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ENERGY-MINIMIZING MAPPINGS OF REAL PROJECTIVE SPACES

JOSEPH ANSEL HOISINGTON

Abstract. We give a sharp lower bound for the energy in homotopy classes of mappings from
real projective space to Riemannian manifolds, together with an upper bound for its infimum.
We characterize the maps which attain this lower bound for energy, and we explain how the
infimum of the energy in a homotopy class of mappings of real projective n-space is determined
by an associated class of mappings of the real projective plane.

1. Introduction

A basic observation in the study of harmonic maps is that the identity map of the sphere
(Sn, g0) of dimension n ≥ 3 does not minimize energy in its homotopy class. Eells and Sampson
illustrate this, with an example which they attribute to Morrey, in their foundational work on
the subject in [ES64]. It is now known to be a special case of several more general results.
One of these occurs in the work of White [Wh86], which implies that in any homotopy class
of mappings from quaternionic projective space, the Cayley projective plane, or the sphere of
dimension 3 or greater to a Riemannian manifold, the infimum of the energy is 0.

The results in [H23] show that in all homotopy classes of mappings from complex projective
space to a Riemannian manifold, the infimum of the energy is proportional to the infimal area
in the homotopy class of mappings of S2 which represents the induced homomorphism on the
second homotopy group. Together, these results and the results in [Wh86] above determine
the infimum of the energy in all homotopy classes of mappings of compact, rank-1 Riemannian
symmetric spaces other than real projective space (in particular, for all simply-connected spaces
in this family). The purpose of this note is to address this problem for real projective space.
Our first result is a two-sided estimate for the infimum of the energy in a homotopy class:

Theorem 1.1. Let (RPn, g0), n ≥ 2, be real projective space with its Riemannian metric of
constant curvature 1. Let Ψ be a homotopy class of mappings from (RPn, g0) to a Riemannian
manifold (M, g) and ψ the homotopy class of mappings of (RP 2, g0) represented by composing
the inclusion RP 2 ⊆ RPn with F ∈ Ψ. Let A⋆ be the infimal area of mappings f ∈ ψ. Then,

letting E2(F ) be the energy of a map F , σ(n) the volume of the unit n-sphere, and Cn = nσ(n)
8π ,

CnA
⋆ ≤ inf

F∈Ψ
E2(F ) ≤ 2

(
n− 1

n

)
CnA

⋆. (1.1)

If n ≥ 3 and F ∈ Ψ has E2(F ) = CnA
⋆, then F is a homothety onto a totally geodesic

submanifold.

The case n = 2 of Theorem 1.1 states that the infimum of the energy in any homotopy class
of mappings of (RP 2, g0) is equal to the infimal area. In Theorem 2.6 we quote a result of
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Lemaire [Lem78] which implies that maps of (RP 2, g0) that attain this infimal value are con-
formal branched immersions.

The lower bound CnA
⋆ in (1.1) is equal to the energy of the identity map of (RPn, g0) in its

homotopy class, so this part of Theorem 1.1 is optimal. Croke first established that the identity
map of (RPn, g0) minimizes energy in its homotopy class in [Cr87], as a corollary of:

Theorem 1.2. (Croke [Cr87, Theorem 1]) Let F : (RPn, g0) → (M, g) be a map to a Riemann-
ian manifold, γ a generator of π1(RPn), and L⋆ the infimal length of curves freely homotopic
to F∗γ in M . Then:

E2(F ) ≥
nσ(n)

4π2
L⋆2 . (1.2)

Equality implies that F is a homothety onto a totally geodesic submanifold.

Theorem 1.2 follows from Theorem 1.1 and Pu’s systolic inequality [Pu52, CK03], which
implies that the lower bound in Theorem 1.1 is bounded below by the lower bound in Theorem
1.2. The strengthened versions of Pu’s inequality given by Katz-Nowik and Katz-Sabourau
in [KN20, KS21] imply that in most homotopy classes, i.e. other than in those for which the
induced class of mappings of (RP 2, g0) admits a sequence of maps with a fairly rigid character-
ization, the lower bound in Theorem 1.1, and thus the infimum of the energy, is strictly greater
than the lower bound in Theorem 1.2. The result of Theorem 1.1 also shows that the infimum
of the energy in a homotopy class cannot be bounded above in terms of the infimal length L⋆

in Theorem 1.2.

