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ON THE DISCRIMINATOR OF LUCAS SEQUENCES. II

M.FERRARI, F. LUCA AND P.MOREE

Abstract. The family of Shallit sequences consists of the Lucas sequences satisfying the recurrence
Un+2(k) = (4k + 2)Un+1(k) − Un(k), with initial values U0(k) = 0 and U1(k) = 1 and with k ≥ 1
arbitrary. For every fixed k the integers {Un(k)}n≥0 are distinct, and hence for every n ≥ 1 there
exists a smallest integer Dk(n), called discriminator, such that U0(k), U1(k), . . . , Un−1(k) are pairwise
incongruent modulo Dk(n). In part I it was proved that there exists a constant nk such that Dk(n) has a
simple characterization for every n ≥ nk. Here, we study the values not following this characterization
and provide an upper bound for nk using Matveev’s theorem and the Koksma-Erdős-Turán inequality.
We completely determine the discriminator Dk(n) for every n ≥ 1 and a set of integers k of natural
density 68/75. We also correct an omission in the statement of Theorem 3 in part I.

1. Introduction

1.1. Motivation. The discriminator of a sequence a = {an}n≥0 of distinct integers is the sequence
{Da(n)}n≥0 with

Da(n) := min{m ≥ 1 : a0, . . . , an−1 are pairwise distinct modulo m}.
In other words, Da(n) is the smallest positive integer m that discriminates (tells apart) the integers
a0, . . . , an−1 on reducing them modulo m.

Note that n ≤ Da(n) ≤ max{a0, . . . , an−1} −min{a0, . . . , an−1}+ 1. Put

Da := {Da(n) : n ≥ 1}.
The main challenge is to give an easy description or characterization of Da(n). Unfortunately for most
sequences a such a characterization does not seem to exist (see part I by Faye, Luca and Moree [4] for
references to the earlier literature).

Let U(k) be the sequence {Un(k)}n≥0 with U0(k) = 0, U1(k) = 1 and

Un+2(k) = (4k + 2)Un+1(k)− Un(k).

It has Binet form as in (6) below. In this paper we continue the work of determining the discriminator
DU(k)(n) (which for brevity we denote by Dk(n)), which was initiated in part I. A typical example is
provided in Tab. 1. The project is inspired by conjectures made by Jeffrey Shallit.

n D16(n) n D16(n) n D16 n D16(n)

1 1 257− 272 24 · 17 2313− 2400 25 · 53 19653− 32768 215

2 2 273− 300 22 · 53 2401− 4096 212 32769− 34816 211 · 17
3− 4 22 301− 512 29 4097− 4352 28 · 17 34817− 36992 27 · 172

5− 8 23 513− 544 25 · 17 4353− 4624 24 · 172 36993− 39304 23 · 173

9− 16 24 545− 578 2 · 172 4625− 4800 26 · 53 39305− 65536 216

17− 32 25 579− 600 23 · 53 4801− 8192 213 65537− 69632 212 · 17
33− 34 2 · 17 601− 1024 210 8193− 8704 29 · 17 69633− 73984 28 · 172

35− 64 26 1025− 1088 26 · 17 8705− 9248 25 · 172 73985− 78608 24 · 173

65− 68 22 · 17 1089− 1156 22 · 172 9249− 9826 2 · 173 78609− 131072 217

69− 128 27 1157− 1200 24 · 53 9827− 16384 214 131073− 139264 213 · 17
129− 136 23 · 17 1201− 2048 211 16385− 17408 210 · 17 139265− 147968 29 · 172

137− 150 2 · 53 2049− 2176 27 · 17 17409− 18496 26 · 172 147969− 157216 25 · 173

151− 256 28 2177− 2312 23 · 172 18497− 19652 22 · 173 157217− 167042 2 · 174

Table 1. The discriminator for k = 16 and 1 ≤ n ≤ 167042

Date: February 5, 2024.
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2 M.FERRARI, F. LUCA AND P.MOREE

We now recall the two main results from part I.

Theorem 1.

a) Let sn be the smallest power of 2 such that sn ≥ n. Let tn be the smallest integer of the form 2a · 5b
satisfying 2a · 5b ≥ 5n/3 with a, b ≥ 1. Then

D1(n) = min{sn, tn}.
b) Let e ≥ 0 be the smallest integer such that 2e ≥ n and f ≥ 1 the smallest integer such that 3·2f ≥ n.

Then
D2(n) = min{2e, 3 · 2f}.

The second main result shows that the behavior of the discriminator Dk with k > 2 is very different
from that of D1. It corrects Theorem 3 in part I, where the conditions on k involving 6 (mod 9) in
the definition of Bk were erroneously omitted. For details see Sec. 3.

Theorem 2 (Corrected version of Theorem 3 in [4]). Put

Ak =

{
{m odd : if p | m, then p | k} if k 6≡ 6 (mod 9);

{m odd, 9 - m : if p | m, then p | k} if k ≡ 6 (mod 9),

and

Bk =

{
{m even : if p | m, then p | k(k + 1)} if k 6≡ 6 (mod 9) and k 6≡ 2 (mod 9);

{m even, 9 - m : if p | m, then p | k(k + 1)} if k ≡ 6 (mod 9) or k ≡ 2 (mod 9).

Let k > 2 be fixed. We have
Dk(n) = n ⇐⇒ n ∈ Ak ∪ Bk. (1)

Furthermore,
Dk(n) ≤ min{m ≥ n : m ∈ Ak ∪ Bk}, (2)

with equality if the interval [n, 3n/2) contains an integer m ∈ Ak ∪ Bk. There are at most finitely
many n for which in (2) strict inequality holds.

Corollary 1. Let k ≥ 1. Then Dk(n) ≤ min{2b : 2b ≥ n}.

The corollary is rather trivial and can be easily proved directly ([4, Lemma 1]).
In (2) equality is more likely to hold if the set Ak ∪ Bk contains many elements. This will happen

if k(k + 1) is divisible by a small odd prime. Related to this the following quantity will play a role.

Definition 1. Let α > 1 be a given real number and p ≥ 3 be an arbitrary prime. We denote by
np(α) the smallest integer m such that the interval [n, nα) contains an even integer of the form 2a · pb
for every integer n ≥ m. If we drop the evenness requirement, we will write nop(α).

The existence of np(α) is guaranteed by [4, Lemma 19]. Note that nop(α) ≤ np(α). If n1, n2, . . . is an

infinite sequence of integers of the required form with 1 <
nj+1

nj
< α for every j ≥ 1, then it is easy to

see that nop(α) ≤ n1 (for further details see Sec. 2.8).
We do not need more than nop(α) and np(α), but the same ideas apply to numbers of the form

pa · qb, with p and q distinct primes. If m1,m2, . . . is the ordered sequence of these numbers, then
it was shown by Tijdeman [13] that there exist effectively computable constants c1 and c2 such that
(logmj)

−c1 � mj+1

mj
− 1 � (logmj)

−c2 . Later Langevin [7] gave explicit values for c1 and c2, which

were recently improved by Languasco et al. [8].
Theorem 3 is our main result and gives a complete characterization of Dk(n) for every n ≥ 1 and

k 6≡ 2, 6, 7, 12, 17, 18, 22 (mod 25), (3)

where for brevity we write k 6≡ a, b (mod m) for k 6≡ a (mod m) and k 6≡ b (mod m), and k ≡
a, b (mod m) for k ≡ a (mod m) or k ≡ b (mod m). It sharpens Theorem 2 and will be proved in
Sect. 5. The proof strategy is discussed in Sect. 1.3.

Theorem 3. Let k ≥ 1 be an arbitrary integer. Let Ak and Bk be as in Theorem 2 and define

Sk,n := {m ∈ Ak ∪ Bk : m ≥ n}.
Then

Dk(n) = minSk,n if k 6≡ 1 (mod 3).
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Next suppose that k ≡ 1 (mod 3), k 6≡ 2 (mod 5) and k 6≡ 6, 18 (mod 25). Then

Dk(n) =


minSk,n if k ≡ 0, 4 (mod 5),

min{Sk,n ∪ {m ≥ 5n/3 : m ∈ B5,k}} if k ≡ 1 (mod 5),

min{Sk,n ∪ {m ≥ 5n/3 : m ∈ A5,k ∪ B5,k}} if k ≡ 3 (mod 5),

(4)

with
A5,k := {m = a · 5b : a ∈ Ak and b ≥ 1}, B5,k := {m = a · 5b : a ∈ Bk and b ≥ 1}.

If k ≡ 1, 3 (mod 5), k 6≡ 6, 18 (mod 25) and k > 1, then Dk(n) = minSk,n if n ≥ np(
5
3) for some odd

prime divisor p of k(k + 1). If k > 1 is odd and p divides k, it suffices to require that n ≥ nop(5
3).

Observe that on taking k = 1 and k = 2 we recover Theorem 1. Theorem 3 shows that the case
k ≡ 1 (mod 3) is considerably more subtle than k 6≡ 1 (mod 3). However, if k ≡ 1 (mod 3) then Ak
and Bk take the simpler form

Ak = {m odd : if p | m, then p | k}, Bk = {m even : if p | m, then p | k(k + 1)}.
Further using (3) we deduce that Theorem 3 gives a complete characterization of the discriminator
for a set of integers k having density 1− 1

3 ·
7
25 = 68

75 .
If k is a power of two, then Ak ∪Bk only contains 1 as an odd number. It is thus natural to wonder

about the parity of D2e(n) for n > 1. In this direction Theorem 3 leads to the following corollary.

Corollary 2. If n > 1, e ≥ 0 with e 6≡ 4 (mod 10), then D4e(n) is even.

Finally, we observe that the interval [n, 3n/2) in Theorem 2 can often be replaced by a larger one.
Theorem 5 gives the details.

1.2. The exceptional set Fk. By (1) we know that Ak∪Bk ⊆ Dk. Inequality (2) suggests to consider
the exceptional set

Fk := Dk \ (Ak ∪ Bk),
that is,

Dk = Ak ∪ Bk ∪ Fk, (5)

with Fk disjoint from both Ak and Bk.

Lemma 1. Let k > 1 be an integer.
a) The set Fk is finite.
b) There are infinitely many k for which the set Fk is non-empty.
c) The cardinality of the set Fk can be larger than any given bound.

Proof. a) For k > 2 this is a direct consequence of Theorem 2 and the definition of Fk. For k = 2 it
follows from Theorem 1b.
b)+c). The idea is to take k ≡ 1 (mod N !) with N ≥ 5 large enough. Then Dk(n) = D1(n) for
n = 1, . . . , N, and thus the values involving 5 will appear (cf. part a) of Theorem 1). As 5 - k(k + 1),
these are not in Ak∪Bk, and so they must be in Fk. Since it can be shown that infinitely many values
of D1 are divisible by 5, the proof is completed. �

k mod 25 Fk (a = 125) k(k + 1) np(5/3)

16 16 {2a, 4a, 8a, 16a, 32a, 64a} 24 · 17 78644
73 23 {a, 2a, 4a, 8a, 16a} 2 · 37 · 73 1229
136 11 {2a, 4a, 8a, 16a, 32a} 23 · 17 · 137 78644
148 23 {a, 2a, 4a, 8a} 22 · 37 · 149 1229
271 21 {2a, 4a, 8a, 16a, 32a, 64a} 24 · 17 · 271 78644
283 8 {a, 2a, 4a, 8a, 16a, 32a} 22 · 71 · 283 4916
313 13 {a, 2a} 2 · 157 · 313 154

Table 2. Some non-empty exceptional sets Fk

Tab. 2 demonstrates Lemma 1a. Every number appearing in it is of the form 2b ·53 and explained by
Theorem 3 (which covers all the congruence classes mod 25 appearing in the table). The final column
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gives np(
5
3) for a prime p indicated in bold in the column headed k(k + 1). The number 5

3np(
5
3) is an

upper bound for the largest number in Fk. It is of crucial importance here to choose the right p, if
for k = 136 for example we would choose p = 137, then we end up with n137(5/3) = 2516583, whereas
for p = 17 we obtain n17(5/3) = 78644. The set given in the first row of Tab. 2 is certainly a subset
of F16 by Tab. 1.

