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Abstract

The main result of the paper is a description of conormal Lie algebras of Feigin–
Odesskii Poisson structures. In order to obtain it we introduce a new variant of a
definition of a Feigin–Odesskii Poisson structure: we define it using a differential on
the second page of a certain spectral sequence. In the general case this spectral se-
quence computes morphisms and higher Ext′ 𝑠 between filtered objects in an abelian
category. Moreover, we use our definition to give another proof of the description of
symplectic leaves of Feigin–Odesskii Poisson structures.
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1 Introduction
Let 𝐶 be an elliptic curve over an algebraically closed field 𝑘 of characteristic 0 and let 𝑉
be a stable vector bundle (e.g. a line bundle) of degree 𝑛 > 0 on 𝐶. The Feigin–Odesskii
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Poisson structure is a remarkable Poisson structure on the projective space PExt1(𝑉,𝒪𝐶)
with the following key property. Consider extensions of the form

0 // 𝒪𝐶
// 𝐸 // 𝑉 // 0, (1.1)

which are parameterized by the points of Ext1(𝑉,𝒪𝐶). One can ask when different exten-
sions lead to the same vector bundle 𝐸. Firstly note that proportional extensions always
lead to the same vector bundle 𝐸, so it is convenient to consider PExt1(𝑉,𝒪𝐶) instead
of Ext1(𝑉,𝒪𝐶). Then PExt1(𝑉,𝒪𝐶) is a disjoint union (as a set) of the isomorphism
classes of 𝐸 (two extensions belong to one isomorphism class of 𝐸 if they lead to the
same vector bundle 𝐸). The Feigin-Odesskii Poisson structure gives a local description
of the isomorphism classes of 𝐸: connected components of isomorphism classes of 𝐸 are
symplectic leaves of the Feigin–Odesskii Poisson structure on PExt1(𝑉,𝒪𝐶).

Feigin–Odesskii Poisson structures were introduced in 1995 by B. Feigin and A. Odesskii
in [6], and they claimed the fact about symplectic leaves, but the proof was not included
in the paper. Three years later in [8] A. Polishchuk defined some Poisson structure on
the same space using completely different approach, and only 20 years later in [15] Z.
Hua and Polishchuk proved that if 𝑉 is a line bundle then the latter Poisson structure
coincides with the Feigin–Odesskii Poisson structure. For this reason Poisson structures
defined by Polishchuk are called Feigin–Odesskii Poisson structures as well.

In [15] Hua and Polishchuk studied shifted Poisson structures on derived stacks and
Feigin–Odesskii Poisson structures appeared as a special case of their construction. In
[16] they continued studying properties of Feigin–Odesskii Poisson structures and proved
that one can recover the elliptic curve 𝐶 from the Poisson structure. Moreover, they
gave another interpretation of Feigin–Odesskii Poisson structures in terms of the triple
Massey product (see [16, Lemma 2.1]). A connection between Feigin–Odesskii Poisson
structures and secant varieties of 𝐶 was used in [18, 21]. In [19] secant varieties were used
to prove the fact about symplectic leaves in the case when 𝑉 is a line bundle. In [21] N.
Markarian and Polishchuk studied when different Feigin–Odesskii Poisson structures are
compatible, and in this paper they also provided a description of conormal Lie algebras
of the Feigin–Odesskii Poisson structure in the case when 𝑉 is a line bundle.

In the present paper we give a new variant of a definition of Feigin–Odesskii Poisson
structures based on a certain spectral sequence and then we use it to give a simple proof
of the fact about symplectic leaves (Theorem 1) and describe conormal Lie algebras of
Feigin–Odesskii Poisson structures (Theorem 2).

The paper is organized as follows. In Section 2 we provide preliminary facts about
stable vector bundles on elliptic curves, the Serre duality on elliptic curves, Poisson struc-
tures, and first order deformations of coherent sheaves.

In Section 3 we introduce a new variant of a definition of Feigin–Odesskii Poisson
structures. In Subsection 3.1 we provide a general description of a spectral sequence com-
puting Ext′ 𝑠 between objects of an abelian category that are given as extensions. We
describe differentials of this spectral sequence in terms of compositions of Ext’s and triple
Massey products. In Subsection 3.2 we show that the space PExt1(𝑉,𝒪𝐶) of proportion-
ality classes of extensions (1.1) is the moduli space of filtered vector bundles 𝐸 ⊃ 𝐿 ⊃ 0
with fixed associated quotients 𝐸/𝐿 ≃ 𝑉 and 𝐿 ≃ 𝒪𝐶 . This description of allows us
to view tangent vectors to 𝑃 as first order deformations of filtered vector bundles. In
Subsection 3.3 we apply the construction of the spectral sequence to the extension (1.1)
to get a spectral sequence computing Ext∙(𝐸,𝐸). Then we define the Feigin–Odesskii
Poisson structure on PExt1(𝑉,𝒪𝐶) at the point corresponding to the extension (1.1) as
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the differential on the second page of the constructed spectral sequence. A description
of the differential in terms of the triple Massey product shows that our definition of the
Feigin–Odesskii Poisson structure is equivalent to the definition in [16]. A similar con-
struction was used in [9] to define a symplectic structure coming from a degeneration of
the elliptic curve to P1. In Subsection 3.4 we prove Theorem 1 that gives a description of
symplectic leaves of Feigin–Odesskii Poisson structures.

In Section 4 we describe conormal Lie algebras of Feigin–Odesskii Poisson structures
(Theorem 2), and this is the main result of the paper. In Subsection 4.1 we give an
algebraic definition of the intrinsic derivative of a morphism of vector bundles on an
algebraic variety. Then, following [5], we formulate the definition of conormal Lie algebras
of a Poisson structure based on the intrinsic derivative. Finally, in Subsection 4.2 we
formulate and prove Theorem 2 that gives a description of conormal Lie algebras of the
Feigin–Odesskii Poisson structure. In [21] this result was proved for a special case when
𝑉 is a line bundle, and in [20] it is used to study compatibility of Feigin–Odesskii brackets
in the case if elliptic curves are given as linear sections of the Grassmannian 𝐺(2, 5). Our
result would be implied by an explicit construction of the symplectic groupoid of the
Feigin–Odesskii Poisson structures following [17], but our approach is more direct and
elementary.

Acknowledgments. L.G. is very grateful to Alexey Gorodentsev and Mikhail Finkelberg
and N.M. is very grateful to Alexander Polishchuk for many helpful conversations. N.M.
would like to thank the Max Planck Institute for Mathematics for hospitality and perfect
work conditions.

2 Preliminaries
Throughout the paper we use the following notations and conventions.

• We work over an algebraically closed field 𝑘 of characteristic 0.

• By 𝐶 we denote an elliptic curve over 𝑘, i.e. a smooth projective curve of genus 1.

• We identify vector bundles on smooth algebraic varieties with locally free coherent
sheaves.

• For a scheme 𝑋 over 𝑘 we denote by 𝒟(𝑋) = 𝒟𝑏(Coh(𝑋)) the bounded derived
category of coherent sheaves on 𝑋. Similarly, for a 𝑘-algebra 𝐴 we denote 𝒟(𝐴) =
𝒟𝑏(𝐴 -Mod)

• If 𝐹 : 𝒜 → ℬ is an exact functor between abelian categories, we denote the induced
functor between derived categories by the same letter 𝐹 : 𝒟𝑏(𝒜) → 𝒟𝑏(ℬ).

• In order to simplify descriptions of moduli spaces and deformations we use the
following convention: we write ”≃” for existence of some isomorphism and ”=” for
a specified isomorphism.

2.1 Stable vector bundles on elliptic curves

Vector bundles on elliptic curves were classified by M. Atiyah in [1], and to present the
classification it is convenient to use the notion of stable vector bundles. For the following
notions and facts we refer to [10].
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Definition 2.1. Let 𝑉 be a non-zero vector bundle on a smooth projective curve over 𝑘.

1. The slope of 𝑉 is the number

𝜇(𝑉 ) =
deg(𝑉 )

rk(𝑉 )
,

where deg(𝑉 ) = deg(det(𝑉 )).

2. 𝑉 is called stable if for any non-zero proper coherent subsheaf 𝑉 ′ ⊊ 𝑉

𝜇(𝑉 ′) < 𝜇(𝑉 ).

Note that 𝑉 ′ is automatically a vector bundle since any subsheaf of a locally free
coherent sheaf on a smooth projective curve is locally free.

The following two lemmas show significance of stable vector bundles on elliptic curves.

Lemma 2.1. Let 𝑟 > 0 and 𝑛 be integers and 𝐿 be a line bundle of degree 𝑛 on an elliptic
curve 𝐶.

