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Super Gromov–Witten Invariants via Torus
Localization

Enno Keßler Artan Sheshmani Shing-Tung Yau

In this article we propose a definition of super Gromov–Witten invariants by
postulating a torus localization property for the odd directions of the moduli
spaces of super stable maps and super stable curves of genus zero. That is, we
define super Gromov–Witten invariants as the integral over the pullback of
homology classes along the evaluation maps divided by the equivariant Euler
class of the normal bundle of the embedding of the moduli space of stable spin
maps into the moduli space of super stable maps. This definition sidesteps
the difficulties of defining a supergeometric intersection theory and works
with classical intersection theory only. The properties of the normal bundles,
known from the differential geometric construction of the moduli space of
super stable maps, imply that super Gromov–Witten invariants satisfy a
generalization of Kontsevich–Manin axioms and allow for the construction of
a super small quantum cohomology ring. We describe a method to calculate
super Gromov–Witten invariants of Pn of genus zero by a further geometric
torus localization and give explicit numbers in degree one when dimension
and number of marked points are small.

1 Introduction
In this article we give an algebro-geometric proposal for a supergeometric generalization
of Gromov–Witten invariants of genus zero based on our earlier differential geometric
work on moduli spaces of super stable maps of genus zero in Keßler, Sheshmani, and Yau
2022; Keßler, Sheshmani, and Yau 2020; Keßler, Sheshmani, and Yau 2023.

Classically Gromov–Witten invariants can roughly be described as the count of stable
maps from surfaces to a fixed almost Kähler manifold satisfying a list of topological
constraints. The idea was introduced as a tool to study symplectic manifolds in Gromov
1985 and with motivation in theoretical physics in Witten 1990. For an introduction
to the Gromov–Witten theory from the perspective of symplectic geometry we refer
to McDuff and Salamon 2012. In the algebro-geometric interpretation, Gromov–Witten
invariants associate to homology classes of the target variety a number via intersection
theory on the moduli stacks of stable maps. Gromov–Witten invariants satisfy a list of
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axioms spelled out for the first time in Kontsevich and Manin 1994. Those axioms, which
we will call Kontsevich–Manin axioms have turned out to be a powerful tool for the
calculation of Gromov–Witten invariants, most importantly the gluing or splitting axiom
that allows to reduce to situations of fewer marked points or lower genus. More generally,
the Kontsevich–Manin axioms turn the Gromov–Witten invariants into the prime example
of a cohomological field theory and allow for the construction of the quantum product on
the homology of the target. For an introduction to the algebro-geometric perspective of
stable maps and Gromov–Witten invariants we refer to Manin 1999; Cox and Katz 1999.

Here, we propose super Gromov–Witten invariants of genus zero which satisfy general-
ized Kontsevich–Manin axioms, allow for the construction of super quantum cohomology
that extends quantum cohomology and are motivated by super stable maps. Super stable
maps are maps from prestable marked super curves into a target manifold or variety. That
is, the domain curve has one classical even function and one anti-commuting function as
local coordinates which satisfy a non-integrability or supersymmetry condition and at
most nodal singularities. Smooth super curves are also known as super Riemann surfaces
and have been studied from many different perspectives and motivated from super string
theory, see Keßler 2019 for references. We have studied the moduli spaces of super stable
maps of genus zero from the perspective of super differential geometry and for almost
Kähler manifolds as target in Keßler, Sheshmani, and Yau 2020; Keßler, Sheshmani, and
Yau 2023.

Ideally, one would like to construct algebro-geometric super Gromov–Witten invariants
by constructing the super moduli stack of super stable maps as well as a suitable
intersection theory on super stacks and apply the classical formulas from Gromov–Witten
theory. We believe, that the recent progress in the understanding of moduli spaces of
stable super curves in Felder, Kazhdan, and Polishchuk 2020; Moosavian and Zhou 2019;
Ott and A. Voronov 2019; Bruzzo and Hernández Ruipérez 2021 can, in principle, be
generalized to construct super moduli stacks of super stable maps. However, unfortunately,
it is not clear to us what the supergeometric intersection theory or even Chow groups
or cohomology theories for super schemes will look like. We list some attempts for
supergeometric intersection theory or cohomology theories in Section 3.1. Our proposal
for super Gromov–Witten invariants sidesteps the question of constructing the super
moduli stacks as well as the supergeometric intersection theory and is motivated by the
following two assumptions:

• There is a torus action on the super moduli stacks of super stable maps that leaves
the embedded moduli stack of classical stable spin maps invariant.

• A well defined supergeometric intersection theory would have a torus localization
theorem.

We use the resulting formula from the assumed supergeometric torus localization theorem
as an ad-hoc definition of super Gromov–Witten invariants: Super Gromov–Witten
invariants are integrals over the pullback of homology classes from the target along the
evaluation maps divided by the equivariant Euler class of the normal bundle to the
embedding of the moduli space of stable spin maps into the super moduli space of super
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stable maps. Hereby, integrals are taken over the classical moduli spaces of stable spin
maps and the normal bundles are obtained by transferring the differential geometric
description of the normal bundles to algebraic geometry. Even though we have shown
that appropriate torus actions exist on moduli spaces of super stable maps of genus
zero in certain cases in Keßler, Sheshmani, and Yau 2023, we are aware that the above
assumptions are too strong to be correct in full generality. In any case, our proposal
for super Gromov–Witten invariants yields a generalization of classical Gromov–Witten
invariants that satisfies interesting generalizations of the Kontsevich–Manin axioms and
take some geometric information of the super moduli space of super stable maps into
account.

To be more precise, let us first describe the SUSY normal bundles in more detail: Let
c : C = P1

C ×B → B be the trivial family of smooth curves of genus zero with sections
pi : B → C for i = 1, . . . , k and a map φ : C → X to a convex target scheme X. Denote
by SC the extension of the spinor bundle S = O(1) to C. Then the SUSY normal
bundle N(C,φ) is a locally free sheaf on B given by the short exact sequence

0 c∗SC

k⊕
i=1

p∗iSC ⊕ c∗
(
S∨C ⊗ φ∗TX

)
N(C,φ) 0.