In Sec. 6 we establish an effective, but unfortunately huge, upper bound for maxFk.

Theorem 4. For k > 3 we have

maxFk ≤ 2k
1010 log log k

.

1.3. Outline of the proof of Theorem 3. For m to be a potential discriminator value its rank of
appearance z(m) (see Def. 2) has to be large. The idea is now to first identify those values of m. This
is the object of Secs. 2.3–2.5, with basic properties of z(m) being recalled in Sec. 2.2.

If m is in Fk, then there is a unique prime power pe with p - k(k + 1) such that pe exactly divides
m. We call pe a wild prime power1 for k (the smallest one being 125, cf. Tab. 2). The major part of the
proof of Theorem 3 consists of showing that p = 5. This is the content of Theorem 6. The proof idea
is to replace a wild prime power by a suitable number of the form 2a · 5b and thus get a smaller, but
still discriminating, number. For this we need to ensure the existence of numbers of the form 2a · 5b in
small enough intervals, a problem in the realm of Diophantine approximation. This is studied in Sec.
2.8 (and in greater generality in Languasco et al. [8]).

Once we know that p = 5 we are left with a very restricted set of potential discriminator values. The
even ones have good discriminating properties, but in general not the odd ones. To weed these further
out we use a more refined quantity, the incongruence index, which unfortunately is more awkward to
work with than z(m). It is studied in Secs. 2.6–2.7, culminating in Lemma 20. The proof of Theorem
3 now follows (in essence) on combining this lemma with Theorem 6.

Remark 1. The congruence classes modulo 25 covered by Theorem 3 are precisely the congruence
classes for which z(25) = 15 (see Tab. 3) or z(25) = 25.

1.4. Outline of the proof of Theorem 4. Let m ∈ Fk. Write m = pe11 ·m1, where p1 - k(k + 1),
pe11 exactly divides m, and m1 consists only of prime factors of k(k + 1). We need to bound pe11 and
m1. We explain only the case when m1 is odd as the even case is similar. Let p be any odd prime
factor of k(k + 1). It follows from uniform distribution theory that there exists u such that{

(u+ 1)
log 2

log p

}
∈
(

log(4/3)

log p
,
log(3/2)

log p

)
.

This is containment (18). We show by an elementary argument that pe11 < 2u+1. Thus, it suffices to
bound u. This we do using the Koksma-Erdős-Turán inequality which bounds the discrepancy of a
sequence modulo 1 by an exponential sum involving the distances to nearest integers of the members
of our sequence. In our case, the members of our sequence are the multiples of log 2/ log p, so we can
bound the distances to the nearest integer using a version of Baker’s lower bounds for linear forms in
logarithms due to Matveev (Theorem 7). Putting everything together gives a bound on u in terms of
p which is exponential in (log p)(log log p) (see Lemma 25). The argument can be iterated. Namely
one writes m1 =

∏s
i=1 q

ai
i , with q1, . . . , qs divisors of k(k + 1), and one uses a similar argument to

bound the exponents a1, . . . , as. A similar extra step is needed to bound the exponent of 2 in case m1

is even.

1.5. Related work on other discriminators. Apart from the infinite family of recurrence discrim-
inators dealt with here, only one other infinite family has been studied, namely by Ciolan and Moree
[1]. Also in this case the associated discriminators D have the property that D(2b) = 2b for every
b ≥ 1. De Clercq and his (many!) coauthors [2] have classified all binary linear recurrences for which the
discriminator has this property. It is expected that for all of them a rather simple characterization of
the discriminator should be possible. However, very little is known for second order linear recurrences
not of this form.

The work of de Clercq et al. [2] was partly generalized by Ferrari [5], who, given any fixed odd prime
p, found a large class of binary recurrences a for which Da(pk) = pk for every k ≥ 1.

1This terminology is inspired by the novel “The Wild Numbers: a Novel” by Philibert Schogt.
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2. Preliminaries

2.1. Notation. The characteristic equation of the Shallit recurrence U(k) is

x2 − (4k + 2)x+ 1 = 0.

Its roots are α(k) and α(k)−1, where

α(k) = 2k + 1 + 2
√
k(k + 1), α−1(k) = 2k + 1− 2

√
k(k + 1).

Note that
α(k) = β2(k), with β(k) =

√
k + 1 +

√
k.

The discriminant of the Shallit sequence is

∆(k) := (α(k)− α(k)−1)2 = 16k(k + 1),

and we easily verify that

Un(k) =
αn(k)− α−n(k)

α(k)− α−1(k)
=
β2n(k)− β−2n(k)

β2(k)− β−2(k)
. (6)

Given a prime p, we define

ep(k) :=

(
k(k + 1)

p

)
, (7)

where ( ·p) is the Legendre symbol.

2.2. The index of appearance. A crucial role in our considerations is played by the index of ap-
pearance.

Definition 2 (Index of appearance). Let k ≥ 1 be fixed. Given m, the smallest n ≥ 1 such that m
divides Un(k) exists and is called the index of appearance of m in U(k) and is denoted by zk(m).

For notational convenience we suppress the dependence of zk(m) on k and, when there is no danger
of confusion, we denote it simply by z(m). The following result is trivial, but we will use it time and
again.

Lemma 2. If m = Dk(n), then z(m) ≥ n and z(m) > m/2.

Proof. Since Uz(m) ≡ U0 (mod m) it follows that z(m) ≥ n. The second assertion we prove by
contradiction and so suppose that z(m) ≤ m/2. The interval [z(m), 2z(m)) contains a power of two,
say z(m) ≤ 2b < 2z(m) ≤ m. Since 2b ≥ z(m) ≥ n, it follows from Corollary 1 that U0(k), . . . , Un−1(k)
are pairwise distinct modulo 2b. As 2b < m, this contradicts the definition of the discriminator. �

Thus a way to characterize discriminator values would be to first characterize those integers m for
which z(m) > m/2 (note that in part I we already determined the integers m for which z(m) = m,
cf. Lemma 13). This we address in Sec. 2.4. The next step is then to investigate the discriminatory
properties of these m (see Sec. 2.7).

If p divides k(k + 1) we have z(p) = p. This follows from the following trivial lemma.

Lemma 3. If p | k, then Un(k) ≡ n mod p. If p | (k + 1), then Un(k) ≡ (−1)n+2n mod p.

Corollary 3. If p | (k+ 1) is odd, then U p−1
2

(k) ≡ U p+1
2

(k) (mod p) and for 0 ≤ i < j ≤ (p− 1)/2 we

have Ui(k) 6≡ Uj(k) (mod p).

2.3. The index of appearance in prime powers. The index of appearance in a prime power pb is
related to the multiplicative order of α modulo pb.

Lemma 4. Let p be odd such that ep(k) = −1 and let b ≥ 1 be an integer. Then z(pb) is the minimal

m ≥ 1 such that αm ≡ ±1 (mod pb).

Proof. The proof of [4, Lemma 5] applies here verbatim, but with 32 replaced by ∆(k), and Z[
√

2] by

Z[
√
k(k + 1)]. �

The following lemma is basic and will be taken for granted in all our arguments involving the index
of appearance.

Lemma 5 ([4, Lemma 2]). The index of appearance z of the sequence U(k) has the following properties.
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(1) If p | Um(k), then z(p)|m;
(2) If p | k(k + 1), then z(p) = p;
(3) If p - k(k + 1), then z(p)|p− ep(k);

(4) z(pb) = pmax{b−νp(Uz(p)(k)),0}z(p). In particular, z(pb) | pb−1z(p);
(5) If n = m1 · · ·ms with m1, . . . ,ms pairwise coprime, then

z(m1 · · ·ms) = lcm[z(m1), . . . , z(ms)].

In part 4 we mostly have z(pb) = pb−1z(p). In order to determine whether there can be exceptions
to this, we introduce the notion of special prime.

Definition 3 (special prime). A prime p is said to be special if p | k(k + 1) and p2 | Up(k).

If p is special, then z(pb) | pb−2z(p) for every b ≥ 2, otherwise z(pb) = pb−1z(p). In part I (Lemma
3) it is shown that if p is special, then we must have p = 3. It is easy to check that 3 is special if and
only if k ≡ 2 (mod 9) or k ≡ 6 (mod 9). If 3 is special and 9 divides m, then z(m) < m. This together
with Theorem 2 shows that

Ak = {m odd : z(m) = m, m ∈ P(k)} and Bk = {m even : z(m) = m}, (8)

where

P(k) := {m ≥ 1 : p | m⇒ p | k}
is the set of positive integers m composed only of prime factors dividing k.

The next lemma is formulated and proved in [4, Sec. 6.2.2], but not stated as a lemma there.

Lemma 6. Let p - k(k + 1) and b ≥ 1. Then

z(pb) | pb−1(p− ep(k))/2; (9)

moreover if p ≡ 3 (mod 4) and we assume(
k + 1

p

)
= 1 and

(
k

p

)
= −1,

then

z(pb) | pb−1(p+ 1)/4.

The next proposition shows that (9) is sometimes sharp. The various congruence classes of k counted
in parts b,c and d are explicitly worked out in Tab. 3 for the primes 3 ≤ p ≤ 17 (with a few exceptions
where the table margins would be too small).

Proposition 1. Let p ≥ 5 be a prime not dividing k(k + 1). Put f = ϕ(p+1
2 ), with ϕ Euler’s totient

function.

(a) For k there are exactly f classes modulo p such that zk(p) = (p+ 1)/2;
(b) For k there are exactly f congruence classes modulo p2 such that zk(p

2) = (p+ 1)/2;
(c) For k there are exactly (p− 1)f congruence classes modulo p2 such that zk(p

2) = p(p+ 1)/2;
(d) For k there are exactly p− f − 2 congruence classes modulo p such that zk(p) < (p+ 1)/2.

Proof. (a) We observe that if k(k + 1) is not a square modulo p, then α(k) = 2k + 1 + 2
√
k(k + 1)

is quadratic modulo p. Here, by
√

we mean any fixed determination of the square root. Thus,

α(k) ∈ Fp2\Fp, where Fp2 is the unique quadratic field over p with p2 elements. The Frobenius

automorphism sends α(k) into its conjugate 2k + 1 − 2
√
k(k + 1) = α(k)−1. Hence, α(k)p = α(k)−1

in Fp2 , and so α(k)p+1 = 1 in Fp2 . In particular, α(k)(p+1)/2 = ±1 in Fp2 . Further, by Lemma 4,
(p + 1)/2 must be the minimal m such that α(k)m = ±1 in Fp2 . Let ρ be a primitive root modulo

p. Write α(k) = ρd for some integer d. Then α(k)(p+1)/2 = ±1 implies ρd(p+1)/2 = ±1. Since ρ is a
primitive root, it follows that p − 1 | d. Thus, d = (p − 1)w. Since (p + 1)/2 is minimal such that

α(k)(p+1)/2 = ±1, it follows that w is coprime to (p + 1)/2. But w ∈ [0, p + 1]. Each of the intervals
[0, (p+ 1)/2− 1] and [(p+ 1)/2, p+ 1] contains exactly φ((p+ 1)/2) numbers of the form w which are

coprime to (p+ 1)/2. For each one of these, α = ρ(p−1)w is an element of Fp2 . Then, keeping in mind

that αp
2−1 = 1, we see that αp = αp(p−1)w = α(p−1)(p+1−w) and p + 1 − w is also coprime to p + 1.

