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SEQUENCES OF INTEGERS GENERATED BY
TWO FIXED PRIMES

ALESSANDRO LANGUASCO, FLORIAN LUCA, PIETER MOREE, AND ALAIN TOGBÉ

In honorem Robert Tijdeman annos LXXX nati

Abstract. Let p and q be two distinct fixed prime numbers and (ni)i≥0 the sequence of consecutive
integers of the form pa · qb with a, b ≥ 0. Tijdeman gave a lower bound (1973) and an upper bound
(1974) for the gap size ni+1−ni, with each bound containing an unspecified exponent and implicit
constant. We will explicitly bound these four quantities. Earlier Langevin (1976) gave weaker
estimates for (only) the exponents.

Given a real number α > 1, there exists a smallest number m such that for every n ≥ m,
there exists an integer ni in [n, nα). Our effective version of Tijdeman’s result immediately implies
an upper bound for m, which using the Koksma-Erdős-Turan inequality we will improve on. We
present a fast algorithm to determine m when max{p, q} is not too large and demonstrate it with
numerical material. In an appendix we explain, given ni, how to efficiently determine both ni−1

and ni+1, something closely related to work of Bérczes, Dujella and Hajdu.

1. Introduction

Given a set S = {p1, . . . , ps} of primes, the numbers pe11 · · · pess with non-negative exponents are
called S-units. There are many Diophantine equations involving S-units, see for example Evertse
et al. [5]. In this note we are interested in the distribution of S-units.
In case p1, . . . , ps are the first s prime numbers, the counting function of S-units up to x is

denoted by ψ(x, ps), and the S-units are called ps–friable or ps–smooth. There is an extensive
literature on these numbers, see Hildebrand and Tenenbaum [10] for a nice survey. The gaps
between consecutive friable numbers were studied by Heath-Brown [9]. Tijdeman and Meijer [20]
studied the distribution of the greatest common divisor of consecutive S-units (for general S). We
will concentrate solely on the case where S has two elements.

Definition 1.1. Let p, q be two primes with p < q. We let (ni)i≥0 be the sequence of consecutive
integers of the form n = pa · qb with a, b ≥ 0.

Put Np,q(x) := #{ni ≤ x}. Note that Np,q(x) = #{(e, f) ∈ Z2
≥0 : e log p + f log q ≤ log x},

that is it equals the number of lattice points inside a rectangular triangle with sides of length
log x/ log p, respectively log x/ log q. The area of this triangle is

(1.1)
(log x)2

2 log p · log q
.

It is known that

Np,q(x) =
log px · log qx
2 log p · log q

+ o(log x),

where the error term is worse if log px · log qx is replaced by (log x)2. Interestingly, Ramanujan in
his famous first letter to Hardy (Jan. 16th, 1913), claims (in case p = 2 and q = 3) the latter main
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2 ALESSANDRO LANGUASCO, FLORIAN LUCA, PIETER MOREE, AND ALAIN TOGBÉ

term as an approximation, rather than the trivial (1.1). For more details and references the reader
is referred to Moree [14].

Bérczes, Dujella, and Hajdu [2], for any term ni determined ni+1, at least in principle, without
enumerating all terms of the sequence, and they gave an efficient algorithm to find ni+1 explicitly.
They do so by analyzing the behavior of the continued fractions of log p/ log q (see Theorems 2.2
and 2.3 of [2]). In the appendix we present a shorter reproof and in addition show how to also
efficiently find ni−1 explicitly.
As early as 1908, Thue [17] gave an ineffective proof that the gap size ni+1−ni tends to infinity,

which was made effective by Cassels [4] in 1960. Tijdeman [18, 19], half a century ago, gave
bounds for the gap size. He derived these by making use of estimates of Baker [1] for linear forms
in logarithms of algebraic numbers, which had become available a few years earlier.

Theorem 1.1. Let (ni)i≥0 be as in Definition 1.1. There exist effective constants C1 and C2 such
that

ni

(log ni)C1
≪p,q ni+1 − ni ≪p,q

ni

(log ni)C2
.

The constants C1, C2 and the two implicit constants all may depend on p and q.

Langevin [12], soon after Tijdeman’s work appeared, gave effective bounds for the constants C1

and C2.

Theorem 1.2. Under the conditions of Theorem 1.1, we have

(2126 log p · log q · log log p)−1 < C2 < C1 < 2126 log p · log q · log log p.

We will improve on this result and also give explicit bounds for the implicit constants in Theorem
1.1.

Theorem 1.3. Assuming ni ≥ 3, we have

C3
ni

(log ni)C1
< ni+1 − ni < C4

ni

(log ni)C2
,

where C1 = 2 · 109 log p · log q, C2 = C−1
1 , C3 = (log p)C1, C4 = 8q.

Langevin used a result of van der Poorten [21] to obtain Theorem 1.2. In Section 2 we will use
a celebrated result of Matveev (Theorem 2.1) to prove Theorem 1.3. This helps to decrease the
coefficient of the bound C2 from a 38 digit number to a 9 digit one.
Very recently Stewart [16] derived an analogue of Theorem 1.1 for increasing sequences (ni) such

that the largest prime factor of ni is at most y(ni), with y(x) a non-decreasing function slowly
tending to infinity.

In Section 3, we consider Bertrand’s Postulate type results for our sequence.

Definition 1.2. Given any real number α > 1, np,q(α) is the smallest integer such that every
interval [n, nα) with n ≥ np,q(α) contains an integer of the form pa ·qb for every integer n ≥ np,q(α).

Bertrand’s Postulate type results arise on taking α = 2. Theorem 1.3 gives right away that if
α ∈ (1, p] and

(1.2) ni > exp
(( 4q

α− 1

)2·109 log p·log q)
,

then ni+1 ∈ (ni, αni). In Section 3 we will (slightly) improve on this lower bound and show that
this conclusion already holds if

ni > exp
(
2 log p

(60 log q
logα

)109 log p·log q)
.
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In Section 4 we present an algorithm for efficiently determining np,q(α) and present some of its
outputs. In particular, in Section 3.3 we use our algorithm to advance the understanding of the
so-called discriminator of an infinite family of second-order recurrent sequences first studied by
Faye, Luca and Moree [6] and more recently by Ferrari, Luca and Moree [7].

2. Proof of Theorem 1.3

We need linear forms in logarithms. For any non-zero algebraic number η of degree d over Q,
whose minimal polynomial over Z is a

∏d
i=1

(
X − η(i)

)
(with a > 0), we denote by

h(η) =
1

d

(
log a+

d∑
i=1

logmax
(
1, |η(i)|

))
the usual absolute logarithmic height of η. If η1 and η2 are algebraic numbers, then we have the
basic properties

h(η1 ± η2) ≤ h(η1) + h(η2) + log 2,

h(η1η
±
2 ) ≤ h(η1) + h(η2),

h(ηj1) = |j|h(η1),
where j is any integer.

We recall Matveev’s main theorem [13] in a version due to Bugeaud, Mignotte and Siksek [3,
Thm. 9.4]. It applies to algebraic numbers, but we recall it here only for rational numbers. For a
rational number γ = r/s with coprime integers r and s > 0, let h(γ) := max{log |r|, log s} be its
naive height.

