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KNOT COBORDISM, TORSION ORDER AND FRAMED INSTANTON

HOMOLOGY

SUDIPTA GHOSH AND ZHENKUN LI

Abstract. We construct cobordism maps for the minus version of instanton knot homology
associated to a specially decorated knot cobordisms of arbitrary genus between two null-homologous

knots in closed oriented 3-manifolds. As an application of our construction, we recover an inequality
between the torsion order of knots in instanton theory, which was originally established in Heegaard

Floer theory by work of Juhász, Miller, and Zemke. We further use this inequality to compute the
framed instanton Floer homology of any non-zero Dehn surgeries along an alternating knot of
bridge index at most 3.

1. Introductions

In Heegaard Floer homology, link cobordism maps associated to decorated link cobordisms were
constructed by Juhász [JTZ21] for hat version and by Zemke [Zem19] for general version. The
construction of link cobordism maps has led to many interesting topological applications, such as
the stabilization distance between minimal-genus surfaces in B4 bounding knots in S3 “ BB3 by
Juhász and Zemke [JZ18] and a bound on the bridge index of a knot from the torsion order of the
knot by Juhász, Miller, and Zemke [JMZ20]. It is natural to ask whether similar constructions can
be made in other branches of Floer theory. In instanton theory, the instanton knot homology KHI
was constructed by Kronheimer and Mrowka [KM10b], which corresponds to the hat version of knot
Floer homology. The minus version of instanton knot homology KHI´ was constructed for knots
by the authors of the current paper in [Li21b] and [GL23], and was recently revisited by the first
author and Zemke [GZ23]. As for link cobordism maps, the construction for KHI follows from the
work of the second author in [Li21a], while the construction for KHI´ was previously unknown.

Suppose we have a link cobordism pW,Σq : pY0,K0q Ñ pY1,K1q. In Zemke’s construction, pW,Σq

was equipped with some extra data called decorations and is decomposed into a few fundamental
types: the birth, death, and saddle. Then the link cobordism map associated to the decorated
cobordism is the composition of ones associated to the fundamental types. In this paper we develop
a different construction. Instead of decomposing, we use the surface Σ and a special decoration D
on Σ to construct a map

ρ̂ : KHI´pY0,K0q Ñ KHI´pY0#Z2g,K1#Bgq,

where Bg Ă Z2g is the borromean knot as in Section 2.4, with g “ gpΣq. Then the 4-dimensional
cobordism W induces a map

F´

W´NpΣq
: KHI´pY0#Z2g,K0#Bgq Ñ KHI´pY1,K1q.

Thus the composition gives rise to the desired cobordism map

FW,Σg,D “ F´

W´NpΣq
˝ ρ̂ : KHI´pY0,K0q Ñ KHI´pY1,K1q.

1
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Theorem 1.1. If pW,Σg,Dq : pY0,K0q Ñ pY1,K1q is a specially decorated knot cobordism, then the
map FW,Σg,D constructed as above is CrU s-equivariant and is functorial under the composition of
such cobordisms.

Using the same strategy we also extend our construction from knots to 2-component links
L “ K Y U in a disconnected manifold where K Ă Y is an arbitrary knot and U Ă Y 1 is the
unknot. We prove that the knot cobordism maps and these special classes of link cobordism maps
are functorial with respect to compositions.

Remark 1.2. In order to define the map ρ̂ and hence FW,Σg,D, one needs to choose an element in
KHI´pZ2g, B2gq. This homology group has been computed explicitly, and in this paper, in order to
establish our applications, we choose a special element in KHI´pZ2g, B2gq and omit it from the data.
However, there are many other elements that could potentially lead to different link cobordisms. So
one could potentially choose different elements to define different link cobordism maps.

Remark 1.3. Due to the naturality issue (c.f. [BS15]), all instanton Floer homology groups and
maps between them in this paper are only well defined up to the multiplication of a non-zero element
in C.

Instanton Floer homology was constructed based on a set of partial differential equations and is
known to be very hard to compute. In recent years, there have been several works towards computing
the framed instanton Floer homology of various families of 3-manifolds, especially those coming
from Dehn surgeries on knots. See, for example [LPCS22, BS21, BS22a, ABDS22, LY21, LY22b].
As an application of our construction for the cobordism maps for KHI´, we include a large family
of 3-manifolds into the known list.

Theorem 1.4. Suppose K Ă S3 is an alternating knot with a of bridge index at most 3 and r P Q
is non-zero. Then we have

dimC I
7pS3

r pKqq “ rkZ2
yHF pS3

r pKqq.

Remark 1.5. Although we state the theorem as an identity between the dimensions in instanton
Floer theory and Heegaard Floer theory, given an (alternating) diagram of any such knot, there is
an algorithm to compute the precise dimension from the diagram. Also, it should be noted that
2-bridge knots are automatically alternating.

The proof of Theorem 1.4 relies on a recent progress in developing the surgery formula in instanton
Floer homology by the second author and Ye. In particular, in [LY22b], we have the following.

Proposition 1.6. Suppose K Ă S3 is an alternating knot of torsion-order-one, and r P Q is
non-zero. Then we have

dimC I
7pS3

r pKqq “ rkZ2
yHF pS3

r pKqq.

Regarding the torsion order, the second author constructed in [Li21b] a minus version of instanton
knot homology, which we denote by KHI´pS3,Kq for a knot K Ă S3. The minus version
KHI´pS3,Kq admits an action of U and the torsion order of K is defined as the maximal U -
order of any U -torsion element in KHI´pS3,Kq. We denote the torsion order of K by ordU pKq

Utilizing Proposition 1.6 and the fact that the torsion order of alternating knots are odd (c.f.
Lemma 2.4), in order to prove Theorem 1.4, it remains to prove the following.

Theorem 1.7. Suppose K Ă S3 is a knot. Then

ordU pKq ď brpKq ´ 1.

Here brp¨q denotes the bridge index of K.
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A parallel result in Heegaard Floer theory has been established by Juhász, Miller, and Zemke
[JMZ20]. Previously three ingredients were missing to establish Theorem 1.7 in instanton theory:

(1) The cobordism map as in Theorem 1.1.
(2) The tube attachment lemma as in Proposition 4.1: If Σ1 is obtained from Σ by attaching a

tube to Σ, then (with suitable choices of auxiliary data), we have

FΣ1,A1 “ U ˝ FΣ,A : KHI´pS3,K0q Ñ KHI´pS3,K1q.

(3) A connected sum formula for KHI´.

Item (3) was recently established by the first author and Zemke [GZ23], while the first two items
will be presented herein.

1.1. Organization. The paper is organized as follows. In Section 2 we prove Theorem 1.4 assuming
some technical results that we establish in latter sections. In particular, we construct maps associated
to knot cobordisms in Section 3 and prove the tube attachment lemma in Section 4.