Thus, the 2φ((p+ 1)/2) numbers get grouped
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into φ((p+ 1)/2) non-overlapping unordered pairs {α, αp}. Let t = α+αp. Then t ∈ Fp and (α, αp)
are roots of

x2 − tx+ 1 = 0.

It remains to see that we can choose k such that 4k+ 2 = t (mod p), which is clear since 2 is invertible
modulo p. This gives the statement.
(b) If k is such that zk(p

2) = (p + 1)/2, then certainly zk(p) = (p + 1)/2. Thus, k (mod p) is one of
the classes counted at part (a). It remains to prove that each such class can be lifted uniquely to a
class modulo p2 such that zk(p

2) = (p+ 1)/2. But with a fixed k, putting x := 2k + 1, we have

U1(k) = 1;

U2(k) = 2x;

U3(k) = 4x2 − 1;

U4(k) = 8x3 − 4x;

Un+2(k) = 2xUn+1(k)− Un(k) for all n ≥ 3.

We recognize that Un(x) is the Chebyshev polynomial sin(nθ)/ sin(θ) as a polynomial in cos(θ), which

has discriminant 2(n−1)2nn−2, cf. Dilcher and Stolarsky [3]. So, for us we have that x = 2k + 1
is a solution of U(p+1)/2(x) ≡ 0 (mod p), and we would like to extend it to a unique solution of

the above congruence modulo p2. This is possible via Hensel’s lemma provided that p does not
divide the discriminant of U(p+1)/2(x) as a polynomial, which is the case since this discriminant is

2((p−1)/2)2((p+ 1)/2)(p−5)/2. This proves (b).
(c) is also immediate. By part (a), there are f classes k modulo p for which zk(p) = (p+1)/2. These

f classes give pf lifts to classes modulo p2. Exactly f of them have the property that zk(p
2) = (p+1)/2.

Thus, for the remaining (p− 1)f classes, it must be the case that zk(p
2) = p(p+ 1)/2.

(d) is also immediate. There are p−2 classes for k modulo p as we need to exclude k ≡ 0,−1 (mod p)
for which k(k+ 1) is a multiple of p. By (a), there are f of them for which zk(p) = (p+ 1)/2. So there
are p− f − 2 of them for which zk(p) < (p+ 1)/2. �

Corollary 4. For every odd prime p there exists at least one congruence class modulo p2 for k such
that zk(p

2) = (p+ 1)/2 and one such that zk(p
2) = p(p+ 1)/2.

p k congruence classes mod

3 b 4 9
c 1, 7 9
d none 3

5 b 6, 18 25
c 1, 3, 8, 11, 13, 16, 21, 23 25
d 2 5

7 b 2, 46 49
c 4, 9, 10, 16, 18, 23, 25, 30, 32, 37, 39, 44 49
d 1, 3, 5 7

11 b 23, 97 121
c c1, . . . , c20 121
d 2, 3, 4, 5, 6, 7, 8 11

13 b 1, 8, 49, 119, 160, 167 169
c c1, . . . , c72 169
d 3, 5, 6, 7, 9 13

17 b 20, 53, 111, 177, 235, 268 289
c c1, . . . , c196 289
d 1, 4, 5, 6, 8, 10, 11, 12, 15 17

Table 3. Congruence classes related to zk(p
2) (cf. Proposition 1)
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Remark 2. For p ≥ 5 we have p − ϕ((p + 1)/2) − 2 ≥ p − (p − 1)/2 − 2 ≥ (p − 3)/2 ≥ 1 and so by
Proposition 1 there is at least one congruence class modulo p for k such that zk(p) < (p+ 1)/2.

Remark 3. Proposition 1 suggests considering Artin primitive root type problems such as whether
given k the set of primes p such that zk(p) = (p + 1)/2 has a natural density. Likely these questions
can be answered assuming the Generalized Riemann Hypothesis. These issues also play a role in
understanding the behavior of ρk, σk and τk (see Sec. 2.5.1). We might come back to this in a sequel
to this paper.

2.4. Integers for which the index of appearance z(m) satisfies z(m) > m/2. In this section we
characterize the integers m for which z(m) > m/2.

Lemma 7. If m/2 < z(m) < m, then there exists a prime p - k(k + 1), such that

z(m) =
m(p+ 1)

2p
. (10)

Further, z(p) = (p + 1)/2 and ep(k) = −1. The integer m can be written as m = a · pb with a ∈
P(k(k + 1)), z(a) = a, (a, p(p+ 1)/2) = 1 and b ≥ 1. If b ≥ 2, then z(p2) = p(p+ 1)/2.

Proof. Write m = a ·pb11 · · · pbrr with a ∈ P(k(k+1)) and p1, . . . , pr - k(k+1) distinct primes. Note that
the pi are odd primes. We have either z(a) = a or z(a) = a/3. In the latter case z(m) ≤ m/3, and so

z(a) = a and hence r ≥ 1. Assume first that r ≥ 2. By Lemma 5 we have z(m) ≤ z(a)z(pb11 ) · · · z(pbrr ),
and so on invoking Lemma 6 we obtain the inequality

z(m)

m
≤
(
p1 + 1

2p1

)
· · ·
(
pr + 1

2pr

)
≤ 2

3
· 3

5
<

1

2
. (11)

It follows that m = a · pb with a ∈ P(k(k+ 1)), p - k(k+ 1) a prime, and b ≥ 1. This implies that p - a.
If ep(k) = 1, then

z(m) = z(a · pb) ≤ a · pb−1(p− 1)/2 < m/2,

by Lemma 6, contradicting our assumption on z(m). If ep(k) = −1 and z(p) is a proper divisor of
(p+ 1)/2, then

z(m) ≤ a · pb−1z(p) ≤ a · pb−1(p+ 1)/4 ≤ m/2,
again contradicting our assumption on z(m), and hence ep(k) = −1 and z(p) = (p + 1)/2. We have
(a, (p+ 1)/2) = 1, since otherwise

z(m) = lcm(z(a), z(pb)) = lcm(a, z(pb)) ≤ pb−1 lcm(a, (p+ 1)/2) ≤ a · pb−1(p+ 1)/4 ≤ m/2.
Finally, we either have z(p2) = p(p+ 1)/2 or z(p2) = (p+ 1)/2. For b ≥ 2, the latter case cannot occur
as then z(m) ≤ m/p < m/2. �

Corollary 5. If m is a discriminator value, then either m ∈ P(k(k + 1)), or m = a · pb with
a ∈ P(k(k + 1)) and p - k(k + 1) a prime satisfying ek(p) = −1. Furthermore, if m is even, then
p ≡ 1 (mod 4).

Proof. This is an immediate consequence on recalling that if m is a discriminator value, then z(m) >
m/2 by Lemma 2. �

Lemma 8. Let p - k(k + 1) be a prime.
a) If z(p2) = (p+ 1)/2, then

z(m) =
(p+ 1)m

2p
⇐⇒ m = p · a, (a, p(p+ 1)/2) = 1, z(a) = a.

b) If z(p2) = p(p+ 1)/2, then

z(m) =
(p+ 1)m

2p
⇐⇒ m = pb · a, b ≥ 1, (a, p(p+ 1)/2) = 1, z(a) = a.

c) If z(p) 6= (p+ 1)/2, then it never happens that z(m) = m(p+ 1)/(2p).

Proof. Part c is a corollary of Lemma 7 and so are the ⇒ directions of parts a and b. Now let us
prove the ⇐ direction for part b (the proof for part a being very similar and easier). By assumption
a and pb are coprime and so z(m) = lcm(z(a), z(pb)). The assumption on z(p2) ensures that z(pb) =
pb−1(p + 1)/2. Since by assumption z(a) = a and (a, (p + 1)/2) = 1, we conclude that z(m) =
lcm(a, pb−1(p+ 1)/2) = m(p+ 1)/(2p). �
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Note that the value of zk(p
b) only depends on the congruence class of k modulo pb. For a given odd

prime p it is thus a finite computation to determine the corresponding congruence classes in each of
the three cases (with the number of congruence classes already given in Proposition 1). The results
are recorded for the first few primes in Tab. 3. Using this table, Lemma 13 and Lemma 8, we can then
write down results similar to the lemma below (for p = 5).

Lemma 9. Suppose that 5 - k(k + 1).
a) If k ≡ 6, 18 (mod 25), then

z(m) =
3m

5
⇐⇒ m = 5 · a, (15, a) = 1, a ∈ P(k(k + 1)).

b) If k ≡ 1, 3, 8, 11, 13, 16, 21, 23 (mod 25), then

z(m) =
3m

5
⇐⇒ m = 5b · a, b ≥ 1, (15, a) = 1, a ∈ P(k(k + 1)).

c) If k ≡ 2 (mod 5), then it never happens that z(m) = 3m/5.

Here, and in general if p ≡ 5 (mod 6), we require that 3 - a (as a and (p+ 1)/2 have to be coprime),
and for such a we have z(a) = a if and only if a ∈ P(k(k + 1)) by Lemma 13, and so a distinction of
cases depending on whether 3 is a special prime or not is unnecessary.

2.5. Integers for which the index of appearance is large. In this section we consider how large
z(m)
m can be for m with z(m) < m, something quite relevant for us. The smaller z(m)

m is, the less

likely it is that m occurs as a discriminator value (if z(m)
m ≤ 1

2 , then certainly m does not occur as a
discriminator value). The following quantities (considered in detail in Sec. 2.5.1) will play a main role.
Some sample values are given in Tab. 4.

Definition 4 (ρk, σk, τk). The supremum

sup
p prime

{zk(f(p))

f(p)
: zk(f(p)) < f(p)

}
,

we denote by ρk if f(p) = p, by σk if f(p) = p2, and by τk if f(p) = 2p2.

If z(f(p)) < f(p), then z(f(p))/f(p) ≤ (p + 1)/2p, where the upper bound is decreasing as a
function of p. This implies that in order to verify that, say, ρk = (q + 1)/2q, it suffices to show that
z(q) = (q + 1)/2 and that either z(p) = p or z(p) < (p+ 1)/2 for every prime 3 ≤ p < q.

As z(2n) = 2n, it is enough to take the supremum over the odd primes only. Since z(p)/p ≥
z(p2)/p2 ≥ z(2p2)/2p2 we have

ρk ≥ σk ≥ τk.
Using these quantities Theorem 2 can be improved. In part I it was already noted that the interval

[n, 3n/2) occurring there can be replaced by the potentially larger interval [n, n/ρk). We will show that
ρk can be replaced by σk. Since σk < ρk for infinitely many k (see Sec. 2.5.1), this is an improvement.

Theorem 5. Let k > 2 be fixed. We have

Dk(n) ≤ min{m ≥ n : m ∈ Ak ∪ Bk},

with equality if the interval [n, n/σk) contains an integer m ∈ Ak ∪ Bk. We have σk = 2/3 if k ≡
1, 7 mod 9, and σk ≤ 3/5 otherwise.

If Dk(n) is even, then

Dk(n) ≤ min{m ≥ n : m ∈ Bk},
with equality if the interval [n, n/τk) contains an integer m ∈ Bk. If k ≡ 0, 2, 4 (mod 5), then τk ≤ 7/13,
and τk ≤ 3/5 for general k.

If z(p) = (p + 1)/2 for some prime p, then we can replace sup by max in Definition 4. If z(p) is
never equal to (p+ 1)/2, but infinitely often to z(p) = (p− 1)/2, then ρk = 1/2. If z(p) is never equal
to (p+ 1)/2 and at most finitely often to (p− 1)/2, then ρk < 1/2. The same remarks hold, mutatis
mutandis, for σk and τk, cf. the next three lemmas.
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k ρk σk τk
1 2/3 2/3 3/5
2 4/7 7/13 7/13
3 3/5 3/5 3/5
4 2/3 4/7 7/13
6 3/5 12/23 19/37
23 3/5 3/5 3/5
24 7/13 7/13 7/13
31 2/3 6/11 9/17
93 3/5 4/7 7/13

3202 2/3 2/3 15/29

Table 4. Some sample values of ρk, σk and τk

Lemma 10 ([4]). Let k ≥ 1 be fixed.
a) Suppose that z(q1) = (q1 + 1)/2 for some prime q1. Let q be the smallest prime such that z(q) =
(q + 1)/2. Then

ρk = max

{
z(p)

p
: z(p) < p

}
=
q + 1

2q
.

b) If there is no prime q1 such that z(q1) = (q1 + 1)/2, then ρk ≤ 1/2.
c) We have ρk = 2/3 if k ≡ 1 (mod 3) and ρk ≤ 3/5 otherwise.

