COMBINATORIAL HOMOTOPY

by

Hans Joachim Baues

Max-Planck-Institut für Mathematik Gottfried-Claren-Str. 26 D-5300 Bonn 3

MPI 86-61

COMBINATORIAL HOMOTOPY

Hans Joachim Baues Max-Planck-Institut für Mathematik Gottfried-Claren-Str. 26 D-5300 Bonn 3

We describe the "CW-tower of categories" which approximates the homotopy category \underline{CW}/\simeq of connected CW-complexes with basepoints. The CW-tower is an important new tool for the homotopy classification problems:

- (1) Classify the homotopy types of finite dimensional CW-complexes by algebraic data!
- (2) Compute the homotopy classes of maps between finite dimensional CW-complexes!
- (3) Compute the group of homotopy equivalences of a finite dimensional CW-complex!

A fundamental example for the solution of problem (1) is J.H.C. Whitehead's classification of 1-connected 4-dimensional polyhedra [2]. Below we show that this result is a nice consequence of the properties of the CW-tower. More generally we obtained solutions of problem (1) (in particular, for 4-dimensional CW-complexes and for 1-connected 5-dimensional CW-complexes) which will appear elsewhere. These results as well are derived from the CW-tower. The starting point of this paper is J.H.C. Whitehead's "Combinatorial Homotopy". In fact, many of Whitehead's results in [2],[3],[4] are consequences of the CW-tower. In my book "Algebraic Homotopy" [1] various further properties of the CW-tower are discussed, including all proofs.

The author would like to acknowledge the support of the "Max-Planck-Institut für Mathematik" in Bonn, and of the "Forschungsinstitut für Mathematik" at the ETH in Zürich.

§ 1 The cellular chain complex of the universal covering

Let $\underline{CW} = \underline{CW}_0^*$ be the following category. Objects are CW-complexes X

with trivial 0-skeleton $X^0 = *$, where * is the basepoint of X, and morphisms are cellular maps $f : X \longrightarrow Y$. The skeleta of X are denoted by X^n and the map f is cellular if $f(X^n) \subset Y^n$. In particular the map f is basepoint preserving. Let I = [0,1] be the unit interval which is a CW-complex with 0-skeleton $I^0 = \{0,1\}$. Whence also the reduced cyclinder

(1.1)
$$I_{\star}X = (I \times X) / (I \times \star)$$

is a CW-complex in \underline{CW} . Let $i_t : X \longrightarrow I_*X$ be given by $i_t(x) = (t,x)$ for $t \in I$, $x \in X$. We call a map $H : I_*X \longrightarrow Y$ a homotopy $H : H_0 \simeq H_1$ with $H_t = Hi_t$. We say that $H : H_0 \stackrel{0}{\simeq} H_1$ is a <u>0-homotopy</u> if H_t is cellular for all $t \in I$ and we call $H : H_0 \stackrel{1}{\simeq} H_1$ a <u>1-homotopy</u> if H is a cellular map. This yields the quotient functors

$$(1.2) \qquad \underline{CW} \longrightarrow \underline{CW}/\underline{a} \longrightarrow \underline{CW}/\underline{a} = \underline{CW}/\underline{a}$$

for the corresponding homotopy categories. We now describe the <u>chain</u> <u>functor</u>

$$(1.3) \qquad \stackrel{\sim}{C_{\star}} : \underline{CW}/\overset{0}{\simeq} \longrightarrow \underline{Chain}_{\mathbf{z}}^{\wedge}$$

which carries X to the cellular chain complex of the universal covering $p: \hat{X} \longrightarrow X$. For each X we fix a basepoint $* \in \hat{X}$ with p(*) = *. The covering space \hat{X} is a CW-complex with n-skeleton $\hat{X}^n = p^{-1}(X^n)$. Moreover, the fundamental group $\pi = \pi_1(X)$ acts cellularly from the right on \hat{X} by covering transformations (denoted by $x \longmapsto x^{\alpha}, \alpha \in \pi; x \in \hat{X}$). A map $f: Y \longrightarrow X$ in <u>CW</u> induces a unique basepoint preserving covering maps $\hat{f}: \hat{Y} \longrightarrow \hat{X}$ (with $p\hat{f} = fp$) which is φ -equivariant, $\varphi = \pi_1(f)$, and which is cellular. Let $\hat{C}_* X$ with

(1.4)
$$\hat{C}_{n} x = H_{n}^{+} (x^{n}, x^{n-1})$$

be the cellular chain complex of \hat{X} . This is a chain complex of free right π -modules and \hat{f} induces a φ -equivariant chain map $\hat{C}_{*}(f) = \hat{f}_{*}$. This leads to the definition of the following category.

(1.5) <u>Definition</u>: Objects in the <u>category Chain</u> are pairs (π, C) where π is a group and where $C = (C_n, d_n; n \in \mathbb{Z})$ is a chain complex of right π -modules. Maps $(\phi, F) : (\pi', C') \longrightarrow (\pi, C)$ are ϕ -equivariant

chain maps $F : C' \longrightarrow C$ where $\varphi : \pi' \longrightarrow \pi$ is a homomorphism. Two such chain maps are <u>homotopic</u> $(\varphi, F) = (\Psi, G)$, if $\varphi = \Psi$ and if there exists a φ -equivariant map $\alpha: C' \longrightarrow C$ of degree +1 with $d\alpha + \alpha d = -F + G$. The chain map (φ, F) is a <u>weak equivalence</u> if φ is an isomorphism and if F induces an isomorphism in homology.

