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We describe the "CW-tower of categories" which approximates the homo-
topy category CW/~ of connected CW-complexes with basepoints. The
CW-tower is an important new tool for the homotopy classification
problems:

(1) Classify the homotopy types of finite dimensional CW-complexes
by algebraic data!

{(2) Compute the homotopy classes of maps between finite dimensional
CW-complexes!

(3) Compute the group of homotopy equivalences of a finite
dimensional CW-complex!

A fundamental example for the solution of problem (1) is

J.H.C. Whitehead's classification of 1-connected 4-dimensicnal poly-
hedra [2]. Below we show that this result is a nice consequence of
the properties of the CW-tower. More generally we obtained solutions
of problem (1) (in particular, for 4-dimensional CW-complexes and for
1-connected 5-dimensional CW-complexes) which will appear elsewhere.
These results as well are derived from the CwWw-tower. The starting
point of this paper is J.H.C. Whitehead's "Combinatorial Homotopy".
In fact, many of Whitehead's results in [2],{3],[4] are consequences
of the CW-tower. In my book "Algebraic Homotopy" [1] various furthef
properties of the CW-tower are discussed, including all proofs.

The author would like to acknowledge the support of the "Max-Planck-

Institut fir Mathematik" in Bonn, and of the "Forschungsinstitut filr
Mathematik" at the ETH in Zirich. '

§ 1 The cellular chain complex of the universal covering

Let CW = ggs be the following category. Objects are CW-complexes X



with trivial O-skeleton X0 =% , where « 1s the basepcint of X,

and morphisms are cellular maps f : X —> Y. The skeleta of X are
denoted by X" and the map f 4is cellular if £(x7) <¥". In
particular the map f is basepoint preserving. Let I =1[0,1] be thé
unit interval which is a CW-complex with O-skeleton 1° ={0,1}.
Whence also the reduced cyclinder

(1.1) I,X= (IxX)/(Ix%)

is a CW-complex in CW. Let i, : X —> I,X be given by it(x) = (t,x)
for te€I, x€X. We call amap H : I.X —> Y a homotopy

H : HoatH1 with Ht:=Hit. We say that H : Hy 2 H, is a O0-homotopy
if He is cellular for all t€I and we call H : Hy & Hy a
1-homotopy if H is a cellular map. This yields the guotient functors

{1.2) CW—)Q_}_}[&—)- C=W/;:=C=W/m

for the corresponding homotopy categories. We now describe the chain

functor

A
(1.3) c, : gﬂ/g —> Chain

A
Z2

which carries X to the cellular chain complex of the universal
A

. A
covering p : X —> X. For each - X we fix a basepoint *€ X with

I
pl(x) =% . The covering space X is a CW-complex with n-skeleton
A
xn
A
cellularly from the right on X by covering transformations (denoted

A
by x }— %, o€m;x€X). Amap £ : ¥ —> X in CW induces a
A A =A
unique basepoint preserving covering maps £ : Y —> X (with

=p-1(xn). Moreover, the fundamental group T =ﬂ1(X) acts

A
pf = fp) which is ¢-equivariant, w==n4f), and which is cellular.
Let C,X with
" . on fn-1
(1.4) CX = H (X7,X )
be the cellular chain complex of X. This is a chain complex of free
A A A
right w-modules and f induces a y-equivariant chain map C,(f) =f,.
This leads to the definition of the following category .

(1.5) Definition: Objects in the category Chain; are pairs (7m,C)

where 7 1is a group and where C =(Cn,dn;n€Ex) is a chain complex
of right w-modules. Maps ({(¢,F) : (n',C'} —> (7m,C) are y-equivariant



chain maps F : c!' — C where @ : 7' —> 1 is a homomorphism. Two
such chain maps are homotopic (v,F) = {(¥,G), if. w=Y%Y and if there
exists a ¢-equivariant map a:C' —> C of degree +1 with

da +.ad = -F + G. The chain map (¢,F) is a weak equivalence if ¢ 1is
an isomorphism and if F  induces an isomorphism in homology.