Lemma 11. Let k ≥ 1 be fixed.
a) Suppose that z(q2

1) = q1(q1 + 1)/2 for some prime q1. Let q be the smallest prime such that z(q2) =
q(q + 1)/2. Then

σk = max

{
z(p2)

p2
: z(p2) < p2

}
=
q + 1

2q
.

b) If there is no prime q1 such that z(2q2
1) = q1(q1 + 1)/2, then τk ≤ 1/2.

c) We have σk = 2/3 if k ≡ 1, 7 mod 9, and σk ≤ 3/5 otherwise.

Proof. We leave this to the reader, cf. the very similar (but more complicated) proof of Lemma 12.
Only part c needs special attention, here we use Proposition 1 and Tab. 3. �

Lemma 12. Let k ≥ 1 be fixed.
a) Suppose that z(2q2

1) = q1(q1 + 1) for some prime q1. Let q be the smallest prime such that z(2q2) =
q(q + 1). Then q ≡ 1 (mod 4) and

τk = max

{
z(2p2)

2p2
: z(2p2) < 2p2

}
=
q + 1

2q
.

b) If there is no prime q1 such that z(2q2
1) = q1(q1 + 1), then τk ≤ 1/2.

c) We have τk ≤ 3/5. If k ≡ 0, 2, 4 (mod 5), then τk ≤ 7/13.

Proof. Put ρ(p) = z(2p2)/(2p2). If p > q and ρ(p) < 1, then

ρ(p) ≤ p+ 1

2p
<
q + 1

2q
= ρ(q),

If p < q and ρ(p) < 1, then z(2p2) | p(p− 1), z(2p2) | p(p+ 1)/2 or z(2p2) | p+ 1. Since, respectively,

ρ(p) ≤ p− 1

2p
<

1

2
, ρ(p) ≤ p+ 1

4p
<

1

2
or ρ(p) ≤ p+ 1

2p2
<

1

2
(12)

and (q + 1)/(2q) > 1/2, we have established that τk = (q + 1)/(2q). In case q ≡ 3 (mod 4), then z(2)
and z(q2) are both even and so ρ(q) < 1/2. Thus q ≡ 1 (mod 4).
b) In this case, cf. (12), we have ρ(p) < 1

2 for every prime p and so the supremum is ≤ 1
2 .

c) We apply parts a and b together with the observation that ρ(50) ∈ {1
5 , 1} if k ≡ 0, 4 mod 5 (by

Lemma 5) and ρ(50) ≤ 2
5 if k ≡ 2 mod 5 (by Lemma 6). �

The following extends [4, Lemma 14] with some extra statements involving the set M.
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Lemma 13. Let k ≥ 1. We have z(m) = m if and only if{
m ∈ P(k(k + 1)), 9 - m;

m ∈ P(k(k + 1)), 9 | m, and 3 is not special.

The remaining integers m satisfy z(m) ≤ ρkm, with ρk = 2/3 if k ≡ 1 (mod 3) and ρk ≤ 3/5 otherwise.
Let M be the set of integers that are divisible by some prime square p2 with p - k(k+ 1) a prime. The
integers m in M satisfy z(m) ≤ σkm, with σk = 2/3 if k ≡ 1, 7 mod 9, and σk ≤ 3/5 otherwise. The
even integers m in M satisfy z(m) ≤ τkm ≤ 3m/5. If k ≡ 0, 2, 4 (mod 5), then τk ≤ 7/13.

Corollary 6. Suppose that k ≡ 1 (mod 3). Then z(m) = m if and only if m ∈ P(k(k + 1)).

Proof of Lemma 13. Only the statements involving M need to be proved. Let b ∈M. We have

z(b)

b
≤ sup

m∈M

{z(m)

m

}
= sup

m∈M1

{z(m)

m

}
,

where M1 is the set of integers divisible by at most one prime square p2 with p - k(k + 1) (cf. the
beginning of the proof of Lemma 7). Thus every m ∈M1 is of the form m = pe ·m1, with p - k(k+ 1)
some prime, e ≥ 2 and z(m1) = m1. Since

z(m)

m
≤ z(p2)

p2

pe−2

pe−2

z(m1)

m1
≤ z(p2)

p2
,

we obtain that z(b)/b ≤ σk. If m is even, then m = pe · 2f ·m1, with p - k(k + 1), e ≥ 2, f ≥ 1 and
z(m1) = m1, and we have

z(m)

m
≤ z(2p2)

2p2

pe−2

pe−2

2f−1

2f−1

z(m1)

m1
≤ z(2p2)

2p2
,

and hence z(b)/b ≤ τk. The proof is concluded on invoking Lemmas 10c, 11c and 12c. �

2.5.1. The numbers ρk, σk and τk: a close-up. We investigate when there exists an integer k such that

(ρk, σk, τk) =
(p1 + 1

2p1
,
p2 + 1

2p2
,
p3 + 1

2p3

)
, with p1, p2, p3 prescribed primes. (13)

The primes p1, p2 and p3 are not required to be distinct. Our main tool is Corollary 4, which we will
take for granted in the remainder of this section.

Lemma 14. The equation (13) has a solution k if and only if 3 ≤ p1 ≤ p2 ≤ p3 and p3 ≡ 1 mod 4.
If p2 ≡ 1 mod 4, then we require in addition that p3 = p2. If (13) is satisfied for some k, then it is
satisfied for a positive density of integers k.

Proof. Since z(2n) = 2n the supremum is assumed in an odd prime and so p1, p2 and p3 are odd. Since
ρk ≥ σk ≥ τk we have p1 ≤ p2 ≤ p3.

The density assertion follows on noting that if k1 ≡ k mod p2 for every odd prime p ≤ p3, then
(ρk1 , σk1 , τk1) = (ρk, σk, τk) (observe that zk(p

2) only depends on the residue class of k modulo p2).
Note that (13) entails that z(p1) = (p1 + 1)/2, z(p2

2) = p2(p2 + 1)/2 and z(2p2
3) = p3(p3 + 1).

The latter identity forces p3 to be congruent to 1 mod 4 by Lemma 12a. If p2 ≡ 1 mod 4, then
z(2p2

2) = p2(p2 + 1). We have z(2p2)/2p2 ≤ z(p2)/p2 < z(p2
2)/p2

2 for 3 ≤ p < p2. We conclude that
τk = (p2 + 1)/2p2 and hence p3 = p2.

It remains to prove that if the conditions on the primes p1, p2 and p3 are satisfied, there exists a
k solving (13). We take k ≡ 0 mod p for the odd primes p < p1. If p2 = p1 we choose k to be in a
residue class modulo p2

1 such that z(p2
1) = p1(p1 + 1)/2. If p2 > p1, we choose k to be in a residue

class modulo p2
1 such that z(p2

1) = (p1 + 1)/2, k ≡ 0 mod p for the primes p1 < p < p2 and k in a
residue class modulo p2

2 such that z(p2
2) = p2(p2 + 1)/2. If p2 ≡ 1 mod 4, then p3 = p2 and we are

done. Otherwise we take k ≡ 0 mod p for the primes p2 < p < p3 with p ≡ 1 mod 4 and take k in a
residue class modulo p2

3 for which z(p2
3) = p3(p3 + 1)/2. �

Example 1. By Lemma 14 there exists a solution to (13) with (p1, p2, p3) = (3, 7, 13). We will now
find such a solution. We take k ≡ 0 mod 3 and k ≡ 18 mod 25. This ensures that ρk = 3

5 and σk ≥ 4
7 .

On requiring that k ≡ 44 mod 49, it follows that σk = 4
7 . As τk 6= 4

7 and τk 6= 6
11 , we have τk ≥ 7

13 . We

choose k ≡ 2 mod 13 and k 6≡ 119 mod 169 to ensure that τk = 7
13 . Finally, one checks that k = 93

satisfies all the requirements, and we conclude that (ρk, σk, τk) = (3
5 ,

4
7 ,

7
13). By computer calcuation

one can verify that 368, 431, 543 and 606 are the only other k < 1000 having this property.
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2.6. The incongruence index. Apart from zk we will also make use of the incongruence index ιk,
which was introduced in Moree and Zumalacárregui [11]. It will allow us to rule out many odd values
of m with z(m) = m as discriminator values (cf. Lemma 20).

Definition 5 (incongruence index). Given an integer m ≥ 1, the incongruence index ιk(m) is the
largest integer j such that U0(k), . . . , Uj−1(k) are pairwise distinct modulo m.

Note that ιk(m) ≤ zk(m). In practice frequently ιk(m) < zk(m), which shows that the following,
easy to prove, variant of Lemma 2 is often stronger.

Lemma 15. If m = Dk(n), then ιk(m) ≥ n and ιk(m) > m/2.

The general idea is to use z(m) whenever possible and if it proves itself too weak a tool, then try
to work with ι(m).

Lemma 16. Let b ≥ 1 be an integer. Then

ιk(5
b) =

{
(3 · 5b−1 + 1)/2 if k ≡ 1 (mod 5) and k 6≡ 6 (mod 25);

3 · 5b−1 if k ≡ 3 (mod 5) and k 6≡ 18 (mod 25).

Proof. If k ≡ 1, 3 (mod 5), then e5(k) = −1 and so z(5) = 3. A trivial computation gives U3(k) =
16k2 + 16k + 3. This is a multiple of 5 for k ≡ 1, 3 (mod 5), but not of 25 since the classes k ≡
6, 18 (mod 25) are excluded. So, 5 | U3(k), but 25 - U3(k) and by Lemma 10b it follows that z(5b) =
3 · 5b−1, cf. Table 3.

Now let us investigate when Ui(k) ≡ Uj(k) (mod 5b). Writing α, α−1 for the roots of the character-

istic equation x2−(4k+2)x+1, by (6) we need αi−α−i ≡ αj−α−j (mod 5b), which on multiplication
by αi+j yields (αi − αj)(αi+j + 1) ≡ 0 (mod 5b). So, 5 divides either αi − αj or αi+j + 1 (5 is inert in
Z[α] as e5(k) = −1). When k ≡ 3 (mod 5) the second case doesn’t happen. That is, for k ≡ 3 (mod 5)
we have that α is one of 2 ±

√
3 (mod 5) (the characteristic equation only depends on k modulo 5).

Then α2 = 2±
√

3 and α3 ≡ 1 (mod 5). So, we see that −1 (mod 5) is not in the multiplicative group
generated by α (mod 5) when α = 3 (mod 5). Thus, Ui(k) ≡ Uj(k) (mod 5b) forces αi ≡ αj (mod 5b),

so αi−j ≡ 1 (mod 5b), so Ui−j ≡ 0 (mod 5b) (assuming say i > j), so z(5b) = 3 · 5b−1 divides i − j.
This takes care of ιk(5

b) in case k ≡ 3 (mod 5).
In case k ≡ 1 (mod 5), there is no i, j such that both αi−αj ≡ 0 (mod 5) and αi+j +1 ≡ 0 (mod 5).