1.2. Acknowledgements. The authors are indebted to Ian Zemke for several helpful discussions
about the definition of the knot cobordism map in instanton Floer theory. The idea of the cobordism
map developed when the first author was working with Ian Zemke on their paper [GZ23]. The
authors thank John Baldwin, Maggie Miller, Steven Sivek, and Fan Ye for helpful discussions. The
first author also thanks the Max Planck Institute for Mathematics for hosting the first author for
the bulk of this work.

2. Preliminaries

2.1. The minus version of instanton knot homology. In this section, we review the minus
version of instanton knot homology constructed in [Li21b]. Suppose Y is a connected, closed, oriented
3-manifold, and let K Ă Y is a null-homologous knot. Let pλ, µq represent the Seifert framing on
BpY ´NpKqq, where λ is the longitude and µ is the meridian. Let Γn be the suture on BpY ´NpKqq

consisting of two curves of class ˘pλ`nµq. pY ´NpKq,Γnq forms a balanced sutured manifold as in
[Juh06], and Kronheimer and Mrowka [KM10b] constructed the sutured instanton Floer homology
of the pair, denoted by SHIpY ´NpKq,Γnq.

A Seifert surface of K induces a grading on SHIpY ´NpKq,Γnq. This construction was pioneered
by the work of Kronheimer and Mrowka in [KM10a] and Baldwin and Sivek in [BS22b], and further
developed by the second author and his collaborators in [Li21b, GL23, LY22a].

Assuming we fix a Seifert surface S and choose the sutures Γn to have 2n intersections with S
for all n. In [Li21b], if n is odd, then S can be used to construct a Z-grading, while if n is even,
one needs to isotope S in one of two ways (called stabilizations in [Li21b]) to construct a Z-grading.
The gradings associated with the two stabilizations always differ by 1. Therefore, in [LY22a], the
authors avoid choosing one stabilization by defining a pZ ` 1

2 q-grading for S when n is even. We
will denote the graded part as:

SHIpY ´NpKq,Γn, iq for i P Z or Z `
1

2
.

As in [BS16], we have two bypass maps

ψn˘,n`1 : SHIpY ´NpKq,Γnq Ñ SHIpY ´NpKq,Γn`1q

The original construction involved the orientation reversal of 3-manifolds and sutures, but we can
initiate the construction on ´Y to avoid the sign complexity. The two bypass maps are symmetric
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in some sense, and their grading-shifting behavior was understood in [Li21b]. In this paper, we
adopt the convention that:

degpψn˘,n`1q “ ¯
1

2
.

To simplify the notations, we write

ΓK
n “ SHIpY ´NpKq,Γnq, and pΓK

n , iq “ SHIpY ´NpKq,Γn, iq.

Also we define a grading shift

pΓK
n rks, iq “ pΓK

n , i´ kq.

Under this notation, we know that the map

ψn´,n`1 : ΓK
n r

1 ´ n

2
s Ñ ΓK

n`1r
´n

2
s

is grading-preserving and ψn`,n`1 drops the grading by ´1.
Additionally, we can attach a contact 2-handle (cf. [BS16], and again, we omit the negative

orientation of 3-manifolds) to pY ´NpKq,Γnq along the meridian of the knot, thereby obtaining a
map:

Fn : ΓK
n Ñ I7pY q.

Definition 2.1 ([Li21b, GLW19]). We define KHI´pY,Kq to be the direct limit of the sequence

ψn´,n`1 : ΓK
n r

1 ´ n

2
s Ñ ΓK

n`1r
´n

2
s.

It inherits a Z-grading. The collection of maps

ψn`,n`1 : ΓK
n r

1 ´ n

2
s Ñ ΓK

n`1r
´n

2
s

induce a map

U : KHI´pY,K, iq Ñ KHI´pY,K, i´ 1q.

The maps

Fn : ΓK
n r

1 ´ n

2
s Ñ I7pY q

induce a map

F´
K : KHI´pY,Kq Ñ I7pY q.

Lemma 2.2 ([Li21b, GLW19]). For the unknot U1 Ă Y , we have an isomorphism (of CrU s-modules)

KHI´pY,U1q – I7pY q b
C
CrU s,

where I#pY q is supported at grading 0 and the element 1 P CrU s lies in grading 0 as well. Furthermore,
the map F´

U1
restricts to an isomorphism on KHI´pS3,U1, iq for all i P Zď0.

Definition 2.3. For a null homologous knot K Ă S3, we define

ordU pKq “ maxtk | D x P KHI´pS3,Kq s.t. Uk ¨ x ‰ 0, Uk`1 ¨ x “ 0.u

Lemma 2.4. Suppose K Ă S3 is an alternating knot. Then ordU pKq is odd.
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Proof. Suppose K is an alternating knot. In [LY21], the author constructed a set of differentials dk
on Kronheimer and Mrowka’s version of instanton knot homology KHIpS3,Kq. In [LY22b], it is
shown that:

ordU pKq “ maxtk | dk ‰ 0u.

In [LY21], it is demonstrated that dk has degree ´1 with respect to the Z2-grading and degree
´k with respect to the Alexander grading on KHIpS3,Kq. Furthermore, the KHI of alternating
knots is computed through the work of Kronheimer and Mrowka in [KM10a, KM11]. Specifically,
KHIpS3,K, iq and KHIpS3,K, jq are supported in the same Z2-grading if i ´ j is even. Hence,
dk “ 0 if k is even, and we are done. □

2.2. A map for the connected sum of minus version. In this section we review a map
related to the connected sum of minus version constructed in [GLW19]. Later it will be used in
the construction of the cobordism map. Suppose we have two null-homologous knots K1 Ă Y1 and
K2 Ă Y2. In [GLW19], the authors constructed a map

Ch : ΓK1
n b ΓK2

n Ñ ΓK1#K2
m`n

Through a contact 1-handle attachment followed by a contact 2-handle attachment, as depicted
in Figure 1, the authors also described the grading-shifting behavior of the map Ch. Additionally,
they prove that the map commutes with the bypass maps on K1 and K2. Essentially, the bypass
maps are also obtained from contact handle attachments and are located in regions disjoint from
those for Ch. Consequently, Ch induces the following map between the minus versions:

(2.1) ρ : KHI´pY1,K1q bKHI´pY2,K2q Ñ KHI´pY1#Y2,K1#K2q.

Furthermore, the grading shifting behavior and the commutativity mentioned above also lead to
the following two properties of the map ρ.

Lemma 2.5. The map ρ is homogeneous with respect to the Alexander grading. In particular,

ρ

ˆ

KHI´pY1,K1, iq bKHI´pY2,K2, jq

˙

Ă KHI´pY1#Y2,K1#K2, i` jq.