A
Since we have basepoints 4, € X we know that

R .
(1.6) CoX = Z(n]

A
is the group ring of w. Moreover, £ induces

(1.7) @y Zin')] — Z7]

in degree 0 with w#[B]= (¢B]. Here [a)l €Z[7] denotes the generator
given by o« € 7. The isomorphism (1.6) carries the 0O-cell +* to the
unit {0] of the group ring.

We say that a chain complex (m,C) is n-realizable if there exists
a CW-complex X =X" in CW with e*xa (m,c™)  in Chaigg . ‘Here C"
denotes the n-skeleton of C given by Ci , 13n.

(1.8) Definition: Let chain be the following subcategory of Chaing.

Objects (m,C) are chain complexes which are 2-realizable and for
which €, n€Z, is a free m-module with Cj =Z[v]. Maps in chaip
are chain maps (¢,F) which coincide with w# in degree 0. Moreover,
two such maps are homotopic, (p,F) = (¥,G), if there exists a homotopy
a as in (1.5) with a(cy) =0.

A
Cy im (1:3) induces the commutative diagram of functors

A
gﬁ/g —93—+ chain

|° le
{1.9) A

cw/d —£* 5 chain/~

where p is a quotient functor. The following thecrems are classical
results of J.H.C. Whitehead. '

(1.70) Theorem: 4 map £ in 4 Is a homotopy equivalence in CW/= <f

A
and only if Cif <5 a weak equivalence.

Let ggn and chain” be the full subcategories of CW and chain



"
o’

respectively consisting gf objects of dimension
{1.11) Theorem: The functor

3* : C=Wz/u —_— gﬂlz/m
15 an equivalence of categories and the functor

e* : C___W.3/a« — @3/&:

i8 full. Moreover, each object in chain is 4-realizable.

We derive from (1.10) and (1.11)

{1.12) Corollary: Homotopy types of 3-dimensional CW-complexes in CW/~  are
1-1 corresponded to homotopy types in the category chaig3/a.

A
The corollary shows that the chain complex C, X of a 3-dimensional
CW-complex x==x3' determines the homotopy type of X. This is, however,

not true for 4-dimensional CW-complexes.

§ 2 Homotopy systems.

Let nz2 2. A homotopy system of order (n+1) is a triple

n
(2.1) (Cif,q X

where X" 1is an object in gﬂn and where (n1xn,C) is a chain-complex
" =2
which coincides with C*xn in degree & n. Moreover, f

is a
n+1
homorphism of right w-modules for which the following diagram commutes
fn+1 n
C — T (X)
n+1 n
a /3
(1)
h .
C. = (xP X"
n 3 n

Here d 1is the boundary in C and

- - An Ano An An-
(2) hy o+ om (xPxPTh) B (kP X2 s ow (k7 X0TT)



is given by the Hurewicz isomorphism h. In addition fn+1 satisfies

the cocycle condition

(3) d(c ) =0 .

n+i n+2

A map between homotopy systems of order (n+ 1) 1s a pair (§,n),
(4) (E,1) : (C,E . X)) —> (C'hq , .Y,

with the following properties. The map n : " — Y is a morphism
in Qﬂig and § : C — C' 1is a ﬂ1(n)—equivariant chain map which
- A
coincicdes with C,{(n) in degree S n and for which the following
diagram commutes:
En+1

> 1
s Cn+t

(3) £ . g

n+1 n+t

n n
T X -__..._).TrY
n x n

Let §§+1 be the category of homotopy systems of order (n'+1) and

of such maps. Clearly composition is defined by (&,n) (E,n) = (EE,nn).
We have obvious functors, nz 2, -

c c
(2.2) CW — H > H > chain
= To =n+1 A =n C

A .
with C)\rn+1 = C, and ;rn+1 =r.. Cleirly r,,q carries the CW-complex
X to roeX= {C,fn+1,x ) where C=C_X and where fn+1 is the
composition

. n+1 .n ] n
(1) £eq ¢ Chei Foq X X)) = nn(x ) .

