{R}_{f}. Suppose that $(n, \operatorname{Gal}(f))$ enjoys one of the following properties.
$(\mathbf{M}) n \in\{11,12,22,23,24\}$, and $\operatorname{Gal}(f)$ is isomorphic to the corresponding Mathieu group \mathbf{M}_{n}. If $n=11$ then we assume additionally that $p>3$.
(HS) $n=176, p>7$, and $\operatorname{Gal}(f))$ is isomorphic to the sporadic simple Higman-Sims group HS.
(CO3) $n=276, p \notin\{3,5,11\}$, and $\operatorname{Gal}(f))$ is isomorphic to the sporadic simple Conway group Co_{3}.
Then $\operatorname{End}^{0}\left(J\left(C_{f, p}\right)\right)=\mathbb{Q}\left[\delta_{p}\right]$ and $\operatorname{End}\left(J\left(C_{f, p}\right)\right)=\mathbb{Z}\left[\delta_{p}\right]$.

[^0]Remark 1.7. The case (M) of Theorem 1.6 gives a (partial) answer to a question of Ravi Vakil that was asked during my talk at Simons Symposium "Geometry Over Non-closed Fields" (Puerto Rico, March 2015).

Now let us discuss the case when our Galois groups are doubly transitive finite simple Chevalley groups - they are classified in [4] and their action described in details in [5, Sect. 7.7]. (For general results about Chevalley groups see [28].)

Theorem 1.8. Suppose that p be an odd prime and $\operatorname{Gal}(f)$ contains a subgroup H that acts doubly transitively on the n-element set \mathfrak{R}_{f} and is isomorphic to a finite Chevalley group $\mathfrak{G}(\mathfrak{q})$, and the corresponding stabilizers correspond to Borel subgroups of $\mathfrak{G}(\mathfrak{q})$, which are maximal subgroups of index n.

Suppose that $(n, \mathfrak{G}(\mathfrak{q}), p)$ enjoys one of the following properties.
(L2) Let ℓ be a prime and \mathfrak{r} a positive integer. Then $n=\mathfrak{q}+1$ where $\mathfrak{q}=\ell^{\mathfrak{r}}>11$ and $\mathfrak{G}(\mathfrak{q})$ is the projective special linear group

$$
\mathbf{L}_{2}(\mathfrak{q})=\operatorname{PSL}\left(2, \mathbb{F}_{\mathfrak{q}}\right)
$$

where $\mathbb{F}_{\mathfrak{q}}$ is a finite \mathfrak{q}-element field. Assume additionally that either $p \neq \ell$ or $\mathfrak{q}=\ell=p$.
(Lmq) Let $m \geq 3$ be an integer, ℓ a prime, \mathfrak{r} a positive integer. Then $n=\left(\mathfrak{q}^{m}-1\right) /(\mathfrak{q}-1)$ where $\mathfrak{q}=\ell^{\mathfrak{r}}$ and $\mathfrak{G}(\mathfrak{q})$ is the projective special linear group

$$
\mathbf{L}_{m}(\mathfrak{q})=\operatorname{PSL}\left(m, \mathbb{F}_{\mathfrak{q}}\right)
$$

where $\mathbb{F}_{\mathfrak{q}}$ is a finite \mathfrak{q}-element field. Assume additionally that $p \neq \ell$ and

$$
(m, \mathfrak{q}) \neq(3,2),(3,4),(4,2),(4,3),(6,2),(6,3)
$$

(U3) Let ℓ be a prime and \mathfrak{r} a positive integer. Then $n=\mathfrak{q}^{3}+1$ where $\mathfrak{q}=\ell^{r}$ is a power of a prime ℓ,

$$
\mathfrak{q} \neq 2,5
$$

and $\mathfrak{G}(\mathfrak{q})$ is the projective special unitary group $\mathbf{U}_{3}(q)=\operatorname{PSU}_{3}\left(\mathbb{F}_{q}\right)$.
$(\mathbf{S z})$ Let \mathfrak{r} be a positive integer,

$$
\mathfrak{q}=2^{2 \mathfrak{r}+1}, \quad n=q^{2}+1, \quad m=2^{\mathfrak{r}+1}
$$

Then H is the simple Suzuki group $\mathrm{Sz}(\mathfrak{q})={ }^{2} \mathrm{~B}_{2}(q)$. In addition, p does not divide $(q+1+m)$.
(Ree) Let \mathfrak{r} be a positive integer,

$$
\mathfrak{q}=3^{2 \mathfrak{r}+1}, \quad n=q^{2}+1, m=3^{\mathfrak{r}+1}
$$

The group H is the simple Ree group $\operatorname{Ree}(\mathfrak{q})={ }^{2} \mathrm{G}_{2}(q)$. In addition, p does not divide $3(q+1)(q+m+1)(q-m+1)$.
Then $\operatorname{End}^{0}\left(J\left(C_{f, p}\right)\right)=\mathbb{Q}\left[\delta_{p}\right]$ and $\operatorname{End}\left(J\left(C_{f, p}\right)\right)=\mathbb{Z}\left[\delta_{p}\right]$.

Now let us assume that r is any positive integer (recall that $q=p^{r}$). In this case we obtain the results about the endomorphism algebra $\operatorname{End}^{0}\left(J\left(C_{f, q}\right)\right)=\operatorname{End}\left(J\left(C_{f, q}\right)\right) \otimes \mathbb{Q}$ of $J\left(C_{f, q}\right)$ that may be viewed as analogues of Theorems 1.3 and Theorem 1.2 for the endomorphism algebra $\operatorname{End}^{0}\left(J\left(C_{f, q}\right)\right.$.
Theorem 1.9. Suppose that $n \geq 5$ is an integer, p an odd prime, q divides n, and K contains a primitive q th root of unity.

Let us assume that the Galois group $\operatorname{Gal}(f)$ of $f(x)$ contains a subgroup H that acts doubly transitively on the n-element set $\mathfrak{\Re}_{f}$ of roots of the polynomial $f(x)$ and enjoys the following properties.
(i) The index of every maximal subgroup of H does not divide $n-1$.
(ii) p does not divide $|H| .(E . g ., p>n$.)

Then

$$
\operatorname{End}^{0}\left(J\left(C_{f, q}\right)\right)=\mathbb{Q}\left[\delta_{q}\right] \cong \prod_{i=1}^{r} \mathbb{Q}\left(\zeta_{p^{i}}\right)
$$

Theorem 1.10. Let K be a subfield of \mathbb{C} such that all the coefficients of $f(x)$ lie in K. Suppose that $f(x)$ is an irreducible polynomial in $K[x]$ of degree $n \geq 5$ and its Galois group over K is either the full symmetric group \mathbf{S}_{n} or the alternating group \mathbf{A}_{n}. Assume also that either p does not divide n or q divides n. Then

$$
\operatorname{End}^{0}\left(J\left(C_{f, q}\right)\right)=\mathbb{Q}\left[\delta_{q}\right] \cong \prod_{i=1}^{r} \mathbb{Q}\left(\zeta_{p^{i}}\right)
$$

Remark 1.11. Theorem 1.10 was stated in [34, Th. 1.1]. Similarly (see Remark 1.4), the proof in [34] works only under an additional assumption that either $n>5$ or $p \leq 5$. In this paper we handle the remaining case $n=5, p>5$.

Remark 1.12. An analogue of Theorem 1.10 when $p \mid n$ but q does not divide n was proven in [33].

The paper is organized as follows. In Section 2 we discuss complex abelian varieties Z with multiplications from cyclotomic fields, paying special attention to the centralizers of these fields in $\operatorname{End}^{0}(Z)$ and their action on the differentials of the first kind when Z is a superelliptic Jacobian In Section 3 we discuss modular representations of permutation groups, paying a special attention to the hearts of these representations. In Section 4 we introduce central simple representations and recall basic properties of very simple representations that first appeared in $[34,38]$, paying a special attention to the very simplicity and central simplicity of hearts of permutational representations in the case of doubly transitive permutation groups. In Section 5 we return to our discussion of abelian varieties Z with multiplications from cyclotomic fields $\mathbb{Q}\left(\zeta_{q}\right)$, paying a special attention to the Galois properties of the
set of δ_{q}-invariants. In Section 6 we review results of [37] about endomorphism algebras of superelliptic Jacobians. In Section 7 we prove our main results that deal with the case $q=p$. The proofs for the case of arbitrary q are contained in Section 8.
Acknowledgements. I am grateful to the referee, whose comments helped to improve the exposition.

2. Endomorphism fields of abelian varieties and their CENTRALIZERS

In what follows E is a number field and O_{E} the ring of algebraic integers in E. It is well known that O_{E} is a Dedekind ring and therefore every finitely generated torsion-free O_{E}-module is projective/locally free and isomorphic to a direct sum of locally free O_{E}-modules of rank 1. In addition, the natural map

$$
O_{E} \otimes \mathbb{Q} \rightarrow E, e \otimes c \mapsto c \cdot e \forall e \in E, c \in \mathbb{Q}
$$

is an isomorphism of \mathbb{Q}-algebras.
Let Z be an abelian variety over \mathbb{C} of positive dimension g, let $\operatorname{End}(Z)$ be the ring of its endomorphisms. If n is an integer then we we write n_{Z} for the endomorphism

$$
n_{Z}: Z \rightarrow Z, z \mapsto n z .
$$

Clearly, $n_{Z} \in \operatorname{End}(Z)$. By definition, 1_{Z} is the identity selfmap of Z. In addition, $n_{Z}: Z \rightarrow Z$ is an isogeny if and only if $n \neq 0$.

We write

$$
\operatorname{End}^{0}(Z)=\operatorname{End}(Z) \otimes \mathbb{Q}
$$

for the corresponding endomorphism algebra of Z, which is a finitedimensional semisimple \mathbb{Q}-algebra. Identifying $=\operatorname{End}(Z)$ with

$$
\operatorname{End}(Z) \otimes 1 \subset \operatorname{End}(Z) \otimes \mathbb{Q}=\operatorname{End}^{0}(Z)
$$

we may view $\operatorname{End}(Z)$ as an order in the \mathbb{Q}-algebra $\operatorname{End}^{0}(Z)$.
The action of $\operatorname{End}(Z)$ by functoriality on the g-dimensional complex vector space $\Omega^{1}(Z)$ of differentials of the first kind on Z gives us the ring homomorphism $\operatorname{End}(Z) \rightarrow \operatorname{End}_{\mathbb{C}}\left(\Omega^{1}(Z)[27\right.$, Ch. 1, Sect. 2.8], which extends by \mathbb{Q}-linearity to the homomorphism of \mathbb{Q}-algebras

$$
\begin{equation*}
j_{Z}: \operatorname{End}^{0}(Z) \rightarrow \operatorname{End}_{\mathbb{C}}\left(\Omega^{1}(Z)\right), \tag{5}
\end{equation*}
$$

which sends 1_{Z} to the identity automorphism of the \mathbb{C}-vector space $\Omega^{1}(Z)$. Let E be a number field that is a \mathbb{Q}-subalgebra of $\operatorname{End}^{0}(Z)$ with the same $1=1_{Z}$. Let Σ_{E} be the $[E: \mathbb{Q}]$-element set of field embeddings $\sigma: E \hookrightarrow \mathbb{C}$. Let us define for each $\sigma \in \Sigma_{E}$ the corresponding weight subspace

$$
\Omega^{1}(Z)_{\sigma}=\left\{\omega \in \Omega^{1}(Z) \mid j_{Z}(e) \omega=\sigma(e) \omega \forall e \in E\right\} \subset \Omega^{1}(Z) .
$$

The well known splitting

$$
E \otimes_{\mathbb{Q}} \mathbb{C}=\oplus_{\sigma \in \Sigma_{E}} E \otimes_{E, \sigma} \mathbb{C}=\oplus_{\sigma} \mathbb{C}_{\sigma} \text { where } \mathbb{C}_{\sigma}=E \otimes_{E, \sigma} \mathbb{C}=\mathbb{C}
$$

implies that

$$
\Omega^{1}(Z)=\oplus_{\sigma \in \Sigma_{E}} \Omega^{1}(Z)_{\sigma}
$$

Let us put

$$
n_{\sigma}=\operatorname{dim}_{\mathbb{C}}\left(\Omega^{1}(Z)_{\sigma}\right)
$$

Let D be the centralizer of E in $\operatorname{End}^{0}(Z)$. Clearly, E lies in the center of D, which makes D is a finite-dimensional E-algebra. It is also clear that each subspace $\Omega^{1}(Z)_{\sigma}$ is $j_{Z}(D)$-invariant, which gives us a \mathbb{Q}-algebra homomorphism

$$
\begin{equation*}
j_{Z, \sigma}: D \rightarrow \operatorname{End}_{\mathbb{C}}\left(\Omega^{1}(Z)_{\sigma}\right) \tag{6}
\end{equation*}
$$

that sends $1=1_{Z} \in D$ to the identity automorphism of the \mathbb{C}-vector space $\Omega^{1}(Z)_{\sigma}$.
Lemma 2.1. Let D be as above. Suppose that D is a central simple E-algebra of dimension d^{2} where d is a positive integer. Then:
(i) d divides all the multiplicities n_{σ}. In particular, if $n_{\sigma}=1$ for some $\sigma \in \Sigma_{E}$ then $d=1$ and $D=E$.
(ii) Let M be the the number of σ 's with $n_{\sigma} \neq 0$. Then

$$
d M \leq \operatorname{dim}(Z)
$$

In particular, if $d=2 \operatorname{dim}(Z) /[E: \mathbb{Q}]$ then $M \leq[E: \mathbb{Q}] / 2$.
Proof. Our condition on D implies that $D_{\sigma}=D \otimes_{E, \sigma} \mathbb{C}$ is isomorphic to the matrix algebra $\operatorname{Mat}_{d}(\mathbb{C})$ of size d over \mathbb{C} for all $\sigma \in \Sigma_{E}$.

We may assume that $n_{\sigma}>0$. Then $\Omega^{1}(Z)_{\sigma} \neq\{0\}$ and $j_{Z, \sigma}(D) \neq\{0\}$. Extending $j_{Z, \sigma}$ by \mathbb{C}-linearity, we get a \mathbb{C}-algebra homomorphism

$$
D_{\sigma} \rightarrow \operatorname{End}_{\mathbb{C}}\left(\left(\Omega^{1}(Z)_{\sigma}\right),\right.
$$

which provides $\Omega^{1}(Z)_{\sigma}$ with the structure of a $D_{\sigma}=\operatorname{Mat}_{d}(\mathbb{C})$-module. This implies that each n_{σ} is divisible by d. This proves (i). In order to prove (ii), it suffices to notice that

$$
\operatorname{dim}(Z)=\sum_{\sigma} \operatorname{dim}_{\mathbb{C}}\left(\Omega^{1}(Z)_{\sigma}\right)=\sum_{\sigma} n_{\sigma} \geq d M
$$

Remark 2.2. (i) Let Λ be the centralizer of δ_{p} in $\operatorname{End}\left(J\left(C_{f, p}\right)\right)$, which coincides with the centralizer of $\mathbb{Z}\left[\delta_{p}\right]$ in $\operatorname{End}\left(J\left(C_{f, p}\right)\right)$. Let us consider the \mathbb{Q}-subalgebra

$$
\Lambda_{\mathbb{Q}}=\Lambda \otimes \mathbb{Q} \subset \operatorname{End}\left(J\left(C_{f, p}\right)\right) \otimes \mathbb{Q}=\operatorname{End}^{0}\left(J\left(C_{f, p}\right)\right)
$$

Clearly, $\Lambda_{\mathbb{Q}}$ coincides with the centralizer of $\mathbb{Q}\left[\delta_{p}\right]$ in $\operatorname{End}^{0}\left(J\left(C_{f, p}\right)\right)$. Since δ_{p} respects the theta divisor on the Jacobian $J\left(C_{f, p}\right)$, the algebra $\Lambda_{\mathbb{Q}}$ is stable under the corresponding Rosati involution and therefore is semisimple as a \mathbb{Q}-algebra. It is also clear that the number field $\mathbb{Q}\left[\delta_{p}\right] \cong \mathbb{Q}\left(\zeta_{p}\right)$ lies in the center of $\Lambda_{\mathbb{Q}}$. Hence, $\Lambda_{\mathbb{Q}}$ becomes a semisimple $\mathbb{Q}\left[\delta_{p}\right]$-algebra.
(ii) Let i be an integer such that $1 \leq i \leq p-1$. We write σ_{i} for the field embedding

$$
\sigma_{i}: \mathbb{Q}\left[\delta_{p}\right] \hookrightarrow \mathbb{C}
$$

that sends δ_{p} to ζ_{p}^{-i}. Let us consider the corresponding subspace $\Omega^{1}\left(J\left(C_{f, p}\right)\right)_{\sigma_{i}}$ of differentials of the first kind on $J\left(C_{f, p}\right)$. It is known [37, Remark 3.7] that if p does not divide n then

$$
\begin{equation*}
n_{\sigma_{i}}=\operatorname{dim}_{\mathbb{C}}\left(\Omega^{1}\left(J\left(C_{f, p}\right)\right)_{\sigma_{i}}\right)=\left[\frac{n i}{p}\right] . \tag{7}
\end{equation*}
$$

(iii) It follows from Lemma 2.1 applied to $Z=J\left(C_{f, p}\right)$ and $E=$ $\mathbb{Q}\left[\delta_{p}\right]$ that if p does not divide n and $\Lambda_{\mathbb{Q}}$ is a central simple $\mathbb{Q}\left[\delta_{p}\right]$-algebra of dimension d^{2} then d divides all $[n i / p]$ for all integers i with $1 \leq i \leq p-1$.
(iv) Suppose that either $n=p+1$, or $n-1$ is not divisible by p. Then the greatest common divisor of all $n_{\sigma_{i}}$'s is 1 [39, Lemma 8.1(D) on p. 516-517]. It follows that if $\Lambda_{\mathbb{Q}}$ is a central simple $\mathbb{Q}\left[\delta_{p}\right]$-algebra then $\Lambda_{\mathbb{Q}}=\mathbb{Q}\left[\delta_{p}\right]$.
(v) Suppose that p divides $n-1$, say, $n=k p+1$ where k is an integer. Then the greatest common divisor of all $n_{\sigma_{i}}$'s is k. [39, Lemma 8.1(D) on p. 516-517] It follows that if $\Lambda_{\mathbb{Q}}$ is a central simple $\mathbb{Q}\left[\delta_{p}\right]$-algebra of dimension d^{2} then d divides k.
(vi) The number of i with $n_{\sigma_{i}}>0$ is at least $(p+1) / 2[36, \mathrm{p} .101]$. It follows that if $\Lambda_{\mathbb{Q}}$ is a central simple $\mathbb{Q}\left[\delta_{p}\right]$-algebra of dimension d^{2} then, in light of Proposition 2.1,

$$
d \cdot \frac{p+1}{2} \leq g
$$

where $g=\operatorname{dim}\left(J\left(C_{f, p}\right)\right)$ is the genus of $C_{f, p}$. This implies that

$$
d \leq \frac{2 g}{p+1}<\frac{2 g}{p-1}
$$

Lemma 2.3. Let \mathcal{H} be a finite-dimensional E-algebra, and Λ an order in \mathcal{H} that contains O_{E}. (In particular, Λ is a finitely generated torsionfree O_{E}-module and the natural map $\Lambda \otimes \mathbb{Q} \rightarrow \mathcal{H}$ is an isomorphism of finite-dimensional \mathbb{Q}-algebras.)

