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NON-ISOGENOUS SUPERELLIPTIC JACOBIANS II

YURI G. ZARHIN

Abstract. Let ` be an odd prime and K a field of characteristic
different from `. Let K̄ be an algebraic closure of K. Assume that
K contains a primitive `th root of unity. Let n 6= ` be another odd
prime. Let f(x) and h(x) be degree n polynomials with coefficients
in K and without repeated roots.

Let us consider superelliptic curves Cf,` : y` = f(x) and Ch,` :

y` = h(x) of genus (n− 1)(`− 1)/2, and their jacobians J (f,`) and
J (h,`), which are (n−1)(`−1)/2-dimensional abelian varieties over
K̄.

Suppose that one of the polynomials is irreducible and the other
reducible over K. We prove that if J (f,`) and J (h,`) are isoge-
nous over K̄ then both endomorphism algebras End0(J (f,`)) and
End0(J (h,`)) contain an invertible element of multiplicative order
n.

1. Definitions, notations, statements

This paper is a follow up of [20, 23] and we use its (more or less
standard) notation. (See also [18, 22, 23].) In particular, ` is an odd
prime, F` the corresponding (finite) prime field of characteristic `. We
write Z` and Q` for the ring of `-adic integers and the field Q` of `-adic
numbers respectively. Let us fix a primitive `th root of unity

ζ` ∈ C

in the field C of complex numbers. We write Q(ζ`) for the `th cyclo-
tomic field and

Z[ζ`] =

φ(q)−1∑
i=0

Z · ζ i`
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2 YURI G. ZARHIN

for its ring of integers. We write P`(t) for the `th cyclotomic polynomial

P`(t) =
`−1∑
j=0

tj ∈ Z[t].

Let K be a field with char(K) 6= `. Let us fix an algebraic closure
K̄ of K and write Gal(K) = Aut(K̄/K) for its group of its K-linear
automorpisms. In what follows we always assume that K contains a
primitive `th root of unity, say, ζ.

Let n ≥ 3 be an odd integer. Throughout the paper, we assume that
` does not divide n.

Let f(x) ∈ K[x] be a polynomial with coefficients in K, of degree n
and without repeated roots. We write Rf ⊂ K̄ for the n-element set
of roots of f(x), K(Rf ) for the splitting field of f(x) and Gal(f/K)
for the Galois group

Gal(K(Rf )/K) = Aut(K(Rf )/K)

of f(x). As usual, one may view Gal(f/K) as a certain permutation
subgroup of the group Perm(Rf ) of all permutations of Rf .

We write Cf,` for the smooth projective model of the plane affine
curve y` = f(x). It is well known [12, 13] that the genus g(Cf,`) of Cf,`
is (`− 1)(n− 1)/2. The map

(x, y) 7→ (x, ζy)

gives rise to a non-trivial biregular automorphism

δ` : Cf,` → Cf,`

of period ` that is defined over K.
Let J (f,`) be the jacobian of Cf,`; it is a (`− 1)(n− 1)/2-dimensional

abelian variety that is defined over K. We write End(J (f,`)) for the
ring of K̄-endomorphisms of J (f,`) and End0((J (f,`)) = End(J (f,`))⊗Q
for the corresponding endomorphism algebra of J (f,`). By functoriality,
δ` induces a K-automorphism of J (f,`), which we still denote by δ`. It
is known ([12, p. 149], [13, p. 448]; see also [21]) that

P`(δ`) =
`−1∑
j=0

δj` = 0 (1)

in End(J (f,`)). Then (1) gives rise to the ring homomorphism,

i`,f : Z[ζ`] ↪→ Z[δ`] ⊂ End(J (f,`)), ζ` 7→ δ`, (2)

which is a ring embedding ([12, p. 149], [13, p. 448]; see also [21]).
This implies that the subring Z[δ`] of End(J (f,`)) generated by δ` is
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isomorphic to Z[ζ`]. It follows that the Q-subalgebra

Q[δ`] ⊂ End0(J (f,`)) (3)

generated by δ` is canonically isomorphic to the `th cyclotomic field
Q(ζ`) and therefore has Q-dimension `− 1.