Since we have basepoints $\star \in \hat{X}$ we know that

(1.6) $\hat{C}_{0}^{X} = \mathbf{Z}[\pi]$

is the group ring of π . Moreover, \hat{f} induces

(1.7)
$$\varphi_{\mu} : \mathbb{Z}[\pi'] \longrightarrow \mathbb{Z}[\pi]$$

in degree 0 with $\varphi_{\#}[\beta] = [\varphi\beta]$. Here $[\alpha] \in \mathbb{Z}[\pi]$ denotes the generator given by $\alpha \in \pi$. The isomorphism (1.6) carries the 0-cell * to the unit [0] of the group ring.

We say that a chain complex (π, C) is n-<u>realizable</u> if there exists a CW-complex $X = X^n$ in <u>CW</u> with $\hat{C}_*X \cong (\pi, C^n)$ in <u>Chain</u> \hat{C}_* . Here C^n denotes the n-skeleton of C given by C, , i \leq n.

(1.8) <u>Definition</u>: Let <u>chain</u> be the following subcategory of <u>Chain</u>^{\wedge}. Objects (π ,C) are chain complexes which are 2-realizable and for which C_n, n $\in \mathbb{Z}$, is a free π -module with C₀ = $\mathbb{Z}[\pi]$. Maps in <u>chain</u> are chain maps (φ ,F) which coincide with $\varphi_{\#}$ in degree 0. Moreover, two such maps are homotopic, (φ ,F) \simeq (Ψ ,G), if there exists a homotopy α as in (1.5) with α (C₀') = 0.

 \hat{C}_{\star} in (1:3) induces the commutative diagram of functors

(1.9) $\frac{\underline{CW}}{2} \xrightarrow{\hat{C}_{\star}} \underline{chain} \\ \downarrow p \qquad \qquad \downarrow p \\ \underline{CW}/\frac{1}{2} \xrightarrow{\hat{C}_{\star}} \underline{chain}/2$

where p is a quotient functor. The following theorems are classical results of J.H.C. Whitehead.

(1.10) <u>Theorem</u>: A map f in <u>CM</u> is a homotopy equivalence in <u>CM</u>/ \simeq if and only if $\hat{C}_{\star}f$ is a weak equivalence.

Let \underline{CW}^n and \underline{chain}^n be the full subcategories of \underline{CW} and \underline{chain}

-3-

respectively consisting of objects of dimension ≤ n.

(1.11) Theorem: The functor

$$\hat{c}_{\star} : \underline{CW}^2 / \simeq \longrightarrow \underline{Chain}^2 / \simeq$$

is an equivalence of categories and the functor

 $\hat{c}_{\star} : \underline{CW}^3 / \simeq \longrightarrow \underline{chain}^3 / \simeq$

is full. Moreover, each object in chain is 4-realizable.

We derive from (1.10) and (1.11)

(1.12) Corollary: Homotopy types of 3-dimensional CW-complexes in \underline{CW}/\simeq are 1-1 corresponded to homotopy types in the category $chain^{3}/\simeq$.

The corollary shows that the chain complex $\hat{C}_{\star}X$ of a 3-dimensional CW-complex $X = X^3$ determines the homotopy type of X. This is, however, not true for 4-dimensional CW-complexes.

§ 2 Homotopy systems

Let $n \ge 2$. A homotopy system of order (n + 1) is a triple

(2.1)
$$(C, f_{n+1}, X^{n})$$

C,

where X^n is an object in \underline{CW}^n and where $(\pi_1 X^n, C)$ is a chain-complex which coincides with $\hat{C}_{\star} X^n$ in degree $\leq n$. Moreover, f_{n+1} is a homorphism of right π -modules for which the following diagram commutes

(1)

$$\begin{array}{ccc} c_{n+1} & \xrightarrow{f_{n+1}} \pi_n(x^n) \\ \downarrow & & \downarrow j \\ c_n & \xleftarrow{h_n}{\cong} \pi_n(x^n, x^{n-1}) \end{array}$$

Here d is the boundary in C and

(2)
$$h_n : \pi_n(x^n, x^{n-1}) \xrightarrow{\mathbb{P}_{\star}^{-1}} \pi_n(\hat{x}^n, \hat{x}^{n-1}) \xrightarrow{h} H_n(\hat{x}^n, \hat{x}^{n-1})$$

is given by the Hurewicz isomorphism h. In addition f_{n+1} satisfies the cocycle condition

(3)
$$f_{n+1}d(C_{n+2}) = 0$$

A map between homotopy systems of order (n + 1) is a pair (ξ, η) ,

(4)
$$(\xi,\eta) : (C,f_{n+1},X^n) \longrightarrow (C',g_{n+1},Y^n) ,$$

with the following properties. The map $\eta : X^n \longrightarrow Y^n$ is a morphism in $\underline{CW}/\underline{^{0}}$ and $\xi : C \longrightarrow C'$ is a $\pi_1(\eta)$ -equivariant chain map which coincides with $\hat{C}_{\star}(\eta)$ in degree $\leq n$ and for which the following diagram commutes:

(5)
$$C_{n+1} \xrightarrow{\xi_{n+1}} C'_{n+1} \\ \downarrow_{f_{n+1}} \\ \pi_n X^n \xrightarrow{\eta_{\star}} \pi_n Y^n$$

Let \underline{H}_{n+1}^{C} be the <u>category of homotopy systems of order (n + 1)</u> and of such maps. Clearly composition is defined by $(\xi, n) (\overline{\xi}, \overline{n}) = (\xi \overline{\xi}, n \overline{n})$. We have obvious functors, $n \ge 2$,