Suppose that there are a positive integer d and a maximal ideal \mathfrak{m} of O_{E} with residue field $k=O_{E} / \mathfrak{m}$ such that the k-algebra $\Lambda / \mathfrak{m} \Lambda$ is isomorphic to the matrix algebra $\operatorname{Mat}_{d}(k)$ of size d over k.

Then \mathcal{H} is a central simple E-algebra of dimension d^{2}.
Proof. Let $C_{\mathbb{Q}}$ the center of \mathcal{H} that is a finite-dimensional commutative E-algebra. Then $C:=C_{\mathbb{Q}} \cap \Lambda$ is the center of Λ.

Clearly, C contains O_{E} and is a saturated O_{E}-submodule of Λ. The latter means that if $e u \in C$ for some $u \in \Lambda$ and nonzero $e \in O_{E}$ then $u \in \Lambda$. This implies that the quotient Λ / C is torsion-free (and finitely generated) O_{E}-module and therefore is projective. It follows that C
is a direct summand of the O_{E}-module D and therefore there is an O_{E}-submodule \mathfrak{P} of Λ such that

$$
\Lambda=C \oplus \mathfrak{P} .
$$

Similarly, O_{E} is a saturated O_{E}-submodule of C and, by the same token, there is a locally free O_{E}-submodule \mathfrak{Q} of C such that

$$
C=O_{E} \oplus \mathfrak{Q} \text { and } \Lambda=C \oplus \mathfrak{P}=O_{E} \oplus \mathfrak{Q} \oplus \mathfrak{P}
$$

Then the the natural map of $O_{E} / \mathfrak{m}=k$-modules,

$$
O_{E} / \mathfrak{m} \oplus \mathfrak{Q} / \mathfrak{m Q}=C / \mathfrak{m} C \rightarrow \Lambda / \mathfrak{m} \Lambda \cong \operatorname{Mat}_{d}(k)
$$

is injective and its image lies in the center k of $\operatorname{Mat}_{d}(k)$. The k dimension arguments imply that $\mathfrak{Q} / \mathfrak{m Q}=\{0\}$. Since \mathfrak{Q} is finitely generated projective, $\mathfrak{Q}=\{0\}$, i.e., $C=O_{E}$ and the center of \mathcal{H} is

$$
C_{\mathbb{Q}}=C \otimes \mathbb{Q}=O_{E} \otimes \mathbb{Q}=E .
$$

Hence, \mathcal{H} is a finite-dimensional E-algebra with center E.
Let us check the simplicity of \mathcal{H}. Let $J_{\mathbb{Q}}$ be a proper two-sided ideal of \mathcal{H}. We need to check that $J_{\mathbb{Q}}=\{0\}$. In order to do that, let us consider the intersection $J:=J_{\mathbb{Q}} \cap \Lambda$, which is obviously a two-sided ideal of Λ. It is also clear that J is a saturated O_{E}-submodule of Λ, i.e., the quotient Λ / J is a torsion free (finitely generated) O_{E}-module. Hence, Λ / J is a projective O_{E}-module. It follows that J is a direct summand of the O_{E}-module Λ, i.e., there exists an O_{E}-submodule \mathfrak{Q} of Λ such that $\Lambda=J \oplus \mathfrak{Q}$. If $\mathfrak{Q}=\{0\}$ then $\Lambda=J$ and

$$
\mathcal{H}=\Lambda \otimes \mathbb{Q}=J \otimes \mathbb{Q}=J_{\mathbb{Q}}
$$

so $J_{\mathbb{Q}}=\mathcal{H}$, which is not true, because $J_{\mathbb{Q}}$ is a proper ideal of \mathcal{H}. This implies that $\mathfrak{Q} \neq\{0\}$ and therefore $\mathfrak{Q} / \mathfrak{m Q} \neq\{0\}$. We have

$$
\Lambda / \mathfrak{m} \Lambda=J / \mathfrak{m} J \oplus \mathfrak{Q} / \mathfrak{m} \mathfrak{Q} .
$$

Clearly, $J / \mathfrak{m} J$ is a proper two-sided ideal of the simple algebra $\Lambda / \mathfrak{m} \Lambda \cong$ $\operatorname{Mat}_{d}(k)$. This implies that $J / \mathfrak{m} J=\{0\}$, which implies that $J=\{0\}$ and therefore $J_{\mathbb{Q}}=\{0\}$.

To summarize: \mathcal{H} is a simple finite-dimensional E-algebra with center E, i.e., a finite-dimensional central simple E-algebra.

On the other hand, the E-dimension of \mathcal{H} equals the rank of the locally free O_{E}-module Λ, which, in turn, equals the $k=O_{E} / \mathfrak{m}$ dimension of $\Lambda / \mathfrak{m} \Lambda$. Since $\Lambda / \mathfrak{m} \Lambda \cong \operatorname{Mat}_{d}(k)$ has k-dimension d^{2}, the E-dimension of H is also d^{2}. It follows that \mathcal{H} is a central simple E-algebra of dimension d^{2}.

3. Permutation groups and permutation modules

Our exposition in this section follows closely [36, Sect. 2], see also [17].

Let $n \geq 5$ be an integer, B a n-element set, and $\operatorname{Perm}(B)$ the group of permutations of B, which is isomorphic to the full symmetic group S_{n}. The group S_{n} has order $n!$ and contains precisely one (normal) subgroup of index 2 that we denote by $\operatorname{Alt}(B)$. Any isomorphism between $\operatorname{Perm}(B)$ and S_{n} induces an isomorphism between $\operatorname{Alt}(B)$ and the alternating group \mathbf{A}_{n}. Since $n \geq 5$, the $\operatorname{group} \operatorname{Alt}(B)$ is simple non-abelian; its order is $n!/ 2$. Let G be a subgroup of $\operatorname{Perm}(B)$.

Let F be a field. We write F^{B} for the n-dimensional F-vector space of maps $h: B \rightarrow F$. The space F^{B} is provided with a natural action of $\operatorname{Perm}(B)$ defined as follows. Each $s \in \operatorname{Perm}(B)$ sends a map $h: B \rightarrow F$ into $s h: b \mapsto h\left(s^{-1}(b)\right)$. The permutation module F^{B} contains the $\operatorname{Perm}(B)$-stable hyperplane

$$
\left(F^{B}\right)^{0}=\left\{h: B \rightarrow F \mid \sum_{b \in B} h(b)=0\right\}
$$

and the $\operatorname{Perm}(B)$-invariant line $F \cdot 1_{B}$ where 1_{B} is the constant function 1. The quotient $F^{B} /\left(F^{B}\right)^{0}$ is a trivial 1 -dimensional $\operatorname{Perm}(B)$-module.

Clearly, $\left(F^{B}\right)^{0}$ contains $F \cdot 1_{B}$ if and only if $\operatorname{char}(F)$ divides n. If this is not the case then there is a $\operatorname{Perm}(B)$-invariant splitting

$$
F^{B}=\left(F^{B}\right)^{0} \oplus F \cdot 1_{B}
$$

Let G be a subgroup of $\operatorname{Perm}(B)$. Clearly, F^{B} and $\left(F^{B}\right)^{0}$ carry natural structures of G-modules or (which is the same) of $F[G]$-modules. (Hereafter $F[G]$ stands for the group algebra of G.)
If $F=\mathbb{Q}$ then the character of \mathbb{Q}^{B} sends each $g \in G$ to the number of fixed points of g in B ([26], ex. 2.2, p.12); it takes on values in \mathbb{Z} and called the permutation character of B. Let us denote by $\phi=\phi_{B}$: $G \rightarrow \mathbb{Q}$ the character of $\left(\mathbb{Q}^{B}\right)^{0}$.

If $\operatorname{char}(F)=0$ then the $F[G]$-module $\left(F^{B}\right)^{0}$ is absolutely simple ${ }^{3}$ if and only if the action of G on B is doubly transitive ([26, ex. 2.6, p. 17], [17]). (Notice that $1+\phi$ is the permutation character. This implies that the character ϕ also takes on values in \mathbb{Z}.) In particular, $\mathbb{Q}_{p}[G]$-module $\left(\mathbb{Q}_{p}^{B}\right)^{0}$ is absolutely simple if and only if the action of G on B is doubly transitive.

In what follows we concentrate on the case of $F=\mathbb{F}_{p}$.
Remark 3.1. - Let p be a prime that does not divide the order of G. This condition is automatically fulfilled if $p>n$, because G, being isomorphic to a subgroup of \mathbf{S}_{n}, has order that divides $n!$.

[^1]- Suppose that the action of G on B is doubly transitive. Taking into account that the representation theory of G over \mathbb{Q}_{p} is "the same over \mathbb{F}_{p} as over $\mathbb{Q}_{p} "([26$, Sect. 15.5 , Prop.43], [17]), we conclude that the $\mathbb{F}_{p}[G]$-module $\left(\mathbb{F}_{p}^{B}\right)^{0}$ is absolutely simple (see also [39, Cor. 7.5 on p. 513]).

Definition 3.2. Let G be a subgroup of $\operatorname{Perm}(B)$.
If $p \mid n$ then let us define the G-module

$$
\left(\mathbb{F}_{p}^{B}\right)^{00}:=\left(\mathbb{F}_{p}^{B}\right)^{0} /\left(\mathbb{F}_{p} \cdot 1_{B}\right)
$$

If p does not divide n then let us put

$$
\left(\mathbb{F}_{p}^{B}\right)^{00}:=\left(\mathbb{F}_{p}^{B}\right)^{0} .
$$

The G-module $\left(\mathbb{F}^{B}\right)^{0}$ is called the heart of the permutation representation of G on $B[17]$. It follows from the definition that $\left.\operatorname{dim}_{\mathbb{F}_{p}}\left(\left(\mathbb{F}_{p}^{B}\right)^{00}\right)\right)=$ $n-1$ if n is not divisible by p and $\operatorname{dim}_{\mathbb{F}_{p}}\left(\left(\mathbb{F}_{p}^{B}\right)^{00}\right)=n-2$ if $p \mid n$.

Lemma 3.3. Assume that $G=\operatorname{Perm}(B)$ or $\operatorname{Alt}(B)$. Then the G module $\left(\mathbb{F}_{p}^{B}\right)^{00}$ is absolutely simple.
Proof. This result is well known (and goes back to Dickson). See [3, Th. 5.2 on p. 133], [31], [17], [36, Lemma 2.6].

Remark 3.4. It turns out that the case of $n=5$ and

$$
G=\operatorname{Alt}(B) \cong \mathbf{A}_{5} \cong \operatorname{PSL}\left(2, \mathbb{F}_{5}\right)=\operatorname{SL}\left(2, \mathbb{F}_{5}\right) /\{ \pm 1\}
$$

is rather special when

$$
\begin{equation*}
p \equiv \pm 1 \bmod 5 \tag{8}
\end{equation*}
$$

Namely, in this case $p>5$ and the $G=\operatorname{PSL}\left(2, \mathbb{F}_{5}\right)$-module $\left(\mathbb{F}_{p}^{B}\right)^{00}=$ $\left(\mathbb{F}_{p}^{B}\right)^{0}$ viewed as the $\operatorname{SL}\left(2, \mathbb{F}_{5}\right)$-module splits into a nontrivial tensor product. In order to see this, recall [7, Sect. 38] that $\operatorname{SL}\left(2, \mathbb{F}_{5}\right)$ has the ordinary character θ_{2} of degree 4 (which, is the lift of ϕ_{5} from \mathbf{A}_{5}) and two ordinary irreducible characters η_{1} and η_{2} of degree 2 with

$$
\mathbb{Q}\left(\eta_{1}\right)=\mathbb{Q}\left(\eta_{2}\right)=\mathbb{Q}(\sqrt{5}),
$$

whose product $\eta_{1} \eta_{2}$ coincides with θ_{2}. By the quadratic reciprocity law, the congruence (8) implies that $\sqrt{5} \in \mathbb{F}_{p}$ and therefore $\sqrt{5}$ lies in the field \mathbb{Q}_{p} of p-adic numbers, because $p \neq 2,5$ is odd. This means that

$$
\mathbb{Q}_{p}\left(\eta_{1}\right)=\mathbb{Q}_{p}\left(\eta_{2}\right)=\mathbb{Q}_{p} .
$$

By a theorem of Janusz [12, Theorem (d) on p. 3-4], characters of both η_{1} and η_{2} can be realized over \mathbb{Q}_{p}, i.e., there are two-dimensional \mathbb{Q}_{p}-vector spaces V_{1} and V_{2} and linear representations

$$
\begin{align*}
& \rho_{1}: \operatorname{SL}\left(2, \mathbb{F}_{5}\right) \rightarrow \operatorname{Aut}_{\mathbb{Q}_{p}}\left(V_{1}\right) \cong \operatorname{GL}\left(2, \mathbb{Q}_{p}\right), \tag{9}\\
& \rho_{2}: \operatorname{SL}\left(2, \mathbb{F}_{5}\right) \rightarrow \operatorname{Aut}_{\mathbb{Q}_{p}}\left(V_{2}\right) \cong \operatorname{GL}\left(2, \mathbb{Q}_{p}\right),
\end{align*}
$$

whose characters are η_{1} and η_{2} respectively. Let T_{1} and T_{2} be any $\mathrm{SL}\left(2, \mathbb{F}_{5}\right)$-invariant \mathbb{Z}_{p}-lattices of rank 2 in V_{1} and V_{2} respectively. Since the order 120 of the group $\operatorname{SL}\left(2, \mathbb{F}_{5}\right)$ is prime to p and the $\mathbb{Q}_{p}\left[\operatorname{SL}\left(2, \mathbb{F}_{5}\right)\right]$ modules V_{1} and V_{2} are simple, it follows from [26, Sect. 15.5, Prop. 43]) that their reductions modulo p

$$
\bar{V}_{1}=T_{1} / p T_{1}, \bar{V}_{2}=T_{2} / p T_{2}
$$

are simple $\mathbb{F}_{p}\left[\mathrm{SL}\left(2, \mathbb{F}_{5}\right)\right]$-modules. On the other hand, the tensor product

$$
T:=T_{1} \otimes_{\mathbb{Z}_{p}} T_{2} \subset V_{1} \otimes_{\mathbb{Q}_{p}} V_{2}
$$

is a $\operatorname{SL}\left(2, \mathbb{F}_{5}\right)$-invariant \mathbb{Z}_{p}-lattice of rank 4 in $V_{1} \otimes_{\mathbb{Q}_{p}} V_{2}=: V$. The equality

$$
\begin{equation*}
\eta_{1} \eta_{2}=\theta_{2} \tag{10}
\end{equation*}
$$

of the corresponding class functions on $\operatorname{SL}\left(2, \mathbb{F}_{5}\right)$ implies (if we take into account that ϕ_{B} is irreducible) that the $\mathbb{Q}_{p}\left[\operatorname{SL}\left(2, \mathbb{F}_{5}\right)\right]$-module V is simple and the $\mathbb{F}_{p}\left[\mathrm{SL}\left(2, \mathbb{F}_{5}\right)\right]$-module

$$
\begin{equation*}
T / p T=\left(T_{1} \otimes_{\mathbb{Z}_{p}} T_{2}\right) / p=\left(T_{1} / p T_{1}\right) \otimes_{\mathbb{F}_{p}}\left(T_{1} / p T_{1}\right)=\bar{V}_{1} \otimes_{\mathbb{F}_{p}} \bar{V}_{2} \tag{11}
\end{equation*}
$$

is simple. On the other hand, the equality (10) implies the existence of an isomorphism

$$
u: V=V_{1} \otimes_{\mathbb{Q}_{p}} V_{2} \cong\left(\mathbb{Q}_{p}^{B}\right)^{0}
$$

of the $\mathbb{Q}_{p}\left[\mathrm{SL}\left(2, \mathbb{F}_{5}\right)\right]$-modules.
Obviously,

$$
\left(\mathbb{Z}_{p}^{B}\right)^{0}:=\left\{h: B \rightarrow \mathbb{Z}_{p} \mid \sum_{b \in B} h(b)=0\right\}
$$

is a $\operatorname{SL}\left(2, \mathbb{F}_{5}\right)$-invariant \mathbb{Z}_{p}-lattice of rank 4 in $\left(\mathbb{Q}_{p}^{B}\right)^{0}$. (Here $\operatorname{SL}\left(2, \mathbb{F}_{5}\right)$ acts on $\left(\mathbb{Q}_{p}^{B}\right)^{0}$ through the quotient $\operatorname{SL}\left(2, \mathbb{F}_{5}\right) /\{ \pm 1\}=\mathbf{A}_{5}$.) Notice that $u(T)$ is a (may be, another) $\operatorname{SL}\left(2, \mathbb{F}_{5}\right)$-invariant \mathbb{Z}_{p}-lattice of rank 4 in $\left(\mathbb{Q}_{p}^{B}\right)^{0}$ and the $\mathbb{F}_{p}\left[\mathrm{SL}\left(2, \mathbb{F}_{5}\right)\right]$-module $u(T) / p u(T)$ is obviously isomorphic to $T / p T$. In light of [26, Sect. 15.1, Th. 32], the simplicity of the $\mathbb{F}_{p}\left[\mathrm{SL}\left(2, \mathbb{F}_{5}\right)\right]$-modules $T / p T$ (and, hence, of $u(T) / p u(T)$) implies that the $\mathbb{F}_{p}\left[\mathrm{SL}\left(2, \mathbb{F}_{5}\right)\right]$-modules $T / p T$ and $\left(\mathbb{Z}_{p}^{B}\right)^{0} / p\left(\mathbb{Z}_{p}^{B}\right)^{0}$ are isomorphic. Taking into account (11) and that $\left(\mathbb{Z}_{p}^{B}\right)^{0} / p \cdot\left(\mathbb{Z}_{p}^{B}\right)^{0}=\left(\mathbb{F}_{p}^{B}\right)^{0}$, we conclude that that the $\operatorname{SL}\left(2, \mathbb{F}_{5}\right)$-modules $\bar{V}_{1} \otimes_{\mathbb{F}_{p}} \bar{V}_{2}$ and $\left(\mathbb{F}_{p}^{B}\right)^{0}$ are isomorphic.