1. A stable vector bundle 𝑉 on 𝐶 of rank 𝑟 and degree 𝑛 exists if and only if gcd(𝑟, 𝑛) =
1.

2. If gcd(𝑟, 𝑛) = 1, there is a unique stable vector bundle on 𝐶 of rank 𝑟 and determi-
nant 𝐿.

Lemma 2.2. Let 𝑉 be a vector bundle of rank 𝑟 and degree 𝑛 on an elliptic curve 𝐶. If
gcd(𝑟, 𝑛) = 1, then the following properties are equivalent:

(i) 𝑉 is stable;

(ii) 𝑉 is simple, i.e. End(𝑉 ) = 𝑘;

(iii) 𝑉 is indecomposable.

Thus, stable vector bundles on an elliptic curve are exactly indecomposable vector
bundles with coprime rank and degree. For example, any line bundle is stable. The
following lemma will also be useful.

Lemma 2.3. Let 𝑉 , 𝑊 be stable vector bundles on a smooth projective curve such that
𝜇(𝑉 ) > 𝜇(𝑊 ). Then Hom(𝑉,𝑊 ) = 0.

2.2 The Serre duality on elliptic curves

Let us fix a trivialization 𝜔𝐶 ≃ 𝒪𝐶 of the canonical line bundle on the elliptic curve
𝐶. The Serre duality (see e.g. [3]) states that for any vector bundle 𝑉 on 𝐶 there is a
functorial non-degenerate pairing

𝐻0(𝐶, 𝑉 )⊗𝐻1(𝐶, 𝑉 *) → 𝑘,

and, in particular, this gives a canonical isomorphism

𝐻1(𝐶,𝒪𝐶) = 𝑘.
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For any vector bundles 𝑉1, 𝑉2 on 𝐶 the Serre duality applied to 𝑉 = 𝑉 *
1 ⊗ 𝑉2 gives a

functorial non-degenerate pairing

Hom(𝑉1, 𝑉2)⊗ Ext1(𝑉2, 𝑉1) → 𝑘. (2.1)

The Serre duality pairing is closely connected with the trace map. For a vector bundle 𝑉
on 𝐶 there is a natural trace map

tr : ℰnd(𝑉 ) → 𝒪𝐶 , (2.2)

and it induces trace maps on cohomology:

tr : End(𝑉 ) → 𝐻0(𝐶,𝒪𝐶) = 𝑘, (2.3)
tr : Ext1(𝑉, 𝑉 ) → 𝐻1(𝐶,𝒪𝐶) = 𝑘. (2.4)

Denote the kernels of these three trace maps by ℰnd(𝑉 )0, End(𝑉 )0 and Ext1(𝑉, 𝑉 )0,
respectively. The trace map (2.2) and the section 𝒪𝐶

Id𝑉−−→ ℰnd(𝑉 ) give a decomposition

ℰnd(𝑉 ) = 𝒪𝐶 ⊕ ℰnd(𝑉 )0

and the corresponding decomposition of cohomology:

End(𝑉 ) = 𝑘 ⊕ End(𝑉 )0,

Ext1(𝑉, 𝑉 ) = 𝑘 ⊕ Ext1(𝑉, 𝑉 )0.

The following lemma follows from functoriality of the Serre duality.

Lemma 2.4. Let 𝐶 be an elliptic curve.

1. For a vector bundle 𝑉 on 𝐶 the trace map (2.4)

tr : Ext1(𝑉, 𝑉 ) → 𝑘

coincides with the map given by the Serre duality pairing (2.1) with Id𝑉 ∈ End(𝑉 ).

2. For two vector bundles 𝑉1, 𝑉2 on 𝐶 the Serre duality pairing

Hom(𝑉1, 𝑉2)⊗ Ext1(𝑉2, 𝑉1) → 𝑘

can be obtained in two other ways: take a composition in any order (there are two
variants) and then apply the trace map:

Hom(𝑉1, 𝑉2)⊗ Ext1(𝑉2, 𝑉1) //

��

Ext1(𝑉1, 𝑉1)

tr

��
Ext1(𝑉2, 𝑉2)

tr // 𝑘.

Note that if a vector bundle 𝑉 is stable then

dimExt1(𝑉, 𝑉 ) = dimEnd(𝑉 ) = 1,

and hence the trace map Ext1(𝑉, 𝑉 ) → 𝑘 is an isomorphism. Then we get a simple and
useful corollary.

Corollary 2.1. Let 𝑉1 and 𝑉2 be stable vector bundles on an elliptic curve 𝐶. Then under
identifications Ext1(𝑉1, 𝑉1) = 𝑘 and Ext1(𝑉2, 𝑉2) = 𝑘 given by the trace maps, the Serre
duality pairing

Hom(𝑉1, 𝑉2)⊗ Ext1(𝑉2, 𝑉1) → 𝑘

is identified with the composition in any order.
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2.3 Poisson structures

Let 𝑋 be a smooth algebraic variety over 𝑘.
Definition 2.2. A Poisson structure on 𝑋 is a 𝑘-bilinear operation

{−,−} : 𝒪𝑋 ×𝒪𝑋 → 𝒪𝑋 (2.5)

such that for any functions 𝑓, 𝑔, ℎ ∈ 𝒪𝑋 the following properties hold:
1. Skew-symmetry:

{𝑓, 𝑔} = −{𝑔, 𝑓},

2. Jacobi identity:
{𝑓, {𝑔, ℎ}}+ {𝑔, {ℎ, 𝑓}}+ {ℎ, {𝑓, 𝑔}} = 0,

3. Leibniz rule:
{𝑓, 𝑔ℎ} = {𝑓, 𝑔}ℎ+ 𝑔{𝑓, ℎ}.

The pair (𝑋, {−,−}) is called a smooth Poisson variety.
Equivalently, one can also view a Poisson structure as a bivector field 𝜋 ∈ Γ(𝑋,

⋀︀2(𝑇𝑋))
such that [𝜋, 𝜋] = 0, where [−,−] is the Schouten-Nijenhuis bracket. Such bivector field
is connected with the bracket from Definition 2.2 by the formula

{𝑓, 𝑔} = 𝜋(𝑑𝑓, 𝑑𝑔),

and the condition [𝜋, 𝜋] = 0 is equivalent to Jacobi identity. Since a bivector field can be
viewed as a skew-symmetric map of vector bundles 𝑇 *𝑋 → 𝑇𝑋, a Poisson structure can
be also defined as a map of vector bundles

𝜋 : 𝑇 *𝑋 → 𝑇𝑋, (2.6)

satisfying some additional condition which is equivalent to Jacobi identity. For any point
𝑥 ∈ 𝑋 the Poisson structure (2.6) induces a map

𝜋𝑥 : 𝑇
*
𝑥𝑋 → 𝑇𝑥𝑋,

and the rank of this map is called the rank of the Poisson structure 𝜋 at the point 𝑥.
Since 𝜋𝑥 is skew-symmetric, its rank is always even.
Definition 2.3. Let 𝑋 be a smooth algebraic variety and 𝜋 : 𝑇 *𝑋 → 𝑇𝑋 a Poisson
structure on 𝑋. An algebraic symplectic leaf is a maximal connected locally closed subset
𝑍 ⊂ 𝑋 such that for any point 𝑥 ∈ 𝑍 the tangent space at 𝑥 to 𝑍 coincides with the image
of the Poisson structure:

𝑇𝑥𝑍 = Im(𝜋𝑥) ⊂ 𝑇𝑥𝑋. (2.7)
In the case 𝑘 = C Frobenius theorem implies that each point of 𝑋 is contained in

an analytic symplectic leaf, which is not necessarily algebraic. Thus, even existence of
algebraic symplectic leaves is not guaranteed.
Proposition 2.1. Let 𝑋 be a smooth algebraic variety and 𝜋 : 𝑇 *𝑋 → 𝑇𝑋 be a Poisson
structure on 𝑋. If 𝑍 ⊂ 𝑋 is an algebraic symplectic leaf of 𝜋, then 𝑍 is a smooth algebraic
variety.
Proof. Since dim𝑇𝑥𝑍 is upper semicontinuous for 𝑥 ∈ 𝑍, rk 𝜋𝑥 is lower semicontinuous
for 𝑥 ∈ 𝑍, and dim𝑇𝑥𝑍 = rk𝜋𝑥 for 𝑥 ∈ 𝑍, it follows that dim𝑇𝑥𝑍 is constant on 𝑍.
Thus, 𝑍 is smooth.

Throughout the paper by symplectic leaves we always mean algebraic symplectic
leaves.
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2.4 First order deformations of coherent sheaves

Denote by 𝑘[𝜀] the ring of dual numbers 𝑘[𝑡]/𝑡2 and denote its spectrum by 𝐷 = Spec 𝑘[𝜀].
Let X be an algebraic variety over 𝑘. Consider two Cartesian squares

𝑋 ×𝐷
𝑞 //

𝑝

��

𝐷

𝑝′

��

𝑋 ×𝐷
𝑞 // 𝐷

𝑋
𝑞′ // 𝑝𝑡, 𝑋

𝑞′ //

𝑖

OO

𝑝𝑡,

𝑖′

OO

where

• 𝑝𝑡 = Spec 𝑘,

• 𝑞 is the natural projection 𝑋 ×𝐷 → 𝐷,

• 𝑝′ and 𝑝 are induced by the natural embedding 𝑘 → 𝑘[𝜀],

• 𝑖′ and 𝑖 are induced by the map 𝑘[𝜀] → 𝑘, 𝑎+ 𝑏𝜀 ↦→ 𝑎.

