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DYNAMICAL SYSTEMS ON SOME ELLIPTIC MODULAR SURFACES VIA
OPERATORS ON LINE ARRANGEMENTS

LUKAS KÜHNE AND XAVIER ROULLEAU

Abstract. This paper further studies the matroid realization space of a specific deformation of
the regular n-gon with its lines of symmetry. Recently, we obtained that these particular realization
spaces are birational to the elliptic modular surfaces Ξ1(n) over the modular curve X1(n). Here,
we focus on the peculiar cases when n = 7, 8 in more detail. We obtain concrete quartic surfaces
in P3 equipped with a dominant rational self-map stemming from an operator on line arrangements,
which yields K3 surfaces with a dynamical system that is semi-conjugated to the plane.

1. Introduction

A line arrangement C = ℓ1 + · · ·+ ℓk is a finite union of lines ℓj in the projective plane P2. Line
arrangements are ubiquitous objects studied in various fields such as topology, algebra, algebraic
geometry, see for instance [14, 18] for two surveys. In [11], the second author described a number
of operators acting on line arrangements: if n,m are sets of integers at least 2, the operator Λm,n

associates to a line arrangement C the line arrangement Λm,n(C) which is the union of the lines that
contain n ∈ n points among the m-points of C, for m ∈ m (recall that an m-point of C is a point
where exactly m lines of C meet). For example Λ{2},{3}(C) is the union of the lines that contain
exactly three double points of C (the arrangement might be empty).

A labeled line arrangement C = (ℓ1, . . . , ℓk) is a line arrangement for which one fixes the order
of the lines. The configuration of a labeled line arrangement C is described by its associated ma-
troid M = M(C). Conversely, given a matroid M (a combinatorial object), one can look at line
arrangements C for which M(C) = M . When such a C exists, one says that C is a realization of
M . Let us denote by R = R(M) the moduli space of realizations of M : a point of R is the orbit
under the action of the projective general linear group PGL3 of a realization of M . The space of all
realizations of M is denoted by U = U(M) and there is a natural quotient map U → R.

In [7], we constructed a realizable matroid Mn for any n ≥ 7 that is based on the regular n-
gon. Interestingly, there exists an operator Λ among the ones we described above (for example if
n = 2k+1 is odd, then Λ = Λ{2},{k}) which acts non-trivially on the realization space of Mn. Thus
if C is a realization of Mn, then Λ(C) is also a realization of Mn. We obtain in that way a dominant
self-rational map λ on the realization space Rn = R(Mn).

The main result of [7] establishes that the realization space Rn is an open dense sub-scheme of the
elliptic modular surface Ξ1(n), a well-studied surface, see e.g. Shioda’s paper [13]. Recall that this
surface Ξ1(n) parametrizes (up to isomorphisms) triples (E, t, p) of an elliptic curve and points t, p
on E such that t has order n. The modular curve X1(n) parametrizes (up to isomorphisms) pairs
(E, t), where E, t are as above. The map (E, t, p) → (E, t) defines an elliptic fibration on Ξ1(n),
with fiber over the point (E, t) isomorphic to E. For any integer m, there is a natural multiplication
by m rational map of the elliptic surface Ξ1(n). We obtain in [7] that, through the identification of
Rn as an open subscheme of Ξ1(n), the rational self map λ induced by Λ is the multiplication by
−2 map acting on Ξ1(n), in particular λ has degree 4.
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The aim of the present paper is to study the peculiar cases when n = 7, 8 in more detail. In
particular, we give another proof that the surface Rn is an open dense subscheme of Ξ1(n), and the
degree of λ is 4 in these cases. From now on assume n ∈ {7, 8}; in those cases, we obtain (singular)
models of Ξ1(n) as quartic surfaces in P3. There is a natural section Rn → Un = U(Mn) of the
quotient map Un → Rn, so that one may consider Rn as contained in Un, and therefore one may
consider a class as a realization of Mn. Using that fact, we are able to give explicit polynomials for
the action λ = λ(n) of Λ = Λ(n) on Rn ⊂ P3.

Recall that a dynamical system is a pair (X,λ) of a variety X and a dominant rational map
λ : X → X. Two dynamical systems (X,λ), (Y, µ) are called semi-conjugated if there exists a
generically finite rational dominant map π : X → Y such that π ◦ λ = µ ◦ π. A principle result of
this article is the following.

Theorem 1. For n ∈ {7, 8}, the dynamical system (Rn, λ) is semi-conjugated to (P2, F ) where
F : P2 99K P2 is an explicitly described rational self map; the dominant rational map π : Rn → P2

such that π ◦ λ = F ◦ π is a double cover of P2 branched along a sextic curve.

The surfaces Ξ1(7), Ξ1(8) are K3 surfaces; to our knowledge these are the first examples of a
degree > 1 dynamical system on a K3 surfaces that is semi-conjugated to the plane.

Let us describe the structure of this paper and some further results. In Section 2, we start by
describing the line operators Λ and general results on matroids. In Subsection 2.3, we study under
which conditions a K3 surface which is the double cover of the P2 may be semi-conjugated to P2.
Subsequently, we study the case n = 7 in Section 3: we start by recalling the definition of the
matroid M7 and then show that Λ{2},{3} induces a rational self map λ{2},{3} on the quartic surface
R7 ⊂ P3. We then compute the degree of λ{2},{3} and prove that R7 is an open subset of the elliptic
modular surface Ξ1(7). The automorphism group of the matroid M7 is the order 42 Frobenius
group. There is a natural action of that group on the surface R7. We show that this action is
faithful. The quotient surface R7/Aut(M7) is the moduli space for unlabeled line arrangements
coming from realizations of M7: we obtain that this is a rational surface. In Subsection 3.6, we
describe explicitly the semi-conjugacy of R7 (or equivalently Ξ1(7)) with P2. The branch loci of
the double cover Ξ1(7) → P2 is the union of a line and a singular quintic curve which we describe.
Section 4 follows a similar pattern for the case n = 8. In that case, the branch loci of the double
cover Ξ1(8) → P2 is union of a conic and a singular quartic curve. We moreover describe some
3-periodic line arrangements for Λ; their classes are fixed points for the action of λ on R8.

We remark that for n = 9, one may similarly obtain that R9 (contained as a sextic surface in
P3) is birational to Ξ1(9). That elliptic surface is no longer a K3 surface and we could not find a
semi-conjugacy with the plane.

Computations in this paper are based on Magma [2] and OSCAR [4]. In the arXiv ancillary file of
this paper are some datas related to these computations.

Acknowledgments The authors are grateful to Bert van Geemen and to Keiji Oguiso for in-
teresting discussions. LK is supported by the SFB-TRR 358 – 491392403 “Integral Structures in
Geometry and Representation Theory” (DFG). XR is thankful to Max Planck Institute for Mathe-
matics in Bonn for its hospitality and financial support. XR is also supported by the Centre Henri
Lebesgue (ANR-11-LABX-0020-01).

2. Notations and definitions

Throughout this article we assume to be working over the field C.

2.1. Line arrangements and the operator Λn,m. A line arrangement C = ℓ1 + · · · + ℓn is a
union of finitely many distinct lines in P2. A labeled line arrangement C = (ℓ1, . . . , ℓn) is a line
arrangement for which one with a fixed order of the lines. We sometime put a superscript ℓ (resp. u)
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when we want to emphasize that an arrangement or related objects has (resp. does not have) a
labeling.