Remark 3.5. One may find an explicit construction of the group embeddings $\mathrm{SL}\left(2, \mathbb{F}_{5}\right) \rightarrow \mathrm{GL}\left(2, \mathbb{F}_{p}\right)$ (when p satisfies (8)) in the book of M. Suzuki [29, Ch. 3, Sect. 6].

4. Very simple and central simple representations

Definition 4.1. Let V be a vector space of over a field F, let G be a group and $\rho: G \rightarrow \operatorname{Aut}_{F}(V)$ a linear representation of G in V. Let $R \subset \operatorname{End}_{F}(V)$ be a F-subalgebra containing the identity map

$$
\text { Id }: V \rightarrow V
$$

(i) We say that R is G-normal if

$$
\rho(\sigma) R \rho(\sigma)^{-1} \subset R \quad \forall \sigma \in G
$$

(ii) We say that a normal G-subalgebra is obvious if it coincides either with $F \cdot$ Id or with $\operatorname{End}_{F}(V)$.
(iii) We say that the G-module V is very simple if every G-normal subalgebra of $\operatorname{End}_{F}(V)$ is obvious.
(iii) We say that the G-module V is cental simple if every G-normal subalgebra of $\operatorname{End}_{F}(V)$ is a central simple F-algebra.
(iv) We say that the G-module V is strongly simple if every G normal subalgebra of $\operatorname{End}_{F}(V)$ is a simple F-algebra.

Remark 4.2. (i) Clearly, a very simple G-module is central simple and strongly simple. It is also clear that a central simple G module is strongly simple.
(ii) Clearly, a subalgebra $R \subset \operatorname{End}_{F}(V)$ is G-normal if and only if it is $\rho(G)$-normal. It follows readily that the G-module V is very simple (resp. central simple) (resp. strongly simple) if and only if the corresponding $\rho(G)$-module V is very simple (resp. central simple) (resp. strongly simple). It is known [34, Rem. $2.2(\mathrm{ii})]$ that a very simple module is absolutely simple.
(iii) If R is a G-normal subalgebra of $\operatorname{End}_{F}(V)$ then

$$
\rho(\sigma) R \rho(\sigma)^{-1}=R \quad \forall \sigma \in G .
$$

Indeed, suppose that there is $u \in R$ such that for some $\sigma \in G$

$$
u \notin \rho(\sigma) R \rho(\sigma)^{-1}
$$

This implies that

$$
\rho\left(\sigma^{-1}\right) u \rho\left(\sigma^{-1}\right)^{-1}=\rho(\sigma)^{-1} u \rho(\sigma) \notin \rho(\sigma)^{-1}\left(\rho(\sigma) R \rho(\sigma)^{-1}\right) \rho(\sigma)=R .
$$

It follows that

$$
\rho\left(\sigma^{-1}\right) R \rho\left(\sigma^{-1}\right)^{-1} \not \subset R,
$$

which contradicts the normality of R, because $\sigma^{-1} \in G$. (Of course, if $\operatorname{dim}_{F}(V)$ is finite, the desired equality follows readily from the coincidence of F-dimensions of R and $\rho(\sigma) R \rho(\sigma)^{-1}$.)
(iv) If G^{\prime} is a subgroup of G then every G-normal subalgebra is also a normal G^{\prime}-subalgebra. It follows that if the G^{\prime}-module V is very simple then the G-module V is also very simple.
(v) Let us check that a strongly simple G-module V is simple. Indeed, if it is not then there is a proper G-invariant F-vector subspace W of V. Then the F-subalgebra

$$
R:=\left\{u \in \operatorname{End}_{F}(V) \mid u(W) \subset W\right\}
$$

is G-normal but even not semisimple, because it contains a proper two-sided ideal

$$
I(W, V):=\left\{u \in \operatorname{End}_{F}(V) \mid u(V) \subset W\right\}
$$

This proves the simplicity of V.
The centralizer $\operatorname{End}_{G}(V)$ is obviously G-normal. This implies that it is a division algebra over F. (Actually, it follows from the simplicity of the G-module V.

If the G-module V is central simple (resp. very simple) then normal $\operatorname{End}_{G}(V)$ is a central division F-algebra (resp. coincides with $F \cdot \mathrm{Id})$.
(vi) If R is a G-normal subalgebra of $\operatorname{End}_{F}(V)$ then for each $\sigma \in G$ the map

$$
R \rightarrow R, u \mapsto \rho(\sigma) u \rho(\sigma)^{-1}
$$

is an automorphism of the F-algebra R (in light of (iii)). This implies that if C is the center of R then

$$
\rho(\sigma) C \rho(\sigma)^{-1}=C
$$

for all $\sigma \in G$. This means that C is a G-normal subalgebra of $\operatorname{End}_{F}(V)$.

Recall that a module V over a ring R is called isotypic if either V is simple or is isomorphic to direct sum of finitely many copies of a simple R-module W. The following assertion is contained in [34, Lemma 7.4]

Lemma 4.3. Let H be a group, F a field, V a vector space of finite positive dimension N over F. Let $\rho: H \rightarrow \operatorname{Aut}_{F}(V)$ be an irreducible linear representation of H. Let R be a H-normal subalgebra of $\operatorname{End}_{F}(V)$. Then:
(i) The faithful R-module V is semisimple.
(ii) Either the R-module V is isotypic or there is a subgroup H^{\prime} of finite index r in H such that $r>1$ and r divides N.

Proposition 4.4. Let F be a field, whose Brauer group $\operatorname{Br}(F)=\{0\}$. (E.g., F is either finite or an algebraically closed field.) Let V be a vector space of finite positive dimension N over F. Let H be a group and $\rho: H \rightarrow \operatorname{Aut}_{F}(V)$ a linear absolutely irreducible representation of H in V. Suppose that every maximal subgroup of H has index that does not divide N.

Then the H-module V is central simple.

Proof. Slightly abusing the notation, we write F instead of $F \cdot$ Id.
Let R be a H-normal subalgebra of $\operatorname{End}_{F}(V)$. It follows from Lemma 4.3 that the faithful R-module V is isotypic, i.e., there is a simple faithful R-module W and a positive integer a such that the R-modules V and W^{a} are isomorphic. The existence of a faithful simple R-module implies that R is a simple F-algebra. In particular, the center k of R is a field. We have

$$
F=F \cdot \operatorname{Id} \subset k \subset R \subset \operatorname{End}_{F}(V)
$$

Then V carries the natural structure of a F-vector space. This implies that the degree $[k: F]$ divides $\operatorname{dim}_{F}(V)=N$.

The center k of H-normal R is also H-normal (see Remark 4.2(v)). This gives rise to the group homomorphism

$$
\begin{equation*}
H \rightarrow \operatorname{Aut}(k / F), \sigma \mapsto\left\{c \mapsto \rho(\sigma) u \rho(\sigma)^{-1}\right\} \tag{12}
\end{equation*}
$$

Here $\operatorname{Aut}(k / F)$ is the automorphism group of the field extension k / F. By Galois theory, the order of $\operatorname{Aut}(k / F)$ divides $[k: F]$, which in turn, divides N. This implies that the kernel of the homomorphism (12) is a subgroup of H, whose index divides N. Our condition on indices of subgroups of H implies that the kernel coincides with the whole H, i.e., the homomorphism (12) is trivial. This means that all elements of k commute with $\rho(\sigma)$ for all $\sigma \in H$. The absolute irreducibility of ρ implies that $k \subset F$ and therefore

$$
k=F=F \cdot \mathrm{Id} .
$$

So, R is a simple F-algebra with center F. Id, i.e., is a central simple F-algebra. This ends the proof.

Theorem 4.5. Let F be a field, whose Brauer group $\operatorname{Br}(F)=\{0\}$. (E.g., F is either finite or an algebraically closed field.) Let V be an F-vector space of finite dimension $N>1$. Let G be a group and

$$
\rho: G \rightarrow \operatorname{Aut}_{F}(V)
$$

be a group homomorphism. Let H be a normal subgroup of G that enjoys the following properties.
(i) If H^{\prime} is a subgroup of H of finite index N^{\prime} and N^{\prime} divides N then $H^{\prime}=H$.
(ii) H is a simple non-abelian group. Assume additionally that either $H=G$, or H is the only proper normal subgroup of G.
(iii) The H-module V is absolutely simple, i.e., the representation of H in V is irreducible and the centralizer $\operatorname{End}_{H}(V)=F \cdot \mathrm{Id}$.
Let $R \subset \operatorname{End}_{F}(V)$ be a G-normal subalgebra. Then there are positive integers a and b that enjoy the following properties.
(a) $N=a b$;
(b) The F-algebra R is isomorphic to the matrix algebra $\operatorname{Mat}_{a}(F)$ of size a over F. In particular, the G-module V is central simple.
(c) The R-module V is semisimple, isotypic and isomorphic to R^{b}. In addition, the centralizer $\tilde{R}=\operatorname{End}_{R}(V)$ is a normal G-subalgebra that is isomorphic to the matrix algebra $\operatorname{Mat}_{b}(F)$ of size b over F.
(d) Suppose that $a \neq 1, b \neq 1$ (i.e., R is not obvious). Then both homomorphisms

$$
\begin{gathered}
\operatorname{Ad}_{R}: G \rightarrow \operatorname{Aut}(R)=R^{*} / F^{*} \mathrm{Id} \cong \operatorname{GL}(a, F) / F^{*}=\operatorname{PGL}(a, F), \\
\operatorname{Ad}_{R}(\sigma)(u)=\rho(\sigma) u \rho(\sigma)^{-1} \forall u \in R
\end{gathered}
$$

and

$$
\begin{gathered}
\operatorname{Ad}_{\tilde{R}}: G \rightarrow \operatorname{Aut}(\tilde{R})=\tilde{R}^{*} / F^{*} \mathrm{Id} \cong \mathrm{GL}(b, F) / F^{*}=\operatorname{PGL}(b, F), \\
\operatorname{Ad}_{\tilde{R}}(\sigma)(u)=\rho(\sigma) u \rho(\sigma)^{-1} \forall u \in \tilde{R}
\end{gathered}
$$

(with $\sigma \in G$) are injective. In addition,

$$
\operatorname{Ad}_{R}(H) \subset \operatorname{PSL}(a, F), \operatorname{Ad}_{\tilde{R}}(H) \subset \operatorname{PSL}(b, F)
$$

(e) The H-module V is central simple.

Proof. Step 0. Since H is a simple group, V is a faithful H-module. In light of (ii), V is a faithful G-module.

Clearly, V is a faithful R-module. Since R is G-normal,

$$
\begin{equation*}
\rho(\sigma) R \rho(\sigma)^{-1}=R \quad \forall \sigma \in G \tag{13}
\end{equation*}
$$

It follows from (ii) that

$$
H=[H, H] \subset[G, G] \subset G
$$

and either $G=H$ or G / H is a finite simple group (e.g., a cyclic group of prime order).

Step 1. By Lemma 4.3(i), V is a semisimple R-module.
Step 2. In light of Lemma 4.3(ii), property (i) implies that the R-module V is isotypic.

Step 3. Since the faithful R-module V is an isotypic, there exist a faithful simple R-module W and a positive integer b such that $V \cong W^{b}$. If we put $a=\operatorname{dim}_{F}(W)$ then we get

$$
b a=b \cdot \operatorname{dim}_{F}(W)=\operatorname{dim}_{F}(V)=N .
$$

Clearly, $\operatorname{End}_{R}(V)$ is isomorphic to the matrix algebra $\operatorname{Mat}_{b}\left(\operatorname{End}_{R}(W)\right)$ of size b over $\operatorname{End}_{R}(W)$.

Consider the centralizer

$$
k:=\operatorname{End}_{R}(W)
$$

of R in $\operatorname{End}_{F}(W)$. Since W is a simple R-module, k is a finitedimensional division algebra over F. Since $\operatorname{Br}(F)=\{0\}, k$ must be a field. Hence, the automorphism group $\operatorname{Aut}_{F}(k)$ of the F-algebra k is actually the automorphism group $\operatorname{Aut}(k / F)$ of the field extension k / F.

It follows that $\operatorname{Aut}_{F}(k)=\operatorname{Aut}(k / F)$ is finite and its order divides the degree $[k: F]$. We have

$$
\tilde{R}=\operatorname{End}_{R}(V) \cong \operatorname{Mat}_{b}(k) .
$$

Clearly, the F-subalgebra $\tilde{R}=\operatorname{End}_{R}(V) \subset \operatorname{End}_{F}(V)$ is stable under the "adjoint action" of G, which gives rise to the group homomorphism

$$
\operatorname{Ad}_{\tilde{R}}: G \rightarrow \operatorname{Aut}(\tilde{R}) .
$$

Since k is the center of $\operatorname{Mat}_{b}(k)$, it is stable under the action of G and of its subgroup H. This gives rise to the group homomorphism

$$
H \rightarrow \operatorname{Aut}(k / F), h \mapsto\left\{\lambda \mapsto \rho(h) \lambda \rho(h)^{-1} \forall \lambda \in k\right\} \forall h \in H,
$$

whose kernel H^{\prime} has index $\left[H: H^{\prime}\right]$ dividing $[k: F]$. Since V carries the natural structure of a k-vector space, $[k: F] \operatorname{divides} \operatorname{dim}_{F}(V)=N$, the index $\left[H: H^{\prime}\right]$ divides N. In light of (i), $H^{\prime}=H$, i.e., the homomorphism is trivial. This means that center k of $\operatorname{End}_{R}(V)$ commutes with $\rho(H)$. Since $\operatorname{End}_{H}(V)=F$, we have $k=F$. This implies that $\operatorname{End}_{R}(V) \cong \operatorname{Mat}_{b}(F)$ and

$$
\operatorname{Ad}_{\tilde{R}}: G \rightarrow \operatorname{Aut}_{F}(\tilde{R})=\tilde{R}^{*} / F^{*} \operatorname{Id} \cong \mathrm{GL}(b, F) / F^{*}=\operatorname{PGL}(b, F)
$$

kills H if and only if $\tilde{R}=\operatorname{End}_{R}(V) \subset \operatorname{End}_{H}(V)=F \cdot$ Id. Since $\tilde{R}=\operatorname{End}_{R}(V) \cong \operatorname{Mat}_{b}(F)$, the homomorphism $\operatorname{Ad}_{\tilde{R}}$ kills H if and only if $b=1$, i.e., V is an absolutely simple (faithful) R-module. This means that if $b>1$ then $\operatorname{Ad}_{\tilde{R}}$ does not kill H, i.e., the normal subgroup $\operatorname{ker}\left(\operatorname{Ad}_{\tilde{R}}\right)$ of G does not contain H. In light of (ii), this implies that the group homomorphism

$$
\operatorname{Ad}_{\tilde{R}}: G \rightarrow \operatorname{Aut}(\tilde{R}) \cong \operatorname{PGL}(b, F)
$$

is injective if $b>1$.
Since V is a semisimple module over the subalgebra R of $\operatorname{End}_{F}(V)$ and \tilde{R} is the centralizer of R in $\operatorname{End}_{F}(V)$, it follows from the Jacobson density theorem that

$$
R=\operatorname{End}_{\tilde{R}}(V) \cong \operatorname{End}_{F}(W) \cong \operatorname{Mat}_{a}(F)
$$

The "adjoint action" of G on R gives rise to the homomorphism

$$
\operatorname{Ad}_{R}: G \rightarrow \operatorname{Aut}(R)=R^{*} / F^{*} \mathrm{Id} \cong \operatorname{PGL}(a, F) .
$$

Clearly, Ad_{R} kills H if and only if R commutes with $\rho(H)$, i.e., $R=$ $F \cdot \mathrm{Id}$, which is equivalent to the equality $a=1$. This means that if $a>1$ then Ad_{R} does not kill H, i.e., the normal subgroup $\operatorname{ker}\left(\operatorname{Ad}_{R}\right)$ of G does not contain H. In light of (ii), this implies that the group homomorphism

$$
\operatorname{Ad}_{R}: G \rightarrow \operatorname{Aut}(\tilde{R}) \cong \operatorname{PGL}(a, F)
$$

is injective if $a>1$.

To summarize: a normal G-subalgebra R is not obvious if and only if

$$
a>1, b>1 .
$$

If this is the case then both group homomorphisms

$$
\operatorname{Ad}_{R}: G \rightarrow \operatorname{PGL}(a, F), \operatorname{Ad}_{\tilde{R}}: G \rightarrow \operatorname{PGL}(b, F)
$$

are injective.
The last assertions of Theorem 4.5(d) about the images of H follow from the equality $H=[H, H]$ and the inclusions

$$
[\mathrm{GL}(a, F), \mathrm{GL}(a, F)] \subset \mathrm{SL}(a, F),[\mathrm{GL}(b, F), \operatorname{GL}(b, F)] \subset \operatorname{SL}(b, F) .
$$

The assertion (e) follows readily from the second assertion of (b) (if we replace G by H). This ends the proof.