Note that morphisms 𝑝′, 𝑝, 𝑖′, 𝑖 are affine, morphisms 𝑝′, 𝑝, 𝑞′, 𝑞 are flat, and 𝑝 ∘ 𝑖 = 𝑖𝑑𝑋 .

Definition 2.4. Let 𝐸 be a coherent sheaf on 𝑋. A first order deformation of 𝐸 is a
coherent sheaf �̃� on a scheme 𝑋 ×𝐷 such that

1. �̃� is flat over 𝐷, i.e. the functor �̃� ⊗ 𝑞*(−) : Coh(𝐷) → Coh(𝑋 ×𝐷) is exact,

2. 𝑖*�̃� = 𝐸, i.e. the restriction of �̃� to X is identified with 𝐸.

Two first order deformations �̃�1 and �̃�2 of 𝐸 are equivalent if there is an isomorphism
�̃�1 ≃ �̃�2 that agrees with identifications 𝑖*�̃�1 = 𝐸 and 𝑖*�̃�2 = 𝐸. The set of equivalence
classes of first order deformations is denoted by Def(𝐸).

Since we do not consider higher order deformations in this paper, we will usually omit
the term "first order". Fix a coherent sheaf 𝐸 on 𝑋. There is a well-known bijection
between Def(𝐸) and Ext1(𝐸,𝐸) such that zero element in Ext1(𝐸,𝐸) corresponds to
the trivial deformation �̃� = 𝑝*𝐸 (see e.g. [11]). Let us also describe this bijection
Def(𝐸) → Ext1(𝐸,𝐸) using derived categories.

Firstly consider the 𝑘[𝜀]-module 𝑘 where 𝜀 acts trivially and consider the element
𝜉 ∈ Ext1𝑘[𝜀](𝑘, 𝑘) corresponding to the extension

0 // 𝑘
𝜀 // 𝑘[𝜀] // 𝑘 // 0. (2.8)

Starting from a deformation �̃� of 𝐸 we are going to construct an element 𝑇 ∈ Ext1(𝐸,𝐸).
Consider the functor

𝑝*(�̃� ⊗ 𝑞*(−)) : Coh(𝐷) → Coh(𝑋). (2.9)

Lemma 2.5. One has

1. 𝑞*𝑘 = 𝑖*𝒪𝑋 ,

2. �̃� ⊗ 𝑞*𝑘 = 𝑖*𝐸,

3. 𝑝*(�̃� ⊗ 𝑞*𝑘) = 𝐸.
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Proof. Since the 𝑘[𝜀]-module 𝑘 is the pushforward 𝑖′*𝒪𝑝𝑡 of the structure sheaf 𝒪𝑝𝑡 of the
point, the flat base change implies

𝑞*𝑘 = 𝑞*𝑖′*𝒪𝑝𝑡 = 𝑖*𝑞
′*𝒪𝑝𝑡 = 𝑖*𝒪𝑋 .

Then by the projection formula

�̃� ⊗ 𝑞*𝑘 = �̃� ⊗ 𝑖*𝒪𝑋 = 𝑖*𝐸.

Finally, 𝑝*(�̃� ⊗ 𝑞*𝑘) = 𝑝*𝑖*𝐸 = 𝐸.

The functor (2.9) is exact since �̃� is flat over 𝐷, so it naturally extends to the functor

𝑝*(�̃� ⊗ 𝑞*(−)) : 𝒟(𝑘[𝜀]) → 𝒟(𝑋). (2.10)

Applying this functor to the morphism 𝜉 : 𝑘 → 𝑘[1] in 𝒟(𝑘[𝜀]) and using Lemma 2.5 we
get a morphism

𝑝*(�̃� ⊗ 𝑞*𝜉) : 𝐸 → 𝐸[1]

in 𝒟(𝑋), i.e. an element of Ext1(𝐸,𝐸). In other words, the deformation �̃� corresponds
to the element

𝑇 = 𝑝*(�̃� ⊗ 𝑞*𝜉) ∈ Ext1(𝐸,𝐸). (2.11)

corresponding to the extension

0 // 𝐸 // 𝑝*�̃� // 𝐸 // 0,

obtained as a tensor product over 𝑘[𝜀] of �̃� and the extension (2.8).

Lemma 2.6. If 𝐸 is a locally free sheaf on an algebraic variety 𝑋 then any deformation
�̃� of 𝐸 is a locally free sheaf on 𝑋 ×𝐷.

Proof. For any affine open subset 𝑈 ⊂ 𝑋 there are no non-trivial deformations of 𝐸|𝑈
since Ext1𝑈(𝐸|𝑈 , 𝐸|𝑈) = 0. Hence, �̃�|𝑈×𝐷 = (𝑝|𝑈×𝐷)

*(𝐸|𝑈) and then �̃� is a locally trivial
sheaf.

For locally free sheaves on 𝑋 there is a convenient description of deformations in terms
of Čech cocycles. Let 𝐸 be a locally free sheaf on 𝑋. Choose a covering {𝑈𝑖}𝑖∈𝐼 of 𝑋 by
affine open subsets 𝑈𝑖, choose trivializations of 𝐸 on 𝑈𝑖, and denote the corresponding
transition functions by 𝑔𝑖𝑗 for 𝑖, 𝑗 ∈ 𝐼. Let �̃� be a deformation of 𝐸. By Lemma 2.6, �̃�
can be trivialized on affine open subsets 𝑈𝑖×𝐷 of 𝑋×𝐷, and the transition functions 𝑔𝑖𝑗
of �̃� can be written as 𝑔𝑖𝑗 = 𝑔𝑖𝑗 + 𝜀 · ℎ𝑖𝑗 for some matrices ℎ𝑖𝑗 of functions on 𝑋. One can
check that ℎ𝑖𝑗 is a 1-cocycle on 𝑋 representing an element of 𝐻1(𝑋, ℰnd(𝐸)) = Ext1(𝐸,𝐸)
and, in fact, this construction gives the same bijection between deformations of 𝐸 and
Ext1(𝐸,𝐸) as we described earlier.

Lemma 2.7. 1. Let 𝐸1, 𝐸2 be vector bundles on an algebraic variety 𝑋 and let �̃�1,
�̃�2 be deformations of 𝐸1, 𝐸2 corresponding to elements 𝑇1 ∈ Ext1(𝐸1, 𝐸1), 𝑇2 ∈
Ext1(𝐸2, 𝐸2), respectively. Then �̃�1⊗�̃�2 is the deformation of 𝐸1⊗𝐸2 corresponding
to 𝑇1 ⊗ Id𝐸2 +Id𝐸1 ⊗𝑇2 ∈ Ext1(𝐸1 ⊗ 𝐸2, 𝐸1 ⊗ 𝐸2).

2. Let 𝐸 be a vector bundle on an algebraic variety 𝑋 and let �̃� be a deformation of
𝐸 corresponding to an element 𝑇 ∈ Ext1(𝐸,𝐸). Then the dual sheaf �̃�* on 𝑋 ×𝐷
is the deformation of 𝐸* corresponding to −𝑇 ∈ Ext1(𝐸*, 𝐸*) = Ext1(𝐸,𝐸).
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3. Let 𝐸 be a vector bundle on an algebraic variety 𝑋 and let �̃� be a deformation of
𝐸 corresponding to an element 𝑇 ∈ Ext1(𝐸,𝐸). Then ℰnd(�̃�) is the deformation
of ℰnd(𝐸) corresponding to [−, 𝑇 ] ∈ Ext1(ℰnd(𝐸), ℰnd(𝐸)).

Proof. We will prove only the first statement, other statements are similar. Take an
affine open covering {𝑈𝑖} of 𝑋 and let 𝑔1𝑖𝑗 and 𝑔2𝑖𝑗 be transition functions of 𝐸1 and 𝐸2,
respectively. Then transition functions of deformations �̃�1 and �̃�2 can be written as
𝑔1𝑖𝑗 + 𝜀ℎ1𝑖𝑗 and 𝑔2𝑖𝑗 + 𝜀ℎ2𝑖𝑗, where Čech cocycles ℎ1𝑖𝑗 and ℎ2𝑖𝑗 represent elements 𝑇1 and 𝑇2.
Then the tensor product �̃�1 ⊗ �̃�2 has transition functions

(𝑔1𝑖𝑗 + 𝜀ℎ1𝑖𝑗)⊗ (𝑔2𝑖𝑗 + 𝜀ℎ2𝑖𝑗) = 𝑔1𝑖𝑗 ⊗ 𝑔2𝑖𝑗 + 𝜀(ℎ1𝑖𝑗 ⊗ 𝑔2𝑖𝑗 + 𝑔1𝑖𝑗 ⊗ ℎ2𝑖𝑗),

and the cocycle ℎ1𝑖𝑗 ⊗ 𝑔2𝑖𝑗 + 𝑔1𝑖𝑗 ⊗ ℎ2𝑖𝑗 represents the element 𝑇1 ⊗ Id𝐸2 +Id𝐸1 ⊗𝑇2.