For an integer k ≥ 2, a k-point of the line arrangement C is a point where exactly k lines of C
meet. As in [11], for a subset n of integers at least 2, let us denote by Pn(C) the set of k-points of C
for all k ∈ n. We denote by tk = tk(C) = |P{k}(C)| the number of k-points of C. For a finite set of
point P in P2 and n as above, we denote by Ln(P) the set of lines which contain exactly n points
in P for some n ∈ n.

For subsets n,m of integers at least 2, let us denote by Λn,m(C) = Lm ◦ Pn(C) the line arrange-
ment that contains all lines of P2 containing exactly m points of Pn(C) for m ∈ m. For example
Λ{2},{3,4}(C) is the union of the lines that contain three or four double points of C. The arrangement
could be the empty arrangement if no such lines exists.

2.2. Matroids and the period map of the moduli of a matroid. A matroid is a fundamental
and actively studied object in combinatorics. Matroids generalize linear dependency in vector spaces
as well as forests in graphs. See e.g. [10] for a comprehensive treatment of matroids. We just briefly
mention a few concepts about matroids that are relevant for this article.

A matroid is a pair M = (E,B), where E is a finite ground set of elements called atoms and B
is a nonempty collection of subsets of E, called bases, satisfying an exchange property reminiscent
from linear algebra.

The prime examples of matroids arise by choosing a finite set of vectors E in a vector space
and declaring the maximal linearly independent subsets of E as bases. In our case we obtain
matroids through line arrangements: If C = (ℓ1, . . . , ℓm) is a labeled line arrangement, the subsets
{i, j, k} ⊆ {1, . . . ,m} such that the lines ℓi, ℓj , ℓk meet in three distinct points are the bases of a
matroid M(C) over the set {1, . . . ,m}. We say that M(C) is the matroid associated to C.

We denote by Aut(M) the automorphism group of the matroid M , i.e., the set of isomorphisms
from M to M .

A realization (over some field) of a matroid M = (E,B) is a converse operation to the association
C → M(C): it is a 3 ×m-matrix with non-zero columns C1, . . . , Cm, which are considered up to a
multiplication by a scalar (thus as point in the projective plane) such that a subset {i1, i2, i3} of E
of size 3 is a basis if and only if the 3× 3 minor |Ci1 , Ci2 , Ci3 | is nonzero. We denote by ℓi the line
with normal vector the point Ci ∈ P2.

If C = (ℓ1, . . . , ℓm) is a realization of M and γ ∈ PGL3, then (γℓ1, . . . , γℓm) is another realization
of M ; we denote by [C] the orbit of C under that action of PGL3. The moduli space R(M) of
realizations of M parametrizes the orbits [C] of realizations. A more detailed introduction to these
moduli spaces together with a description of a software package in OSCAR that can compute these
spaces is given in [4].

In this article, we always assume that each subset of three elements of the the first four atoms is
a basis (otherwise, we replace M by a matroid isomorphic to it). Then in the moduli space R(M),
one can always map the first four vectors of C ∈ [C] to the canonical basis, so that each element [C]
of R(M) has a canonical representative, which we will identify with [C].

A useful tool for the computations related to the moduli space R = R(M) of realizations of a
matroid M is what we call the period map: Let us denote by U = U(M) the scheme of all realizations
of M in P2. By analogy with similar objects, we call the quotient map

q : U(M) → R(M)

the period map; a point c of R = R(M) is the class c = [C] of a realization C. Once a basis is
fixed, each class c has a unique representative C0 and we can (and we will) identify c with that
representative.
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It often occurs that R is embedded in a space S = S(y1, . . . , yk) (affine or projective) of small
dimension, like P3. The coordinates of the normal vectors n(j) = (n

(j)
1 : n

(j)
2 : n

(j)
3 ) of C0 are then

polynomials n
(j)
1 = P

(j)
1 (y), . . . , n

(j)
3 = P

(j)
3 (y) in the coordinates y1, . . . , yk of R in S.

One often arrives at the natural question on computing the point y = (y1, . . . , yk) in R from the
knowledge of the normal vectors n. In other words, we need an explicit form of the period map q as a
map from U to the scheme R embedded in the space S. The answer to that problem are polynomials
(or rational functions) Q1, . . . , Qk in the coordinates of the normal vectors n(1), . . . , n(m) etc.; here
m is the number of lines in an arrangement.

2.3. Degree two K3 surfaces semi-conjugated to the plane. Let C1 : Q1 = 0 be a sextic
curve with at most ADE singularities, so that the desingularization Xs of the associated double
cover

X = {y2 = Q1(z1, z2, z3)} ↪→ P(3, 1, 1, 1)

is a K3 surface. Let F : P2 → P2 be a rational self-map defined by coprime homogeneous polynomials
(F1, F2, F3) of degree m. Suppose that F ∗C1 = C1 + 2D, for an effective divisor D; in algebraic
terms, that means that we assume that

Q1(F1, F2, F3) = Q1 ·R2,

for some polynomial R. Then the following relation holds

(y R(z))2 = Q1(z)R(z)2 = Q1(F1(z), F2(z), F3(z)),

where z = (z1 : z2 : z3) ∈ P2. Hence, the rational map

F̃ : (y; z) 99K (y R(z);F1(z) : F2(z) : F3(z))

is a rational self-map acting on the K3 surface Xs. Let π : X → P2 be the double cover map. The
following diagram

(2.1)
X

F̃
99K X

π ↓ π ↓
P2 F

99K P2

is commutative and, by analogy with other dynamical systems, we say that the dynamical system
(X, F̃ ) is semi-conjugated to (P2, F ).

Example 2. Let C be an irreducible curve of degree 6 with 10 nodes. A Coble surface Y is
the blow-up of P2 at the 10 nodal singularities of C. The group of birational transformations G
preserving C is infinite, it is generated by Bertini involutions centered at the nodal points of C.
When C is generic, the group G lifts to Y and the elements of G become automorphisms of Y . The
automorphism group G ⊂ Aut(Y ) preserves the pull-back C ′ of C, thus taking the double cover of
Y branched over C ′, one gets a smooth K3 surface X and the group G is in fact the automorphism
group of X (see e.g. [3]). The surface X is also the minimal desingularization of the double cover
branched over C and the diagram (2.1) is commutative.

3. The heptagon

3.1. Λ{2},{3} is a rational self-map on R7 and U7.
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3.1.1. Definition of the matroid M7. The matroid M7 has 14 atoms 1, . . . , 7, 1′, . . . , 7′ and the bases
are the triples {a, b, c} with {a, b} ⊂ {1, . . . , 7} and c ∈ {1′, . . . , 7′} such that a + b ̸= 2cmod7.
A sketch of M7 is described in Figure 3.1, where the atoms i ∈ {1, . . . , 7} and j ∈ {1′, . . . , 7′}
correspond to the lines ℓi and ℓ′j , resp., and three lines form a bases if they do not meet in one
point. Note that the central singularity of arrangement in Figure 3.1 is not part of the matroid and
therefore removed.

p23

p34

p45
p56

p67

p17
p12

ℓ2

ℓ4

ℓ5

ℓ1

ℓ3

ℓ6ℓ7

p24ℓ′3

p14

p25

p36

p47

p15

p26

p37

p13

p35
p46

p16

p27

p57

ℓ′6

ℓ′5ℓ′4

ℓ′2 ℓ′1

ℓ′7

Figure 3.1. The matroid M7 whose construction is based on the regular heptagon.