(2.2)
$$\underbrace{CW}_{n+1} \xrightarrow{r_{n+1}} \overset{H^{c}}{=} \overset{\longrightarrow}{n+1} \xrightarrow{\lambda} \overset{H^{c}}{=} \overset{\longrightarrow}{n} \overset{chain}{\subset} \overset{chain}{\longrightarrow}$$

with $C\lambda r_{n+1} = \hat{C}_{\star}$ and $\lambda r_{n+1} = r_n$. Clearly r_{n+1} carries the CW-complex X to $r_{n+1}X = (C, f_{n+1}, X^n)$ where $C = \hat{C}_{\star}X$ and where f_{n+1} is the composition

(1)
$$f_{n+1} : C_{n+1} \cong \pi_{n+1} (X^{n+1}, X^n) \xrightarrow{\partial} \pi_n (X^n) .$$

Here we use the isomorphism h_{n+1} in (2.1)(2). Moreover, C in (2.2). is the forgetful functor which carries (C,f_n,Xⁿ⁻¹) to ($\pi_1 X^n$,C).

Let Z_n be the set of n-cells in X. Then we know that

 $(2.3) \qquad C_n = \bigoplus_{Z_n} \mathbb{Z}[\pi]$

-5-

is the free π -module generated by Z_n . The map f_n carries the generator $x \in Z_n$ to $f_n(x) \in \pi_{n-1}(x^{n-1})$. Here $f_n(x)$ corresponds to the attaching map of the cell x. Whence we can choose a map

(2.4)
$$f: \bigvee S^{n-1} \longrightarrow X^{n-1}$$

(determined up to homotopy by f_n above) such that the mapping cone C_f is homotopy equivalent to x^n (under x^{n-1}). This gives us the coaction

$$(2.5) \qquad \mu : x^n \longrightarrow x^n \lor {}_{Z_n}^{\vee} S^n$$

which induces the action

$$(2.6) \qquad [x^n, Y] \times E(x^n, Y) \xrightarrow{+} [x^n, Y]$$

The set [U,V] denotes the set of homotopy classes $U \longrightarrow V$ in \underline{CW}/\simeq and $E(X^n, Y)$ is the abelian group

(1)
$$E(X^{n}, Y) = [\bigvee_{Z_{n}} S^{n}, Y]$$

(2) =
$$\operatorname{Hom}_{\varphi}(C_n, \pi_n Y)$$
.

Here $\varphi : \pi_1 X \longrightarrow \pi_1 Y$ is any homorphism of groups and $\operatorname{Hom}_{\varphi}$ denotes the abelian group of φ -equivariant homorphisms; the isomorphism (2) is given by (2.3). The action (2.6) is defined by $F + \alpha = \mu^*(F, \alpha)$. We now are ready to define the homotopy relation, \simeq , in the category \underline{H}_{n+1}^C ,

(2.7) Definition: Let

$$(\xi,\eta), (\xi',\eta') : (C,f_{n+1},X^n) \longrightarrow (C',g_{n+1},Y^n)$$

be maps in $\underset{n+1}{\overset{H}{\overset{C}}}$. We set $(\xi,n) \simeq (\xi',n')$ if $\pi_1(n) = \pi_1(n') = \varphi$ and if there exist φ -equivariant homomorphisms $\alpha_{j+1} : C_j \longrightarrow C'_{j+1}$, $j \ge n$, such that

(a)
$$\{n\} + g_{n+1} = \{n'\}$$
 and

(b) $\xi'_{k} - \xi_{k} = \alpha_{k} d + d\alpha_{k+1}, k \ge n+1.$

-6-

The action + in (a) is defined in (2.6) above; {n} denotes the homotopy class of n in $[X^n, Y^n]$. We call α : $(\xi, n) \simeq (\xi', n')$ a homotopy in \underline{H}_{n+1}^C .

One can check that this homotopy relation is a natural equivalence relation and that the functors in (2.2) induce functors between homotopy categories $(n \ge 2)$

(2.8)
$$\underline{CW}/\simeq \xrightarrow{r_{n+1}} \underline{H}_{n+1}^{c}/\simeq \xrightarrow{\lambda} \underline{H}_{n}^{c}/\simeq \xrightarrow{chain}/\simeq$$

(2.9) Theorem: The functor

$$C : \underline{H}_{3}^{C} \longrightarrow \underline{chain}$$

is full and the functor

$$C: \underline{H}_{3}^{C}/\simeq \longrightarrow \underline{chain}/\simeq$$

is an equivalence of categories.

A similar result was obtained by J.H.C. Whitehead for the category of "crossed chain complexes" which he called "homotopy systems". Theorem (2.9) is a consequence of (VI. 5.13), (VI. 4.9) in [1]

§ 3 The obstruction

We use the groups Γ_n which were introduced by J.H.C. Whitehead. Let X be a CW-complex in <u>CW</u> and let

(3.1)
$$\Gamma_n(x) = image(\pi_n(x^{n-1}) \longrightarrow \pi_n(x^n))$$

be the group given by the inclusion $x^{n-1} \subset x^n$ of skeleta. Clearly $\Gamma_2 X = 0$ since $\pi_2(x^1) = 0$. Moreover, for $n \ge 3$ the group $\Gamma_n(X)$ is a $\pi_1(X)$ -module which is embedded in the "certain exact sequence" of $\pi_1(X)$ -modules