3 Feigin–Odesskii Poisson Structures

3.1 The spectral sequence

Our definition of Feigin–Odesskii Poisson structures is based on the following general
spectral sequence.

Let 𝑅 be a commutative ring and 𝒜 be an 𝑅-linear abelian category with enough
injective objects. Consider two extensions

0 // 𝐴′ 𝑖𝐴 // 𝐴
𝜋𝐴 // 𝐴′′ // 0, (3.1)

0 // 𝐵′ 𝑖𝐵 // 𝐵
𝜋𝐵 // 𝐵′′ // 0 (3.2)

in 𝒜 and the corresponding elements 𝜙 ∈ Ext1(𝐴′′, 𝐴′), 𝜓 ∈ Ext1(𝐵′′, 𝐵′). We start with
the following question: how to describe Ext∙(𝐴,𝐵) in terms of Ext∙(𝐴′, 𝐵′), Ext∙(𝐴′, 𝐵′′),
Ext∙(𝐴′′, 𝐵′), Ext∙(𝐴′′, 𝐵′′). For example, if extensions 𝜙 and 𝜓 are trivial then we can
view elements of Ext𝑘(𝐴,𝐵) as 2× 2-matrices(︂

𝑢𝑘 𝑡𝑘

𝑠𝑘 𝑣𝑘

)︂
, where 𝑢𝑘 ∈ Ext𝑘(𝐴′, 𝐵′), 𝑡𝑘 ∈ Ext𝑘(𝐴′′, 𝐵′),

𝑠𝑘 ∈ Ext𝑘(𝐴′, 𝐵′′), 𝑣𝑘 ∈ Ext𝑘(𝐴′′, 𝐵′′).
(3.3)

In the general case there is a natural spectral sequence computing Ext∙(𝐴,𝐵) with such
2 × 2-matrices on the first page. The spectral sequence can be constructed as follows.
Short exact sequences (3.1), (3.2) give two term filtrations on 𝐴 and 𝐵, and one can use
horseshoe lemma to construct injective resolutions 𝐼∙𝐴, 𝐼∙𝐵 of 𝐴 and 𝐵 with corresponding
filtations on them. Then Ext∙(𝐴,𝐵) can be computed as cohomology of the Hom-complex
Hom∙(𝐼∙𝐴, 𝐼

∙
𝐵) and filtrations on 𝐼∙𝐴 and 𝐼∙𝐵 induce a filtration on this complex, so we get a

spectral sequence computing Ext∙(𝐴,𝐵). A straightforward computation gives an explicit
description of this spectral sequence. We provide only the final answer.
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The first page 𝐸∙,∙
1 of the spectral sequence looks as follows.

...
...

...
...

3 Ext2(𝐴′,𝐵′′)
(−1)·𝜓∘−

−∘𝜙
//
Ext3(𝐴′, 𝐵′)

⊕
Ext3(𝐴′′,𝐵′′)

−∘𝜙
𝜓∘−

// Ext4(𝐴′′, 𝐵′)

2 Ext1(𝐴′, 𝐵′′)
𝜓∘−
−∘𝜙

//
Ext2(𝐴′, 𝐵′)

⊕
Ext2(𝐴′′,𝐵′′)

−∘𝜙
(−1)·𝜓∘−

// Ext3(𝐴′′,𝐵′)

1 Hom(𝐴′,𝐵′′)
(−1)·𝜓∘−

−∘𝜙
//
Ext1(𝐴′, 𝐵′)

⊕
Ext1(𝐴′′,𝐵′′)

−∘𝜙
𝜓∘−

// Ext2(𝐴′′, 𝐵′)

0
Hom(𝐴′, 𝐵′)

⊕
Hom(𝐴′′,𝐵′′)

−∘𝜙
(−1)·𝜓∘−

// Ext1(𝐴′′, 𝐵′)

−1 Hom(𝐴′′, 𝐵′)

−1 0 1

This spectral sequence degenerates on the third page, so 𝐸𝑝,𝑞
3 = 𝐸𝑝,𝑞

∞ is isomorphic to the
𝑝-th associated quotient of Ext𝑝+𝑞(𝐴,𝐵). Note that diagonals on the first page indeed
consist of 2× 2-matrices (3.3).

On the second page for 𝑘 ≥ 0 the differential 𝑑2 : 𝐸−1,𝑘+1
2 → 𝐸1,𝑘

2 or, more explicitly,

𝑑2 : {𝑠 ∈ Ext𝑘(𝐴′, 𝐵′′) | 𝜓 ∘ 𝑠 = 0, 𝑠 ∘ 𝜙 = 0} → Ext𝑘+1(𝐴′′, 𝐵′)

Ext𝑘(𝐴′, 𝐵′) ∘ 𝜙+ 𝜓 ∘ Ext𝑘(𝐴′′, 𝐵′′)

can be expressed using the triple Massey product 𝑀𝑃 : (see [13, 16])

𝑑2(𝑠) =𝑀𝑃 (𝜙, 𝑠, 𝜓). (3.4)

Let us also provide two explicit constructions of 𝑑2, which follow from the definition of
Massey product. For 𝑠 ∈ Ext𝑘(𝐴′, 𝐵′′) such that 𝑠 ∘ 𝜙 = 0 and 𝜓 ∘ 𝑠 = 0 consider the
following diagram with two distinguished triangles in the derived category 𝒟𝑏(𝒜):

𝐴
𝜋𝐴

~~

𝐵
𝜋𝐵

~~
𝐴′′ 𝜙

[1]
// 𝐴′ 𝑠

[𝑘]
//

𝑖𝐴

``

𝐵′′ 𝜓

[1]
// 𝐵′.

𝑖𝐵

aa
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The first construction is the following. Since 𝜓 ∘ 𝑠 = 0, there is a lift 𝑠′ ∈ Ext𝑘(𝐴′, 𝐵)
such that 𝑠 = 𝜋𝐵 ∘ 𝑠′. Consider the composition 𝑠′ ∘ 𝜙 and note that

𝜋𝐵 ∘ (𝑠′ ∘ 𝜙) = 𝑠 ∘ 𝜙 = 0.

Hence, there is a lift 𝑠′′ ∈ Ext𝑘+1(𝐴′′, 𝐵′) such that 𝑖𝐵 ∘ 𝑠′′ = 𝑠′ ∘ 𝜙, and then 𝑑2(𝑠) is the
class of 𝑠′′ ∈ Ext𝑘+1(𝐴′′, 𝐵′).

The second construction is very similar. Since 𝑠∘𝜙 = 0, there is a lift 𝑠′ ∈ Ext𝑘(𝐴,𝐵′′)
such that 𝑠′ ∘ 𝑖𝐴 = 𝑠. Consider the composition 𝜓 ∘ 𝑠′ and note that

(𝜓 ∘ 𝑠′) ∘ 𝑖𝐴 = 𝜓 ∘ 𝑠 = 0.

Hence, there is a lift 𝑠′′ ∈ Ext𝑘+1(𝐴′′, 𝐵′) such that 𝑠′′ ∘ 𝜋𝐴 = 𝜓 ∘ 𝑠′, and then 𝑑2(𝑠) is the
class of −𝑠′′ ∈ Ext𝑘+1(𝐴′′, 𝐵′).

3.2 The moduli space of filtered vector bundles

Let 𝑉 be a stable vector bundle of rank 𝑟 > 0 and degree 𝑛 > 0 on an elliptic curve 𝐶.
Consider extensions of 𝑉 by the trivial line bundle 𝒪𝐶 , i.e. short exact sequences

0 // 𝒪𝐶
𝑖 // 𝐸

𝜋 // 𝑉 // 0. (3.5)

As in [6], we consider the following moduli space of filtered vector bundles.

Proposition 3.1. The projective space 𝑃 = PExt1(𝑉,𝒪𝐶) is the moduli space of filtered
vector bundles 𝐸 ⊃ 𝐿 ⊃ 0 with fixed associated quotients

𝐸/𝐿 ≃ 𝑉, 𝐿 ≃ 𝒪𝐶 . (3.6)

Isomorphisms (3.6) are not specified, i.e. they are not a part of the data of a filtered vector
bundle. Moreover, we throw away the trivial filtered vector bundle 𝑉 ⊕𝒪𝐶 ⊃ 𝒪𝐶 ⊃ 0.