Theorem 2.1 (Matveev’s theorem). Let γ1, . . . , γk be positive rational numbers, let b1, . . . , bk be
non-zero integers, and assume that

(2.1) Λ := γb11 · · · γbkk − 1,

is non-zero. For every real number B ≥ max{|b1|, . . . , |bk|} we have

log |Λ| > −1.4 · 30k+3 · k4.5(1 + logB)h(γ1) · · ·h(γk).

Note that n1 = 1, n2 = p. Let ni = pu · qv. We assume that ni ≥ 3 (this holds for i = 2 in all
cases except if p = 2, in which case we assume that i ≥ 3). The lower bound on ni+1 − ni follows
right–away from Theorem 2.1. Indeed, let ni+1 = pu

′ ·qv′ . Note that max{u, v, u′, v′} ≤ 2max{u, v}
(since certainly n2

i > ni is a {p, q}-unit, clearly n2
i ≥ ni+1). Then

ni+1 − ni = ni

(
pu

′−uqv
′−v − 1

)
.

By Theorem 2.1 the right–hand side is bounded below by

ni exp
(
−1.4 · 305 · 24.5(1 + log(2max{u, v})) log p · log q

)
.

Since max{u, v} ≥ 1 and for x ≥ 2 we have 1 + log x ≤ 2.5 log x, we obtain

ni+1 − ni >
ni

(2max{u, v})2·109 log p·log q
.

Since ni = pu · qv ≤ (pq)max{u,v}, we get that max{u, v} ≥ log ni/ log(pq). Thus,

ni+1 − ni > C3
ni

(log ni)C1
,

where
C1 = 2 · 109 log p · log q, C3 = (0.5 log pq)C1 > (log p)C1 .
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In order to obtain an upper bound for ni+1 − ni we proceed as in Langevin [12] and make use of
the sequence (rk/sk)k≥0 of convergents of

θp,q :=
log p

log q
.

Suppose first that pu > qv. We assume that ℓ is the index verifying sℓ ≤ u < sℓ+1. Since p < q,
it follows that a0 = 0 and a1 = ⌊log q/ log p⌋. So, if ℓ = 0, then we have u < log q/ log p, so
pu < q. Thus, v = 0, ni+1 ≤ q and the inequalities hold provided that the multiplicative constant
C4 implied by the right Vinogradov symbol ≪ is taken to be at least q(log q)C2 .

Assume next that ℓ ≥ 1. One of the rational numbers rℓ/sℓ and rℓ+1/sℓ+1 is at least θp,q. Choose
ℓ′ ∈ {ℓ, ℓ+ 1} such that rℓ′/sℓ′ > θp,q. By construction

pu−sℓ′ · qv+rℓ′

is integer larger than pu · qv, and so it is at least ni+1. Thus, we obtain

(2.2) log
(ni+1

ni

)
≤ |Λℓ′ |,

where
Λk := sk log p− rk log q.

By [8, Thm. 171] we have

(2.3) |Λk| <
log q

sk+1

.

Combining (2.2) and (2.3) with k = ℓ′ = ℓ gives

(2.4) log
(ni+1

ni

)
<

log q

sℓ+1

.

Next, assume k = ℓ′ = ℓ+ 1. Now (2.3) gives

(2.5)
sℓ+2

log q
<

1

|Λ|
,

where for notational convenience we put Λ = Λℓ+1. We need to lower bound |Λ|. Note that
|psℓ+1 · q−rℓ+1 − 1| = | exp(Λ)− 1|. Either |Λ| ≥ 1/2, or |Λ| < 1/2, in which case

| exp(Λ)− 1| < 2|Λ|.
We lower bound the left–hand side above using Theorem 2.1. We get

2|Λ| > |psℓ+1 · p−rℓ+1 − 1| > exp
(
−1.4 · 305 · 24.5 (1 + logmax{sℓ+1, rℓ+1}) log p · log q

)
.

Note that we can assume that sℓ+1 > rℓ+1. Indeed, otherwise we have rℓ+1 ≥ sℓ+1 and so

|Λ| = |(rℓ+1 − sℓ+1) log q + sℓ+1(log q − log p)| ≥ log
(q
p

)
≥ log

(
1 +

1

p

)
>

1

2p
,

which is a better inequality. In particular, sℓ+1 ≥ 2. We thus get

|Λ| > exp
(
− log 2− 1.4 · 305 · 24.5 (1 + log sℓ+1) log p · log q

)
> exp

(
−2 · 109 log sℓ+1 log p · log q

)
,

where we have used the fact that 1 + log sℓ+1 ≤ 2.5 log sℓ+1, for sℓ+1 ≥ 2. Thus, inequality (2.5)
gives

sℓ+2

log q
<

1

|Λ|
< sC1

ℓ+1.

Hence, we get
sℓ+1 > 0.5 sC2

ℓ+2.
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Then, recalling (2.2)-(2.3), we obtain

(2.6) log
(ni+1

ni

)
<

log q

sℓ+2

≤ log q

sℓ+1

<
2 log q

sC2
ℓ+2

.

We thus get that in all cases ((2.4) and (2.6)) we have

(2.7) log
(ni+1

ni

)
<

log q

sℓ+1

<
2 log q

sC2
ℓ+2

<
2 log q

uC2
.

Since by assumption pu > qv we have pu > n
1/2
i and hence u > logni

2 log p
we obtain

log
(ni+1

ni

)
<

2 (2 log p)C2 log q

(log ni)C2
<

4 log q

(log ni)C2
.

But (ni+1 − ni)/ni ∈ (0, p − 1]. In this interval, the image of the function log(1 + x)/x is in the
interval [ log p

p−1
, 1]. Writing ni+1/ni = 1 + x, where x = (ni+1 − ni)/ni, we get that

ni+1 − ni <
4 (p− 1)ni log q

(log ni)C2 log p
,

and we can choose C4 to be at least
4(p− 1) log q

log p
.

But, we also needed that this constant exceeds q(log q)C2 . Since (log q)C2 < 2, it follows that if we
choose C4 ≥ 4q, then everything works out.

We proceed by a similar argument in the remaining case qv > pu. Note that v ≥ 1. We take ℓ
such that rℓ ≤ v < rℓ+1. We choose ℓ′ ∈ {ℓ, ℓ+ 1} such that rℓ′/sℓ′ is smaller than θp,q. Note that
if ℓ = 0, we then have r0/s0 = 0 < θp,q. So, ℓ′ ≥ 0 is well-defined even if ℓ = 0. We consider the
number

pu+sℓ′ · qv−rℓ′ ,

which is an integer which is a {p, q}-unit exceeding ni, so it is at least ni+1. Assuming sℓ+1 ≥ 2
and reasoning as before we deduce (2.7) and so

(2.8) log
(ni+1

ni

)
<

2 log q

sC2
ℓ+2

.

The above inequality assumes that sℓ+1 ≥ 2 which holds for all ℓ ≥ 0 except when ℓ = 0 and
q ∈ (p, p2). But this is impossible since we must also have 0 = r0 ≤ v < r1 = 1, so v = 0, therefore
i = 1, which is false. We need to recast the above inequality in terms of v. By (2.3) we have

|rℓ+2 log q − sℓ+2 log p| <
log q

sℓ+2

.

Hence, using that sℓ+2 ≥ sℓ+1 ≥ 2 we obtain

sℓ+2 log p ≥
(
rℓ+2 −

1

sℓ+2

)
log q ≥ 0.5 rℓ+2 log q.