Let f(x) and h(x) be degree n polynomials with coefficients in K
and without repeated roots,

Cf,` : y` = f(x), Ch,` : y` = h(x)

are the corresponding genus (n− 1)(`− 1)/2 superelliptic curves over
K, whose jacobians we denote by J (f,`) and J (h,`), respectively. These
jacobians are (n−1)(`−1)/2-dimensional abelian varieties defined over
K.

The main result of this paper is the following assertion.

Theorem 1.1. Suppose that n and ` are distinct odd primes. Let K
be a field of characteristic different from `. Let f(x), h(x) ∈ K[x] be
degree n polynomials without repeated roots. Suppose that one of the
polynomials is irreducible and the other is reducible.

Then both endomorphism algebras End0(J (f,`)) and End0(J (h,`)) con-
tain an invertible element of multiplicative order n.

The next assertion may be viewed as a partial generalization of The-
orem 1.1 to the case of arbitrary odd n.

Theorem 1.2. Suppose that n ≥ 3 is an odd integer and ` is an odd
prime not dividing n. Let K be a field of characteristic different from `.
Let f(x), h(x) ∈ K[x] be degree n polynomials without repeated roots.
Suppose that f(x) is irreducible over K.

Assume additionally that the order of the Galois group Gal(h/K) of
h(x) is prime to n. (E.g., each irreducible factor of h(x) over K has
degree 1 or 2.)

If the corresponding superelliptic jacobians J (f,`) and J (h,`) are isoge-
nous over K̄ then there is a prime divisor r of n such that both endo-
morphism algebras End0(J (f,`)) and End0(J (h,`)) contain an invertible
element of multiplicative order r.

Remark 1.3. If the conditions of Theorem 1.2 hold then h(x) is re-
ducible over K, see [23, Remark 1.4].

Corollary 1.4. Suppose that n and ` are distinct odd primes. Let
f(x), h(x) ∈ K[x] be degree n polynomials without repeated roots. Sup-
pose that f(x) is irreducible over K and Gal(Rf ) is a doubly reansi-
tive permutation group of Rf . Assume also that Gal(h/K) is a cyclic
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group of order n. Then both endomorphism algebras End0(J (f,`)) and
End0(J (h,`)) contain an invertible element of multiplicative order n.

Example 1.5. Let ` be an odd prime and n ≥ 3 an odd integer that
is not divisible by `. Let us take as K the `th cyclotomic field Q(ζ`).
Let us put

f(x) = xn − 2, h(x) = xn − 1 ∈ K[x].

By Eisenstein criterion, f(x) is irreducible over K (recall a prime 2
is unramified in Q(ζ`) = K, because ` is odd) while h(x) is obviously
reducible over K. Let ` be an odd prime that does not divide n. The
curves Cf,` and Ch,` are obviously isomorphic over K̄. They both admit

periodic K̄-automorphisms δ̃n of order n defined by the (same) formula

(x, y) 7→ (ζnx, y)

where

ζn ∈ K̄ = Q̄ ⊂ C
is a primitive nth root of unity. This implies that their jacobians J (f,`)

and J (h,`) are abelian varieties over K̄ that are isomorphic over K̄ and
admit periodic automorphisms of order n that we continue to denote
by δ̃n. It follows that if r is any prime divisor of n then both J (f,`) and

J (h,`) admit automorphisms
(
δ̃n

)n/r
of multiplicative order r that may

be viewed as invertible elements of multiplicative order r in End0(J (f,`))
and End0(J (h,`)).

Example 1.6. Let n ≥ 5 be an odd integer and ` an odd prime not
dividing n. Let us put K = Q(ζ`).