Proof. Take a point ⟨𝜙⟩ ∈ 𝑃 , where a non-zero element 𝜙 ∈ Ext1(𝑉,𝒪𝐶) corresponds to
an extension of the form (3.5). We set 𝐿 to be the image of 𝒪𝐶 in 𝐸 and 𝐸 ⊃ 𝐿 ⊃ 0
to be the corresponding filtrarion. Note that if we replace 𝜙 by 𝜆 · 𝜙 for some non-zero
𝜆 ∈ 𝑘 then the corresponding extension will be

0 // 𝒪𝐶
𝜆·𝑖 // 𝐸 𝜋 // 𝑉 // 0,

and the image of 𝒪𝐶 in 𝐸 will not change. Hence, the filtered vector bundle 𝐸 ⊃ 𝐿 ⊃ 0
depends only on the proportionality class of 𝜙.

Conversely, consider a filtered vector bundle 𝐸 ⊃ 𝐿 ⊃ 0 and fix some isomorphisms
𝐸/𝐿 ≃ 𝑉 and 𝐿 ≃ 𝒪𝐶 . Using these isomorphisms we obtain an extension of the form
(3.5) corresponding to some non-zero element 𝜙 ∈ Ext1(𝑉,𝒪𝐶). Since 𝑉 and 𝒪𝐶 are a
stable vector bundles, all the isomorphisms 𝐸/𝐿 ≃ 𝑉 and 𝐿 ≃ 𝒪𝐶 differ by multiplication
by non-zero constants. Hence, for different choices of isomorphisms we obtain extensions
of the form

0 // 𝒪𝐶
𝜆·𝑖 // 𝐸

𝜇·𝜋 // 𝑉 // 0 (3.7)

for non-zero 𝜆, 𝜇 ∈ 𝑘. Since elements of Ext1(𝑉,𝒪𝐶) corresponding to extensions (3.7)
are proportional to 𝜙, the proportionality class of 𝜙 does not depend on the choice of
isomorphisms.

It is clear that described constructions are inverse to each other. Existence of the
universal family on 𝑃 = PExt1(𝑉,𝒪𝐶) is shown in [4].
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The following proposition shows that 𝑃 is the (𝑛− 1)-dimensional projective space.

Proposition 3.2. Let 𝑉 be a stable vector bundle of degree 𝑛 > 0 on an elliptic curve 𝐶.
Then

1. Hom(𝑉,𝒪𝐶) = Ext1(𝒪𝐶 , 𝑉 ) = 0,

2. dimExt1(𝑉,𝒪𝐶) = dimHom(𝒪𝐶 , 𝑉 ) = 𝑛.

Proof. Since 𝜇(𝑉 ) > 0 = 𝜇(𝒪𝐶) and vector bundles 𝑉 and 𝒪𝐶 are stable, it follows from
Lemma 2.3 that Hom(𝑉,𝒪𝐶) = 0 and then, by the Serre duality, Ext1(𝒪𝐶 , 𝑉 ) = 0. For
the second part we apply the Riemann-Roch theorem:

dimHom(𝒪𝐶 , 𝑉 )− dimExt1(𝒪𝐶 , 𝑉 ) = 𝑛.

Hence, dimHom(𝒪𝐶 , 𝑉 ) = 𝑛 and, by the Serre duality, dimExt1(𝑉,𝒪𝐶) = 𝑛.

Now let us describe tangent spaces to 𝑃 . On the one hand, 𝑃 = PExt1(𝑉,𝒪𝐶) is a
projective space, so for a non-zero element 𝜙 ∈ Ext1(𝑉,𝒪𝐶) there is an identification

𝑇𝜙𝑃 = Ext1(𝑉,𝒪𝐶)/⟨𝜙⟩,

of degree 1 in 𝜙.
On the other hand, we can describe tangent spaces to 𝑃 in terms of first order defor-

mations. Recall from Section 2.4 that we write 𝐷 = Spec 𝑘[𝜀] for the spectrum of dual
numbers, and we have natural morphisms 𝑝 : 𝐶 ×𝐷 → 𝐶 and 𝑖 : 𝐶 → 𝐶 ×𝐷 such that
𝑝 ∘ 𝑖 = 𝑖𝑑𝑋 . The universal property of 𝑃 leads to the following definition.

Definition 3.1. Let 𝐸 ⊃ 𝐿 ⊃ 0 be a filtered vector bundle on 𝐶 such that 𝐸/𝐿 ≃ 𝑉 and
𝐿 ≃ 𝒪𝐶. A (first order) deformation of 𝐸 ⊃ 𝐿 ⊃ 0 is a filtered coherent sheaf �̃� ⊃ �̃� ⊃ 0
on 𝐶 ×𝐷 such that

1. 𝑖*�̃� = 𝐸 and 𝑖*�̃� = 𝐿,

2. �̃�/�̃� ≃ 𝑝*𝑉 and �̃� ≃ 𝑝*𝒪𝐶, i.e. associated quotients deform trivially.

The set of equivalence classes of deformations of 𝐸 ⊃ 𝐿 ⊃ 0 is denoted by Def(𝐸 ⊃ 𝐿 ⊃
0).

Thus, if 𝐸 ⊃ 𝐿 ⊃ 0 is a filtered vector bundle corresponding to a point ⟨𝜙⟩ ∈ 𝑃 then
the tangent space 𝑇𝜙𝑃 to 𝑃 consists of the deformations of 𝐸 ⊃ 𝐿 ⊃ 0:

𝑇𝜙𝑃 = Def(𝐸 ⊃ 𝐿 ⊃ 0).

Note that if �̃� ⊃ �̃� ⊃ 0 is a deformation of 𝐸 ⊃ 𝐿 ⊃ 0 then �̃� and �̃� are automatically
flat over 𝐷. Hence, in this case �̃� is a deformation of 𝐸, and we get a map

Def(𝐸 ⊃ 𝐿 ⊃ 0) → Def(𝐸)

that forgets about �̃�.
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3.3 Definition of Feigin–Odesskii Poisson structures

We start from a stable vector bundle 𝑉 of degree 𝑛 > 0 on an elliptic curve 𝐶 and consider
proportionality classes of extensions

0 // 𝒪𝐶
// 𝐸 // 𝑉 // 0,

which are parameterized by 𝑃 = PExt1(𝑉,𝒪𝐶). We will define the Feigin–Odeskii Poisson
structure 𝜋 on 𝑃 as a morphism of vector bundles

𝜋 : 𝑇 *𝑃 → 𝑇𝑃.

Since 𝑃 is a projective space, for any non-zero 𝜙 ∈ Ext1(𝑉,𝒪𝐶) we have the identification

𝑇𝜙𝑃 = Ext1(𝑉,𝒪𝐶)/⟨𝜙⟩,

of degree 1 in 𝜙, and using the Serre duality pairing

⟨−,−⟩ : Hom(𝒪𝐶 , 𝑉 )⊗ Ext1(𝑉,𝒪𝐶) → 𝑘

we can write
𝑇 *
𝜙𝑃 = ⟨𝜙⟩⊥ ⊂ Hom(𝒪𝐶 , 𝑉 ).

Fix a non-zero element 𝜙 ∈ Ext1(𝑉,𝒪𝐶) corresponding to an extension

0 // 𝒪𝐶
// 𝐸 // 𝑉 // 0 (3.8)

and consider the corresponding filtered vector bundle 𝐸 ⊃ 𝐿 ⊃ 0. We can apply to the
extension (3.8) the construction of the spectral sequence computing Ext∙(𝐸,𝐸) that was
described in Section 3.1.

Since Hom(𝑉,𝒪𝐶) = 0, Ext1(𝒪𝐶 , 𝑉 ) = 0 by Proposition 3.2 and all higher Ext’s are
zero, the first page 𝐸∙,∙

1 of the spectral sequence looks as follows.

1 Hom(𝒪𝐶 , 𝑉 )
(−1)·𝜙∘−

−∘𝜙
//
Ext1(𝒪𝐶 ,𝒪𝐶)

⊕
Ext1(𝑉, 𝑉 )

0
Hom(𝒪𝐶 ,𝒪𝐶)

⊕
Hom(𝑉, 𝑉 )

−∘𝜙
(−1)·𝜙∘−

// Ext1(𝑉,𝒪𝐶)

−1 0 1

(3.9)

The diagonal 𝑝 + 𝑞 = 0 corresponds to End(𝐸) and the diagonal 𝑝 + 𝑞 = 1 corresponds
to Ext1(𝐸,𝐸).

There is another way to construct the same spectral sequence. For a filtered vector
bundle 𝐸 ⊃ 𝐿 ⊃ 0 consider the sheaf ℰnd(𝐸) with the induced three term filtration on
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it, and this filtration gives a spectral sequence computing 𝐻∙(𝐶, ℰnd(𝐸)) = Ext∙(𝐸,𝐸).
Moreover, one can use the sheaf ℰnd(𝐸)0 instead of ℰnd(𝐸) to get the reduced spectral
sequence computing Ext∙(𝐸,𝐸)0. Since ℰnd(𝐸) = ℰnd(𝐸)0 ⊕ 𝒪𝐶 , the reduced spectral
sequence is the traceless part of the initial spectral sequence (3.9) and, moreover, it is a
direct summand in it.

