
Max-Planck-Institut für Mathematik
Bonn

Affine groups acting properly discontinuously

by

Herbert Abels
Gregory A. Margulis

Gregory A. Soifer

Max-Planck-Institut für Mathematik
Preprint Series 2024 (6)

Date of submission: February 27, 2024



Affine groups acting properly discontinuously

by

Herbert Abels
Gregory A. Margulis

Gregory A. Soifer

Max-Planck-Institut für Mathematik
Vivatsgasse 7
53111 Bonn
Germany

Fakultät für Mathematik
Universität Bielefeld
Postfach 100131
33501 Bielefeld
Germany

Department of Mathematics
Yale University
New Haven, CT 06511
USA

Department of Mathematics
Bar Ilan University
Ramat-Gan, 5290002
Israel

MPIM 24-6



Affine groups acting properly discontinuously

H. Abels, G.A. Margulis and G.A. Soifer

February 17, 2024

Abstract. In 1964 L. Auslander conjectured that every subgroup Γ of an affine group

Aff(Rn) that acts properly discontinuously on Rn such that Rn/Γ compact is virtually

solvable, i.e. contains a solvable subgroup of finite index. We prove the Auslander con-

jecture for n < 7. The proof is based mainly on dynamic arguments.

We prove that if an affine group Γ acts properly discontinuously on Rn, n ≤ 5 and the

semisimple part of the Zariski closure of Γ does not contain SO(2, 1) as a normal subgroup

then Γ is virtually solvable.

1 Introduction

Let X be a topological space and Γ be a subgroup of the group of homeomorphisms of

X. A subgroup Γ is said to act properly discontinuously on X if for every compact subset

K of X the set {g ∈ Γ : gK ∩K 6= ∅} is finite. A subgroup Γ is called crystallographic if

Γ acts properly discontinuously on X and the orbit space X/Γ is compact.

The study of crystallographic groups has a long history. The crystallographic groups

of hyperbolic transformations have been investigated by Fricke and Klein in the lectures
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on the theory of automorphic functions [FK]. In 3-dimensional Euclidean space Fedorov

[F], Schoenflies [Sc], and later Rohn [Ro] have shown that there are only a finite number

of essentially different kinds of euclidean crystallographic groups. The 3-dimensional

Euclidean crystallographic groups are the symmetry groups of crystalline structures and

so are of fundamental importance in the science of crystallography.

D. Hilbert wrote in his famous lecture delivered on the IMC at Paris, 1900 ([Hil], 18th

Problem) :

” Now, while the results and methods of proof applicable to elliptic and hyperbolic space

hold directly for n-dimensional space also, the generalization of the theorem for Euclidean

space seems to offer decided difficulties. The investigation of the following question is

therefore desirable:

Is there in n-dimensional Euclidean space also only a finite number of essentially different

kinds of groups of motions with a fundamental region? ”

In response to this problem Bieberbach showed in a series of papers that this was so.

The key result is the following famous theorem of Bieberbach. A group Γ acting isomet-

rically on the n–dimensional Euclidean space Rn with compact quotient Rn/Γ contains a

subgroup of a finite index consisting of translations. In particular, such a group Γ is vir-

tually abelian, i.e. Γ contains an abelian subgroup of finite index. Moreover, in [B1, B2,

B3] Bieberbach proved that a group Γ acting isometrically and properly discontinuously

on the n–dimensional Euclidean space is virtually abelian.

A natural way to generalize the classical problem is to broaden the class of allowed

motions and consider crystallographic groups of affine transformations. This raises the

question of the group-theoretic properties of affine crystallographic groups.

Let n > 1 and let V = Rn be the vector space. We can and will consider Rn as an affine

space. Let GL(V ) ( resp. Aff(Rn)) be the group of all linear (res. affine) transformations.

Let us recall that the group of affine transformations Aff(Rn) is the semidirect product

2



GL(V ) n V where V is identified with the group of its translations. Let l : Aff(Rn) →

GL(V ) be the natural homomorphism. Then l(g) is called the linear part of the affine

transformation g. Let X ⊆ Aff(Rn) then the set l(X) = {l(x), x ∈ X} is called the linear

part of X. Let Γ < Aff(Rn) and let G be the Zariski closure of l(Γ) in GL(V ).

Auslander proposed the following conjecture in [Au].

The Auslander Conjecture. Every crystallographic subgroup Γ of Aff(Rn) is virtually

solvable i.e. contains a solvable subgroup of finite index.

The proof in [Au] of this conjecture is unfortunately incorrect, but the conjecture is still

an open and central problem. In [FD] the Auslander conjecture was proved for dimensions

≤ 3. D. Fried and W. Goldmann deduce the proof from the following key statement:t if

Γ is a crystallographic subgroup of GB where B is a non-degenerate quadratic form of

signature (2, 1) then l(Γ) is not Zariski dense in SO(2, 1). In [To3] the author attempts to

prove the Auslander conjecture for dimensions 4 and 5. Unfortunately, the proof there is

incomplete for dimension 4 and incorrect for dimension 5. The proof has been corrected

and completed in [To4]. The Auslander conjecture for dimensions 4 and 5 was proved in

[AMS5].

The Auslander conjecture was proven for some special cases. In [GK] it was proved in

the case where the linear part of a crystallographic group Γ is a subgroup of SO(n, 1). Then

F. Grunewald and G. Margulis [GM] proved that if the linear part of Γ is a subgroup of a

simple Lie group of real rank 1, then Γ is virtually solvable. This result was generalized in

[To1]. It was proved that if the semisimple part of G is a simple group of real rank 1, then

Γ is virtually solvable. Finally, in [S2] and [To2], it was proved, that if the linear part of Γ

is a subgroup of a semisimple Lie group G and every non-commutative simple subgroup

of G has real rank ≤ 1 then Γ is virtually solvable. Let us remark, that all papers [FG],

[GK], [GM], [S2] and [To1,2] where the Auslander conjecture was proved basically use

the same idea which was first introduced in [FG]. We call this idea ”the cohomological
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argument” because it is based on using the virtual cohomological dimension of Γ.

In [AMS4] the Auslander conjecture was proved for an affine group Γ leaving a non-

degenerated quadratic from B of signature (n− 2, 2) invariant. By contrast, [AMS4] and

[M] are based on a completely different approach, namely on dynamical ideas (see also

[AMS1,2,3]).

We prove the following theorem

Theorem A Let Γ be a crystallographic subgroup of Aff(A) and n < 7, then Γ is virtually

solvable.

The proof of this theorem is based mainly on dynamical arguments. In some cases, we

use the cohomological argument to shorten the proofs .We would like to admit that the

first proof of this theorem was published in [AMS5].

There is an additional geometric interest in properly discontinuous groups since they

can be represented as fundamental groups of manifolds with certain geometric structures,

namely complete flat affine manifolds. If M is a complete flat affine manifold, its universal

covering manifold is isomorphic to Rn. It follows that its fundamental group Γ = π1(M)

is in a natural way a properly discontinuous torsion-free subgroup of Aff(Rn) Conversely,

if Γ is a properly discontinuous torsion-free subgroup of Aff(Rn), then Rn/Γ is a complete

flat affine manifold M with π1(M) = Γ.

In 1977 J.Milnor asked if the fundamental group π(M) of a complete locally flat affine

manifold M contains a free non-commutative subgroup.

The Tits’ alternative implies, that if the answer to Milnor’s question is negative then

the fundamental group π(M) is virtually solvable. Thus the negative answer to Milnor’s

question means that the Auslander conjecture is true without the assumption that M is

compact. It can be stated as the following question

Question 1. Does an affine group Γ that acts properly discontinuously on the affine

4



space Rn virtually solvable?

In comments to his question Milnor wrote: ”I do not know if such a manifold exists even

in dimension 3” and proposed ”to construct a Lorentz-flat example by starting with a

discrete subgroup Z∗Z ≤ SO(2, 1) then adding translation components to obtain a group

of isometries of Lorentz 3-space, but it seems difficult to decide whether the resulting

group action is properly discontinuous” [Mi2, p. 184].

G. Margulis gave a positive answer to Milnor’s question in dimension 3 in [M]. He

constructed a free non-commutative subgroup Γ of isometries of Lorentz 3-space acting

properly discontinuously on R3. In order to study the dynamics of an affine action, Mar-

gulis introduced the concept of the sign of an affine transformation for an affine group

Γ, l(Γ) ⊆ SO(2, 1). This example came as the surprise and is sometimes called ”the Mar-

gulis’ phenomenon”.

We show that the Margulis phenomenon is the reason that an answer to Milnor’s question

is positive for an affine space Rn, n ≤ 5. We prove the following theorem

Theorem B. Let Γ be an affine group acting properly discontinuously on the affine

space Rn, n ≤ 5. Assuming that the semisimple part of the algebraic closure of Γ does not

contain SO(2, 1) as a normal subgroup then Γ is virtually solvable.

Together with the Margulis phenomenon, this leads us to the following conclusion. Let Γ

be an affine group acting on the affine space Rn, n ≤ 5. Then Γ contains a free subgroup

that acts properly discontinuously, if and only if the semisimple part of the Zariski closure

of Γ contains SO(2, 1) as a normal subgroup. Note that this is not true for n = 6 [DGK].

Let us give a short description of the paper. As the first step in section 2, we obtain

a list of all possible semisimple groups S which might be a semisimple part of the Zariski

closure of an affine crystallographic group for n ≤ 6. In section 3 we give a list of all

possible semisimple groups S which might be a semisimple part of the Zariski closure

of group Γ that acts properly discontinuously for n ≤ 5 and does not have SO(2, 1) as
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a normal subgroup. Using these lists of possible linear parts we prove the Auslander

conjecture for dim ≤ 6. We prove the Auslander conjecture in dimensions 4 and 5 in

section 4. In section 5 we show that the semisimple part S of the Zariski closure of l(Γ)

cannot be SO(3, 2) or SO(3)×SL3(R). The proof is based on the cohomological argument

we have mentioned above. Namely, we will compare the virtual cohomological dimension

of Γ and the dimension of the symmetric space S/K, where K is a maximal compact

subgroup of S. We will prove that none of these cases is possible.

The most difficult part is to show that the semisimple part of the Zariski closure of

l(Γ) is not SO(2, 1) × SL3(R). This is done in section 6. We show that it is possible to

change the sign of a hyperbolic element (see Main Lemma 6.7) in this case. Thus, by

Lemma 6.5, we conclude that the semisimple part of the Zariski closure of l(Γ) cannot be

SO(2, 1)× SL3(R). Hence none of the possible non-trivial semisimple groups can be the

semisimple part of the Zariski closure of Γ. Therefore the semisimple part of the Zariski

closure of Γ is trivial. Hence Γ is virtually solvable.

In section 8 based on the results we obtain, in section 3 we prove Theorem B. The most

difficult case here is to show that the semisimple part of the Zariski closure of `(Γ) is not

SL2(R)× SO(3).

2 Linear parts of crystallographic groups

2.1. Notation and terminology. In this section we introduce the terminology we will

use throughout the paper. Let V = Rn, n > 1 be a vector space and let GL(V ) be the

group of all linear transformation of V . Let Aff(Rn) be the group of affine transformation

of an affine space Rn. Since the group Aff(Rn) is the semidirect product GL(V )nV every

element g ∈ Aff(Rn) is a pair g = (l(g), vg) where l(g) ∈ GL(V ), vg ∈ V. The linear
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transformation l(g) is called the linear part of g and vg is called a translational vector.

Let [l(g)] be the matrix of l(g) and let [vg] be the coordinate of vg in the same basic. Thus

we obtain a group isomorphism

φ(g) =

 [l(g)] [vg]

0 1

 (∗)

between Aff(Rn) and the subgroup of GLn+1(R).

Denote by l the natural homomorphism l : Aff(Rn) → GL(V ). The set l(X) where X ⊆

Aff(Rn) is called the linear part of X.

Proposition 2.2 Let Γ be an affine group acting properly discontinuously. Let g be an

element of the connected component of the Zariski closure of Γ. Then l(g) has 1 as an

eigenvalue.

Proof It is easy to see if the linear part l(g) of g ∈ Aff(Rn) does not have 1 as an

eigenvalue then g has a fixed point. Thus every element of an affine torsion free group

acting properly discontinuously has one as an eigenvalue. Let G be the Zariski closer of

Γ and let G0 be the connected component of G. It is well known, that exists a finitely

generated subgroup Γ0 of Γ such that the Zariski closure of Γ and Γ0 coincide. Since G0 is

an open and closed subgroup of G a finite index subgroup Γ1 = Γ0 ∩G0 of Γ0 is a finitely

generated group which is dense in G0. By Selberg’s lemma we conclude that there exists

a torsion free subgroup Γ2 ≤ Γ0 of finite index. Hence the linear part l(g) for every g ∈

Γ2 has one as an eigenvalue, because Γ2 acts properly discontinuously. Consequently the

same is true for every element of the Zariski closure of Γ2. Obviously Γ2 is Zariski dense

in G0. This proves the statement.

Let Γ be an affine crystallographic group and let G be the Zariski closure of Γ. Let S

be a semisimple part of G. Clearly, S is a semisimple part of the connected component of

7



the linear part l(G) of G. The goal of this section is to give a complete list of all possible

non trivial semisimple subgroups S, S < GL(V ) which might be a semisimple part of

l(G) < GL(V ). The possible semisimple subgroups of l(G), which occur in our list fulfil

the following assumptions .

(A1) S < GL(V ), dimV ≤ 6.

Let S =
∏

1≤i≤k Sk be the decomposition of the semisimple part into an almost direct

product of simple groups. If rankR(Si) ≤ 1 for all 1 ≤ i ≤ k then Γ is not crystallographic

[S2], [To2]. Therefore from now on unless otherwise noted we will assume that in case

S 6= 1 we have

max
1≤i≤k

rankR(Si) ≥ 2.

Hence we will assume that

(A2) There is a simple normal subgroup S1 ≤ S with rankR(S1) ≥ 2.

By Proposition 2.2 every element of the connected component l(G)0 of l(G) has one as

an eigenvalue. Therefore we add to our assumptions the following one.

(A3) Every element g ∈ l(G)0 has one as an eigenvalue.

We call the group G an A–group if G fulfils the assumptions (A1), (A2) and (A3).

The main steps to establish our list are the following. For a semisimple group S

satisfying the properties (A1) -(A3) we shall see that there are at most two non-trivial

irreducible components Vi, i ≤ 2, of the representation of the complexification S of S on

the complexification V of V and that the image Si of S in GL(Vi) is a simple group for

every non-trivial irreducible component V i, see 2.6. Furthermore it does not happen that

V contains two non-trivial irreducible components V 1 and V 2 such that S1 and S2 are

isomorphic, see 2.4. It follows, that if the real Lie group S is simple then also S is simple,

see 2.5. Note that there are several ways to satisfy (A3). Let V0 be the subspace of V
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such that S acts trivially on V0. Let W be an S-invariant subspace such that V = V0 ⊕

W. If there exists an element s ∈ S with no eigenvalue one on W then dimV0 > 0 and

dimW ≤ 5.