Let A1 be a line arrangement realizing the matroid M7. We write A1 = C0 ∪ C1 where C0 are
the first seven lines and C1 are the seven last ones. By the combinatorics of the matroid M7, the
property C1 = Λ{2},{3}(C0) holds, and – that will be important for us – the image of C0 by the
operator Λ{2},{3} has a natural labeling: for any j ∈ {1, . . . , 7}, the six line arrangement

(3.1) Hj =
∑

k∈{1,...,7}, k ̸=j

ℓk

is such that the line arrangement Λ{2},{3}(Hj) is a unique line ℓ′j , moreover:

C1 = ℓ′1 + · · ·+ ℓ′7.

Since C1 = Λ{2},{3}(C0), we will often speak of C0 as a realization of M7 instead of C0∪C1 to shorten
our notations.

The singularities of C0 (resp. C1) are 21 double points. The 21 singularities on C0 become the
triple points on C0 ∪ C1, moreover t2(C0 ∪ C1) = 28.

3.1.2. Equation of the quartic surface Z7 and realization space of M7. Consider Z7, the quartic
surface in P3 given by the equation
(3.2) y2

1y
2
2 + y2

1y2y3 − y1y
2
2y3 − y1y2y

2
3 − y2

1y2y4 − y1y
2
2y4 + y1y2y3y4 − y2y

2
3y4 + y1y2y

2
4 + y2

3y
2
4 = 0.

The eight singularities of Z7 are of type 4A1 +A2 + 3A3, at the points respectively
s1 = (0 : 0 : 0 : 1), s2 = (1 : 0 : 0 : 1), s3 = (0 : 0 : 1 : 0), s4 = (1 : 0 : 1 : 0),
s5 = (0 : 1 : 0 : 0), s6 = (0 : 1 : 0 : 1), s7 = (1 : −1 : 1 : 0), s8 = (1 : 0 : 0 : 0).
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The minimal desingularization of Z7 is a K3 surface which we denote by Zs
7 . Let x1, x2, x3 be the

coordinates on the affine chart y4 ̸= 0. For a generic point x = (x1, x2, x3) on the surface Z7 in the
chart y4 ̸= 0, let us define the labeled arrangement of seven lines C0 = C0(x) with normal vectors
the points p1, . . . , p7 respectively defined by

(3.3)

(1 : 0 : 0), (0 : 1 : 0), (0 : 0 : 1), (−1 : 1 : 1)
(−x1x

2
2 − x1x2x3 + x1x2 − x2x3 + x3 : x1x2 + x1x3 − x1 : x2 − 1)

(−x1x
2
2 − x1x2x3 + x1x2 − x2x3 + x3 : x1x2 + x1x3 − x1 + x2

2

+x2x3 − 2x2 − x3 + 1 : x2
2 + x2x3 − x2 − x3)

(−x1x
2
2 − x1x2x3 + x1x2 + x2

3 : x1x2 + x1x3 − x1 − x2x3

−x2
3 + x3 : x2

2 + x2x3 − x2 − x3).

Let us also define the lines arrangement C1 = C1(x) with normal vectors

(3.4)

(−x1x
2
2 − x1x2x3 + x1x2 + x2

3 : x1x
2
2 + 2x1x2x3 − x1x2 + x1x

2
3

−x1x3 − x2
2x3 − 2x2x

2
3 + x2x3 − x3

3 + x2
3 : x2

2 + x2x3 − x2 − x3),
(−x1x2 − x1x3 + x1 : x1x2 + x1x3 − x1 : x2 − 1), (−x2 : 1 : 0),

(−x1x
3
2 − 2x1x

2
2x3 + x1x

2
2 − x1x2x

2
3 + x1x2x3 − x2

2x3 − x2x
2
3 + x2x3

+x2
3 : x1x2 + x1x3 − x1 + x2

2 + x2x3 − 2x2 − x3 + 1 : x2
2 + x2x3 − x2 − x3),

(−x1x
2
2 − x1x2x3 + x1x2 − x2x3 + x3 : 0 : x2

2 + x2x3 − x2 − x3),
(−x2

2 − x2x3 + x2 + x3 : x1x2 + x1x3 − x1 − x2x3 − x2
3 + x3 : x2

2 + x2x3

−x2 − x3), (0 : 1 : 1).

A computation in OSCAR yields the following concrete description of the moduli space R7 = R(M7).

Proposition 3. The moduli space R7 is an open sub-scheme of Z7: for x ∈ R7, the line arrangement
A = C0(x) ∪ C1(x) is a realization of M7, and conversely any realization of M7 is projectively
equivalent to a unique such line arrangement.

The complement of R7 in Z7 is the union of 20 irreducible curves described in Section 3.2.
From the definition of the matroid M7, if A = C0∪C1 is a realization of M7, one has Λ{2},{3}(C0) =

C1, but the following result on C2 = Λ{2},{3}(C1) is unexpected:

Theorem 4. Let A0 = C0 ∪ C1 be a generic realization of M7 and define C2 = Λ{2},{3}(C1). The
labeled line arrangement A1 = C1 ∪ C2 is again a realization of M7. The operator Λ{2},{3} induces a
rational self-map on the schemes U7 of all realizations of M7 and its moduli space R7.

We denote by λ{2},{3} : Z7 99K Z7 the rational self-map on Z7 induced by Λ{2},{3}. Since C1 may
be recovered from the relation Λ{2},{3}(C0) = C1, we will often identify C0 and A0 and by abuse,
speak of C0 as a realization of M7.

Proof. Up to projective automorphism, one can suppose that the line arrangement A0 is of the
form A0 = C0(x) ∪ C1(x) for x generic in Z7: concretely, we use x = (x1, x2, x3), where x1, x2, x3 ∈
C(Z7) are considered as rational functions. A direct computation (with Magma) then shows that
C2 = Λ{2},{3}(C1) is a line arrangement of seven lines. It has a canonical labeling as described in
the previous Subsection and we then check that the matroid associated to C1 ∪ C2 is equal to M7,
so that C1 ∪C2 is a realization of M7. Using the period map, one computes λ{2},{3} and obtain that
it is a dominant rational map. The reader can find the polynomials defining λ{2},{3} in an ancillary
file of this paper on arXiv; it can be also retrieved from the polynomials given in Section 3.6. That
describes action of Λ{2},{3} on the space of realization U7 and on the moduli space R7. □

3.2. The open surface R7 inside Z7. The scheme Z7 \ R7 is the union of the following curves:
6



• The 12 lines

L1 : y2 = y3 = 0, L2 : y1 = y3 = 0, L3 : y2 = y4 = 0,

L4 : y1 − y3 = y4 = 0, L5 : y1 = y4 = 0, L6 : y2 − y4 = y3 = 0,

L7 : y1 − y3 − y4 = y2 + y3 = 0, L8 : y1 − y3 = y2 + y3 = 0, L9 : y2 + y3 = y4 = 0,

L10 : y1 − y4 = y3 = 0, L11 : y1 − y3 = y2 − y4 = 0, L12 : y1 = y2 − y4 = 0.

These lines are also the lines contained in the quartic surface Z7 that contain at least two
double points of Z7.

• The conic Co defined by y1y3 − y23 − y1y4 = y2 + y3 − y4 = 0.
• Seven curves E1, . . . , E7 of geometric genus one. For example, one of these curves is given

by
y21 − 2y1y3 + y23 − y1y4 = y22 + y2y3 + y1y4 − y3y4 − y24 = 0.