Lemma 2.6. The map ρ intertwines with the U -action. More precisely, we have

ρ

ˆ

pU ¨ xq b y

˙

“ ρ

ˆ

xb pU ¨ yq

˙

“ U ¨ ρpxb yq.

With the help of the above two lemmas, we can derive the following.

Lemma 2.7. Suppose Y2 “ S3 and K2 “ U1 is the unknot. Let ν0 P KHI´pZ0 “ S3, B0 “ U1, 0q

be the generator. Then the map

ι : KHI´pY1,K1q Ñ KHI´pY1 – Y1#S
3,K1 – K1#U1q

defined as
ιpxq “ ρpxb ν0q

coincides with the identity map.

Proof. In [Li21b], the author demonstrated that the direct system in Definition 2.1 stabilizes when n
is large. Transitioning to sutured instanton Floer homology, to validate Lemma 2.7, it is sufficient to
establish the following: let νm0 P pΓU1

m ,
m´1
2 q be the generator of the highest non-vanishing grading.

Then, the map:

ιnh,n`m : ΓK1
n Ñ ΓK1

n`m – ΓK1#U1
m`n
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h11

h2

µ1 µ2

Y1 ´NpK1q Y2 ´NpK2q

Figure 1. The map Ch is derived through a sequence of operations, initially
involving a contact 1-handle attachment, denoted as h11, followed by a contact
2-handle attachment, represented as h2. The curve guiding the attachment of h2 is
depicted as the green curve in the figure provided.

defined as
ιnh,n`mpxq “ Chpxb ν1

0q

coincide with the composition of bypass maps:

ιnh,n`m “ ψn`m´1
´,m`n ˝ ¨ ¨ ¨ ˝ ψn´,n`1.

The sutured instanton Floer homology of the sutured solid tori and the bypass maps on them have
been computed in [Li21b]. In particular, we know that

ΓU1
1 – C,

and let ν10 P ΓU1
1 be the generator, then we have

νm0 “ ψm´1
´,m ˝ ¨ ¨ ¨ ˝ ψ1

´,2pν10q.

Since Ch commutes with the bypass maps, it suffices to prove

ιnh,n`1 “ ψn´,n`1 : ΓK1
n Ñ ΓK1

n`m.

To do this, note that p´pS3 ´NpKqq,´Γ1q admits a unique tight contact structure whose contact
element is

ν10 P ΓU1
1 – C.

Note that p´pS3 ´ NpKqq,´Γ1q can be decomposed into a contact 0-handle and a contact
1-handle. Additionally, Ch inherently is the map associated with a contact 1-handle and a contact
2-handle. In total, we have four contact handles; however, the 0-handle and one of the 1-handles
form a canceling pair, while the remaining 1-handle and 2-handle coincide with the construction of



KNOT COBORDISM, TORSION ORDER AND FRAMED INSTANTON HOMOLOGY 7

the bypass map as outlined in [BS16]. Refer to the accompanying figure for a visual representation.
Consequently, by applying the functoriality of the contact gluing map presented in [Li21a], we
conclude the following.

ιnh,n`1 “ ψn´,n`1 : ΓK1
n Ñ ΓK1

n`m.

□

h11

h2

h0

h12

Y1 ´NpK1q
pS3 ´NpU1qq – S1 ˆD2

Figure 2. The knot complement S3 ´NpKq can be identified with a solid torus
S1 ˆD2, where the meridian of the unknot is identified with the longitude of the
solid torus. Then the sutured solid torus can be decomposed into a contact 0-handle
h0 and a contact 1-handle h12. The map Ch is associated with a contact 1-handle h11
and a contact 2-handle h2, whose attaching curve is the green curve in the picture.
The 0-handle h0 and the 1-handle h11 form a canceling pair, and the 1-handle h12
and the 2-handle h2 give rise to the bypass map ψn´,n`1.

2.3. Maps associated to special cobordisms. In this section we review the definition of special
cobordisms the construction of a cobordism map associated to special cobordisms. Suppose we have
two null-homologous knots K1 Ă Y1 and K2 Ă Y2. Suppose W is a compact, connected, oriented
4-manifold such that:

BW “ ´pY1 ´NpK1qq Y
φ

pY2 ´NpK2qq,

where φ identifies the two toroidal boundaries of the knot complements by matching the longitudes
and meridians of the two knots. We call such a cobordism a special cobordism, and we can construct
a map:

F´
W : KHI´pY1,K1q Ñ KHI´pY2,K2q
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following [Li21a, GLW19]. We only sketch the ideas here, and details can be found in the papers.
We can reinterpret the cobordism W as being obtained from r0, 1s ˆ pY1 ´NpK1qq by attaching a
set of 4-dimensional handles along the region 1 ˆ intpY1 ´NpK1qq. Hence, this induces a map:

FW,n : ΓK1
n Ñ ΓK2

φpnq

for all n. Note here that φpnq is the slope of the image of Γn with respect to the framing pushed
forward by φ, and it might be different from the Seifert framing of K2. Note that, as in [BS16], the
bypass maps are obtained by gluing contact handles to BpY1 ´NpK1qq and are hence disjoint from
the handles associated with W . As a result, we have the following commutative diagram:

ΓK1
n

FW,n

��

ψn
´.n`1 // ΓK1

n`1

FW,n`1

��
ΓK2
n

ψn
´.n`1 // ΓK2

n`1

Consequently, by passing to the direct limit, we obtain the map F´
W . Essentially, the same argument

also substantiates the following:

Lemma 2.8. The map F´
W defined as above is a CrU s-module morphism.

Lemma 2.9. Suppose we have two null-homologous knots K1 Ă Y1 and K2 Ă Y2. Suppose W 1 is a
cobordism from Y1 to Y2 obtained from r0, 1s ˆ Y1 by attaching a set of 4-dimensional handles along
the region 1 ˆ intpY1 ´NpK1qq. The same set of handles also defines a special cobordism, W , from
Y1 ´NpK1q to Y2 ´NpK2q. Then we have a commutative diagram:

KHI´pY1,K1q
F´

W //

F´
K1
��

KHI´pY2,K2q

F´
K2
��

I#pY1q
FW 1 // I#pY2q

2.4. Borromean knots and the H1-action on instanton Floer homology. In this section we
review some basic facts related to the Borromean knots, which will later be used in the construction
of cobordism maps for KHI´. For any n P Zě0, we denote Zn “ #npS1 ˆ S2q. Let B1 Ă Z2 be the
Borromean knot, as depicted in 3. Let Bn “ #nB1 Ă Z2n, representing the connected sum of 2n
copies of B1. As indicated in [OS04, Section 9], the knot complement Z2 ´NpB1q is diffeomorphic
to S1 ˆ pT 2 ´D2q. On the boundary, the meridian of B1 aligns with S1, and the Seifert longitude
of B1 corresponds to BD2. We make the following observation.