Thus, we get

sℓ+2 ≥
log q

2 log p
rℓ+2, sC2

ℓ+2 ≥
( log q

2 log p

)C2

rC2
ℓ+2 >

rC2
ℓ+2

2
.

By (2.8) we get

log
(ni+1

ni

)
<

4 log q

rC2
ℓ+2

<
4 log q

vC2
.
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So, we get an upper bound in the right–hand side by a factor of at most 2 larger than in the case
when pu > qv. Following along we obtain that in this case

ni+1 − ni < C4
ni

(log ni)C2
,

we must have C4 > 8(p− 1) log q
log p

, and so taking C4 = 8q suffices.

3. Bertrand’s Postulate for the sequence (ni)i≥0

3.1. The statement. We will show a way to compute np,q(α). Tables 1 and 2 give some examples
for p = 2 and α = 5/3, respectively 3/2, some of which are relevant for an application.

Basic results from the theory of Diophantine approximation (cf. Section 4.1), ensure the existence
of integers e, f, g, and h such that

1 <
pf

qe
< α and 1 <

qh

pg
< α.

We claim that np,q(α) ≤ pg · qe. In order to see this, one can observe that any integer n :=
pℓ · qk ≥ pg · qe satisfies either k ≥ e, or ℓ ≥ g. In case k ≥ e, we note that the number pℓ+f · qk−e

lies in [n, nα). In case ℓ ≥ g, we have pℓ−g · qk+h ∈ [n, nα). Next one tries to find an integer
nnew := pℓ · qk ∈ [⌊pg · qe/α⌋, pg · qe), where ⌊x⌋ denotes the integral part of x. If successful, we
continue until we fail, each time considering the interval [⌊nnew/α⌋, nnew). In Section 4.1 we present
a much more refined way of determining np,q(α).

3.2. An upper bound for np,q(α). Recall that the discrepancy DN of a sequence (am)
N
m=1 of real

numbers (not necessarily distinct) is defined as

DN = sup
0≤γ≤1

∣∣∣#{m ≤ N : {am} < γ}
N

− γ
∣∣∣,

where {x} denotes the fractional part of a real number x. The Koksma-Erdős-Turán inequality
(see, for example, Kuipers and Niederreiter [11, Lemma 3.2]) states that

(3.1) DN ≤ 3

H
+

3

N

H∑
m=1

1

m∥am∥
,

where ∥x∥ is the distance from x to the nearest integer and H ≤ N is an arbitrary positive integer.
In this section we will improve on the bound (1.2) by applying this inequality to upper bound the
discrepancy of the sequence (jθp,q)j≥1, with θp,q := log p/ log q.

Theorem 3.1. Let p < q be primes and α ∈ (1, p]. Put C5 = 109 log p · log q. There are positive
integers f and g such that

(3.2)
{
f
log q

log p

}
∈
(
0,

logα

log q

)
,

{
g
log p

log q

}
∈
(
1− logα

log q
, 1
)
,

and

(3.3) max{f, g} <
(60 log q

logα

)C5

.

In particular,

np,q(α) ≤ qe · pg < pf+g < exp
(
2 log p

(60 log q
logα

)C5
)
.
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Proof. From the definition of DN we see that the inequality

(3.4) #{m ≤ N : α ≤ {am} < β} ≥ (β − α)N − 2DNN

holds for all 0 ≤ α ≤ β ≤ 1. We will apply this with am = mθp,q for all m = 1, . . . , N . Writing

I =
(
0,

logα

log q

)
, J =

(
1− logα

log q
, 1
)
,

both intervals of length logα/ log q, it follows from (3.4) that

(3.5) #{m ≤ N : {am} ∈ I} ≥ |I|N − 2DNN =
( logα
log q

)
N − 2DNN,

and similarly with I replaced by J . In particular, if the right-hand side is positive, then there is
u ≤ N with {au} ∈ I. We will now upper bound DN using (3.1). To bound ∥am∥, note that

∥am∥ =
∣∣∣m log p

log q
− t

∣∣∣ = |Λ|
log q

, with Λ := m log p− t log q,

for some integer t with t ≤ m(log p)/(log q) + 1 < 2m. Since θp,q is irrational we have either
|Λ| ≥ 1/2, or 0 < |Λ| < 1/2. If 0 < |Λ| < 1/2, then

2|Λ| > | exp(Λ)− 1|,
and we can apply Matveev’s theorem to get a lower bound on | exp(Λ)− 1| and hence on |Λ|. In
both cases we take in Matveev’s theorem

k = 2, γ1 = p, γ2 = q, b1 = m, b2 = −t,
and, noting that we can set B := 2m, we get

(3.6) 2|Λ| > exp (−c1(log p)(1 + log(2m)) log q) ,

where c1 = 1.4 · 305 · 24.5 < 8 · 108 − log 2. We get

|Λ| > exp(−8 · 108(1 + log(2m)) log p · log q)
= q−8·108(1+log(2m)) log p for m ≥ 1.

We thus obtain that, if H ≥ 60 and 2m ≤ H, then

1 + log(2m) ≤ 1 + logH ≤ 1.245 logH (H ≥ 60),

and so inequality (3.6) leads to

1

∥am∥
≤ (log q) q(8·1.245)·10

8 logH log p < q(10
9−3) logH log p

= H(109−3) log p·log q < HC5−2.

Thus,

DN ≤ 3
( 1

H
+
HC5−2

N

H∑
m=1

1

m

)
< 3

( 1

H
+
HC5−1

N

)
,

where we trivially bounded the sum by H. Choosing H :=
⌊
N1/C5

⌋
we get, assuming still that

H ≥ 60 and therefore that

(3.7) N1/C5 ≥ 60, which is equivalent to N ≥ 60C5 ,

we obtain

DN ≤ 3
( 1

H
+
HC5−1

N

)
≤ 3

(⌊
N1/C5

⌋−1

+N−1/C5

)
≤ 7N−1/C5 .
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To derive the final inequality we used the trivial observation that if x ≥ 60, then

1

⌊x⌋
+

1

x
≤ 1

x

( 1

1− 1
x

+ 1
)
≤ 119

59
· 1
x
<

7

3
· 1
x
.

Turning now our attention to the inequality (3.5), we see that

(3.8) N
( logα
log q

− 2DN

)
> N

( logα
log q

− 14N−1/C5

)
.

Thus, if N ≥ N0 with

(3.9) N0 :=
(60 log q

logα

)C5

,

and hence N0 ≥ 60C5 , the right–hand side of (3.8) is at least

(3.10)
23

30
N

logα

log q

and hence positive. From what we have seen at the beginning of Section 3.1, we have np,q(α) ≤
qe · pg < pf+g. The proof is now completed on invoking (3.3). □

A similar proof also appears in Ferrari et al. [7] in the context of bounding the largest exceptional
value of the discriminator of certain Lucas sequences.

3.3. Application to the discriminator of Lucas type sequences. Faye et al. [6] considered
the sequence {Un(k)}n≥0 defined uniquely by

Un+2(k) = (4k + 2)Un+1(k)− Un(k), U0(k) = 0, U1(k) = 1.

For k = 1, the sequence is

0, 1, 6, 35, 204, 1189, 6930, 40391, 235416, 1372105, . . . ,

which is A001109 in OEIS. On noting that

Un+2(k)− Un+1(k) = 4kUn+1(k) + Un+1(k)− Un(k) ≥ 1,

one sees that the sequence Un(k) consists of strictly increasing non-negative numbers. We can now
define its discriminator Dk(n) as the smallest positive integer m such that U0(k), . . . , Un−1(k) are
pairwise distinct modulo m.