The j-invariant of the normalizations of the curves Ei is to −56/28. The elliptic curve with this
j-invariant is known as the modular curve X1(14) parametrizing pairs (E, t) where E is an elliptic
curve and t is an order 14 torsion element of E. For a generic point p on the curves E1, . . . , E7,
the line arrangement C0(p) with normal vectors as in (3.3) is well-defined. The line arrangement
C1 = Λ{2},{3}(C0) has seven lines, but its singularities are t2 = 6, t3 = 5, and one has Λ{2},{3}(C1) = ∅.
Moreover, the singularities of C0 ∪ C1 are t2 = 13, t3 = 26.

The image of the curves Co, E1, . . . , E7 under the map λ{2},{3} are lines Lk; when defined, the
image of the lines Lk are lines Lk′ or points.

3.3. The degree of λ{2},{3}. Recall that λ{2},{3} : Z 99K Z denotes the action of the operator
Λ{2},{3} on the K3 surface Z7. One has:

Theorem 5. The operator λ{2},{3} acts on Z7 as a degree 4 rational self-map.

In order to prove Theorem 5, let us describe the period map:
Let ℓ1, ..., ℓ7 be the lines of C0 with normal vectors as in Equation (3.3). Let us denote by pi,j the
intersection point of the lines ℓi and ℓj . The point p5,7 is (1 : x2 : x3), so that one may recover
x2, x3 from the knowledge of that point. Also the point p1,7 is

(3.5) (0 : −x1x2
2 − x1x2x3 + x1x2 + x2

2 − x2 : x2x3 + x3
2 − x3),

this is linear in x1, so that from the knowledge of p5,7 and p1,7, one may recover the point
(x1, x2, x3) ∈ Z7.

Proof of Theorem 5. Let A ∈ PGL3(C) be the projective transformation that sends the first four
lines of C1 to the four lines having the the same normal vectors as the one of C0. Let C′

1 = (ℓ′1, . . . , ℓ
′
7)

be the image of C1 by A. Using the period map, one can determine the points p′5,7 and p′1,7 and we
obtain a point x′ = (x′1, x

′
2, x

′
3) (in the function field of Z7). The line arrangements C0(x′1, x′2, x′3)

and C′
1 are equal, and the action of Λ{2},{3} on Z7 is through the map

λ{2},{3} : (x1, x2, x3) → (x′1, x
′
2, x

′
3).

The rational self-map λ{2},{3} : Z7 99K Z7 is studied in Section 3.6.
Let us compute the degree of λ{2},{3}; we apply the method from [17]. Let f(x1, x2, x3) be the

equation of the quartic Z7 in the chart U4 : y4 ̸= 0. The space of global non-vanishing differential
2-forms is generated by a form ω, which one can choose so that on an open set of U4 one has:

ω =
dx2 ∧ dx3
∂f/∂x1

.

The rational self-map λ{2},{3} preserves U4, and by a direct computation one obtains that

λ∗
{2},{3}ω = −2ω.
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The above expression shows that when applying λ{2},{3}, the volume form ωω̄ is multiplied by 4,
which gives the degree of λ{2},{3}. □

3.4. Action of Aut(M7) on the K3 surface Zs
7. The automorphism group of M7 is generated by

the order 7 and 6 permutations

σ1 = (1, 7, 4, 3, 6, 5, 2)(8, 14, 11, 10, 13, 12, 9) and σ2 = (1, 3, 5, 6, 7, 2)(8, 10, 12, 13, 14, 9).

This group is isomorphic to the the Frobenius group F7 = Z/6Z ⋊ Z/7Z. These automorphisms
act on the K3 surface Z.

Proposition 6. The action of Aut(M7) on Z7 is faithful.

Proof. As in the proof of Theorem 5, let C0 = C0(x1, x2, x3) be the generic line arrangement in R7,
where x1, x2, x3 ∈ C(Z7) are considered as rational functions.

For σ ∈ Aut(M7), let Cσ
0 be the image of C0 under the action of σ (that is just the permutation of

the lines under σ). We apply the period map to the line arrangement Cσ
0 , where C0 = C0(x). Using

the period map, we obtain the point σ(x) = (x′1, x
′
2, x

′
3) which is a zero of the equation of Z7 and

such that C0(σ(x)) is projectively equivalent to Cσ
0 .

When σ = σ1, the automorphism σ1 acts on Z7 through the map in P3 given by the ring
homomorphism which to (y1, y2, y3, y4) associates

(y1y
2
2y3 + y1y2y

2
3 − y22y

2
3 − y2y

3
3 − y1y2y3y4 − y22y3y4 + y2y3y

2
4 + y23y

2
4 ,

y1y
3
2 + y1y

2
2y3 + y22y

2
3 + y2y

3
3 − 2y1y

2
2y4 − y1y2y3y4 − 2y2y

2
3y4 − y33y4 + y1y2y

2
4 + y23y

2
4 ,

y1y
2
2y3 + y1y2y

2
3 − y22y

2
3 − y2y

3
3 − y1y2y3y4 + y2y

2
3y4,

y32y3 + 2y22y
2
3 + y2y

3
3 − 2y22y3y4 − 3y2y

2
3y4 − y33y4 + y2y3y

2
4 + y23y

2
4).

For σ2, we obtain that it acts on the surface Z7 through the map which to (y1, y2, y3, y4) associates

(−y22y3 − y2y
2
3 + y2y3y4,−y1y2y3 + y2y

2
3 + y2y3y4 − y3y

2
4,

y1y
2
2 + y1y2y3 − y22y3 − y2y

2
3 − y1y2y4 + y2y3y4, y2y3y4 − y3y

2
4);

thas map is a birational transformation of P3. In order to check that the action of Aut(M7)
is faithful on Z7, it is then enough to check that the orbit of one point (for example the point
(−6 : −25/8 : 5 : 1) in Z7) has 42 elements, which is a direct computation.

The fixed points under the order seven element σ1 are the singularities s5, s7, s8; (there is a unique
conjugacy class of elements of order 7 in F7).

The fixed points locus of σ2 and the order 3 automorphism σ2
2 acting on Z7 are:

(i) The A3 singularity (0 : 1 : 0 : 1),
(ii) The four points p = (r2+1 : r2−r+2 : r : 1) where r is any complex root of X4−X3+3X2−

X + 1. These points are in Z7 \ R7; they are periodic of period 2 for the rational self-map
λ{2},{3}, moreover the (unlabeled) line arrangements C0(p), C1 = Λ{2},{3}(C0), C2 = Λ{2},{3}(C1)
have 7, 10 and 37 lines respectively. It seems likely that the number of lines of the sequence
Cn+1 = Λ{2},{3}(Cn) goes to infinity.

(iii) The points (w+1 : −w : w : 1) where w2+w+1 = 0, which are fixed by the rational self-map
λ{2},{3}; these two points are in Z7 \ R7.

The fixed-point locus of the involution σ3
2 acting on Z7 is the union of the line L7 and a curve Ej ,

which is in Z7 \R7 (see Section 3.2). There is a unique conjugacy class of involutions in F7, so that
similarly, any involution from Aut(M7) fixes a curve and a line. □

There is an open set in the quotient surface Z7/Aut(M7) which parametrizes unlabeled line
arrangements Co

0 associated to C0 in R7. One has:

Corollary 7. The surface Z7/Aut(M7) is rational.
8



Proof. Since an involution of Aut(M7) fixes a one dimensional curve, it is non-symplectic (see [5]),
thus Z7/Aut(M7) is rational. □

For a labeled line arrangement C0 = (ℓ1, . . . , ℓk) ∈ U7 and j ∈ {1, . . . , 7}, let us denote by Hj(C0)
the line arrangement Hj =

∑
k ̸=j ℓk. The labeled line arrangement C1 = Λ{2},{3}(C0) is

C1 = (Λ{2},{3}(H1), . . . ,Λ{2},{3}(H7)).