 $(3.2) \longrightarrow H_{n+1} \hat{X} \xrightarrow{b} \Gamma_n X \xrightarrow{j} \pi_n X \xrightarrow{h_n} H_n \hat{X} \longrightarrow .$

Here $h_n = h(p_*)^{-1}$ is defined by the Hurewicz homomorphism, see (2.1)(2). The map j is induced by the inclusion $X^n \subset X$ and b is the

-7-

"secondary boundary" for which the diagram

$$\begin{array}{c} H_{n+1} \hat{X} & \xrightarrow{b} & \Gamma_n X \\ \uparrow & & \uparrow \\ H_{n+1} \hat{X}^{n+1} \in C_{n+1} & \xrightarrow{f_{n+1}} & \pi_n X^n \end{array}$$

commutes, see (2.2)(1). The sequence (3.2) is natural for maps in \underline{CW}/\simeq . We point out that for an object $X = (C, f_n, X^{n-1})$ in \underline{H}_n^C the group $\Gamma_n(X)$ in (3.1) as well is defined by choosing X^n as in (2.4). Let $\varphi : \pi_1(X) \longrightarrow \pi'$ be a homomorphism and let Γ be a right π' -module, then we obtain the cohomology groups

(3.4)
$$\widehat{H}^{m}(X, \varphi^{\star}\Gamma) = H^{m}Hom_{\Omega}(C, \Gamma)$$

(3.3)

where $C = C_*X$ and where $\operatorname{Hom}_{\varphi}(C,\Gamma)$ is the cochains complex of φ -equivariant homomorphisms $C_n \longrightarrow \Gamma$, $n \in \mathbb{Z}$. The cohomology groups (3.4) are defined as well if X is an object in \underline{H}_n^C .

(3.5) <u>Proposition</u>: Let X,Y be objects in \underline{H}_{n+1}^{C} and let $(\xi,\eta) : \lambda X \longrightarrow \lambda Y$ be a map in \underline{H}_{n}^{C} with $\varphi = \pi_{1}(\eta)$. Then an element

 $O_{X,Y}(\xi,\eta)\in \hat{H}^{n+1}(X,\phi^*\Gamma_nY)$

is defined such that $O_{X,Y}(\xi,\eta) = 0$ if and only if there exists a map $(\xi,\overline{\eta}) : X \longrightarrow Y$ in $\underset{n+1}{\overset{H^{C}}{\overset{}}}$ with $\lambda(\xi,\overline{\eta}) = (\xi,\eta)$.

We define the <u>obstruction</u> $O_{X,Y}(\xi,\eta)$ in (3.5) as follows. Since (ξ,η) is a map in $\underline{H}_{n}^{\mathbb{C}}$ we can choose a map $F : X^{n} \longrightarrow Y^{n}$ in $\underline{CW}/\underline{O}$ which extends η and for which $C_{\star}F$ coincides with ξ in degree $\leq n$. The diagram

-8-

needs not to be commutative. The difference

(2)
$$O(F) = -g_{n+1}\xi_{n+1} + F_{\star}f_{n+1}$$

maps C_{n+1} to $\Gamma_n Y \subset \pi_n Y^n$ and this difference is a cocycle in $Hom_{\omega}(C_{n+1},\Gamma_n Y)$. The obstruction

(3)
$$O_{X,Y}(\xi,\eta) = \{O(F)\}$$

is the cohomology class represented by the cocycle O(F). This class does not depend on the choice of F in (1).

(3.6) <u>Proposition</u>: Let $(\xi, \eta) \simeq (\xi', \eta')$ be a homotopy in \underline{H}_{n}^{C} . Then the obstructions

$$O_{X,Y}(\xi,\eta) = O_{X,Y}(\xi',\eta')$$

coincide.

(3.7) <u>Proposition</u>: The obstruction has the "derivation property", that is

$$O_{X,Z}((\overline{\xi},\overline{\eta})(\xi,\eta)) = \overline{\xi} * O_{X,Y}(\xi,\eta) + \eta_* O_{Y,Z}(\overline{\xi},\overline{\eta})$$

where (ξ,η) : $\lambda X \longrightarrow \lambda Y$, $(\overline{\xi},\overline{\lambda})$: $\lambda Y \longrightarrow \lambda Z$.

Moreover the obstruction yields an action on the set of realizations. To this end we define

(3.8) <u>Definition</u>: Let $\lambda : \underline{A} \longrightarrow \underline{B}$ be a functor and let B be an object in <u>B</u>. We consider all pairs (A,b) where A is an object in <u>A</u> and where b : $\lambda A \cong B$ is an isomorphism in <u>B</u>. We define an equivalence relation ~ on such pairs by

 $(A,b) \sim (A',b') \iff \begin{cases} \exists g : A' \cong A \text{ in } \underline{A} \\ \text{with } \lambda(g) = b^{-1}b' \end{cases}$

Let $\operatorname{Real}_{\lambda}(B)$ be the set of all such equivalence classes. We denote by $\{A,b\}$ the equivalence class of (A,b), often A is sufficient notation for $\{A,b\}$. We call $\{A,b\}$ a <u>realization</u> of B.

(3.9) <u>Proposition</u>: Let B be an object in $\underline{\mathbb{H}}_{n}^{C}/\simeq$ and let $\lambda : \underline{\mathbb{H}}_{n+1}^{C}/\simeq \longrightarrow \underline{\mathbb{H}}_{n}^{C}/\simeq$ be the functor in (2.8). Then the group $\hat{\mathbb{H}}_{n+1}^{n+1}(B,\Gamma_{n}^{B})$ acts transitively and effectively on the set $\operatorname{Real}_{\lambda}(B)$ provided this set is non empty.