To see why, assume there are such. Then αi+j ≡ −1 (mod 5) and αi−j ≡ 1 (mod 5). But when
k ≡ 1 (mod 5), then α = 3 ± 2

√
2. Now α2 ≡ 2 ± 2

√
2 (mod 5) and α3 ≡ −1 (mod 5). So, the order

of α modulo 5 is exactly 6 so asking of i, j such that αi−j ≡ 1 (mod 5) and αi+j ≡ −1 (mod 5) gives
i− j ≡ 0 (mod 6) and i+ j ≡ 3 (mod 6). Summing them we get 2i ≡ 3 (mod 6), which is false (there
is no such i with 2i ≡ 3 (mod 6)).

So, when k ≡ 1 (mod 5) and k 6≡ 6 (mod 25), either 5b divides αi−j − 1 or 5b divides αi+j + 1. In
the first case i− j is a multiple of z(5b), so at least 3 ·5b−1. The second case gives αi+j ≡ −1 (mod 5b)
so i + j is an odd multiple of 3 · 5b−1. The extreme case is i + j = 3 · 5b−1 and we see that if i > j,
then i ≥ 3 · 5b−1/2, so i ≥ (3 · 5b−1 + 1)/2. �

The next lemma studies to what extent a relatively small incongruence index remains relatively
small after lifting to a larger modulus. Recall the definition (7) of ep(k).

Lemma 17. Suppose that p - k(k + 1) and
(
k+1
p

)
= −1. If ιk(p

a) < pa/2 for some a ≥ 1, then

ιk(p
b) < pb/2 for all b ≥ a. Furthermore, if m is odd and zk(m) = m, then ιk(p

a ·m) < pa ·m/2.

Proof. If ep(k) = 1, then z(pa) ≤ pa−1(p− 1)/2 < pa/2 for all a ≥ 1 by Lemma 6. So(
k

p

)
= 1,

(
k + 1

p

)
= −1. (14)

We show that zk(p
a) ≤ bpa−1(p+ 1)/4c < pa/2 for all a ≥ 2. Indeed, write Ui ≡ Uj (mod m) with m

coprime to k(k + 1) as

αi − α−i ≡ αj − α−j (mod m),

which is equivalent to

(αi − αj)(α−(i+j) + 1) ≡ 0 (mod m).
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It suffices that αi+j ≡ −1 (mod m). Using (14) we note that

α(p+1)/2 =
(

(
√
k + 1 +

√
k)2
)(p+1)/2

= (
√
k + 1 +

√
k)p+1

= (
√
k + 1 +

√
k)p(
√
k + 1 +

√
k) ≡ (

√
k + 1

p
+
√
k
p
)(
√
k + 1 +

√
k) (mod p)

≡ (−
√
k + 1 +

√
k)(
√
k + 1 +

√
k) ≡ k − (k + 1) ≡ −1 (mod p).

So, if we choose m = p and i+ j = (p+ 1)/2, then we have that Ui ≡ Uj (mod p). More generally, we
can choose m = pa. Since

α(p+1)/2 ≡ −1 (mod p),

we get that

αp
a−1(p+1)/2 ≡ −1 (mod pa),

and we can see that ik(p
a) ≤ pa−1(p+1)/4. Indeed, if pa−1(p+1)/2 = 2`+1, then U` ≡ U`+1 (mod pa),

so ik(p
a) ≤ ` = bpa−1(p + 1)/4c. If pa−1(p + 1)/2 = 2`, then we have U`−1 ≡ U`+1 (mod pa), so

ik(p
a) ≤ ` = bpa−1(p+ 1)/4c. So, at any rate in this case ik(p

a) < pa/2 for all a ≥ 1.
We now turn our attention to the final assertion. Let i, j be such that i < j < pα−1(p + 1)/4 + 1

and Ui ≡ Uj (mod pα). Then Umi ≡ Umj (mod pαm). To see this, note that both sides are 0 modulo
m since m divides Uz(m) = Um and Um divides gcd(Umi, Umj). As for the divisibility by pα, the
congruence

Umi ≡ Umj (mod pα)

is implied by

(αmi − αmj)(α−m(i+j) + 1) ≡ 0 (mod pα)

which holds because
αi − αj | αmi − αmj , α−(i+j) + 1 | α−m(i+j) + 1

(m is odd) and

(αi − αj)(α−(i+j) + 1) ≡ 0 (mod pα).

Since certainly im < jm ≤ bpα−1(p+ 1)/4c+ 1cm < pαm/2, the proof is finished. �

Corollary 7. Suppose that p - k(k + 1) and p ≡ 3 (mod 4). If ιk(p
a) < pa/2 for some a ≥ 1, then

ιk(p
b) < pb/2 for all b ≥ a. Furthermore, if m is odd and zk(m) = m, then ιk(p

a ·m) < pa ·m/2.

Proof. If
(
k+1
p

)
= 1, then

(
k
p

)
= −1 (as ep(k) = −1). Then by Lemma 6 we have ιk(p

a) ≤ zk(p
a) ≤

pa−1(p+ 1)/4 < pa/2 for every a ≥ 1. �

We expect that this corollary also holds for the primes p ≡ 1 (mod 4), but is more difficult to prove.
As we do not need this generalization, we leave it to a possible sequel to this paper.

2.7. The discriminatory properties of m with large z(m). The goal of this section is to prove
Lemma 20. To this end we need the next fundamental lemma and Lemma 19

Lemma 18 (Lemmas 15 and 16 of [4]). Let p be an odd prime and b ≥ 1 be arbitrary.
If p divides k, then Ui(k) ≡ Uj(k) (mod pb) if and only if i ≡ j (mod zk(p

b)).

If p divides k + 1, then Ui(k) ≡ Uj(k) (mod pb) is equivalent to one of the following:

• If i ≡ j (mod 2), then i ≡ j (mod zk(p
b));

• If i 6≡ j (mod 2), then i ≡ −j (mod zk(p
b)).

Lemma 19. Assume that m = 2ape with a, e ≥ 1 is such that ep(k) = −1, p ≡ 1 (mod 4) and
z(p) = (p+ 1)/2. Then Ui ≡ Uj (mod m) holds if and only if i ≡ j (mod z(m)).

Proof. A minor variation of the proof of [4, Lemma 9]. It rests only on [4, Lemma 4] and [4, Lemma
5], where now we should take Lemmas 4 and 6 from this paper. In addition a minor correction in the
argument has to be made, as sketched in Sec. 3. �

Lemma 20. Assume that k ≡ 1 (mod 3) and zk(25) = 15. Suppose that m = 5e ·m1 with e ≥ 1 and
z(m1) = m1. Then ι(m) = z(m) = 3m/5 if

• m1 ∈ Bk; or
• m1 ∈ Ak and k ≡ 3 (mod 5),

and otherwise m is not a discriminator value assumed by Dk.
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Proof. Note that z(m) = 3m/5. We first consider the case where m1 is even. Note that this is
equivalent with m1 ∈ Bk, as Bk = {m1 even : z(m1) = m1} by (8). Write m1 = 2a ·m2 with m2 odd.
Since z(2a ·5e) = 2a ·3 ·5e−1, we have Ui(k) ≡ Uj(k) (mod 2a ·5e) if and only if i ≡ j (mod 2a ·3 ·5e−1)
by Lemma 19. As m2 ∈ P(k(k+1)), it follows by Lemma 18 that Ui(k) ≡ Uj(k) (mod m1) if and only
if i ≡ j (mod m1). Taken together these two equivalences show that Ui(k) ≡ Uj(k) (mod m) if and
only if i ≡ j (mod 3m/5). Thus in case m1 is even, we conclude that ι(m) = 3m/5.

It remains to deal with the case where m1 is odd. Since by assumption z(25) = 15, we have
k ≡ 1, 3 mod 5 (see Table 2).

First case: k ≡ 1 (mod 5). The assumption z(25) = 15 ensures that k 6≡ 6 (mod 25). By Lemma 16
and Lemma 17 (with p = 5) it then follows that ι(m) ≤ m/2 and so m is not a discriminator value.

Second case: k ≡ 3 (mod 5). Suppose that m1 has an odd prime divisor that also divides k + 1.
Now write m1 = pa · m2 with p - m2. Clearly z(pa) = pa. Set i = (pa − 1) · m2 · 3 · 5e−1/2 and
j = (pa + 1) · m2 · 3 · 5e−1/2. Then i 6≡ j (mod 2) and pa | (i + j). Thus, Ui(k) ≡ Uj(k) (mod pa)
by Lemma 18. This lemma also implies that Ui(k) ≡ Uj(k) ≡ U0(k) ≡ 0 (mod m2) as i ≡ j ≡
0 (mod m2) and m2 ∈ P(k(k + 1)). The proof of Lemma 16 shows that if i ≡ j (mod 3 · 5e−1), then
Ui(k) ≡ Uj(k) (mod 5e). We infer that Ui(k) ≡ Uj(k) (mod pa ·m2 · 5e), and hence if m discriminates
the numbers U0(k), . . . , Un−1(k), then n ≤ (pa+ 1)m2 ·3 ·5e−1/2. The interval [(pa+ 1)/2, pa) contains
a power of 2, say 2b. Then 2b ·m2 · 5e is a better discriminator than pa ·m2 · 5e = m. We conclude
that if m1 6∈ Ak, then m is not a discriminator value.

It remains to deal with the case where m1 ∈ Ak. The proof of Lemma 16 shows that Ui(k) ≡
Uj(k) (mod 5e) if and only if i ≡ j (mod 3 · 5e−1). This in combination with Lemma 18 shows that
Ui(k) ≡ Uj(k) (mod m) if and only if i ≡ j (mod 3m/5). Hence ι(m) = 3m/5. �

2.8. Intervals containing special integers. We will first discuss how to compute np(α) (cf. Def. 1).
From basic Diophantine approximation we know there exist e, f, g and h such that

1 <
pf

2e
< α and 1 <

2h

pg
< α.

We claim that np(α) ≤ 2e+1pg. In order to see this observe that any integer n := 2kp` ≥ 2e+1pg

satisfies either k ≥ e + 1, or ` ≥ g. In case k ≥ e + 1, we note that the number 2k−ep`+f is even and
lies in [n, nα). In case ` ≥ g, we have 2k+hp`−g ∈ [n, nα). Next one tries to to find an even integer
nnew := 2kp` ∈ [[2e+1pg/α], 2e+1pg), where [x] denotes the entier of x. If successful, we continue until
we fail, each time considering the interval [[nnew/α], nnew).

Example 2. We determine n7(5/3). Starting from 64 · 7 = 448 we can make either the substitution
32→ 49 or 7→ 8 with ratio < 5/3. Going down from 448 via 392, 256, 196, 128, 98, 64, 56, we obtain
n7(5/3) = 34. From 32 we can go down in several steps to 2. Thus the integers n ≥ 1 for which
[n, 5n/3) does not contain an even number of the form 2a · 7b, are precisely n = 1 and n = 33.

For some further examples see Tab. 2 and 5. The very large values appearing there were determined
using more sophisticated techniques involving continued fractions, see Languasco et al. [8].

p np(3/2) np(5/3)

3 2 2
5 22 2
7 262 34
11 11 10
13 139 10
17 1398102 78644
19 342 308
23 22 20
137 45812984491 2516583
149 21846 19661
271 375299968947542 5153960756

Table 5. Some values of np(3/2) and np(5/3)
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Lemma 21.

a) For n ≥ 27 · 56 (= 2 · 106) the interval [380
453n, n] contains an even integer of the form 2a · 5b.

b) For n ≥ 27 · 515 (= 3.90625 · 1013) the interval [35
39n, n] contains an even integer of the form 2a · 5b.