We will assume from now on that G is an A–group. If the dimension of every simple

normal subgroup of a semisimple part S is ≤ 6 then (A2) does not hold. Thus there

exists a simple normal subgroup of S with dimension > 6. Let us now recall a list [PV,

pp 260-261] of all possible complex representations ρ of a simple complex Lie group S

with dim ρ ≤ 6 ≤ dimS. In the first column the symbols SLn, Sp2n, SOn denote the

corresponding simple Lie (algebraic) group in their simplest representation. The symbol

SmH (resp. ∧mH) denotes the mth symmetric (resp. exterior) power of a linear group, and

Sm0 H (resp. ∧m0 H) is the highest (Cartan) irreducible component of this representation.

Table 1

S dim ρ n

SLn, n ≥ 3 n n = 3, 4, 5

SOn, n 6= 4, n ≥ 3 n n = 3, 5, 6

Sp2n 2n 2, 3

AdSLn n2 − 1 n = 2

S2Sln n(n+ 1)/2 n = 2, 3

∧2SLn, n ≥ 4 n(n− 1)/2 n = 4

∧2SOn, n ≥ 3, n 6= 4 n(n− 1)/2 n = 3

∧2
0Sp2n, n ≥ 2 (n− 1)(2n+ 1) n = 2

Our next goal is to provide a list of all possible real simple linear groups S which might

be a semisimple part of G and which are possible as a factor of a semisimple part of an

A–group. We will use the following notation. Let V = V ⊗R C be the complexification
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of V and let S be the complex Lie group, such that S is a real form of S.

If the group S is simple then the group S is a simple real Lie group. Assume that the

space V is irreducible. Then S is a group listed in Table 1.

2.3 Simple and irreducible. Thus using [OV] we have the following list of all real

simple groups S which are a real form of a simple complex Lie group S listed in the Table

1 no matter if they are A–groups or not.
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Table 2

S dim ρ

SLk(R), 2 ≤ k ≤ n k

SO(3, 2) 5

SO(2, 1) 3

SO3(R) 3

Sp4(R) 6

2.4. Simple and reducible. Here we assume that the space V is reducible and the

complex group S is simple. There exists an S-invariant non-trivial subspace W ≤ V with

non-trivial representation of S. Obviously dimW ≥ 2. If dimW = 2 then rankS ≤ 1. If

dimW = 3 the real form of S does not have one as an eigenvalue if rankS ≥ 2. Thus

there is no simple A–group such that V is S -reducible.

2.5. Semisimple not simple Let S be a simple Lie group, such that S is not simple

and V is irreducible. There exists a complex structure on S. Namely, there is a complex

simple Lie group S̃ such that S = S̃(σ(C)), where σ : C −→M2(R) is the natural embed-

ding of the field C, see [OV]. In this case S considered as real Lie group is isomorphic to

S̃ × S̃. The possible groups of this type are listed in the following table 3.

Table 3

S dim ρ

SLk(σ(C)), k = 2, 3 2k

SO3(σ(C)) 6
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Note that non of the groups listed in Table 3 can be a normal subgroup of the semisimple

part S of an A–group G. Indeed, let S1 be a normal subgroup of S. Suppose that S1 =

SL2(σ(C)). Then V = V1 ⊕ V2. We can assume that S acts on V1 as S1 = SL2(σ(C)).

Then dimV2 = 2. Since the real rank of SL2(σ(C)) is 1, then the semisiple part of G does

not fulfil (A2). If S1 = SO3(σ(C)) then S = S1 and the semisiple part of G does not fulfil

(A2). If S1 = SL3(σ(C)) then S = S1 and the semisiple part of G does not fulfil (A1).

2.6. General case. The semisimple group S is the almost direct product of simple

groups S =
∏

1≤i≤k Si, k ≥ 2. Let W0 = {v ∈ V : sv = v ∀s ∈ S }. There exists a unique

S–invariant subspace W of the space V such that V is the direct sum of W0 and W. If the

restriction S|W is an irreducible representation of S, then it is the tensor product of Si-

irreducible representations for all i = 1, . . . , k. Thus if dimV ≤ 6 it follows immediately

that this is impossible for an A–group. Therefore W is the direct sum of S–invariant

non-trivial irreducible subspaces Wi, i = 1, . . . , k such the restriction Sj|Wi
is trivial for

every i 6= j, i, j = 1, . . . , k. As we know, every element of G0 has one as an eigenvalue.

Thus it follows from (A3) that if the subspace W0 is trivial, there exists an i0, 1 ≤ io ≤ k,

such that every element s ∈ Si0 has one as an eigenvalue. Since for every i = 1, . . . , k the

group Si is an irreducible subgroup of GL(Wi), we can and will again use Table 1 and

Table 2. This will lead us to a complete list of all possible cases under the assumption A.

2.7. Linear parts and decompositions. Let us summarize all we did in 2.3, 2.4, 2.5

and list all cases we have to consider. Let V0 be the maximal subspace in V = Rn such

that S acts trivially on V0. Let V1 be the unique S–invariant subspace such that Rn =

V0 ⊕ V1. Let πS : G −→ S be the projection. We will use these notations throughout the

rest of the paper. Recall that G is an A–group.

Case 1 Assume that for every regular element s ∈ S the restriction s|V1 does not

have 1 as an eigenvalue. Thus V0 6= 0. Consider the inclusion is : S −→ GL(V1) as a
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representation of the semisimple Lie group S. Assume first that S is a simple group.It

follows from 2.5 that the complexification of is(S) is a simple irreducible group. Thus it

follows from the Table 2 that all possible semisimple part of G which has property (A2)

are:

(1) S = SLl(R), V1 = Rl, l < n, 3 ≤ l ≤ 5, 4 ≤ n ≤ 6.

(2) S = Sp4(R), V1 = R4, n = 5, 6.

Suppose that the group S is semisimple, but not simple. As we show in this case is(S)

is the direct product of two simple groups such that their complexifications are simple

complex groups. It follows from Table 2 that all possible semisimple parts in this case

which have property (A2) are:

(3) S = SL2(R)× SL3(R), V1 = R5, n = 6.

Case 2. Assume that for every regular element s ∈ S the restriction s|V1 has 1 as an

eigenvalue. Suppose that S is a simple group. It follows from 2.4 and 2.5 and Table 2 that

the group S is simple. Therefore S = SO(3, 2) and dimV = 5, 6. If S is a semisimple but

not a simple group, we show above (see 2.5) that S is the almost direct product of two

simple group S1 and S2 such that their complexifications S1 and S2 are simple complex

groups. Since S is an A–group it follows from Table 2 and (A2) and (A3) that dimV =

6 and S = SL3(R) × SO(2, 1), or S = SL3(R) × SO(3). Therefore we conclude that in

this case

(1) S = SO(3, 2), dimV1 = 5, n = 5, 6.

(2) S = SO(3)× SL3(R), n = 6.

(3) S = SO(2, 1)× SL3(R), n = 6.
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Case 1 and 2 give us the complete list of all possible semisimple parts of the A–group G.

Let Γ be a crystallographic group and let G be the Zariski closure of Γ. Then l(G) is

an A–group for dimV ≤ 6. Therefore if the semisimple part S is non-trivial it is one of

the groups listed in Case 1 and Case 2. Our strategy is to show case by case that none of

the semisimple groups listed in Case 1 and Case 2 is a semisimple part G. Thus, S = 1

and Γ is virtually solvable.

Remark 2.8. The lists above shows if dimV ≤ 5 and S is semisimple part of l(G), then

S is a simple group.

3 The linear parts of affine groups groups acting

properly discontinuously

Let Γ be an affine group and let G be the Zariski closure of Γ. Let S be a semisimple part

of G. Clearly, S is a semisimple part of the connected component of the linear part l(G) of

G. The goal of this section is to give a complete list of all possible non- trivial semisimple

subgroups S, S < GL(V ), dimV ≤ 5 that might be a semisimple part of an affine group

which acts properly discontinuously. The semisimple subgroups of l(G), which occur in

our list have to fulfill the following assumptions(P1), (P2) and P (3) below.

(P1) S < GL(V ), dimV ≤ 5.

(P2) S does not contain SO(2, 1) as a normal subgroup

(P3) Every element g ∈ l(G)0 has one as an eigenvalue.

The motivations for (P1) and (P2) are obvious. The justification for (P3) follows from

Proposition 2.2 . We will follow along the way we used in the previous chapter taking

into account that property (A1) is not valid. If the semismiple part S is compact then Γ
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is virtually abelian [B2]. Hence we will assume that S is not compact.

Let l(G) be a subgroup of GL(V ), dimV ≤ 5. Let V0 be the maximal subspace in V such

that S acts trivially on V0. Let V1 be the unique S–invariant subspace such that V =

V0 ⊕ V1.

Case 1 Assume that for every regular element s ∈ S the restriction s|V1 does not

have 1 as an eigenvalue. Thus V0 6= 0. Consider the inclusion is : S −→ GL(V1) as a

representation of the semisimple Lie group S.

Assume first that S is a simple group. It follows from remarks 2.8, 2.4 and 2.5 that all

possible semisimple parts of G which have the property (P2) are:

(1) S = SLl(R), V1 = Rl, 2 ≤ l < 5, 2 < n ≤ 5, l < n,

(2) S = Sp4(R), V1 = R4

(3) S = SL2(σ(C)), V1 = R4

where σ : C→M2(R) is the standard embedding.

Suppose that the group S is semisimple, but not simple. It follows from 2.5 that all

possible semisimple parts in this case that have the property (P3) are:

(4) S = SL2(R)× SL2(R), V1 = R4, n = 5.

Case 2. Assume that for every regular element s ∈ S the restriction s|V1 has 1 as an

eigenvalue. It follows from 2.4 and 2.5 that in this case

(1) S = SO(3, 2), dimV1 = 5

(2) S = SO(4, 1), dimV1 = 5.

(3) S = SO(3)× SL2(R), n = 5.
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Case 1 and 2 give us a complete list of all possible semisimple parts of G that have

properties (P1),(P2) and )P3).

As for crystallographic groups our strategy for affine groups acting properly discon-

tinuously is to show case by case that none of the semisimple groups listed in Case 1 and

Case 2 is a semisimple part of G. Thus, or the semisimple part of G contains SO(2, 1) as

a normal subgroup or Γ is virtually solvable.

4 The dynamic of action of an affine group.

Let V be a vector space of dimension n over R and let g ∈ GL(V ) be a linear transforma-

tion. Let Fg(x) ∈ R[x] be the characteristic polynomial of g. Let Ω(g) = {a1, . . . an} be

the set of all root of Fg(x). Set Ω+
α (g) = {ai, ai ∈ Ω(g) : |ai| > α} (resp.Ωα(g) = {ai, ai ∈

Ω(g) : |ai| ≥ α}) Suppose that a ∈ Ω(g) and a /∈ R then a ∈ Ω(g). Since |a| = |a| we

conclude that F+
α (x) =

∏
ai∈Ω+

α (g)(x−ai) ∈ R[x]and Fα(x) =
∏

ai∈Ωα(g)(x−ai) ∈ R[x]. For

α = 1 we have F+
1 (x) =

∏
ai∈Ω+

1 (g)(x−ai) ∈ R[x] , F1(x) =
∏

ai∈Ω1(g)(x−ai) ∈ R[x]. Thus

we have two linear endomorphisms F+
1 (g) : V → V and F1(g) : V → V. We define the

following g-invariant subspaces of V. Set A+(g) = kerF+
1 (g), D+(g) = kerF1(g), A−(g) =

A+(g−1), D−(g) = D+(g−1) and A0(g) = D+(g)∩D−(g). Roughly speaking, A+(g) (resp.

A−(g) ) is a subspace of V spanned by eigenvectors of g with eigenvalue modulus > 1,

(resp. < 1); D+(g) (resp. D−(g)) is a subspace of V spanned by eigenvectors of g with

eigenvalue modulus ≥ 1, (resp. ≤ 1)

4.1. Let g ∈ GL(V ). Set V 0
g = {v ∈ V ; gv = v}. Let G be a subgroup of GL(V ). A

semisimple element g ∈ G is called regular in G if

dimV 0
g = min{dimV 0

t | t ∈ G, t semisimple }
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Let us remark that the set of regular elements of an algebraic group is Zariski open.

Let g ∈ G be a semisimple element. such that

dim(A0(g)) = min{dimA0(t)|t ∈ G, t semisimple,}

then g is called R-regular in G. Let G be an affine group, G <AffRn. An affine trans-

formation g ∈ G is called regular (respectively R-regular) if l(g) is a regular (respectively

R-regular) element of l(G).

Our definition of R-regular element slightly differs from that of [P] were it was first

introduced. Note that the set of R-regular elements in an algebraic group G need not

be Zariski open in G. Nevertheless under some conditions a Zariski dense subgroup of an

algebraic group G contains an R-regular element [P],[AMS1],[AMS4]. For example this is

true if G = SO(B) where B is a non degenerate form of signature (p, q) and Γ is a Zariski

dense subgroup of G. Note that in case p = 2, q = 1 every hyperbolic element is regular

and R-regular.

4.2. If we use topological concepts and do not specify the topology, we mean the Zariski

topology. If we refer to the Euclidean topology we mention this explicitly and use expres-

sions like Euclidean-open, Euclidean-connected, etc.

Let ‖ � ‖ and d denote the norm and metric on Rn corresponding to a inner product on

Rn. Let ‖g‖− be the norm of the restriction g|A−(g). Denote by ‖g‖+ = ‖g−1‖− and put

s(g) = max{‖g‖+, ‖g‖−}. A regular element g is called hyperbolic if s(g) < 1. It is clear

that for R- regular element g of a non compact connected semisimple Lie group there

exists a number N such that for n > N the element gn is hyperbolic.

Let P = P(Rn) be the projective space corresponding to Rn. Let π : Rn \ {0} → P be

the natural projection. For a subset X of Rn we denote π(X) = π(X \ {0}) .

The metric ‖ � ‖ on Rn induces the standard metric d̂ on the projective space P =
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P(Rn) by the formula (see [T])

d̂(p, q) =
‖v ∧ w‖
‖v‖ · ‖w‖

, p = π(v), q = π(w).

Thus for any point p ∈ P and any subset A ⊆ P, we can define d̂(p,A) = infa∈A d̂(p, a).