For $X_0 \in \text{Real}_{\lambda}(B)$ and $\alpha \in \overset{\Lambda n+1}{H}(B, \Gamma_n B)$ we denote the action in (3.7) by $X_0 + \alpha$. In fact, we have $X = X_0 + \alpha$ if and only if

 $(3.10) \quad O_{X,X_0}(1_B) = \alpha .$

Here 1_B is the identity of B and $X, X_0 \in \text{Real}_{\lambda}(B)$.

(3.11) $O_{X+\alpha,Y+\beta}(\xi,\eta) - O_{X,Y}(\xi,\eta) = \eta_{*}\alpha - \xi^{*}\beta$.

This shows that this difference corresponds to an "inner derivation". These properties of the obstruction O lead to the notion of a <u>"linear covering of categories</u>, compare (IV, §4) in [1].

§ 4 The action

Let X,Y be CW-complexes in \underline{GW} or let X,Y be objects in \underline{H}_{m}^{C} and let $\varphi : \pi_{1}X \longrightarrow \pi_{1}Y$ be a homomorphism. We denote by $[X,Y]^{n}$ the set of all morphisms $X_{0} \longrightarrow Y_{0}$ in $\underline{H}_{n}^{C}/ \simeq$ where X_{0} and Y_{0} are the images of X and Y respectively in the category \underline{H}_{n}^{C} , $n \leq m$. Here we use the functors in (2.2). Moreover,

$$(4.1) \qquad [X,Y]_{0}^{n} \in [X,Y]^{n}$$

denotes the subset of all morphisms which induce φ on fundamental groups. This subset can be empty. The functor λ yields the function

$$(4.2) \qquad \lambda \ : \ \left[X, Y \right]_{\varphi}^{n+1} \longrightarrow \left[X, Y \right]_{\varphi}^{n} \ .$$

(4.3) <u>Proposition</u>: There is an action (denoted by +) of the group $\bigwedge^{n}(X, \phi * \Gamma_n Y)$ on the set $[X, Y]_{\phi}^{n+1}$ such that the following "exactness property" is satisfied. For $f, g \in [X, Y]_{\phi}^{n+1}$ we have $\lambda f = \lambda g$ if and only if there exists $\alpha \in \bigwedge^{n}(X, \phi * \Gamma_n Y)$ with $g = f + \alpha$.

-10-

We define the action as follows. Let $(\xi,\eta) : X \longrightarrow Y$ be a map in $\underset{n+1}{\overset{H}{=}}^{c}$ which induces $\varphi = \pi_{1}(\eta)$. Moreover, let $\{\alpha\} \in \hat{H}^{n}(X,\varphi*\Gamma_{n}Y)$ be a class represented by the cocycle

(1)
$$\alpha \in \operatorname{Hom}_{\varphi}(C_n, \Gamma_n(Y))$$
.

Then we obtain by $i : \Gamma_n(Y) \subset \pi_n Y^n$ the composition ia such that $n + i\alpha = \mu^*(n, i\alpha)$ is defined by μ in (2.5). Here $n + i\alpha$ is a well defined map in $\underline{CW}/\frac{0}{2}$. We now set

(2)
$$\{(\xi,\eta)\} + \{\alpha\} = \{(\xi,\eta+i\alpha)\}$$
.

Here $\{(\xi,\eta)\}$ denotes the homotopy class of (ξ,η) in $\underline{H}_{n+1}^{C}/\alpha$. The action (2) is well defined and it has the properties in (4.3).

(4.4) <u>Remark</u>: The isotropy groups of the action (4.3) can be computed by use of a spectral sequence compare (VI. 5.16) in [1].

(4.5) <u>Proposition</u>: The action (4.3) satisfies the following "linear distributivity law". For $g \in [X,Y]_{\phi}^{n+1}$, $f \in [Y,Z]_{\psi}^{n+1}$ we have the formula

 $(f + \alpha)(g + \beta) = fg + (f_{\star}\beta + g^{\star}\alpha)$.

These properties of the action (4.3) lead to the notion of a "linear extension of categories", compare (IV. 3.2) in [1].

§ 5 The CW-tower of categories

For a category \underline{K} let $F(\underline{K})$ be the "category of factorizations" in \underline{K} . Objects in $F(\underline{K})$ are the morphisms in \underline{K} and morphisms (α,β) : $f \longrightarrow g$ in are the commutative diagrams

$$\begin{array}{ccc} A & \xrightarrow{\alpha} & A' \\ f & & \uparrow g \\ B & \xrightarrow{\beta} & B' \end{array}$$

in \underline{K} . Hence $\alpha f \beta = g$ is a factorization of g. Composition is defined by $(\alpha', \beta')(\alpha, \beta) = (\alpha'\alpha, \beta\beta')$. We call a functor from $F(\underline{K})$ to the

-11-

category <u>Ab</u> of abelian groups a <u>natural system</u> on <u>K</u>. For example we have the natural system

$$(5.1) \qquad H^{m}\Gamma_{n} : F(\underline{H}_{n}^{C}/\sim) \longrightarrow \underline{Ab}$$

which carries the object f : X \longrightarrow Y to the abelian group

$$H^{m}\Gamma_{n}(f) = H^{m}(X, \phi^{*}\Gamma_{n}Y)$$

where $\phi = \pi_1(f)$. We say that

(5.2)
$$H^{n}\Gamma_{n} \xrightarrow{+} H^{c}_{n+1}/\simeq \xrightarrow{\lambda} H^{c}_{n}/\simeq \xrightarrow{O} H^{n+1}\Gamma_{n}$$

is an <u>exact sequence</u> for the functor λ in (2.8) since an obstruction operator 0 and an action + with all the properties in § 3 and § 4 are given. Whence we have a collection of exact sequences (n ≥ 3) which form the following diagram.