Using Corollary 2.1 we can write the first page of the reduced spectral sequence as
follows.

1 Hom(𝒪𝐶 , 𝑉 )
⟨𝜙,−⟩ // 𝑘

0 𝑘
·𝜙 // Ext1(𝑉,𝒪𝐶)

−1 0 1

(3.10)

The only non-trivial differential on the second page is a map

𝑑2 : ⟨𝜙⟩⊥ → Ext1(𝑉,𝒪𝐶)/⟨𝜙⟩,

and this map is the same for both spectral sequences (3.9) and (3.10).

Definition 3.2. The Feigin–Odesskii Poisson structure 𝜋 on 𝑃 = PExt1(𝑉,𝒪𝐶) at a
point ⟨𝜙⟩ is defined as the differential 𝑑2 on the second page of the constructed spectral
sequence (3.10):

𝜋𝜙 : 𝑇
*
𝜙𝑃 = ⟨𝜙⟩⊥ 𝑑2−→ Ext1(𝑉,𝒪𝐶)/⟨𝜙⟩ = 𝑇𝜙𝑃.

An explicit description of the differential 𝑑2 provided in Section 3.1 leads to the fol-
lowing proposition.

Proposition 3.3. Let 𝑉 be a stable vector bundle of positive degree on 𝐶 and let 𝜙 ∈
Ext1(𝑉,𝒪𝐶) be a non-zero element. Then the Feigin–Odesskii Poisson structure 𝜋 at the
point ⟨𝜙⟩ ∈ 𝑃 can be expressed as

𝜋𝜙 =𝑀𝑃 (𝜙,−, 𝜙),

where 𝑀𝑃 is the triple Massey product. Thus, our definition of the Feigin–Odesskii
Poisson structure coincides with the definition in [16, Lemma 2.1].

Note that it follows from Proposition 3.3 that 𝜋𝜙 has degree 2 in 𝜙, and hence 𝜋 is a
well-defined map of vector bundles 𝑇 *𝑃 → 𝑇𝑃 on 𝑃 .

Since the reduced spectral sequence converges to Ext∙(𝐸,𝐸)0, it follows immediately
that

Ker(𝜋𝜙) = End(𝐸)0,

Coker(𝜋𝜙) = Ext1(𝐸,𝐸)0.

As a corollary, we get a formula for rank from [16].
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Corollary 3.1. Let 𝑉 be a stable vector bundle of degree 𝑛 > 0 on an elliptic curve 𝐶.
Let ⟨𝜙⟩ ∈ 𝑃 be the point corresponding to a filtered vector bundle 𝐸 ⊃ 𝐿 ⊃ 0. Then the
rank of the Feigin–Odesskii Poisson structure 𝜋 at this point equals to

rk 𝜋𝜙 = 𝑛− dimEnd(𝐸).

Proof. Since dim𝑇 *
𝜙𝑃 = 𝑛− 1,

rk 𝜋𝜙 = 𝑛− 1− dimKer(𝜋𝜙) = 𝑛− 1− (dimEnd(𝐸)− 1) = 𝑛− dimEnd(𝐸).

Our construction of the Feigin–Odesskii Poisson structure is functorial in the following
sense. Let 𝐴 be a commutative finitely generated 𝑘-algebra. Consider the Cartesian square

𝐶 × Spec𝐴
𝑞 //

𝑝

��

Spec𝐴

𝑝′

��
𝐶

𝑞′ // 𝑝𝑡

and note that the flat base change implies that for locally free sheaves 𝐸,𝐹 on 𝐶

Ext∙(𝑝*𝐸, 𝑝*𝐹 ) = Ext∙(𝐸,𝐹 )⊗𝑘 𝐴. (3.11)

as 𝐴-modules. For a morphism 𝑡 : Spec𝐴→ 𝑃 the universal property of 𝑃 gives a filtered
coherent sheaf �̃� ⊃ �̃� ⊃ 0 on 𝐶 × Spec𝐴 with �̃�/�̃� ≃ 𝑝*𝑉 and �̃� ≃ 𝑝*𝒪𝐶 . Reproducing
the definition of the Feigin-Odesskii Poisson structure but for the 𝐴-linear case, we get a
spectral sequence of 𝐴-modules that computes Ext∙(�̃�, �̃�)0. It follows from (3.11) that
the first page looks as follows.

1 Hom(𝒪𝐶 , 𝑉 )⊗𝑘 𝐴 // 𝐴

0 𝐴 // Ext1(𝑉,𝒪𝐶)⊗𝑘 𝐴

−1 0 1

The nontrivial differential 𝑑2 on the second page gives a morphism

𝑡*(𝑇 *𝑃 ) → 𝑡*(𝑇𝑃 )

of sheaves on Spec𝐴. Globalizing, for any morphism 𝑡 : 𝑈 → 𝑃 for any scheme 𝑈 we get
the functorial map 𝑡*(𝑇 *𝑃 ) → 𝑡*(𝑇𝑃 ), which can be viewed as a functorial version of the
Feigin–Odesskii Poisson structure.
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3.4 Symplectic leaves of Feigin–Odesskii Poisson structures

As before, fix a stable vector bundle 𝑉 of degree 𝑛 > 0 on an elliptic curve 𝐶 and consider
the moduli space 𝑃 = PExt1(𝑉,𝒪𝐶) of filtered vector bundles 𝐸 ⊃ 𝐿 ⊃ 0 with associated
quotients 𝐸/𝐿 ≃ 𝑉 , 𝐿 ≃ 𝒪𝐶 . Then 𝑃 is a disjoint union (as a set) of isomorphism classes
of 𝐸: we say that two filtered vector bundles 𝐸1 ⊃ 𝐿1 ⊃ 0 and 𝐸2 ⊃ 𝐿2 ⊃ 0 are in the
same isomorphism class of 𝐸 if vector bundles 𝐸1 and 𝐸2 are isomorphic. The following
essential property of Feigin–Odesskii Poisson structures was initially stated in [6]. We
provide a simple proof for it.

Theorem 1. Connected components of isomorphism classes of 𝐸 are symplectic leaves of
the Feigin–Odesskii Poisson structure 𝜋 on 𝑃 .

Proof. Take a point ⟨𝜙⟩ ∈ 𝑃 corresponding to a filtered vector bundle 𝐸 ⊃ 𝐿 ⊃ 0. It
suffices to show that the tangent space to the isomorphism class of 𝐸 at the point ⟨𝜙⟩
coincides with the image of 𝜋𝜙 : 𝑇 *

𝜙𝑃 → 𝑇𝜙𝑃 . Indeed, it would imply that locally isomor-
phism classes of 𝐸 are symplectic leaves of 𝜋, and then symplectic leaves are connected
components of isomorphism classes of 𝐸.

From the filtration 𝐸 ⊃ 𝐿 ⊃ 0 on 𝐸 we get the spectral sequence (3.9) that computes
Def(𝐸) = Ext1(𝐸,𝐸). From this point of view deformations of 𝐸 are represented by
2 × 2-matrices, and deformations of 𝐸 ⊃ 𝐿 ⊃ 0 correspond to strictly upper triangular
matrices. Hence, the term 𝐸1,0

2 of the spectral sequence (it corresponds to strictly upper
triangular matrices) can be identified with Def(𝐸 ⊃ 𝐿 ⊃ 0) = 𝑇𝜙𝑃 = Ext1(𝑉,𝒪𝐶)/⟨𝜙⟩,
and the natural map

Def(𝐸 ⊃ 𝐿 ⊃ 0) → Def(𝐸)

can be identified with the map

𝐸1,0
2 = Ext1(𝑉,𝒪𝐶)/⟨𝜙⟩ → Ext1(𝐸,𝐸)

given by convergence of the spectral sequence. Hence, the latter map sends a tangent
vector 𝑣 ∈ Ext1(𝑉,𝒪𝐶)/⟨𝜙⟩ to the induced deformation of 𝐸. Since the kernel of this
map coincides with the image of the differential 𝑑2 on the second page of the spectral
sequence and 𝜋𝜙 is by definition equals to 𝑑2, it follows that the image of 𝜋𝜙 consists of
the tangent vectors 𝑣 ∈ 𝑇𝜙𝑃 that induce the trivial deformation of 𝐸, and this is exactly
the tangent space to the isomorphism class of 𝐸 in 𝑃 .

4 Conormal Lie algebras

4.1 The intrinsic derivative and conormal Lie algebras

Following [5], we use the definition of conormal Lie algebras based on the intrinsic deriva-
tive. Let us first provide a general definition of the intrinsic derivative.