Lemma 2.10. Suppose K Ă Y is a null-homologous knot and pλ, µq constitutes the Seifert framing
on the boundary of the knot complement. Let Σg be a compact, connected, oriented surface of genus
g with two boundary components α` and α´. Additionally, assume we have a diffeomorphism

f : BpY ´NpKqq Ñ S1 ˆ α` s.t. fpλq “ α`, and fpµq “ S1.

Then, we have a diffeomorphism
ˆ

pY ´NpKqq Y
f

pS1 ˆ Σgq

˙

–

ˆ

Y#Z2g ´NpK#Bgq

˙

.

Furthermore, if pλ7, µ7q is the Seifert framing of the connected sum knot K#Bg, then on the boundary
the above diffeomorphism identifies S1 with µ7 and α´ with λ7.
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B1

0

0

Figure 3. The Borromean knot B1 is inside Z2 “ S1 ˆ S2#S1 ˆ S2. The two
copies of S1 ˆ S2 arise from the zero surgeries on the two (black) components of
the Borromean link.

Proof. We first prove the case g “ 1. As in Figure 4, we pick a properly embedded arc β Ă Σ1

dividing it into two parts

Σ1 “ Σ0 Y
β
Σ1

1,

where Σ0 is an annulus and α` Ă BΣ0, and Σ1
1 is a once-punctured torus. As a result, we know

ˆ

pY ´NpKqq Y
f

pS1 ˆ Σ1q

˙

“

ˆ

pY ´NpKqq Y
f

pS1 ˆ Σ0q

˙

Y
S1ˆβ

ˆ

S1 ˆ Σ1
1

˙

.

Clearly, pY ´NpKqq Yf pS1 ˆ Σ0q is diffeomorphic to the knot complement Y ´NpKq; S1 ˆ Σ1
1 is

diffeomorphic to the knot complement Z2 ´NpB1q; and S1 ˆ β is an annular neighborhood of the
meridian on the two boundaries. Hence we are done for g “ 1.

Σ1
1

Σ0

α´α`

β

Figure 4. The surface Σ1 and the curve β.

For a general g, we can decompose Σg into g copies of Σ1 and use induction to complete the
proof. □

The instanton Floer homology of connected sums of S1 ˆ S2 have been computed in [Sca15,
Section 7.8]. In particular, we have the following.
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Proposition 2.11. Suppose Z is a closed manifold that is diffeomorphic to connected sums of n
copies of S1 ˆ S2. Then there is a well-defined isomorphism

ϕn : Λ˚H1pZ;Cq
–

ÝÑ I7pZq.

The minus version KHI´ of the Borromean knot Bg Ă Z2g has been computed by the second
author and Ye in [LY22b]. In particular, we have the following.

Proposition 2.12. Suppose Bg Ă Z2g is defined as above. Then for any grading j, the map

F´
Bg,j

: KHI´pZ2g, Bg, jq Ñ I7pZ2gq

is injective with image

F´
Bg,j

ˆ

KHI´pZ2g, Bg, jq

˙

“ ϕ2g

ˆ

à

0ďkďg´j

ΛkH1pZ2g;Cq

˙

Furthermore, under these identifications, the U -action

U : KHI´pZ2g, Bg, jq Ñ KHI´pZ2g, Bg, j ´ 1q

coincide with the inclusion

ϕ2g

ˆ

à

0ďkďg´j

ΛkH1pZ2g;Cq

˙

ãÑ ϕ2g

ˆ

à

0ďkďg´j`1

ΛkH1pZ2g;Cq

˙

Now with the identification from above Propositions, we identify I7pZ2gq with Λ˚H1pZ2g;Cq and
omit the isomorphism ϕ2g. We can take a set of generators θ1, ..., θ2g of H1pZ2g;Cq and view them
as elements of I7pZ2gq. Note that for any element α P H1pZ2gq, there is a µpαq-action

µpαq : I#pZ2gq Ñ I#pZ2gq.

As in [LY22b], we can describe the H1pZ2gq-action on I#pZ2gq as follows: we can choose a second
set of basis ι1, ..., ιg of H1pZ2g;Cq, and treat the H1pZ2gq-action on I7pZ2gq as the contraction:

ιipθjq “

#

1 i “ j

0 i ‰ j
, and ιipα ^ βq “ ιipαq ^ β ` p´1qdegpαqα ^ ιipβq.

Definition 2.13. For the knot Bg Ă Z2g, define

νg “ F´1
Bg,´g

pθ1 ^ ...^ θ2gq P KHI´pZ2g, Bg,´gq.

Remark 2.14. Note, as mentioned in Remark 1.3, that sutured instanton Floer homology is well-
defined only up to a scalar. For different choices of basis elements θ1,..., θg, their total wedge product
differs by a scalar (ΛgH1pZ2g;Cq is 1-dimensional). If we want to make an explicit choice of the basis
elements θi as well as νg, we can refer to [Sca15, Section 7.8], where all such elements in I#pZ2nq

are chosen as the relative invariants of suitably chosen four manifolds bounded by Z2n.

Note that for any g1, g2 P Zě0, we have

pZ2pg1`g2q, Bg1`g2q “ pZ2g1 , Bg1q#pZ2g2 , Bg2q,

and hence we have a map as in Section 2.2

ρ : KHI´pZ2g1 , Bg1q bKHI´pZ2g2 , Bg2q Ñ KHI´pZ2pg1`g2q, Bg1`g2q.

Lemma 2.15. We have the following identity

ρpνg1 b νg2q “ νg1`g2 .
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Proof. In [GLW19], the authors proved the following commutative diagram

KHI´pZ2g1 , Bg1q bKHI´pZ2g2 , Bg2q
ρ //

F´
Bg1

bF´
Bg2

��

KHI´pZ2pg1`g2q, Bg1`g2q

F´
Bg1`g2
��

I#pZ2g1q b I#pZ2g2q
F# // I#pZ2g1`2g2q

Here, the map

F# : I#pZ2g1q b I#pZ2g2q Ñ I#pZ2g1`2g2q

comes from taking the connected sum of two manifolds. The fact

F#

ˆ

pθ1 ^ ...^ θ2g1q b pθ1
1 ^ ...^ θ1

2g2q

˙

“ θ1 ^ ...^ θ2g1 ^ θ1
1 ^ ...^ θ1

2g2

follows from [SS18, Section 7.8]. (Essentially, the elements in I#pZnq for (n “ g1, g2, g1 ` g2) are
the relative invariants from boundary connected sums of n copies of S1 ˆ D3, and F# maps the
tensor product of such elements to such elements.) □

Now recall Zn is the connected sum of n copies of S1 ˆ S2 (and Z0 “ S3). Zn can be obtained
from Zn´1 by a 0-surgery along an unknot. As a result, we can form a cobordism Wn

n´1 from Zn to
Zn´1. For n ą m ě 0 write

Wn
m “ Wm`1

m Y ...YWn
n´1.