Here we use the isomorphism hn+1 in (2.1)(2). Moreover, C in (2.2)
is the forgetful functor which carries (C,fn,xn-i) to (n1xn,C).
Let Zn be the set ©of n-cells in X. Then we know that

(2.3) c =9 Z[r]
zn



is the free m-module generated by 2,. The map fn carries the
generator x€Z  to £ (x) Enh_1(xn‘1). Here f_(x) corresponds to
the attaching map of the cell x. Whence we can choose a map

(2.4) £ ..V s 5 x!

2n

{determined up to homotopy by fn above)} such that the mapping cone

Cg is homotopy equivalent to x" (under Xn-1). This gives us the
coaction ’
(2.5) . p: X" —x"v LV s"
n
which 1lnduces the action
(2.6) (x®, vl xex",y) =5 [x7,v) .

The set [U,V] denotes the set of homcotopy classes U «— V in
CW/= and E(x",¥) is the abelian group

(1) E(X",Y)

[V s?,y]
Z

n
(2)

Homw(Cn.nnY) .
Here o : u1x ——a_n1Y is any homorphism of groups and Homw denotes
the abelian group of w-equivariant homorphisms; the isomorphism (2)
is given by (2.3). The action (2.6) is defined by F+a=p*(F,a) .
We now are ready to define the homotopy relation, = , in the

c

category §n+1 . s

(2.7) Definition: Let

(&,n), (E',n") : (len+1:xn) I (C'rgn+1:Yn)
be maps in §§+1 . We set (E,n)=(g',n") |1if w1(n) = n1(n') = @

C_‘)'C' ’

and 1f there exist y-equivariant homomorphisms aj+1 : j 3+1

j 2 n, such that

(a) {n}+qn+1 a 41 = {n'}l and

(b) Ei - Ek = akd + da kzn+ 1.

k1!



The action + in (a) is defined in {(2.6) above; {n} denotes the

homotopy class of n in [x",v%]. Wwe call o : (E,n)=(£',n') a

. C
homotopy in §n+1

-~

One can check that this homotopy relation is a natural equivalence
relation and that the functors in (2.2) induce functors between
homotopy categories (nz2 2)

(2.8) W/ > S, /~ —p> HS/x —z> chain/e
(2.9) Theorem: The functor
C : H —> chain
1g¢ full and the functor
C : Hy/~ —> chain/=
18 an equivalence of categories.
A similar result was obtained by J.H.C. Whitehead for.the category of

"crossed chain complexes" which he called "homotopy systems"”. Theorem
(2.9) is a consequence of (VI, 5.13), (VI., 4.9) in [1]

§ 3 The obstruction

We :use the groups Fn which were introduced by J.H.C. Whitehead. Let
X be a CW-complex in CW and let

n-1

(3.1) I, (X) = image(n (X" ') —> nn(x“))

be the group given by the inclusion Xn-T c x" of skeleta. Clearly

”sz = 0 since nz(x1) = 0. Moreover, for nz3 the group Fn(X) is
a n1(x)—module which is embedded in the “certain exact sequence" of
w1(X)-modules

. h
A b n A
{(3.2) —> H X —> an 1> X —> HX— .
Here hn<=h(p*)-1 is defined by the Hurewicz homomorphism, see (2.1) (2}.

The map j is induced by the inclusion X" cX and b 1is the



"secondary boundary" for which the diagram

b
Hn+1ﬁ > T X
(3.3) $- . .
n+1 —_— 7 X
H X S Cpei Eoig n

commutes, see (2.2)(1). The sequence (3.2) is natural for maps in

CW/~. We point out that for an object X = (C,fn,xn-1) in gg the
group rn(x) in (3.1) as well is defined by choosing X" as in (2.4).
Let o : n1(X) —> m' be a homomorphism and let T be a right w'-mo-

dule, then we obtain the cohomology groups
A .
(3.4) H' (X,0*T) = H'Hom,(C,T)

A
where C = C,X and where Homw(c,r) is the cochains complex of
g-equivariant homomorphisms Cn —> [ , n€Z. The cohomology groups

(3.4) are defined as well if X 1is an object in gﬁ .
(3.5) Proposition: Let X,Y be objects in §g+1 and let
(E,n) : AX — AY be a map in gi with w:=ﬂ1(n). Then an element