Let A1 and A2 be two subsets of P. We define

d(A1, A2) = inf
a1∈A1,a2∈A2

d̂(a1, a2)

d̂(A1, A2) = sup
a1∈A1

inf
a2∈A2

d̂(a1, a2)

For two subspaces W1 ⊆ Rn and W2 ⊆ Rn we put d̂(W1,W2) = d̂(π(W1), π(W2)) and

d(W1,W2) = d(π(W1), π(W2)) A hyperbolic element g is called ε-hyperbolic if

d(A+(g), D−(g)) ≥ ε

and

d(A−(g), D+(g)) ≥ ε.

Two different hyperbolic elements g1 and g2 are called transversal if

A±(g1) ∩D∓(g2) = {0} )

and

A±(g2) ∩D∓(g1) = {0}.

Two different hyperbolic elements g1 and g2 are called ε-transversal if

d(A±(g1), D∓(g2)) ≥ ε

and

d(A±(g2), D∓(g1)) ≥ ε.

Obviously, two different hyperbolic elements g1 and g2 are transversal (resp. ε-transversal

) if and only if g−1
1 and g−1

2 are transversal (resp. ε-transversal ) The following notions
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were first introduced in [BG]. Two transversal elements g1 and g2 are very transversal

if g1 and g−1
2 are transversal. Therefore if g1 and g2 are very transversal then g2 and g−1

1

are transversal. Two ε-transversal elements g1 and g2 are very ε– transversal if g1 and

g−1
2 are ε–transversal. Hence if g1 and g2 are very ε– transversal then g2 and g−1

1 are

ε-transversal.

Let B be a non degenerate quadratic form defined on V and let g ∈ SO(B) ≤ GL(V ) be

a R-regular element in SO(B). Since A+(g) (resp.A−(g) ) is the unique maximal isotropic

subspace of D+(g) (resp. D−(g)) it is easy to see that two hyperbolic R-regular elements

g1 and g2 of SO(B) are transversal if and only if A+(g1) ∩ A−(g2) = {0} and A+(g2) ∩

A−(g1) = {0}.

Clearly g and g−1 are not transversal for any regular element g. Nevertheless it is

quite important to be able to find an element t of a given linear group G such that g and

tg−1t−1 are transversal. It is possible for example for G = SO(B).

Let g1 ∈ SO(B) and g2 ∈ SO(B) be two hyperbolic transversal elements.

Then

(1) for every ε there exists δ = δ(ε) such that ifg1 and g2 are ε-transversal then

d(A+(g1), A−(g2)) > δ and d(A−(g1), A+(g2)) > δ ;

(2) for every δ there exists ε = ε(δ) such that if d(A+(g1), A−(g2)) > δ and

dA−(g1), A+(g2)) > δ then the two hyperbolic elements g1 and g2 are ε -transversal.

Clearly

(3) There exists ε such that g1 and g2 are ε-transversal if and only if g−1
1 and g−1

2 are

ε-transversal.

Let Γ be an affine group acting properly discontinuously. Let G be the Zariski closure

of Γ. Obviously, Γ is a crystallographic group if and only if every finite index subgroup
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of Γ is crystallographic. Thus, since the connected component of a Zariski closed group

is a subgroup of finite index, we will assume from now on that the Zariski closure of Γ is

connected. Therefore every element of Γ has 1 as an eigenvalue by Proposition 2.2. Hence

for any semisimple element g of Γ there exists a g-invariant line Lg. The restriction of g

to Lg is the translation by a non- zero vector tg. Set v0(g) = tg/‖tg‖. Let us note that

all such lines are parallel and the vector tg does not depend on the choice of Lg. We take

for g the g-invariant line Lg that is closest to the origin. Let us define the following affine

subspaces: E+
g = D+(g) +Lg, E−g = D−(g) +Lg, E

+
g ∩E−g = Cg. Let p ∈ Lg be a point.

Then tg = −−→p gp. Clearly tg = −tg−1 , Lg = Lg−1 . Let s be an affine transformation. Then

Lh = sLg, th = l(s)tg (∗∗)

for h = sgs−1. Denote by o(g) the restriction of g onto Cg. Let g be a ε-hyperbolic

element g ∈ G. Assume that x ∈ E−g and y ∈ Lg such that −→xy ∈ D−(g). Then there exists

a constant c(ε) such that for n ∈ Z, n > 0. we have

d(gn(x), gn(y)) ≤ c(ε)s(g)nd(x, y).

Definition 4.3. Let g ∈ G ⊆ GL(V ) be a R-regular element such that dimA+(g) ≥

dimA−(g). We will say that g can be transformed into a transversal pair inside G if there

exists an element t ∈ G and a subspace W ⊂ A+(g) such that V = tW ⊕D+(g).

Remark. It is easy to see that an element g ∈ G can be transformed into a transversal

pair inside G if and only if there exists an element t ∈ G such that D+(g) + tA+(g) = V.

Suppose that g can be transformed into a transversal pair let h = tg−1t−1.
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The next proposition shows that this property depends only on the Zariski closure G

of a group G, and thus G can be safely ignored in most of what we do.

Proposition 4.4. Let G be the Zariski closure of G ⊆ SL(V ). Assume that G is con-

nected non-solvable group. Let g ∈ G be a regular element of G which can be transformed

into a transversal pair inside G. Thus there exist a subspace W of A+(g) and t ∈ G such

that V = D+(g)⊕ tW. Then

(1) The set Ω(g) =
{
t ∈ G, V = D+(g)⊕ tW

}
is non-empty and open,

(2) Let Ωab(g) be the set of all t ∈ G such that g and t do not commute. Then the set

Ωab(g) is open.

(3) If the set Ωab(g) is non-empty there exists t ∈ G∩Ω(g)∩Ωab(g). Therefore we have

V = D+(g)⊕ tW and the group generated by g and tgt−1 is not commutative.

(4) The set

Ω =
{

(t, g), t ∈ G, g ∈ G : tA+(g) +D+(g) = V, g is a regular elment ofG
}

is non- empty and open in G×G.

Proof. The sets Ω(g) and Ωab(g) are Zariski open since their complement is determined

by algebraic equations. From Definition 2.5 follows that Ω(g) 6= ∅. The semisimple part

of G is not trivial, therefore the set Ωab(g) 6= ∅. This proves (1) and (2). Clearly Ω is

the intersection of two open subsets of G × G. Thus Ω is an open subset. Since there

exists a regular element of G which can be transformed into a transversal pair inside G

we conclude that Ω 6= ∅. Note that G is dense and Ω(g) and Ωab(g) are open subsets in

G. Hence the set Ω(g) ∩ Ωab(g) ∩G is non-empty. This proves the proposition.

Proposition 4.5. Let G ⊂ GL(V ) be the Zariski closure of the linear part of an
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affine group Γ. Let S be a semisimple part of G and let U be the unipotent radical of G.

Assume that G is a connected group and V is the direct sum of two non-trivial S-invariant

subspaces V0 and V1 with the following properties.

(1) gv = v for all g ∈ G, v ∈ V0 and the induced action g : V/V0 → V/V0 is trivial for

all g ∈ U.

(2) The restriction g|V1 for one (then for every) regular element g of S does not have 1

as an eigenvalue.

(3) Every regular element s ∈ S can be transformed into a transversal pair inside S.

Then Γ does not act properly discontinuously

Proof We can and will assume that the solvable radical of G is unipotent. Indeed let

Γ1 = [Γ,Γ] and G1 = [G,G]. Let R be the solvable radical of G. It is well known that

[G,R] ⊆ U. Hence the solvable radical of G1 is unipotent. Obviously G1 is the Zariski

closure of l(Γ1) and fulfills all requirements of the proposition. Thus if Γ1 does not act

properly discontinuously then the same is true for Γ.

Let S̃ be a maximal reductive subgroup of a connected group G whose solvable radical

R is unipotent. Then S̃ ∩ R = {1}. Thus S is a maximal reductive subgroup of G.

Consequently, every regular element g of G is conjugate to an element of S. Let σ : G→

S be the projection. The set of regular elements in S is Zariski open. Since Γ is Zariski

dense in G there exists an element g ∈ Γ such that σ(l(g)) is a regular element of S.

Let x = l(g) and let x = xsxu be the Jordan decomposition of x. Thus σ(x) is a regular

element of S. Therefore σ(xu) = 1 and consequently xu ∈ U. By the arguments above, xs

is conjugate to an element of S. Hence we can and will assume that xs ∈ S. As a result

we have σ(x) = xs and xu ∈ U. From (1) and(2) follows that l(g) = xs ∈ S. Indeed, by

(1), xuv − v ∈ V0 for every v ∈ V. By direct calculations from xsxu = xuxs and (2) we
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Pic. 1

gmU(p1, 1)

U(p2, 1)

hngmU(p1, 1)

L

U(p1, 1)

Lh

Lg

W

A+(g)

Figure 1: Transversal pairs

conclude that xu = 1. Hence, l(g) is a regular element in S. By (3) the element l(g) can

be transformed into a transversal pair inside G. The set Ωab(l(g)) is clearly not empty.

By Proposition 4.4 the element g ∈ Γ can be transformed into a transversal pair by an
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element t ∈ Γ, such that the elements g and tgt−1 do not commute.

Set h = tg−1t−1. Clearly A−(h) = l(t)A+(g). Since tg ∈ V0 it follows from (1) and chapter

4.2, (**) that th = −tg. In particular the lines Lg and Lh are parallel. Set v = tg.

By definition 4.3 there exists a subspace W ⊆ A+(g) such that l(t)W ⊕D+(g) = V. Put

W̃ = l(t)W. Clearly, W̃ ⊂ A−(h). Obviously, the intersection (Lh + W̃ ) ∩ E+
g = L is a

one dimensional affine space. Moreover, since Lg and Lh are parallel, L is parallel to each

of them. Since h and g do not commute we conclude that Lg ∩ Lh = ∅. Otherwise Γ

does not act properly discontinuously. There exists a constant c = c(g, h) such that the

distance d(Lg, L) ≤ c.

Fix a point p1 ∈ Lg. There exists a point p ∈ L such that the vector −→pp1 is in D+(g).

Let p2 be a point in Lh such that −→pp2 ∈ W̃ . Let Ud(p1) be the ball in D+(g) of radius d

with the center at p1 and let Ua(p2) be the ball in Lh +A+(h) of radius a with the center

at p2. We can and will assume that Ud(p1) ∩ Ua(p2) = ∅. It is easy to see, that there

exist N ∈ Z, N > 0, such that for every point xn = p + nv we have g−nxn ∈ Ud(p1) and

hnxn ∈ Ua(p2) for every n > N (see Pic.1). Thus for every n > N there exists a point

yn ∈ Ud(p1) such that hngnyn ∈ Ua(p2). Hence hngn 6= 1 and hngnUd(p1)∩Ua(p2) 6= ∅ for

all n > N, n ∈ N. Thus

(1) hNm1gNm1 6= hNm2gNm2 for all m1 6= m2,m1,m2 ∈ N.

(2) hNmgNmUd(p1) ∩ Ua(p2) 6= ∅ for all m ∈ N.

Therefore the group Γ does not act properly discontinuously.

We will prove a slightly more general statement.

Proposition 4.6. Let G ⊂ GL(V ) be the Zariski closure of the linear part of an affine

group Γ. Let S be a semisimple part of G and let U be the unipotent radical of G. Assume

there exists a chain of l(G)-invariant subspaces 0 ⊆ V0 ⊂ V1 ⊆ V2 = V such that the

following conditions hold.
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(1) the induced representations of S on V2/V1 and V0 and the induced representation of

U on V1/V0 are trivial.

(2) Let i : S → SL(V1/V0) be the induced representation of S. Then for one (then for

every) regular element g of S the element i(g) does not have one as an eigenvalue.

(3) Every regular element s ∈ S can be transformed into a transversal pair inside S.

Then Γ does not act properly discontinuously.

Proof. Let Γ1 = [Γ,Γ] and let G1 be the Zariski closure of Γ1. From (1) follows that the

solvable radical R of l(G1) is a unipotent subgroup of GL(V ). Let Γm+1 = [Γ1,Γm] and let

Gm be the Zariski closure of Γm,m ≥ 1,m ∈ Z. It is well known that Gm+1 = [G1, Gm].

There exists an N ∈ N such that for all m ≥ N,m ∈ Z, the restriction of l(Gm) to V0 and

the induced action of l(Gm) on V2/V1 are trivial. Since a semisimple part of G is also a

semisimple part of Gm for all m ∈ N we conclude that Γm fulfils all requirements of the

proposition. Assume that m ∈ Z,m > N. We will show that the group Γm does not act

properly discontinuously.

Indeed, since the induced representation l(Gm) on V2/V1 is trivial it follows from 2.1 (∗),

that the affine subspace V 1 = V1 + 0 is Gm+1 invariant. Denote by Γ (resp. G ) the

restriction of Γm+1 (resp. Gm+1) to V .

If V0 = 0 then for every regular element γ ∈ Γm+1 there exists a fixed point qγ. Hence

Γm+1 does not act properly discontinuously. Since Γm+1 ≤ Γ the group Γ does not act

properly discontinuously. Assume that V0 6= 0. Obviously Γ and G fulfil the hypotheses

of Proposition 4.5. Hence Γ does not act properly discontinuously. Hence by the same

argument as above we conclude that Γ does not act properly discontinuously. This proves

the proposition.
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5 The Auslander conjecture in dimensions 4 and 5

5.1. In this section we will prove the Auslander conjecture in dimensions 4 and 5.

Let Γ be a discrete subgroup of an affine group and let G be the Zariski closure of Γ. It

follows from Remark 2.8 that the semisimple part S of G is a simple group. Let us now

recall the list of all possible cases for n = dimV ≤ 6. It follows from 3.5 that all possible

cases are

S = SLl(R), V1 = Rl, 3 ≤ l ≤ 5, l < n, 4 ≤ n ≤ 6 (s1)

S = Sp4(R), V1 = R4, SO(3, 2), n = 5, 6 (s2)

We will deal with the case S = SO(3, 2), dimV = 6, in the next chapter. Therefore in

the next proposition we will assume that if S = SO(3, 2) then dimV = 5.

Proposition 5.2. Let Γ be a discrete subgroup of an affine group and let G be the

Zariski closure of Γ. Assume that the simple part S of G is as in (s1) or (s2). Then the

group Γ does not act properly discontinuously..

Proof. Case 1 S = SO(3, 2), dimV = 5. By Theorem B [AMS3] the group Γ does

not act properly discontinuously.

Case 2 S 6= SO(3, 2). Obviously S fulfils all requirements of Proposition 2.10. Thus

Γ does not act properly discontinuously. This proves the proposition.