This short exact sequence is what we obtained in Keßler, Sheshmani, and Yau 2023 for
the differential geometric description of the normal bundle of the inclusion M sm

0,k (X,β)→
Msm

0,k (X,β) of superorbifolds from the moduli space of stable maps of genus zero with
k marked points into its super analog. The construction of N(C,φ) is compatible with
standard operations from the theory of algebraic curves such as gluing or forgetting
marked points. Consequently, we obtain a description of SUSY normal bundles for the
moduli spaces of stable maps of fixed tree type. Every closed point of the moduli stack
of stable spin maps M spin

0,k (X,β) describes a stable spin map of fixed tree type and hence
we expect the SUSY normal bundle of the universal curve over M spin

0,k (X,β) to extend to
a vector bundle Nk,β on M spin

0,k (X,β).
We now define genus zero k-point super Gromov–Witten invariants of X as〈

SGWX,β
0,k

〉
(α1, . . . , αk) =

∫
M
spin
0,k (X,β)

ev∗1α1 ∪ · · · ∪ ev∗kαk
2eK(Nk,β)

. (1.1)

The classes ev∗iαi are the pullback along the evaluation maps evi : M0,k (X,β)→ X of
cohomology classes αi ∈ H∗(X). The equivariant Euler class eK(Nk,β) is an invertible
element of H∗(M0,k (X,β)) ⊗ C(κ) where κ is the character of the torus K = C∗.
Note that the forgetful map F : M spin

0,k (X,β) → M0,k (X,β) induces an isomorphism

on rational cohomology. The term of cohomological degree zero of
(
eK(Nk,β)

)−1
is

κ− rkNk,β and consequently if
∑
i degαi = 2 dimM0,k (X,β) the super Gromov–Witten

invariants reproduce classical Gromov–Witten invariants up to the polynomial prefactor.
New invariants arise when c = 2 dimM0,k (X,β)−

∑
i degαi is strictly positive and the
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component of
(
eK(Nk,β)

)−1
of cohomological degree c contributes characteristic classes

of Nk,β. Some but not all characteristic classes of Nk,β can be expressed as descendant
classes and hence we do expect that super Gromov–Witten invariants are new invariants
and cannot be directly reduced to known ones.

We point out that even though Equation (1) is clearly motivated by torus localization
the invariants only depend on the existence and properties of the normal bundles Nk,β

on M spin
0,k (X,β). Super Gromov–Witten classes can be defined in the same spirit and are

treated in this article. Further generalizations motivated by the geometry of super stable
maps and super stable curves are briefly discussed in Section 3.5.
Super Gromov–Witten invariants and super Gromov–Witten classes satisfy gen-

eralizations of the Kontsevich–Manin axioms because the vector bundles Nk,β are
compatible with forgetful and gluing maps. For example, a simple version of the
splitting axiom for super Gromov–Witten classes states that the integral of the su-
per Gromov–Witten class SGWX,β1+β2

0,4 (α1, α2, α3, α4) over the boundary divisor D =
[M0,3 (X,β1)×X M0,3 (X,β2)] can be be calculated by summing over products of three
point Gromov–Witten invariants:

2
∫
D
SGWX,β1+β2

0,4 (α1, α2, α3, α4)

=
∑
a,b

gab
〈
SGWX,β1

0,3

〉
(α1, α2, Ta)

〈
SGWX,β2

0,3

〉
(Tb, α3, α4).

(1.2)

Here, Ta is a homogeneous basis of the cohomology of X and gab =
∫
X Ta ∪ Tb. The

identity (1) is central to the proof that three point super Gromov–Witten invariants allow
to define a supergeometric generalization of the small quantum product in cohomology.
The proof of the splitting axiom for super Gromov–Witten invariants reduces to the
proof of the splitting axiom for the classical Gromov–Witten invariants together with
gl∗XNk1+k2,β1+β2 = Nk1+1,β1 ⊕Nk2+1,β2 for the gluing map

glX : M spin
0,k1+1 (X,β1)×X M

spin
0,k2+1 (X,β2)→M

spin
0,k1+k2 (X,β1 + β2) .

The Point-Mapping-Axiom states that for β = 0 and k ≥ 3〈
SGWX,0

0,k

〉
(α1, . . . , αk) =

〈
SGW pt

0,k

〉 ∫
X
α1 ∪ · · · ∪ αk.

Here, the super Gromov–Witten invariants of a point
〈
SGW pt

0,k

〉
are monomials in C(κ),

independent of X which can be expressed in terms of Chern classes of Hodge bundles
on M0,k. The supergeometric divisor and fundamental class axiom acquire a correction
term encoding the first Chern class of the kernel of Nk+1,β → Nk,β.
For the target X = Pn we sketch a general approach to evaluate all super Gromov–

Witten invariants via an additional localization with respect to the torus action on
the moduli of stable maps induced from the (C∗)n+1-action on Pn. The calculation
is based on Kontsevich 1995 where the stable maps invariant under the torus action
where classified, Euler classes of normal bundles calculated and classical Gromov–Witten
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invariants of Pn obtained. We extend Kontsevich’s method by computing the torus action
on Nk,β induced from the torus action on Pn for particular fixed points. This leads to
formulas for super Gromov–Witten invariants

〈
SGW

Pn,d
0,k

〉
(α1, . . . , αk) of degree d = 1

which can be evaluated for n = 1 and k = 1, 2, 3 directly. Certain cases for n = 2, 3, 4, 5
are obtained with the help of computer algebra. Cases with higher degree and higher
number of marked points can then, in principle be calculated using the axioms and the
recursive methods from Kontsevich 1995.