Corollary 4.6. Keeping the assumption and notation of Theorem 4.5, assume additionally that $N=2 \ell$ where ℓ is a prime. If the H-module V is not very simple then there exist group embeddings

$$
G \hookrightarrow \operatorname{PGL}(2, F), H \hookrightarrow \operatorname{PSL}(2, F)
$$

Proof. Let R be a H-normal non-obvious H-subalgebra and $\tilde{R}=\operatorname{End}_{R}(V)$. By Theorem 4.6, there are positive integers a and b such that

$$
a b=N, a>1, b>1 ; R \cong \operatorname{Mat}_{a}(F), \tilde{R} \cong \operatorname{Mat}_{b}(F)
$$

Our conditions on N imply that either $a=2, b=\ell$ or $a=\ell, b=2$. By Theorem 4.5, there are group embeddings

$$
G \hookrightarrow \operatorname{PGL}(a, F), H \hookrightarrow \operatorname{PSL}(a, F)
$$

and

$$
G \hookrightarrow \operatorname{PGL}(b, F), H \hookrightarrow \operatorname{PSL}(b, F) .
$$

Since either a or b is 2 , there are group embeddings

$$
G \hookrightarrow \operatorname{PGL}(2, F), H \hookrightarrow \operatorname{PSL}(2, F) .
$$

Theorem 4.7. Suppose that $n \geq 5$ is an integer, B is an n-element set, and p is a prime. Let us consider the vector space $\left(\mathbb{F}_{p}^{B}\right)^{00}$ over the field \mathbb{F}_{p} endowed with the natural structure of a $\operatorname{Perm}(B)$-module (see Definition 3.2), and let

$$
\rho: \operatorname{Perm}(B) \rightarrow \operatorname{Aut}_{\mathbb{F}_{p}}\left(\left(\mathbb{F}_{p}^{B}\right)^{00}\right)
$$

be the corresponding structure homomorphism.
Then:
(i) The $\operatorname{Perm}(B)$-module $\left(\mathbb{F}_{p}^{B}\right)^{00}$ is very simple.
(ii) The $\operatorname{Alt}(B)$-module $\left(\mathbb{F}_{p}^{B}\right)^{00}$ is very simple if and only if either $n>5$ or

$$
n=5, p \not \equiv \pm 1 \bmod 5
$$

(iii) Suppose that

$$
n=5, p \equiv \pm 1 \bmod 5
$$

and $R \subset \operatorname{End}_{\mathbb{F}_{p}}\left(\left(\mathbb{F}_{p}^{B}\right)^{00}\right)$ is a $\operatorname{Alt}(B)$-normal subalgebra.
Then either $R=\mathbb{F}_{p} \cdot \mathrm{Id}$, or $R=\operatorname{End}_{F_{p}}\left(\left(\mathbb{F}_{p}^{B}\right)^{00}\right)$, or the $\mathbb{F}_{p^{-}}$ algebra R is isomorphic to the matrix algebra $\operatorname{Mat}_{2}\left(\mathbb{F}_{p}\right)$ of size 2 over \mathbb{F}_{p}.
(iv) The $\operatorname{Alt}(B)$-module $\left(\mathbb{F}_{p}^{B}\right)^{00}$ is central simple

Remark 4.8. The assertion of Theorem 4.7 was earlier proven in the following cases.
(A) $p \in\{2,3\}$, see [34, Ex. 7.2] and [36, Cor. 4.3].
(B) $p>3$ and $n \geq 8$, see [36, Cor. 4.6].
(C) $N=\operatorname{dim}_{\mathbb{F}_{p}}\left(\left(\mathbb{F}_{p}^{B}\right)^{00}\right)$ is a prime. It follows readily from [36, Cor. 4.4(i)] applied to $H=\operatorname{Alt}(B)$ and $V=\left(\mathbb{F}_{p}^{B}\right)^{00}$. (We may apply this result from [36], because $\operatorname{Alt}(B)$ is a simple non-abelian group of order $n!/ 2$ and therefore its order is bigger that the order of \mathbf{S}_{N}, since $N \leq n-1$.)
So, In the course of the proof we may assume that

$$
\begin{equation*}
p>3 ; n \in\{5,6,7\} . \tag{14}
\end{equation*}
$$

Proof of Theorem 4.7. We assume that (14) holds.
Step 1. First assume that $p \mid n$. Then either $n=p=5$ or $n=p=7$. In both cases

$$
N=\operatorname{dim}_{\mathbb{F}_{p}}\left(\left(\mathbb{F}_{p}^{B}\right)^{00}\right)=n-2
$$

is a prime. Now the very simplicity of the $\operatorname{Alt}(B)$-module $\left(\mathbb{F}_{p}^{B}\right)^{00}$ follows from Remark 4.8(A). So, we may assume that p does not divide n and therefore

$$
N=n-1 .
$$

Step 2. If $n=6$ then $N=5$ and the very simplicity of the $\operatorname{Alt}(B)-$ module $\left(\mathbb{F}_{p}^{B}\right)^{00}$ follows from Remark 4.8(C). So, we may assume that

$$
n \in\{5,7\} .
$$

Step 3. Suppose that $n=7$. Then $N=6=2 \times 3$ where 3 is a prime. It follows from Corollary 4.6 that if the $\operatorname{Alt}(B)$-module $\left(\mathbb{F}_{p}^{B}\right)^{00}$ is not very simple then there is a group homomorphism

$$
\operatorname{Ad}_{R}: \operatorname{Alt}(B) \hookrightarrow \operatorname{PSL}\left(2, \mathbb{F}_{p}\right) .
$$

However, it is known [29, Th. 6.25 on p. 412 and Th. 626 on p. 414] that $\operatorname{PSL}\left(2, \mathbb{F}_{p}\right)$ does not contain a subgroup isomorphic to \mathbf{A}_{7}. Since $\operatorname{Alt}(B) \cong \mathbf{A}_{7}$, we get a contradiction, which implies that the $\operatorname{Alt}(B)$-module $\left(\mathbb{F}_{p}^{B}\right)^{00}$ is very simple if $n=7$.

Step 4. Suppose that $n=5$. We are going to apply Corollary 4.6 to $H=\operatorname{Alt}(B), G=\operatorname{Perm}(B)$ or $\operatorname{Alt}(B)$, and $V=\left(\mathbb{F}_{p}^{B}\right)^{00}$.

Since p does not divide $n=5$, we get $p>5$, and $n-1=4=2 \times 2$ where 2 is a prime.

- Suppose that the $\operatorname{Perm}(B)$-module $\left(\mathbb{F}_{p}^{B}\right)^{00}$ is not very simple. It follows from Corollary 4.6 (applied to $G=\operatorname{Perm}(B), H=$ Alt (B)) that there is a group embedding

$$
\operatorname{Ad}_{R}: \operatorname{Perm}(B) \hookrightarrow \operatorname{PGL}\left(2, \mathbb{F}_{p}\right)
$$

This implies that $\operatorname{PGL}\left(2, \mathbb{F}_{p}\right)$ contains a subgroup isomorphic to S_{5}, because $\operatorname{Perm}(B) \cong \mathbf{S}_{5}$. Since $p>5$, the order 120 of \mathbf{S}_{5} is not divisible by p. However, there are no finite subgroups of $\operatorname{PGL}\left(2, \mathbb{F}_{p}\right)$ that are isomorphic to $\mathbf{S}_{5}[29, \mathrm{Th} .6 .25$ on p. 412 and Th. 626 on p. 414]; see also [24, Sect. 2.5]. The obtained contradiction proves that the $\operatorname{Perm}(B)$-module $\left(\mathbb{F}_{p}^{B}\right)^{00}$ is very simple if $n=5$.

- It follows from Corollary 4.6 (applied to $G=H=\operatorname{Alt}(B)$ and $V=\left(\mathbb{F}_{p}^{B}\right)^{00}$) that if the $\operatorname{Alt}(B)$-module $\left(\mathbb{F}_{p}^{B}\right)^{00}$ is not very simple then there is an injective group homomorphism

$$
\operatorname{Ad}_{R}: \operatorname{Alt}(B) \hookrightarrow \operatorname{PSL}\left(2, \mathbb{F}_{p}\right) .
$$

Then the order 60 of the group $\operatorname{Alt}(B)$ divides the order $\left(p^{2}-\right.$ 1) $p / 2$ of the group $\operatorname{PSL}\left(2, \mathbb{F}_{p}\right)$. This implies that 5 divides $p^{2}-$ $1=(p+1)(p-1)$, i.e., $p \equiv \pm 1 \bmod 5$. This implies that if $n=5$ and $p \not \equiv \pm 1 \bmod 5$ then $\operatorname{Alt}(B)$-module $\left(\mathbb{F}_{p}^{B}\right)^{00}$ is very simple.
Step 5. Suppose that $n=5$ and $p \equiv \pm 1 \bmod 5$. Let us prove that the $\operatorname{Alt}(B)$-module $\left(\mathbb{F}_{p}^{B}\right)^{00}=\left(\mathbb{F}_{p}^{B}\right)^{0}$ is not very simple. Recall (Remark 3.3) that there is a surjective homomorphism $\operatorname{SL}\left(2, \mathbb{F}_{5}\right) \rightarrow \mathbf{A}_{5}$, and there are $\operatorname{SL}\left(2, \mathbb{F}_{5}\right)$-modules \bar{V}_{1} and \bar{V}_{2} with

$$
\operatorname{dim}_{\mathbb{F}_{p}}\left(\bar{V}_{1}\right)=\operatorname{dim}_{\mathbb{F}_{p}}\left(\bar{V}_{2}\right)=2,
$$

and an isomorphism of $\operatorname{SL}\left(2, \mathbb{F}_{5}\right)$-modules $\left(\mathbb{F}_{p}^{B}\right)^{0} \cong \bar{V}_{1} \otimes_{\mathbb{F}_{p}} \bar{V}_{2}$. This isomorphism induces an isomorphism of \mathbb{F}_{p}-algebras

$$
\operatorname{End}_{\mathbb{F}_{p}}\left(\left(\mathbb{F}_{p}^{B}\right)^{0}\right)=\operatorname{End}_{\mathbb{F}_{p}}\left(\bar{V}_{1}\right) \otimes_{\mathbb{F}_{p}} \operatorname{End}_{\mathbb{F}_{p}}\left(\bar{V}_{2}\right),
$$

under which (the images of) the subalgebras

$$
R=\operatorname{End}_{\mathbb{F}_{p}}\left(\bar{V}_{1}\right) \otimes 1, \tilde{R}=1 \otimes \operatorname{End}_{\mathbb{F}_{p}}\left(\bar{V}_{2}\right)
$$

are $\operatorname{Alt}(B)$-normal subalgebras of $\operatorname{End}_{\mathbb{F}_{p}}\left(\left(\mathbb{F}_{p}^{B}\right)^{0}\right)$, see [38, Example 3.1(ii)]. In particular, the $\operatorname{Alt}(B)$-module $\left(\mathbb{F}_{p}^{B}\right)^{00}=\left(\mathbb{F}_{p}^{B}\right)^{0}$ is not very simple.

On the other hand, it follows from Theorem 4.5 that if R is a nonobvious $\operatorname{Alt}(B)$-normal subalgebra of $\left.\operatorname{End}_{\mathbb{F}_{p}}\left(\mathbb{F}_{p}^{B}\right)^{0}\right)$ then $R \cong \operatorname{Mat}_{a}\left(\mathbb{F}_{p}\right)$ where a positive integer a is a proper divisor of

$$
\operatorname{dim}_{\mathbb{F}_{p}}\left(\left(\mathbb{F}_{p}^{B}\right)^{0}\right)=4=2^{2}
$$

This implies that $a=2$ and $R \cong \operatorname{Mat}_{2}\left(\mathbb{F}_{p}\right)$.

The assertion (iv) of Theorem 4.7 follows readily from already proven (ii) and (iii).

Theorem 4.9. Let $n \in\{11,12,22,23,24\}$. Let B be an n-element set B and $G \subset \operatorname{Perm}(B)$ the corresponding Mathieu group \mathbf{M}_{n}, which acts doubly transitively on B. Let p be an odd prime. If $n=11$, then we assume additionally that $p>3$.

Then

- the G-module $\left(\mathbb{F}_{p}^{B}\right)^{00}$ is central simple;
- if $n \neq p+1$ and $n-1$ is divisible by p, then the G-module $\left(\mathbb{F}_{p}^{B}\right)^{00}$ is very simple.

Proof. It follows from ([13], [17, Table 1]) that the absolutely simple $G=\mathbf{M}_{n}$-module $\left(\mathbb{F}_{p}^{B}\right)^{00}$ is absolutely simple. By [1] the index of every maximal subgroup of \mathbf{M}_{n} is at least

$$
\left.n>n-1 \geq N=\operatorname{dim}_{\mathbb{F}_{p}}\left(\left(\mathbb{F}_{p}^{B}\right)^{00}\right)\right)
$$

(recall that N is either $n-1$ or $n-2$).
In light of Proposition 4.4, the $G=\mathbf{M}_{n}$-module $\left(\mathbb{F}_{p}^{B}\right)^{00}$ is central simple. It remains to prove the very simplicity in the "exceptional" cases when $n \neq p+1$ and $n-1$ is divisible by p. We prove that in all the exceptional cases the \mathbf{M}_{n}-module $\left(\mathbb{F}_{p}^{B}\right)^{00}$ is very simple. After that the desired result will follow from Theorem 6.6.

- $n=11$. Then $p=5$ and $n-1=2 \times 5$ where both 2 and 5 are primes. If the \mathbf{M}_{11}-module $\left(\mathbb{F}_{5}^{B}\right)^{00}$ is not very simple then it follows from Theorem 4.5(iii-d) that there is a group embedding $\mathbf{M}_{11} \hookrightarrow \operatorname{PSL}\left(2, \mathbb{F}_{5}\right)$, which is not true. Hence, the \mathbf{M}_{11}-module $\left(\mathbb{F}_{5}^{B}\right)^{00}$ is very simple.
- $n=12$. Then $n-1$ is a prime and there are no exceptional cases.
- $n=22$. Then $n-1=22-1=3 \cdot 7$ where both 3 and 7 are primes. Then $p=3$ or 7 . If the \mathbf{M}_{22}-module $\left(\mathbb{F}_{3}^{B}\right)^{00}$ is not very simple then it follows from Theorem $4.5(\mathrm{iii}-\mathrm{d})$ that there is a group embedding $\mathbf{M}_{22} \hookrightarrow \operatorname{PSL}\left(3, \mathbb{F}_{p}\right)$. Such an embedding does not exist if $p=3$, because the order of $\operatorname{PSL}\left(3, \mathbb{F}_{3}\right)$ is not divisible by 11 while 11 divides the order of \mathbf{M}_{22}. Hence, the \mathbf{M}_{22}-module $\left(\mathbb{F}_{3}^{B}\right)^{00}$ is very simple.

Such an embedding does not exist if $p=7$ as well, because the order of $\operatorname{PSL}\left(3, \mathbb{F}_{7}\right)$ is not divisible by 11 , which divides the order of \mathbf{M}_{22}. Hence, the \mathbf{M}_{22}-module $\left(\mathbb{F}_{7}^{B}\right)^{00}$ is also very simple.

- $n=23$. Then $n-1=22=2 \cdot 11$ where both 2 and 11 are primes. Then $p=11$. If the \mathbf{M}_{23}-module $\left(\mathbb{F}_{11}^{B}\right)^{00}$ is not very simple then it follows from Theorem $4.5(\mathrm{iii}-\mathrm{d})$ that there is a group embedding $\mathbf{M}_{23} \hookrightarrow \operatorname{PSL}\left(2, \mathbb{F}_{11}\right)$. Such an embedding does not exist. Hence, the \mathbf{M}_{23}-module $\left(\mathbb{F}_{11}^{B}\right)^{00}$ is very simple.
- $n=24$. Then $n-1=23$ is a prime and there are no exceptional cases.

Proposition 4.10. Let G be a doubly transitive permutation subgroup of a n-element set B. Let $p>3$ be a prime. Suppose that (n, G) enjoys one of the following properties.
(1) $n=176$ and G is isomorphic to HS;
(2) $n=276$ and G is isomorphic to Co_{3}.

Then the G-module $\left(\mathbb{F}_{p}^{B}\right)^{00}$ is central simple.
Proof. It follows from [17, Tables] that in both cases the G-module $\left(\mathbb{F}_{p}^{B}\right)^{00}$ is absolutely simple.

Case 1. According to the Atlas [1], if H is a maximal subgroup of HS with index $[$ HS : $H]<176$ then $[$ HS : $H]=100$, which divides neither $176-1$ nor $176-2$. By Proposition 4.4, the G-module $\left(\mathbb{F}_{p}^{B}\right)^{00}$ is central simple.

Case 2. According to the Atlas [1], if H is a maximal subgroup subgroup of Co_{3} then its index $m=\left[\mathrm{Co}_{3}: H\right]$ is greater or equal than 276 [1]; in particular, it divides neither $276-1$ nor $276-2$. By Proposition 4.4, the G-module $\left(\mathbb{F}_{p}^{B}\right)^{00}$ is central simple as well.

Theorem 4.11. (i) Let ℓ be a prime, \mathfrak{r} a positive integer, and $n=$ $\mathfrak{q}+1$ where $\mathfrak{q}=\ell^{\mathfrak{r}}>11$.
(ii) Let G be a subgroup of $\operatorname{Perm}(B)$. Suppose that G contains a subgroup H that is isomorphic to $\mathbf{L}_{2}(\mathfrak{q})=\operatorname{PSL}\left(2, \mathbb{F}_{\mathfrak{q}}\right)$ where $\mathbb{F}_{\mathfrak{q}}$ is a \mathfrak{q}-element field.
If p is an odd prime then the G-module $\left(\mathbb{F}_{p}^{B}\right)^{00}$ is central simple.
Proof. It suffices to check that the $H \cong \mathbf{L}_{2}(q)$-module $\left(\mathbb{F}_{p}^{B}\right)^{00}$ is central simple. First, our conditions on q imply that each subgroup of $\mathbf{L}_{2}(\mathfrak{q})$ (except $\mathbf{L}_{2}(\mathfrak{q})$ itself) has index $\geq \mathfrak{q}+1=n[29$, p. 414, (6.27)]. This implies that H acts transitively on the $(\mathfrak{q}+1)$-element set B and the stabilizer H_{b} of any $b \in B$ has index $\mathfrak{q}+1$. It follows from [29, Th. 6.25 on p. 412] that $H_{b} \subset \mathbf{L}_{2}(\mathfrak{q})$ is conjugate to the (Borel) subgroup of upper-triangular matrices modulo $\{ \pm 1\}$. It follows that the $\mathbf{L}_{2}(\mathfrak{q})$ set B is isomorphic to the projective line $\mathbb{P}^{1}\left(\mathbb{F}_{\mathfrak{q}}\right)$ with the standard fractional-linear action of $\mathbf{L}_{2}(\mathfrak{q})$, which is doubly transitive.