An+1 *
OX'Y(E,n)E H (X,0*T Y)

is defined such that O, ,(€,n) = 0 if and only if there exists a map
— ’ —
(M) : X —> Y in H- . with A(§,7) = (&,n). '

7

We define the obstruction OX,Y(E’n} in (3.5) as follows. Since
(¢,n}) 1is a map in gﬁ we can choose a map F: x" — ¥" in
cw/& which extends n and for which C,F coincides with £ in
degree S n. The diagram

]
Cav1 T Caw

n+1
(1) fn+1l, Jgn+1



needs not to be commutative. The difference

(2) O(F) = =9nuqbpner * Fufpeq -

maps C, ., to FnY < nnYn and this difference is a cocycle in
Homw(Cn+1,PnY). The obstruction

(3) OX'Y(E,H) = {0(F)}

is the cohomology class represented by the cocycle O(F). This class
does not depend on the choice of F in (1).

(3.6) Proposition: Let (£,n)={£',n') be a homotoéy in gg . Then
the obstructions

= ' '
ox’Yts,n) ox,ytg ')
coincide.

(3.7) Proposition: The obstruction has the "derivation property", that

is
Oy z LE/M (E,n)) = B*O, o (E,n) + n,0y ,(E,7)
where (£,n) : AX —> AY, (E,X) : AY —> AZ.

Moreover the obstruction yields an action on the set of realizations,
To this end we define ’

(3.8) Definition: Let A : A —s B be a functor and let B be an
object in B. We consider all pairs (A,b) where A 1is an object
in A and where b : AA s B is an isomorphism in B. We define an

equivalence relation ~ on such pairs by

(A,b) ~ (A',b") == {3 g : A%A in 2
with Alg) = b 'b' .

Let RealX(B) be the set of all such equivalence classes. We denote
by {A,b} the equivalence class of (A,b), often A 4is sufficient
notation for {A,b}. We call {A,b} a realization of B.




{(3.9) Proposition: Let B be an object in gi/q and let

A gg+1/m —_ ag/u be the functor in (2.8). Then the group
A = 2
Hn+1(B,FnB) acts transitively and effectively on the set RealA(B)

provided this set is non empty.

A
For Xy € Real, (B) and aEEHn+1(B,FnB} we denote the action in (3.7)
by Xo-ka. In fact, we have X = x0-+a if and only if

(3.10} Ox,x0(1B} =a .

Here 1.4 is the identity of B and X,XOEZReaJA(B).
- 7 - - *

(3.11) Oyiq,y+g &M — Op y(&yn) =n,a = £*8 .

This shows that this difference corresponds to an "inner derivation”.
These properties of the obstruction © 1lead to the notion of a

"linear covering of categories", compare (IV, §4) in [1].

§ 4 The action

Let X,Y be CW-complexes in CW or let X,Y be objects in g; and
let @ : 7 X —> MY be a homomorphism. We denote by (X,Y]® the set
of all morphisms Xg — Y, in gi/u where X, and Y, are the

images of X and Y respectively in the category §§ ;, nSm., Here we

use the functors in (2.2). Moreover,

2

(4.1) [X,Y]g c [x,¥1"

denotes the subset of all morphisms which induce ¢ on fundamental
groups. This subset can be empty. The functor 'A yields the function

n+1

(4.2) A [X,Y]w

n
> [X'Y]w .

(4.3) Proposition: There is an action (denoted by +) of the group

A

Hn(x,w*FnY) on the set [X,Y]$+1 such that the following "exactness

property” is satisfied. For f£,g€ [x,y]-g” we have Af=Ag if and
A .

only if there exists a€ Hn(x,w*rnY) with g = £ + «.

-10~



We défine the action as follows. Let (§,n) : X — ¥ be a map in

A
§§+1 which induces w='n1(n). Moreover, let {c&.GHn(x,w*FnY) be

a class represented by the cocycle
(1) GEHomw(Cn,I‘n(Y)) .

Then we obtain by i : Pn(Y) < ﬁnYn the composition 1o such that
n+ia=p*(n,ia) is defined by p in (2.5). Here n+io 1is a
well defined map in g@/g . We now set

(2) {(tg,m} + {a}={(E,n+ia)} .