Proof. a) Put α = 453
380 . We start by noticing that 1 < 27

53
< 57

216
< α. This shows that by making either

the substitution 216 → 57 or 53 → 27, we can increase the even number n = 2 · 216 · 52 in such a way
to a further number of the same format with ratio in (1, α). The so produced sequence of integers is
unbounded. The string of consecutive integers 2m with m = 26 · 56, 220, 24 · 57, 218 · 5, 22 · 58, 216 · 52

also have the property that the ratio of consecutive terms is in (1, α).

b) Put β = 39
35 . We start by noticing that 1 < 27

53
< 516

237
< β. This shows that by making either the

substitution 237 → 516 or 53 → 27, we can increase the even number n = 2 · 237 · 52 in such a way to
a further number of the same format with ratio in (1, β). As in the proof of part a we can lower n to
obtain the indicated starting value. �

Proposition 2. Let p ≥ 13 be a prime. If pe be a potential wild prime power, then there exist integers
a ≥ 1 and b ≥ 0 such that

5(p+ 1)

6p
pe < 2a · 5b < pe. (15)

Proof. For the purposes of this proof we say that pe is approachable if there are integers a ≥ 1 and
b ≥ 0 for which (15) holds. We put αp = 5(p+ 1)/(6p). Note that α13 = 35

39 and αp < α151 = 380
453 for

p > 151.
We first suppose that p ≥ 151. We have (380

435p
e, pe) ⊆ (αpp

e, pe) and hence pe is approachable by

Lemma 21a if pe > 27 · 56. If pe < 27 · 56, we conclude that 151 ≤ p ≤ 1409 as e ≥ 2 by Lemma 22.
This leaves only one potential wild prime power, namely 1812, which turns out to be approachable by
{2 · 56, 28 · 53}.

It remains to deal with the primes 13 ≤ p ≤ 151. We have (35
39p

e, pe) ⊆ (αpp
e, pe) and hence pe

is approachable by Lemma 21b if pe > 27 · 515. This leaves the five potential wild prime powers
{137, 194, 198, 437, 975}. These are approachable by 25 ·59, 23 ·56, 26 ·512, 23 ·515, {25 ·512, 212 ·59, 219 ·
56, 226 · 53}, respectively. �

3. Corrections to part I

In part I the conditions on k involving 6 (mod 9) in the definition of Bk were erroneously omitted.
However, the proofs are only based on the definition Bk = {m even : z(m) = m}. Using Lemma 14
(Lemma 13 above), Bk was not quite correctly made explicit. The upshot is that if one replaces the
definition of Bk in part I by the one used here, as far as we are aware only one further mathematical
correction to part I is needed2.

In the proof of Lemma 9 around line 12 at p. 61 it is implicitly assumed that z(pb11 ) = pb1−1
1 (p1+1)/2,

which is not always guaranteed by our assumption that z(p1) = (p1 + 1)/2. However, by replacing the

two lines there by the following ones, the proof is effortlessly fixed. “As for the divisibility by pb11 , note

that since z(pb11 ) | (i− j) and i− j is even, it follows that

i− j = 2z(pb11 )`,

for some positive integer `. Since αz(p
b1
1 ) ≡ −1 (mod pb11 ), it follows that αi−j ≡ 1 (mod pb11 ).”

We finish this section by pointing out some typos in part I:
p. 56, l. 3. For “b ≥ 1” read “b = 1”.
p. 56, l. -10. For “∆(1) = 8” read “∆(1) = 32”.
p. 62, l. 2. Replace by “19m/37 ≥ z(m) = 2a · pb−1(p+ 1)/(2k) ≥ n.”
p. 63, l. -9. For “5/6 < 2a−α−1 < 1” read “5/6 < 2a−α−1 · 5b < 1”.

p. 65, l. 10. The number field K is not defined. It is Q(
√
k(k + 1)).

p. 65. Lemma 14. One should read “sup” instead of “lim sup”.
p. 70, l. 6. For “pam1 = m1” read “pam1 = m”.

2We use the amended definition for results quoted from part I involving Bk.
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4. Wild prime powers

Motivated by Corollary 5 we make the following definition.

Definition 6 (wild prime power). A prime power pe with p - k(k + 1) such that pe exactly divides
Dk(n) for some integer n, we call a wild prime power for k.

Obviously any wild prime power is odd. By Corollary 5 any discriminator value is divisible by at
most one wild prime power.

Lemma 22. A prime number is never wild.

Proof. Suppose that p is a wild prime. Then p > 2 and Dk(n) = ap for some k, n and an integer a
coprime to p satisfying z(a) = a. In addition, we have z(p) = (p + 1)/2. It follows that n ≤ z(ap) ≤
z(a)z(p) ≤ a(p+ 1)/2. Clearly there is a power 2b in the interval [(p+ 1)/2, p). As a2b ≥ a(p+ 1)/2 is
even and satisfies z(a2b) = a2b, it discriminates U0(k), . . . , Un−1(k). Since a2b < ap, this contradicts
the minimality of Dk(n). �

Next we study when pe with e > 1 is wild. This involves the exponent set Mp.

Definition 7 (Exponent set). Given any odd prime p, the exponent set is defined as

Mp :=

{
e ≥ 1 :

{
e

log p

log 2

}
> 1− log(1 + 1/p)

log 2

}
.

A simple application of Weyl’s criterion (cf. the proof of [11, Proposition 1] or [1, Proposition 1])
gives

lim
x→∞

#{m ∈Mp : m ≤ x}
x

=
log(1 + 1/p)

log 2
.

In particular, Mp is an infinite set.

Proposition 3. Let p ≥ 3 be a prime. The set of integers e ≥ 1 for which there is no integer a such
that

pe
(p+ 1)

2p
≤ 2a < pe (16)

equals Mp.

Proof. Put ρ = (p+1)/(2p) and assume (16) does hold for some integers a and e. By taking logarithms
and after some easy manipulations (16) is seen to be equivalent with

log ρ

log 2
≤ a− e log p

log 2
< 0.

It follows that a = be log p/ log 2c, and we are left with{
e

log p

log 2

}
≤ − log ρ

log 2
= 1− log(1 + 1/p)

log 2
.

Hence Mp is precisely the set of e for which (16) has no solution. �

Note that the lower bound in (16) is assumed if and only if e = 1 and p is a Mersenne prime.

Definition 8 (potentially wild prime power). A prime power pe with e ∈Mp is said to be potentially
wild.

Tables 6 and 7 list smallest potentially wild prime powers.

Lemma 23. If pe is a wild prime power, then it is also potentially wild.

Proof. Suppose that pe is a wild prime power for k. Then Dk(n) = pem, with p - k(k + 1) and m
composed of only prime factors dividing k(k+1). We assume that e 6∈ Mp and derive a contradiction.
We must have z(pe) = pe−1(p + 1)/2 and z(m) = m. It follows that n ≤ z(pem) ≤ pe−1(p + 1)m/2.
Since by assumption e 6∈ Mp, there exists an integer a such that (16) is satisfied. The number 2am
is even, and by Lemma 18 we have ιk(2

am) = 2am. Since 2am ≥ pe−1(p + 1)/2m ≥ n we conclude
that the numbers U0(k), . . . , Un−1(k) are pairwise distinct modulo 2am. Now since 2am < pem, it
follows that pem cannot be a discriminator value, a contradiction showing that e ∈Mp and hence the
potential wildness of pe. �
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p exponent

13 7, 17, 27, 37
17 11, 22, 34
37 19
73 21
97 5, 10, 15, 20, 25
181 2, 4, . . . , 20, 22
1933 12
2389 9
4993 7
10321 3

11290229 7

Table 6. Potential wild prime powers pe ≤ 1050 with 5 < p ≤ 1010 and p ≡ 1 (mod 4)

p exponent

3 3, 5, 8, 10, 13, 15, 17, 20, 22, 25, . . . , 97, 99, 102, 104
7 6, 11, 16, 21, 26, 32, 37, 42, 47, 52, 58
11 2, 13, 15, 26, 37, 39
19 4, 8, 12, 16, 20, 24, 28, 32
23 19, 21
31 22
43 7, 9, 14, 18, 27
67 15
71 20
79 23

49667 5, 10

Table 7. Potential wild prime powers pe ≤ 1050 with p ≤ 107 and p ≡ 3 (mod 4)

Remark 4. An alternative proof of Lemma 22 is obtained on noting that 1 6∈ Mp. Thus p is not
potentially wild and so not wild.

The following result represents an important milepost on our way towards a proof of Theorem 3.

Theorem 6. Suppose that k ≡ 1 mod 3. If zk(25) = 15 and pe is a wild prime power for k, then
p = 5 and e is in M5.

Proof. The conditions on k ensure that (k(k + 1), 15) = 1. Let m = Dk(n) be a discriminator value.
Suppose that a wild prime power pe with p - k(k+1) occurs in m. Then m = pe ·m1 with z(m1) = m1.
Since we must have z(m) > m/2, it follows that z(pe) = pe−1(p+ 1)/2. The number m discriminates
the numbers n up to at most (p+ 1)pe−1m1/2.

We want to show that p = 5, and will assume that p 6= 5. Recall that e ≥ 2. We first consider
the case where pe ∈ {32, 72, 112}. Since ιk(m) only depends on the congruence class of k modulo
m, it is a finite computation to verify that ιk(3

2) ≤ 4, ιk(7
2) ≤ 7 · 3 < 72/2 if 7 - k(k + 1) and

ιk(112) ≤ 11 · 5 < 112/2 if 11 - k(k + 1). By Corollary 7 we infer from this that, under the above
assumptions on k, ιk(p

e) < pe/2 for p ∈ {3, 7, 11}. We note that m1 is odd in this three cases as
p ≡ 3 (mod 4) and hence z(m) = lcm(z(pe), z(m1)) ≤ m/2 otherwise. We can thus apply the final
assertion of Corollary 7 to conclude that ιk(m) < m/2, which shows that our assumption that m is a
discriminator value was wrong to begin with. Thus p ≥ 13 and so by Proposition 2 there exist integers
a ≥ 1 and b ≥ 0 such that

5(p+ 1)

6p
pe < 2a · 5b < pe. (17)

We write m1 = 2c ·m2, with m2 odd. We now infer that

z(2a · 5b ·m1) = lcm(z(2a+c), z(5b), z(m2)) = lcm(2a+c, 3 · 5b−1,m2) = 3m/5,
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where we used that (30,m2) = 1 and z(5b) = 5b−1 · 3, which is a consequence of zk(25) = 15. Then
2a · 5b · m1 < pe · m1 discriminates the integers up to 3 · 2a · 5b−1 · m1. The lower bound part of
inequality (17) now guarantees that 2a · 5b−1 ·m1 > (p + 1)pe−1m1/2, showing that 2a · 5b ·m1 is a
better discriminator than m. We conclude that p = 5. By Lemma 23 it follows that 5e is potentially
wild and hence e ∈M5 by Definition 8. �

Corollary 8. Suppose that 5e is a wild prime power for an integer k satisfying k ≡ 1 (mod 3). Then

e ∈M5 = {3, 6, 9, 12, 15, 18, 21, . . .} and k ≡ 1, 3, 8, 11, 13, 16, 21, 23 (mod 25).

Remark 5. If we would restrict to wild prime powers of even discriminator values, then necessarily
p ≡ 1 (mod 4) and there is no need to consider the primes 3, 7 and 11 separately. In this case Corollary
7 is not needed.

Remark 6. Our proof of Theorem 6 eventually depends on quite a number of numerical coincidences
and we are doubtful whether there exists a more conceptual proof.

4.1. Some specific cases. In this section we will demonstrate Corollary 8. If m has an odd prime
divisor, we denote the smallest such by Podd(m), otherwise we put Podd(m) = 1.

Proposition 4.
a) Suppose that k ≡ 3 (mod 5) and k 6≡ 18 (mod 25). Then Dk(3 · 5e−1) = 5e for every e in M5 with
5e < Podd(k(k + 1)).
b) Suppose that k ≡ 1, 3 (mod 5) and k 6≡ 6, 18 (mod 25). Then Dk(6 · 5e−1) = 2 · 5e for every e in
M5 with 2 · 5e < Podd(k(k + 1)).