Notice that

$$
\left.q+1=n>N=\operatorname{dim}_{\mathbb{F}_{p}}\left(\left(\mathbb{F}_{p}^{B}\right)^{00}\right)\right),
$$

because N is either $n-1$ or $n-2$. It follows that the index of any maximal subgroup of $\mathbf{L}_{2}(\mathfrak{q})$ does not divide N. On the other hand, according to [17, Table 1], the $H=\mathbf{L}_{2}(\mathfrak{q})$-module is absolutely simple. It follows now from Proposition 4.4 that the H-module V is central simple.

Theorem 4.12. Let O be a Dedekind ring, T a locally free/projective O-module of finite positive rank r. Let E be the field of fractions of O, \mathfrak{m} a maximal ideal in O and $k=O / \mathfrak{m}$ its residue field. Let us consider the r-dimensional E-vector space $T_{E}=T \otimes_{O} E$ and the r-dimensional k-vector space $T_{k}=T / \mathfrak{m} T=T \otimes_{O} k$.

Let G be a group and $\rho: G \rightarrow \operatorname{Aut}_{O}(T)$ be a group homomorphism (O-linear representation). Let us consider the corresponding E-linear representation of G
$\rho_{E}: G \rightarrow \operatorname{Aut}_{E}\left(T_{E}\right), \sigma \mapsto\{t \otimes e \mapsto \rho(\sigma)(t) \otimes e \forall t \in T, e \in E\} \forall \sigma \in G$ and the corresponding k-linear representation of G
$\rho_{k}: G \rightarrow \operatorname{Aut}_{k}\left(T_{k}\right), \sigma \mapsto\{t \otimes c \mapsto \rho(\sigma)(t) \otimes c \forall t \in T, c \in k\} \forall \sigma \in G$.
If ρ_{k} is central simple (resp. very simple) then ρ_{E} is central simple (resp. very simple).

Proof. We view $T=T \otimes 1$ as a certain G-invariant lattice in $T \otimes_{O}$ $E=T_{E}$ and $\operatorname{End}_{O}(T)=\operatorname{End}_{O}(T) \otimes 1$ as a certain G-invariant lattice (subalgebra) in $\operatorname{End}_{O}(T) \otimes_{O} E=\operatorname{End}_{E}\left(T_{E}\right)$.

Let R_{E} be a G-normal E-subalgebra of $\operatorname{End}_{E}\left(T_{E}\right)$. Let C_{E} be the center of R_{E} and J_{E} a proper ideal of R_{E}. We have

$$
E \subset C, J \subset R_{E}, J \neq R_{E}
$$

Let us consider the O-subalgebra $R:=R_{E} \cap \operatorname{End}_{O}(T)$. Clearly, R is a saturated O-submodule of $\operatorname{End}_{O}(T)$, i.e., the quotient $\operatorname{End}_{O}(T) / R$ is torsion free (finitely generated) O-module.

The natural map

$$
R \otimes_{O} E \rightarrow R_{E}, u \otimes e \mapsto e \cdot u
$$

is an isomorphism of E-algebras. This implies that:
(i) $C:=C \cap \operatorname{End}_{O}(T)$ is the center of R that contains O as a saturated O-submodule, i.e., the quotient C / O is a torsion free (finitely generated) O-module. In addition, C is a saturated O-submodule of R, i.e., R / C is a torsion free finitely generated O -module.
(ii) The intersection $J:=J_{E} \cap \operatorname{End}_{O}(T)$ is a proper ideal of R that is a saturated O-submodule of R, i.e., the quotient R / J is a torsion free (finitely generated) O-module.
Since the O-modules $\operatorname{End}_{O}(T) / R, C / O, R / C$ and R / J finitely generated torsion free, they are projective, because the ring O is Dedekind. This implies that there are locally free submodules $R_{1} \subset \operatorname{End}_{O}(T)$, $C_{1} \subset C, D \subset R$, and $I \subset R$ such that

$$
\begin{equation*}
\operatorname{End}_{O}(T)=R \oplus R_{1}, C=O \oplus C_{1}, \quad R=C \oplus D, I \oplus J=R . \tag{15}
\end{equation*}
$$

Since J is a proper ideal, $I \neq 0$. Since C_{1} and J are torsion-free finitely generated O-modules they are also locally free/projective. Now let us
consider the $k=O / \mathfrak{m}$-subalgebra

$$
R_{k}=R \otimes_{O} k \subset \operatorname{End}_{O}(T) \otimes_{O} k=\operatorname{End}_{k}\left(T_{k}\right)
$$

where $T_{k}:=T \otimes_{O} k$. Clearly,
(1) R_{k} is a G-normal subalgebra of $\operatorname{End}_{k}\left(T_{k}\right)$;
(2) $k \oplus\left(C_{1} \otimes_{O} k\right)$ lies in the center of R_{k}.
(3) $R_{k}=\left(J \otimes_{O} k\right) \oplus\left(I \otimes_{O} k\right) \neq\{0\}$. This implies that $J_{k}=J \otimes_{O} k$ is a proper two-sided ideal of R_{k}, because $I \neq\{0\}$ and therefore $I \otimes_{O} k \neq\{0\}$.
Suppose that ρ_{k} is central simple. Then R_{k} is a simple k-algebra with center k. It follows that

$$
C_{1} \otimes_{O} k=\{0\}, \quad J_{k}=J \otimes_{O} k=\{0\} .
$$

Since C_{1} and J are locally free, we conclude that

$$
C_{1}=\{0\}, J=\{0\},
$$

which implies that

$$
J_{E}=\{0\}, C=O \oplus C_{1}=O \oplus\{0\}=O
$$

and therefore $C_{E}=E$. This means that T_{E} is a central simple E algebra, which proves that ρ_{E} is also central simple.
Assume now that ρ_{k} is very simple. Then either $R_{k}=k$ or $R_{k}=$ $\operatorname{End}_{k}\left(T_{k}\right)$. In the latter case, applying (15), we get
$\operatorname{End}_{k}\left(T_{k}\right)=\left(R \otimes_{O} k\right) \oplus\left(R_{1} \otimes_{O} k\right)=R_{k} \oplus\left(R_{1} \otimes_{O} k\right)=\operatorname{End}_{k}\left(T_{k}\right) \oplus\left(R_{1} \otimes_{O} k\right)$.
Now k-dimension arguments imply that $R_{1} \otimes_{O} k=\{0\}$ and therefore $R_{1}=\{0\}$. This implies that $\operatorname{End}_{O}(T)=R \oplus R_{1}=R$ and therefore $R_{E}=\operatorname{End}_{E}\left(T_{E}\right)$.

Assume now that $R_{k}=k$. It follows from (15) that

$$
R=O \oplus\left(C_{1} \oplus D\right)
$$

and therefore

$$
k=R \otimes_{O} k=k \oplus\left(C_{1} \oplus D\right) \otimes_{O} k .
$$

Again, k-dimension arguments imply that $\left(C_{1} \oplus D\right) \otimes_{O} k=\{0\}$ and therefore $C_{1} \oplus D=\{0\}$. It follows that $R=O$ and therefore $R_{E}=E$. This proves that ρ_{E} is semisimple.

5. Abelian varieties and cyclotomic fields

Let p be a prime, r a positive integer, and $q=p^{r}$. Let $E=\mathbb{Q}\left(\zeta_{q}\right)$ be the q th cyclotomic field and $O_{E}=\mathbb{Z}\left[\zeta_{q}\right]$ its ring of integers.

Let us put

$$
\eta=\eta_{q}:=1-\zeta_{q} \in \mathbb{Z}\left[\zeta_{q}\right] .
$$

It is well known [32] that the principal ideal $\eta_{q} \mathbb{Z}\left[\zeta_{q}\right]$ of $\mathbb{Z}\left[\zeta_{q}\right]$ is maximal and contains $p \mathbb{Z}\left[\zeta_{q}\right]$. Actually,

$$
p \mathbb{Z}\left[\zeta_{q}\right]=\eta_{q}^{\phi(q)} \mathbb{Z}\left[\zeta_{q}\right] .
$$

It follows that there is $\eta^{\prime} \in \mathbb{Z}\left[\zeta_{q}\right]$ such that

$$
\begin{equation*}
\eta^{\prime} \mathbb{Z}\left[\zeta_{q}\right]=\eta_{q}^{\phi(q)-1} \mathbb{Z}\left[\zeta_{q}\right], \quad \eta_{q} \eta^{\prime}=\eta^{\prime} \eta_{q}=p \tag{16}
\end{equation*}
$$

The residue field $\mathbb{Z}\left[\zeta_{q}\right] / \eta \mathbb{Z}\left[\zeta_{q}\right]$ coincides with \mathbb{F}_{p}. It is also well known [32] that

$$
\mathbb{Z}_{p}\left[\zeta_{q}\right]=\mathbb{Z}\left[\zeta_{q}\right] \otimes \mathbb{Z}_{p}
$$

is the ring of integers in the p-adic q th cyclotomic field $\mathbb{Q}_{p}\left(\zeta_{q}\right)$ and $\eta_{q} \mathbb{Z}_{p}\left[\zeta_{q}\right]$ is the maximal ideal of $\mathbb{Z}_{p}\left[\zeta_{q}\right]$ with residue field

$$
\mathbb{Z}_{p}\left[\zeta_{q}\right] / \eta_{q} \mathbb{Z}_{p}\left[\zeta_{q}\right]=\mathbb{Z}\left[\zeta_{q}\right] / \eta_{q} \mathbb{Z}\left[\zeta_{q}\right]=\mathbb{F}_{p}
$$

Let K be a field of characteristic different from p. Let K_{a} be the algebraic closure of K and $K_{s} \subset K_{a}$ the separable algebraic closure of K. We write $\operatorname{Gal}(K)$ for the automorphism $\operatorname{group} \operatorname{Aut}\left(K_{a} / K\right)=$ $\operatorname{Gal}\left(K_{s} / K\right)$ of the corresponding field extension.

Let Z be an abelian variety of positive dimension g over K, and $\operatorname{End}_{K}(Z)($ resp. $\operatorname{End}(Z))$ the ring of its K-endomorphisms (resp. the ring of all K_{a}-endomorphisms). By a theorem of Chow, all endomorphisms of Z are defined over K_{s}. In addition, $Z[p] \subset Z\left(K_{s}\right)$ where $Z[p]$ is the kernel of multiplication by p in $Z\left(K_{a}\right)$. If m is an integer then we write $m_{Z} \in \operatorname{End}_{K}(Z)$ for multiplication by m in Z.

Suppose that we are given the ring embedding

$$
\mathbf{i}: O_{E} \hookrightarrow \operatorname{End}_{K}(Z) \subset \operatorname{End}(Z)
$$

such that $1 \in O_{E}$ goes to the identity automorphism 1_{Z} of Z. In light of (16), $\mathbf{i}\left(\eta_{q}\right): Z \rightarrow Z$ and $\mathbf{i}\left(\eta^{\prime}\right): Z \rightarrow Z$ are isogenies and the kernel $\operatorname{ker}\left(\mathbf{i}\left(\eta_{q}\right)\right)$ of $\mathbf{i}\left(\eta_{q}\right)$ lies in $Z[p]$. In addition,

$$
\begin{equation*}
\operatorname{ker}\left(\mathbf{i}\left(\eta_{q}\right)\right)=\mathbf{i}\left(\eta^{\prime}\right)(Z[p]) \subset Z[p] \tag{17}
\end{equation*}
$$

Indeed, since $\eta_{q} \eta^{\prime}=p$, we have $\mathbf{i}\left(\eta_{q}\right) \mathbf{i}\left(\eta^{\prime}\right)=p_{Z}$ and

$$
\mathbf{i}\left(\eta^{\prime}\right)(Z[p]) \subset \operatorname{ker}\left(\mathbf{i}\left(\eta_{q}\right)\right)
$$

Conversely, suppose that $z \in \operatorname{ker}\left(\mathbf{i}\left(\eta_{q}\right)\right)$. Since $\mathbf{i}\left(\eta^{\prime}\right)$ is an isogeny, it is surjective and therefore there is $\tilde{z} \in Z\left(K_{a}\right)$ such that $\mathbf{i}\left(\eta^{\prime}\right)(\tilde{z})=z$. This implies that

$$
0=\mathbf{i}\left(\eta_{q}\right)(z)=\mathbf{i}\left(\eta_{q}\right) \mathbf{i}\left(\eta^{\prime}\right) \tilde{z}=p_{Z} \tilde{z}=p \tilde{z}
$$

It follows that $\tilde{z} \in Z[p]$ and therefore $\operatorname{ker}\left(\mathbf{i}\left(\eta_{q}\right)\right) \subset \mathbf{i}\left(\eta^{\prime}\right)(Z[p])$, which ends the proof of (17).

Let us put

$$
\begin{equation*}
\boldsymbol{\delta}:=\mathbf{i}\left(\zeta_{q}\right) \in \operatorname{End}_{K}(Z) \subset \operatorname{End}(Z) . \tag{18}
\end{equation*}
$$

Remark 5.1. (i) Since $\eta_{q}=1-\zeta_{q}$, we get $\left.\mathbf{i}\left(\eta_{q}\right)\right)=1_{Z}-\boldsymbol{\delta}$ and therefore

$$
\begin{equation*}
\operatorname{ker}\left(\mathbf{i}\left(\eta_{q}\right)\right)=\left\{z \in Z\left(K_{a}\right) \mid \boldsymbol{\delta}(z)=z\right\}=: Z^{\delta} . \tag{19}
\end{equation*}
$$

(ii) Since $\operatorname{ker}\left(\mathbf{i}\left(\eta_{q}\right)\right)$ is a subgroup of $Z[p]$, it carries the natural structure of a \mathbb{F}_{p}-vector space. In other words, $\operatorname{ker}\left(\mathbf{i}\left(\eta_{q}\right)\right)$ is a \mathbb{F}_{p}-vector subspace of $Z[p]$.
(iii) Since the endomorphism $\mathbf{i}\left(\eta_{q}\right)$ is defined over $K, \operatorname{ker}\left(\mathbf{i}\left(\eta_{q}\right)\right)$ is a $\operatorname{Gal}(K)$-invariant subspace of $Z[p]$. The action of $\operatorname{Gal}(K)$ on $\operatorname{ker}(\mathbf{i}(\eta))$ gives rise to the natural linear representation

$$
\begin{gather*}
\rho_{\eta}=\rho_{\eta, Z}: \operatorname{Gal}(K) \rightarrow \operatorname{Aut}_{\mathbb{F}_{p}}\left(\operatorname{ker}\left(\mathbf{i}\left(\eta_{q}\right)\right)\right), \tag{20}\\
\sigma \mapsto\left\{z \mapsto \sigma(z) \forall z \in \operatorname{ker}\left(\mathbf{i}\left(\eta_{q}\right)\right) \subset Z[p] \subset Z\left(K_{s}\right)\right\} \forall \sigma \in \operatorname{Gal}(K) .
\end{gather*}
$$

Lemma 5.2. $\phi(q)=[E: \mathbb{Q}]$ divides $2 \operatorname{dim}(Z)=2 g$ and $\operatorname{ker}\left(\mathbf{i}\left(\eta_{q}\right)\right)$ is a \mathbb{F}_{p}-vector space of dimension

$$
h_{E}:=\frac{2 \operatorname{dim}(Z)}{[E: \mathbb{Q}]}=\frac{2 g}{\phi(q)} .
$$

Proof. By a result of Ribet [19, Prop. 2.2.1 on p. 769], the \mathbb{Z}_{p}-Tate module $T_{p}(Z)$ of Z is a free module over the ring

$$
\mathbb{Z}_{p}[\boldsymbol{\delta}]=\mathbf{i}\left(O_{E}\right) \otimes \mathbb{Z}_{p} \cong \mathbb{Z}\left[\zeta_{q}\right] \otimes \mathbb{Z}_{p}=\mathbb{Z}_{p}\left[\zeta_{q}\right]
$$

of rank $h_{E}=2 g / \phi(q)$. (In particular, h_{E} is an integer.) This implies that the $\mathbb{Z}_{p}[\delta]$-module $Z[p]=T_{p}(Z) / p T_{p}(Z)$ is isomorphic to $\left(\mathbb{Z}_{p}[\boldsymbol{\delta}] / p\right)^{h_{E}}$. It follows from (17) that the \mathbb{F}_{p}-vector space

$$
\begin{gathered}
\operatorname{ker}\left(\mathbf{i}\left(\eta_{q}\right)\right) \cong\left(\eta^{\prime} \mathbb{Z}_{p}\left[\zeta_{q}\right] / p\right)^{h_{E}}= \\
\left(\eta^{\prime} \mathbb{Z}_{p}\left[\zeta_{q}\right] / \eta^{\prime} \eta_{q} \mathbb{Z}_{p}\left[\zeta_{q}\right]\right)^{h_{E}}=\left(\mathbb{Z}_{p}\left[\zeta_{q}\right] / \eta_{q} \mathbb{Z}_{p}\left[\zeta_{q}\right]\right)^{h_{E}}=\mathbb{F}_{p}^{h_{E}}
\end{gathered}
$$

This proves that $\operatorname{ker}\left(\mathbf{i}\left(\eta_{q}\right)\right)$ is a \mathbb{F}_{p}-vector space of dimension h_{E}.
Let Λ be the centralizer of $\mathbf{i}\left(O_{E}\right)$ in $\operatorname{End}(Z)$. Clearly, $\mathbf{i}\left(O_{E}\right)$ lies in the center of Λ. It is also clear that

$$
\Lambda\left(\operatorname{ker} \mathbf{i}\left(\eta_{q}\right)\right) \subset \operatorname{ker}\left(\mathbf{i}\left(\eta_{q}\right)\right)
$$

which gives rise to the natural homomorphism of $O / \eta_{q} O=\mathbb{F}_{p}$-algebras $\kappa: \Lambda / \mathbf{i}\left(\eta_{q}\right) \Lambda \rightarrow \operatorname{End}_{\mathbb{F}_{p}}\left(\operatorname{ker} \mathbf{i}\left(\eta_{q}\right)\right), u+\mathbf{i}\left(\eta_{q}\right) \Lambda \mapsto\{z \mapsto u(z)\} \forall z \in \operatorname{ker} \mathbf{i}\left(\eta_{q}\right)$.