Proposition 5.3. Let Γ ⊆ Aff (Rn), n ≤ 5 be a crystallographic group. Then Γ is

virtually solvable.

Proof Let G be the Zariski closure of Γ. Since the connected component G0 is a finite

index subgroup of G we conclude that Γ ∩ G0 is a finite index subgroup of Γ. Clearly

Γ ∩ G0 is a crystallographic group. Thus we shall and will assume that the group G is
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connected. As we explained above , the group l(G) is an A–group. Assume that l(G) has

a non-trivial semisimple part S. By 5.1 for n ≤ 5 the group S is a simple group listed in

(s1) or (s2). Thus by Proposition 5.2 Γ does not act properly discontinuously. Therefore,

the semisimple part S is trivial. Hence the group Γ is virtually solvable.

6 The Auslander conjecture in dimension 6. The

cohomological argument.

We start use the same notations as in Chapter 5. The goal of this chapter is to show that

if Γ is a crystallographic group and dimV = 6 then the semisimple part of the Zariksi

closure of Γ can not be one of the groups listed in Case 1 and Case 2 (1), (2). The groups

of Case 2 (3) will be dealt with in the next section 7. We will start with the following

Proposition 6.1. Let Γ be an affine group and let G be the Zariski closure of Γ.

Assume that the semisimple part S of G is as in the Case 1 (1), (2). Then the group Γ

does not act properly discontinuously

Proof. The proof follows immediately from Proposition 4.5.

Proposition 6.2 Let Γ be an affine group and let G be the Zariski closure of Γ. Assume

that the semisimple part S of G is as in Case 1 (3) S = SL2(R) × SL3(R). Then the

group Γ does not act properly discontinuously.

Proof. We have a chain 0 ⊆ W0 ⊂ W1 ⊆ W2 = V of l(G)-invariant subspaces. There

are three possible cases

(i) dimW0 = 1,

(ii) dimW1/W0 = 1,
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(iii) dimW2/W1 = 1.

Cases (i) and (iii). It follows from (A3) that in case (i) we have

l(G)|W0 = 1 and dimW2/W1 = 0. In case (iii) the induced representation l(G) →

GL(W2/W1) is trivial and dimW0 = 0. Hence Γ does not act properly discontinuously by

Proposition 4.5.

Cases (ii). The induced representation l(G) → GL(W1/W0) is trivial as follows again

from (A3). Roughly speaking the space of S-fixed vectors is ”in between”. Set U0 = W0.

There exist S–invariant spaces U1 and U2 such that W1 = U0 ⊕ U1, and V = U0 ⊕ U1 ⊕

U2,

We will prove the statement of the proposition assuming that S|U0 = SL3(R), S|U1 = I

and S|U2 = SL2(R). The proof in case S|W0 = SL2(R), S|U1 = I and S|U2 = SL3(R) is a

verbatim repetition.

There exists a g ∈ Γ such that l(g) is an R–regular element in l(G) ([AMS1], [P]). We

can and will assume that l(g) ∈ S. Let g0 = l(g)|U0 ∈ SL3(R), g1 = l(g)|U1 = 1 and g2 =

l(g)|U2 ∈ SL2(R). We can assume that dimA−(g0) < dimA+(g0). Thus dimA+(g0) = 2.

Note that dimA+(g2) = 1 and A0(g) = U1. Let U be a one dimensional l(g)–invariant

subspace of A+(g0). Then there exists t ∈ S such that l(t)U /∈ A+(g0) ∪ A−(g0) and

l(t)A+(g2) /∈ A+(g2) ∪ A−(g2) and l(t)U ⊕ A+(g0) = U0 and l(t)A+(g2) ⊕ A+(g2) = U2.

Set A(t) = l(t)U + l(t)A+(g2). Then A(t) ⊕ D+(g) = V since D+(g) = A+(g0) + U1 +

A+(g2) Let σ : G → S be the projection. Clearly σ(Γ) is Zariski dense in S. Therefore

we can and will assume the t ∈ Γ. Put h = tg−1t−1 ∈ Γ. Clearly A(t) ⊆ A−(h). Remark,

that 0 6= u ∈ U is an eigenvector of h but not an eigenvector of g. Therefore hn 6= gm

for all n,m ∈ Z, n 6= 0,m 6= 0. Let A = l(t)U1 + A(t), A ⊆ D−(h) and let D = A + Lh.

Clearly, D, is an h–invariant affine space in E−h and dimD∩E+
g = 1. Let L = D∩E+

g . We

have the projections π1 : R6 −→ Lg of an affine space R6 onto Lg along A+(g) + A−(g)
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and π2 : R6 −→ Lh along A+(h) + A−(h). The restriction πi = πi|L, i = 1, 2 is an affine

isomorphism. Set θ = π−1
2 ◦ π1. Then θ : Lg −→ Lh is an affine isomorphism. Since g1 =

1 we conclude l(t)tg − tg ∈ U0. Combining this with chapter 4.2, (**) we obtain θ(tg) =

−th.

Let p1 ∈ Lg and let p2 ∈ Lh. There exists a point p ∈ L such that the vector −→pp1 ∈

A+(g) and −→pp2 ∈ A−(h). Consider a ball U1(p1)of radius 1 and the center at p1 and a ball

U1(p2)of radius 1 and the center at p2. there exists a point q ∈ L such that the vector

π1(−→pq) = tg. Set xk = p+kv, k ∈ N, k > 0. Then there exists a positive N,N ∈ Z such that

for m > N we have g−mxm ∈ U1(p1) and hmxm ∈ U1(p2). As in the proof of Proposition

2.9 we conclude that for m > N we have hmgmU1(p1)∩U1(p2) 6= ∅. Since hn 6= gm for all

n,m ∈ Z, n 6= 0,m 6= 0 the group Γ does not act properly discontinuously.

Proposition 6.3. Let Γ be an affine group and let G be the Zariski closure of Γ.

Assume that G is connected and the semisimple part S of G is as in Case 2 (1), (2).

Then the group Γ is not a crystallographic group.

Proof . Let us first explain the main idea of the proof. Since the subgroup Γ ⊆ Gn

is a crystallographic group, the virtual cohomological dimension vcd(Γ) of Γ is dimRn =

n. Hence vcd(Γ) = 6. As a first step we will show that vcd(Γ) ≤ dim(S/K), where S/K

is the symmetric space of S. Then we compare dimS/K and vcd(Γ) in the cases S =

SO(3)×SL3(R), S = SO(3, 2) and come to the conclusion that dimS/K ≥ vcd(Γ). This

will lead to a contradiction. We actually show that the projection p : G → S restricts

to an isomorphism of Γ onto a discrete subgroup of S. In case S = SO(3)× SL3(R) the

dimension of S/K is 5 and so vcd(Γ) ≤ dim(S/K) is impossible. In case S = SO(3, 2)

the dimension of S/K is 6 and so p(Γ) would be a cocompact lattice in S and we will get

a contradiction using the Margulis rigidity theorem.

Let us first show that vcd(Γ) ≤ dim(S/K). Let R be the solvable radical and U be
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the unipotent radical of G. Recall that G acts trivially on the factor-group R/U . Thus it

is easy to see that in Case 2 (2) we have R = U. Let Γr = R∩Γ and let R1 be the Zariski

closure of Γr. Then the group R1 is a normal solvable subgroup in G since Γr is a normal

solvable subgroup in Γ. Let T1 be a maximal torus and let U1 be the unipotent radical of

R1. Since S̃ = ST1 is a reductive subgroup of G there exists a point q0 such that S̃q0 = q0

[see (2.1)]. Set W = R1q0. Since T1q0 = q0 we conclude that W = U1q0. For every g ∈ R1

there are unique elements t ∈ T1 and u ∈ U1 such that g = tu. Define a map π : R1 → U

by π(g) = u. Then π(Γr) contains a uniform lattice of U1 [S2, Proposition 2]. Since W =

U1q0 we conclude that Γr \W is compact.

Since sq0 = q0 and R1 is a normal subgroup of G then obviously sW = W for every s ∈

S. Let ρ : S → GL(Tq0) be the representation of S on the tangent space Tq0 of W at q0. It

is clear that the only possible numbers for dim(Tq0) are {0, 3, 6} if S = SO(3)× SL3(R)

and {0, 1, 5, 6} if S = SO(3, 2). Let us show that in each case dim(Tq0) = 0. Assume that

dim(Tq0) = 6. Then W = R1q0 = R6. As we show above Γr \W is compact. Thus Γr is a

crystallographic group. On the other hand Γr is a subgroup of a crystallographic group Γ

which acts on the same affine space. Thus the index |Γ/Γr| is finite. On the other hand

the index |Γ/Γr| is infinite. Otherwise the Zariski closure of the solvable group Γr would

contain the connected component of the Zariski closure of Γ which is impossible. We thus

have shown that dim(Tq0) < 6.

We will treat the two cases S = SO(3)× SL3(R) and SO(3, 2) separately.

Let S = SO(3) × SL3(R) and dim(Tq0) = 3. Then G is a subgroup of the following

group G̃ = {X : X ∈ GL7(R)}, where

X =


A B v1

0 C v2

0 0 1

 (1)

where A ∈ SO(3), C ∈ SL3(R), v1, v2 ∈ R3,
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or

X =


A B v1

0 C v2

0 0 1

 (2)

where A ∈ SL3(R), C ∈ SO(3), B ∈M3(R), v1, v2 ∈ R3.

We claim that dimTq0 = 0. We will prove this for (1). The proof for (2) will go along the

same lines.

Since the semisimple part of a group has to commute with one maximal reductive

subgroup of its solvable radical the solvable radical of G is unipotent. Therefore for a

X ∈ R we have

X =


I3 B(X) v1(X)

0 I3 v2(X)

0 0 1

 .

Assume that there is an element X of the unipoten U radical of G such that B(X) 6= 0.

Since l(U) is a normal subgroup of l(G) by direct calculations we show that for every B ∈

M3(R) there exists X ∈ U such that

l(X) =

 I3 B

0 I3

 (3).

Otherwise B(X) = 0 for every element X ∈ U.

The unipotent group R1 is a normal connected subgroup of G and R1 ≤ U. There are

three connected proper nontrivial normal unipotent subgroups of G, namely,

R1 = {X ∈ U, v2(X) = 0} , R1 = {X ∈ U,B(X) = 0, , v2(X) = 0} and

R1 = {X ∈ U,B(X) = 0, v1(X) = 0} . We conclude that in these cases W = R1q0 is an

affine G–invariant subspace. Thus we have a nontrivial G–invariant affine space W where

Γ and Γr act as crystallographic groups. By the same argument we used in case dimTq0 =

6 we conclude that the subgroup R1 is trivial. By Auslander’s theorem [R], πS(Γ) is a
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discrete subgroup of S. Since the intersection Γ∩R is trivial, πS(Γ) and Γ are isomorphic.

Hence vcd(Γ) = vcd(πS(Γ)) ≤ dimS/K, where K is a maximal compact subgroup in S.

Thus vcd(Γ) ≤ 5. On the other hand, vcd(Γ) = 6, a contradiction.

Let us now show that Case 2 (1) is also impossible. We will use the notation introduced

in 3.5. Recall that V = V0⊕V1 where the restriction S|V0 gives a trivial representation and

the restriction S|V1 = SO(3, 2). Assume that V1 is l(G)-invariant. Then it follows from

the linear representation(*) in 2.1, that the affine space V1 + q0 is Γ1 -invariant, where

Γ1 = [Γ,Γ]. Obviously dimV1 = 5 and l(Γ1)|V1 ≤ SO(3, 2). It follows from Proposition

4.2, case 1, that Γ1 does not act properly discontinuously on V1 + q0. Therefore Γ is not

a crystallographic group. Thus we can and will assume that V0 is l(G) invariant. We

will prove first that dimW = 0. Recall that W = R1q0 and l(G)q0 = q0. We have the

following matrix representation of G. Let X ∈ G then

X =


λ(X) w(X) a(X)

0 A(X) v(X)

0 0 1

 ,

where A(X) ∈ SO(3, 2), w(X), v(X) ∈ R5, λ(X), a(X) ∈ R. As we concluded above, there

are three possible cases for dimW , namely, dimW = 0, 1, 5. Our goal is to show dimW 6=

1, 5.

Assume that dimW = 1. The representation ρ of S on Tq0 is trivial. Clearly, S =

SO(3, 2) is an irreducible subgroup of GL(R5). Therefore we conclude that if X is an

element in the normal subgroup R1 of G, then v(X) = 0. Thus for every X ∈ R1 we have

X =


1 w a

0 I5 0

0 0 1

 ,

where w ∈ R5, a ∈ R. Hence W is an affine Γ– invariant subspace in R6. Therefore we

have a natural homomorphism θ : Γ −→ Aff(R6/W ). By [S2, Lemma 4], Γ/Γr = θ(Γ) is
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a crystallographic subgroup in Aff(R6/W ). Obviously the semisimple part of the Zariski

closure of θ(Γ) is SO(3, 2) and R6/W = R5. By [AMS3, Theorem A] this is impossible.

Assume that dimW = 5. Again consider the space of orbits R̂ = {gW, g ∈ G}. Recall

that the unipotent radical U acts transitively on R̂ [S2]. It is clear that R̂ is a one

dimensional manifold. As in [S2] we have a representation ρ of l(G) on the tangent space

TW of R̂ at W . We show in [S2, Theorem A] that one is an eigenvalue of ρ(g) for every

element g ∈ l(G). Hence the representation ρ is trivial. Note that this implies that λ(X) =

1 for every X ∈ R1. Thus R1 is a unipotent group. Since dimW = 5 there exists an X ∈

R1 such that v(X) 6= 0. On the other hand looking at the representation of SO(3, 2) on

R1 we conclude that if there exists X ∈ R1 such that v(X) 6= 0 then for every v ∈ R5

there exists X ∈ R1 such that v(X) = v. Therefore for every g ∈ Γ there exists r ∈ R1

such that for ĝ = gr−1 we have v(ĝ) = 0. Obviously

ĝ =


1 w(ĝ) a(ĝ)

0 S(ĝ) 0

0 0 1

 (4).