Proof. We only prove part a, the proof of b being similar. By Lemma 16 we have Dk(3 · 5e−1) ≤ 5e.
The assumption on Podd ensures that up to 5e only powers of two occur in Ak ∪ Bk. It then follows
by Theorem 3 that Dk(3 · 5e−1) = 2a · 5b, with a, b ≥ 0 and 2a · 5b ≤ 5e. If b = 0, then we must have
3 · 5e−1 ≤ 2a < 5e, contradicting our assumption that e ∈ M5. We have ιk(2

a · 5b) ≤ 3 · 2a · 5b−1 ≤
zk(2

a ·5b). We require that 3 ·2a ·5b−1 ≥ 3 ·5e−1. In combination with 2a ·5b ≤ 5e, this gives 2a ·5b = 5e,
completing the proof. �

Two simple ways to obtain a k with Podd(k(k+1)) large are to take k to be a power of two such that
k+ 1 is a prime, or to take k a prime such that k+ 1 is a power of two. This then leads to the Fermat,
respectively Mersenne primes. Conjecturally there are only finitely many Fermat primes, but infinitely
many Mersenne primes. The largest known Fermat primes is 65537, in contrast huge Mersenne primes
are known. We will thus restrict to the case where k is a Mersenne prime. Proposition 4 then has the
following corollary.

Corollary 9. Suppose that p ≡ 1 (mod 4) is a prime > 5 such that q := 2p − 1 is also a prime. Then
Dq(6 · 5e−1) = 2 · 5e, for all those e in M5 for which 2 · 5e < q.

Proof. This follows from part b, on noting that if p ≡ 1 (mod 4) and p > 5, then 2p − 1 ≡ 1 (mod 5)
and 2p − 1 6≡ 6 (mod 25). �

We note that 282589933− 1, the largest known prime number as of Oct. 2022, satisfies the conditions
of the corollary. A similar corollary of part a is not possible as any Mersenne prime > 3 is 6≡ 3 (mod 5).

For n large enough the behavior of Dq(n) with q a Mersenne prime is particularly easy as the
following corollary of Theorems 2 and 3 shows.

Corollary 10. Let q = 2p − 1 > 3 be a Mersenne prime. Then for n ≥ noq(3/2) we have

Dq(n) = min{m ≥ n : m = 2a · qb and a, b ≥ 0}.

Equality already holds for n ≥ noq(5/3) if p ≡ 1 (mod 4) and p > 5.

One finds that no7(3/2) = 131 and some computation leads, for every n ≥ 1, to

D7(n) = min{m ≥ n : m = 2a · 7b and a, b ≥ 0}.

For Mersenne primes q > 7 the numbers noq(3/2) and noq(5/3) seem to be huge [8], and hence a

complete characterization infeasible. For example, no131071(5/3) = d216 · 13107123897 · 3/5e, a number
having 122 298 digits!!
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5. Proofs of Theorems 3 and 5

We first prove Theorem 5, since it will be used in our proof of Theorem 3.

Proof of Theorem 5. Recall that Sk,n := {m ∈ Ak ∪ Bk : m ≥ n}. Let m = Dk(n) be a discriminator
value with m 6∈ Sk,n. If z(m) = m, then m ∈ Sk,n by (1)and so we may assume that z(m) < m.

By Lemma 22 it follows that m ∈ M, with M as in Lemma 13. This entails by Lemma 13 that
n ≤ z(m) ≤ σkm and hence m ≥ n/σk. By assumption there is an integer m1 ∈ Sk,n with m < n/σk,
showing that m1 is a better discriminator than m. We conclude that m ∈ Sk,n. In case m is even, we
repeat this proof, but this time using the inequality z(m) ≤ τkm. �

Proof of Theorem 3. By Theorem 1 we may assume that k > 1. Suppose that k 6≡ 1 (mod 3). Thus
6 | k(k + 1), and so all integers of the form 2a · 3b with a ≥ 1 and b ∈ {0, 1} belong to Bk. We have
σk ≤ 3/5. Now by Theorem 5 it suffices to check that for every n ≥ 2 there is an integer m1 of the
form 2a · 3b with a ≥ 1 and b ∈ {0, 1} in the interval [n, 5n/3) ⊆ [n, n/σk). This can be done with help
of the substitutions 3→ 22 and 2→ 3, which can be applied starting from n = 2.

Next suppose that k ≡ 1 (mod 3) and k ≡ 0, 4 (mod 5). Now 10 | k(k + 1), and so all integers of
the form 2a · 5b with a ≥ 1 and b ≥ 0 belong to Bk. We apply Theorem 2. It is easy to see that for
every n ≥ 22 the interval [n, 2n/3) contains an integer of the form 2a · 5b with a ≥ 1 and b ≥ 0. Thus
if m 6∈ Sk,n, then n ≤ 21. The odd primes ≤ 21 are not wild by Lemma 23. This leaves us only with
9. However, 9 is not potentially wild (see Tab. 7) and so certainly not wild.

Put m = Dk(n). Either z(m) = m or z(m) < m, in which case we have m = pe ·m1 with z(m1) = m1

and pe a wild prime power. By Theorem 6 we conclude that p = 5. It follows that either z(m) = m or
m = 5bm1 with z(m) = 3m/5 and z(m1) = m1. In part I we established that the only discriminator
values m with z(m) = m satisfy m ∈ Ak ∪ Bk. These discriminate U0(k), . . . , Um−1(k) and hence
Dk(n) ≤ min{Sk,n}. It remains to deal with the case where m = 5b ·m1 with b ≥ 1, z(m) = 3m/5 and
z(m1) = m1. On invoking Lemma 20 the proof of (4) is now completed.

Let p > 2 be a prime divisor of k(k + 1). If n ≥ np(5/3), then the interval [n, 5n/3) contains an

even integer of the form 2a · pb. This number is in Bk and ≥ n and so in Sk,n. As it is less than 5n/3,
it follows by (4) that Dk(n) = minSk,n.

By assumption k has an odd prime divisor p. If n ≥ nop(5/3), then the interval [n, 5n/3) contains

an integer of the form 2a · pb. This number is in Ak ∪ Bk and ≥ n and so in Sk,n. As it is less than
5n/3, it follows by (4) that Dk(n) = minSk,n. �

6. Effective bounds for wild prime powers and elements in Fk
It was proved in part I that the set Fk is finite for k > 1. Here, we precise our proof by showing

that this set can be effectively determined and establish Theorem 4.

Definition 9 (prime types). We say that a prime p is of

• type I if p | k;
• type II if p | k + 1;
• type III if p - k(k + 1), ep(k) = 1;
• type IV if p - k(k + 1), ep(k) = −1,

with ep(k) as defined in (7).

Lemma 24. Let k ≥ 2. There are only finitely many odd discriminators which are not made up of
primes p dividing k.

Proof. Let m be an odd discriminator value not made up only of primes of type I. Then by Corollary
5 we can write m = pa11 ·m1, where p1 is of type IV and unique, and m1 is only made up of primes of
type I or II. We will show that both pa11 and m1 are bounded. Note that

z(m) = lcm[z(pa11 ), z(m1)].

We may assume that z(pa11 ) = pa1−1
1 (p1+1)/2, for otherwise z(m) < m/2, contradicting our assumption

that m is a discriminator value. If there is a power of 2, say 2b, in the the interval [pa1−1
1 (p1 +1)/2, pa11 ],

then 2b ·m1 < m is a better discriminator than m. We thus may assume there is no power of 2 in this
interval, which guarantees the existence of an integer a such that

pa11 < 2a+1 < pa11 (1 + 1/p1) .
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Thus, pa11 > (p1/(p1 + 1))2a+1. Since p1 ≥ 3, it follows that pa11 > (3/4)2a+1. Further,

z(pa11 ) = pa11

(
p1 + 1

2p1

)
≤ 2pa11

3
<

2a+2

3
.

Now let p be any odd prime factor dividing k(k+ 1). Since k(k+ 1) cannot be a power of 2 for k > 1
such a prime p exists. We search for a pair of positive integers (u, v) such that

2

3
· 2u+1 < pv <

3

4
· 2u+1.

This we find quickly, since the above condition is equivalent to{
(u+ 1)

log 2

log p

}
∈
(

log(4/3)

log p
,
log(3/2)

log p

)
, (18)

and the sequence of fractional parts {nx} is dense (even uniformly distributed) for irrational x. Let
u be the minimal positive integer with this property. Note that the corresponding v is uniquely
determined. By contradiction we will now show that a ≤ u, leading to the bound

` := pa11 < 2u+1. (19)

Assume that a > u is any integer. We note that

pa1−1
1 (p1 + 1)/2 < (2/3)2a+1 < 2a−u · pv < (3/4)2a+1 < pa11 .

Thus,

2a <
pa1−1

1 (p1 + 1)

2
< 2a−u · pv < pa11 < 2a+1,

and we conclude that m2 := m12a−upv has the property that z(m2) = m2. If n satisfies Dk(n) = m,
then n ≤ m1 · z(pa11 ). The even integer m2 satisfies m1 · z(pa11 ) < m2 < m = m1 · pa11 and discriminates
the integers U0(k), . . . , Um1z(p

a1
1 )−1(k), contradicting the (discriminatory) minimality of m. This shows

that, if pa11 is such that pa11 < 2a+1 < pa11 + pa1−1
1 and m is actually a discriminator, then a ≤ u and

(19) is satisfied.
Fix pa11 = ` and let t = z(`) < `. Now we look at the numbers m1 · t < m1 · ` with m1 > 1. Let q be

any odd prime dividing m1. Let (eq, fq) be the first pair of indices such that qeq · t < 2fq < qeq · ` (it
exists because of an argument with fractional parts as above). Then, if qe divides m1 with e ≥ eq, we

can replace qe by qe−eq · 2fq . This has the effect of replacing m1 by m1 · 2fq · q−eq , which is a better
discriminator for the numbers n ≤ m1 · t than the number m1 · ` is. This can be done for each q
dividing m1. Since there are only finitely many q (namely, odd primes of type I and II), we see that
m is bounded. �

To make the argument effective we need to find N so that the containment condition (18) holds for
some positive integer u ≤ N and bound ` in (19).

Let θ = log 2/ log p. Note that θ 6∈ Q. Recall now that the discrepancy DN of a sequence {am}Nm=1

of real numbers (not necessarily distinct) is defined as

DN = sup
0≤γ≤1

∣∣∣∣#{m ≤ N : {am} < γ}
N

− γ
∣∣∣∣ .

From the above definition we see that the inequality

#{m ≤ N : α ≤ {am} < β} ≥ (β − α)N − 2DNN

holds for all 0 ≤ α ≤ β ≤ 1. Thus, setting am = mθ for all m = 1, . . . , N , and letting

I =

(
log(4/3)

log p
,
log(3/2)

log p

)
,

which is an interval of length log(9/8)/ log p, we have

#{m ≤ N : {am} ∈ I} ≥ |I|N − 2DNN =

(
log(9/8)

log p

)
N − 2DNN. (20)
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In particular, if the right-hand side is positive, then there is u ≤ N with {au} ∈ I. We now upper
bound DN . The Koksma-Erdős-Turán inequality (see Lemma 3.2 in [6]) bounds the discrepancy DN

by

DN ≤
3

H
+

3

N

H∑
m=1

1

m‖am‖
, (21)

where ‖x‖ is the distance from x to the nearest integer and H ≤ N is an arbitrary positive integer.

To bound ‖am‖, note that

‖am‖ =

∣∣∣∣m log 2

log p
− t
∣∣∣∣ =

1

log p
|m log 2− t log p|,

where t is an integer such that t ≤ m(log 2)/(log p) + 1 < 2m. Note that ‖am‖ 6= 0, since θ ∈ R \ Q.
Thus, |m log 2 − t log p| 6= 0 and a lower bound for it can be obtained by using the theory of linear
forms in logarithms.