Let f(x) ∈ K[x] be a degree n irreducible polynomial over K, whose
Galois group Gal(f/K) is either the full symmetric group Sn or the
alternating group An. It is known [17, 19, 24] that the endomorphism
algebra End0(J (f,`)) is isomorphic to the field Q(ζ`); in particular, J (f,`)

is absolutely simple. The (cyclic) multiplicative group of all roots
of unity in Q(ζ`) has order 2`, which is prime to (odd) n. Hence,
End0(J (f,`)) ∼= Q(ζ`) does not contain elements of multiplicative order
r for any prime divisor r of n.

Let h(x) ∈ K[x] be a degree n polynomial that splits over K into a
product of linear factors.

Then it follows from Theorem 1.2 that J (f,`) and J (h,`) are not isoge-
nous over K̄ = Q̄ (and therefore even over C̄, in light of a theorem of
Chow [2, Th. 3.19]). Since J (f,`) is absolutely simple and has the same
dimension as J (h,`), it follows that every C-homomorphism between
J (f,`) and J (h,`) is zero.
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Example 1.7. Let n ≥ 5 be an odd integer and ` an odd prime not
dividing n. Let us consider the degree n polynomials

f1(x) = xn − x− 1, f2(x) =
n∑
j=0

xj

j!

with rational coefficients. It is known (Selmer, Osada [10]) that f1(x)
is irreducible over Q and Gal(f1/Q) = Sn. By a theorem of Schur [1],
f2(x) is irreducible over Q and Gal(f2/Q) = Sn or An.

Recall that n ≥ 5 and therefore An is a simple non-abelian group
that coincides with the commutator subgroup of Sn; in addition, An is
a maximal subgroup of Sn. Since K := Q(ζ`) is an abelian extension
of Q, the Galois group Gal(fk/K) is either Sn or An (for k = 1, 2). In
particular, both f1 and f2 remain irreducible over K.

It follows from Example 1.6 that if h(x) ∈ K[x] is a degree n poly-
nomial that splits over K into a product of linear factors then every
C-homomorphism between J (fk,`) and J (h,`) is zero (for both k = 1, 2).

The paper is organized as follows. In Section 2 we recall basic facts
about Galois properties of points of order ` on superelliptic jacobians.
We also state Theorem 2.2 that is a slightly stronger version of Theorem
1.2. Section 3 contains the proof of Theorem 2.2. We prove Theorem
1.1 in Section 4. Corollary 1.4 is proven in Section 5.

2. Points of order ` on superelliptic jacobians

Let Ks ⊂ K̄ be the separable algebraic closure of K. Let X be a
positive-dimensional abelian variety over K. If d is a positive integer
then we write X[d] for the kernel of multiplication by d in X(K̄).
Recall ([9, Sect. 6], [7, Sect. 8, Remark 8.4]) that if d is not divisible
by char(K) then X[d] is a Gal(K)-submodule of X(Ks); in addition,
X[d] is isomorphic as a commutative group to (Z/dZ)2dim(X).

Let K(X[d]) be the field of definition of all torsion points of order
dividing d on X. It is well known [7, Remark 8.4] that K(X[d]) lies in
Ks and is a finite Galois extension of K. Let us put

G̃d,X,K := Gal(K(X[d])/K).

One may view G̃d,X,K as a certain subgroup of AutZ/dZ(X[d]) and X[d]

as a faithful G̃d,X,K-module. In addition, the structure of the Gal(K)-
module on X[d] is induced by the canonical (continuous) surjective
group homomorphism

ρ̃d,X : Gal(K) � Gal(K(X[d])/K) = G̃d,X,K .
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For example, if d is a prime ` 6= char(K) then X[`] is a 2dim(X)-
dimensional vector space over the field F` = Z/`Z, and the inclusion
G̃`,X,K ⊂ AutF`

(X[`]) defines a faithful linear representation of the

group G̃`,X,K in the vector space X[`] over F`.

Remark 2.1. If d ≥ 3 is an integer not divisible by char(K) then all
the endomorphisms of X are defined over K(X[d]), by a theorem of A.
Silverberg [16, Th. 2.4]. (See also [4, 14, 3].)