(5.3)

$$\begin{array}{c} \underbrace{\mathbb{C}}\mathbb{W}/\simeq \\ & \downarrow \\ \vdots \\ \\ \mathbb{H}^{n}\Gamma_{n} \xrightarrow{+} \underbrace{\mathbb{H}_{n+1}^{c}}_{n+1}/\simeq \\ & \downarrow_{n}^{\lambda} \\ & \underbrace{\mathbb{H}_{n}^{c}}_{n}/\simeq \xrightarrow{0} \mathbb{H}^{n+1}\Gamma_{n} \\ & \downarrow \\ & \vdots \\ \\ \mathbb{H}^{3}\Gamma_{3} \xrightarrow{+} \underbrace{\mathbb{H}_{4}^{c}}_{4}/\simeq \\ & \downarrow_{n}^{\lambda} \\ & \underbrace{\mathbb{H}_{3}^{c}}_{n}/\simeq \xrightarrow{0} \mathbb{H}^{4}\Gamma_{3} \\ & \sim \downarrow_{c} \\ & \underbrace{\mathbb{C}hain}_{n}/\simeq \end{array}$$

We call such a diagram a "tower of categories", in particular, this diagram is the <u>CW-tower</u> of categories which approximates the homotopy category of finite dimensional CW-complexes in \underline{CW}/\simeq .

Let X,Y be CW-complexes in \underline{CW} and let $\varphi : \pi_1 X \longrightarrow \pi_1 Y$ be a homomorphism. As in (4.1) we have the subset

$$(5.4) \qquad [X,Y]_{0} \subset [X,Y]$$

of all maps $\{n\}$: X \longrightarrow Y in \underline{CW}/\simeq with $\pi_1(n) = \varphi$. Similarly, let

(5.5) $[C,C']_{\omega} \in [C,C']$

be the set of all $\{\xi\}$: C \longrightarrow C' in <u>chain</u>/ \propto which induce φ . Then the CW-tower yields the following diagram of exact sequences of sets.

(5.6)

$$\begin{bmatrix} x, y \end{bmatrix}_{\varphi}^{n} \\ \downarrow \\ \vdots \\ \vdots \\ \uparrow^{n}(x, \varphi * \Gamma_{n} Y) \xrightarrow{+} [x, y]_{\varphi}^{n+1} \\ \downarrow^{\lambda} \\ [x, y]_{\varphi}^{n} \xrightarrow{\bigcirc} H^{n+1}(x, \varphi * \Gamma_{n} Y) \\ \downarrow \\ \vdots \\ H^{3}(x, \varphi * \Gamma_{3} Y) \xrightarrow{+} [x, y]_{\varphi}^{4} \\ \downarrow^{\lambda} \\ [x, y]_{\varphi}^{3} \xrightarrow{\bigcirc} H^{4}(x, \varphi * \Gamma_{3} Y) \\ \approx \downarrow C \\ [\hat{C}_{*}x, \hat{C}_{*} Y]_{\varphi}$$

We have kernel(O) = image(λ) and we have $\lambda(f) = \lambda(g)$ if and only if there exists α with $g = f + \alpha$. Moreover, the definition of $\underline{\underline{H}}_{n}^{c}$ yields the

(5.7) <u>Proposition</u>: Let $X = X^N$, then

$$r_n : [X,Y]_{\varphi} \longrightarrow [X,Y]_{\varphi}^n$$

is bijective for n = N + 1 and is surjective for n = N.

-13-

Next we derive from the CW-tower a structure theorem for the group of homotopy equivalence. For a CW-complex X in <u>CW</u> let

(5.8)
$$Aut(X) * \subset [X,X]$$

be the group of homotopy equivalences of X in \underline{CW}/α . Moreover, let Aut(C) be the group of homotopy equivalences of C in the category chain/ α and let

(5.9)
$$E_n(X) \subset [X,X]^n$$
, $n \ge 3$,

be the group of equivalences of $r_n X$ in $\underline{H}_n^{\mathbb{C}}/\simeq$. Then the CW-tower yields the following tower of groups where the arrows O denote derivations and where all the other arrows are homomorphisms between groups.

Here we define the obstruction O by the obstruction O in (5.6) and we define 1^+ by the action in (5.6), namely $1^+(\alpha) = 1 + \alpha$ where 1 is the identity. The linear distributivity law in (4.5) shows that 1^+ is a homomorphism of groups. Moreover we have the exactness image $(1^+) =$ kernel (λ) and image (λ) = kernel (O). The isomorphism C is given by (2.9). As in (5.8) we get

(5.11) <u>Proposition</u>: Let $X = X^N$, then

$$r_n : Aut(X) * \longrightarrow E_n(X)$$

is an isomorphism for n = N + 1 and is an epimorphism for n = N.

The kernel of 1^+ can be computed by a spectral sequence, compare (4.4). There are many applications of the CW-tower for the homotopy classification problems. The following result is immediate.