Let

Gnm : I7pZnq Ñ I7pZmq

be the associated cobordism map. We have the following.

Lemma 2.16. For any n ą m ě 0, the map Gnm is surjective.

Proof. For any k, the map Gkk´1 fits into an exact sequence

I7pZkq // I7pZkq

yy
I7pZk`1q

Gk`1
k

ee

Hence the surjectivity follows from Proposition 2.11. □

Note that when we obtain Y2g from S3 by performing 0-surgeries along the unlink U2g, there
exists an unknot U1 Ă S3, disjoint from U2g, that becomes the knot Bg Ă Z2g. Consequently,
the 0-surgeries give rise to a special cobordism Xn

m from Z2n ´ NpBnq to Z2m ´ NpBmq. Here,
B0 “ U1 Ă Z0 “ S3. As in Section 2.3, we then obtain a map.

Fnm “ F´
Xn

m
: KHI´pZ2n, Bnq Ñ KHI´pZ2m, Bmq.

Lemma 2.17. For the map F 2g
0 defined as above, we have

F 2g
0 pνgq “ Ug P KHI´pS3,U1,´gq.

Furthermore, for k ă 2g, we have

F 2g
0 pθi1 ^ ...^ θikq “ 0.
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Proof. From Lemma 2.9, there is a commutative diagram

KHI´pZ2g, Bgq
F 2g

0 //

F´
Bg

��

KHI´pS3,U1q

F´
U1
��

I7pZ2gq
G2g

0 // I7pS3q

Note the map G2g
0 is also equivariant with the H1-action. Since H1pS3q “ 0, we know for i “ 1, ..., 2g,

G2g
0 ˝ιi “ 0. As a result, from the above commutative diagram and the fact that F´

U1
is an isomorphism

on KHI´pS3,U1, jq for any j (c.f. Lemma 2.2), we know that.

F 2g
0 pθi1 ^ ...^ θikq “ 0

For any k ă 2g. Furthermore, Lemma 2.16 implies that F 2g
0 pνgq ‰ 0. Note the unknot U1 bounds a

genus-g surface in the link complement S3 ´NpU2gq, which becomes a minimal genus Seifert surface

of Bg Ă Z2g. We conclude that the map F 2g
0 preserves grading. Consequently, we conclude that

F 2g
0 pνgq “ Ug P KHI´pS3,U1,´gq.

□

3. Maps associated to knot cobordisms

In this section, we describe cobordism maps associated with various types of cobordisms between
knots.

3.1. A relative invariant. Assume that W is a connected, compact, oriented 4-manifold such that
BW “ Y . Let Σg be a connected, compact, oriented surface properly embedded, so that

K “ BΣg X Y

is a null-homologous knot. Then we can associate an element

θpW,Σgq P KHI´pY,Kq

For the pair pW,Σgq, the procedure is as follows. Take M “ S1 ˆ Σg. There is a canonical framing
on BM – T 2, where the meridian is the S1-direction and the longitude is the BΣg-direction. As
in Section 2.4, if Z2g is the Dehn filling of M along meridian, then Z2g is diffeomorphic to the
connected sum of 2g copies of S1 ˆ S2 and the core of the solid torus becomes the Borromean knot
B2g Ă Z2g. Now as in Proposition 2.11, there is a well-defined isomorphism

ϕ2g : Λ
˚H1pZ2g;Cq Ñ I#pZ2gq.

Hence we can pick the element νg P KHI´pZ2g, Bgq as in Definition 2.13. As in Section 2.3,
W ´NpΣgq can be viewed as a special cobordism from the Borromean knot complement Z2g´NpBgq

to the knot complement Y ´NpKq. This leads to a map:

F´

W´NpΣgq
: KHI´pZ2g, Bgq Ñ KHI´pY,Kq.

We can then define

(3.1) θpW,Σgq “ F´

W´NpΣgq
pνgq,
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3.2. Cobordism between two knots. Assume that for i “ 0, 1, we have a null-homologous knot
Ki Ă Yi, and W is a connected oriented 4-manifold so that

BW “ ´Y0 Y Y1.

Definition 3.1. A specially decorated knot cobordism pW,Σg,Dq : pY0,K0q Ñ pY1,K1q between
two knots consists of a pair pW,Σgq where Σ Ă W is a properly embedded surface with ΣXYi “ Ki,
and a codimension-0 sub-manifold D Ă Σg equipped with an embedding

η : r0, 1s ˆ r0, 1s Ñ D

with

D XK0 “ ηpt0u ˆ r0, 1sq and D XK1 “ ηpt1u ˆ r0, 1sq.

See Figure 5.

K0

K1

D

β

Σ1
gΣ0

Figure 5. The shaded region is the decoration D, and the red curve is β.

We define a map

FW,Σg,D : KHI´pY0,K0q Ñ KHI´pY1,K1q

as follows. Let

β1 “ ηpr0, 1s ˆ t0, 1uq Y pK0 ´ ηpt0u ˆ r0, 1sqq

and β be obtained from β1 by smoothing the corner and being pushed into the interior of Σg ´ D.
See Figure 5 The curve β cuts the surface Σg into two parts:

Σg “ Σ0 Y
β
Σ1
g
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where Σ0 is an annulus with a canonical identification Σ0 “ r0, 1s ˆK0 and Σ1
g is its complement.

Note that, as in Lemma 2.10,
S1 ˆ Σ1

g – Z2g ´NpBgq

and

ˆ

pY0 ´NpK0qq Y pS1 ˆ Σgq

˙

can be identified as the complement of the connected sum knot:

ˆ

pY0 ´NpK0qq Y pS1 ˆ Σgq

˙

–

ˆ

Y0#Z2g ´NpK0#Bgq

˙

,

where the connected sum is performed along the annular region S1 ˆ β. As a result, we have the
map

ρ : KHI´pY0,K0q bKHI´pZ2g, Bgq Ñ KHI´pY0#Z2g,K0#B2gq.

Take νg P KHI´pZ2g, Bgq as in Definition 2.13. The 4-manifold W ´ NpΣgq can be viewed as a
special cobordism from Y0#Z2g ´NpK0#Bgq to Y1 ´NpK1q, so it induces a special cobordism and
hence a map between the minus versions as in Section 2.3. We can finally define FW,Σg,D as:

(3.2) FW,Σg,Dpxq “ F´

W´NpΣgq
˝ ρpxb νgq.

Lemma 3.2. The map FW,Σg,D is a CrU s-module morphism.