The outline of the paper is as follows: In Section 2, we define and motivate the SUSY
normal bundles on the moduli spaces of stable curves and stable maps. Motivated by
torus localization we define super Gromov–Witten invariants dividing by the equivariant
Euler class of the SUSY normal bundles in Section 3. We study their basic properties,
in particular that they satisfy a generalization of the Kontsevich–Manin axioms which
allows to construct a super quantum product in Section 4. As an example, we calculate
the super Gromov–Witten invariants of degree one in Pn in Section 5 when the number
of dimensions and marked points is low.
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2 SUSY normal bundles
In this section we describe the SUSY normal bundles for stable curves and stable maps.
Intuitively, those bundles should be thought of as follows: Let Nk be the normal bundle
of the embedding M spin

0,k →M0,k of the moduli stack of stable curves of genus zero and
with k-marked points into the moduli stack of stable SUSY curves of genus zero with k
Neveu–Schwarz punctures. Every family C → B of such stable spin curves is given by a
map b : B →M

spin
0,k and we obtain the SUSY normal bundle NC = b∗Nk. Similarly, let

Nk,β be the normal bundle of the embedding M spin
0,k (X,β)→M0,k (X,β) of the moduli

space of stable spin maps of genus zero, k marked points and homology class β ∈ H+
2 (X)

into its supergeometric analogue. Every such family φ : C → X of stable spin maps
over B is given by a map b : B → M

spin
0,k (X,β) and set the SUSY normal bundle to

be N(C,φ) = b∗Nk,β. As the moduli space of super stable maps is not yet sufficiently
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developed, we do not construct Nk and Nk,β directly. Rather we give a definition of
NC and N(C,φ) for the case of constant tree type using only the language of classical
algebraic geometry and the motivation from Keßler, Sheshmani, and Yau 2023. We leave
the extension of the SUSY normal bundles to the moduli stacks of stable spin curves and
stable spin maps as a conjecture.

In Section 2.1, we first recall the notions of k-pointed prestable curves and stable curves
of genus zero, the notion of dual tree and the spinor bundles on prestable curves. Then
we define the SUSY normal bundles for stable k-pointed curves of genus zero of fixed
tree type and derive some basic properties. In Section 2.2 we formulate the conjecture
that the SUSY normal bundles form a vector bundle on the moduli stack of stable spin
curves. SUSY normal bundles for stable maps are then treated analogously in Section 2.3
and Section 2.4. In Section 2.5 we give background information and from the differential
geometric treatment of moduli spaces of super stable maps in Keßler, Sheshmani, and
Yau 2023.

2.1 SUSY normal bundles for stable spin curves
Before studying SUSY normal bundles for stable spin curves we recall some basic
properties of prestable curves of genus zero: A prestable curve over the base B is a flat,
proper morphism c : C → B such that each geometric fiber is a reduced one-dimensional
scheme with at most nodal singularities, see Manin 1999, III Definition 2.1. We assume
in this article that all curves are of genus zero, that is all geometric fibers of the family
C → B have arithmetic genus zero. Any smooth prestable curve of genus zero (over a
point) is isomorphic to P1 together with marked points pi ∈ P1 for i = 1, . . . , k. The
normalization of any prestable curve over B = SpecC with n nodes is isomorphic to n+ 1
copies of P1.
Let J be a finite set of cardinality k. Often we will use J = {1, . . . , k}. A J-marked

prestable curve is a prestable curve together with sections pj : B → C for j ∈ J such
that in each geometric fiber the images of the sections are distinct points lying in the
smooth locus. A J-marked prestable curve of genus zero is called a stable curve of genus
zero if every irreducible component of C contains at least three special, that is marked
or singular points.
The dual tree of a prestable curve C → SpecC of genus zero is a graph τ with set

of vertices Vτ given by irreducible components of C, the set of edges Eτ representing
nodes and the set of tails Tτ representing marked points of the curve, see Manin 1999,
III Definition 2.5. We say that a J-marked prestable curve C → B is of constant tree
type τ if every geometric fiber has dual tree τ . In this case, we also have nodal sections
pe : B → C for every edge e ∈ Eτ of τ which map in every geometric fiber to the nodal
point represented by e.

For a prestable curve c : C → B we denote the relative dualizing sheaf by ωC . A spinor
bundle SC on the prestable curve c : C → B is a coherent sheaf SC on C, generically
locally free of rank one such that

SC = Hom(SC , ω∨C).
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Similar bundles have been considered in Cornalba 1989; Jarvis 2000 as well as Deligne
1987; Felder, Kazhdan, and Polishchuk 2020 in the context of supergeometry. We call
a prestable curve together with a choice of spinor bundle a prestable spin curve. In
genus zero, there is a unique spinor bundle on every prestable curve C. If C = P1 is a
smooth curve SC = O(1) and if C is a prestable curve over SpecC and c̃ : C̃ → C its
normalization then SC = c̃∗SC̃ . Note that SC is locally free of rank one on the smooth
locus of C but not locally free and of rank two at nodes of C. In addition over the smooth
locus the spinor bundle satisfies SC ⊗ SC = TC.

A morphism(
c : C → B, {pj}j∈J , SC

)
→
(
c′ : C ′ → B,

{
p′j′
}
j′∈J ′

, SC′

)
of prestable spin curves over B consists of a bijective map l : J → J ′, a morphism
g : C → C ′ over B and a fiberwise linear map s : SC → g∗SC′ such that g(pj) = p′l(j) and
s⊗ s = dg on the smooth locus.

The group of spin automorphisms of P1 with no marked points is the group SL(2) as we
have discussed in Keßler, Sheshmani, and Yau 2020, Section 3.1; Keßler, Sheshmani, and
Yau 2023, Section 3 in detail. Matrices l = ( a cb d ) in SL(2) act on projective coordinates
by left multiplication[

X1 : X2
](a c

b d

)
=
[
aX1 + bX2 : cX1 + dX2

]
and on sections of O(1) as follows

t1X
1 + t2X

2 7→ (−at1 + ct2)X1 + (bt1 − dt2)X2.

Note that while ±l induce the same action on P1 their action on sections of O(1) differs
by a sign. If C is a smooth stable spin curve, that is it has at least three marked points,
the automorphism group of the smooth stable spin curve C is Z2 which acts only on
the spinor bundle by flipping a sign. The automorphisms group of stable nodal spin
curves of genus zero and fixed tree type τ is Z#Vτ

2 where #Vτ is the number of irreducible
components.

Definition 2.1.1. Let c : C → B be a stable spin curve of constant tree type τ . The
SUSY normal bundle is the coherent sheaf NC on B given by

0 c∗SC
⊕
t∈Tτ

p∗tSC
⊕
e∈Eτ

p∗eSC NC 0

s
⊕
p∗t s

⊕
p∗es

(2.1.2)

Any isomorphism of stable spin curves yields an isomorphism of SUSY normal bundles
because the restriction map behaves equivariantly with respect to the identification of
spinor bundles.
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Lemma 2.1.3. The sheaf NC is locally free of rank rk = k − 2.