(5.12) <u>Theorem</u>: Let X, Y be objects in <u>CW</u> and let X be finite dimensional. Assume that

(*)
$$\hat{H}^{p}(x, \varphi * \Gamma_{n} Y) = 0$$

for p = n, n + 1, $n \ge 3$, $\phi \in Hom(\pi_1 X, \pi_1 Y)$. Then the functor C_* yields the bijection of sets

$$\hat{c}_* : [x, y] \xrightarrow{\approx} [\hat{c}_* x, \hat{c}_* y]$$
.

Assume that (*) holds for X = Y then

$$\hat{C}_{\star}$$
: Aut(X) $\star \xrightarrow{\cong}$ Aut($\hat{C}_{\star}X$)

is an isomorphism of groups.

This theorem is a special case of (VI. 6.15) in [1].

§ 6 On the classification of 4-dimensional homotopy types

We first recall that for X in \underline{CW} we have a natural isomorphism

(6.1) $\Gamma_{3}(X) = \Gamma(\pi_{2}X) = \Gamma(H_{2}\hat{X})$

of $\pi_1(X)$ -modules. Here Γ is the quadratic functor of J.H.C. Whitehead [3]. We derive from the exact sequence (3.2) the natural isomorphisms

(6.2)
$$H_5(K(A,2)) \cong \Gamma(A) \cong \pi_3(M(A,2))$$

where K(A,2) and M(A,2) denote the Eilenberg-Mac Lane space and the Moore-space respectively of the abelian group A. We now consider the functor

(6.3) $C\lambda = \hat{C}_{\star} : \underline{CW}^4 / \simeq \longrightarrow \underline{chain}^4 / \simeq .$

By (1.11), (2.9), and (3.9) we know

(6.4) <u>Theorem</u>: For C in <u>chain</u>⁴ the set $\text{Real}_{C\lambda}(C)$ is non empty and the group $\hat{H}^4(C,\Gamma(H_2C))$ acts transitively and effectively on this set

Moreover, we derive from (3.5), (3.6) and (2.9) the result

(6.5) Theorem: Let X, Y be CW-complexes in \underline{CW}^4 and let $\{\varphi,\xi\}$: $\hat{C}_*X \rightarrow \hat{C}_*Y$ be a map in $\underline{chain}^4/\alpha$. Then there exists a map $\{F\}$: $X \longrightarrow Y$ in \underline{CW}/α with $\hat{C}_*\{F\} = \{\varphi,\xi\}$ if and only if the obstruction

$$O_{X,Y}^{\{\varphi,\xi\}} \in \hat{H}^4(X, \varphi^*\Gamma(H_2\hat{Y}))$$

vanishes.

In my talk in Louvain la Neuve I described algebraic models of 4-dimensional CW-complexes which allow a formula for the obstruction in (6.5). This, in fact, yields the homotopy classification of 4-dimensional CW-complexes. We now consider for simplicity 1-connected 4-dimensional CW-complexes. In this case we obtain by (6.4) and (6.5) a classical result of J.H.C. Whitehead [2], see (6.9).

(6.6) <u>Definition</u>: Let Γ -<u>sequence</u>⁴ be the following category. Objects are the exact sequences

 $S = (H_4 \longrightarrow \Gamma(H_2) \longrightarrow \pi_3 \longrightarrow H_3 \longrightarrow 0)$

of abelian groups where H_4 is free abelian. A morphism $f : S \longrightarrow S'$ is a triple $f = (f_4, f_3, f_2)$ of homorphisms $f_i : H_i \longrightarrow H'_i$ for which there exists a homorphism φ such that the diagram

-16-

commutes.

Let \underline{rCW}^4 be the full subcategory of \underline{CW}^4 consisting of CW-complexes X with $x^1 = *$. By (3.2) and (6.1) we obtain the functor

(6.7) $\Gamma S : \underline{rCW}^4 / \simeq \longrightarrow \Gamma - \underline{sequence}^4$

which carries the CW-complex X to the exact sequence

(6.8)
$$H_4 X \xrightarrow{b_4^X} \Gamma(H_2 X) \longrightarrow \pi_3 X \longrightarrow H_3 X \longrightarrow 0$$

where $H_i X$ is the homology of $X = \hat{X}$. This sequence is natural in X and whence the functor ΓS is well defined.

Following J.H.C. Whitehead we define the following conditions on a functor $p : \underline{A} \longrightarrow \underline{B}$.

(a) <u>Sufficiency</u>: For objects A,A' in <u>A</u> a morphism $\alpha : A \longrightarrow A'$ is an equivalence if and only if $p\alpha : pA \longrightarrow pA'$ is an equivalence in <u>B</u>.

(b) <u>Realizability</u>: The functor p is full and for each object B on <u>B</u> there is an object A in <u>A</u> together with an equivalence $pA \xrightarrow{\sim} B$ in <u>B</u>.

We say that p is a <u>detecting functor</u> if p satisfies both the sufficiency and the realizability conditions.

(6.9) Theorem: The functor ΓS in (6.7) is a detecting functor.

(6.10) <u>Corollary</u>: Homotopy types of 1-connected 4-dimensional CW-complexes are 1-1 corresponded to isomorphism classes of exact sequences in the category Γ -sequence⁴ above.