Let 𝑋 be a smooth algebraic variety and 𝜋 : 𝐸 → 𝐹 be a morphism of vector bundles
on 𝑋. Fix a point 𝑥 ∈ 𝑋 and a tangent vector 𝑣 ∈ 𝑇𝑥𝑋. We will define the intrinsic
derivative

𝜕𝑣𝜋 : Ker(𝜋𝑥) → Coker(𝜋𝑥),

where 𝜋𝑥 : 𝐸𝑥 → 𝐹𝑥 is the map of fibers induced by 𝜋. One can find a differential-geometric
definition of the intrinsic derivative in [14, 2]. The intrinsic derivative may be also defined
using the Atyiah class (see [12]) as follows. Given a morphism 𝜋 as above, consider the

16



two-term complex 𝑃 ∙ = (𝐸
𝜋→ 𝐹 ). Its Atyiah class is an element of hypercohomology

Ext1(𝑃 ∙, 𝑃 ∙ ⊗ Ω1
𝑋). The intrinsic derivative is given by the endomorphism of the co-

homology of 𝑃 ∙ induced by this class. The reader may try to express our subsequent
manipulation with intrinsic derivative in terms of the formalism of the Atiyah class.

Nevertheless, we will use another definition. Let 𝑡𝑣 : 𝐷 → 𝑋 be the morphism corre-
sponding to the tangent vector 𝑣 ∈ 𝑇𝑥𝑋. Restriction of 𝜋 along 𝑡𝑣 gives a homomorphism
of free 𝑘[𝜀]-modules

�̃�𝑥 : �̃�𝑥 → 𝐹𝑥,

where �̃�𝑥 = 𝑡*𝑣𝐸, 𝐹𝑥 = 𝑡*𝑣𝐹 , and �̃�𝑥 = 𝑡*𝑣𝜋. Note that �̃�𝑥 is a deformation of 𝜋𝑥 : 𝐸𝑥 → 𝐹𝑥,
i.e.

�̃�𝑥 ⊗𝑘[𝜀] 𝑘 = 𝜋𝑥.

The definition is based on the intrinsic derivative functor 𝐷𝐷𝐷 from the derived category
𝒟(𝑘[𝜀]) to the category of graded 𝑘-vector spaces equipped with an endomorphism of
degree 1. The functor is defined by the formula

𝐷𝐷𝐷 = 𝑝′*(−
𝐿
⊗𝑘[𝜀] 𝜉), (4.1)

where 𝜉 ∈ Hom𝒟(𝑘[𝜀])(𝑘, 𝑘[1]) corresponds to the extension

0 // 𝑘
𝜀 // 𝑘[𝜀] // 𝑘 // 0,

and the functor 𝑝′* : 𝒟(𝑘[𝜀]) → 𝒟(𝑘) is induced by the morphism 𝑝′ : 𝐷 → 𝑝𝑡. More
accurately, given an object 𝐶∙ of the category 𝒟(𝑘[𝜀]), i.e a complex of 𝑘[𝜀]-modules, we
take its tensor product with the morphism 𝜉 : 𝑘 → 𝑘[1] and then apply the functor 𝑝′* to
get a map

𝑝′*(𝐶
∙ 𝐿
⊗𝑘[𝜀] 𝑘) → 𝑝′*(𝐶

∙ 𝐿
⊗𝑘[𝜀] 𝑘)[1]

in the category 𝒟(𝑘), which can be identified with the category of graded 𝑘-vector spaces

by the cohomology functor. So we obtain a graded vector space 𝑝′*(𝐶∙ 𝐿
⊗𝑘[𝜀] 𝑘) equipped

with a degree 1 endomorphism.
To define the intrinsic derivative of 𝜋 consider the two term complex

𝐶∙ = (𝐶0 → 𝐶1) = (�̃�𝑥
�̃�𝑥−→ 𝐹𝑥)

and apply the intrinsic derivative functor 𝐷𝐷𝐷 to it. Since �̃�𝑥 and 𝐹𝑥 are flat,

𝑝′*(𝐶
∙ 𝐿
⊗𝑘[𝜀] 𝑘) = 𝑝′*(𝐶

∙ ⊗𝑘[𝜀] 𝑘) = 𝐻∙(𝐶∙ ⊗𝑘[𝜀] 𝑘) = 𝐻∙(𝐸𝑥
𝜋𝑥−→ 𝐹𝑥),

and we get a degree 1 endomorphism of this graded vector space. Thus, the intrinsic
derivative functor gives a map

𝜕𝑣𝜋 : Ker(𝜋𝑥) → Coker(𝜋𝑥).

Let us summarize the definition of the intrinsic derivative.

Definition 4.1. Let 𝑋 be a smooth algebraic variety over 𝑘, 𝜋 : 𝐸 → 𝐹 be a morphism
of vector bundles on 𝑋, and 𝑣 ∈ 𝑇𝑥𝑋 be a tangent vector to 𝑋 at a point 𝑥 ∈ 𝑋. The
intrinsic derivative

𝜕𝑣𝜋 : Ker(𝜋𝑥) → Coker(𝜋𝑥)

is defined as follows.
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1. Take the morphism 𝑡𝑣 : 𝐷 → 𝑋 corresponding to 𝑣 ∈ 𝑇𝑥𝑋. Consider 𝑘[𝜀]-modules
�̃�𝑥 = 𝑡*𝑣𝐸, 𝐹𝑥 = 𝑡*𝑣𝐹 and the map �̃�𝑥 = 𝑡*𝑣𝜋 between them.

2. Apply the intrinsic derivative functor 𝐷𝐷𝐷 = 𝑝′*(−
𝐿
⊗ 𝜉) to the complex (�̃�𝑥

�̃�𝑥−→ 𝐹𝑥) to
get a degree 1 endomorphism of 𝐻∙(𝐸𝑥

𝜋𝑥−→ 𝐹𝑥), i.e a map

𝜕𝑣𝜋 : Ker(𝜋𝑥) → Coker(𝜋𝑥).

The following proposition gives a description of the intrinsic derivative which is well-
known in differential geometry.

Proposition 4.1. Let 𝑋 be a smooth algebraic variety, 𝜋 : 𝐸 → 𝐹 a morphism of vector
bundles on 𝑋, and 𝑣 ∈ 𝑇𝑥𝑋 a tangent vector to 𝑋 at a point 𝑥 ∈ 𝑋. Choose trivializations
of 𝐸 and 𝐹 in a neighborhood 𝑈 of 𝑥 and write 𝜋 as a matrix Π of functions on 𝑈 . Then
the intrinsic derivative 𝜕𝑣𝜋 is the composition

Ker(𝜋𝑥)

��

𝜕𝑣𝜋 // Coker(𝜋𝑥)

𝐸𝑥
𝑣(Π) // 𝐹𝑥,

OO

where 𝑣(Π) is the element-wise derivative of the matrix Π along 𝑣, and left and right
vertical arrows are the natural embedding of the kernel and the natural projection onto the
cokernel, respectively.

Proof. Restricting 𝜋 along the morphism 𝐷 → 𝑋 corresponding to the tangent vector 𝑣,
we get a map of free 𝑘[𝜀]-modules given by the matrix Π𝑥+ 𝜀 · 𝑣(Π). The rest of the proof
is a straightforward calculation of the intrinsic derivative functor 𝐷𝐷𝐷 applied to this map,
so we omit it.

Now let us, following [5], formulate a definition of conormal Lie algebras of a Poisson
structures. Let 𝜋 : 𝑇 *𝑋 → 𝑇𝑋 be a Poisson structure on a smooth algebraic variety 𝑋
and 𝑥 ∈ 𝑋 be a point. Since 𝜋𝑥 is skew-symmetric, the natural pairing

⟨−,−⟩ : 𝑇𝑥𝑋 ⊗ 𝑇 *
𝑥𝑋 → 𝑘

induces a natural isomorphism

Coker(𝜋𝑥) = Ker(𝜋𝑥)
*.

The conormal Lie algebra is the vector space Ker(𝜋𝑥) equipped with a Lie bracket
that can be constructed as follows. For any tangent vector 𝑣 ∈ 𝑇𝑥𝑋 consider the intrinsic
derivative

𝜕𝑣𝜋 : Ker(𝜋𝑥) → Coker(𝜋𝑥).

It is clear from Corollary 4.1 that 𝜕𝑣𝜋 is linear in 𝑣, so we get a map

𝜕𝜋 : 𝑇𝑥𝑋 ⊗Ker(𝜋𝑥) → Coker(𝜋𝑥),

𝑣 ⊗ 𝛼 ↦→ 𝜕𝑣𝜋(𝛼).

Moreover, one can check that if 𝑣 ∈ Im(𝜋𝑥) then the map 𝜕𝑣𝜋 is zero, so in fact we have

𝜕𝜋 : Coker(𝜋𝑥)⊗Ker(𝜋𝑥) → Coker(𝜋𝑥).
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Using the isomorphism Coker(𝜋𝑥) = Ker(𝜋𝑥)
* and dualizing, we get a map

Ker(𝜋𝑥)⊗Ker(𝜋𝑥) → Ker(𝜋𝑥). (4.2)

This map is clearly skew-symmetric and, in fact, it is a Lie bracket on Ker(𝜋𝑥).