Proof. By construction the sheaf NC is coherent. Assume that the tree τ has #Eτ edges
and #Eτ + 1 vertices. At every closed point b ∈ B the geometric fiber of c has #Eτ + 1
irreducible components and #Eτ nodes. Then c∗SC has rank 2 (#Eτ + 1) at b and the
middle term of (2.1.1) has rank 2#Eτ + k. Consequently, NC has rank k− 2 at all closed
points. As closed points are dense in B and the rank is upper semicontinuous, the rank
of NC is k − 2 at all points. It follows from Nakayama’s Lemma that any coherent sheaf
with constant rank is locally free, see, for example Vakil 2023, Exercise 14.4.L(a).

Example 2.1.4. Let c : C = P1 ×B → B and pi : B → P1 for i = 1, . . . , k marked points.
In this situation SC = O(1) and we can assume without loss of generality that p1 = 0,
p2 =∞ and p3 = 1. Hence p∗1SC , p∗2SC and p∗3SC are trivial line bundles over B. Sections
of SC are given by s = a0X

0 + a1X
1 where a0, a1 are sections of OB and [X0 : X1] are

projective coordinates of P1. Restricting s to p1 = 0 = [0 : 1] yields a0 and the restriction
of s to p2 =∞ = [1 : 0] yields a1. Consequently,

NC = p∗3SC ⊕ p∗4SC · · · ⊕ p∗kSC = C⊕ p∗4SC · · · ⊕ p∗kSC .

Lemma 2.1.5. Let C be a smooth stable spin curve over a point with k ≥ 3 marked
points p1, . . . , pk. Furthermore, let

S0 = SC

− k∑
j=1

pj


the sheaf of sections of S vanishing at the marked points. Then NC = H1(S0).

Proof. The sheaves S0 and SC fit into the following short exact sequence

0 S0 SC
⊕k
j=1Opj 0

where Opj is the skyscraper sheaf at pj . Its long exact cohomology sequence yields

0 H0(SC) H0
(⊕k

j=1Opj
)

H1(S0) 0

because H0(S0) = 0 and H1(SC) = 0 for degree reasons. The map on the left hand side
is the restriction of sections of SC to the marked points, that is, coincides with the map
on the left of the short exact sequence (2.1.1). The result NC = H1(S0) follows.

Lemma 2.1.6. Let b : B̃ → B be a flat morphism. Then NC×BB̃ = b∗NC .

Proof. We write C̃ = C ×B B̃ for the total space after base change, c̃ : C̃ → B̃ for the
family of curves and p̃t = (pt ◦ b, idB̃) : B̃ → C̃ as well as p̃e = (pe ◦ b, idB̃) : B̃ → C̃ for
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its sections induced by pt for t ∈ Tτ and pe for e ∈ Eτ . The map f : C̃ → C satisfies
c ◦ f = b ◦ c̃ and f∗SC = SC̃ .
As b is flat the pullback of (2.1.1) yields

0 b∗c∗SC
⊕
t∈Tτ

b∗p∗tSC
⊕
e∈Eτ

b∗p∗eSC b∗NC 0 (2.1.7)

For the first entry of the short exact sequence we have by flat base change for cohomology,
see Vakil 2023, Theorem 24.2.9, that b∗c∗SC = c̃∗f

∗SC = c̃∗SC̃ . The summands of the
middle term of the short exact sequence (2.1) are given by b∗p∗tSC = p̃∗t f

∗SC = p̃∗tSC̃ and
b∗p∗eSC = p̃∗eSC̃ . Hence, the short exact sequence (2.1) is isomorphic to the one defining
NC̃ and b∗NC = NC̃ .

Proposition 2.1.8. Let c1 : C1 → B be a family of stable spin curves of constant tree
type τ1 and c2 : C2 → B be a family of stable spin curves of constant tree type τ2. For
two tails t1 ∈ Tτ1 and t2 ∈ Tτ2 denote by σ the tree obtained from grafting the tails t1
and t2. Furthermore, let c : C → B be the stable curve of constant tree type σ obtained
from gluing C1 and C2 along pt1 and pt2. Then NC = NC1 ⊕NC2.

Proof. Note that SC = i1∗SC1 ⊕ i2∗SC2 , where ij : Cj → C for j = 1, 2 are the inclusions.
This implies c∗SC = (c1)∗SC1 ⊕ (c2)∗SC2 .

By construction the edges of σ are given by Eσ = Eτ1 ∪Eτ2 ∪ {(t1, t2)} and the tails of
σ are given by Tσ = (Tτ1 ∪ Tτ2)\{t1, t2}. Furthermore, for e ∈ Eτi we have p∗eSC = p∗eSCi ,
for t ∈ Tτi \ {ti} we have p∗tSC = p∗tSCi and p∗(t1,t2)SC = p∗t1SC1 ⊕ p∗t2SC2 . Consequently,⊕

t∈Tσ
p∗tSC

⊕
e∈Eσ

p∗jSC

=
⊕

t∈Tτ1\{t1}
p∗tSC

⊕
t∈Tτ2\{t2}

p∗tSC ⊕ p∗(t1,t2)SC
⊕
e∈Eτ1

p∗eSC
⊕
e∈Eτ2

p∗eSC

=
⊕
t∈Tτ1

p∗tSC1

⊕
e∈Eτ1

p∗eSC1

⊕
t∈Tτ2

p∗tSC2

⊕
e∈Eτ2

p∗eSC2

This implies the claim.