Let g1, g2 ∈ Γ be two elements on Γ. There exist r1, r2 such that for ĝiri = gi, i = 1, 2

we have v(ĝi) = 0. Clearly, we have [ĝ1, ĝ2] ∈ l(G) and [g1, g2] = [ĝ1, ĝ2]r0 where r0 ∈

R1. Therefore [g1, g2]W = [ĝ1, ĝ2]r0R1q0 = R1q0 = W. Set Γ/Γr = θ(Γ). By [S2, Lemma

4], Γ/Γr = θ(Γ) acts as a crystallographic group on R̂. Therefore Stabθ(Γ)(W ) is a finite

set. From [Γ,Γ]W = W and ΓrW = W follows that [θ(Γ), θ(Γ)] ≤ Stabθ(Γ)(W ). So the

group [θ(Γ), θ(Γ)] is finite. Consequently θ(Γ) is a virtually abelian group. Therefore Γ is

a virtually solvable group. This is a contradiction. Thus we conclude that W = 0. Hence

R1 = {e} and the restriction of the homomorphism πS : G −→ S = G/R onto Γ is an

isomorphism. By Auslander’s theorem [R], the projection πS(Γ) is a discrete subgroup

in S and vcd(πS(Γ)) = vcd(Γ) = 6. On the other hand vcd(πS(Γ)) ≤ dimS/K, where

K is a maximal subgroup in S. Obviously, dimS/K = 6. Hence vcd(πS(Γ)) = dimS/K.
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Therefore πS(Γ) is a co-compact lattice in S. We can apply the Margulis rigidity theorem,

since rankR(S) = 2 and conclude that there exists a g ∈ Γ such that Γ̃ = gΓg−1 ∩ S is

a subgroup of finite index in Γ. Since Γ̃ 6 S we have Γ̃p0 = p0. Thus Γ does not act

properly discontinuously. Hence Γ is not a crystallographic

Remark A more sophisticated arguments based on dynamical ideas and results from

[AMS4] enable one to prove that Γ does not act properly discontinuously under the as-

sumption of Proposition 6.3.

7 The Auslander conjecture in dimension 6.

Dynamical arguments

7.1. Orientation. The dynamical approach we have used in [AMS3] and will use here

is based on the so called Margulis sign of an affine transformation. The case S =

SO(2, 1) × SL3(R) needs other tools, namely a new version of the Margulis sign. We

will need to introduce it for the natural representation of S which goes roughly saying

by ignoring the SL3(R)–factor. We then have a lemma similar to the cases of SO(k +

1, k), namely lemma 7.7, which says that if a group acts properly discontinuously, then

opposite signs are impossible.

Now we will recall the important definition of the sign of an affine transformation.

This definition was first introduced by G. Margulis [M] for n = 3. Then it was generalized

in [AMS3] for the case in which the signature of the quadratic form is (k+1, k) and finally

for an arbitrary quadratic form in [AMS4]. Our presentation will follow along the lines

of [AMS4]. Let B be a quadratic form of signature (p, q), p ≥ q, p + q = n. Let v be a

vector in Rn, v = x1v1 + · · ·+xpvp +y1w1 + · · ·+yqwq, where v1, v2, . . . , vp, w1, w2, . . . , wq
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is a basis of Rn. We can and will assume that

B(v, v) = x2
1 + · · ·+ x2

p − y2
1 − · · · − y2

q .

Consider the set Φ of all maximal B–isotropic subspaces. Let X be the subspace spanned

by {v1, v2, . . . , vp} and Y be the subspace spanned by {w1, w2, . . . , wq}. It is clear that

Rn = X ⊕ Y . Define the cone

ConB = {v ∈ Rn : B(v, v) < 0}.

Clearly Y \{0} ⊂ ConB. We have the two projections

πX : Rn −→ X andπY : Rn −→ Y

along Y and X, respectively. The restriction of πY to W ∈ Φ is a linear isomorphism

W −→ Y . Hence if we fix an orientation on Y , then we have also fixed an orientation on

each W ∈ Φ. For W ∈ Φ, let us denote the B–orthogonal subspace of W by W⊥ = {z ∈

Rn ; B(z,W ) = 0}. We have W ⊂ W⊥ since W is B–isotropic. We also have

dimW⊥ = dimW + (p− q) = p.

The restriction of πX to W⊥ is a linear isomorphism W⊥ −→ X. Hence if we fix an

orientation on X, then we have also fixed an orientation on W⊥ for each W ∈ Φ. Thus

we have orientations on both W and W⊥ and we have naturally induced an orientation

on any subspace Ŵ , such that W⊥ = W ⊕ Ŵ . If V1 ∈ Φ and V2 ∈ Φ are transversal, then

V0 = V ⊥1 ∩ V ⊥2 is a subspace that is transversal to both V1 and V2; therefore V0 ⊕ V1 =

V ⊥1 and V0⊕V2 = V ⊥2 . So there are two orientations ω1 and ω2 on V0, where ωi is defined

if we consider V0 as a subspace in V ⊥i . We have [see AMS3, Lemma 2.1]

Lemma 7.2. The orientations defined above on V0 are the same if q is even and they

are opposite if q is odd, i.e. ω1 = (−1)qω2.
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Example 7.3. Let p = k + 1, q = k. Let V1 and V2 be the maximal isotropic subspaces

spanned by the vectors {w1 + v1, . . . , wk + vk} and {w1 − v1, . . . , wk − vk} respectively.

Since for every i = 1, . . . , k we have πY (wi ± vi)) = wi, i = 1, . . . , k, we conclude that

w1 + v1, . . . , wk + vk (resp. w1 − v1, . . . , wk − vk) is a positively oriented basis of V1 (resp.

V2). Then V ⊥1 ∩ V ⊥2 is spanned by the vector vk+1. Let v0(V ⊥1 ) ∈ V ⊥1 ∩ V ⊥2 and v0(V ⊥2 ) ∈

V ⊥1 ∩ V ⊥2 such that {w1 + v1, . . . , wk + vk, v
0(V ⊥1 )} (resp. {w1 − v1, . . . , wk − vk, v0(V ⊥2 )}

) is a positively oriented basis of V ⊥1 (resp. V ⊥2 .) We have v0(V ⊥1 ) = (−1)kv0(V ⊥2 ) since

πX(wi + vi) = vi and πX(wi − vi) = −vi for all i, i = 1, . . . , k. In particular, v0(V ⊥1 ) =

−v0(V ⊥2 ) when k = 1.

7.4 Margulis’s sign. Let us recall now the definition of the Margulis sign (or for short

sign) of an affine element [AMS3]. Let g ∈ AffRn be an R-regular element with l(g) ∈

SO(B) where B is a non-degenerate form on Rn of signature (k+ 1, k). Note, that in this

case l(g) is a regular element of SO(B). Obviously, the subspaces A+(g) and A−(g) are

maximal B–isotropic subspaces, D+(g) = A+(g)⊥, D−(g) = A−(g)⊥ and dimA0(g) = 1.

Following the procedure above for the element g we choose and fix a vector v+ ∈ A0(g) with

the following property B(v+, v
0(D+(g))) > 0 Thus we fix an orientation on this line by the

choice of the orientation on A+(g) and D+(g). Likewise we fix an orientation on A0(g−1)

by the choice of the orientations on A+(g−1) = A−(g) and D+(g−1) = D−(g). We will

denote the corresponding vector in A0(g−1) by v−. Recall that A0(g) = A0(g−1).Therefore

we have two orientations on the same one-dimensional space.

Let q ∈ Rn. Set

α(g) = B(gq − q, v+)/B(v+, v+)1/2.

It is clear that α(g) does not depend on the point q ∈ Rn and we have α(g) = α(x−1gx) for

every x ∈ AffRn such that l(x) ∈ SO(B). Consider now any R-regular element g and let

us show that α(g−1) = (−1)kα(g). Indeed by Example 6.3, v0(D+(g−1)) = v0(D−(g)) =

(−1)kv0(D+(g)). Hence v− = (−1)kv+. We have α(g−1) = B(g−1q − q, v−)/B(v−, v−)1/2
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= (−1)kB(g−1q − q, v+)/B(v+, v+)1/2 = (−1)k+1B(q − g−1q, v+)/B(v+, v+)1/2. Put p =

g−1q. Hence α(g−1) = (−1)k+1α(g). Note that α(g) = α(g−1) if k = 1. We call α(g) the

Lh

E−h
E+
g

L

π1

p

gp

π2(hq − q)

π1(gp− p)

π2
q

hq

A+(g)

A−(h)

Lg

Figure 2: Positive and negative parts, illustration 1

sign of g. Although α(g) is a non-zero real number, since we are only interested in its

sign and not in its absolute value we call α(g) a sign.

From now on unless otherwise stated we assume that the semisimple part S of the
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Zariski closure G of Γ is SO(2, 1) × SL3(R) Clearly, that V = V1 ⊕ V2, S|V1 = SO(2, 1)

and S|V2 = SL3(R). Hence we have two natural homomorphisms: θ1 : G → SO(2, 1) ⊆

GL(V1) and θ2 : G → SL3(R) ⊆ GL(V2). It is easy to see that the unipotent radical of

G is an abelian group. We will also assume that our standard inner product (see 3.2) is

chosen so that the subspaces V1 and V2 are orthogonal. Let g ∈ S be a regular element.

Let ĝ be the restriction g|V1 . Obviously A0(g) = A0(ĝ). We set vg = v+/B(v+, v+)1/2. Let

g ∈ G be a regular element. There exists a unique u ∈ G such that l(h) = l(ugu−1) ∈

S. Set vh = l(u)(vg). There is a simple geometrical explanation of this definition. Let

π : V −→ V1 be the natural projection onto V1 along V2. We have the corresponding

homomorphism π̂ : G −→ SO(2, 1). It is easy to see that the restriction of π to A0(g)

gives an isomorphism onto A0(π̂(g)) and π(vg) = vπ̂(g). Let τg : V −→ Lg be the natural

projection of the affine space V onto the line Lg along the subspace A+(g)⊕A−(g), where

g is a regular element . There exists a unique α ∈ R such that τg(p) − p = αvg. We set

α(g) = α. Clearly, since π(vg) = vπ̂(g) and B is the form of signature (2, 1) on V1 fixed

by SO(2, 1) , we have α(g) = B(π(τg(p)− p), π(vg)) = α(π̂(g)). Obviously α(g) does not

depend on the chosen point therefore we have α(g−1) = α(g) and α(gn) = |n|α(g). It is

clear that, α(g) = α(hgh−1) for any h ∈ G. For more details see [AMS4, p.5].

A regular element g ∈ G is called hyperbolic, if θ1(g) and θ2(g) are hyperbolic. Let us

now explain the main application of the sign. Let g and h be two hyperbolic transversal

elements. Then A−(h) ⊕D+(g) = V and dim(D−(h) ∩D+(g)) = 1. Let Vg,h = D−(h) ∩

D+(g). Clearly,the line L = E+
g ∩E−h is parallel to Vg,h. Let π1 : Lg −→ L be the projection

of Lg onto L along A+(g) and let π2 : Lh −→ L. be the projection of Lh onto L along

A−(h) (see Fig.2). By the above arguments for p ∈ Lg, q ∈ Lh the vectors π2(hq− q) and

π1(gp− p) have opposite directions if α(g)α(h) < 0. Then as in the proof of Theorem A

[AMS3], we conclude that there exist infinitely many positive numbers n,m and two balls

B(p, 1) and B(q, 1) such that hmgnB(p, 1)
⋂
B(q, 1) 6= ∅. Thus we conclude
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Lemma 7.5. If there exist two hyperbolic transversal elements g and h of Γ such that

α(g)α(h) < 0 then Γ does not act properly discontinuously.

7.6 Let v1, v2, w1 be a basis of V1 such that for any vector v ∈ V1, v = x1v1 + x2v2 + y1w1

we have B(v, v) = x2
1 + x2

2 − y2
1 and (v, v) = x2

1 + x2
2 + y2

1. We will use the notations and

definitions from 7.1. Let ∂ConB be the boundary of ConB. Let U (see Fig.3) be a maximal

B-isotropic subspace of V1 and let v be the vector of U such that πY (v) = w1. Clearly, U

is spanned by v. Let v0 be the vector in U⊥ ∩ X such that B(v0, v0) = 1 and the basis

πX(v), v0 has the same orientation as v1, v2. Let W be a maximal B-isotropic subspace of

V1 and suppose W 6= U . Then dim(U⊥ ∩W⊥) = 1. There exists a unique vector w0(W )

in U⊥∩W⊥ and v̂ ∈ U such that w0(W ) = v0 + v̂. Obviously there exists a unique number

α(W ) such that v̂ = α(W )v. Set Φ+
U = {W ∈ Φ|α(W ) > 0} and Φ−U = {W ∈ Φ|α(W ) <

0}. We have B(v0, w1) = 0 since v0 ∈ X. Therefore B(w0(W )), w1) = α(W )B(v, w1) =

−α(W ). Let Û be the sum of the two subspaces U and < w1 >. Then Φ+
U and Φ−U are

two different connected components of the set ∂ConB\Û . Obviously ∂ConB\Û = Φ+
U ∪

Φ−U . We conclude :

(1) For every W ∈ Φ+
U (resp. W ∈ Φ−U) we have B(w0(W ), w1) < 0 (resp. B(w0(W ), w1) >

0).

(2) Let W1,W2,W3,W4 be maximal B–isotropic subspaces of V1 such that w1 ∈ (W1 +

W2)
⋂

(W3 + W4) and {W1,W2,W3,W4} ⊂ ∂ConB\Û . It is easy to see that W1 and W2

belong to different connected components of the set ∂ConB \ Û . Indeed, since w1 ∈ W1 +

W2 we have α(W1) = −α(W2). The same is true for W3,W4.

(2a) It follows from (2) that for every maximal B–isotropic subspace U of V1 if Wi ∈ Φ±U

then Wi+1 ∈ Φ∓U where i = 1, 3.

(2b) Let d = min1≤i 6=j≤4{d(Wi,Wj)}. Let U be a maximal B–isotropic subspace of V. It

follows from (2a) that there exists δ = δ(d) such that for every four maximal B–isotropic

subspaces Ŵi, i = 1, 2, 3, 4 of V with d(Ŵi,Wi) ≤ δ for 1 ≤ i ≤ 4 there exists an i0 ∈
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1
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U

U⊥

Φ+
U

Φ−U

w0(W1)
w0(W2)

Figure 3: Positive and negative parts, illustration 2

{1, 3} such that Ŵi0 ∈ Φ−U and

Ŵi0+1 ∈ Φ+
U .

(3) Assume first thatW1 ∈ Φ+
U andW2 ∈ Φ−U . Then there exists a δ such that for a maximal

B–isotropic subspaces Û , Ŵ1, Ŵ2 with d(Û , U) < δ, d(Ŵ1,W1) < δ and d(Ŵ2,W2) < δ
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we have Ŵ1 ∈ Φ+

Û
and Ŵ2 ∈ Φ−

Û
.

Directions. Let us explain the motivation for the above construction. We show that if

the group Γ is crystallographic, then there are two hyperbolic transversal elements in Γ

with an opposite sign and conclude that case 2 (3) is impossible because of Lemma 7.5.