Although Theorem 1.1 generally does not give the exact value of the infimal energy in a
homotopy class, it complements the results of White in [Wh86], which imply that the infimum
of the energy in a homotopy class of mappings of real projective n-space depends only on the
induced class of mappings of the real projective plane:

Theorem 1.3. (See [Wh86, Theorem 1]) Let Ψ and ψ be as in Theorem 1.1, and let Ψ̂ be the
union of all homotopy classes of mappings from (RPn, g0) to (M, g) that induce the class ψ of
mappings of (RP 2, g0). Then inf

F∈Ψ
E2(F ) = inf

F∈Ψ̂
E2(F ).

Theorem 1.3 implies that the infimum of the energy is zero in any homotopy class of map-
pings of (RPn, g0) that induces the trivial class of mappings of (RP 2, g0). Theorem 1.1 sharpens
this statement by showing that the infimum of the energy in a homotopy class of mappings of
(RPn, g0) is zero if and only if it is zero in the induced class of mappings of (RP 2, g0).

After proving Theorem 1.1 we give a corollary of the proof, in Proposition 3.1, which further
clarifies the geometric data that determine the infimum of the energy in a homotopy class
of mappings of real projective space. The result implies that the infimum of the energy in
a homotopy class of mappings of (RPn, g0) for n ≫ 2 is approximately proportional to the
infimum in the induced class of mappings of (RPn−1, g0).

Outline and Notation: In Section 2, we will review some properties of the energy functional
and harmonic maps and establish some results needed in the proof of Theorem 1.1. We will
also explain how Theorem 1.3 follows from the results in [Wh86]. In Section 3, we will prove
Theorem 1.1 and discuss some corollaries of the proof. We will write σ(n) for the volume of the
unit n-sphere, g0 for the canonical Riemannian metric on RPn and its covering Sn, and E2(F )
for the energy of any map F between Riemannian manifolds.
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2. Preliminary Results

The energy of a Lipschitz map F : (Nn, h) → (Mm, g) of Riemannian manifolds is:

E2(F ) =
1

2

∫
N

|dFx|2dV olh, (2.1)

where |dFx| is the Euclidean norm of dF : TxN → TF (x)M at a point x ∈ N at which F is
differentiable (note that the definition of energy in some papers, including [Wh86] and [Cr87],
differs from (2.1) by a constant multiple). We will discuss some background related to maps
which are critical for energy, called harmonic maps, below. The starting point for our proof of
Theorem 1.1 is a formula for the energy of a map due to Croke:

Proposition 2.1. (Croke [Cr87, Proposition 1]) Let F : (Nn, h) → (Mm, g) be a Lipschitz
map of Riemannian manifolds, U(N,h) the unit tangent bundle of (N,h), and du⃗ the canonical
measure on U(N,h). Then:

E2(F ) =
n

2σ(n− 1)

∫
U(N,h)

|dF (u⃗)|2du⃗. (2.2)

For mappings of (RPn, g0), Proposition 2.1 implies:

Lemma 2.2. Let F : (RPn, g0) → (M, g) be a Lipschitz map to a Riemannian manifold, Gr(k)
the set of totally geodesic RP k in RPn, and for Q ∈ Gr(k), let F |Q be the composition of
the inclusion Q ⊆ RPn with F . Let dQ be the measure on Gr(k) which is invariant under
the action of the isometry group Isom(RPn, g0) of (RPn, g0), normalized to have total volume
nσ(n)
kσ(k) . Then:

E2(F ) =

∫
Gr(k)

E2(F |Q)dQ. (2.3)

Proof. Let Vk denote the set of pairs (u⃗,Q), where u⃗ belongs to the unit tangent bundle
U(RPn, g0), Q ∈ Gr(k), and u⃗ is tangent to Q, and let dµk be the Isom(RPn, g0)-invariant

measure on Vk, normalized to have total volume nσ(n)
4 . Calculating via the Isom(RPn, g0)-

equivariant fibrations (u⃗,Q) 7→ u⃗ of Vk over U(RPn, g0) and (u⃗,Q) 7→ Q of Vk over Gr(k),
Proposition 2.1 implies:

E2(F ) =

∫
Vk

|dF (u⃗)|2dµk =

∫
Gr(k)