Proposition 2.1.9. Let c : C → B be a stable spin curve of constant tree type τ . For
t0 ∈ Tτ , denote by τ̃ the stable tree that arises from τ by removing the tail t0 and
stabilization. We denote by st : C → C̃ the map that stabilizes the curve C after removing
the marked point pt0. Then there is a short exact sequence:

0 p∗t0SC NC NC̃ 0

Proof. Let v be the vertex of τ that is bounding the removed tail t0. There are three
different cases:
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(i) The vertex v has at least four adjacent flags. In this case no vertices of τ are
contracted, C = C̃, SC = SC̃ and st : C → C̃ is the identical map. We obtain the
diagram where rows and columns are exact

0 0

c∗SC c̃∗SC̃

0 p∗t0SC
⊕
t∈Tτ

p∗tSC
⊕
e∈Eτ

p∗eSC
⊕
t̃∈Tτ̃

p∗t̃SC̃
⊕
ẽ∈Eτ̃

p∗ẽSC̃ 0

0 p∗t0SC NC NC̃ 0

0 0

(ii) The vertex v has precisely three adjacent flags, the tail t0, a tail t′ and an edge e′
which consists of the two flags fv and fv′ . In this case the map st : C → C̃ is the
identity on all irreducible components of C except for the irreducible component Cv
represented by v which is contracted to pfv′ . It follows that st ◦ pe′ = p̃t′ and
SC = st∗SC̃ ⊗SCv where SCv is the spinor bundle on the irreducible component Cv.
Then there is the following commutative diagram with exact rows and columns:

0 0 0

0 c∗SCv c∗SC c̃∗SC̃ 0

0 p∗t0SC ⊕ p
∗
t′SC ⊕ p∗fvSC

⊕
t∈Tτ

p∗tSC
⊕
e∈Eτ

p∗eSC
⊕
t̃∈Tτ̃

p∗t̃SC̃
⊕
ẽ∈Eτ̃

p∗ẽSC̃ 0

0 p∗t0SC NC NC̃ 0

0 0 0

(iii) The vertex v has precisely three adjacent flags, the tail t0 and two edges e and e′.
In this case the map st : C → C̃ is the identity on all irreducible components of C
except for the irreducible components Cv which is contracted to pe = p′e. Again

10



the tree τ̃ has three flags less than τ and the claim can be shown using a diagram
similar to the one in case (ii).

2.2 Conjecture on the SUSY normal bundle on the moduli stack of stable
spin curves

In this section we discuss how SUSY normal bundles extend to the moduli stack of stable
spin curves.
Recall the following facts about the moduli space of stable curves, see, for exam-

ple, Manin 1999, Chapter III, §3 There is a universal curve C0,k →M0,k fibered over the
moduli stack M0,k of stable curves of genus zero with k marked points together with
sections p1, . . . , pk : M0,k → C0,k. That is, for any family (c : C → B, q1, . . . , qk) of stable
maps of genus zero with k marked points there is a unique map b : B →M0,k sucht that
C = B ⊗M0,k

C0,k and qi = b∗pi. Stable curves of genus zero do not have non-trivial
automorphisms. Hence, the moduli stack of stable curves of genus zero is a scheme
isomorphic to the coarse moduli space M c

0,k.
As any three distinct points on P1 can be mapped by a unique Möbius transformation

to the three points 0, 1 and ∞ of P1 the moduli space M0,3 is a point. The choice of a
fourth marked point yields M0,4 = P1. In general, the moduli space of stable k-pointed
curves of genus zero is a scheme of dimension dk = k − 3. For explicit constructions
see Keel 1992.
Moreover, the moduli spaces come with several structure maps: Forgetting the last

marked point and stabilization yield a forgetful map f : M0,k+1 →M0,k which coincides
with C0,k → M0,k. Identifying the last marked point of a curve with the first marked
point of another curve one obtains a nodal curve. The corresponding map of moduli
spaces are called gluing maps

gl : M0,k1+1 ×M0,k2+1 →M0,k1+k2 .

For any element σ ∈ Sym(k) of the symmetric group of {1, . . . , k} there is a relabeling
automorphism sσ : M0,k →M0,k that sends the marked point pi to pσ(i).
In genus zero, any stable curve can be uniquely equipped with a spinor bundle as

described in Section 2.1. Consequently, the moduli space of stable spin curves of genus
zero with k marked points coincides with M c

0,k. However, every stable spin curve of fixed
tree type τ has automorphism group Z#Vτ

2 acting on the stable spin curve by sending
the spinor bundle on some irreducible components to its negative. Hence, the moduli
stack M spin

0,k has the same closed points as M0,k but every point representing a curve of
tree type τ has an isotropy group Z#Vτ

2 .
Moduli stacks of stable spin curves have been constructed in Cornalba 1989; Jarvis

2000; Abramovich and Jarvis 2003 in a more general setup. We restrict our attention
here to the moduli stack M spin

0,k of stable spin curves of genus zero and k marked points of
Neveu–Schwarz type. The moduli stack M spin

0,k is a smooth and proper Deligne–Mumford
stack. The universal curve Cspin0,k →M

spin
0,k has

11



• k sections pspin1 , . . . , pspink : M spin
0,k → Cspin0,k , and

• a universal spinor bundle S → Cspin0,k .

For every family (c : C → B, q1, . . . , qk, SC) of stable spin curves there is a unique map
b : B →M

spin
0,k such that the given stable spin curve arises from pullback of the universal

curve along b. More precisely, C = B ×
M
spin
0,k

Cspin0,k and the projection on the first factor

coincides with c and the projection pr2 on the second factor satisfies pspinj ◦ b = pr∗2 ◦ qj
and SC = pr∗2S.

Every stable spin curve gives a stable curve by forgetting the spinor bundle. In genus
zero the resulting map F : M spin

0,k →M0,k induces an isomorphism on the coarse moduli
spaces because every stable curve of genus zero can be equipped with a unique spin
structure.
Furthermore, there are

• a forgetful map fspin : M spin
0,k+1 →M

spin
0,k forgetting the last marked point,

• a gluing map glspin : M spin
0,k1+1 ×M

spin
0,k2+1 →M

spin
0,k1+k2 sending a pair of stable spin

curves to the one obtained by identifying the last marked point of the first curve to
the first marked point of the second curve, and

• for any σ ∈ Sym(k) there is an automorphism sspinσ : M spin
0,k → M

spin
0,k such that

pspinj ◦ sspinσ = pspinσ(j) .

Those maps on moduli stacks of stable spin curves are lifts of the corresponding maps on
moduli stacks of stable curves, that is, for example, F ◦ fspin = f ◦ F . Hence, we will
drop the superscript and write pi, f , gl and sσ instead of pspini , fspin, glspin and sspinσ .