Here {(§,n)} denotes the homotopy class of (&,n) in §§+{/“ .

The action {(2) is well defined and it has the properties in (4.3).

(4.4) Remark: The isotropy groups of the action (4.3) can be computed
by use of a spectral sequence compare (VI. 5.16) in [1].

(4.5) Proposition: The action {4.3) satisfies the following "linear
distributivity law". For gEL[X,Y]$+1, f € [Y,Z]$+1 we have the

formula

(f+a)(g+B) = fg + (£,8+g*a) .

These properties of the action (4.3) lead to the notion of a

"linear extension of categories", compare (IV. 3.2) in [1].

i

§ 5 The CW~tower of categories

For a category K let F(K) be the "category of factorizations" in

K . Objects in F(X) are the morphisms in K and morphisms

(¢,B} : £ —> g 1in are the commutative diagrams
A .L.). Al
£] Tq
]
B <—'B—'—" B
in K . Hence «afB=g is a factorization of g. Composition is defined
by (a',8"'}(a,B) = (a'a,BB"). We call a functor from F(K) to the

-11=-



category Ab of abelian groups a natural system on K. For example

. we have the natural system

m c
(5.1) H'T + F(HS/=) —> Ab

which carries the object £ : X —> Y +to the abelian group
BT (£) = HO(X,@*T_Y)
n : 9"

where w=‘n1(f). We say that

n + c A c 0 n+1
(5.2) H rn _— Hn+1/= —_ Hn/m — H Fn

is an exact sequence for the functor XA in (2.8) since an obstruction

operator ©O and an action + with all the properties in § 3 and § 4
are given. Whence we have a collection of exact sequences (nz2 3) which
form the following diagram.

{5.3) CW/ e

lA
gg/c‘ —2)- H4P

~ lc

chain/e

3

We call such a diagram a "tower of categories"”, in particular, this
diagram is the CW-tower of categqories which approximates the homotopy
category of finite dimensional CW-complexes in CW/e.

-12=



Let X,Y be CW-complexes in CW and let ¢ : m,X —> 7.Y be a

1 1

homomorphism. As in (4.1) we have the subset
(5.4) [X,Y]w c [X,Y]

of all maps {n} : X —> Y in CW/~ with = (n) = . Similarly,
let '

(5.5) [C,C'](p < [c,C']

be the set of all {£} : C —> C' in chain/~ which induce ¢. Then
the CW-tower yields the following diagram of exact sequences of sets.

{5.6) [X,Y]w

|

A :
H“(x,w*rny) 5 [X,Y)
lx

n O An+1
[X'Y]w —> H (X,0*T_Y)

;

3 o + T4
B (X,0%T3Y) —> [X,¥]]

n+1
'

A

Y

4
[x,Ylg 5wt (x,00r,v)

) C

Y

A A
[C,X,Ch¥]y

We have kernel {0} = image(A} and we have A(f}) = A(g) if and only
if there exists o with g = £+ a. Moreover, the definition of gg
yields the

(5.7) Proposition: Let X = XN, then

n
r, [X,Y]w — [X,Ylw

is bijective for n = N+ 1 and is surjective for n =N.

-13-



Next we derive from the CW-tower a structure theorem for the group of
homotopy equivalence. For a CW-complex X in CW let

{5.8) Aut (X)* < [X,X]

be the group of homotopy equivalences of X in gg/u. Moreover, let

Aut (C) be the group of homotopy equivalences of € 1in the category

gggin/m and let

(5.9) E (X) (x,x1", =nz23,

be the group of equivalences of r X in gg/u. Then the CW-tower
yields the following tower of groups where the arrows O denote deri-
vations and where all the other arrows are homomorphisms between groups.