Primes of the form 2n − 1 are called Mersenne primes. Note that n has to be a prime. The
first few Mersenne primes are: 3, 7, 31, 127, 8191, 131071, 524287, . . . The first few with exponent
n ≡ 1 mod 4 are 31, 8191, 131071, 2305843009213693951, . . . Choosing k to be a Mersenne prime,
it turns out that Dk(n) is a {2, k}-unit for all n large enough.

Proposition 3.1. Let p be an odd prime such that also q := 2p−1 is a prime number. Let (ni)i≥0

be the sequence of consecutive S-units with S = {2, q}. Then
(3.11) Dq(n) ≤ min{ni ≥ n},
with equality if the interval [n, 3n/2) contains an S-unit nj. In particular, if n ≥ n2,q(3/2) we have
equality in (3.11). If p ≡ 1 mod 4 and p > 5, then we have equality for n ≥ n2,q(5/3) and Dq(n) is
a {2, 5, q}-unit for every n ≥ 1.

Proof. The first assertion follows on taking for k the Mersenne prime q in Theorem 3 of Faye et
al. [6], the second assertion is a consequence of Theorem 3 of Ferrari et al. [6]. □

Numerical work by Matteo Ferrari never led to inequality in (3.11) in case q = 2p − 1 with
p ≡ 3 mod 4, but in case p ≡ 1 mod 4 he found examples, e.g.,

D8191(129) = 250, D131071(129) = 250, D131071(257) = 500.
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q n2,q(5/3)

3 1

5 1

7 1

11 1

13 1

17 39322

19 154

23 10

q n2,q(5/3)

29 279

31 274839850

37 615

41 20

43 20

47 20

53 20

59 66836

q n2,q(5/3)

61 4358036

67 10066330

71 2458

73 2458

79 39

83 39

89 39

97 39

Table 1. n2,q(5/3); 3 ≤ q ≤ 100.

q n2,q(3/2)

3 1

5 11

7 131

11 6

13 70

17 699051

19 171

23 11

q n2,q(3/2)

29 8971

31 282022636380491

37 683

41 683

43 22

47 22

53 1131

59 4381419

q n2,q(3/2)

61 18018054422

67 2932031007403

71 174763

73 174763

79 2731

83 2731

89 43

97 4139

Table 2. n2,q(3/2); 3 ≤ q ≤ 100.

As predicted by Proposition 3.1, these values are indeed {2, 5, 2p − 1}-units.
One finds that n2,7(3/2) = 131 and computing D7(n) for the integers 1 ≤ n ≤ 130 shows that for

q = 7 there is always equality in (3.11), in line with the observations of Ferrari. Unfortunately, we
are not able to classify Dq(n) completely for any Mersenne prime q > 7, as then n2,q(5/3) appears
to be very large (and hence n2,q(3/2) even more so). The Mersenne prime 127, for example, leads
to a very large value of n2,127(3/2): the algorithm, which we will describe in Section 4.1, starts
with the pair of exponents (615, 1) and, after having generated 23 150 left neighbors, terminates
with the pair (6, 36). Hence, the final result is n2,127(3/2) = ⌈26 · 12736 · 2/3⌉, a number having 78
digits.

For n2,8191(5/3) the algorithm starts with the pair (73 800, 1) and, after having generated 195
078 401 left neighbors, terminates with the pair (12, 1 493). Hence, the final result is n2,8191(5/3) =
⌈212 · 81911493 · 3/5⌉, a number having 5 847 digits. The whole computation of this case took about
20 minutes and 30 seconds.

For n2,131071(5/3) the algorithm starts with the pair (1 544 466, 1), so that nstart has 464 936
digits. After having generated 65 305 850 756 left neighbors (more than 65 billion neighbors . . . ),
it terminates with the pair (16, 23 897). Hence, the final result is n2,131071(5/3) = ⌈216 ·13107123897 ·
3/5⌉, a number having 122 298 digits!! The whole computation of this case took about 5 days and
17 hours. The running times were obtained on a Dell Optiplex 3050, Intel i5-7500, 3.40GHz, 32GB
of RAM running Ubuntu 22.04.03-LTS and PARI/GP 2.15.4.

Apart from having sharper estimates for nstart, the only hope to obtain n2,q(3/2) or n2,q(5/3)
in case q > 131071 is a Mersenne prime, is to implement part of this algorithm using the C
programming language. This is doable since, once one has gained the knowledge of a sufficiently
large number of the θ2,q-convergents, the continued fraction part and the first trivial part can
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work on exponents only. On the other hand, for the second trivial part the use of multiprecision
arithmetic is mandatory.

p q = 2p − 1 α n2,q(α) ℓ(n2,q(α))

2 3 3/2 1 1

3 7 3/2 131 3

5 31 5/3 274 839 850 9

7 127 3/2 ⌈26 · 12736 · 2/3⌉ 78

13 8 191 5/3 ⌈212 · 81911493 · 3/5⌉ 5 847

17 131 071 5/3 ⌈216 · 13107123897 · 3/5⌉ 122 298

Table 3. Known values of n2,Mp(α) for Proposition 3.1; ℓ(n) is the number of
decimals of n.

4. Computations

In this section, we will use heavy computations to search for np,q(α) and to study the extremal
and average behaviors of the gaps ni+1 − ni. In both cases, we will use the knowledge of the
continued fractions convergents of θp,q to generate left or right neighbors of a given S-unit ni.

The first computational problem we address is to search for np,q(α) since, as we will see later, its
knowledge plays also a role in studying the extremal and average behaviors of the gaps ni+1 − ni.

4.1. Computation of np,q(α). We now explain how the algorithm to compute np,q(α) works.
First of all, thanks to Theorem 3.1, we know that it is possible to identify nstart, a suitable an
upper bound for np,q(α). After having identified such a point, we will then generate a part of the
ni sequence by looking for S-units less than ni.

We will now describe a way how to generate such a suitable starting point.

4.1.1. Generating the starting point nstart. An easy argument, see Section 3.1, shows that if
f, e, g, h ≥ 0 are such that

(4.1) 1 <
pf

qe
< α and 1 <

qh

pg
< α

then np,q(α) ≤ pg · qe. On taking logarithms these inequalities can be rewritten as

0 < θp,q −
e

f
<

logα

f log q
and 0 <

h

g
− θp,q <

logα

g log q
.

These type of inequalities appear in the theory of continued fractions and suggest to take

(4.2)
e

f
=
rk
sk

and
h

g
=
rℓ
sℓ
,

where k is even and minimal, ℓ is odd and minimal and (rm/sm)m≥0 is the sequence of convergents
of θp,q. Using the inequality ∣∣∣θp,q − rm

sm

∣∣∣ < 1

smsm+1

,

see, e.g., [8, Thm. 171], we deduce that in both cases (m = k and m = ℓ) it suffices to require that

1

smsm+1

<
logα

sm log q
,
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that is

(4.3) sm+1 >
log q

logα
.