Proof. It follows from Lemma 2.6 and Lemma 2.8. □

Lemma 3.3. Suppose we have a cobordism pW,Σg,Dq from pY0,K0q to pY1,K1q and a cobordism
pW 1,Σ1

g1 ,D1q from pY1,K1q to pY2,K2q. Suppose further that DYD1 is also a decoration on ΣgYΣ1g1.
Then we have the following identity:

FWYW 1,ΣgYΣ1
g1 ,DYD1 “ FW 1,Σ1

g1 ,D1 ˝ FW,Σ,D.

Proof. The proof of this lemma is essentially the same as the argument in [Li21a]. From the definition
of the cobordism map, we know

FW 1,Σ1
g1 ,D1 ˝ FW,Σ,Dpxq “ F´

W 1´NpΣ1
g1 q

˝ ρ1

ˆ

pF´

W´NpΣgq
˝ ρpxb νgqq b νg1

˙

,

where
ρ : KHI´pY0,K0q bKHI´pZ2g, B2gq Ñ KHI´pY0#Z2g,K0#Bgq,

and
ρ1 : KHI´pY1,K1q bKHI´pZ2g1 , B2g1 q Ñ KHI´pY1#Z2g1 ,K1#Bg1 q.

Note that the handles involved in constructing the map F´

W´NpΣgq
are glued to the region

int

ˆ

pY0 ´NpK0q Y pS1 ˆ Σgq

˙

,

while the map ρ1 is constructed via gluing contact handles to

B

ˆ

Y1 ´NpK1q

˙

“ B

ˆ

pY0 ´NpK0q Y pS1 ˆ Σgq

˙

.

Hence, essentially the two maps ρ1 and F´

W´NpΣgq
commute, and we have

FW 1,Σ1
g1 ,D1 ˝ FW,Σ,Dpxq “ F´

W 1´NpΣ1
g1 q

˝ ρ1

ˆ

pF´

W´NpΣgq
˝ ρpxb νgqq b νg1

˙

“ F´

W 1´NpΣ1
g1 q

˝ F´

W´NpΣgq
˝ ρ2

ˆ

ρpxb νgq b νg1

˙

,
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where we have

ρ2 : KHI´pY0#Z2g,K0#Bgq bKHI´pZ2g1 , B2g1 q Ñ KHI´pY0#Z2g#Z2g1 ,K0#Bg#Bg1 q.

Note that the contact handles associated to ρ2 and ρ are attached in disjoint regions so they commute,
and we obtain the following equality

ρ2

ˆ

ρpxb νgq b νg1

˙

“ ρp3q

ˆ

xb ρp4qpνg b νg1 q

˙

rby Lemma 2.15s “ ρp3qpxb νg`g1 q,

where we have

ρp3q : KHI´pY0,K0q bKHI´pZ2pg`g1q, Bg`g1 q Ñ KHI´pY0#Z2pg`g1q,K0#Bg`g1 q

and

ρp4q : KHI´pZ2g, Bgq bKHI´pZ2g1 , Bg1 q Ñ KHI´pZ2pg`g1q, Bg`g1 q.

Finally, the handles involved in F´

W 1´NpΣ1
g1 q

and F´

W´NpΣgq
together give rise to handles involved in

F´

pWYW 1q´NpΣgYΣ1
g1 q

. As a result, we have

FW 1,Σ1
g1 ,D1 ˝ FW,Σ,Dpxq “ F´

W 1´NpΣ1
g1 q

˝ F´

W´NpΣgq
˝ ρ2

ˆ

ρpxb νgq b νg1

˙

“ F´

pWYW 1q´NpΣgYΣ1
g1 q

˝ ρp3qpxb νg`g1 q

“ FWYW 1,ΣgYΣ1
g1 ,DYD1 pxq.

□

3.3. Three ends. Suppose that for i “ 0, 1, 2, we have null-homologous knots Ki Ă Yi such that
K1 Ă Y1 is the unknot. Suppose W is a compact, connected, oriented 4-manifold such that

BW “ ´Y0 Y ´Y1 Y Y2

and Σg Ă W is a properly embedded surface such that Σg X Yi “ Ki for i “ 0, 1, 2. We also want a
decoration on Σg. Let D Ă Σg be a sub-manifold such that there is a diffeomorphism

η : H Ñ D,
where H is a regular hexagon whose six edges are labeled as e1,..., e6 in order, with the following
property: For i “ 0, 1, 2, we have

D XKi “ ηpe2i`1q.

Take β1 “ ηpe6q Y pK0 ´ ηpe1qq Y ηpe2 Y e3 Y e4q, and δ1 “ β1 ´ ηpe3q Y pK1 ´ ηpe3qq. We smooth
and push β1 and δ1 to obtain properly embedded curves β and δ, respectively, so that

Σg “ Σ0 Y Σ1
0 Y Σ1

g,

where Σ0 and Σ1
0 are both annuli, K0 Ă BΣ0, and K1 Ă BΣ1

0. This data specifies an identification
ˆ

pY0 ´NpK0qq \ pY1 ´NpK1qq Y S1 ˆ Σg

˙

–

ˆ

Y0#Y1#Z2g ´NpK0#K1#Bgq

˙

.

Picking an element θ P KHI´pY1,K1q and taking νg P KHI´pZ2g, Bgq as in Definition 2.13, we
can define a cobordism map

FW,Σg,D,θ : KHI
´pY0,K0q Ñ KHI´pY2,K2q
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e1

e3e5

K0 K1

K2

H

D

β

Σ1
g

Σ1
0

Σ0

β

δ

Figure 6. The shaded region is the decoration D, the red curve is β, and the blue
curve is δ.

by taking

(3.3) FW,Σg,D,θpxq “ F´

W´NpΣgq
˝ ρ1

ˆ

`

ρpxb θq
˘

b νg

˙

,

where

ρ : KHI´pY0,K0q bKHI´pY1,K1q Ñ KHI´pY0#Y1,K0#K1q,

and

ρ1 : KHI´pY0#Y1,K0#K1q bKHI´pZ2g, Bgq Ñ KHI´pY0#Y1#Z2g,K0#K1#Bgq.

Using essentially the same argument as in Section 3.2, we can conclude the following.

Lemma 3.4. The map FW,Σg,D,θ defined as above is a CrU s-module morphism.

Lemma 3.5. Suppose pW,Σg,Dq is a cobordism from pY0,K0q \ pY1,K1q to pY2,K2q, where K1 is
the unknot. Suppose pW 1,Σ1

g1 q is a cobordism from H to pY1,K1q, as in Section 3.1. On Σg Y Σ1
g1 ,

we can smoothly round the corners of D that are in the interior of Σg Y Σ1
g1 to make it a decoration

in the sense of Section 3.2. Then there is an identity

FWYW 1,ΣgYΣ1
g1 ,D “ FW,Σg,D,θpW 1,Σ1

g1 q.