E2(F |Q)dQ. (2.4)

□

The case k = 1 of Lemma 2.2, in which Gr(1) is the space of oriented geodesics in (RPn, g0),
is simpler than the general result: each u⃗ ∈ U(RPn, g0) is tangent to a unique geodesic, so
U(RPn, g0) admits an Isom(RPn, g0)-equivariant fibration over Gr(1) and the calculation via
the “incidence variety” Vk is unnecessary. This observation is the starting point for the proof
of Theorem 1.2 in [Cr87].
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Lemma 2.3. Let Ψ be as in Theorem 1.1. Let Ψ′ be the homotopy class of mappings of
(RPn−1, g0) represented by composing the inclusion RPn−1 ⊆ RPn with F ∈ Ψ and β the

infimum of the energy in Ψ′. Then for n ≥ 3, inf
F∈Ψ

E2(F ) ≤ σ(n−2)
σ(n−3)β.

Proof. Let Q0 be a fixed totally geodesic RPn−1 ⊆ RPn and x0 ∈ RPn the unique point at
distance π

2 from Q0. Let τ : Sn → RPn be the covering map, x̃0 a point in τ−1(x0), and
ξ : Sn \ {−x̃0} → Rn the stereographic projection which takes x̃0 to the origin. Let θt be the
conformal diffeomorphism of Sn given by multiplication by t in the coordinates defined by ξ.
An elementary calculation shows that for n ≥ 3, lim

t→∞
E2(θt) = 0. (This is the example given by

Eells and Sampson in [ES64] to show that for n ≥ 3, the identity map of (Sn, g0) is homotopic
to maps with arbitrarily small energy.)

Let Ω ⊆ Sn be the open hemisphere centered at x̃0, regarded as a fundamental domain for the
covering τ . Define Θt : RPn → RPn as follows: if x ∈ RPn has a preimage x̃ via τ in θ−1

t (Ω),
then Θt(x) = τ ◦ θt(x̃). Otherwise, Θt(x) is the image of x under the nearest-point retraction
of RPn \ {x0} onto Q0. Because θt is conformal and lim

t→∞
E2(θt) = 0, for any Lipschitz map F ,

the energy of F ◦Θt on the domain τ(θ−1
t (Ω)) goes to 0 as t→ ∞. Letting F ′ be the map of Q0

given by composing the inclusion Q0 ⊆ RPn with F , a calculation in Fermi coordinates about
Q0 shows:

lim
t→∞

E2(F ◦Θt) =

∫
Q0

π
2∫

0

cosn−3(r)|dF ′|2drdx =
σ(n− 2)

σ(n− 3)
E2(F

′). (2.5)

For any F ∈ Ψ and ε > 0, the induced map F ′ of Q0 is homotopic to a map F ′ with
E2(F

′) < β + ε. By the homotopy extension property for RPn−1 ⊆ RPn, F is homotopic to
a map F of RPn which coincides with F ′ along Q0. The result then follows from (2.5) by
composing F with the deformation Θt. □

The proof of Theorem 1.1 depends on a basic fact about mappings of surfaces, which we
record here for later reference:

Lemma 2.4. Let f be a map from a Riemannian surface (Σ, h) to a manifold (M, g). Then the

integrand 1
2 |df |

2 for the energy of f is bounded below pointwise by the integrand
√

det(dfT ◦ df)
for the area of the image of f , with equality precisely where f is semiconformal, i.e. where f∗g
is a scalar multiple of h.

Lemma 2.4 implies that, in the notation of Theorem 1.1, the infimal area A⋆ is a lower bound
for the energy of maps f ∈ ψ. Our next lemma shows it is the infimum:

Lemma 2.5. Let f : (S2, g0) → (M, g) be a smooth map to a Riemannian manifold and A(f)
the area of its image. Then for any δ > 0 there is a diffeomorphism ϕ : S2 → S2, homotopic to
the identity, such that E2(f ◦ϕ) < A(f)+δ. In particular, f is homotopic to a map with energy
less than A(f) + δ. If f is antipodally invariant, we can choose ϕ to be antipodally invariant,
so that the same conclusions hold for maps of (RP 2, g0).