The following assertion may be viewed as a variant of Theorem 1.2
(when Y = J (h,`)).

Theorem 2.2. Let ` be an odd prime and K a field of characteristic
6= `. Let n ≥ 3 be an odd positive integer that is not divisible by `, and
f(x) ∈ K[x] a degree n irreducible polynomial without repeated roots.
Let us put X = J (f,`), which is a (n− 1)(`− 1)/2-dimensional abelian
variety over K.

Let Y be an abelian variety over K such that the order of G̃`,Y,K is
prime to n. (E.g., K(Y [`]) = K or this order is a power of `.)

Suppose that X and Y are isogenous over K̄.
Then there is an odd prime r dividing n such that both endomor-

phism algebras End0(X) and End0(Y ) contain an invertible element of
multiplicative order r.

Remark 2.3. Recall that the order of G̃`,Y,K coincides with the degree
[K(Y [`]) : K] of the Galois extension K(Y [`])/K.

We will prove Theorem 2.2 in Section 3. Our proof is based on the
Galois properties of certain points of order ` on superelliptic jacobians
J (f,`) that will be discussed in the next subsection.

2.1. Galois properties. In this subsection we recall an explicit de-
scription of a certain important Galois submodule of J (f,`)[`] [12, 13]
for arbitrary separable f(x), assuming as usual that ` does not divide
n.

Let us start with the n-dimensional F`-vector space

FRf

` = {φ : Rf → F`}

of all F`-valued functions on Rf . The action of Perm(Rf ) on Rf pro-

vides FRf

` with the structure of a faithful Perm(Rf )-module, which
splits into a direct sum

FRf

` = F` · 1Rf
⊕QRf

(4)
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of the one-dimensional subspace F` · 1Rf
of constant functions and the

(n− 1)-dimensional heart [5, 8]

QRf
:= {φ : Rf → F` |

∑
α∈Rf

φ(α) = 0}

(here we use that n is not divisible by `). Clearly, the Perm(Rf )-module
QRf

is faithful. It remains faithful if we view it as a Gal(f/K)-module.

Remark 2.4. There is a nondegenerate Perm(Rf )-invariant F`-bilinear
pairing

Ψ : FRf

` × FRf

` → F`, φ, ψ 7→
∑
α∈Rf

φ(α)ψ(α)

and the splitting (4) is an orthogonal direct sum. Clearly, the restric-
tion of Ψ to F2 · 1Rf

is nondegenerate and therefore the restriction of
Ψ to QRf

is nondegenerate as well. This implies that the Gal(f/K)-
module QRf

and its dual HomF`
(QRf

,F`) are isomorphic.

The field inclusion K(Rf ) ⊂ Ks induces the surjective continuous
group homomorphism

Gal(K) = Gal(Ks/K) � Gal(K(Rf )/K) = Gal(f/K),

which gives rise to the natural structure of the Gal(K)-module on QRf

such that the image of Gal(K) in AutF`
(QRf

) coincides with

Gal(f/K) ⊂ Perm(Rf ) ↪→ AutF`
(QRf

).

In order to explain why the structure of the Galois module QRf
is im-

portant, let us consider the subgroup (actually, the Galois submodule)

J (f,`)[1− δ`] = {z ∈ J (f,`)(K̄) | δl(z) = z}
of J (f,`)(K̄). B. Poonen and E. Schaefer [12, 13] observed that the
Galois module J (f,`)[1 − δ`] is a Galois submodule of J (f,`)[`] and is
isomorphic to QRf

. In particular, K(Rf ) coincides with the field of

definition of all points of J (f,`)[1− δ`].
We will need the following elementary assertion about homomor-

phisms of Galois modules related to QRf
.

Lemma 2.5. Suppose that f(x) is irreducible over K and a prime `
does not divide n. Then:

(i) QRf
does not contain nonzero Galois-invariants.

(ii) Every Galois-invariant linear functional QRf
→ F` is zero.