For supergeometric reasons which we discuss in Section 2.5 we expect that the SUSY
normal bundles extend to the moduli stacks of stable curves curves as follows:

Conjecture 2.2.1. There is a unique vector bundle Nk of rank rk = k − 2 on M spin
0,k

such that for any stable spin curve c : C → B of genus zero with k marked points and
fixed tree type it holds b∗Nk = NC . Here b : B →M

spin
0,k is the classifying map as above.

The SUSY normal bundle Nk satisfies

(i) The vector bundle N3 is trivial of rank one.

(ii) There is a short exact sequence

0 Sk+1 Nk+1 f∗Nk 0

Here Sk+1 = p∗k+1S is the pullback of the universal spinor bundle along the k + 1st
marked point.

(iii) It is compatible with gluing, that is gl∗Nk1+k2 = Nk1+1 ⊕Nk2+1.

12



(iv) It is compatible with relabeling, that is s∗σNk = Nk.

A very similar bundle has been constructed in Norbury 2023 and its relationship to
supergeometry has been discussed in Norbury 2020.

2.3 SUSY normal bundles for stable spin maps
In this section we describe the SUSY normal bundles for stable spin maps and some
basic properties.
First, we recall the notion of stable maps, see, for example, Kontsevich and Manin

1994, Definition 2.4.1; Fulton and Pandharipande 1997, Definition 1.1. Let φ : C → X
be a map from a J-marked prestable curve over SpecC and τ the dual tree of C. The
map φ induces a map

βτ : Vτ → H+
2 (X)

v 7→ φ∗[Cv]

that sends every vertex to the pushforward of the fundamental cycle of the irreducible
component Cv represented by v. Here H+

2 (X) is the cone of effective second homology
classes of X. The map βτ satisfies

β = φ∗[C] =
∑
v∈Vτ

βτ (v) =
∑
v∈Vτ

φ∗[Cv].

The map φ is called a stable map precisely if for every v ∈ Vτ such that βτ (v) = 0 there
are at least three flags bounding v. That is, φ is stable if every irreducible component
of C which is mapped by φ to a point in X contains at least three special points. A
family of maps φ : C → X for a family c : C → B is stable if the resulting map on every
geometric fiber is stable. We say that a stable map φ : C → X over an arbitrary base B
is of constant tree type (τ, βτ ) if every geometric fiber of C → B has dual tree τ and the
image of the fundamental class of the irreducible components is given by βτ (v). For a
systematic treatment of marked trees (τ, βτ ) see Behrend and Manin 1996.

For this work we are interested in the case when the domain prestable curve is equipped
with a spinor bundle. A J-marked stable spin map of genus zero is a tuple(

c : C → B, {pj : B → C}j∈J , SC , φ : C → X
)

such that (C, {pj}, SC) is a J-marked prestable spin curve of genus zero and φ is a stable
map. A morphisms(

c : C → B, {pj}j∈J , SC , φ
)
→
(
c′ : C ′ → B,

{
p′j′
}
j′∈J ′

, SC′ , φ
′
)

of stable spin maps over B is a morphism of prestable maps (l, g, s) such that φ = φ′ ◦ g.
In genus zero generic stable maps without spin structure do not have automorphisms
while generic stable spin maps of tree type (τ, βτ ) have automorphism group Z#Vτ .
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We assume in addition that X is convex according to Kontsevich and Manin 1994,
Definition 2.4.2. That is, for every map φ : P1 → X it holds H1(φ∗TX) = 0. It
follows that H1(φ∗TX) = 0 for all stable maps of genus zero as explained in Fulton
and Pandharipande 1997, Lemma 10. Examples of convex varieties include Pn and
more generally homogeneous spaces X = G�P where P is a parabolic subgroup of a Lie
group G. We need the following property of convex varieties:

Lemma 2.3.1. Let X be a convex variety. Then for any stable spin map φ : C → X

dimH0 (S∨C ⊗ φ∗TX) = 〈c1(TX), φ∗[C]〉 , dimH1 (S∨C ⊗ φ∗TX) = 0. (2.3.2)

Moreover, for any non-constant stable spin map φ : P1 → X

dimH0
(
S∨P1 ⊗ φ∗TX

)
≥ 1.

Proof. If C = P1, the Theorem of Riemann–Roch implies that

dimH0
(
S∨P1 ⊗ φ∗TX

)
− dimH1

(
S∨P1 ⊗ φ∗TX

)
=
∫
P1
c1
(
S∨P1 ⊗ φ∗TX

)
+ dimX =

∫
P1
c1 (φ∗TX) =

〈
c1 (TX) , φ∗[P1]

〉
.

The bundles φ∗TX and S∨P1 ⊗ φ∗TX decompose into a sum of line bundles

φ∗TX =
dimX⊕
i=1
O(di) S∨P1 ⊗ φ∗TX =

dimX⊕
i=1
O(di − 1)

for some integers di by the Grothendieck–Birkhoff Theorem and because S∨P1 = O(−1).
As argued in the proof of Fulton and Pandharipande 1997, Lemma 10 the numbers di
must be non-negative. Hence, H1

(
S∨P1 ⊗ φ∗TX

)
= 0 because di − 1 ≥ −1. In addition,

as argued in Fulton and Pandharipande 1997, Lemma 11 if φ is non-constant one of the
numbers di is at least two. Consequently, dimH0

(
S∨P1 ⊗ φ∗TX

)
≥ 1.

For arbitrary prestable curves C every irreducible component Cj is isomorphic to P1

and (2.3.1) follows from

S∨C ⊗ φ∗TX =

⊕
j

S∨Cj

⊗ φ∗TX =
⊕
j

S∨Cj ⊗ φ|
∗
CjTX

and [C] =
∑
j [Cj ].