Definition 4.2. Let 𝑥 ∈ 𝑋 be a point on a smooth Poisson variety (𝑋, 𝜋). The conormal
Lie algebra at 𝑥 is the vector space Ker(𝜋𝑥) equipped with the constructed Lie bracket
(4.2).

One of the reasons why conormal Lie algebras are important is the following obser-
vation. If a point 𝑥 ∈ 𝑋 is contained in a symplectic leaf 𝑍 ⊂ 𝑋 then Ker(𝜋𝑥) can be
identified with the conormal space (𝑁*

𝑍𝑋)𝑥 of 𝑍, and then one can view the conormal Lie
bracket on Ker(𝜋𝑥) as a linearization of the Poisson structure 𝜋 in a neighbourhood of 𝑍.

4.2 Conormal Lie algebras of Feigin–Odesskii Poisson structures

Let 𝑉 be a stable vector bundle of degree 𝑛 > 0 on an elliptic curve 𝐶 and 𝑃 =
PExt1(𝑉,𝒪𝐶) be the moduli space of filtered vector bundles 𝐸 ⊃ 𝐿 ⊃ 0 with fixed
associated quotients 𝐸/𝐿 ≃ 𝑉 , 𝐿 ≃ 𝒪𝐶 .

Theorem 2. Let ⟨𝜙⟩ be a point of 𝑃 corresponding to a filtered vector bundle 𝐸 ⊃ 𝐿 ⊃ 0.
Then the conormal Lie algebra of the Feigin–Odesskii Poisson structure 𝜋 at the point ⟨𝜙⟩
is isomorphic to the Lie algebra End(𝐸)0 of traceless endomorphisms of 𝐸.

The rest of the section consists of the proof of this theorem. We need to compute the
intrinsic derivative of 𝜋 : 𝑇 *𝑃 → 𝑇𝑃 . Let ⟨𝜙⟩ ∈ 𝑃 be a point corresponding to a filtered
vector bundle 𝐸 ⊃ 𝐿 ⊃ 0 on 𝐶 and let 𝑣 ∈ 𝑇𝜙𝑃 be a tangent vector corresponding to a
deformation �̃� ⊃ �̃� ⊃ 0. Recall from Section 2.4 that we have two Cartesian squares

𝐶 ×𝐷
𝑞 //

𝑝

��

𝐷

𝑝′

��

𝐶 ×𝐷
𝑞 // 𝐷

𝐶
𝑞′ // 𝑝𝑡, 𝐶

𝑞′ //

𝑖

OO

𝑝𝑡,

𝑖′

OO

and by Definition 3.1,
𝑖*�̃� = 𝐸, 𝑖*�̃� = 𝐿,

�̃�/�̃� ≃ 𝑝*𝑉, �̃� ≃ 𝑝*𝒪𝐶 .

In order to compute the intrinsic derivative 𝜕𝑣𝜋 we need to restrict 𝜋 along the mor-
phism 𝑡𝑣 : 𝐷 → 𝑃 . The functorial description of 𝜋 shows that �̃�𝜙 = 𝑡*𝑣𝜋 is the differential
𝑑2 on the second page of the spectral sequence of 𝑘[𝜀]-modules given by a filtration on
ℰnd(�̃�, �̃�)0. This spectral sequence computes Ext∙(�̃�, �̃�)0 = 𝑅∙𝑞* ℰnd(�̃�)0, and it has
the following first page.

1 Hom(𝒪𝐶 , 𝑉 )⊗𝑘 𝑘[𝜀] // 𝑘[𝜀]

0 𝑘[𝜀] // Ext1(𝑉,𝒪𝐶)⊗𝑘 𝑘[𝜀]

−1 0 1

(4.3)
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If we take the tensor product of this spectral sequence with 𝑘, we will get the spectral
sequence (3.10) with 𝜋𝜙 on the second page. Hence, differentials in the first and zeroth
rows of (4.3) are surjective and injective, respectively. The theorem will follow from two
lemmas.

Lemma 4.1. The second page of the described spectral sequence, i.e. the two term complex
with the differential 𝑑2, is quasi-isomorphic to 𝑅𝑞* ℰnd(�̃�)0.

Proof. Let us for brevity write the two term complex on the second page as 𝐶0 �̃�𝜙−→ 𝐶1:
the second page looks as follows.

1 𝐶0

�̃�𝜙

**
0 𝐶1

−1 0 1

Note that the spectral sequence actually comes from a filtration on the complex𝑅𝑞* ℰnd(�̃�)0.
If we apply the décalage construction [7, Exercise 5.4.3] two times, we will get another
filtration on 𝑅𝑞* ℰnd(�̃�)0 such that the induced spectral sequence has the following zeroth
page.

2 𝐶1

1 𝐶0

�̃�𝜙

OO

0

−1 0 1

Thus, we get a finite filtration on 𝑅𝑞* ℰnd(�̃�)0 such that all but one of the associated
quotients are trivial as objects of 𝒟(𝑘[𝜀]), and the only non-trivial quotient is quasi-
isomorphic to 𝐶0 �̃�𝜙−→ 𝐶1. One can easily deduce from this (e.g. by induction) that then
the whole complex 𝑅𝑞* ℰnd(�̃�)0 is quasi-isomorphic to 𝐶0 �̃�𝜙−→ 𝐶1.

Lemma 4.2. Let �̃� be a deformation of a locally free sheaf 𝐸 on 𝐶 corresponding to an
element 𝑇 ∈ Ext1(𝐸,𝐸). Then 𝐷𝐷𝐷(𝑅𝑞*�̃�) is the graded vector space 𝐻∙(𝐶,𝐸) with the
degree 1 endomorphism

𝐻∙(𝐶,𝐸)
𝑇−→ 𝐻∙+1(𝐶,𝐸).

Proof. Recall from Section 2.4 that

𝑇 = 𝑝*(�̃� ⊗ 𝑞*𝜉) : 𝐸 → 𝐸[1] in 𝒟(𝐶). (4.4)
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Moreover, since by Lemma 2.6, �̃� is a locally free sheaf on 𝐶 ×𝐷, we can rewrite (4.4)
using derived tensor product:

𝑇 = 𝑝*(�̃�
𝐿
⊗ 𝑞*𝜉) : 𝐸 → 𝐸[1] in 𝒟(𝐶).

Then by the projection formula and flat base change property,

𝐷𝐷𝐷(𝑅𝑞*�̃�) = 𝑝′*((𝑅𝑞*�̃�)
𝐿
⊗ 𝜉) = 𝑝′*(𝑅𝑞*(�̃�

𝐿
⊗ 𝑞*𝜉)) = 𝑅𝑞′*(𝑝*(�̃�

𝐿
⊗ 𝑞*𝜉)) = 𝑅𝑞′*(𝑇 ),

and this is exactly the endomorphism of 𝐻∙(𝐶,𝐸) induced by 𝑇 .

Now we are ready to finish the proof of Theorem 2. In order to compute the intrinsic
derivative of 𝜋 we need to apply the intrinsic derivative functor to the second page of
the spectral sequence (4.3). Since by Lemma 4.1 the second page is quasi-isomorphic
to 𝑅𝑞* ℰnd(�̃�)0 and the functor 𝐷𝐷𝐷 is well-defined on the derived category, we will apply
𝐷𝐷𝐷 to 𝑅𝑞* ℰnd(�̃�)0. Taking the traceless part of the third statement of Lemma 2.7, we
obtain that ℰnd(�̃�)0 is the deformation of ℰnd(𝐸)0 corresponding to the element [−, 𝑇 ] ∈
Ext1(ℰnd(𝐸)0, ℰnd(𝐸)0). Finally, by Lemma 4.2, 𝐷𝐷𝐷(𝑅𝑞* ℰnd(�̃�)0) gives the map

𝐻0(𝐶, ℰnd(𝐸)0)
[−,𝑇 ]−−−→ 𝐻1(𝐶, ℰnd(𝐸)0).

Thus, the intrinsic derivative of the Feigin–Odesskii Poisson structure at the point corre-
sponding to a filtered vector bundle 𝐸 ⊃ 𝐿 ⊃ 0 along the tangent vector corresponding
to a deformation �̃� ⊃ �̃� ⊃ 0 is the map

End(𝐸)0
[−,𝑇 ]−−−→ Ext1(𝐸,𝐸)0,

where 𝑇 ∈ Ext1(𝐸,𝐸) corresponds to the deformation �̃� of 𝐸. Then the induced Lie
bracket on Ker(𝜋𝜙) = End(𝐸)0 coincides with the natural commutator

End(𝐸)0 ⊗ End(𝐸)0
[−,−]−−−→ End(𝐸)0.

The proof of Theorem 2 is complete.
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