Proposition 5.3. The homomorphism κ defined in (21) is injective.
Proof. Suppose that $u \in \Lambda$ and $u\left(\operatorname{ker} \mathbf{i}\left(\eta_{q}\right)\right)=\{0\}$. We need to prove that $u \in \mathbf{i}\left(\eta_{q}\right) \Lambda$. In order to do that, notice that the endomorphism of Z

$$
v:=\mathbf{i}\left(\eta^{\prime}\right) u=u \mathbf{i}\left(\eta^{\prime}\right) \in \Lambda \subset \operatorname{End}(Z)
$$

kills $Z[p]$, because

$$
v(Z[p])=u \mathbf{i}\left(\eta^{\prime}\right)(Z[p])=u\left(\mathbf{i}\left(\eta^{\prime}\right) Z[p]\right)=u\left(\operatorname{ker} \mathbf{i}\left(\eta_{q}\right)\right)=\{0\}
$$

This implies that there is $\tilde{v} \in \operatorname{End}(Z)$ such that $v=p \tilde{v}$. Since v commutes with $\mathbf{i}\left(O_{E}\right), \tilde{v}$ also commutes with $\mathbf{i}\left(O_{E}\right)$, i.e., $\tilde{v} \in \Lambda$. We have

$$
\mathbf{i}\left(\eta^{\prime}\right) \mathbf{i}\left(\eta_{q}\right) \tilde{v}=p \tilde{v}=v=\mathbf{i}\left(\eta^{\prime}\right) u
$$

This implies that in $\operatorname{End}(Z)$

$$
\mathbf{i}\left(\eta^{\prime}\right)\left(\mathbf{i}\left(\eta_{q}\right) \tilde{v}-u\right)=0
$$

Multiplying it by $\mathbf{i}\left(\eta_{q}\right)$ from the left and taking into account that $\mathbf{i}\left(\eta_{q}\right) \mathbf{i}\left(\eta^{\prime}\right)=\mathbf{i}(p)$, we get

$$
p\left(\mathbf{i}\left(\eta_{q}\right) \tilde{v}-u\right)=0
$$

in $\operatorname{End}(Z)$. It follows that $\mathbf{i}\left(\eta_{q}\right) \tilde{v}=u$. Since $\tilde{v} \in \Lambda$, we are done.
Remark 5.4. (i) Since Z is defined over K, one may associate with every $u \in \operatorname{End}(Z)$ and $\sigma \in \operatorname{Gal}(K)$ an endomorphism ${ }^{\sigma} u \in \operatorname{End}(Z)$ such that

$$
\begin{equation*}
{ }^{\sigma} u(z)=\sigma u\left(\sigma^{-1} z\right) \quad \forall z \in Z\left(K_{a}\right) . \tag{22}
\end{equation*}
$$

(ii) Recall that $\mathbf{i}\left(O_{E}\right) \subset \operatorname{End}_{K}(Z)$ consists of K-endomorphisms of Z. It follows that if $u \in \operatorname{End}(Z)$ commutes with $\mathbf{i}\left(O_{E}\right)$ then ${ }^{\sigma} u$ commutes with $\mathbf{i}\left(O_{E}\right)$ for all $\sigma \in \operatorname{Gal}(K)$. In other words, if $u \in \Lambda$ then ${ }^{\sigma} u \in \Lambda$ for all $\sigma \in \operatorname{Gal}(K)$.
(iii) Since $O_{E}=\mathbb{Z}\left[\zeta_{q}\right]$, we have $\mathbf{i}\left(O_{E}\right)=\mathbb{Z}[\boldsymbol{\delta}]$. It follows that Λ coincides with the centralizer of $\boldsymbol{\delta}$ in $\operatorname{End}(Z)$.

Proposition 5.5. The image $R:=\kappa\left(\Lambda / \eta_{q} \Lambda\right)$ is a $\operatorname{Gal}(K)$-normal subalgebra of $\operatorname{End}_{\mathbb{F}_{p}}\left(\operatorname{ker} \mathbf{i}\left(\eta_{q}\right)\right)$.

Proof. Let $u \in \Lambda$. Then

$$
\begin{gathered}
\bar{u}:=\kappa\left(u+\eta_{q} \Lambda\right) \in R \subset \operatorname{End}_{\mathbb{F}_{p}}\left(\operatorname{ker} \mathbf{i}\left(\eta_{q}\right)\right), \\
\bar{u}: z \mapsto u(z) \forall z \in \operatorname{ker} \mathbf{i}\left(\eta_{q}\right) .
\end{gathered}
$$

Then ${ }^{\sigma} u \in \Lambda$ for all $\sigma \in \operatorname{Gal}(K)$ and

$$
\begin{gathered}
\overline{\sigma_{u}}=\kappa\left({ }^{\sigma} u+\eta_{q} \Lambda\right) \in \operatorname{End}_{\mathbb{F}_{p}}\left(\operatorname{ker} \mathbf{i}\left(\eta_{q}\right)\right), \\
\overline{\sigma_{u}}: z \mapsto \sigma u \sigma^{-1}(z)=\rho_{\eta}(\sigma) u \rho_{\eta}(\sigma)^{-1}(z)=\rho_{\eta}(\sigma) \bar{u} \rho_{\eta}(\sigma)^{-1}(z) .
\end{gathered}
$$

In other words, for each $\bar{u} \in R$

$$
\rho_{\eta}(\sigma) \bar{u} \rho_{\eta}(\sigma)^{-1} \in R \forall \sigma \in \operatorname{Gal}(K) .
$$

This proves that R is $\operatorname{Gal}(K)$-normal.
Remark 5.6. (i) Extending i by \mathbb{Q}-linearity, we get a \mathbb{Q}-algebra embedding

$$
E=O_{E} \otimes \mathbb{Q} \rightarrow \operatorname{End}(Z) \otimes \mathbb{Q}=: \operatorname{End}^{0}(Z), u \otimes c \mapsto c u \forall u \in O, c \in \mathbb{Q}
$$

that we continue to denote by i. Clearly, $\mathbf{i}(E)$ coincides with the \mathbb{Q}-subalgebra $\mathbb{Q}[\boldsymbol{\delta}]$ of $\operatorname{End}^{0}(Z)$ generated by δ_{q}. Clearly, $\mathbf{i}: E \rightarrow \mathbb{Q}[\boldsymbol{\delta}]$ is a field isomorphism of number fields, and $\mathbf{i}\left(O_{E}\right)$ is the ring of integers in the number field $\mathbb{Q}[\delta]$.
(ii) Let us consider the \mathbb{Q}-subalgebra

$$
\mathcal{H}=\Lambda \otimes \mathbb{Q} \subset \operatorname{End}(Z) \otimes \mathbb{Q}=\operatorname{End}^{0}(Z)
$$

Then the center of \mathcal{H} contains $\mathbf{i}(O) \otimes \mathbb{Q}=\mathbb{Q}[\boldsymbol{\delta}]$. In other words, \mathcal{H} is a $\mathbb{Q}[\boldsymbol{\delta}]$-algebra of finite dimension.
(iii) We have

$$
\begin{equation*}
\Lambda=\mathcal{H} \cap \operatorname{End}(Z) \tag{23}
\end{equation*}
$$

where the intersection is taken in $\operatorname{End}^{0}(Z)$. (Here we identify $\operatorname{End}(Z)$ with $\operatorname{End}(Z) \otimes 1$ in $\left.\operatorname{End}^{0}(Z).\right)$ Indeed, the inclusion $\Lambda \subset \mathcal{H} \cap \operatorname{End}(Z)$ is obvious. Conversely, suppose that $u \in$ $\mathcal{H} \cap \operatorname{End}(Z)$. Then $u \in \operatorname{End}(Z)$ and $m u \in \Lambda$ for some positive integer m. This means that

$$
(m u) \boldsymbol{\delta}=\boldsymbol{\delta}(m u)
$$

which means that $m(u \boldsymbol{\delta}-\boldsymbol{\delta} u)=0$ in $\operatorname{End}(Z)$. It follows that $u \boldsymbol{\delta}-\boldsymbol{\delta} u=0$, i.e., $u \in \Lambda$. It follows that $\mathcal{H} \cap \operatorname{End}(Z) \subset \Lambda$, which ends the proof of (23).
Proposition 5.7. (i) If the $\operatorname{Gal}(K)$-module $\operatorname{ker} \mathbf{i}\left(\eta_{q}\right)$ is central simple then \mathcal{H} is a central simple $\mathbb{Q}[\boldsymbol{\delta}]$-algebra.
(ii) If the $\operatorname{Gal}(K)$-module $\operatorname{ker} \mathbf{i}\left(\eta_{q}\right)$ is very simple then either

$$
\mathcal{H}=\Lambda \otimes \mathbb{Q}=\mathbf{i}(E)=\mathbb{Q}[\boldsymbol{\delta}], \Lambda=\mathbf{i}\left(O_{E}\right)=\mathbb{Z}[\boldsymbol{\delta}]
$$

or $\mathcal{H}=\Lambda \otimes \mathbb{Q}$ is a central simple $\mathbb{Q}[\boldsymbol{\delta}]$-algebra, whose dimension is the square of $2 \operatorname{dim}(Z) /[E: \mathbb{Q}]=2 g / \phi(q)$.

Proof. (i) The central simplicity implies that the $\operatorname{Gal}(K)$-normal subalgebra

$$
R=\kappa(\Lambda / \eta \Lambda) \cong \Lambda / \eta \Lambda
$$

is a central simple \mathbb{F}_{p}-algebra and therefore is isomorphic to the matrix algebra $\operatorname{Mat}_{d}\left(\mathbb{F}_{p}\right)$ of a certain size d. Applying Lemma 2.3 to $O=\mathbf{i}\left(O_{E}\right)$, the maximal ideal $\mathfrak{m}=\mathbf{i}\left(\eta_{q} O_{E}\right)$ and the residue field $k=\mathbb{F}_{p}$, we conclude that \mathcal{H} is a central simple $\mathbb{Q}\left[\delta_{q}\right]$-algebra.
(ii) The very simplicity implies that either $\Lambda / \eta_{q} \Lambda=\mathbb{F}_{p}$ or

$$
\Lambda / \eta \Lambda \cong \operatorname{End}_{\mathbb{F}_{p}}\left(\operatorname{ker} \mathbf{i}\left(\eta_{q}\right)\right) \cong \operatorname{Mat}_{h_{E}}\left(\mathbb{F}_{p}\right)
$$

In the latter case, Lemma 2.3 tells us that \mathcal{H} is a central simple $\mathbb{Q}[\boldsymbol{\delta}]$-algebra of dimension h_{E}^{2}.

In the former case, Lemma 2.3 tells us that \mathcal{H} is a central simple $\mathbb{Q}[\boldsymbol{\delta}]$-algebra of dimension 1, i.e., $\mathcal{H}=\mathbb{Q}[\boldsymbol{\delta}]$. Hence,

$$
\mathbb{Z}[\boldsymbol{\delta}] \subset \Lambda \subset \mathbb{Q}[\boldsymbol{\delta}] .
$$

Since $\mathbb{Z}[\boldsymbol{\delta}] \cong \mathbb{Z}\left[\zeta_{q}\right]$ is integrally closed and Λ is a free \mathbb{Z}-module of finite rank, $\mathbb{Z}[\boldsymbol{\delta}]=\Lambda$.

6. Cyclic covers and Jacobians

Hereafter we fix an odd prime p.
Let us assume that K is a subfield of \mathbb{C}. We write K_{a} for the algebraic closure of K in \mathbb{C} and write $\operatorname{Gal}(K)$ for the absolute Galois group $\operatorname{Aut}\left(K_{a} / K\right)$. We also fix in K_{a} a primitive p th root of unity $\zeta=\zeta_{p}$.

Let $f(x) \in K[x]$ be a separable polynomial of degree $n \geq 4$. We write \mathfrak{R}_{f} for the n-element set of its roots and denote by $L=L_{f}=$ $K\left(\Re_{f}\right) \subset K_{a}$ the corresponding splitting field of $f(x)$. As usual, the Galois group $\operatorname{Gal}(L / K)$ is called the Galois group of f and denoted by $\operatorname{Gal}(f)$. Clearly, $\operatorname{Gal}(f)$ permutes elements of \mathfrak{R}_{f} and the natural map of $\operatorname{Gal}(f)$ into the group $\operatorname{Perm}\left(\mathfrak{R}_{f}\right)$ of all permutations of \Re_{f} is an embedding. We will identify $\operatorname{Gal}(f)$ with its image and consider it as the certain permutation group of \mathfrak{R}_{f}. Clearly, $\operatorname{Gal}(f)$ is transitive if and only if f is irreducible in $K[x]$. Therefore the $\operatorname{Gal}(f)$-module $\left(\mathbb{F}_{p}^{\mathfrak{\Re}_{f}}\right)^{00}$ is defined. The canonical surjection

$$
\operatorname{Gal}(K) \rightarrow \operatorname{Gal}(f)
$$

provides $\left(\mathbb{F}_{p}^{\mathfrak{R}_{f}}\right)^{00}$ with the canonical structure of the $\operatorname{Gal}(K)$-module via the composition

$$
\operatorname{Gal}(K) \rightarrow \operatorname{Gal}(f) \subset \operatorname{Perm}\left(\mathfrak{R}_{f}\right) \subset \operatorname{Aut}\left(\left(\mathbb{F}_{p}^{\mathfrak{\Re}_{f}}\right)^{00}\right) .
$$

Let us put

$$
\begin{equation*}
V_{f, p}:=\left(\mathbb{F}_{p}^{\Re_{f}}\right)^{00} . \tag{24}
\end{equation*}
$$

Let $C=C_{f, p}$ be the smooth projective model of the smooth affine K-curve

$$
y^{p}=f(x) .
$$

The genus

$$
g=g(C)=g\left(C_{f, p}\right)
$$

of C is $(p-1)(n-1) / 2$ if p does not divide p and $(p-1)(n-2) / 2$ if it does ([16], pp. 401-402, [30], Prop. 1 on p. 3359, [21], p. 148).

Assume that K contains ζ. There is a non-trivial biregular automorphism of C

$$
\delta_{p}:(x, y) \mapsto(x, \zeta y) .
$$

Clearly, δ_{p}^{p} is the identity selfmap of C.
Let

$$
J^{(f, p)}:=J(C)=J\left(C_{f, p}\right)
$$

be the Jacobian of C. It is a g-dimensional abelian variety defined over K and one may view δ_{p} as an element of

$$
\operatorname{Aut}(C) \subset \operatorname{Aut}(J(C)) \subset \operatorname{End}(J(C))
$$

such that

$$
\delta_{p} \neq \mathrm{Id}, \quad \delta_{p}^{p}=\mathrm{Id}
$$

where Id is the identity endomorphism of $J(C)$. Here $\operatorname{End}(J(C))$ stands for the ring of all K_{a}-endomorphisms of $J(C)$. As usual, we write
$\operatorname{End}^{0}(J(C))=\operatorname{End}^{0}\left(J^{(f, p)}\right)$ for the corresponding \mathbb{Q}-algebra $\operatorname{End}(J(C)) \otimes$ \mathbb{Q}.

Recall (4) that there is a ring embedding

$$
\mathbf{i}_{p, f}: \mathbb{Z}\left[\zeta_{p}\right] \cong \mathbb{Z}\left[\delta_{p}\right] \subset \operatorname{End}\left(J^{(f, p)}\right), \zeta_{p} \mapsto \delta_{p}
$$

Let us put

$$
\begin{equation*}
J^{(f, p)}\left(\eta_{p}\right)=: \operatorname{ker}\left(\mathbf{i}_{p, f}\left(\eta_{p}\right)\right) \subset J^{(f, p)}\left(K_{a}\right) \tag{25}
\end{equation*}
$$

where $\eta_{p}=1-\zeta_{p} \in \mathbb{Z}\left[\delta_{p}\right]$ (Section 5).
Remark 6.1. Let

$$
\Lambda:=\operatorname{End}_{\delta_{p}}\left(J^{(f, p)}\right)
$$

be the centralizer of δ_{p} in $\operatorname{End}\left(J^{(f, p)}\right)$. Clearly,

$$
\mathcal{H}:=\Lambda \otimes \mathbb{Q} \subset \operatorname{End}\left(J^{(f, p)}\right) \otimes \mathbb{Q} \subset \operatorname{End}^{0}\left(J^{(f, p)}\right)
$$

is the centralizer of $\mathbb{Q}\left[\delta_{p}\right]$ in $\operatorname{End}^{0}\left(J^{(f, p)}\right)$.
Theorem 6.2 (Prop. 6.2 in [21], Prop. 3.2 in [23]). There is a canonical isomorphism of the $\operatorname{Gal}(K)$-modules

$$
J^{(f, p)}\left(\eta_{p}\right) \cong V_{f, p}
$$

Remark 6.3. Clearly, the natural homomorphism $\operatorname{Gal}(K) \rightarrow \operatorname{Aut}_{\mathbb{F}_{p}}\left(V_{f, p}\right)$ coincides with the composition

$$
\operatorname{Gal}(K) \rightarrow \operatorname{Gal}(f) \subset \operatorname{Perm}\left(\Re_{f}\right) \subset \operatorname{Aut}\left(\left(\mathbb{F}_{p}^{\Re_{f}}\right)^{00}\right)=\operatorname{Aut}_{\mathbb{F}_{p}}\left(V_{f, p}\right) .
$$

Corollary 6.4. (i) If the $\operatorname{Gal}(f)$-module $V_{f, p}$ is central simple then the $\operatorname{Gal}(K)$-module $J^{(f, p)}\left(\eta_{p}\right)$ is central simple and $\mathcal{H}=\Lambda \otimes \mathbb{Q}$ is a central simple $\mathbb{Q}\left[\delta_{p}\right]$-algebra.
(ii) If the $\operatorname{Gal}(f)$-module $V_{f, p}$ is very simple then the $\operatorname{Gal}(K)$-module $J^{(f, p)}\left(\eta_{p}\right)$ is very simple and either $\Lambda=\mathbf{i}(O)$ or $\mathcal{H}=\Lambda \otimes \mathbb{Q}$ is a central simple $\mathbb{Q}\left[\delta_{p}\right]$-algebra, whose dimension is the square of $2 \operatorname{dim}\left(J^{(f, p)}\right) /(p-1)$.
Proof. It follows from Remark 4.2(ii) combined with Theorem 6.2 that if the $\operatorname{Gal}(f)$-module $V_{f, p}$ is central simple (resp. very simple) then the $\operatorname{Gal}(K)$-module $J^{(f, p)}\left(\eta_{p}\right)$ (defined in (25)) is central simple (resp. very simple). Now the desired result follows readily from Proposition 5.7 applied to $Z=J^{(f, p)}, q=p$, and $\mathbf{i}=\mathbf{i}_{p, f}$.