Clearly, the larger q will be, or the closer to 1 the value of α will be, the larger m will become.
Let M be the minimal m ≥ 0 such that (4.3) holds. In practice, to determine M we need
a way to generate the continued fractions convergents of θp,q. To do this, we heavily rely on the
PARI/GP [15] internal functions. Letting ε ∈ (0, 1) be the required accuracy for the computations,
the contfrac(x) function of PARI/GP returns the list of the partial quotients [a0, . . . , an] of the
continued fraction expansion of x > 0 so that |x − (a0 + 1/(a1 + · · · + 1/an))| < ε. Using such
a continued fraction expansion of x, the contfracpnqn function of PARI/GP returns two sorted
lists containing pn ∈ N∗ and qn ∈ N∗, (pn, qn) = 1, n ∈ N, the numerators and the denominators
of the convergents pn/qn of x. In this way, it is relatively easy to obtain both the upper and lower
convergents for each fraction θp,q, 2 ≤ p < q both primes, we have to work with. Our practical
computations are performed with ε = 10−19.
Having now such a sorted list of the denominators sm of the convergents for θp,q, a standard

dyadic search procedure will quickly provide M . Nevertheless, it is possible to obtain some the-
oretical information about M ; this might be useful in the case one has initially no access to the
sorted list of the convergent denominators. Since sm+1 ≥ Fm+2, where Fk is the k-th member of the
Fibonacci sequence, it is enough to require that Fm+2 ≥ log q/ logα. Recalling that Fm+2 ≥ ϕm,
where ϕ = (1 +

√
5)/2, it suffices to take

(4.4) m ≥ log log q − log logα

log ϕ
> 0.

Hence M ≤ ⌈ log log q−log logα
log ϕ

⌉. At the cost of complicating our inequality we can actually do a bit

better. This improvement often turns out to make a real difference in numerical practice and so
is worth the effort; this is due to the fact that both the numerators and the denominators of the
continued fractions convergents are exponentially fast increasing sequences. As a consequence,
being able to choose a smaller value for M ensures that much smaller values for the exponents in
the definition of nstart can be chosen, see (4.5).

Namely, we will use the sharper inequality Fk >
ϕk
√
5
− 53

500
for every k ≥ 3 (this inequality is

a consequence of Binet’s formula Fk = ϕk−(−ϕ)−k
√
5

and the observation that for k ≥ 3 one has

| (−ϕ)−k
√
5

| < 53
500

). Hence if

m+ 2 >
log

(
log q
logα

+ 53
500

)
+ log 5

2

log ϕ

for every m ≥ 1, then Fm+2 ≥ log q/ logα. It is not hard to verify that ϕm+2
√
5

− 53
500

> ϕm for every

m ≥ 0, and so the latter inequality gives a better lower bound for m than (4.4), namely

m ≥

⌈
log

(
log q
logα

+ 53
500

)
+ log 5

2

log ϕ

⌉
− 2 ≥M.

Once M is determined with the dyadic search procedure or using the previously described
estimates, we can take {k, ℓ} = {M,M + 1} in (4.2), and get that

(4.5) np,q(α) ≤ pg · qe ≤ nstart := min(psM+1 · qrM ; psM · qrM+1).

In (4.1) we want to find the solutions with pg and qe minimal. It follows from the basics of
continued fractions that the approach with the convergents as described here is actually optimal.
So in retrospect our choice in (4.2) was best possible.
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4.1.2. Generating left neighbors. We take nstart as starting candidate and proceed as follows.
Assume that we know ni = nstart and we want to obtain an S-unit n∗

i−1 ≤ ni−1 such that n∗
i−1 ≥

⌊ni/α⌋. Remark that the goal here is not to find ni−1, the predecessor element in the ni sequence,
but just an S-unit less than ni that verifies the Bertrand Postulate condition. For this reason
in this procedure we will always choose, if possible, the S-unit n∗

i−1 having the maximal distance
from ni compatible with the condition n∗

i−1 ≥ ⌊ni/α⌋, because this reduces the total amount of
computations to be performed to determine np,q(α).
In order to achieve this, we combine three different ways of searching for n∗

i−1 in the following
algorithm.
a) Searching using continued fraction convergents. Letting ni := pa·qb, we have two possible
choices.
1) We search for ℓ such that a ∈ [sℓ, sℓ+1], where (rm/sm)m≥0 is the sequence of convergents to θp,q.

Choose l in {ℓ, ℓ − 1} such that rl/sl < θp,q; this is equivalent to x1 := −sl log p + rl log q < 0
and hence qrl/psl < 1. Define N1 := ni exp(x1) < ni.

2) We search for ℓ such that b ∈ [rℓ, rℓ+1]. Choose l in {ℓ, ℓ − 1} such that rl/sl > θp,q; this is
equivalent to x2 := sl log p− rl log q < 0 and hence psl/qrl < 1. Define N2 := ni exp(x2) < ni.

Both N1 and N2 are less than ni and thus candidates to be chosen as n∗
i−1. We need now select

the best of them; i.e., the one whose distance from ni is maximal, compatible with the condition
n∗
i−1 ≥ ni/α ≥ ⌊ni/α⌋. We point out that we compare here with ni/α, rather than with ⌊ni/α⌋,

since ni/α allows us, by taking logarithms, to work on the exponents only; in other words, we try
to avoid as long as possible the necessity of performing the costly computations of ni and ⌊ni/α⌋.
Let now xmax := max(x1;x2) and xmin := min(x1;x2). If xmax < − logα, then N1, N2 are both

< ni/α. In this case we terminate this step with ni and we proceed with step b); we also remark
that at this point we know that np,q(α) ≤ ⌈ni/α⌉.

Assume that xmax ≥ − logα; this means that at least one of x1 and x2 is ≥ − logα. If both
x1 and x2 are ≥ − logα, the best choice is to select the smallest one, xmin, since ni exp(xmin)
has the largest distance from ni. Hence, if xmin ≥ − logα, we choose n∗

i−1 = ni exp(xmin) =
min(N1;N2); otherwise we are in the case xmin < − logα ≤ xmax, and we are forced to choose
n∗
i−1 = ni exp(xmax) = max(N1;N2). In both cases, we replace ni with n

∗
i−1 and we repeat step a).

b) Searching trivially: first part. Assuming that step a) terminates with ni, an improved
approximation of np,q(α) is then obtained by trivially searching for a value of x := a log p+ b log q
in the range [log(ni/α), log ni), where a, b ∈ Z run in the intervals 0 ≤ b ≤ ⌊log ni/ log q⌋ and
0 ≤ a ≤ ⌊(log ni− b log q)/ log p⌋. Moreover, we can also exploit the fact that the search procedure
of step a) produced n = max(N1;N2) = pu · qv such that n < ni/α. This means that the value
x := u log p+ v log q is smaller than log(ni/α). Since we need to find x ≥ log(ni/α) > x, we must
have either a > u or b > v. As a consequence, since log q > log p, the best strategy to determine
x is to first search for v + 1 ≤ b ≤ ⌊log ni/ log q⌋ and 0 ≤ a ≤ ⌊(log ni − b log q)/ log p⌋. If we have
no success, we then work with 0 ≤ b ≤ v and u+ 1 ≤ a ≤ ⌊(log ni − b log q)/ log p⌋.
If in one of the previously described procedures we find a solution x ≥ log(ni/α), we have

obtained an S-unit n∗
i−1 := exp(x) such that ni/α ≤ n∗

i−1 < ni. In this case, we replace ni with
n∗
i−1 and we start again the search described in step a). If we do not find any solution, we continue

with step c).
c) Searching trivially: second part. After steps a)-b) are over, we have not yet determined
np,q(α), since before, for efficiency reasons, we have replaced the condition log(⌊ni/α⌋) ≤ x with
the sharper, but easier to compute, log(ni/α) ≤ x. Hence we perform here another trivial search
like the previous one, but using the the correct lower bound for x mentioned before. If we find such
a solution x, we have obtained an S-unit n∗

i−1 := exp(x) such that ⌊ni/α⌋ ≤ n∗
i−1 < ni. In this

case we replace ni with n
∗
i−1 and we start again the search described in step a). If we do not find
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any solution x, this step has determined n0, the smallest generated S-unit such that ni−1 ≥ ⌊ni/α⌋
holds for every i ≥ 1. In this case, we continue with step d).
d) Final computation. In the final step we obtain np,q(α) = ⌈n0/α⌉.