Proof. If f is an immersion, the result follows immediately from the uniformization theorem. If
not, let fr : (S2, g0) → (M, g) × (S2, rg0) be the product of f with a homothety from (S2, g0)
to a 2−sphere (S2, rg0) of constant curvature 1

r . The uniformization theorem implies there

is a diffeomorphism ϕr : S2 → S2 homotopic to the identity such that fr ◦ ϕr is conformal.
Letting A(fr) be the area of the image of fr, Lemma 2.4 then implies E2(fr ◦ ϕr) = A(fr). An
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elementary calculation shows that E2(f ◦ϕr) < E2(fr ◦ϕr), and that by choosing r small enough
we can ensure A(fr) < A(f) + δ for any δ > 0. If f is antipodally invariant, the uniformization
theorem implies we can choose an antipodally invariant ϕr as well. □

A homotopy class may not contain an energy-minimizing map, as discussed by Sacks and
Uhlenbeck in [SU81], but if a map of (RP 2, g0) minimizes energy in its homotopy class, Lemmas
2.4 and 2.5 imply it is semiconformal. Lemaire showed that all harmonic maps of (RP 2, g0)
have this property:

Theorem 2.6. (Lemaire [Lem78, Theorem 2.8]) A harmonic map from (S2, g0) or (RP 2, g0)
to a Riemannian manifold is a conformal branched immersion.

Although Lemma 2.4 implies that conformal maps between surfaces are harmonic, maps of
manifolds of dimension n ≥ 3 which are both harmonic and conformal must be homotheties.
For completeness, we prove this here:

Lemma 2.7. Let F : (Nn, h) → (Mm, g) be a smooth immersion of Riemannian manifolds,
and suppose F ∗g = e2ηh, where η is a smooth function on N . If n = 2, F is harmonic if and
only if the image of F is a minimal submanifold of (M, g). If n ≥ 3, F is harmonic if and only
if F is a homothety and the image of F is a minimal submanifold of (M, g).

Proof. Let ∇h be the connection of the metric h and ∇hη the gradient of η relative to h, and
let ∇∗ be the connection of the metric F ∗g on N . An elementary calculation shows that for
vector fields V,W on N ,

∇∗
VW = ∇h

VW + V (η)W +W (η)V − h(V,W )∇hη. (2.6)

Let ∇g be the connection of the metric g on M , and let αF be second fundamental form
of F ; that is, the F ∗TM -valued, symmetric bilinear form which, for vector fields V,W on N ,
satisfies αF (V,W ) = F ∗∇g

V F∗W − F∗∇h
VW . We can also write αF as:

αF (V,W ) = (∇g
F∗V

F∗W )⊥ + F∗

(
∇∗

VW −∇h
VW

)
, (2.7)

where (∇g
F∗V

F∗W )⊥ is the component of ∇g
F∗V

F∗W normal to F (N). Taking the trace of (2.7)

using (2.6), and writing H⃗ for the mean curvature vector of Im(F ) ⊆ (M, g), gives:

Tr(αF ) = (2− n)∇hη + e2ηH⃗. (2.8)

By Eells and Sampson [ES64], a map F is harmonic if and only if Tr(αF ) = 0. □

We finish this section by briefly explaining how Theorem 1.3 follows from White’s results
in [Wh86]: In [Wh86], maps of a closed Riemannian manifold (N,h) are defined to be 2-
homotopic if their restrictions to the 2-skeleton of a triangulation of N are homotopic. The
result of [Wh86, Theorem 1] implies that the infimum of the energy in the homotopy class of
a map F is equal to the infimum in its 2-homotopy class (this is explicitly stated for maps
between closed Riemannian manifolds in [Wh86, Corollary 1] but follows from [Wh86, Theorem
1] for maps from a closed Riemannian manifold to any manifold). Although RP 2 is not the

2-skeleton of a triangulation of RPn (unless n = 2), it is straightforward to check that Ψ̂ in
Theorem 1.3 coincides with the 2-homotopy class of maps F ∈ Ψ.
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3. Upper and Lower Bounds for the Infimum of the Energy

Below, we will prove Theorem 1.1 and then discuss some corollaries of the proof and alternate
approaches to this result.