(iii) Let W be a F`-vector space provided with the trivial action of
Gal(K). Then every homomorphism of Galois modules

QRf
→ W
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is zero.
(iv) Let V be a finite-dimensional F`-vector space provided with a

linear action of Gal(K) in such a way that every simple (Jordan-
Hölder) subquotient of V is a trivial Galois module. Then every
homomorphism of the Galois modules QRf

→ V is zero.
(v) Let V be a finite-dimensional F`-vector space provided with a

linear action of Gal(K) in such a way that every simple (Jordan-
Hölder) subquotient of V is a trivial Galois module. Let M be a
finite-dimensional F`-vector space provided with a linear action
of Gal(K) in such a way that there is a filtration

M0 = {0} ⊂M1 ⊂ · · · ⊂Md = M

of M by Galois submodules Mi such that every quotient Mi+1/Mi

is isomorphic to QRf
. Then every homomorphism of the Galois

modules M → V is zero.

Proof. Recall that the irreducibility means that the Galois group acts
transitively on Rf . Let φ ∈ QRf

be a Galois-invariant function on Rf .
The transitivity implies that φ is constant. This means that there is
c ∈ F` such that φ(α) = c for all α ∈ Rf and therefore (since φ ∈ QRf

)

0 =
∑
α∈Rf

φ(α) = n · c,

i.e., c = 0. This means that φ ≡ 0, which proves (i). In order to
prove the second assertion of Lemma, recall (Remark 2.4) that the
Galois modules QRf

and HomF`
(QRf

,F`) are isomorphic. Now the
second assertion of our Lemma follows from the already proven first
one. On the other hand, the third assertion is an immmediate corollary
of the second one: one has only to choose a basis of W . In order to
prove (iv), we will use induction by dim(V ). We may assume that
the subspace V 6= {0}. It follows from our assumptions on the Galois
module V that the subspace V0 = V Gal(K) of Galois invariants is not
{0} as well. If u : QRf

→ V is a homomorphism of Galois modules
then the induction assumption applied to the quotient V/V0 implies
that the induced homomorphism of Galois modules

QRf
→ V/V0, φ 7→ u(φ) + V0

is zero. This means that u(QRf
) ⊂ V . Now the desired result follows

from (iii) applied to

QRf
→ V0, φ 7→ u(φ) ∈ V0,

because Gal(K) acts trivially on V0.
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In order to prove (v), let us use induction by d. Let u : M → V be a
homomorphism of Galois modules. Since M1 is isomorphic to QRf

, it
follows from (iv) that u(M1) = {0}, i.e., there is a homomorphism of
Galois modules u1 : M/M1 → V such that u is the composition of

M →M/M1, m 7→ m+M1

and u1. If d = 1 then we are done. If d > 1 then the desired result
follows from the induction assumption applied to the filtered Galois
module

M/M1 = (M/M1)d−1 ⊃ · · · ⊃M1/M1 = {0} = (M/M0)0.

�

Towse

3. Isogenous superelliptic jacobians

We will deduce Theorem 2.2 from the following auxiliary statements.

Lemma 3.1 (See Lemma 3.1 of [23]). Let G be a transitive permutation
group of a finite nonempty set R, and H a normal subgroup of G. Then
the number of H-orbits in R divides both #(R) and the index (G : H).
In particular, if #(R) and (G : H) are relatively prime then H acts
transitively on R.

Lemma 3.2 (See Lemma 3.2 of [23]). Let f(x) be a degree n irreducible
polynomial over a field K and without repeated roots. Let K1/K be a
finite Galois field extension, whose degree is prime to n. Then f(x)
remains irreducible over K1. In particular, the order of Galois group
Gal(f/K1) is divisible by n.

Lemma 3.3. Let ` be a prime, F a field of characteristic `, and V a
finite-dimensional vector space over F . Let N ⊂ EndF (V ) be a linear
nilpotent Lie subalgebra of EndF (V ), and

V N := {v ∈ V | x(v) = 0 ∀x ∈ N}.
Let σ be a linear automorphism of finite order in V that commutes
with all linear operators from N and such that the subspace V σ of all
σ-invariants in V contains V N . Then the order of σ is either 1 or a
power of `.