The following assertion was proven in [37, Th. 3.6].
Theorem 6.5. Suppose that $n \geq 4$. Assume that $\mathbb{Q}\left[\delta_{p}\right]$ is a maximal commutative subalgebra of $\operatorname{End}^{0}\left(J^{(f, p)}\right)$.

Then $\operatorname{End}^{0}\left(J^{(f, p)}\right)=\mathbb{Q}\left[\delta_{p}\right] \cong \mathbb{Q}\left(\zeta_{p}\right)$ and therefore $\operatorname{End}\left(J^{(f, p)}\right)=$ $\mathbb{Z}\left[\delta_{p}\right] \cong \mathbb{Z}\left[\zeta_{p}\right]$.
Theorem 6.6. Let p be an odd prime and $\zeta \in K$. Suppose that the $\operatorname{Gal}(f)$-module $\left(\mathbb{F}_{p}^{\mathfrak{R}_{f}}\right)^{00}$ enjoys one of the following properties.
(i) The $\operatorname{Gal}(f)$-module $V_{f, p}=\left(\mathbb{F}_{p}^{\mathfrak{R}_{f}}\right)^{00}$ is very simple.
(ii) The $\operatorname{Gal}(f)$-module $V_{f, p}=\left(\mathbb{F}_{p}^{\Re_{f}}\right)^{00}$ is central simple. In addition, either $n=p+1$, or $n-1$ is not divisible by p.
Then $\operatorname{End}^{0}\left(J^{(f, p)}\right)=\mathbb{Q}\left[\delta_{p}\right]$ and $\operatorname{End}\left(J^{(f, p)}\right)=\mathbb{Z}\left[\delta_{p}\right]$.
Proof of Theorem 6.6. In light of Theorem 6.5, it suffices to check that $\mathbb{Q}\left[\delta_{p}\right]$ coincides with its own centralizer in $\operatorname{End}^{0}\left(J^{(f, p)}\right)$. Recall that $J^{(f, p)}$ is a g-dimensional abelian variety defined over K.

The properties of the $\operatorname{Gal}(f)$-module $\left(\mathbb{F}_{p}^{\mathfrak{R}_{f}}\right)^{00}$ and the integers n, p imply (thanks to Remark 4.2(ii)) that either the $\operatorname{Gal}(K)$-module $J^{(f, p)}\left(\eta_{p}\right)$ is very simple, or the following conditions hold.
(a) The $\operatorname{Gal}(K)$-module $J^{(f, p)}\left(\eta_{p}\right)$ is central simple.
(b) Either $n=p+1$, or $n-1$ is not divisible by p.

In all the cases the normal \mathbb{F}_{p}-subalgebra $R \cong \Lambda / \eta_{p} \Lambda$ is isomorphic to the matrix algebra $\operatorname{Mat}_{d}\left(\mathbb{F}_{p}\right)$ for some positive integer d.

Applying Corollary 5.7, we conclude that $\mathcal{H}=\Lambda_{\mathbb{Q}}=\Lambda \otimes \mathbb{Q}$ is a central simple $\mathbb{Q}\left[\delta_{p}\right]$-algebra of dimension d^{2} for some positive integer d. In addition, if the $\operatorname{Gal}(K)$-module $J^{(f, p)}\left(\eta_{p}\right)$ is very simple, then either

$$
d=1, \mathcal{H}=\mathbb{Q}\left[\delta_{p}\right], \Lambda=\mathbb{Z}\left[\delta_{p}\right]
$$

or

$$
d=2 g /(p-1)
$$

According to Remark 2.2(vi), $d \neq 2 g /(p-1)$. So, in the very simple case $\mathcal{H}=\mathbb{Q}\left[\delta_{p}\right], \Lambda=\mathbb{Z}\left[\delta_{p}\right]$.

Now suppose that $J^{(f, p)}\left(\eta_{p}\right)$ is not very simple. Then either $n=p+1$ or $n-1$ is not divisible by p. It follows from Remark 2.2 (iv) that $d=1$. This implies that $H=\mathbb{Q}\left[\delta_{p}\right]$. Therefore

$$
\mathbb{Z}\left[\delta_{p}\right] \subset \Lambda \subset \mathbb{Q}\left[\delta_{p}\right] .
$$

This implies that $\Lambda=\mathbb{Z}\left[\delta_{p}\right]$ and therefore the centralizer of $\mathbb{Q}\left[\delta_{p}\right]$ in $\operatorname{End}^{0}\left(J^{(f, p)}\right)$ coincides with $\Lambda \otimes \mathbb{Q}=\mathbb{Q}\left[\delta_{p}\right]$.

Theorem 6.7. Let $n \geq 5$ be an integer, p an odd prime, and K contains a primitive pth root of unity. Let us put $N:=n-1$ if p does not divide n and $N:=n-2$ if $p \mid n$. Suppose that the Galois group $\operatorname{Gal}(f)$ of $f(x)$ contains a subgroup H such that the representation of H in $\left(\mathbb{F}_{p}^{\Re_{f}}\right)^{00}$ is absolutely irreducible. Assume additionally that
(i) the index of every maximal subgroup of H does not divide N.
(ii) Either $n=p+1$, or $n-1$ is not divisible by p.

Then $\operatorname{End}^{0}\left(J^{(f, p)}\right)=\mathbb{Q}\left[\delta_{p}\right]$ and $\operatorname{End}\left(J^{(f, p)}\right)=\mathbb{Z}\left[\delta_{p}\right]$.

Proof of Theorem 6.7. Enlarging K if necessary, we may and will assume that $H=\operatorname{Gal}(f)$. It follows from Proposition 4.4 that the absolutely simple H-module $\left(\mathbb{F}_{p}^{\mathfrak{R}_{f}}\right)^{00}$ is central simple. Applying Theorem 6.6, we conclude that $\operatorname{End}^{0}\left(J^{(f, p)}\right)=\mathbb{Q}\left[\delta_{p}\right]$ and $\operatorname{End}\left(J^{(f, p)}\right)=\mathbb{Z}\left[\delta_{p}\right]$.

Remark 6.8. See [5, Sect. 7.7] and [17] for the list of doubly transitive permutation groups $H \subset \operatorname{Perm}(B)$ and primes p such that the H module $\left(\mathbb{F}_{p}^{B}\right)^{00}$ is (absolutely) simple. (See also [22, Sect. 4], [4, Main Theorem] and [15].)

7. Jacobians of cyclic covers of prime degree p

Proof of Theorem 1.2. Enlarging K if necessary, we may and will assume that

$$
H=\operatorname{Gal}(f) \subset \operatorname{Perm}\left(\Re_{f}\right) .
$$

Since $p>n$, the prime p divides neither n nor $n-1$. In particular,

$$
\left(\mathbb{F}_{p}^{\Re_{f}}\right)^{00}=\left(\mathbb{F}_{p}^{\Re_{f}}\right)^{0}
$$

In light of Remark 3.1 applied to $B=\mathfrak{R}_{f}$ and $G=H$, the double transitivity of H implies that the H-module $\left(\mathbb{F}_{p}^{\mathfrak{R}_{f}}\right)^{0}$ is absolutely simple. Now the desired result follows readily from Theorem 6.7.

Proof of Theorem 1.3. Assume that $n \geq 5$ and $\operatorname{Gal}(f)=\operatorname{Perm}\left(\mathfrak{R}_{f}\right)$ or $\operatorname{Alt}\left(\Re_{f}\right)$. Enlarging K if necessary, we may assume that $\operatorname{Gal}(f)=$ $\operatorname{Alt}\left(\Re_{f}\right)$. Taking into account that $\operatorname{Alt}\left(\Re_{f}\right)$ is non-abelian simple while the field extension $K(\zeta) / K$ is abelian, we conclude that the Galois group of f over $K(\zeta)$ is also $\operatorname{Alt}\left(\mathfrak{R}_{f}\right)$. (In particular, $f(x)$ remains irreducible over $K(\zeta)$.) So, in the course of the proof of Theorem 1.3, we may assume that $\zeta \in K$ and $\operatorname{Gal}(f)=\operatorname{Alt}\left(\mathfrak{R}_{f}\right)$.

It is well known that the index of every maximal subgroup of $\operatorname{Alt}\left(\mathfrak{R}_{f}\right) \cong$ \mathbf{A}_{n} is at least n; notice that

$$
n>N=\operatorname{dim}_{\mathbb{F}_{p}}\left(V_{f, p}\right)=\operatorname{dim}_{\mathbb{F}_{p}}\left(\left(\mathbb{F}_{p}^{B}\right)^{00}\right)
$$

(Recall that $N=n-1$ or $n-2$.) By Theorem 4.7(iv), the $\operatorname{Gal}(f)$ module $V_{f, p}=\left(\mathbb{F}_{p}^{B}\right)^{00}$ is central simple. It is very simple if either $n>5$ or $p \leq 5$, thanks to Theorem 4.7(ii). On the other hand, if $n=5$ and $p>5$ then $n-1$ is not divisible by p. Now the desired result follows readily from Theorem 6.6.

Proof of Theorem 1.6. Since \mathbf{M}_{n}, HS and Co_{3} are simple nonabelian groups, replacing K by $K(\zeta)$, we may and will assume that $\zeta \in K$. Now the desired result follows readily from Theorem 6.7 combined with Theorem 4.9 and Proposition 4.10.

Proof of Theorem 1.8. Enlarging K, we may assume that $\operatorname{Gal}(f)=$ $H \cong \mathfrak{G}(\mathfrak{q})$. Since $\mathfrak{G}(\mathfrak{q})$ is a simple nonabelian group, replacing K by $K(\zeta)$, we may and will assume that $\zeta \in K$. In light of [17, Table 1], our conditions on H and p imply that the H-module $V_{f, p}$ is absolutely simple.

Case L2. It follows from Theorem 4.11 that the $\operatorname{Gal}(f)$-module $\left(\mathbb{F}_{p}^{\mathfrak{K}_{f}}\right)^{00}=V_{f, p}$ is central simple.

On the other hand, if $n-1$ is divisible by p then $p=\ell$, because $n-1=(\mathfrak{q}+1)-1=\mathfrak{q}$ which is a power of the prime number ℓ. Hence, our assumptions imply that $n=\mathfrak{q}+1=p+1$. So, either $n-1$ is not divisible by p or $n=p+1$. Now we may apply Theorem 6.6 , which gives us $\operatorname{End}^{0}\left(J^{(f, p)}\right)=\mathbb{Q}\left[\delta_{p}\right]$ and $\operatorname{End}\left(J^{(f, p)}\right)=\mathbb{Z}\left[\delta_{p}\right]$.

Case Lmq. It follows from a result of Guralnick and Tiep [9, Th. 1.1] that every nontrivial projective representation of $\operatorname{Gal}(f)=H=$ $\mathrm{L}_{m}(\mathfrak{q})$ in characteristic p has dimension $\geq \operatorname{dim}_{\mathbb{F}_{p}}\left(V_{f, p}\right)$. In light of [35, Cor. 5.4], the $\operatorname{Gal}(f)$-module $V_{f, p}$ is very simple. Now the desired result follows readily from Theorem 6.7.

Case U3. It follows readily from the Mitchell's list of maximal subgroups of $\mathrm{U}_{3}(\mathfrak{q})$ ([10, p. 212-213], [8, Th. 6.5 .3 and its proof, pp. 329-332] that the index of every maximal subgroup of $U_{3}(\mathfrak{q})$ is greater or equal than

$$
\mathfrak{q}^{3}+1=n>N
$$

where $N=\operatorname{dim}_{\mathbb{F}_{p}}\left(V_{f, p}\right)$ is either $n-1=\mathfrak{q}^{3}$ or $n-2=\mathfrak{q}^{3}-1$. On the other hand, $n-1=q^{3}$ is a power of the prime ℓ and therefore is not divisible by the prime p, since $\ell \neq p$. Now the desired result follows readily from Theorem 6.7.

Case $\mathbf{S z}$. It follows from the classification of subgroups of $\mathrm{Sz}(\mathfrak{q})$ [11, Remark 3.12(e) on p. 194] that every maximal subgroup of $\mathrm{Sz}(\mathfrak{q})$ has index $\geq \mathfrak{q}^{2}+1=n$. Since $n-1=\mathfrak{q}^{2}$ is a power of 2 , the odd prime p does not divide $n-1$. Now the desired result follows readily from Theorem 6.7.

Case Ree. Our conditions on p imply that $p \neq 3$. Since $n-1=\mathfrak{q}^{2}$ is a power of 3 , the prime p does not divide $n-1$. It follows from the classification of subgroups of $\operatorname{Ree}(\mathfrak{q})$ [14, Th. C] that every maximal subgroup of $\operatorname{Sz}(\mathfrak{q})$ has index $\geq \mathfrak{q}^{3}+1=n$. (See also [6, Remark 5.4].) Now the desired result follows readily from Theorem 6.7.

8. Jacobians of cyclic covers of degree q

In this section we discuss the case when $q=p^{r}>2$ where r is any positive integer, K is a subfield of \mathbb{C} and $f(x) \in K[x]$ a degree n polynomial without repeated roots. We assume that $n \geq 5$ and either $q \mid n$ or p does not divide n. Let $J\left(C_{f, q}\right)$ be the Jacobian of the curve $C_{f, q}$ and δ_{q} the automorphism of $J\left(C_{f, q}\right)$, whicch are defined in the beginning of Section 1.

Remark 8.1. One may define a positive-dimensional abelian subvariety

$$
J^{(f, q)}:=\mathcal{P}_{q / p}\left(\delta_{q}\right)\left(J\left(C_{f, q}\right)\right)
$$

of $J\left(C_{f, q}\right)$ [34, p. 355] that is defined over $K\left(\zeta_{q}\right)$ and enjoys the following properties [34] (see also [39]).
(i) If $q=p$ then $J^{(f, p)}=J\left(C_{f, p}\right)$ (as above).
(ii) $J^{(f, q)}$ is defined over $K\left(\zeta_{q}\right)$.
(iii) $J^{(f, q)}$ is a δ_{q}-invariant abelian subvariety of $J\left(C_{f, q}\right)$. In addition $\Phi_{q}\left(\delta_{q}\right)\left(J^{(f, q)}\right)=0$ where

$$
\Phi_{q}(t)=\sum_{i=0}^{p-1} t^{i p^{r-1}} \in \mathbb{Z}[t]
$$

is the q th cyclotomic polynomial. This gives rise to the ring embedding

$$
\mathbf{j}_{q, f}: \mathbb{Z}\left[\zeta_{q}\right] \hookrightarrow \operatorname{End}\left(J^{(f, q)}\right)
$$

under which ζ_{q} goes to to the restriction of δ_{q} to $J^{(f, q)}$, which we denote by $\boldsymbol{\delta}_{q} \in \operatorname{End}\left(J^{(f, q)}\right)$. Then the subring $\mathbb{Z}\left[\boldsymbol{\delta}_{q}\right]$ of $\operatorname{End}\left(J^{(f, q)}\right)$ is isomorphic to $\mathbb{Z}\left[\zeta_{q}\right]$ (via $\left.\mathbf{j}_{q, f}\right)$, and the \mathbb{Q}-subalgebra $\mathbb{Q}\left[\boldsymbol{\delta}_{q}\right]$ of $\operatorname{End}^{0}\left(J^{(f, q)}\right)$ is isomorphic to $\mathbb{Q}\left(\zeta_{q}\right)$.
(iv) If p does not divide n then there is an isogeny of abelian varieties

$$
J\left(C_{f, q}\right) \rightarrow J\left(C_{f, q / p}\right) \times J^{(f, q)}
$$

that is defined over $K\left(\zeta_{q}\right)$. (Notice that $q / p=p^{r-1}$, so $J\left(C_{f, q / p}\right)=$ $J\left(C_{f, p^{r-1}}\right)$.) By induction, this gives us an isogeny of abelian varieties

$$
J\left(C_{f, q}\right) \rightarrow J\left(C_{f, p}\right) \times \prod_{i=2}^{r} J^{\left(f, r^{i}\right)}=\prod_{i=1}^{r} J^{\left(f, r^{i}\right)}
$$

that is also defined over $K\left(\zeta_{q}\right)$ [34, Cor. 4.12].
(v) Suppose that $\zeta_{q} \in K$. Then the $\operatorname{Gal}(K)$-submodule $\operatorname{ker}\left(\mathbf{1}-\boldsymbol{\delta}_{q}\right)$ of $J^{(f, q)}\left(K_{a}\right)$ is isomorphic to $V_{f, p}$. (See [34, Lemma 4.11], [39, Th. 9.1].) In particular, $\operatorname{ker}\left(\mathbf{1}-\boldsymbol{\delta}_{q}\right)$ is a N-dimensional vector space over \mathbb{F}_{p} where
$-N=n-1$ if p does not divide n;
$-N=n-2$ if p divides n and q divides n.
(Here 1 stands for the identity automorphism of $J^{(f, q)}$.)
(vii) Let us consider the action of the subfield $\mathbb{Q}\left[\boldsymbol{\delta}_{q}\right]$ of $\operatorname{End}^{0}\left(J^{(f, q)}\right)$ on $\Omega^{1}\left(J^{(f, q)}\right)$. Let $i<q$ be a positive integer that is not divisible by p and $\sigma_{i}: \mathbb{Q}\left[\boldsymbol{\delta}_{q}\right] \hookrightarrow \mathbb{C}$ be the field embedding that sends $\boldsymbol{\delta}_{q}$ to ζ_{q}^{-i}. Clearly,

$$
\Omega^{1}\left(J^{(f, q)}\right)=\oplus_{i} \Omega^{1}\left(J^{(f, q)}\right)_{\sigma_{i}}
$$

where $\Omega^{1}\left(J^{(f, q)}\right)_{\sigma_{i}}$ are the corresponding weight subspaces (see Section 2). Let us consider the nonnegative integers

$$
n_{\sigma_{i}}:=\operatorname{dim}_{\mathbb{C}}\left(\Omega^{1}\left(J^{(f, q)}\right)_{\sigma_{i}}\right) .
$$

(1) If p does not divide n then

$$
n_{\sigma_{i}}=\left[\frac{n i}{q}\right]
$$

[34, Remark 4.13]. In addition, the number of i with $n_{\sigma_{i}} \neq$ 0 is strictly greater than

$$
\frac{(p-1) p^{r-1}}{2}=\frac{\phi(q)}{2}=\frac{\left[\mathbb{Q}\left[\boldsymbol{\delta}_{q}\right]: \mathbb{Q}\right]}{2}
$$

[34, p. 357-358]).
(2) If p is odd and q divides n then the GCD of all $n_{\sigma_{i}}$'s is 1 [39, Lemma 8.1(D].
(3) If p is an odd prime that does not divide n, and either $n=q+1$ or $n-1$ is not divisible by q, then n the GCD of all $n_{\sigma_{i}}$'s is 1 [39, Lemma 8.1(D].
(viii) If p is odd and $\mathbb{Q}\left[\boldsymbol{\delta}_{q}\right]$ is a maximal commutative subalgebra of $\operatorname{End}^{0}\left(J^{(f, q)}\right)$ then

$$
\operatorname{End}^{0}\left(J^{(f, q)}\right)=\mathbb{Q}\left[\boldsymbol{\delta}_{q}\right], \operatorname{End}\left(J^{(f, q)}\right)=\mathbb{Z}\left[\boldsymbol{\delta}_{q}\right]
$$

([34, Th. 4.16], [39, Th. 8.3]).
Theorem 8.2. Let $n \geq 5$ be an integer, p an odd prime, and K contains a primitive qth root of unity. Suppose that either p does not divide n or q divides n.