Definition 2.3.3. Let φ : C → X be a family of stable spin maps over B of constant
tree type (τ, βτ ). The SUSY normal bundle N(C,φ) is the coherent sheaf on B given by

0 c∗SC
⊕
t∈Tτ

p∗tSC
⊕
e∈Eτ

p∗eSC ⊕ c∗
(
S∨C ⊗ φ∗TX

)
N(C,φ) 0

s
⊕
p∗t s

⊕
p∗es⊕−〈s, dφ〉

(2.3.4)
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Here 〈s, dφ〉 is the section of SC∨ ⊗ φ∗TX that arises from the contraction of dφ seen as
a section of T∨C ⊗ φ∗TX = SC

∨ ⊗ SC∨ ⊗ φ∗TX with the section s of SC .

Any isomorphism of stable spin maps induces an isomorphism of SUSY normal bundles.

Lemma 2.3.5. The sheaf N(C,φ) is locally free of rank rk,β = 〈c1(TX), β〉+ k − 2.

Proof. The sheaf N(C,φ) is coherent by construction and has the same rank on all closed
points and hence is locally free as in the proof of Lemma 2.1.2. To see that N(C,φ) has the
same rank at all closed points, let b be a closed point of B and r the number of vertices
of τ . The rank of the sheaf c∗(S∨C ⊗ φ∗TX) at b is 〈c1(TX), β〉 by Lemma 2.3.1. Hence
the sheaf in the middle of (2.3.2) has rank 2(r − 1) + k + 〈c1(TX), β〉. The sheaf c∗SC
has rank 2r at b, consequently N(C,φ) has rank rk,β = 〈c1(TX), β〉+ k− 2 independent of
b and r.

The following Example will be important in Section 5.
Example 2.3.6. Let C = P1 with k-marked points pi for i = 1, . . . , k and

φ : P1 → Pn[
Z1 : Z2

]
7→
[
0 : · · · : 0 :

(
Z1
)d

: 0 : · · · : 0 :
(
Z2
)d

: 0 : · · · : 0
]

be the map that sends P1 as a d-fold cover on the coordinate line with coordinates Xa

and Xb. We will make the construction of N(C,φ) explicit in local coordinates of P1

and Pn. In particular we obtain for k ≥ 3

N(C,φ) = p∗3SP1 ⊕ · · · ⊕ p∗kSP1 ⊕H0(SP1
∨ ⊗ φ∗TX),

where p∗iSP1 are complex one-dimensional vector spaces and

H0
(
SP1
∨ ⊗ φ∗TPn

)
= H0(O(2d− 1)⊕ (O(d− 1))n−1) = C2d ⊕

(
Cd
)n−1

.

Let Vk ⊂ P1, k = 1, 2 be the open coordinate neighborhoods with coordinates z1 = Z1

Z2

and z2 = −Z2

Z1 , that is z1 = − 1
z2
. With this unconventional sign choice we conform to

the conventions in Keßler, Sheshmani, and Yau 2023 and, in particular the spinor bundle
SP1 = O(1) has local frames s1, s2 such that si⊗si = ∂zi and s1 = −z2s2. A local section
s ∈ H0(SP1) can be written as

s = (uz1 + v) s1 = (u− vz2) s2.

The restriction of s to a point p with coordinate z1 = p1 is then given by p∗s =
(up1 + v) p∗s1.

Furthermore, we denote by Ul ⊂ Pn the coordinate neighborhoods with X l = 1 for
l = a, b and local coordinates xql for q = 0, . . . , l − 1, l + 1, . . . , n. The coordinate change
is given by

xba = 1
xab
, xma = xmb

xab
, for m 6= a, b.
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The tangent bundle TPn is trivialized over Ua by Ua × Cn with basis ∂xqa . The different
trivializations glue via

∂xa
b

= − 1
(xab )

2

∂xba +
∑
m6=a,b

xmb ∂xma

 , ∂xm
b

= 1
xab
∂xma , for m 6= a, b.

The map φ : P1 → Pn maps V1 to Ub and V2 to Ua by

φ#xab = z1
d, φ#xmb = 0, for m 6= a, b,

φ#xba = (−z2)d, φ#xma = 0, for m 6= a, b.

Consequently, the bundle φ∗TPn is trivialized by V1 × Cn with basis φ∗∂xq
b
and V2 × Cn

with basis φ∗∂xqa and gluing via

φ∗∂xa
b

= −(−z2)2dφ∗∂xba , φ∗∂xm
b

= (−z2)dφ∗∂xma , for m 6= a, b.

This explains the explicit decomposition of φ∗TPn = Lab
⊕
m 6=a,b Lm into line bundles with

Lab = O(2d) and Lm = O(d). As SP1 ⊗ SP1 = TP1 = O(2) it follows that S∨P1 = O(−1)
and hence

S∨P1 ⊗ Lab = O(2d− 1), S∨P1 ⊗ Lm = O(d− 1).

Their spaces of sections are given by polynomials in z1 or z2 of maximal degree 2d− 1
and d− 1 respectively. Explicitly,

ψ(z1) =
2d−1∑
q=0

ψabq z1
qs∨1 ⊗ φ∗∂xab +

∑
m6=a,b

d−1∑
q=0

ψmp z1
qs∨1 ⊗ φ∗∂xmb ,

ψ(z2) = −
2d−1∑
q=0

ψabq (−z2)2d−1−qs∨2 ⊗ φ∗∂xba +
∑
m 6=a,b

d−1∑
q=0

ψmq (−z2)d−1−qs∨2 ⊗ φ∗∂xma .

Finally, we calculate

−〈s, dφ〉 = −d
(
uzd1 + vzd−1

1

)
s∨1 ⊗ φ∗∂xba = d

(
u(−z2)d−1 + v(−z2)d

)
s∨2 ⊗ φ∗∂xab .

Lemma 2.3.7. Let b : B̃ → B be a flat morphism. Then N(C×BB̃,φ̃) = b∗N(C,φ).

Proof. We use the notation as in the proof of Lemma 2.1.5:

C̃ = C ×B B̃ C X

B̃ B

f

c̃

φ̃

c

φ

b

p̃t p̃e pt pe
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The proof of this lemma follows as the proof of Lemma 2.1.5 by pulling back the short exact
sequence (2.3.2) defining N(C,φ) along b. The only additional term compared to the proof
of Lemma 2.1.5 is given by b∗c∗(S∨C ⊗ φ∗TX) = c̃∗f

∗(S∨C ⊗ φ∗TX) = c̃∗(S∨C̃ ⊗ φ̃
∗TX).