4. The tube attachment lemma

Proposition 4.1. Let Y1 “ Y2 “ S3 and W “ r0, 1s ˆ S3. Suppose Σg Ă W is a properly embedded
surface so that for i “ 0, 1, Σg X iˆ S3 is a knot Ki. Let D Ă Σg be a decoration in the sense of
Section 3.2. Let α Ă intpW q be a connected simple arc so that α X Σg “ Bα and α X D “ H. We
can remove the neighborhood of Bα Ă Σg and attach a tube to Σg along α to create a new surface
Σg`1 Ă W . Then D is still a decoration on Σg`1. Then, we have the following identity.

FW,Σg`1,D “ U ¨ FW,Σg,D.

Proof. Let B Ă
ş

pΣgq be a disk that contains Bα and B X D “ BB X BD Ă ηpr0, 1s ˆ t1uq.
Let N1 be a 4-ball neighborhood of B Ă W and N2 be a 4-ball neighborhood of α Ă W so
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that W 2 “ N1 Y N2 – S1 ˆ D3. Let W 1 “ W ´ W 2, Σ1
g “ Σg`1 X W 1, Σ2

0 “ Σg X W 2, and

Σ2
1 “ Σg`1 XW 2. Let D1 “ D X Σ1

g. Note that BW 2 – S1 ˆ S2,

U1 “ Σ2
0 X BW 2 “ Σ2

1 X BW 2

is an unknot, and D1 is a decoration on Σ1
g in the sense of Section 3.3. By Lemma 3.5, we know

FW,Σg,D “ FW 1,Σ1
g,D1,θpW2,Σ2

0q,

and
FW,Σg`1,D “ FW 1,Σ1

g,D1,θpW2,Σ2
1q.

Hence, the proof of Proposition 4.1 is reduced to proposition 4.3 below by the fact that the cobordism
maps are CrU s-module homomorphisms as in Lemma 3.2 and Lemma 3.4. □

Lemma 4.2. The special cobordism D´NpΣ2
1q coincides with the cobordism X1

0 in Section 2.4.

0

0

0

0

0

0

0

0

0

Figure 7. Left: the special cobordism D´NpΣ2
1q. Right: the manifold X01. The

red circles denote the attaching cycles of the 4-dimensional 2-handles for the special
cobordism.

Proof. We observe that Σ2
1 can be obtained by attaching two 2-dimensional 1-handles to the unknot

which are dual to each other as in Figure 7. We now introduce a cancelling pair of 4-dimensional 1-
and 2-handles that define the product S3 ˆ I so that each 1-handle is a tubular neighbourhood of
the 2-dimensional 1-handle or the band attached to the unknot. The 1-handles now are contained in
NpΣ2

1q, and therefore disappears when we consider D´NpΣ2
1q. Hence the special cobordisms are

given by two 4-dimensional 2-handles. See Figure 7. □

Proposition 4.3. Under the notations in the proof of Proposition 4.1, we have the following identity:

θpW 2,Σ2
1q “ U ¨ θpW 2,Σ2

0q.

Proof. In [? ], the authors constructed an Z2-grading on KHI´, such that the U action preserves
this Z2-grading. We can take νg to be a homogeneous element with respect to this Z2-grading. Since
all the maps involved in the paper come from cobordism maps, they are all homogeneous. Note that
W 2 is diffeomorphic to S1 ˆD3, so we can attach a 4-dimensional 2-handle to make it a D4. Also,
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BW 2 – S1 ˆS2, and this 4-dimensional 2-handle corresponds to a Dehn surgery along S1 to make it
S3. Since this 4-dimensional handle attachment is disjoint from the knot, a routine argument shows
that it induces a grading-preserving map between KHI´, which commutes with maps coming from
contact handle attachments along the boundary of the knot complement. As a result, we have the
following commutative diagram:

KHI´pZ2, B1q
“ //

F´

W2´NpΣ2
1q

��

KHI´pZ2, B1q

F´

D4´NpΣ2
1q

��
KHI´pZ1,U1q

F´
1 //

F´
U1
��

KHI´pS3,U1q

F´
U1
��

I#pS3q
G#

1 // I#pZ1q
F#

1 // I#pS3q

Here F´
1 and F#

1 are the maps associated to the 4-dimensional 2-handle attachment, and G#
1 is

obtained by attaching a 4-dimensional 1-handle to B4 that forms W 2. The 4-dimensional 1- and
2-handles forms a canceling pair, so we know

F#
1 ˝G#

1 “ id.

As a result F#
1 is surjective. On the other hand, as above it correspond to a surgery along

S1 Ă S1 ˆ S2, so it kills the class rS1s P H1pS1 ˆ S2q. As a result, using H1-actions, we can show
that

kerpF#
1 q “ kerµprS1sq “ Spanp1q Ă I#pS1 ˆ S2q.

(Recall I#pS1 ˆ S2q has two generators 1 and θ1 as in Section 2.4) Hence we must have F#
1 pθ1q “

1 P I#pS3q.
Note that we start with the element ν1 P KHI´pZ2, B1q. From Lemma 4.2, we know that the

special cobordism D´NpΣ2
1q coincides with the cobordism X1

0 in Section 2.4, so we conclude from
Lemma 2.17 that

F´

D4´NpΣ2
1q

pν1q “ U P KHI´pS3,U1,´1q.

Furthermore, we know that

F´
U1

˝ F´

D4´NpΣ2
1q

pν1q “ 1 P I7pS3q.

Since F´
1 is grading-preserving as discussed above, we know

F´

W2´NpΣ2
1q

pν1q P KHI´pS1 ˆ S2,U1,´1q.

Note that by Lemma 2.2 we have

KHI´pS1 ˆ S2,U1,´1q “ SpanpU ¨ 1, U ¨ θ1q

and we have an isomorphism

F´
U1

: KHI´pS1 ˆ S2,U1,´1q Ñ I#pS1 ˆ S2q

Since all elements are homogeneous, the only possibility is that

θpW 2,Σ2
1q “ F´

W2´NpΣ2
1q

pν1q “ U ¨ θ1.
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The computation for θpW 2,Σ2
0q is essentially the same, but simpler as after attaching the 4-

dimensional 2-handle, the special cobordism D4 ´NpΣ2
0q is simply a product one. As a result, we

can conclude that
θpW 2,Σ2

0q “ θ1 P KHI´pS1 ˆ S2,U, 0q.

and hence
θpW 2,Σ2

1q “ U ¨ θpW 2,Σ2
0q.

□

5. Torsion order and connected sum

In this section, we prove the following result.