Let S ⊆ Aff(Rn) be an infinite subset. We will say that S is unbounded if for every

compact set K, K ⊂ Rn there exists an s ∈ S such that K∩sK = ∅. Every infinite subset

S of Γ is unbounded since Γ acts properly discontinuously.

We will say that a non-zero vector v ∈ R6 is the direction of an unbounded subset

S on a compact K0 if there exists an infinite sequence {γn, n ∈ N} of S and a sequence

{xn, n ∈ N} in K0 such that
γnxn − xn
d(γnxn, xn)

→ v

||v||
for n→∞.

Denote by V (S,K0) the set of all directions of S on K0.

Since Γ is a crystallographic group there exists a compact subset K of R6 such that

ΓK = R6. Let us show that V (Γ, K) = {v, v ∈ R6, ‖v‖ = 1}. Indeed, let v be a norm one

vector in R6. Let L+(v) = {tv, t ∈ R, t > 0} be a directed line. Clearly, for every point

x ∈ L+(v) there exists a point kx ∈ K and γx ∈ Γ such that γxkx = x. Obviously, for x→

∞ we have
γxkx − kx
d(γxkx, kx)

→ v

The fact that V (Γ, K) = {v, v ∈ R6, ‖v‖ = 1} is crucial. Let us admit that if Γ acts

properly discontinuously but not cocompact this is not true.

The key point is to show that there are two hyperbolic transversal elements in Γ with

an opposite sign. In order to show this we construct two sequences S1 and S2 such that

w1 ∈ V (S1, K) and w1 ∈ V (S2, K). Then we show that there are two hyperbolic elements

γ+ ∈ S1 and γ− ∈ S2 such that for A
(1)
+ = A+(γ+) ∩ V1, A

(1)
− = A−(γ+) ∩ V1 (resp. A

(2)
+ =
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A+(γ−) ∩ V1, A
(2)
− = A−(γ−) ∩ V1) we have A

(1)
− ∈ Φ+

A
(1)
+

(resp. A
(2)
− ∈ Φ−

A
(2)
−

). Hence by

7.6 (1) we conclude that these elements have an opposite sign.

Let us end with a small remark. We need not only to have hyperbolic elements with

an opposite sign, but also ensure that they are transversal. The difficulty which comes

up here is the following. We first contract a sequence S such that w1 ∈ V (S,K). Since

we do not know a priory the dimension of dimA−(θ2(γ)), γ ∈ S we ”prepare” two sets Si

and Ti which fulfill (4) of Lemma 7.8 below. We start with the following simple lemma

Lemma 7.7 Let Γ̂ ⊂ GL(V1) be a Zariski dense subgroup of SO(2, 1). Then there exist

four transversal hyperbolic elements γ1, γ2, γ3, γ4 in Γ̂ such that we have B(v, v) < 0 for

every non- zero vector

v ∈ (A+(γ1) + A+(γ2)) ∩ (A+(γ3) + A+(γ4))

Proof Since Γ̂ is Zariski dense in SO(2, 1) there are four transversal hyperbolic ele-

ments [AMS1]. It is enough now to order of these four elements such that vectors vectors

A+(γ3) and A+(γ4) belongs to the different connected components of R3 \ V where V

is a subspace of R3 spanned by vectors A+(γ1), A+(γ2). Then any non-zero vector v ∈

(A+(γ1) + A+(γ2))
⋂

(A+(γ3) + A+(γ4)) will be inside the cone ConB. Thus B(v, v) < 0

for any non-zero v ∈ (A+(γ1) + A+(γ2))
⋂

(A+(γ3) + A+(γ4)) which proves the lemma.

To make products hyperbolic and transversal, one needs the following quantitative version

of hyperbolicity and transversality.

Lemma 2.7. [AMS3] There exists s(ε) < 1 and c(ε) such that for any two ε-

hyperbolic ε-transversal elements g, h ∈ GL(V ) with s(g) < s(ε) and s(h) < s(ε), for all

n,m ∈ Z, n > 0,m > 0 we have

(1) d̂(A+(gnhm), A+(g)) ≤ c(ε)s(g)n ;

(2) d̂(A−(gnhm), A−(h)) ≤ c(ε)s(h)m;
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(3) the element gnhm is ε/2-hyperbolic and is ε/2-transversal to both g and h;

(4) s(gnhm) ≤ c(ε)s(g)ns(h)m.

Note that therefore an element gnhm is ε/2–hyperbolic for sufficiently big n,m and ε-very

hyperbolic elements g, h.

Let γi, i = 1, 2, 3, 4 be elements of Γ that fulfill conditions and conclusions of Lemma

7.7. Obviously we can conjugate Γ. Hence without loss of generality we will assume that

w1 ∈ (A−(θ1(γ1)) +A−(θ1(γ2)))∩ (A−(θ1(γ3)) +A−θ1((γ4))). Set Ai = A−(θ1(γi)), for i =

1, 2, 3, 4. Let d = min1≤i 6=j≤4 d̂(Ai, Aj)

Lemma 7.8 There exist sets Si(n,m) = {gik(n,m), k = 1, 2, 3, i = 1, 2, 3, 4, n,m >

0, n,m ∈ Z },Ti(n,m) = {hik(n,m), k = 1, 2, 3, i = 1, 2, 3, 4, n,m > 0, n,m ∈ Z} , a

positive real numbers ε, q, ε > 0, 0 < q < 1 such that for every positive δ there exists

N,N > 0, N ∈ Z such that for n,m > N we have

(1) d̂(A−(θ1(gik(n,m))), Ai) < δ and d̂(A−(θ1(hik)(n,m)), Ai) < δ;

(2) gik(n,m) and hik(n,m) are ε-hyperbolic for k = 1, 2, 3;

(3) max1≤i≤4,1≤k≤3{s(gik(n,m), s(hik(n,m))} < qn;

(4) let i be an index with 1 ≤ i ≤ 4. Then for every k = 1, 2, 3 we have

dimA−(θ2(gik(n,m))) = 2 and dimA−(θ2(hik(n,m))) = 1;

(5) for every index i with 1 ≤ i ≤ 4 we have
⋂

1≤k≤3A
−(θ2(gik(n,m)) = {0};

(6) for every index i with 1 ≤ i ≤ 4 we have dim(A−(θ2(hi1(n,m)))+A−(θ2(hi2(n,m)))+

A−(θ2(hi3(n,m)))) = 3.

Proof Obviously it is enough to prove the statement for one subspace. Let us do it for

A1. It is easy to show that there exists a hyperbolic element γ of Γ such that
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i) θ1(γ) and θ1(γ−1) are transversal to θ1(γ1);

ii) any proper θ2(γ)–invariant subspace does not contain a proper θ2(γ1)–invariant sub-

space;

iii) any proper θ2(γ1)– invariant subspace does not contain a proper θ2(γ)–invariant

subspace.

(iv) θ1(γ) (resp. θ2(γ)) is R–regular element in SO(2, 1) (resp. SL3(R)) [AMS1]

Put γn = γ−n1 γγn1 . Since γ is a hyperbolic R–regular element then dimA−(γ) = 2 or

dimA−(γ) = 3.

We can and will assume that dimA−(γ) = 3 otherwise we will consider γ−1 instead of γ.

Let us first show that for some positive numbers n1, n2, n3 we have ∩1≤i≤3A
−(θ2(γni)) =

{0}. Since for n 6= m we have A−(θ2(γn)) 6= A−(θ2(γm)) there are positive numbers n1

and n2 such that dimA−(θ2(γn1)) ∩ A−(θ2(γn2) = 1. Let v be a non -zero vector of this

intersection. If θ2(γ1)−nv ∈ A−(θ2(γ)) for infinitely many positive n then the proper θ2(γ)–

invariant subspace A−(θ2(γ)) contains a θ2(γ1)– invariant subspace. This contradicts our

assumptions. Thus, by the choice of γ and γ1 there exists an n3 such that θ2(γ1)−n3v /∈

A−(θ2(γ)) Therefore v /∈ θ2(γ1)n3A−(θ2(γ)) = A−(θ2(γn3)).

Clearly, A−(θ2(γn1+m))∩ A−(θ2(γn2+m))∩ A−(θ2(γn3+m)) = {0} for all positive numbers

m. Set γ1i(m) = γni+m, i = 1, 2, 3. Remark that for all m we have

A−(θ2(γ1,1(m)) ∩ A−(θ2(γ1,2(m)) ∩ A−(θ2(γ13(m)) = {0} (0)

Since the projective space PV is compact we can and will assume that A+(γ1i(m)) −→

X+
i , A−(γ1i(m)) −→ X−i . Note, that

A−(θ1(γ1i(m))) −−−→
n→∞

A1 (1)
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for i = 1, 2, 3. Since l(Γ) is Zariski dense in SO(2, 1) × SL3(R) we conclude that there

exists a hyperbolic element γ0 such that A+(γ0) ∩X±i = 0 and A−(γ0) ∩X±i = 0. Hence

d̂(A−(γ0), X±i ) > 0, and

d̂(A−(γ0), X±i ) > 0, for all i = 1, 2, 3.

Let ε̂ = min1≤i≤3{d̂(A+(γ0), X±i ), . Thus there exists an M ∈ N such that for m ≥M the

elements γ0 and γ1,i(m) are ε̂/2–transversal. Let q1 = min{s(γ0), s(γ)}. It follows from

[MS] and [AMS1] that there exists a positive number N such that for m,n > N we have

d̂(A+(γn0 γ
n
1i(m), A+(γ0)) ≤ q

n/2
1 (2)

d̂(A−(γn0 γ
n
1i(m)), A−(γ1,i(m))) ≤ q

n/2
1 (3)

and

s(γn0 γ
n
1i(m)) ≤ q

n/2
1 (4)

for i = 1, 2, 3. Since γ0 and γ1,i(m) are ε̂/2–transversal then for sufficiently big n from (2),

(3) and (4) follows that element γn0 γ
n
1i(m)) is ε̂/4–hyperbolic. Set ε = ε̂/4

From (3) follows that

A−(γn0 γ
n
1i(m)) −−−→

n→∞
A−(γ1i(m)).

Obviously

A−(θ1(γn0 γ
n
1i(m))) −−−→

n→∞
A−(θ1(γ1i(m))).

Clearly,

A−(θ1(γ1i(m))) −−−→
n→∞

A1.

It follows from (3) that

A−(θ2(γn0 γ
n
1i(m)) −−−→

n→∞
A−(θ2(γ1i(m))).

Since the projective space is compact we can and will assume that the sequence {A−(θ2(γ1i(m)))}

converges to the subspace A−1i when m→∞. Hence

A−(γ1i(m)) −−−→
m→∞

A1 ⊕ A−1i (5)
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It immediately follows from (2) that for every m

A+(γn0 γ
n
1i(m)) −−−→

n→∞
A+(γ0) (6).

Since dimA−(θ2(γn1i(m)))) = 2 we conclude by (2) that

dimA−(θ2(γn0 γ
n
1i(m))) = dimA−(θ2(γn1i(m)) = 2 for i = 1, 2, 3 and for n > N2 we have

∩1≤i≤3A
−(θ2(γn0 γ

n
1i(m))) = {0}. Take n,m such that minn,m > max{N1, N2} and set

S1(n,m) = {g1k(n,m) = γn0 γ
n
1k(m), k = 1, 2, 3}. Then for every pair n,m the set S1(n,m)

fulfills the requirements of Lemma 7.8. Using the same arguments starting with a hyper-

bolic element γ, such that dim(A−(θ2(γ)) = 1 one can show that there are sets Ti(n,m) =

{hi1(n,m), hi2(n,m), hi3(n,m)},

i = 1, 2, 3, 4 with properties 1-4, 6. This proves Lemma 7.8.

Limit subspaces. We will use the notations of Lemma 7.8 in this chapter. Let’s sum-

marize what is proved. Recall that gik(n,m) = γn0 γ
n
ik(m), i = 1, 2, 3, 4, k = 1, 2, 3.

A−(θ1(gik(n,m)) −−−→
n→∞

A−(θ1(γik(m)) −−−→
m→∞

A−i (LS1)

,

A−(θ2(gik(n,m)) −−−→
n→∞

A−(θ2(γik(m)) −−−→
m→∞

A−ik (LS2)

Then by Lemma 7.8 (6), (LS1), (LS2)

A−(gik(n,m)) −−−→
n→∞

A−(γik(m) −−−→
m→∞

Ai ⊕ A−ik (LS3)

A+(gik(n,m)) −−−→
n→∞

A+(γ0) (LS4)

For every 1 ≤ i ≤ 4 and m we have

A−(θ2(γi1(m)) ∩ A−(θ2(γi2(m)) ∩ A−(θ2(γi3(m)) = 0

From (0) and (LS1) follows that there exists a positive integer N such that for every 1 ≤

i ≤ 3 and m for all n > N we have

A−(θ2(gi1(n,m)) ∩ A−(θ2(gi2(n,m)) ∩ A−(θ2(gi3(n,m)) = 0 (LS5)
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We can and will assume that (LS5) holds for all n,m. Let U be one dimensional subspace

of V1. Then from (LS2) and (LS5) follows that

d(i,m) = inf
U⊂V1,n∈N

∑
1≤k≤3

d̂(U,A−(θ2(gik(n,m)))) > 0

Set

d
(S)
2 (m) = min

1≤i≤4
d(i,m).

Recall, that for every two different i and j, 1 ≤ i, j ≤ 4 we have Ai ∩ Aj = 0. Hence by

(LS1) we conclude that there exists N,N ∈ N such that for n,m > N we have

A−(θ1(gik(n,m)) ∩ A−(θ1(gjr(n,m)) = 0 (LS6)

Thus we can and will assume that (LS6) holds for all n,m. Let U be a one dimensional

subspace of V1. Set

dij = inf
U,n,m,k,t,i 6=j

d̂(U,A−(θ1(gik(n,m)))) + d̂(U,A−(θ1(gjt(n,m))))

It follows from (LS1) that for we have for 1 ≤ i 6= j ≤ 4

dij ≥ d̂(U,Ai) + d̂(U,Aj)/2 ≥ d/4 (LS7)

Set

d
(S)
1 = min

i 6=j,1≤i,j≤4
dij

Clearly, d
(S)
1 ≥ d/4.

By the same arguments we prove that there exist a positive constants d
(T )
2 (m) and d

(T )
1 .

The only one difference is that to define the constant d
(T )
2 (m) we have to consider a sub-

space Uof V2 of dimension two because dimA−(θ2(hij(n,m)) = 1.

Main Lemma 7.9 There are two hyperbolic elements of the group Γ such that

α(g)α(h) < 0.
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Proof. By [AMS1] for a q < 1 and every t, t > 0, t ∈ Z there exist a finite subset St(Γ) =

{g1,t, . . . , gm,t} of Γ such that for every γ ∈ Γ there exists gi,t ∈ St(Γ) such that the

element γgi,t is ε–hyperbolic, where ε = ε(Γ) and s(γgi,t) < qt. Set St = St(Γ).