Remark 3.4. We will apply the easy “commutative” case of Lemma
3.3 to F = F`, V = X[`], and

σ ∈ Gal(K(X[`]/K(X[1− δ`])) ⊂ AutF`
(X[`])

where X = J (f,`).
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Proof of Lemma 3.3. Replacing σ by its suitable power, we may assume
that σ is a periodic automorphism, whose order is prime to `. We need
to prove that σ is the identity map.

Since σ is obviously a semisimple linear operator, V splits into a
direct sum of σ-invariant subspaces

V = V σ ⊕W where W = (1− σ)V.

In particular,
V σ ∩W = {0}.

Assume that W 6= {0}. We need to arrive to a contradiction. Since
N commutes with σ, the subspace W = (1 − σ)V is N -invariant. By
Engel’s theorem, there is a nonzero vector w ∈ W that is killed all
linear operators from N , i.e., w ∈ V N . This implies that w ∈ W ∈ V σ.
Hence,

w ∈ V σ ∩W = {0}.
This implies that w = 0, which gives us a desired contradiction.

�

Corollary 3.5. Let X = J (f,`). Then:

(i) K(X[`])/K(Rf ) is a finite Galois `-extension, i.e., either K(X[`]) =
K(Rf ) or the Galois group Gal(K(X[`])/K(Rf )) is a finite `-
group. In particular, if the order of Gal(f/K) is prime to n
then the order of G̃`,X,K is also prime to n.

(ii) The Galois module X[`] admits a filtration

M0 = {0} ⊂M1 ⊂ · · · ⊂M`−1 = X[`],

such that each consecutive quotient Mi+1/Mi is isomorphic to
the Galois module QRf

.

Proof. Let us put

X[1− δ`] := J (f,`)[1− δ`] ⊂ J (f,`)[`] = X[`].

The ring Z[δ`]⊗ Z` =: Z`[δ`] acts naturally on the `-adic Tate module
T`(X) of X. It is known [15] that T`(X) is a free Z`[ζ`]-module of rank

2dim(J (f,`))

[Q(ζ`) : Q]
=

(n− 1)(`− 1)

(`− 1)
= n− 1.

In particular, the natural ring homomorphism

Ψ` : Z[δ`]/` = Z`[δ`]/`→ EndF`
(X[`])

is a ring embedding that makes X[`] a free Z[δ`]/`-module of rank n−1.
This implies that

X[1− δ`] = (1− δ`)`−2X[`],
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because in the cyclotimic ring Z[ζ`] we have the equalities of ideals

`Z[ζ`] = (1−ζ`)`−1Z[ζ`], (1−ζ`)`−2Z[ζ`] = {z ∈ Z[ζ`] | (1−ζ`)z ∈ `Z[ζ`]}.
Now first assertion of (i) follows from Lemma 3.3 applied to

F = F`, V = X[`], N = Ψ`((1− δ`)Z[δ`]/`),

and

σ ∈ Gal(K(X[`]/K(X[1− δ`)) ⊂ AutF`
(X[`]).

The second one follows readily from the equality

[K(Y [`]) : K] = [K(Y [`]) : K(Rh)] · [K(Rh) : K] )

(recall that the prime ` does not divide n).
In order to prove (ii), let us put

Mi := (1− δ`)`−1−iX[`] ⊂ X[`].

The freeness of the Z[δ`]/`-module X[`] implies that Mi coincides with
the kernel of

(1− δ`)i : X[`]→ X[`].

In particular,

M0 = {0}, M1 = X[1− δ`] ∼= QRf
, M`−1 = X[`].

It is also clear that (1− δ`)i induces an isomorphism of Galois modules
Mi+1/Mi and M1/M0

∼= QRf
. This ends the proof of (ii).