Proof of Theorem 1.1. For n = 2, Theorem 1.1 follows from Lemmas 2.4 and 2.5. For n ≥ 3,
let β be as in Lemma 2.3. The case k = n− 1 of Lemma 2.2 implies:

nσ(n)

(n− 1)σ(n− 1)
β ≤ inf

F∈Ψ
E2(F ). (3.1)

Successive application of this estimate, together with the result in the case n = 2, gives
the lower bound CnA

⋆ for the infimal energy in Theorem 1.1. Likewise, successive application

of Lemma 2.3 gives the upper bound σ(n−2)
2 A⋆ = 2(n−1

n )CnA
⋆ for the infimum of the energy in Ψ.

If a map F ∈ Ψ has E2(F ) = CnA
⋆, then F is harmonic, and therefore smooth (cf. [Aub13,

Ch.10]). For n ≥ 3, the case k = 2 of Lemma 2.2 also implies that for all Q ∈ Gr(2), F |Q
minimizes energy in the homotopy class ψ and is therefore a conformal branched immersion by
Theorem 2.6. Any orthonormal pair of vectors e⃗1, e⃗2 ∈ TxRPn is tangent to a totally geodesic
Q(e⃗1, e⃗2) ∼= RP 2. Because F |Q(e⃗1,e⃗2) is a conformal branched immersion, |dF (e⃗1)| = |dF (e⃗2)|,
and because this holds for all orthonormal pairs e⃗1, e⃗2, the norm |dF (e⃗)| is constant on unit
tangent vectors e⃗ to RPn at x. This implies F is semiconformal, and Lemma 2.7 then implies
F is a homothety. The harmonicity of F |Q for Q ∈ Gr(2) also implies that its image F (Q) is
a minimal submanifold of (M, g). For any orthonormal triple of vectors e⃗1, e⃗2, e⃗3 ∈ TxRPn and
i, j ∈ {1, 2, 3}, because Q(e⃗i, e⃗j) is totally geodesic in (RPn, g0) and its image via F is minimal
in (M, g), the second fundamental form B of Im(F ) ⊆ (M, g) satisfies B(e⃗i, e⃗i)+B(e⃗j , e⃗j) = 0.
Because this holds for all i, j ∈ {1, 2, 3} and triples e⃗1, e⃗2, e⃗3 ∈ TxRPn, we have B ≡ 0, and the
image of F is totally geodesic in (M, g). □

As an alternative to the iterated use of Lemma 2.3 in the proof of Theorem 1.1, one could
choose a totally geodesic Q ∼= RP 2 in RPn and a map F ∈ Ψ with E2(F |Q) < A⋆ + ε, let R be
the unique totally geodesic RPn−3 at maximal distance from Q, and deform the identity map
of RPn along geodesic segments from R to Q, expanding a tubular neighborhood T of R onto
RPn \ Q and retracting RPn \ T onto Q. One can give a proof along these lines, however the
result is the same as from the argument above. Likewise, the lower bound CnA

⋆ for the energy
of maps F ∈ Ψ also follows directly from the case k = 2 of Lemma 2.2.

Theorems 1.1 and 1.2 are the only quantitative lower bounds for the energy of a map of real
projective space known to the author, however letting Ψ(m) be the homotopy class of mappings
of RPn−m induced by a homotopy class of mappings Ψ of RPn, a stronger lower bound for the
energy of maps in Ψ(m), together with the case k = n−m of Lemma 2.2, would give a stronger
lower bound for the energy of maps in Ψ. Likewise, for n−m ≥ 3, if the infimum of the energy
in Ψ(m) were known to be less than the upper bound 2(n−m−1

n−m )Cn−mA
⋆ in Theorem 1.1, an

m-fold application of Lemma 2.3 would give a stronger upper bound for the infimal energy of
maps in Ψ. In general, Lemma 2.3 and (3.1) in the proof of Theorem 1.1 imply:

Proposition 3.1. Let Ψ be a homotopy class of mappings of (RPn, g0), n ≥ 3, and let β be as

in Lemma 2.3. Then, letting Dn = nσ(n)
(n−1)σ(n−1) ,

Dnβ ≤ inf
F∈Ψ

E2(F ) ≤
(n− 1)2

n(n− 2)
Dnβ. (3.2)
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As n → ∞, the ratio (n−1)2

n(n−2) between the upper and lower bounds in (3.2) approaches 1,

and the infimum of the energy in a homotopy class of mappings of real projective n-space is
approximately proportional to the infimum in the induced class of mappings of a hyperplane.
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