(5.10)
Aut (X) *
+

4

B (X, T B (X
H (XI nX) I n+1 )

A
Hn+1(x,m*rnx)

.. el

A3 17

lx
A
E, (X) O, H4(X,w*P3X)
©EA
ﬁle
A
Aut (C_X)

l

Aut(v1x) = A

Here we define the obstructien © by the obstruction 0 in (5.6) and
we define 17 by the action in (5.6), namely 1"(a) = 1 + o where 1
is the identity. The linear distributivity law in (4.5) shows that 17

is a homomorphism of groups. Moreover we have the exactness image (*) =
kernel (A) and image(A) = kernel(0). The isomorphism C is

-14-



given by (2.9). As in (5.8) we get

(5.11) Proposition: Let X = XN, then

. *
rn : Aut (X)* —> En(x)
is an isomorphism for n = N+1 and is an epimorphism for n = N.
The kernel of 1% can be computed by a spectral sequence, compare
(4.4). There are many applications of the CW-tower for the homotopy

classification problems. The following result is immediate.

(5.12) Theorem: Let X,Y be objects in CW and let X. be finite dimensional.
Assume that

A
(*) Hp{x,w*FnY) =0

A
for p=n,n+1, nz3, cpEHom(Tr1X,Tr1Y) . Then the functor C, ytelds the
bijection of sets ' :

A P A A

C, : [X,¥Y] —— [C,X,C,Y] .
Agsume that (*) holds for X =Y then

A a A

Ce ¢ Aut(X)* — Aut (C X}
18 an tsomorphiem of groups.

This theorem is a special‘'case of (VI. 6.15) in [1].

§ 6 On the classification of 4-dimensional homotopy types

We first recall that for X in CW we have a natural isomorphism
6 _ _ A
(6.1) F3(X) = F(HZX) = F(Hzx)

of ﬂ1(X)-modules. Here T is the guadratic functor of J.H.C. Whitehead
[3]. We derive from the exact sequence (3.2) the natural
isomorphisms

-15-



b J
(6.2) He (K(A,2)) = T(A) = 7 (M(A,2))

where X(A,2) and M{A,2) denote the Eilenberg-Mac Lane space and
the Moore-space respectively of the abelian group A. We now . consider
the functor '

A 4 4
{6.3) CA = C, : CW /e —> chain /= .
By (1.11), (2.9), and (3.9) we know

(6.4) Theorem: For C 1in chain4 the set Reach {(C) ts non empty and the group
A .
H4(C,I‘(52C)) acts transitively and effectively on this set

Moreover, we derive from (3.5), (3.6) and (2.9) the result

(6.5} Theorem: Let X,Y be CW-complexes in’ g‘q' and let {@,E} : é*x — é*y
l/;\e a map in cnain4/m. Then there exists amap (F} : X —> Y in CW/= with
C.{F} = {o,&} <f and only if the obstruction '

(9,6} € 8% (x,0*r (1,9
OX,Y ©,61 € H (X,0*T (H,Y))
vantshes.

In my talk in Louvain la Neuve I described algebraic models of
4-dimensional CW-complexes which allow a formula for the obstruction
in (6.5). This, in fact, ylelds the homotopy classification of
4-dimensional CW-~complexes. We now consider for simplicity 1-connected
4-dimensional CW-complexes. In this case we obtain by (6.4) and (6.5)
a classical result of J.H.C. Whitehead [2], see (6.9).

(6.6) Definition: Let F—seguggce4 be the following category. Objects
are the exact sequences

S=(H4——>-F(H2)—>TI’ —>H3—>~0)

3

of abelian groups where Hy is free abelian. A morphism £ : § — S'°
is a triple £ = (f4,f3,f2) of homorphisms fi : Hi R Hi .for which
there exists a homorphism ¢ such that the diagram

-16-—



commutes.

Let ;_gqq. be the full subcategory of c=w4 consisting of CW-complexes
X with X' = *, By (3.2) and (6.1) we obtain the functor

4 4
(6.7) I's : rCW /= —> TI'-gequence

which carries the CW-complex X to the exact sequence
by
{6.8) HyX —> P(H2X) —_— 113)_{ —> HyX —> 0

A
where Hix is the homoleogy of X = X. This sequence is natural in X
and whence the functor TS is well defined.

Fellowing J.H.C. Whitehead we define the following conditions on a
functor p : A —> B.

{a) Sufficiencv: For objects A,A' in A a morphism o« : A —>» A'

is an equivalence if and only if pa : pA —> pA' is an equivalence
in B.