An element σ ∈ Aut(M7) permutes the lines of C0: it can also be seen as a permutation of {1, . . . , 7}.
The σ(j)th line of σ.C1 is Λ{2},{3}(Hσ(j)(C0)). Since

Hσ(j)(C0) =
∑
k ̸=j

ℓσ(k) = Hj(σ.C0),

the σ(j)th line of σ.C1 is Λ{2},{3}(Hj(σ.C0)). Thus

σ.Λ{2},{3}(C0) = (Λ{2},{3}(Hσ(1)), . . . ,Λ{2},{3}(Hσ(7))) = Λ{2},{3}(σ.C0)
and we obtain that:

Proposition 8. The action of Aut(M7) commutes with the action of Λ{2},{3}, that is for all σ ∈
Aut(M7) it holds that

Λ{2},{3} ◦ σ = σ ◦ Λ{2},{3}.

Remark 9. The group Aut(M7) acts faithfully on the surface Z7 ⊂ P3, but does not extend
canonically to a well-defined action on the ambient space P3. For example, the action of σ2
we computed is the restriction of an order 6 birational map σ̃2 of P3; in particular σ̃2

3 is a bi-
rational involution of P3 defined by degree 5 coprime polynomials. If instead one starts with
σ3
2 = (1, 6)(2, 5)(3, 7)(8, 13)(9, 12)(10, 14) and computes the action of σ̃3

2 on Z7 as we did above
for σ1 and σ2, one obtains that, surprisingly, the defining coprime polynomials of the rational map
σ̃3
2 : P3 99K P3 have degree 4, although the maps σ̃3

2 and σ̃2
3 have the same effect on Z7. Moreover

although (σ̃3
2)

2 is the identity on the surface Z7, it is not the identity on P3 (it is defined by degree 6

coprime polynomials). Moreover, one can compute that the rational map (σ̃3
2)

4 is defined by degree
21 coprime polynomials.

3.5. Fibration preserved by λ{2},{3} and the elliptic modular surface Ξ1(7). The line L6 :

y2− y4 = y3 = 0 is contained in the surface Z7. Let γ : Z7 → P1 be the elliptic fibration induced by
the projection from that line. One obtains a smooth cubic affine model A in A2

Q(t) = A2
Q(t)(x, y) of

that elliptic fibration by substituting (x, 1 + ty, y, 1) in the equation of Z7. A computation shows
that Zs

7 → P1 is (isomorphic to) the elliptic surface Y associated to the elliptic curve E/Q(t) with
Weierstrass model

E : y2 = x3 + (t4−2t3+3t2+6t+1)
(t+1)2

x2 + 8t3(t2−t−1)
(t+1)3

x+ 16 t6

(t+1)4
.

The map between A and Y sends (0, 0) to the zero section. The elliptic fibration Y → P1 has
singular fibers 3I7 + 3I1 at the points

∞, 0,−1, t3 − 5t2 − 8t− 1 = 0,

respectively.
We recall that the curve X1(7) parametrizes (up to isomorphisms) the pairs (E, p) where E is an

elliptic curve and p is a torsion point of order 7 on E. A Weierstrass model E′ of the elliptic modular
surface Ξ1(7) over the curve X1(7) ≃ P1 is computed in [15]. The j-invariant maps jE(t), jE′(t) ∈ Q
of E and E′ are related by the equality jE′(t) = jE(−1

t ), which shows that E is isomorphic to E′

and Zs
7 is isomorphic to the elliptic modular surface X1(7).
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The Mordell–Weil group of E is isomorphic to Z/7Z; it is generated by the point

pt = (0 : 4t3 : (t+ 1)2) ∈ E.

We thus obtained the first part of the following theorem:

Theorem 10. a) The K3 surface Zs
7 is isomorphic to the modular elliptic surface Ξ1(7).

b) The rational self-map λ{2},{3} preserves the elliptic fibration γ : Z7 → P1 and acts on the base
curve P1 through the order 3 map t → −1/(t + 1). There exists an automorphism σ0 coming
from Aut(M7) such that σ0λ{2},{3} preserves the fibration γ and acts on E as the multiplication
by 2 map.

The last property implies that the operator Λ{2},{3} preserves the moduli interpretation of X1(7).

Proof. Using the period map and the function field of A, one computes that the action of λ{2},{3}
on the base P1 of the fibration A → P1 is through the map t → −1/(t+ 1).

An automorphism σ ∈ Aut(M7) acts on the surface Z7 ∩ {y4 ̸= 0} and on the affine model A.
Using the period map and again the generic point of A, one computes the action of the rational
self-maps σλ{2},{3} (σ ∈ Aut(M7)) on A. For 14 of these maps, the action on the base curve P1 is
trivial. This is the case for example for

σ0 = (1, 2, 4)(3, 6, 7)(8, 9, 11)(10, 13, 14).

The map µ = σ0λ{2},{3} also acts on E, one can thus compute its action on the generic point of E.
Knowing that action, we are now able to compute the pull-back of a non-zero holomorphic one-form
ω by µ, which is: µ∗ω = 2ω. Using the seven torsion points, one computes that µ fixes the origin,
thus µ = [2]. □

Among the 12 lines contained in Z7, in the complement of R7, eight are contained in the singular
fibers of the fibration γ, and 4 are sections.

Using the pull-back to Zs
7 of the lines contained in Z7 and the (−2)-curves of the desingularization,

one may compute the Néron–Severi lattice of Zs
7 , and obtain that it has discriminant −7 and rank 20.

The modular elliptic surface Ξ1(7) is well-known and studied; it is known as the unique K3 surface
with Néron–Severi lattice of rank 20 and discriminant −7: in obtain in that way another proof
that Zs is isomorphic to Ξ1(7). The inequivalent fibrations of Ξ1(7) have been classified (see [8]).
Another remarkable fact is that Ξ1(7) is a ball-quotient surface: there exists a co-compact lattice
Γ in the automorphism group of the unit ball B2 such that Ξ1(7) ≃ B2/Γ [9]. The automorphism
group of Ξ1(7) is studied in [16].

3.6. The K3 surface Zs
7 is semi-conjugated to the plane. The rational self-map λ{2},{3} acting

on the quartic Z7 ↪→ P3(y1, . . . , y4) is defined by

λ{2},{3} = (P1 : · · · : P4),

where P1, . . . , P4 are four homogeneous degree 11 polynomials computed via the period map. These
polynomials are given in the ancillary file in the arXiv version of this paper; they also may be
obtained from the polynomials Q1, Q2, Q3 and R below. A remarkable fact about the polynomials
P1, . . . , P4 is that

(3.6) degy1(P1) = 1, degy1(P2) = degy1(P3) = degy1(P4) = 0,

where degy1 denote the degree relative to the variable y1.
Let us define the polynomials P̃k = Pk+1(0, z1, z2, z3) for k ∈ {1, 2, 3} (where z1, z2, z3 are the

three coordinates on the plane P2 : y1 = 0). The polynomials P̃k, k ∈ {1, 2, 3} define a rational
10



self-map F : P2 99K P2; the base locus of the linear system generated by P̃1, P̃2, P̃3 is the quintic
curve B defined by

Q = z31z
2
2 + 2z21z

3
2 + z1z

4
2 + 2z31z2z3 + 4z21z

2
2z3 + 2z1z

3
2z3 + z31z

2
3

−4z21z2z
2
3 − 9z1z

2
2z

2
3 − 4z32z

2
3 − 2z21z

3
3 + 2z1z2z

3
3 + 4z22z

3
3 + z1z

4
3 .