�

Lemma 3.6. We keep the notation and assumptions of Theorem 2.2.
Suppose that K = K(Y [`]). Then there is a nontrivial group homo-

morphism

χ : Gal(K(X[`])/K)→ End0(Y )∗,

whose image

Γ := Im(χ) ⊂ End0(Y )∗

is a finite group that enjoys the following property.
The integers n and #(Γ) are not relatively prime. In other words,

there is a prime r 6= ` that divides both n and #(Γ). In particular, both
endomorphism algebras End0(J (f,`)) and End0(Y ) contain an invertible
element of multiplicative order r.

Proof of Theorem 2.2 (modulo Lemma 3.6). It follows from Lemma 3.2
that f(x) remains irreducible overK(Y [`]). So, replacingK byK(Y [`]),
we may and will assume thatK(Y [`]) = K. Now it follows from Lemma
3.6) that there is a prime r 6= ` that divides n and enjoys the following
property.
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Both endomorphism algebras End0(J (f,`)) and End0(Y ) contain an
invertible element of multiplicative order r. This proves Theorem 2.2.

�

Proof of Lemma 3.6. In light of the theorem of Silverberg (Remark
2.1(ii)), all endomorphisms of Y are defined over K. Applying this
theorem (see Remark 2.1(ii) above) to X×Y , we conclude that all the
homomorphisms from X to Y are defined over K(X[`]).

Let µ : X → Y be an isogeny. Dividing, if necessary, µ by a suitable
power of `, we may and will assume that

µ(X[`]) 6= {0}. (5)

Let us put

G` := G̃`,X,K = Gal(K(X[`])/K), G = Gal(K(X[1−δ`])/K) = Gal(f/K).

We know that µ is defined over K(X[`]). This allows us to define for
each σ ∈ G` the isogeny σ(µ) : X → Y , which is the Galois-conjugate
of µ (recall that both X and Y are defined over K). Then the same
construction as in [22, Sect. 4, proof of Prop. 2.4] allows us to define
a map

c : G` → End0(Y )∗, σ 7→ c(σ)

where c(σ) is determined by

σ(µ) = c(σ)µ ∀σ ∈ G` = Gal(K(X[`])/K).

We have for each σ, τ ∈ G`

c(στ)µ = στ(µ) = σ(τ(µ)) = σ(c(τ)µ) = c(τ)σ(µ) = c(τ)c(σ)µ

(here we use that all elements of End(Y ) are defined over K, i.e., are
G`-invariant). Therefore

c(στ) = c(τ)c(σ) ∀σ, τ ∈ G` = Gal(K(X[`])/K).

This means that the map

χ : G` = Gal(K(X[`])/K)→ End0(Y )∗, σ 7→ χ(σ) = c(σ)−1

is a group homomorphism. Let Γ ⊂ End0(Y )∗ be the image of χ, which
is a finite subgroup of End0(Y )∗. We need to check that there is a prime
divisor r of n that divides #(Γ).

Let H` be the kernel of χ, i.e.,

H` = {σ ∈ G` | σ(µ) = µ}. (6)

By definition, H` is a normal subgroup of G`. Let H be the image of
H` in G under the natural surjective group homomorphism

G` = Gal(K(X[`])/K) � Gal(K(X[1− δ`])/K) =
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Gal(K(Rf )/K) = Gal(f/K) = G

induced by the inclusion

K(Rf ) = K(X[1− δ`]) ⊂ K(X[`])

of Galois extensions ofK. The surjectiveness implies thatH is a normal
subgroup of G and the index (G : H) divides

(G` : H`) = #(Γ).

In order to finish the proof, we need the following assertion that will
be proven at the end of this section.

Proposition 3.7. The subgroup H of G is not transitive on Rf .

End of Proof of Lemma 3.6 (modulo Proposition 3.7) Com-
bining Proposition 3.7 with Lemma 3.1, we conclude that (G : H) is
not prime to n. Hence, there is a prime r that divides both (G : H)
and n. Since n is prime to ` and (G : H) divides (G` : H`), we conclude
that r 6= ` and r divides (G` : H`) = #(Γ). This ends the proof.