Let K be a compact subset of V such that ΓK = V. Following along the same arguments

we have used in the chapter Directions, we conclude, that there exists a sequence Q0 =

{γn}n∈N of elements of Γ such that w1 ∈ V (Q0, K). Since the set St is finite the set Kt =

S−1
t K is compact. Set Rt = Q0St. Let us show that w1 ∈ V (Rt, Kt) for every t. Indeed.

By definition, there exists a set {kn} of points in K such that γnkn − kn/d(γnkn, kn) →

w1. Let γ ∈ St. Then k̂n = γ−1kn ∈ Kt and γnγk̂n − k̂n = γnkn − kn + (kn − γ−1kn).

Obviously, that for every t there is a constant Ct such that

‖kn − γ−1kn‖ < Ct. On the other hand ‖γnkn − kn‖ → ∞ when n→∞ Therefore

gnγk̂n − k̂n
‖gnγk̂n − k̂n‖

→ w1

So, we conclude that for every t there exists a sequence Qt, Qt ⊂ Rt and a compact set

Kt such that

(*) w1 ∈ V (Qt, Kt)

(**) every element γ ∈ Qt is ε–hyperbolic and s(γ) < qt.

The projective space PV is compact. Thus we can and will assume that the sequences

{A+(γn,t)}, γn,t ∈ Qt and {A−(γn,t)}, γn,t ∈ Qt converge when n→∞. Let A+
t (resp.A−t ) ,

be a subspace of R6 such that A+(γn,t) −−−→
n→∞

A+
t ( resp. A−(γn,t) −−−→

n→∞
A−t .) We can and

will assume, since the projective space is compact, that there are two subspaces A+, A−

such that A+
t −−−→

t→∞
A+ and A−t −−−→

t→∞
A−. Recall that element γn,t are ε–hyperbolic, for

all n and t. Clearly, d̂(A+, A−) ≥ ε. Set A+
θ1

= V1 ∩ A+, A−θ1 = V1 ∩ A−, A+
θ2

= V2 ∩ A+,

A−θ2 = V2 ∩ A−.

There are two cases.
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(i) dimA+
θ2

= 1, dimA−θ2 = 2

(ii) dimA+
θ2

= 2, dimA−θ2 = 1

It is enough to prove Main Lemma in case (i) because in case (ii) the proof follows

along the same way but using the sets Ti, instead of sets Si.

There exists a hyperbolic element γ̃ ∈ Γ such that γ̃ and γ̃−1 are proximal (see

[AMS1)]. In particula,r all eigenvalues of θ2(γ̃) differ. Clearly, we can and will assume that

dimA−(θ2(γ̃)) = 2. Since Γ is Zariski dense subgroup in SO(2, 1)× SL3(R) by standard

arguments ([BG], [MS],) , we can choose an element γ̃ ∈ Γ such that

A−(γ̃) ∩ A+(γ0) = 0, A−(γ̃) ∩ A+ = 0, A+(γ̃) ∩ A− = 0

Hence there exist positive ε1 such that

d̂(A−(γ̃), A+) ≥ ε1, d̂(A+(γ̃), A−) ≥ ε1, d̂(A+(γ0), A−(γ̃)) ≥ ε1 (1)

Then there exists a positive number N1 such that for t > N1 we have d̂(A−t , A
+) ≥

ε1/4, d̂(A+
t , A

−) ≥ ε1./4. Since A+(γn,t) −−−→
n→∞

A+
t , A−(γn,t) −−−→

n→∞
A−t .) when n → ∞

there exists N2 such that for t > N1, n > N2 we have

d̂(A+(γn,t), A
−(γ̃)) ≥ ε1/2, d̂(A−(γn,t), A

+(γ̃)) ≥ ε1/2 (2)

By Lemma 2.7 , we have

(1) d̂(A+(γn,tγ̃
m), A+(γn,t)) ≤ qt/2 ;

(2) d̂(A−(γn,tγ̃
m)), A−(γ̃)) ≤ s(γ̃)m/2;

(3) s(γn,tγ̃
m) ≤ qt/2s(γ̃)m/2.

Let q1 = max q1/2s(γ̃)1/2 and let A+
t,m be a subspace of R6 such that

A+(γn,tγ̃
m) −−−→

n→∞
A+
t,m. (2)
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Clearly, we have d̂(A+
t,m, At) ≤ qt1 for every m. Hence for every m we have

A+
t,m −−−→

t→∞
A+ (3)

It follows from (2) that for every n, t, such that t > N1, n > N2 we have

A−(γn,tγ̃
m) −−−→

m→∞
A−(γ̃) (4)

Set Q̃t,m = Qtγ̃
m and K̃t.m = γ̃−mKt. By the same arguments as above, we see that for

every m, we have w1 ∈ V (Q̃t,m, K̃t.m)

V1-part It follows from Lemma 7.7 that if Ai ∈ Φ+

A+
θ1

then Ai+1 ∈ Φ−
A+
θ1

, i = 1, 2.

Since d̂(Ai, Aj) > d
(S)
1 , i 6= j there are three points Ai1 , Ai2 , Ai3 such that d̂(A+

θ1
, Ajk) >

d
(S)
1 /4, k = 1, 2, 3. Therefore there are two different spaces Ai and Aj such that, one be-

longs to Φ+

A+
θ1

and the second one to Φ−
A+
θ1

and d̂(A+
θ1
, Ak) > d

(S)
1 /4, k = i, j. Without loss

of generality we can and will assume that A1 ∈ Φ+

A+
θ1

and A2 ∈ Φ−
A+
θ1

. We show in 7.6 (3)

that there exists a positive δ such that for every one dimensional subspaces W,W1,W2 of

V1 such that d̂(W,A+
θ1
, ) < δ, d̂(W1, A1) < δ, d̂(W2, A2) < δ, we have W1 ∈ Φ+

W and W1 ∈

Φ−W . We can and will additionally assume that δ < d
(S)
1 /100. Then if W,W1,W2 are one

dimensional subspaces of V1 such that d̂(W,A+
θ1
, ) < δ, d̂(W1, A1) < δ, d̂(W2, A2) < δ, then

d̂(W,W1) ≥ d
(S)
1 /5, d̂(W,W2) ≥ d

(S)
1 /5. (5)

By (LS1) for sufficiently big n and all m we obviously have

d̂(A−(θ1(gik(n,m)), A−(θ1(γik(m))) < δ/2

and for sufficiently big m we have

d̂(A−(θ1(γik(m)), A−i ) < δ/2

where i = 1, 2, 3, 4, k = 1, 2, 3. Consequently, there exist m0 and N0 such that for gik(n) =

gik(n,m0), all n > N0, i = 1, 2, 3, 4, k = 1, 2, 3 we have

d̂(A−(θ1(gik(n)), A−i ) ≤ δ, i = 1, 2, k = 1, 2, 3. (6)
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Denote d
(S)
2 (m0) = d

(S)
2

It is easy to conclude from (2), (3) that there exists Ñ0 such that for n, t > Ñ0 and all

m we have

d̂(A+(θ1(γn,tγ̃
m), A+) < δ (7)

Let Qt = γn,t, n > N0. Set Qt,m = Qtγ̃
m. Then w1 ∈ V (Qt,m, K̃t.m). Therefore we will

assume that for every γ, γ ∈ Q̃t,m, t,m we have d̂(A+(θ1(γ), A+) < δ. Hence for all integers

n, n > 0, k = 1, 2, 3 we have

A−(θ1(g1k(n))) ∈ Φ+
θ1(γ), A

−(θ1(g2k(n))) ∈ Φ−θ1(γ) (8)

It follows from (5), that for all n, t,m, i = 1, 2, k = 1, 2, 3 and every γ, γ ∈ Q̃t,m we have

d̂(A−(θ1(gik(n))), A+(θ1(γ))) > d
(S)
1 /5 (9∗)

It follows from (1) that

d̂(A+(θ1(γ0)), A−(θ1(γ̃))) ≥ ε1

then for sufficiently big n we have by (LS3)

d̂(A+(θ1(gik(n))), A−(θ1(γ̃))) ≥ ε1/2

This and (4) lead us to the conclusion that for every γ, γ ∈ Q̃t,m we have

d̂(A+(θ1(gik(n))), A−(θ1(γ))) ≥ ε1/4 (9∗∗)

V2-part. The goal of this section is to show that for all n, t,m every two elements

θ2(gik(n)) and θ2(γ), γ ∈ Q̃t,m, are ε̃2–transversal for some ε̃2 that does not depends on

n, t,m.

For a one dimensional subspace A+
θ2

for all n i = 1, 2 we have

Σ1≤i≤3d̂(A+
θ2
, A−(θ2(gik(n)))) > d

(S
2 , i = 1, 2
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Then there exist 1 ≤ k1, k2 ≤ 3 such that for all n we have

d̂(A+
θ2
, A−(θ2(g1k1(n)))) > d

(S
2 /3, d̂(A+

θ2
, A−(θ2(g1k2(n)))) > d

(S
2 /3

Set g1(n) = g1,k1(n) and g2(n) = g2,k2(n). Thus

d̂(A+
θ2
, A−(θ2(g1(n)))) > d

(S
2 /3, d̂(A+

θ2
, A−(θ2(g2(n)))) > d

(S
2 /3 (10)

On the other hand, for every δ1 there exists N(δ1) such that for n, t > N(δ1) and all m

we have

d̂(A+
θ2
, A+(θ2(γt,nγ̃

m))) < δ1

Assume that δ1 <
d(S)2
100

then for i = 1, 2 and for all n, t > N(δ1) and all positive numbers

r,m we have

d̂(A−(gi(r)), A
+(θ2(γt,nγ̃

m))) >
d

(S
2

4
(11)

As above we conclude from (1)

d̂(A+(θ2(γ0)), A−(θ2(γ̃))) ≥ ε1

This inequality together with (4), (LS3) and (LS4) leads us to the following follows

conclusion: there exists N(ε1) such that for r,m > N(ε1) we have

d̂(A+(θ2(gi(r))), A
−(θ2(γn,tγ̃

m))) ≥ ε1/2 (12)

Denote by ε̃1 = min{d(S)
1 /5, ε1/4}. Thus for every n two elements θ2(gik(n))) and θ2(γ), γ ∈

Q̃t,m are ε̃2–transversal where i = 1, 2, 3, 4, k = 1, 2, 3 Hence we have two elements ε̃ –

transversal elements gi(r) i = 1, 2 and γ, γ ∈ Q̃t,m. where ε̃ = min(ε̃1, ε̃2)

It is obvious that for n, t > N(δ1), r,m > N(ε1) elements g1(r) and γn,tγ̃
m, g2(r) and

γn,tγ̃
m are ε̃– transversal. By Lemma 2.7 there exists N(ε̃) such that for r,m > N(ε̃),

n, t > N(δ1)

(1) γn,tγ̃
mg1(r) and γn,tγ̃

mg2(r) are ε̃/2-hyperbolic
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(2) γn,tγ̃
mg1(r) and γn,tγ̃

mg2(r) are ε̃/2-transversal

Set Ñ = max(N(ε̃), N(δ1)) By definition of Φ±U from (8) follows that if r,m > Ñ and

n, t > Ñ then the sign α(γn,tγ̃
mg1(r)) is positive, and the sign α(γn,tγ̃

mg2(r)) is negative.

This proves the lemma.

Proposition 7.10 The group Γ is not crystallographic.

Proof Assume that the group Γ is a crystallographic subgroup of Aff R6. It follows from

the Main Lemma 7.9 that there are two hyperbolic transversal elements with opposite

sign. Thus Γ does not act properly discontinuously by Lemma 7.5. Contradiction that

proves Proposition 7.10.

Theorem A Let Γ be a crystallographic subgroup of Aff(Rn) and

n < 7. Then Γ is virtually solvable.

Proof . Let G be the Zariski closure of the group Γ. Let dimV ≤ 5. Then Γ is vir-

tually solvable by Proposition 5.3. Let dimV = 6. Assume that the semisimple part S

of G is not trivial. It follows from [S2], [To2] that the real rank of at least one simple

factor group of S is ≥ 2 if Γ is crystallographic. Therefore S is one of groups listed in

Case 1 and 2. Thus Γ is not crystallographic by Propositions 5.3, 6.3 and 7.10. This con-

tradiction shows that S must be the trivial group. Hence the group Γ is virtually solvable.

8 The dynamics of an affine group action

Let Γ be an affine group acting properly discontinuously on Rn. Let G be the Zariski

closure of Γ. Obviously Γ acts properly discontinuously if a subgroup of a finite index of
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Γ acts properly discontinuously. Therefore from now on we will assume that the linear

part l(G) of G is a connected group, l(G) < GL(Rn). We denote by o(g) the restriction

of g to Cg. Let A1 and A2 be two subsets of P. Recall that

d(A1, A2) = inf
a1∈A1,a2∈A2

d̂(a1, a2)

d̂(A1, A2) = sup
a1∈A1

inf
a2∈A2

d̂(a1, a2)

Let {g0, h1, . . . , hm} ⊂ G be ε–hyperbolic elements, pairwise very ε– transversal. Set

s = max{s(g0), s(h1), . . . , s(hm)} and s0 = s1/2. Let g` = hn`i` · · · · · h
n1
i1
· g0, 1 ≤ ik ≤ m,

ik 6= ik+1, nk ∈ Z, 1 ≤ k ≤ (l − 1), and M` = |n1| + · · · + |n`|. From Lemma 1.3 [AMS2]

follows then that there exists a constant s(ε) < 1 such that if s0 < s(ε),

s(g`) ≤ sM`+1
0 (1)

d̂(A+(g`−1), A+(g`)) ≤
ε

2
s
M`−1

0 (2)

d̂(A−(g0)A−(g`)) ≤
ε

2
s0 (3)

d̂(A+g`), A
+(hi`)) ≤

ε

2
si`0 (4)

d(A+(g`), A
+(hi) ∪ A−(hi)) ≥

ε

2
, i 6= i` (5)

d(A+(g`), A
−(g`)) > ε/2 (6)

It is well known that there exists a positive constant s1(ε) such that for s0 ≤ s1(ε) the

group G1 generated by g0, h1, . . . , hm is free with free generators g0, h1, . . . , hm. There is

a choice of g0, h1, . . . , hm such that the group generated by g0, h1, . . . , hm is Zariski dense

in G. The proof is based on the so-called Ping-Pong Lemma. For details see [AMS1],

[AMS2].