That curve is irreducible, has geometric genus 1 and its normalization has j-invariant −56/28. By
removing the base locus B, one obtains that the rational self-map F is defined by the following
degree 6 polynomials

Q1 =z1Q,

Q2 =− z51z2 − 3z41z
2
2 − 3z31z

3
2 − z21z

4
2 + z41z2z3 + 2z31z

2
2z3 + z21z

3
2z3

+ z31z2z
2
3 + 2z21z

2
2z

2
3 + z1z

3
2z

2
3 − z21z2z

3
3 + z32z

3
3 − z22z

4
3 ,

Q3 =2z41z2z3 + 4z31z
2
2z3 + 2z21z

3
2z3 + z41z

2
3 − 4z31z2z

2
3 − 8z21z

2
2z

2
3 − 3z1z

3
2z

2
3

− 2z31z
3
3 + 2z21z2z

3
3 + 4z1z

2
2z

3
3 + z32z

3
3 + z21z

4
3 ,

and the indeterminacy locus of F = (Q1 : Q2 : Q3) are the 8 points

q1 = (0 : 0 : 1), q2 = (1 : 0 : 1), q3 = (0 : 1 : 0), q4 = (−1 : 1 : 0), q5 = (1 : 0 : 0), qr = (−r2 + 2r : r : 1)

where r is any root of X3 − 4X2 + 3X + 1 (the field Q(r) is the degree 3 real subfield of Q(ζ7)).
Let us define the projection map π1 : Z7 → P2(z1, z2, z3) from the point s8 : y2 = y3 = y4 = 0

contained in surface Z7. This point is an A3 singularity on Z7, in particular it has multiplicity 2,
thus the map π1 from the quartic to the plane has degree 2. One has:

Lemma 11. The branch loci of π1 is the union of the quintic curve B = {Q = 0} and the line
L : z1 = 0.

Proof. The ramification locus of π1 is the discriminant of the equation of Z7 (given in (3.2)) with
respect to the variable y1. The image of the ramification curve by π1 is the curve B + L. □

The curve B has singularities of type A4, A4, A2 at the points q2, q4, q5, respectively. The union
L + B has singularities of type A1, A3, A4, A3, A4, A2 at the points q0 = (0 : 1 : 1), q1, q2, q3, q4, q5,
respectively.

A direct computation shows that

Q1(Q1, Q2, Q3) = Q1R
2

for R = 1
8z

2
2(z1 − z3)

2R4R7, where

R4 =z41 + 2z31z2 + z21z
2
2 − z21z

2
3 − z1z2z

2
3 − z2z

3
3 ,

R7 =z61z2 + 4z51z
2
2 + 6z41z

3
2 + 4z31z

4
2 + z21z

5
2 + z61z3 − 7z41z

2
2z3 − 11z31z

3
2z3 − 6z21z

4
2z3 − z1z

5
2z3

− z51z
2
3 + 3z31z

2
2z

2
3 + 2z21z

3
2z

2
3 + 3z21z

2
2z

3
3 + 5z1z

3
2z

3
3 + 2z42z

3
3 − 2z1z

2
2z

4
3 − 2z32z

4
3 − z1z2z

5
3 .

The images of the curves z2 = 0, z1−z3 = 0 and R4 = 0 by the rational self-map F = (Q1 : Q2 : Q3)
of P2 are the indeterminacy points q2, q4, q2, respectively. The image of the curve R7 = 0 under
the map F is the quintic curve B. The image of the quintic curve B under the map F is the
line L : z1 = 0. The rational map F preserves L and the action of F on L is through the map
(z2 : z3) → (z2 − z3 : z3).

From the above description and Subsection 2.3, the surface Zs
7 is the minimal desingularization

of the double cover
X : {y2 = Q1(z1, z2, z3} ↪→ P(3, 1, 1, 1)
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branched over L + B. The birational map between X and Z7 is given by the equalities yi+1 = zi
for i ∈ {1, 2, 3} and

y1 =
1
2(y + z22z3 + z2z

2
3 + z22z4 − z2z3z4 − z2z

2
4)/(z

2
2 + z2z3 − z2z4).

We continue to denote by λ{2},{3} the rational self-map

(y; z) → (yR(z);F (z)).

Applying the results of Section 2.3, we obtain that:

Theorem 12. The dynamical system (Zs
7 , λ{2},{3}) is semi-conjugated to (P2, F ).

Remark 13. a) The degrees of the coprime polynomials defining the rational maps F, F 2, F 3 are
6, 21, 82, respectively. // b) It would be interesting to construct rational self-maps on some other
degree two K3 surfaces.

4. The Octagon and the operator Λ{2},{3,4}

4.1. The matroid M8 constructed from the regular octagon. Consider the 16 lines in Figure
4.1: the black lines ℓ1, . . . , ℓ8 are the 8 lines of the regular octagon C1 and the blue lines ℓ′1, . . . , ℓ

′
8

are the 8 lines symmetries of C0. The image of C0 = ℓ1 + · · · + ℓ8 by the operator Λ{2},{3,4} is the
line arrangement C1 = ℓ′1 + · · ·+ ℓ′8.

p1,2

p2,3

p3,4 p4,5

p5,6

p6,7

p7,8p1,8

ℓ1ℓ2ℓ3

ℓ4

ℓ5 ℓ6

ℓ7

ℓ8

p1,3

p2,4
p3,5

p4,6

p5,7

p6,8

p1,7

p2,8

p1,4

p2,5 p3,6

p4,7

p5,8

p1,6p2,7

p3,8

p3,7

p4,8

p1,5

p2,6

ℓ′6

ℓ′5

ℓ′4 ℓ′3 ℓ′2 ℓ′1

ℓ′8

ℓ′7

Figure 4.1. The regular Octagon and its axes of symmetries.

The 8 lines ℓi, ℓj of C0 = (ℓ1, . . . ℓ8) meet in 28 double points denoted by pi,j (some points are
at infinity). The lines ℓ′1, . . . , ℓ

′
8 are the lines containing the points in sets S1, . . . , S8 which are

respectively

(4.1) {p1,8, p2,7, p3,6, p4,5}, {p1,7, p2,6, p3,5}, {p1,6, p2,5, p3,4, p7,8}, {p1,5, p2,4, p6,8},
{p1,4, p2,3, p5,8, p6,7}, {p1,3, p4,8, p5,7}, {p1,2, p3,8, p4,7, p5,6}, {p2,8, p3,7, p4,6}.

These sets Sk, k = 1, . . . , 8 form a partition of the 28 double points of C0; these 28 points are the
triple points of C0 ∪ C1. One has the relation Λ{2},{3,4}(C0) = C1 (as unlabeled line arrangements).

Let M8 be the matroid associated to the incidences between the 16 labeled lines ℓ1, . . . , ℓ8, ℓ′1, . . . , ℓ′8
and the 28 triple points: it is obtained from the matroid associated to the labeled line arrangement
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C0 ∪ C1, but we discard all non-bases coming from the central point, so that M8 has 16 atoms and
only 28 non-bases. We denote by R8 the moduli space of realizations of M8 (over C).