�

Proof of Proposition 3.7. Suppose that H is transitive. Then f(x) re-
mains irreducible over the subfield E := K(Rf )

H of all H-invariants in
K(Rf ) := F . Clearly, E/K is a Galois extension and

K ⊂ E ⊂ F = K(Rf ) = E(Rf ).

Let us consider the subfield L := K(X[`])H` of all H`-invariants in
K(X[`]), which is also a Galois extension of K. We have

K(X[`]) = L(X[`]), H` = Gal(K(X[`])/L) = Gal(L(X[`])/L).

In addition,

K ⊂ L = K(X[`])H` ⊃ K(Rf )
H = FH = E ⊃ K

and
E = FH = F ∩K(X[`])H` = F ∩ L,

becase H is the image of H` ⊂ Gal(K(X[`])/K) in Gal(K(Rf )/K) =
Gal(F/K).

We want to prove that f(x) remains irreducible over L. In order
to do it, notice that H` acts transitively on Rf . Indeed, let α, β be
elements of Rf . By our assumption, there is σ ∈ H ∈ Gal(K(Rf )/K)
such that σ(α) = β. Pick a field automorphism

σ` ∈ H` ⊂ Gal(K(X[`])/L) ⊂ Gal(K(X[`])/K)

such that the restriction of σ` to K(Rf ) coincides with σ. Since

α ∈ Rf ⊂ K(Rf ),
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we get
σ`(α) = σ(α) = β.

This proves the transitivity of of the action of H` on the set Rf of roots
of f(x). It follows that f(x) is irreducible over the field K(X[`])H` = L.

Replacing K by its overfield L = K(X[`])H` , we may and will assume
that

H` = Gal(K(X[`])/K).

In particular,

σ(µ) = µ ∀σ ∈ H` = Gal(K(X[`])/K). (7)

Recall that

σ(µ)(σ(x)) = σ(µ(x)) ∀σ ∈ Gal(K(X[`])/K), x ∈ X(K[`]). (8)

Since X[`] ⊂ X(K[`]) and nonzero µ(X[`]) obviously lies in Y [`], we
conclude that the map

X[`]→ Y [`], x 7→ µ(x) (9)

is a nonzero homomorphism of Gal(K)-modules. Recall that we assume
that the Galois action on Y [`] is trivial. On the other hand, in light
of Corollary 3.5, the Galois module X[`] admits a filtration, all whose
consecutuve quotients are isomorphic to QRf

. Since f(x) is irreducible
over K, it follows from Lemma 2.5 that the homomorphism (9) is zero,
which is not the case. The obtained contradiction proves that H is not
transitive. �

4. Proof of Theorem 1.1

So, n is an odd prime, both f(x) and h(x) ∈ K[x] are degree n
polynomials without repeated roots, f(x) is irreducible and h(x) is
reducible. Since n is a prime, the reducibility of h(x) implies that the
order of Gal(h/K) is prime to n (see [22, Lemma 2.6]). Let us put
Y = J (h,`). We are given that the degree [K(Rh) : K] of the field
extension K(Rh)/K is not divisible by n. Applying Corollary 3.5 to Y
and h(x) (instead of X = J (f,`) and f(x)), we conclude that the order
of the group G̃`,Y,K is prime to n. Now the desired result follows readily
from Theorem 2.2, because if r is a prime divisor of n then r = n.

5. Doubly transitive and cyclic Galois groups

Proof of Corollary 1.4. By definition of the field

Kh := K(Rh),

the polynomial h(x) splits into a product of linear factors over Kh.
Recall that Gal(Kh/K) = Gal(h/K) is a cyclic group of prime order
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n and Gal(f/K) = Gal(K(Rf )/K) is doubly transitive. In light of
Proposition 1.8 of [22], the field extensions K(Rf )/K and Kh/K are
linearly disjoint. This implies that f(x) remains irreducible over Kh.
Now the desired result follows readily from Theorem 1.1 applied to
f(x) and h(x) over Kh (instead of K). �
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