The search in step a) is clearly the fastest one. Hence, the previously described procedure
optimizes the computational cost by minimizing the number of times we are using the much slower
trivial searches of steps b)-c). Moreover, except for step c), in which case the presence of the floor
function forces us to compute ni, the computations can be directly performed on the exponents
a, b, rather than with the prime powers involved. This requires far less memory usage and, at the
same time, as much smaller numbers are involved, improves the running time of the algorithm.
We ran our program for α ∈ {2, 7/4, 5/3, 3/2, 4/3}, 2 ≤ p < q ≤ 500, on the cluster1 located at the
Dipartimento di Matematica “Tullio Levi-Civita” of the University of Padova; the running times
were respectively 6 hours and 52 minutes (α = 2), 9 hours and 39 minutes (α = 7/4), 11 hours
and 23 minutes (α = 5/3), one day, 14 hours and 36 minutes (α = 3/2), and 14 days, 20 hours
(α = 4/3).

To show the importance of working on the exponents only, we report here some data about the
computations for n3,83(5/3). Here the starting value is 34 · 8345, a number having 89 digits. After
2230 iterations our algorithm reached the pair (100, 0) and hence

n3,83(5/3) = ⌈3100 · 3/5⌉ = 309226512439206798621876677859372763621264513201,

a number having 48 digits. Table 4 provides some data for further cases and makes manifestly
clear that handling the problem directly - so, without working on the exponents only - would be
infeasible.

p q α astart bstart aend bend iterations ℓ(nstart) ℓ(n0) np,q(α)

103 223 2 74 796 6 6 6 582 2 372 823 751 150 567 15 469 ⌈1036 · 2236582/2⌉
197 419 2 11 313 7 7 812 55 700 234 25 976 2 146 ⌈1977 · 419812/2⌉
13 89 7/4 44 875 4 6 3 266 566 222 486 49 997 6 374 ⌈136 · 893266 · 4/7⌉
137 311 7/4 5 174 6 6 1 410 10 339 605 11 071 3 528 ⌈1376 · 3111410 · 4/7⌉
89 479 5/3 4 415 8 10 290 7 066 379 8 628 797 ⌈8910 · 479290 · 3/5⌉
293 491 5/3 5 221 11 11 55 12 553 989 12 910 176 ⌈29311 · 49155 · 3/5⌉
79 293 3/2 5 170 10 12 296 10 276 001 9 836 753 ⌈7912 · 293296 · 2/3⌉
313 487 3/2 14 9 749 880 12 8 056 800 26 236 2 229 ⌈313880 · 48712 · 2/3⌉
101 293 4/3 16 14 616 3 412 12 40 708 783 36 088 6 869 ⌈1013412 · 29312 · 3/4⌉
167 367 4/3 29 063 13 14 6 792 339 708 048 64 633 17 451 ⌈16714 · 3676792 · 3/4⌉

Table 4. Some data obtained during the computations. In this table n0 = paend · qbend
and ℓ(n) is the number of decimals of n.

We will now give a detailed description of the determination of n13,89(7/4).

Example 4.1. To explain why some cases are harder than others, we consider p = 13 and q = 89.
The continued fractions convergents of θ13,89 have numerators and denominators respectively equal

1We used a machine having 2 x Intel(R) Xeon(R) CPU E5-2630L v31.80GHz and 192GB of RAM (but we used
up to 128GB of RAM in our computations).
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to:

0, 1, 1, 3, 4, 25643, 179505, 205148, . . .

1, 1, 2, 5, 7, 44875, 314132, 359007, . . .

Hence r0/s0 = 0, r1/s1 = 1, r2/s2 = 1/2, r3/s3 = 3/5, r4/s4 = 4/7, r5/s5 = 25643/44875 and
so on. If α = 2, we obtain ⌈ log 89

log 2
⌉ = 7 and hence we have M = 3, sM+1 = 7, rM+1 = 4,

sM = 5, rM = 3 in (4.5). In this case the algorithm starts with the information that n13,89(2) ≤
135 ·894 = 23 295 754 887 613, a number having 14 digits. On the other hand ⌈ log 89

log(7/4)
⌉ = 9, M = 4,

sM+1 = 44875, rM+1 = 25643, sM = 7, rM = 4. So the algorithm starts just with the information
that n13,89(7/4) ≤ 1344875 · 894, a number having 49 997 digits. . . The huge difference between the
height h(r4/s4) and h(r5/s5) is responsible for n13,89(7/4) being much harder to compute than
n13,89(2).

The situation for p = 2 and q = 8191 is similar: in this case (r2, s2) = (1, 13), (r3, s3) =
(5677, 73800), ⌈ log 8191

log 2
⌉ = 13 and ⌈ log 8191

log(5/3)
⌉ = 23. Hence in order to establish that n2,8191(5/3) =

⌈212 · 81911493 · 3/5⌉, the algorithm starts with nstart = 273800 · 8191, a number having 22 220 digits,
while, to obtain n2,8191(2) = 1, it is sufficient to work with the much smaller starting number
212 · 8191 = 33 550 336.

4.2. Extremal behavior of the gaps. We now show how to analyze the behavior of D1 and D2

implicitly defined in the inequalities

(4.6)
ni

(log ni)D1
< ni+1 − ni <

ni

(log ni)D2
,

where ni ≥ 3. We further define ρi = ρi(p, q) implicitly by

(4.7) ni+1 − ni =
ni

(log ni)ρi
, i.e., ρi = −

log(ni+1

ni
− 1)

log log ni

=
log( ni

ni+1−ni
)

log log ni

,

so that, if ni ≥ 3, then D1 = D1(p, q) = maxi ρi(p, q) and D2 = D2(p, q) = mini ρi(p, q). We note
that if nj+1 − nj > nj for some j (that is the Bertrand’s Postulate property does not hold for nj),
then ρj(p, q) is negative and hence D2(p, q) < 0. As this occurs for at most finitely many j, we can
allow ourselves to disregard these outliers. Hence we will evaluate ρi(p, q) only for ni ≥ np,q(2).

We remark that the smallest D2 is zero and this value is reached when ni+1 = 2ni; moreover,
the largest D1 are usually obtained with small powers of primes and, in fact, the maximal D1 we
got is for ni = 3, ni+1 = 4, and is log 3/ log log 3 ≈ 11.681421 . . . .
We also remark that Dj = Cj − log(Cj+2)/ log log ni, j = 1, 2, where C1, C2, C3, C4 are defined

in Theorem 1.3. Recalling C3 = (log p)C1 and C4 = 8q, this means that

(4.8) C1(p, q) = D1(p, q)
log log ni

log log ni − log log p
and C2(p, q) = D2(p, q) +

log(8q)

log log ni

,

where, in the first case, we also have to assume ni ̸= p.
As we have just explained, in order to have meaningful results we need to work with ρi ≥ 0,

which is equivalent with ni+1 ≤ 2ni. We will also require that ni := pa · qb ≥ 3 and

ni ≥ N := exp(log p · log q) (= plog q = qlog p).