Remark 14. A priori, there is no canonical choice for the labelings of the lines ℓ′1, . . . , ℓ
′
8 in the

unlabeled line arrangement Λ{2},{3,4}(C0). The choice we made in Equation (4.1) will be justified
later, see Remark 19.

4.2. The moduli space R8 of M8. A direct computation in OSCAR shows that the moduli space
R8 is two-dimensional, and an open sub-set of the quartic surface Z8 in P3 with the equation

y1y
2
2y3 − y21y2y4 + y1y

2
2y4 + y21y3y4 − 2y1y2y3y4 − y1y

2
3y4 + y1y3y

2
4 − y2y3y

2
4 + y23y

2
4 = 0.

The surface Z8 has singularities A2, A2, A3, A4, A3, A1 at the respective points

(1 : 0 : 0 : 0) : (0 : 1 : 0 : 0) : (0 : 0 : 1 : 0) : (0 : 0 : 0 : 1) : (1 : 1 : 1 : 1) : (1 : 0 : 1 : 0).

Its minimal desingularization Zs
8 is a K3 surface. The realization A(x) corresponding to a generic

point x = (x1, x2, x3) of Z8 in the affine chart A3 = {y4 ̸= 0} is the union A(x) = C0(x) ∪ C1(x),
where C0(x) is the line arrangement with eight lines with normal vectors the four vectors of the
canonical basis and the following four vectors

(x1 − x2 : x
2
1 − x1x2 − x1x3 + x1 − x2 + x3 : x1 − x2x3 − x2 + x3),

(x1x2 − x1x3 − x2 + x3 : x1x
2
2 − x1x2 − x1x3 + x1 − x2 + x3 : x1x2x3 − 2x1x3 + x1 − x2 + x3)

(x1 − 1 : x1x2 − x2 : x1 − x2), (1 : x1 : x3).

Moreover, C1(x) is the line arrangement with normal vectors

(x1x2 − x1x3 − x2 + x3 : x1x
2
2 − x1x2 − x1x3 + x1 − x2 + x3 : x1x2 − x1x3 − x22 + x2x3),

(x21x2 − x21x3 − x1x
2
2 + x1x2x3 − x1x2 + x1x3 + x22 − x2x3 : x

3
1x2 − x31x3 − x21x

2
2 + x21x

2
3

+2x1x2x3 − x1x2 − 2x1x
2
3 + x1x3 + x22 − 2x2x3 + x23 : x

2
1x2x3 − x21x2 − x21

x3 + x21 + x1x
2
2 − 2x1x2 − x1x

2
3 + 2x1x3 + x22 − 2x2x3 + x23),

(x1 − x2 : x1 − x2 : x1 − x2x3 − x2 + x3), (x3 : x1x2 : x3), (0 : 1 : 1),
(x1 − 1 : 0 : x1 − x3), (1 : x1 : 0), (1 : x2 : x3).

From the definition of the matroid M8, if A0 = C0 ∪ C1 is a realization of M8 and C0 (resp. C1)
denotes its first (resp. last) eight lines then, Λ{2},{3,4}(C0) = C1 as unlabeled line arrangements.
The following operator Λℓ

{2},{3,4} gives a labeling to Λ{2},{3,4}(C0):

Definition 15. The operator Λℓ
{2},{3,4} associates to a labeled line arrangement L8 of 8 lines

ℓ1, . . . , ℓ8, the labeled line arrangement ℓ′1, . . . , ℓ
′
8 where ℓ′j is the set of lines containing all the

points in Sk defined in (4.1) (ℓ′j is a line or the empty set).

For a generic arrangement L8 of eight lines, one has Λℓ
{2},{3,4}(L8) = ∅. The operator Λℓ

{2},{3,4}
is constructed so that if A0 is any realization of M8 and C0 (resp. C1) denotes its first (resp. last)
eight lines then Λℓ

{2},{3,4}(C0) = C1 as labeled line arrangements (and of course Λ{2},{3,4}(C0) = C1
if one forgets the labels).

4.3. The operator Λℓ
{2},{3,4}(C1) acts as a rational self-map on R8. A priori the line arrange-

ment Λℓ
{2},{3,4}(C1) could be empty, however:

Theorem 16. Suppose that A0 = C0∪C1 is generic among the realizations of M8. Then the labeled
line arrangement C2 = Λℓ

{2},{3,4}(C1) has 8 lines and A1 = C1 ∪ C2 is a realization of R8.

Proof. Using the function field of R8, we realize the generic element of R8 using the formulas for
A(x). Then we compute C2 = Λℓ

{2},{3,4}(C1) and obtain eight lines. Finally we check that C1 ∪ C2
defines the same matroid as A0. □
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The operator Λℓ
{2},{3,4} acts on realizations of M8, sending A0 = C0 ∪ C1 to A1 = C1 ∪ C2, where

C2 = Λℓ
{2},{3,4}(C1). It therefore acts on the moduli space Z8: we denote by

λ{2},{3,4} : Z8 99K Z8

that action. In order to obtain the explicit polynomials defining λ{2},{3,4}, we remark that one may
recover the coordinates x1, x2, x3 of the line arrangement A0(x) from the two last normal vectors
(1 : x1 : 0), (1 : x2 : x3) of C1(x). Then one computes the unique line arrangement C̃1∪C̃2 projectively
equivalent to A1(x) = C1(x) ∪ C2(x) such that the first four normal vectors are the canonical basis.
The image of x by λ{2},{3,4} is the point x′ = (x′1, x

′
2, x

′
3) such that the two last normal vectors of C̃2

are (1 : x′1 : 0), (1 : x′2 : x′3) (and C̃1 ∪ C̃2 = A0(x
′)). Taking the homogenization to P3, one obtains

that the map λ{2},{3,4} is defined by the four degree 10 coprime polynomials P1, . . . , P4 given in the
ancillary file of the arXiv version of this paper. The base points of λ{2},{3,4} are

(−
√
2− 1 :

√
2 + 2 : 2

√
2 + 3 : 1), (

√
2− 1 : −

√
2 + 2 : −2

√
2 + 3 : 1),

(i : 0 : 1 : 1), (−i : 0 : 1 : 1), (1 : 1 : 0 : 1), (0 : 1 : 1 : 0), (0 : 1 : 0 : 1).

The line arrangements C0∪C1 associated to the first two points are the regular octagon and its lines
of symmetries. The line arrangements C0 associated to the third and fourth points are such that
Λ{2},{3,4}(C0) is the Ceva line arrangement with 12 lines; it contains C0.

Using the explicit polynomials P1, . . . , P4, we obtain that:

Proposition 17. The degree of the rational self-map λ{2},{3,4} on Zs
8 is 4.

Proof. We again apply the method from [17]. Let f(x1, x2, x3) be the equation of the quartic Z8

in the chart U4 : y4 ̸= 0. The space of global non-vanishing differential 2-forms is generated by a
form ω, which one can choose so that on an open set of U4 one has: ω = dx2∧dx3

∂f/∂x1
. The rational

self-map λ{2},{3,4} preserves U4. A direct computation gives that λ∗
{2},{3,4}ω = −2ω. The pull-back

by λ{2},{3,4} of the volume form ωω̄ is therefore 4ωω̄, thus the degree of λ{2},{3,4} is 4. □

4.4. The dynamical system (Z8, λ{2},{3,4}) is semi-conjugated to the plane. The four poly-
nomials P1, . . . , P4 such that λ{2},{3,4} = λ{2},{3,4} = (P1 : · · · : P4) verify degy1(P1) = 1 and
degyk(P1) = 0 for k ≥ 2. Let π : Z8 99K P2 be the double cover obtained by projecting from the
double point (1 : 0 : 0 : 0) of Z8.