Let us recall Matveev’s main theorem [9]. It applies to algebraic numbers, but we recall it here
only for rational numbers. For a rational number γ = r/s with coprime integers r and s > 0, let
h(γ) := max{log |r|, log s}.

Theorem 7 (Matveev [9]). Let γ1, . . . , γk be positive rational numbers, let b1, . . . , bk be non-zero
integers, and assume that

Λ := γb11 · · · γ
bk
k − 1, (22)

is non-zero. Then for every

B ≥ max{|b1|, . . . , |bk|}
we have

log |Λ| > −1.4 · 30k+3 · k4.5 (1 + logB)h(γ1) · · ·h(γk).

In our case, we take

Λ = 2m · p−t − 1,

which is non-zero, since p is an odd prime. Note that Λ = eΓ − 1, where Γ = m log 2 − t log p. So,
either |Γ| ≥ 1/2, or |Γ| < 1/2. If |Γ| < 1/2, then

2|Γ| > |eΓ − 1| = |Λ|,
and we can apply Matveev’s theorem to get a lower bound on |Λ| and hence on |Γ|. Either way, we
take in Matveev’s theorem

k = 2, γ1 = 2, γ2 = p, b1 = m, b2 = −t,
and, noting that we can set B := 2m, we get

2|m log 2− t log p| > exp (−C1(log 2)(1 + log(2m)) log p) , (23)

where C1 = 1.4 · 305 · 24.5. Since 1.4 · 305 · 24.5 · log 2 < 6 · 108 − log 2, we get

|m log 2− t log p| > exp(−6 · 108(1 + log(2m)) log p) = p−6·108(1+log(2m)) for m ≥ 1.

We thus obtain that, if H ≥ 15 and 2m ≤ H, then

1 + log(2m) ≤ 1 + logH ≤ 1.63 logH (H ≥ 15),

and so the inequality (23) leads to

1

‖am‖
≤ (log p) p(6·1.63)·108 logH < p(109−2) logH = H(109−2) log p < H109 log p−2.

Thus,

DN ≤ 3

(
1

H
+
H109 log p−2

N

H∑
m=1

1

m

)
< 3

(
1

H
+
H109 log p−1

N

)
.

where we trivially bounded the sum by H. Choosing H :=
⌊
N10−9/ log p

⌋
we get, assuming still that

H ≥ 15 and therefore that

N10−9/ log p ≥ 15, which is equivalent to N ≥ 15109 log p, (24)
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that

DN ≤ 3
( 1

H
+
H109 log p−1

N

)
≤ 3

(⌊
N10−9/ log p

⌋−1
+N−10−9/ log p

)
≤ 7N−10−9/ log p,

where we use the trivial observation that if x ≥ 15, then

1

bxc
+

1

x
≤ 1

x

( 1

1− 1
x

+ 1
)
≤ 29

14
· 1

x
<

7

3
· 1

x
.

Turning now our attention to the inequality (19), we see that

N

(
log(9/8)

log p
− 2DN

)
> N

(
log(9/8)

log p
− 14N−10−9/ log p

)
. (25)

Thus, if N ≥ N0 with

N0 :=

(
15 log p

log(9/8)

)109 log p

, (26)

the right–hand side of (25) is at least
N

15

log(9/8)

log p
(27)

and hence positive. Note that the inequality N ≥ N0, with N0 as in (26), ensures that the inequality
(24) is satisfied. Hence, we have established the following result.

Lemma 25. Let p be an odd prime factor of k(k + 1). There is a positive integer u such that{
(u+ 1)

log 2

log p

}
∈
(

log(4/3)

log p
,
log(3/2)

log p

)
(28)

and

u+ 1 <

(
15 log p

log(9/8)

)109 log p

.

The argument can be iterated to give an upper bound on the largest element of Fk.

Lemma 26. If m is an odd discriminator not entirely made up of primes dividing k, then

m < 2(k+1)10
10 log log(k+1)

.

Proof. We keep the notation from the proof of Lemma 24. As such, we write m = pa11 ·m1, where m1

is made up of primes p dividing k(k + 1). By the argument from that proof, we conclude that

pa11 < 2a+1 ≤ 2u+1,

with u the smallest integer satisfying (18). By Lemma 25 and since 15/ log(9/8) < 130, it follows that

u+ 1 ≤ (130 log p)109 log p = p109 log(130 log p).

Therefore, with the notation of Lemma 24, we have

` = pa11 < 2u+1 ≤ 2p
109 log(130 log p)

. (29)

Now let q | m1, which implies q | k(k + 1). We need to estimate the smallest pair of positive integers
(eq, fq) such that, if we put

t := z(`) = pa1−1
1 (p1 + 1)/2,

then
qeq · t < 2fq < qeq · `. (30)

Taking logarithms, we have

eq +
log `

log q
− log(`/t)

log q
< fq

log 2

log q
< eq +

log `

log q
.

Since `/t = 2p1/(p1 + 1) ≥ 3/2, the above condition places {fq(log 2)/(log q)} in one (or two) intervals
of total length log(`/t)/(log q) ≥ log(3/2)/(log q). More precisely, if {log `/ log q} > log(3/2)/(log q),
it then follows that it suffices that{

fq
log 2

log q

}
∈
({

log `

log q

}
− log(3/2)

log q
,

{
log `

log q

})
,
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whereas if {log `/ log q} < log(3/2)/ log q, it suffices that{
fq

log 2

log q

}
∈
(

1 +

{
log `

log q

}
− log(3/2)

log q
, 1

)
∪
(

0,

{
log `

log q

})
.

In any case, there is an interval J of length 0.5 log(3/2)/ log q such that, if {fq log 2/ log q} ∈ J , then
the estimate (30) holds with some appropriate positive integer eq. Note that 0.5 log(3/2) > log(9/8),
so by the arguments from the proof of Lemma 25, it follows that if N ≥ N0, where N0 satisfies (26),
then there are at least

N log(9/8)

15 log p

values of f ≤ N such that {f log 2/ log q} ∈ J . This in turn implies the inequalities qet < 2f < qe`.
The only situation in which we are in trouble is when e = 0, in which case t < 2f < `. Assume this
happens. By inequality (29), we get

f < p109 log(130 log p).

If this were so for all the acceptable values for f , we would get by (27) that

N log(9/8)

15 log p
< p109 log(130 log p),

and therefore

N <

(
15 log p

log(9/8)

)
p109 log(130 log p) < p(109+1) log(130 log p). (31)

To ensure that this doesn’t happen we ask that N ≥ N1, where

N1 =

(
15 log p

log(9/8)

)1.1·109 log p

. (32)

Indeed, since 15/ log(9/8) > 127, the above inequality forces

N > p1.1·109 log(127 log p).

To see that (31) fails for such N , assume it doesn’t and we get

p1.1·109 log(127 log p) < N < p(109+1) log(130 log p),

and so
log(130 log p)

log(127 log p)
>

1.1 · 109

109 + 1
> 1.09.

However, this is false since the function (log(130) + x)/(log(127) + x) on the left with x = log log p is
decreasing for x ≥ 0 with the maximum log(130)/ log(127) = 1.04 . . . at x = 0, which is not larger than
1.09. It then follows that by choosing N as in (32) then there is some f such that qe · t < 2f < qe · `
and e > 0. Since 15/ log(9/8) < 130, it follows that, in particular,

fq ≤ (130 log p)1.1·109 log p ,

and since p ≤ k + 1, we get

qeq ≤ 2fq ≤ 2(k+1)1.1·10
9 log(130 log(k+1))

.

Thus,

m1 ≤
∏

q|k(k+1)
q odd

qeq ≤ 2ω(k(k+1))(k+1)1.1·10
9 log(130 log(k+1))

< 2(k+1)10
10 log log(k+1)

. (33)

The right-most inequality follows because of the trivial estimate

ω(k(k + 1)) = ω(k) + ω(k + 1) ≤ 2 log(k + 1)

log 2
< 4 log(k + 1) ≤ (k + 1)3,

and, furthermore,

3 + 1.1 · 109 log(130 log(k + 1)) < 1010 log log(k + 1),

which holds for k ≥ 6. One may check by hand that this is also true for k ∈ {2, 3, 4, 5}. Indeed, in
these cases p ∈ {3, 5}, and one checks that in each of the cases one may choose u ≤ 20 satisfying the
containment (28) of Lemma 25. �
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Lemma 27. Let k ≥ 2. There are only finitely many discriminators which are even and not divisible
only by primes p dividing k(k + 1).

Proof. We write m = 2z ·m1 with z ≥ 1 and m1 odd. The previous arguments showed that m1 has at
most one prime factor not of type I or II. If it has one, it is of type IV. Assume m1 = pa11 ·m2, where p1

is of type IV. Then z(p1) | (p1 + 1)/2. If z(p1) | (p1 + 1)/4, then z(m) ≤ 2am2p
a1−1
1 (p1 + 1)/4 < m/2,

and we get a contradiction. A similar contradiction is obtained if z(p2
1) | (p1 +1)/2, so we may assume

that z(pa11 ) = pa1−1
1 (p1 + 1)/2. As in previous occasions, there exists a with

pa11 < 2a+1 < pa11 (1 + 1/p1).

Thus, pa11 > (3/4)2a+1. As in the previous application, we pick an odd prime q dividing k(k + 1) and
let u be minimal such that

2

3
· 2u+1 < qv <

3

4
· 2u+1

for some (unique) v. Then, if a > u, it follows that 2a−uqvm2 is a better discriminator than m1. This
shows that pa11 < 2a+1 ≤ 2u+1 is bounded. The bound is the same as in Lemma 25. Next, for each odd
prime q | m2 (of type I or II) we find (eq, fq) such that qeq · t < 2fq < qeq · `, with (t, `) = (z(pa11 ), pa11 ),
for all finitely many choices pa11 . Then, if the exponent of q in m exceeds eq, we can replace m by

m · 2fq · q−eq , which yields a better discriminator. This holds for all prime factors q of m2, so also m2

is bounded. The bounds given in (33) apply to m1.
It remains to bound the exponent z of 2 in the factorization of m. We know by now that m = 2zm1

and that m1 is odd and bounded, cf. (33), as

m1 < 2ω(k(k+1))(k+1)1.1·10
9 log(130 log(k+1))

.

Further, z(m1) < m1. Put (t, `) = (z(m1),m1). Again, we pick some odd prime q dividing k(k + 1)
and search for integers x, y such that the inequality 2x · t < qy < 2x · ` holds, where ` = m1 and
t = z(m1). This is equivalent to

x+
log `

log 2
− log(`/t)

log 2
< y

log q

log 2
< x+

log `

log 2
.

Note that this is again satisfied if {y log q/ log 2} is in one or two intervals of length log(`/t)/ log 2 >
log(3/2)/ log 2. The argument with linear forms in logarithms works and gives a bound on y as in
Lemma 25. This shows that

2x < qy < (k + 1)(k+1)10
9 log(130 log(k+1)

< 2(log(k+1)/ log 2)(k+1)10
9 log(130 log(k+1))

.

If x > 0, and z > x then we replace 2zm1 by 2z−xm1q
y, which is a better discriminator. This shows

that z ≤ x when x is positive. To ensure that x is positive we argue as in the previous lemma to
conclude that if we replace the exponent 109 log(130 log(k + 1)) by 1.1 · 109 log(130 log(k + 1)), then
there is a choice of (x, y) with x > 0. For such x we have z ≤ x is also bounded, so

m < 2(ω(k(k+1))+(log(k+1)/ log 2))(k+1)1.1·10
9 log(130 log k)

< 2(k+1)10
10 log log(k+1)

,

which is what we wanted to show. Again the last inequality holds for k ≥ 6 and for smaller values of
k can be checked by hand. �
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