Let us put $N:=n-1$ if p does not divide n and $N:=n-2$ if $q \mid n$. Suppose that the Galois group $\operatorname{Gal}(f)$ of $f(x)$ contains a subgroup H such that the representation of H in $\left(\mathbb{F}_{p}^{\mathfrak{R}_{f}}\right)^{00}=V_{f, p}$ is absolutely irreducible. Assume additionally that the index of every maximal subgroup of H does not divide N and one of the following conditions holds.
(i) The representation of H in $\left(\mathbb{F}_{p}^{\Re_{f}}\right)^{00}=V_{f, p}$ is very simple.
(ii) Either p does not divide n and $n-1$ is not divisible by q, or $n=q+1$, or $q \mid n$.
Then $\operatorname{End}^{0}\left(J^{(f, q)}\right)=\mathbb{Q}\left[\boldsymbol{\delta}_{q}\right]$ and $\operatorname{End}\left(J^{(f, q)}\right)=\mathbb{Z}\left[\boldsymbol{\delta}_{q}\right]$. In particular, $J^{(f, q)}$ is an absolutely simple abelian variety.

Proof. Enlarging K if necessary, we may and will assume that $H=$ $\operatorname{Gal}(f)$. It follows from Proposition 4.4 that the absolutely simple H module $\left(\mathbb{F}_{p}^{\Re_{f}}\right)^{00}=V_{f, p}$ is central simple.

Recall (Remark 8.1(v)) that the $\operatorname{Gal}(K)$-module $\operatorname{ker}\left(1-\boldsymbol{\delta}_{q}\right)$ is isomorphic to $V_{f, p}$ and therefore is also central simple. In addition, it is very simple if and only if the H-module $V_{f, p}$ is very simple.

Let Λ be the centralizer of $\mathbb{Z}\left[\boldsymbol{\delta}_{q}\right]$ in $\operatorname{End}\left(J^{(f, q)}\right)$ and

$$
\mathcal{H}=\Lambda_{\mathbb{Q}}:=\Lambda \otimes \mathbb{Q}
$$

the centralizer of $\mathbb{Q}\left[\boldsymbol{\delta}_{q}\right]$ in $\operatorname{End}^{0}\left(J^{(f, q)}\right)$. Applying Proposition 5.7 to

$$
Z=J^{(f, q)}, E=\mathbb{Q}\left[\delta_{q}\right], \mathbf{i}=\mathbf{j}_{q, f}, O_{E}=\mathbb{Z}\left[\boldsymbol{\delta}_{q}\right],
$$

we conclude that $\mathcal{H}=\Lambda_{\mathbb{Q}}=\Lambda \otimes \mathbb{Q}$ is a central simple $\mathbb{Q}\left[\boldsymbol{\delta}_{q}\right]$-algebra of dimension d^{2} for some positive integer d.

In addition, if the $\operatorname{Gal}(K)$-module $\operatorname{ker}\left(1-\boldsymbol{\delta}_{q}\right)$ is very simple, then either

$$
d=1, \mathcal{H}=\mathbb{Q}\left[\boldsymbol{\delta}_{q}\right], \Lambda=\mathbb{Z}\left[\boldsymbol{\delta}_{q}\right]
$$

or

$$
d=N=\frac{2 g}{\phi(q)}=\operatorname{dim}_{\mathbb{F}_{p}}\left(V_{f, p}\right)
$$

where

$$
g=\operatorname{dim}\left(J^{(f, q)}\right), \phi(q)=\left[\mathbb{Q}\left(\zeta_{q}\right): \mathbb{Q}\right]=\left[\mathbb{Q}\left[\boldsymbol{\delta}_{q}\right]: \mathbb{Q}\right] .
$$

In light of Remark 8.1(i-ii) combined with Proposition 5.7(ii), $d \neq$ $2 g /\left[\mathbb{Q}\left[\boldsymbol{\delta}_{q}\right]: \mathbb{Q}\right]$. So, in the very simple case $\mathcal{H}=\mathbb{Q}\left[\boldsymbol{\delta}_{q}\right], \Lambda=\mathbb{Z}\left[\boldsymbol{\delta}_{q}\right]$.

Now suppose that $\operatorname{ker}\left(1-\boldsymbol{\delta}_{q}\right)$ is not very simple. Then $V_{p, f}$ is not very simple. This implies that either $n=q+1$, or p does not divide n and $n-1$ is not divisible by q or $q \mid n$. It follows from Proposition $5.7(\mathrm{i})$ combined with Remark 8.1(vii) that $d=1$. This implies that $\mathcal{H}=\mathbb{Q}\left[\boldsymbol{\delta}_{q}\right]$. Therefore

$$
\mathbb{Z}\left[\boldsymbol{\delta}_{q}\right] \subset \Lambda \subset \mathbb{Q}\left[\boldsymbol{\delta}_{q}\right] .
$$

This implies that $\Lambda=\mathbb{Z}\left[\boldsymbol{\delta}_{q}\right]$ and therefore $\mathcal{H}=\mathbb{Q}\left[\boldsymbol{\delta}_{q}\right]$ is a maximal commutative subalgebra of $\operatorname{End}^{0}\left(J^{(f, q)}\right)$ Now the desired result follows from Remark 2.2(viii).

Proof of Theorems 1.10 and 1.9. Enlarging K if necessary, we may assume that K contains a primitive q th root of unity, and

- $\operatorname{Gal}(f)=\operatorname{Alt}\left(\Re_{f}\right)=: H$ in the case of Theorem 1.10;
- $\operatorname{Gal}(f)=H$ in the case of Theorem 1.9.

It follows from Theorem 8.2 that $\operatorname{End}^{0}\left(J^{(f, q)}\right)=\mathbb{Q}\left[\boldsymbol{\delta}_{q}\right] \cong \mathbb{Q}\left(\zeta_{q}\right)$ and $J^{(f, q)}$ is an absolutely simple abelian variety for $q=p^{r}$ when r is any positive integer. This implies that for distinct positive integers i and j there are no nonzero homomorphisms between $J^{\left(f, p^{i}\right)}$ and $J^{\left(f, p^{i}\right)}$, because they are absolutely simple abelian varieties with non-isomorphic endomorphism algebras. This implies that the endomorphism algebra $\operatorname{End}^{0}(Y)$ of the product $Y:=\prod_{i=1}^{r} J^{\left(f, r^{i}\right)}$ is $\prod_{i=1}^{r} \mathbb{Q}\left(\zeta_{p^{i}}\right)$, whose \mathbb{Q}-dimension is $q-1$.

In light of Remark 8.1(iv), if p does not divide n then Y is isogenous to $J\left(C_{f, q}\right)$. It follows that $\operatorname{End}^{0}\left(J\left(C_{f, q}\right)\right)$ also has \mathbb{Q}-dimension $(q-1)$.

However, we know that the \mathbb{Q}-algebra $\operatorname{End}^{0}\left(J\left(C_{f, q}\right)\right)$ contains the \mathbb{Q} subalgebra $\mathbb{Q}\left[\delta_{q}\right]$ of \mathbb{Q}-dimension $(q-1)$, thanks to (3). This implies that

$$
\operatorname{End}^{0}\left(J\left(C_{f, q}\right)\right)=\mathbb{Q}\left[\delta_{q}\right] \cong \prod_{i=1}^{r} \mathbb{Q}\left(\zeta_{p^{i}}\right)
$$

This ends the proof of Theorem 1.9.
Let us finish the proof of Theorem 1.10, following [34, Remark 4.3 and Proof of Th. 5.2 on p. 360]. It remains to do the case when $q \mid n$, say, $n=q m$ for some positive integer m. Since the case $q=p$ was already covered by already proven Theorem 1.3, we may assume that $q \geq p^{2} \geq 9$ and therefore $n \geq 9$. Recall that $\operatorname{Gal}(f)=\operatorname{Alt}\left(\mathfrak{R}_{f}\right) \cong \mathbf{A}_{n}$. Let $\alpha \in K_{a}$ be a root of $f(x)$. Let us consider the overfield $K_{1}=K(\alpha)$ of K. We have $f(x)=(x-\alpha) f_{1}(x) \in K_{1}[x]$ where $f_{1}(x)$ is a degree $(n-1)$ irreducible polynomial over K_{1} with Galois group \mathbf{A}_{n-1}. Let us consider the polynomials

$$
h(x)=f_{1}(x+\alpha), h_{1}(x)=x^{n-1} \in K_{1}[x]
$$

of degree $n-1 \geq 9-1=8$. Notice that $n-1$ is not divisible by p and the Galois group of $h_{1}(x)$ over K_{1} is still \mathbf{A}_{n-1}. The standard substitution

$$
x_{1}=\frac{1}{x-\alpha}, y_{1}=\frac{y}{(x-\alpha)^{m}}
$$

establishes a birational isomorphisms between the curves $C_{f, q}$ and $C_{h_{1}, q}$ [30, p. 3359]. This implies that the Jacobians $J\left(C_{f, q}\right)$ and $J\left(C_{h_{1}, q}\right)$ are isomorphic and therefore their endomorphism algebras are also isomorphic. Applying to $J\left(C_{h_{1}, q}\right)$ the already proven part of Theorem 1.10, we conclude that the \mathbb{Q}-algebra $\operatorname{End}^{0}\left(J\left(C_{h_{1}, q}\right)\right)$ has \mathbb{Q}-dimension $(q-1)$. This implies that $\operatorname{End}^{0}\left(J\left(C_{f, q}\right)\right)$ also has \mathbb{Q}-dimension $q-1$. However, we know that $\operatorname{End}^{0}\left(J\left(C_{f, q}\right)\right)$ contains the \mathbb{Q}-subalgebra $\mathbb{Q}\left[\delta_{q}\right]$ of \mathbb{Q}-dimension $(q-1)(3)$. This implies that

$$
\operatorname{End}^{0}\left(J\left(C_{f, q}\right)\right)=\mathbb{Q}\left[\delta_{q}\right] \cong \prod_{i=1}^{r} \mathbb{Q}\left(\zeta_{p^{i}}\right)
$$

This ends the proof of Theorem 1.10.

References

[1] J. H. Conway, R. T. Curtis, S. P. Norton, R. A. Parker, R. A. Wilson, Atlas of finite groups. Clarendon Press, Oxford, 1985; https://brauer.maths.qmul.ac.uk/Atlas/v3/
[2] Ch. W. Curtis, I. Reiner, Representation theory of finite groups and associative algebras. Interscience Publishers, New York London 1962.
[3] H. K. Farahat, On the natural representation of the symmetric group. Proc. Glasgow Math. Association 5 (1961-62), 121-136.
[4] Ch. W. Curtis, W.M. Cantor, G.M. Seitz, The 2-transitive permutation representations of the finite Chevalley groups. Trans. Amer. Math. Soc. 218 (1976), 1-59.
[5] J.D. Dixon, B. Mortimer, Permutation groups. GTM 163, Springer-Verlag, New York, 1996.
[6] T. Eritsyan, Endomorphism rings and algebras of Jacobians of certain superelliptic curves. Ph.D. Thesis, Penn State, 2022.
[7] L. Dornhoff, Group Representation Theory, Part A. Marcel Dekker, Inc., New York, 1971.
[8] D. Gorenstein, R. Lyons, R. Solomon, The classification of the finite simple groups, Number 3. Mathematical Surveys and Monographs 40.3, AMS, Providence, RI, 1998.
[9] R. M. Guralnick, P.H. Tiep, Low-dimensional representations of special linear groups in cross characteristics. Proc. London Math. Soc. (3) 78 (1999), 116138.
[10] A. R. Hofer, On unitary collineation groups. J. Algebra 22 (1972), 211-218.
[11] B. Huppert, N. Blackburn, Finite groups III. Springer-Verlag, Berlin Heidelberg New York, 1982.
[12] G. Janusz, Simple components of $\mathbb{Q}[\operatorname{SL}(2, q)]$. Communications in Algebra 1:1 (1974), 1-22.
[13] M. Klemm, Über die Reduktion von Permutationsmoduln. Math. Z. 143:2 (1975), 113-117.
[14] P. B. Kleidman, The maximal subgroups of the Chevalley groups $\mathrm{G}_{2}(q)$ with q odd, the Ree groups ${ }^{2} \mathrm{G}_{2}(q)$, and their automorphism groups. J. Algebra 117 (1988), 30-71.
[15] A. Kleshchev, L. Morotti, Ph. H. Tiep, Irreducible restrictions of representations of symmetric and alternating groups in small characteristics. Advances in Math. 369 (2020), 107184, 66 pp.
[16] J. K. Koo, On holomorphic differentials of some algebraic function field of one variable over C. Bull. Austral. Math. Soc. 43 (1991), 399-405.
[17] B. Mortimer, The modular permutation representations of the known doubly transitive groups. Proc. London Math. Soc. (3) 41 (1980), 1-20.
[18] D. Mumford, Abelian varieties, Second edition. Oxford University Press, London, 1974.
[19] K. Ribet, Galois action on division points of Abelian varieties with real multiplications. Amer. J. Math. 98 (1976), 751-804.
[20] D. Passman, Permutation groups. W. A. Benjamin, Inc., New YorkAmsterdam, 1968.
[21] B. Poonen, E. Schaefer, Explicit descent for Jacobians of cyclic covers of the projective line. J. reine angew. Math. 488 (1997), 141-188.
[22] C.E. Praeger, L.H. Soicher, Low rank representations and graphs for sporadic groups. Cambridge University Press 1997.
[23] E. Schaefer, Computing a Selmer group of a Jacobian using functions on the curve. Math. Ann. 310 (1998), 447-471.
[24] J.-P. Serre, Points d'ordre fini des courbes elliptiques. Invent. Math. 15 (1972), 259-331.
[25] J.-P. Serre, Topics in Galois Theory. Jones and Bartlett Publishers, BostonLondon, 1992. 163-176;
[26] J.-P. Serre, Linear representations of finite groups. Springer-Verlag, 1977.
[27] G. Shimura, Abelian varieties with complex multiplication and modular functions. Princeton University Press, 1997.
[28] R. Steinberg, Lectures on Chevalley Groups. University Lecture Series 66. American Mathematical Society, Providence, RI, 2016.
[29] M. Suzuki, Group Theory I. Springer-Verlag, 1982.
[30] C. Towse, Weierstrass points on cyclic covers of the projective line. Trans. AMS 348 (1996), 3355-3377.
[31] A. Wagner, The faithful linear representations of least degree of \mathbf{S}_{n} and \mathbf{A}_{n} over a field of odd characteristic. Math. Z. 154 (1977), 103-114.
[32] L. Washington, Introduction to cyclotomic fields. GTM 83 (1997), Springer Verlag, New York, 1997.
[33] J. Xue, Endomorphism algebras of Jacobians of certain superelliptic curves. J. Number Theory 131 (2011), no. 2, 332-342.
[34] Yu. G. Zarhin, Hyperelliptic Jacobians and modular representations. In "Moduli of abelian varieties" (C. Faber, G. van der Geer, F. Oort, eds.). Progr. Math. 195 (2001), 473-490.
[35] Yu. G. Zarhin, Very simple 2-adic representations and hyperelliptic Jacobians. Moscow Math. J. 2:2 (2002), 403-431.
[36] Yu. G. Zarhin, Cyclic covers of the projective line, their Jacobians and endomorphisms. J. reine angew. Math. 544 (2002), 91-110.
[37] Yu. G. Zarhin, The endomorphism rings of cyclic covers of the projective line. Math. Proc. Cambridge Phil. Soc. 136:2 (2004), 257-267.
[38] Yu. G. Zarhin, Very simple representations: variations on a theme of Clifford, p. 151-168. In: Progress in Galois Theory (H. Voelklein and T. Shaska, eds), Springer Science + Business Media Inc., 2005.
[39] Yu. G. Zarhin, Endomorphism algebras of abelian varieties with special reference to superelliptic Jacobians. In: Geometry, Algebra, Number Theory, and their information technology applications, p. 477-528 (A. Akbary, S. Gun, eds). Springer Nature Switzerland AG, 2018.

Department of Mathematics, Pennsylvania State University, University Park, PA 16802, USA

Email address: zarhin@math.psu.edu

[^0]: ${ }^{1}$ See $[17,13]$ and Section 3 below for the definition of the heart.
 ${ }^{2}$ See $[34,38]$ and Section 4 below for the definition and basic properties of very simple representations.

[^1]: ${ }^{3}$ Recall that a simple $F[G]$-module V is called absolutely simple if the centralizer of G in $\operatorname{End}_{F}(V)$ coincides with F or equivalently the natural homomorphism $F[G] \rightarrow \operatorname{End}_{F}(V)$ of F-algebras is surjective.