Lemma 18. The branch curve B of π is the union of the conic C = {z21−z2z3 = 0} and the quartic
curve

Q = {z21z22 + 2z21z2z3 − 4z1z
2
2z3 − z32z3 + z21z

2
3 − 4z1z2z

2
3 + 6z22z

2
3 − z2z

3
3}.

Proof. The ramification locus of π1 is the discriminant of the equation of Z8 with respect to the
variable y1. The image of the ramification curve by π1 is the curve B. □

The quartic Q has geometric genus 0 and is singular at the points (1 : 0 : 0), (1 : 1 : 1) with
singularities A3 and A1. The curve B = C +Q is singular at the points

(1 : 0 : 0), (0 : 1 : 0), (0 : 0 : 1), (1 : 1 : 1)

with singularities A3, A5, A5, D4, respectively.
Let us define the polynomials Qk = Pk+1(0, z1, z2, z3) (k = 1, 2, 3) and the rational self-map

µ : P2 99K P2, µ = (Q1 : Q2 : Q3). One has µ∗(B) = B + 2D for a degree 27 curve D. Using
Subsection 2.3, the double cover of P2 branched over B = C +Q is birational to the surface Z8 and
(Z8, λ{2},{3,4}) is semi-conjugated to (P2, µ).

The indetermination points of µ are the 9 points
(1 : 0 : 0), (0 : 1 : 0), (0 : 0 : 1), (1 : 1 : 1), (1 : 0 : 1), (1 : 1 : 0),

(0 : 1 : 1), (−
√
2 + 2 : −2

√
2 + 3 : 1), (

√
2 + 2 : 2

√
2 + 3 : 1).
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The image by µ of Q is the conic C; the rational map µ restricts to the identity on C.

Remark 19. The choice for the labelings of the lines in the unlabeled line arrangement Λ{2},{3,4}(C0)
was made so that the defining polynomials of the rational self-map λ{2},{3,4} are of low degree. More-
over, for the other choices we tried, the degrees of the polynomials defining the analog of λ{2},{3,4}
with respect to any variables yi were never 1, 0, 0, 0, so that it was not possible to understand that
rational self-map λ{2},{3,4} as a semi-conjugacy with the plane.

4.5. The K3 surface Z8 and the modular surface Ξ1(8). One has:

Proposition 20. The K3 surface Zs
8 is the unique K3 surface with discriminant −8 and Picard

number 20.

Proof. The eight lines with equations
(y1 = y3 = 0), (y1 = y4 = 0), (y2 = y3 = 0), (y2 = y4 = 0), (y3 = y4 = 0),
(y1 − y4 = y2 − y4 = 0), (y1 − y3 = y2 − y4 = 0), (y2 − y4 = y3 − y4 = 0)

are contained in the surface Z8. Using Magma, one can compute that their strict transforms on Zs
8

together with the 15 (−2)-curves coming from the resolutions of the singularities of Z8, generate a
rank 20 lattice with discriminant −8. There is no K3 surface with Picard number 20 and discriminant
−2 and there is a unique K3 surface with Picard number 20 and discriminant -8 (see e.g. [12]) which
yields the conclusion. □

Proposition 21. The surface Z8 is (isomorphic to) the elliptic modular surface Ξ1(8) above the
modular curve X1(8).

Proof. The projection map from the line y2 − y4 = y3 − y4 = 0 induces a fibration Z8 → P1. By
evaluating the Equation of Z8 at (X, 1 + t(Y − 1), Y, 1), one gets the cubic affine model

(t− 1)X2 − t2XY 2 +XY + (t− 1)2X + (t− 1)Y = 0

of the generic fiber, where t is the parameter of P1. One computes that the Weierstrass model of it
is the elliptic curve

E : y2 = x3 + (4t4 − 8t3 + 4t2 + 1)/t4x2 + 8(t− 1)2/t6x+ 16(t− 1)4/t8.

The associated elliptic surface is a smooth model of the K3 surface Z8: it is isomorphic to Zs
8 . One

computes that the singular fibers of the fibration are 2I8+I4+I2+2I1, at the points 1, 0,∞, 1/2, t2−
t− 1/4 = 0, respectively.

By [15, Section 2.3.3], the equation of a Weierstrass model of the elliptic surface Ξ1(8) above the
modular curve X1(8) is

E′ : η2 = ξ3 + (2− s2)ξ2 + ξ,

where s = 2t2/(t2 − 1). To check that Ξ1(8) is isomorphic to Zs
8 , one just has to compare the

two j-invariants j(E)(t) ∈ Q(t) and j(E′)(t) ∈ Q(t). We compute that j(E)(12(1−
1
t )) = j(E′)(t),

therefore E is isomorphic to E′, and Ξ1(8) ≃ Zs
8 . □

4.6. Action of Aut(M8). The automorphism group of M8 is generated by the involutions

s1 = (2, 4)(3, 7)(6, 8)(9, 11)(10, 14)(13, 15), s2 = (2, 6)(4, 8)(9, 13)(11, 15),
s3 = (1, 2)(3, 8)(4, 7)(5, 6)(9, 13)(10, 12)(14, 16).

The group Aut(M8) is the semi-direct product Z/8Z⋊(Z/2Z)2. One computes that it acts faithfully
on the K3 surface Z8. The map s2 (acting on Z8) is given in the ancillary file of the arXiv version
of this paper. It is a birational involution of P3.

The group of elements σ commuting with the action of λ{2},{3,4} is isomorphic to (Z/2Z)2. The
involution s = (1, 5)(2, 6)(3, 7)(4, 8) is the unique automorphism of Aut(M8) such that λ{2},{3,4}◦s =
λ{2},{3,4}.
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4.7. Periodic line arrangements. Let us prove:

Proposition 22. There exists a curve C3 of geometric genus 5 in Z8 such that each point of C3 is
fixed by λ{2},{3,4} and for a generic point x of C3, the line arrangement C0(x) in P2 is periodic of
period 3 for the action of Λℓ

{2},{3,4}.

Proof. Let K be the finite field K = F1013. Consider the point x = (794 : 582 : 116 : 1) ∈ P3(K). It
is a fix-point of the endomorphism λ{2},{3,4} and the associated line arrangement C0(x) is periodic
of period 3 for Λℓ

{2},{3,4}. The line arrangement L24 = C0 ∪ C1 ∪ C2 has 24 lines and the singularities
t2 = 24, t3 = 84. One computes that the matroid N24 associated to L24 has an irreducible one
dimensional moduli space R(N24) over C. The geometric genus of the compactification of R(N24)
is 5. The matroid associated to the first 16 lines C0 ∪ C1 is the equal to the matroid M8, thus there
exists a natural map R(N24) → R8, which to a realization C0 ∪ C1 ∪ C2 of N24 associates C0 ∪ C1,
that map is one-to-one onto its image C3 since one may recover C2 (and therefore C0 ∪ C1 ∪ C2) as
C2 = Λℓ

{2},{3,4}(C1). The curve C3 is fixed by λ{2},{3,4}. □
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