{b) Realizability: The functor p 1s full and for each object B on

B there is an object A in A together with an equivalence pA = B
in B.

We say that p is a detecting functor if p rsat‘isfies both the

sufficiency and the realizability conditions.
(6.9) Theorem: The functor IS <n (6.7) is a detecting functor.
(6.10) Corollary: Homotopy types of l-connected d4-dimensional CW-complexzes

are - 1= 1 corresponded to isomorphism classes of exact sequences in the category
I- <seguence4 above.
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(6.11) Proof of theorem (6.8): Let ¢ chain4 -be the full subcategory
{r,C) with =w=0 and C1 =0. -

of chaigzr consisting of objects
Whence objects in ¢ chgin4 are given by chain complexes of free

abelian groups
(1) c=(C, — C3 — C,)

i<2. Let C,C' be two such chain complexes

with Ci='-0 for 1i>4,
H,=H,C, H, = H,C. Then we have the short exact

with homology groups

sequence

(2) ®  Ext(H;,H! .) > [C,C'] —>> Hom(H, H})
i=2,3
is the set of homotopy classes of chaih-maps. Moreover,

where [C,C']
the short exact sequence’

we have foran abelian group T

Ext(H3,F) >—é¢ Hq(C,P) NS Hom(H4,F).

(3)
For T =T(H,C) we have the function
(4) b4 : RealCA(C) —_— Hom(H4,F)

X

X to the secondary boundary b4 , Ssee

which carries the realization
(6.8). From (3.3) we derive
(5) b, (X+a) = b, (X) + pla)

p in (3). Since

where we use the action in (6.4) and where we use
1s surjective, this implies that b4 in (4) is surjective. For

b€ Hom(H4,F) we thus have the function
(6) T s b:‘(b) —>  Ext (Hy,cok (b))

which carries X with b,(X) =b to the extension {n3x} given

by the short exact sequence
(7) cok (b) > T3X —>> H,

in (6.8). The function 1w satisfies
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(8) T(X+A(B)) = m(X) + g,B

where BE€ Ext(HB,F). Again we use {6.4) and (3) and gq : I —> cok(b)
is the quotient map. Since q 1is surjective, also g, in (8) is
surjective and whence 1w in (6) is surjective. Surjectivity of (6)

and (4) shows that the functor TIS satisfies the realizability condi-
tion for objects. We now show that the functor TS is full. Let

£f S = I'S(X) —_ I'sS(Y) = S' be a map in F-seguegce4 and iet c = C,.X,
C' = C,Y be the cellular chain complexes. By (2) we know that there

is a chain map § : C —» C' which induces £f in homology. For the
obstruction (6.5) and for p in (3) one readily gets '

(9) BOX’Y(C) = bpf, - T(£,)b, =.0
This element is trivial since £ makes the diagram in (6.6)
commutative. Whence by (3) the element '

-1 . .
(10) A Ox’Y(E) €Ext(H3,I‘H2)

is defined. For q' : FHé — cok(b&) we get

(11) g™’

ox,Y(E) = fg{v3x} = [{fy)  {m¥} =0

where we use the elements given by (7). The element (11) again is trivial
since the diagram in (6.6) commutes. Finally we obtain for a¢€ Ext(H3,H&)
the formula.

(12) OX'Y(i-Fa) = OX’Y(E) + A(bj,a).
Now the sequence
bl . ql
4* *
(13) Ext(H3,H&) —_— Ext(HB,PHé) —_— Ext(HB,cok b&)

is exact. Whence by (11) we can choose a with

' _ a1
(14) (b) o =870, L (E)

Therefore (12) shows

(15) 0 - ia) =0

X,Y(E
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and thus by {6.5) there exists a realization F : X —> Y with

{e*F} = {g§-ia}. Here & - ia induces £ in homology, whence we.get
' TS(F) = f. This completes the proof that IS satisfies the
realizability condition. By the Whitehead theorem (1.10) the functor
IS satisfies the sufficiency condition.

In (IX. § 4) of my book [1] we show that the "same proof" as above
yields as well the classification of certain R-local spaces (R<= (@) as
well as the classification of certain chain algebras.
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