Proposition 5.1. Suppose K1 and K2 are two knots in S3. Then we have the following equality

ordU pK1#K2q “ maxtordU pK1q, ordU pK2qu.

Lemma 5.2. Suppose A and B are two Z-graded finitely generated rank-one CrU s-modules so that
U has degree ´1. Then

ordU pArbBq “ maxtordU pAq, ordU pBqu.

Proof. We denote the U -action on A as U1, and the action on B as U2. Choose a P A as a U1-free
element at the highest grading in A, and b P B as a U2-free element at the highest grading in B.
We can treat A and B as complex vector spaces and select a set of homogeneous bases for each,
ensuring that the following conditions are met.

(1) The elements U j1a for j P Zě0 are all in the basis for A, and any other element in the basis
of A is U -torsion.

(2) The elements U j2 b for j P Zě0 are all in the basis for B, and any other element in the basis
of B is U -torsion.

Assume, without loss of generality, we have

r “ ordU pAq ě ordU pBq.

Step 1. We show that ordU pArbBq ě maxtordU pAq, ordU pBqu. Take a1 P A a homogeneous
element so that Ur1a

1 ‰ 0 but Ur`1
1 a1 “ 0. Now take the element x “ a1 b b P AbB. We would like

to show that Ur1x R ImpU1 ` U2q.
Assume the contrary, i.e., we have

pU1 ` U2q

n
ÿ

i“1

λi ¨ pai b biq “ a1 b b.

where all ai and bi are included in the chosen bases for A and B, respectively. Since b is a free
element in the basis, there must be at least one free element among the bi. Without loss of generality,
we can assume that b1 is the free element with the lowest grading, that b2 through bm are equal to
b1, and that bi differs from b1 for i ranging from m` 1 to n. It is important to note that B has a
rank of one as a CrU s-module, which means b1 is the sole free element in the basis at its particular
grading. Consequently, we observe the following:

(5.1) a1 b b “

m
ÿ

i“1

λi ¨ ai b pU2b1q ` pother higher grading or U2-torsion termsq.

Thus, we conclude that m “ 1, λ1 “ 1, a1 “ a1, and b “ U2b1. However, this conclusion contradicts
the selection of b as a U -free element of maximal grading.
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Consequently, Ur1x does not fall within the image of U1 ´ U2, indicating that rUr1xs is non-zero
in cokerpU1 ´ U2q and subsequently embeds into ArbB. Nonetheless, Ur`1

1 x “ pUr`1
1 a1 b bq “ 0.

Therefore, we deduce that rxs corresponds to a U -torsion element in ArbB with order r, leading us
to the following conclusion

ordU pArbBq ě maxtordU pAq, ordU pBqu.

Step 2. We show that ordU pArbBq ď maxtordU pAq, ordU pBqu. We can regard ArbB as kerpU1 ´

U2q ‘ cokerpU1 ´U2q. As a result, we treat the kernel and co-kernal parts separately. First, suppose

x “

n
ÿ

i“1

λi ¨ pai b biq P kerpU1 ´ U2q.

If we take a1 b b “ 0 in Equation (5.1), we conclude that no bi could be U2-free. As a result, we
conclude that any such element has torsion order at most ordU pBq.

Second, suppose

x “

n
ÿ

i“1

λi ¨ pai b biq R ImpU1 ´ U2q

is an element so that rxs P cokerpU1 `U2q is U -torsion. We may assume that for i “ 1, ...,m, both ai
and bi are free, and for i “ m` 1, ..., n, either ai or bi is torsion. Take k large enough, we conclude
that

Uk1U
k
2 x “

m
ÿ

i“1

λi ¨ pUk1 aiq b pUk2 biq.

Note that at sufficiently low gradings, the torsion components of both A and B do not contribute to
ArbB. Therefore, the low-grade portions of ArbB correspond to the standard model of CrU srbCrU s.
Consequently, it is evident that if all ai and bi are free, and k is sufficiently large, then:

m
ÿ

i“1

λi ¨ pUk1 aiq b pUk2 biq P ImpU1 ` U2q ô

m
ÿ

i“1

λi ¨ paiq b pbiq P ImpU1 ` U2q.

As a result, we conclude that

rxs “ ry “

n
ÿ

i“m`1

λi ¨ pai b biqs P cokerpU1 ` U2q.

Now for each i “ m` 1, ..., n, either ai or bi is torsion, so we conclude that rxs has torsion order at
most r “ ordU pAq ě ordU pBq. □

6. Bridge index, torsion order, and Dehn surgeries

Proof of Theorem 1.7. Suppose K Ă S3 is a knot with bridge index b. A well-known observation is
the following (c.f. [JMZ20, Section 1.6]).

Lemma 6.1. For a knot K of bridge index b, we can attach pb´ 1q bands to K# sK to make it a
b-component unlink Ub.

Consider the cobordism S arising from Lemma 6.1 in the manifold W “ r0, 1s ˆ S3, connecting
K# sK Ă 0 ˆ S3 to Ub Ă 1 ˆ S3. Let sS be the horizontal mirror image of S. As demonstrated in the
proof of [JMZ20, Lemma 4.1], the cobordism S Y sS can be derived from a concordance by attaching
pb´ 1q tubes in two different ways:



KNOT COBORDISM, TORSION ORDER AND FRAMED INSTANTON HOMOLOGY 21

(1) S Y sS can be obtained from a concordance R Y sR by attaching pb ´ 1q tubes, where R is
obtained from S by capping off pb´ 1q components of the unlink Ub.

(2) S Y sS can be obtained from a product concordance P by attaching pb´ 1q tubes.

Essentially, when considering R Y sR, attaching tubes is the reverse process of capping off. To
understand why there is a product cobordism, observe that S is derived from the product concordance
by attaching pb´ 1q bands. Each band, along with its mirror image in sS, results in a tube being
attached to the product cobordism. Let 1 P KHI´pY2g, Bg, gq be the generator for any g. We
can choose a decoration D that is independent of any of these constructions. Now, by applying
Proposition 4.1, we conclude that:

U b´1 ¨ FW,RY sR,D “ FW,SYS̄,D “ U b´1 ¨ FW,P,D : KHI´pK# sKq Ñ KHI´pK# sKq.

Note that R Y sR factors through the unknot U1. As a result, we can conclude, using Lemma 2.2
and Lemma 2.7, that U b´1 “ 0 on the torsion part of KHI´pK# sKq. This implies that:

ordU pK# sKq ď b´ 1 “ brpKq ´ 1.

This completes the proof of Theorem 1.7 as per Proposition 5.1. □

Proof of Theorem 1.4. Suppose K Ă S3 is an alternating knot of bridge index ď 3, then Theorem
1.7 and Lemma 2.4 implies that ordU pKq “ 1 and hence Proposition 1.6 applies and we are done. □
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