Since sometimes we do not know the value of np,q(2), the best strategy is then to start working with
nstart as identified in Section 4.1.1 and use a modified form of the left neighbor search (explained
in Section 4.1.2) to generate ni−1, until we have produced L left neighbors, or we have reached
np,q(2). To do this, we need to slightly modify the search procedure in Section 4.1.2, since in this
case the issue is to determine ni−1, rather than to get as close as possible to np,q(2). Hence in step
a) of Section 4.1.2 we will always choose the value of xmax and in steps b)-c) of the same section
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we will search for the maximal value of the form x := a log p+ b log q in the ranges there defined,
where a, b ∈ Z run in the intervals 0 ≤ b ≤ ⌊log ni/ log q⌋ and 0 ≤ a ≤ ⌊(log ni − b log q)/ log p⌋.
These changes to the search procedures increase their computational cost; unfortunately, there is
no way to work differently since in this case we cannot halt the procedure as soon as we have found
an S-unit less than ni in the prescribed interval, but we need to be sure that such a point is the
maximal S-unit less than ni, or, in other words, that such a point is the left neighbor ni−1 of ni.
If we have reached np,q(2) without having generated L left neighbors, we start to generate right

neighbors from nstart until we have obtained a total number of L neighbors. For the generation of
the right neighbor ni+1 of ni, we used the continued fraction approach described in [2, Theorem
2.2]. The theoretical justification for the neighbor search procedure is provided in the Appendix.

In each step of the previously described algorithm, as soon as we have determined one of the
neighbors of ni, we can evaluate ρi, defined in (4.7), the constants defined in (4.6) and (4.8).

The same remarks we made in Section 4.1 about using the exponents only in the computations
apply here as well with a single exception: in evaluating log(ni+1/ni − 1) in (4.7), we are in fact
forced either to generate both ni and ni+1, or to use

log(ni+1/ni − 1) = log
(
exp(u log p+ v log q)− 1

)
,

in which we assume u log p + v log q, where u, v ∈ Z are such that ni+1/ni = pu · qv, to be known.
This is one of the most computationally costly steps of the whole procedure, but unfortunately
there is no other way to compute ρi.

In this way we were able to collect, for every 2 ≤ p < q, with p and q both primes, all the values
of C1, C2, C3, C4, D1, D2 and of their averaged values (defined in the next section). This is a heavy
computation and the largest P we were able to work with was P = 104. The data in Table 5
were obtained as a part of computation having an accuracy of 19 decimal digits (but the results
are here truncated at 10 digits) performed for every 2 ≤ p < q < 104, and using 104 neighbors, a
computation which required about 2 days and 18 hours on the Dell Optiplex machine mentioned
before.

4.3. Average behavior of the gaps. Define

µ(p, q; k) :=
1

k+

k∑
i=1

ρi(p,q)≥0

ρi(p, q), with k+ := #{1 ≤ i ≤ k : ρi(p, q) ≥ 0}.

Lemma 4.1. Let p, q be fixed and ϵ > 0. Recall that C1 = 2 · 109 log p · log q. There exists an
integer kp,q(ϵ) such that

C−1
1 − ϵ < µ(p, q; k) < C1 for every k ≥ kp,q(ϵ).

Proof. By Theorem 1.3 we have

C−1
1 − logC4

log log ni

< ρi < C1 −
logC3

log log ni

.

The proof follows from these two inequalities, C3 > 0 and the observation that (log log ni)
−1 tends

to zero. □

We cannot answer the following natural question.

Question 4.1. Does limk→∞ µ(p, q; k) exist?

The numerical work presented here suggests that the answer is yes. In this case we write µ(p, q)
for the limit.
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p q D1(p, q) D2(p, q) µ(p, q; k)

2 3 11.6814212141 0.6261567724 1.0941489589

2 5 4.2441792885 0.3589187149 0.9474929648

2 7 2.9229728309 0.1201698368 0.8284546634

2 11 1.8178288541 0.2942087461 0.9858711527

2 13 1.7851594152 0.2088055868 0.7625506652

2 17 2.7188068070 0 0.8044481097

2 19 2.0907970943 0 0.7925235409

2 23 1.5215514442 0.2221675922 0.6835338899

2 29 1.8685980225 0.0635501877 0.6305104841

2 31 2.7834367088 0.0149561107 0.8398947566

2 37 1.4934915642 0 0.8004576906

2 41 1.3988710027 0 0.7933541465

2 43 1.3718840668 0 0.7791951977

2 47 1.4407350298 0 0.6686016472

2 53 1.4055386972 0 0.6391686515

2 59 1.7560379970 0.0474250925 0.7734676479

2 61 2.1308613919 0.0239511431 0.7720445935

2 67 2.1471869534 0.0460488967 0.6122509704

2 71 1.5526948207 0.1074029002 0.7469833108

2 73 1.3763643264 0.1382120440 0.7668223147

2 79 1.0720303269 0.2320129747 0.7474188012

2 83 2.3638631955 0.2964674293 0.8588722462

2 89 1.5378684405 0.2093917801 0.7841929598

2 97 2.5893808896 0.2590800786 0.6246448440

p q D1(p, q) D2(p, q) µ(p, q; k)

3 5 2.1605296213 0.1323896610 0.8603600118

3 7 1.1710669001 0.1383426171 0.7649429172

3 11 1.4012089272 0.2086747873 0.7566780823

3 13 2.6410842719 0.1285354272 0.7479745611

3 17 1.7461871466 0.0795647361 0.7255147576

3 19 1.4225074511 0.2039287543 0.7949565378

3 23 1.2065704232 0.0656360747 0.7683872665

3 29 0.9394181270 0.0151595599 0.7455240234

3 31 1.5149281514 0.0071479409 0.6700758602

3 37 1.4807635709 0.2296184840 0.6676913346

3 41 1.0229032857 0.0138973896 0.7159407244

3 43 0.9916232421 0.0692590381 0.7018910831

3 47 2.2545776040 0.0535541917 0.7078101517

3 53 0.9771181314 0.0200128231 0.7076989903

3 59 1.5682950986 0.2189707656 0.8062334056

3 61 1.2885326430 0.1479792903 0.8006209830

3 67 0.9915469462 0.1316451029 0.7048711907

3 71 1.3780698058 0.0871486016 0.7826861503

3 73 0.9560032551 0.0070696424 0.6675886273

3 79 1.2434176789 0.0090970147 0.7737402410

3 83 1.3056800194 0.0042329888 0.6944828831

3 89 1.4320941282 0.0417272844 0.7999629578

3 97 1.2268141005 0.1029715740 0.6766541024

p q D1(p, q) D2(p, q) µ(p, q; k)