Let q0 ∈ Rn be the origin.Let q` be the point of Cg` such that d(q0, q`) = d(q0, Cg`). Recall
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that dg` = d(q`, g`q`) From Lemma 1.6 [AMS2] follows that there exist a constants s2(ε),

d1(ε) and d2(ε) such that for s0 < min{s(ε), s2(ε)} we have

d(q0, Cg`) < d1(ε) (7)

and

dg` ≤ d2(ε)|Ml| (8)

The identification procedure. Let g and h be two hyperbolic, transversal elements

of G. Following [AMS2, chapter 3 ] we consider the following subspaces and projections.

Let Ch,g = E+
h ∩ E−g and Cg,h = E−h ∩ E+

g . Set π−h : Cg,h → Ch along A−(h) π+
h :

Ch → Ch,g along A+(h), π−g : Ch,g → Cg along A−(g) and π+
g : Cg → Cg,h Define

the following transformation o(gh) of Cg,h as o(gh) = π+
g o(g)π−g π

+
h o(h)π−h . Obviously,

o(gnhm) = π+
g o(g)nπ−g π

+
h o(h)mπ−h for positive n,m ∈ Z.

The reasons for this definition are the following. The map o(gnhm) of Cg,h approximates

gnhm in the following sense. For positive integers n,m such that n→∞,m→∞ we have

E+
gnhm → E+

g and E−gnhm → E−h . Therefore Cgnhm → Cg,h. For a given q ∈ Cg,h and q =

o(gnhm)q for every positive numbers εk such that εk → 0, there exists δk, δk > 0, δk →

0, positive numbers Nk, Nk → ∞ and qk ∈ U(q, δk) such that for nk,mk > Nk we have

d(o(gnkhmk)q, gnkhmkqk) < εk. We can thus approximate gnhm for certain points near Cg,h

by the orthogonal map o(gnhm) for sufficiently big n,m.

Let {g0, h1, . . . , hm} ⊂ G be ε–hyperbolic elements, pairwise very ε–transversal. and

let g` = hn`i` · · · · · h
n1
i1
· g0, 1 ≤ ik ≤ m, ik 6= ik+1, nk ∈ Z, 1 ≤ k ≤ (l − 1), and M` = |n1|+

· · ·+ |n`|. Set

o(g`) = π+
hil
o(hn`i` )π−hil

. . . π+
hi1
o(hn1

i1
)π−hi1

π+
g0
o(g0)π−g0 =

π+
hil
o(hi`)

n` . . . o(hi1)
n1π−hi1

π+
g0
o(g0)π−g0

and let π` = π+
hil
π−hil

. . . π+
hi1
π+
g0
π−g0 .
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From now on unless otherwise stated we will assume that Γ is an affine group such

that the linear part l(Γ) is Zariski dense in SL2(R) × SO(3). Hence l(G) = SL2(R) ×

SO(3). In this case for a R–regular element g ∈ G we have dimA+(g) = dimA−(g) = 1,

dimA0(g) = 3 and the restriction l(g) |A0(g)∈ SO(3). Let V1 and V2 be two l(G)–invariant

subspaces of R5 such that R5 = V1 ⊕ V2 and l(G)|V1 = SL2(R) and l(G)|V2 = SO(3).

Denote by πi the map πi : l(Γ)) → l(G)|Vi , i = 1, 2. Let g ∈ SO(3) be an element of

infinite order. Then there exists an eigenvector v0(g) ∈ R3 with eigenvalue 1. Let V0(g)

be the one- dimensional subspace of R3 spanned by v0(g). Let pg be the set V0(g) ∩ S2.

Let g, h ∈ SO(3) be two elements of infinite order which do not commute. Let P be the

subspace of R3 spanned by v0(g) and v0(h). Obviously, dimP = 2.

Lemma 8.1 Let g, h ∈ SO(3) be two non-commuting elements of infinite order. Let

g(t) and h(s) be the one parameter subgroups, such that g(1) = g and h(1) = h. Let P

be the subspace of R3 spanned by v0(g) and v0(h). Then for every vector v ∈ R3\P there

exist t, s ∈ R, t, s > 0 such that g(t)h(s)v = v.

Proof Let σ be the reflection in P. Then there exist two rotations g(t) and h(s) such

that h(s)v = σv and g(t)σv = v. Thus, g(t)h(s)v = v.

Let γa, γb ∈ Γ be two R-regular elements. Denote by V0(π2(l(γma γ
n
b ))) the space

spanned by v0(π2(l(γma γ
n
b ))) and put p(n,m) = V0(π2(l(γma γ

n
b ))) ∩ S2

Proposition 8.2. There exist two very transversal hyperbolic elements γa, γb ∈ Γ such

that the set {p(n,m), n,m ∈ Z, n > 0,m > 0}, is dense in S2.

Proof. Let γa and γb be two very transversal elements. Then the group Γ1 generated

by l(γa) and l(γb) contains the free group generated by l(γna ) and l(γnb ) for some enough

big n. Let us show that the group generated by π2(l(γa)) and π2(l(γb)) is dense in SO(3).

Indeed, if the subgroup generated by π2(l(γa)) and π2(l(γb)) is not dense in SO(3) then
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it is virtually abelian. Therefore there exists G1 a subgroup of finite index in G and

nonzero vector v, v ∈ V2 such that π2(l(g))v = v for every g ∈ G1. Assume that V1 is

l(G)–invariant. Then Lga and Lgb are parallel. Hence by the same arguments we use in

the proof of Proposition 2.9, [AMS3] we conclude that Γ does not act properly discontinu-

ously. Assume that V2 is l(G)–invariant. Since the restriction l(G)|V2 is virtually abelian,

the infinite group [G1, G1] acts trivially on V2. Hence [G1, G1] has a fixed point in R5 that

is impossible because an infinite subgroup Γ∩G1 acts properly discontinuously. Thus we

will assume that elements π2(l(γa)) and π2(l(γb)) fulfill the requirements of Lemma 8.1.

Let γa = π2(γa) and γb = π2(γb) and γa(t) and γb(t) be one parameter subgroups such

that γa(1) = γa and γb(1) = γb. The semigroup generated by γa ( resp. γb) is dense in

γa(t) (resp. γb(t)). Therefore by lemma 8.1 the set p(n,m) is dense in S2.

Remark Let us recall that from (1)-(4) follows that A+(γnaγ
m
b )→ A+(γa), A

−(γnaγ
m
b )→

A−(γb), E
+
γna γ

m
b
→ E+

γa and E−γna γmb → E−γb . when m,n→∞.

There exist ε and a set of ε–hyperbolic, pairwise very ε–transversal elements {γ0, γ1, . . . , γm} ⊂

Γ, such that the group generated by the set {l(γ0), l(γ1), l(γ2) . . . , l(γm)} is a free Zariski

dense subgroup of l(G) freely generated by{l(γ0), l(γ1), . . . , l(γm)} ( see [AMS1, Propo-

sition 3.7] ). Denote by Γ0 the group generated by the set {γ1, . . . , γm} and put Γn =

Γ0γ
n
0 , n ∈ Z, n > 0. Recall that any element γ ∈ Γn, n ≥ 1 is ε/2–hyperbolic.

Let q0 be the point of origin. By (8) there exists a constant d∗ = d(ε) such that

dΓ = max
n∈Z,n>0

{d(q0, Cγ), γ ∈ Γn, n ≥ 1} ≤ d∗. (11)

By definition above, dγ = d(qγ, γqγ), where qγ ∈ Cγ such that d(q0, Cγ) = d(q0, qγ).

Obviously {γn0 , n ∈ Z, n 6= 1} ∩ Γ1 = ∅ and Γn ∩ Γm = ∅ for n 6= m. Since Γ acts properly

discontinuously, from (11) follows that for every Γn there exists an element γn ∈ Γn such

that dγn = min{dγ, , γ ∈ Γn}. Set dn = dγn and IM = {m,m > 0,m ∈ Z|dm < M}
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Lemma 8.3 . For every M ∈ Z,M > 0 the set IM = {m,m > 0,m ∈ Z|dm < M} is

finite.

Proof. Suppose that there exists a positive number M such that the set IM = {m,m >

0,m ∈ Z|dm < M} is infinite. It is obvious that d(q0, γmqγm) ≤ dΓ + M. Hence for all

γm,m ∈ IM we have B(q0, dΓ +M) ∩ γmB(q0, dΓ +M) 6= ∅. This is a contradiction since

Γ acts properly discontinuously.

From Lemma 8.3 follows that there exists an infinite sequence {γm, γm ∈ Γm} such

that dm = dγm →∞ when m→∞.

Recall that A−(γm)→ A−(γ0) and E−γm → E−γ0 when m→∞. Since the projective space

is compact we can and will assume that there are two subspaces A+ and E+ such that

A+(γm)→ A+ and E+
γm → E+ when m→∞.

Proposition 8.4. If l(Γ) is Zariski dense in SL2(R) × SO(3) then Γ does not act

properly discontinuously.

Proof. Our proof follows the same strategy that we used in the proof of [Lemma 5.1

AMS2.] Namely, we will show that there exists a constant C = C(ε) such that if dm >

C there exist an element γ of the group generated by γa, γb ∈ Γ0 and positive number t

such that dγtγm < dγm = dm. Since, γt ∈ Γ0 we will have γtγm ∈ Γm. This will contradict

the definition dγm = min{dγ, γ ∈ Γm}.

Using the notations from the Remark above we set E+
s = Cγs ⊕ A+, Cs(n,m) = E+

s ∩

E−g(n,m)
, where γ(n,m) = γnaγ

m
b and Cs,n,m = (A−(γ0) ⊕ C−γs) ∩ E

+
γ(n,m)

, Cγ(n,m)
= E−γ(n,m)

∩

(Cγm ⊕ A+.) Let us set the following projections π−s : Cs,n,m → Cγs along A−(γs), π
+
s :

Cγs → Cs(n,m) along A+, π−γ(n,m) : Cs(n,m) → Cγ(n,m)
along A−(γ(n,m)) and π+

(n,m) :

Cγ(n,m)
→ Cs,n,m. Since elements γ(n,m), γs are ε–transversal and ε–hyperbolic all these

projections are L(ε)– Lipschitz. From Proposition 8.2 follows that for every positive θ

there exist a finite subset S∗ ⊆ {γnaγmb , n,m ∈ Z} such that Π = {p(n,m), γ
n
aγ

m
b ∈ S∗} is a
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θ–net of the sphere S2 ⊂ R3. Namely, for every vector of norm one in V2 there exists an

element γ ∈ S∗ such that | sin∠(v, τγ)| < θ. We choose θ such that

θL(ε) < 1/4 (12)

Let qs,n,m be a point in Cs,n,m such that π−γs(qs,n,m) = qs. Then

qs,n,m(k) = π+
γ(n,m)o(γ(n.m))

kπ−γ(n,m)π
+
s o(γs)π

−
s (qs,n,m) ∈ Cs,n,m

and π−γ(n,m)π
+
s o(γs)(qs)−π−γ(n,m)π

+
s (qs) = π−γ(n,m)π

+
s γsqs−π−γ(n,m)π

+
s (qs) = π−γ(n,m)π

+
s (γsqs−

qs).

Set πk : Cs,n,m → Cγk
(n,m)

γs along A+(γk(n,m)γs) ⊕ A−(γk(n,m)γs). Let q1 = πk(qs,n,m),

q2 = πk(γ
k
(n,m)γsq1). Then q2 = γk(n,m)γsq1 It is easy to see that if the scalar product

(τγ(m,n) , πs,n,m(τγs)) > 0 then the scalar product (τγ(−m,−n) , πs,−n,−m(τγs)) < 0. Thus we

can and will assume that we take an element γ(m,n) ∈ S∗ such that the scalar product

is negative. Using the same argument we used in the proof of Lemma 5.7 [AMS2] we

conclude from (12) that there exists an element γ(n,m) ∈ S∗, a positive number k = k(γs),

and constants c(ε) and c(S∗) such that we have

dγk
(n,m)

γs ≤
1

4
dγs + c(ε) + c(S∗)

Therefore if dγs > 2[c(ε) + c(S∗)] then dγk
(n,m)

γs < dγs . Since γ(n,m) ∈ Γ0 this contradicts

the definition of dγs and proves the proposition.

Theorem B. Let Γ be an affine group acting properly discontinuously on the affine space

Rn, n ≤ 5. Assume that the semisimple part of the algebraic closure of Γ does not contain

SO(2, 1) as a normal subgroup then Γ is virtually solvable.

Proof. LetG be the Zariski closure of Γ. Assume that Γ acts properly discontinuously and

the semisimple part of G is not trivial. Then the possible cases for the linear realization of

l(G) are listed in Case 1, (1) -(4) and Case 2, (1)-(3). By Proposition 5.2 we conclude that
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Case 1, (1) -(4) are impossible. Let l(G) be as in Case 2. If l(G) = SO(3, 2) then by [AMS

1] Γ does not act properly discontinuously. Assume that l(G) = SO(4, 1). Then G leaves

invariant a form of signature p = 4, q = 1. Since p − q > 2 then Γ does not act properly

discontinuously by [AMS 1] . In case 2 (3) Γ does not act properly discontinuously by

Proposition 8.4 . This proves the statement.

Corollary. Let Γ be a crystallographic group, Γ < AffRn, n ≤ 5. Then Γ is virtually

solvable.

Proof. Let G be the Zariski closure of Γ. Assume that l(G) does not contain SO(2, 1)

as a normal subgroup,. Then Γ is virtually solvable by Theorem B. Assume that l(G)

contains SO(2, 1) as a normal subgroup. Then the space R5 is the direct sum of two

l(G)–invariant subspace R5 = V1 ⊕ V2, dimV1 = 3, dimV2 = 2. Then the real rank of

every simple subgroup of l(G) is ≤ 1. Hence Γ is virtually solvable [S],[To].

9 A geometric version of the Auslander conjecture.

The classical problem stated by Hilbert on Euclidean crystallographic groups. The groups

that leave a positively definite quadratic form invariant. Thus it is natural state the fol-

lowing conjecture.

Conjecture Let Γ be a crystallographic affine group Γ ⊆ Aff(Rn) leaving a non degen-

erated quadratic form invariant, then Γ is virtually solvable.

Based on our recent (unpublished results) we think that the essential step toward the

proof of this conjecture is to show that an answer to the question below is negative.

Problem Does there exist a crystallographic group Γ ⊆ Aff(R2n+1) such that l(Γ) is

Zariski dense in SO(n+ 1, n) , n is odd ?

We think that this is very difficult problem. The cohomological argument does not work
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here. Note that α(γ) = α(γ−1) by 7.4. Thus there is no simple way to change the sign of

a hyperbolic element of Γ and conclude that Γ does not act properly discontinuously.
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