(6.11) <u>Proof of theorem</u> (6.8): Let <u>r chain</u>⁴ be the full subcategory of <u>chain</u>⁴ consisting of objects (π ,C) with π = 0 and C₁ = 0. Whence objects in <u>r chain</u>⁴ are given by chain complexes of free abelian groups

(1)
$$C = (C_4 \longrightarrow C_3 \longrightarrow C_2)$$

with $C_i=0$ for i>4, i<2. Let C,C' be two such chain complexes with homology groups $H_* = H_*C$, $H_*^1 = H_*C$. Then we have the short exact sequence

(2)
$$\bigoplus \operatorname{Ext}(H_{i}, H_{i+1}^{!}) \xrightarrow{i} [C, C^{!}] \longrightarrow \operatorname{Hom}(H_{\star}, H_{\star}^{!})$$

i=2,3

where [C,C'] is the set of homotopy classes of chain maps. Moreover, we have for an abelian group Γ the short exact sequence

(3)
$$\operatorname{Ext}(H_3,\Gamma) \xrightarrow{\Delta} H^4(C,\Gamma) \xrightarrow{\mu} \operatorname{Hom}(H_4,\Gamma).$$

For $\Gamma = \Gamma(H_2C)$ we have the function

(4)
$$b_4 : \operatorname{Real}_{C_\lambda}(C) \longrightarrow \operatorname{Hom}(H_4, \Gamma)$$

which carries the realization X to the secondary boundary b_4^X , see (6.8). From (3.3) we derive

(5)
$$b_A(X + \alpha) = b_A(X) + \mu(\alpha)$$

where we use the action in (6.4) and where we use μ in (3). Since μ is surjective, this implies that b_4 in (4) is surjective. For $b \in \text{Hom}(H_4,\Gamma)$ we thus have the function

(6)
$$\pi : b_4^{-1}(b) \longrightarrow Ext(H_3, cok(b))$$

which carries X with $b_4(X)=b$ to the extension $\{\pi_3X\}$ given by the short exact sequence

(7) $\operatorname{cok}(b) \longrightarrow \pi_3 X \longrightarrow H_3$

in (6.8). The function π satisfies

-18-

(8) $\pi(X + \Delta(\beta)) = \pi(X) + q_{\star}\beta$

where $\beta \in \text{Ext}(H_3,\Gamma)$. Again we use (6.4) and (3) and $q: \Gamma \longrightarrow \operatorname{cok}(b)$ is the quotient map. Since q is surjective, also q_* in (8) is surjective and whence π in (6) is surjective. Surjectivity of (6) and (4) shows that the functor ΓS satisfies the realizability condition for objects. We now show that the functor ΓS is full. Let $f: S = \Gamma S(X) \longrightarrow \Gamma S(Y) = S'$ be a map in Γ -<u>sequence</u>⁴ and let $C = C_*X$, $C' = C_*Y$ be the cellular chain complexes. By (2) we know that there is a chain map $\xi: C \longrightarrow C'$ which induces f in homology. For the obstruction (6.5) and for μ in (3) one readily gets

(9)
$$\mu O_{X,Y}(\zeta) = b'_4 f_4 - \Gamma(f_2) b_4 = 0$$
.

This element is trivial since f makes the diagram in (6.6) commutative. Whence by (3) the element

(10) $\Delta^{-1}O_{X,Y}(\xi) \in Ext(H_3,\Gamma H_2')$

is defined. For $q' : \Gamma H'_2 \longrightarrow \operatorname{cok}(b'_4)$ we get

(11)
$$q_{\star}^{-1}O_{X,Y}(\xi) = f_{3}^{\star}\{\pi_{3}X\} - \Gamma(f_{2})_{\star}\{\pi_{3}Y\} = 0$$

where we use the elements given by (7). The element (11) again is trivial since the diagram in (6.6) commutes. Finally we obtain for $\alpha \in Ext(H_3, H_4')$ the formula

(12)
$$O_{X,Y}(\xi + \alpha) = O_{X,Y}(\xi) + \Delta(b_{4*}^{\dagger}\alpha).$$

Now the sequence

(13)
$$\operatorname{Ext}(H_3, H_4^{\prime}) \xrightarrow{b_{4^{\star}}^{\prime}} \operatorname{Ext}(H_3, \Gamma H_2^{\prime}) \xrightarrow{q_{\star}^{\prime}} \operatorname{Ext}(H_3, \operatorname{cok} b_4^{\prime})$$

is exact. Whence by (11) we can choose α with

(14)
$$(b_4')_* \alpha = \Delta^{-1} O_{X,Y}(\xi)$$
.

Therefore (12) shows

(15) $O_{X,Y}(\xi - i\alpha) = 0$

and thus by (6.5) there exists a realization $F : X \longrightarrow Y$ with $\{\hat{C}_{\star}F\} = \{\xi - i\alpha\}$. Here $\xi - i\alpha$ induces f in homology, whence we get $\Gamma S(F) = f$. This completes the proof that ΓS satisfies the realizability condition. By the Whitehead theorem (1.10) the functor ΓS satisfies the sufficiency condition.

In (IX. § 4) of my book [1] we show that the "same proof" as above yields as well the classification of certain R-local spaces ($R \subset Q$) as well as the classification of certain chain algebras.

Literature:

- [1] H.J. Baues: <u>Algebraic Homotopy</u>, in print, Cambridge University Press.
- [2] J.H.C. Whitehead: On simply connected 4-dimensional polyhedra. Comm. Math. Helv. 22 (1949), 48 - 92.
- [3] J.H.C. Whitehead: A certain exact sequence. Ann. Math. 52 (1950) 51 - 110.
- [4] J.H.C. Whitehead: Combinatorial homotopy II. Bull. AMS 55 (1949), 213-245.