5 7 1.1384784153 0.1109894596 0.7781281263

5 11 1.1887010049 0.0014698384 0.6590355370

5 13 1.3211241477 0.0310425989 0.7757032047

5 17 1.1035830903 0.1797045904 0.6901667574

5 19 1.1398389151 0.1578288483 0.6723537325

5 23 0.9315775235 0.0005087729 0.6645526054

5 29 1.0391485562 0.0813597681 0.6529045038

5 31 1.2305570961 0.1189302077 0.5509941851

5 37 1.8067753639 0.1479331658 0.7585371271

5 41 1.2902483645 0.0690378980 0.5759361463

5 43 1.6660279429 0.0636126574 0.7032472651

5 47 0.9651734788 0.0491064048 0.6754674325

5 53 1.2873497260 0.0322254510 0.4291499629

5 59 1.3174229255 0.0330207317 0.6428076307

5 61 1.0939162195 0.1045174998 0.6276138163

5 67 1.0048592858 0.0534692090 0.6291197333

5 71 1.0184013877 0.1011594660 0.6371897583

5 73 2.1481873755 0.0470304122 0.5549093481

5 79 1.4575444151 0.0011909162 0.5340714572

5 83 1.2343218159 0.1386930533 0.5927933668

5 89 0.9266169776 0.0781941449 0.6043041547

5 97 1.0334458810 0.0680491434 0.5810298221

Table 5. Computed values of D1(p, q), D2(p, q), µ(p, q; k) with 2 ≤ p ≤ 5, p < q ≤ 97
and having generated 104 neighbors for each case.

Remark 4.1. Instead of µ(p, q; k) one can consider 1
k

∑k
i=1 ρi(p, q), which has also limit µ(p, q),

if the limit exists. However, our preference is to work with µ(p, q; k), as numerically it seems to
behave more regularly.

The programs and the results here described are available at the address:
www.math.unipd.it/~languasc/Sunits.html.
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Appendix A. On efficient left and right neighbors searches

Here we establish two theorems on determining the neighbors of ni. We will just make use of [2,
Lemma 3.1], which characterizes the best approximants of a real number θ in terms of the principal
and intermediate convergents generated by its continued fraction. In line with [2] we will use the
notation si instead of ni. The sought for neighbors are then si−1 and si+1.

Theorem A.1 (Left neighbor search). Suppose k ≥ 1 and that we are given sk = pck · qdk ,
(ck, dk) ∈ Z2

≥0, (ck, dk) ̸= (0, 0). Then we can compute its left neighbor sk−1 in the following way:

i) Let u1/v1 > 0, (u1, v1) ∈ Z2
≥0, be the upper convergent of θp,q with maximal numerator for

which u1 ≤ dk holds.
ii) Let u2/v2 > 0, (u2, v2) ∈ Z2

≥0, be the lower convergent of θp,q with maximal denominator for
which v2 ≤ ck holds.

iii) Put x := |v1 log p− u1 log q| − |v2 log p− u2 log q| and

ck−1 =

{
ck + v1 if x < 0,
ck − v2 if x > 0,

dk−1 =

{
dk − u1 if x < 0,
dk + u2 if x > 0.

Then we have sk−1 = pck−1 · qdk−1.

Proof. Let x < 0. Then we have ck−1 = ck+v1, dk−1 = dk−u1. Since u1/v1 is an upper convergent
of θp,q = log p/ log q, we have v1 log p− u1 log q < 0, and we define S := skp

v1 · q−u1 < sk. Now we
prove that S = sk−1.

By contradiction, if S ̸= sk−1 there exists (a, b) ∈ Z2
≥0, (a, b) ̸= (0, 0), such that S = pck+v1 ·

qdk−u1 < pa · qb < pck · qdk = sk. This is equivalent to

(A.1) 0 <
dk − b

θp,q
− (a− ck) <

u1
θp,q

− v1.

http://pari.math.u-bordeaux.fr/
http://pari.math.u-bordeaux.fr/
http://arxiv.org/abs/2308.02444
http://arxiv.org/abs/2308.02444
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If b = dk, we must have a < ck. Moreover, we will obtain that u1/(v1 + ck − a) is an upper
convergent of θp,q having the same numerator of u1/v1. This implies a = ck, which is impossible
because pa · qb < sk by definition.
So we have that b ̸= dk. Now, thanks to [2, Lemma 3.1], from (A.1) we obtain dk − b > u1. If

b > dk, it follows that dk > b + u1 > dk + u1 and hence u1 < 0, which is a contradiction. Assume
now 0 ≤ b < dk. Then u := dk − b > 0 and u > u1. Again using (A.1), we have v := a − ck >
(u− u1)/θp,q + v1 > 0 and u/v is an upper convergent for θp,q. But this is a contradiction, since u1
is maximal between the numerators ≤ dk. This proves that sk−1 = pck+v1 · qdk−u1 . The case x > 0
can be proved analogously. □

In Theorem A.1 we used the same notation used in Theorem 2.2 in [2]; we think that this would
help the reader to spot their differences more easily. Remark that the choices of the convergents of
θp,q in this theorem are precisely the ones in Section 4.1.2, point a), and hence this sk−1 corresponds
to the choice of xmax there.

We also include an alternative, and shorter, proof of Theorem 2.2 in [2].

Theorem A.2 (Right neighbor search). Suppose k ≥ 0 and that we are given sk = pck · qdk ,
(ck, dk) ∈ Z2

≥0. Then we can compute its right neighbor sk+1 in the following way:

i) Let u1/v1 > 0, (u1, v1) ∈ Z2
≥0, be the upper convergent of θp,q with maximal denominator for

which v1 ≤ ck holds.
ii) Let u2/v2 > 0, (u2, v2) ∈ Z2

≥0, be the lower convergent of θp,q with maximal numerator for
which u2 ≤ dk holds.

iii) Put x := |v1 log p− u1 log q| − |v2 log p− u2 log q| and

ck+1 =

{
ck − v1 if x < 0,
ck + v2 if x > 0,

dk+1 =

{
dk + u1 if x < 0,
dk − u2 if x > 0.

Then we have sk+1 = pck+1 · qdk+1.

Proof. Assume x < 0. Then |v1 log p−u1 log q| < |v2 log p−u2 log q| and we choose ck+1 = ck−v1,
dk+1 = dk+u1. Since u1/v1 is an upper convergent of θp,q = log p/ log q, we have u1 log q−v1 log p >
0, and we define S := skp

−v1 · qu1 > sk. Now we prove that S = sk+1.
By contradiction, if S ̸= sk+1 there exists a, b ≥ 0, (a, b) ̸= (0, 0), such that pck−v1 · qdk+u1 = S >

pa · qb > sk = pck · qdk . This is equivalent to

(A.2) 0 < (b− dk)− (ck − a)θp,q < u1 − v1θp,q.

If a = ck, we must have b > dk. Moreover, we will obtain that (dk − b + u1)/v1 is an upper
convergent of θp,q having the same denominator of u1/v1. This implies b = dk, which is impossible
because pa · qb > sk by definition.
So we have that a ̸= ck. Now, thanks to [2, Lemma 3.1], from (A.2) we obtain ck > a + v1. If

a > ck, we obtain ck > a + v1 > ck + v1 and hence v1 < 0, which is a contradiction. Assume now
0 ≤ a < ck. Then v := ck − a > 0 and v > v1. Again using (A.2), we have u := b− dk > vθp,q > 0
and u/v is an upper convergent for θp,q. But this is a contradiction, since v1 is maximal between
the denominators ≤ ck. This proves that sk+1 = pck−v1 · qdk+u1 . The case x > 0 can be proved
analogously. □
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