Proposition 2.3.8. Let φ : C → X be a constant stable spin map of constant tree
type (τ, 0). Then N(C,φ) = NC .

Proof. In this case, the tree τ is a stable tree and c∗(S∨C⊗φ∗TX) = 0. Hence N(C,φ) = NC

by definition.

Proposition 2.3.9. For two tails t1 ∈ Tτ1 and t2 ∈ Tτ2 of trees τ1 and τ2 denote
by σ the tree obtained from grafting τ1 and τ2 along t1 and t2. Let φ1 : C1 → X and
φ2 : C2 → X two families of stable spin maps of constant tree type (τ1, βτ1) and (τ2, βτ2)
respectively, such that φ1 ◦ pt1 = φ2 ◦ pt2. The stable spin map φ : C → X obtained
from gluing φ1 and φ2 along pt1 and pt2 is of constant tree type (σ, βσ = βτ1

∐
βτ2) and

N(C,φ) = N(C1,φ1) ⊕N(C1,φ2).

Proof. The proof is analogous to the proof of Proposition 2.1.6. The only additional
summand to consider is

c∗
(
S∨C ⊗ φ∗TX

)
= (c1)∗

(
S∨C1 ⊗ φ

∗
1TX

)
⊕ (c2)∗

(
S∨C2 ⊗ φ

∗
2TX

)
.

Proposition 2.3.10. Let φ : C → X be a stable spin map of constant tree type (τ, βτ ).
For t0 ∈ Tτ let τ̃ be the graph that arises from τ by removing the tail t0 and stabilization
such that (τ̃ , βτ̃ = βτ ) is stable. We denote by φ̃ : C̃ → X the stable spin map of constant
tree type (τ̃ , βτ̃ ) that arises from φ after removing the marked point pt0 and stabilizing
and by st : C → C̃ the stabilization map. Then there is a short exact sequence

0 p∗t0SC N(C,φ) N(C̃,φ̃) 0

Proof. Let v be the vertex that bounds the removed tail t0. The vertex v needs to be
contracted under stabilization precisely if βτ (v) = 0 and v has precisely three bounding
flags including t0. Hence the three cases in the proof of Proposition 2.1.7 generalize to
the case of stable maps by adding the additional summand c∗(S∨C ⊗ φ∗TX) = c̃∗(S∨C̃ ⊗
φ̃∗TX).

2.4 Conjecture on the SUSY normal bundle on the moduli stack of stable
spin maps

In this section we formulate the conjecture that the SUSY normal bundles extend to a
vector bundle on the stack of stable spin maps.

Recall the following properties of the moduli stack of stable maps, see, for exam-
ple, Manin 1999. Let M0,k (X,β) be the moduli stack of stable maps of genus zero with k
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marked points in X representing the homology class β. OverM0,k (X,β) there is a univer-
sal curve C0,k (X,β) → M0,k (X,β) together with k sections p1, . . . , pk : M0,k (X,β) →
C0,k (X,β) and a map evk+1 : C0,k (X,β)→ X. For any family

(c : C → B, q1, . . . , qk : B → C, φ : C → X)

of stable maps there is a unique map b : B → M0,k (X,β) such that C = B ×M0,k(X,β)
C0,k (X,β) where the projection on the first factor coincides with c : C → B and the
projection on the second factor satisfies pr2 ◦ qi = pi ◦ b and φ = evk+1 ◦ pr2. M0,k (X,β)
is a smooth and proper Deligne–Mumford stack. The convexity assumption implies that
it is of pure dimension dk,β = dimX + 〈c1(TX), β〉+ k − 3.

We denote the maps forgetting marked points again by f : M0,k+1 (X,β)→M0,k (X,β)
and the forgetful maps to the moduli space of stable curves by π : M0,k (X,β) →
M0,k. The forgetful map f : M0,k+1 (X,β) → M0,k (X,β) is isomorphic to the uni-
versal family C0,k (X,β) → M0,k (X,β). Furthermore, we have the evaluation maps
evi : M0,k (X,β)→ X, i = 1, . . . , k such that the following diagram is commutative

C0,k (X,β) = M0,k+1 (X,β) Xk+1

M0,k (X,β) Xk

C0,k = M0,k+1

M0,k

π

(ev1,...,evk+1)

f

(ev1,...,evk)

π

f

There is also a gluing map

glX : M0,k1+1 (X,β1)×X M0,k2+1 (X,β2)→M0,k1+k2 (X,β1 + β2)

identifying the last marked point of the first stable map to the first marked point of the
second stable map if their image in X coincides as well as a relabeling map

sσ : M0,k (X,β)→M0,k (X,β)

for any σ ∈ Sym(k).
The construction of moduli stacks of stable maps has been extended to stable spin

maps in Jarvis, Kimura, and Vaintrob 2005. We denote the moduli stack of stable
spin maps of genus zero with k marked points of Neveu–Schwarz type representing
the homology class β ∈ H+

2 (X) by M
spin
0,k (X,β). There is again a universal curve

Cspin0,k (X,β)→M
spin
0,k (X,β) with k sections pspin1 , . . . , pspink : M spin

0,k (X,β)→ Cspin0,k (X,β)
as well as a map evk+1 : Cspin0,k (X,β) → X and a spinor bundle S → Cspin0,k (X,β) such
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that for every every family of stable spin maps can be obtained via unique pullback. That
is, for any family (c : C → B, {qj}j=1,...,k, SC , φ) of stable spin maps there is a unique
map b : B →M

spin
0,k (X,β) such that C = B ×

M
spin
0,k (X,β) C

spin
0,k (X,β) and the projection

on the first factor coincides with b and the projection pr2 on the second factor satisfies
pspinj ◦ b = pr2 ◦ qj as well as SC = pr∗2S and φ = evk+1 ◦ pr2. The stack M spin

0,k (X,β) is
a smooth and proper Deligne–Mumford stack.

In genus zero the forgetful map F : M spin
0,k (X,β)→M0,k (X,β) induces an isomorphism

of coarse moduli spaces because any prestable curve of genus zero carries a unique spin
structure. Moreover there are

• a forgetful map fspin : M spin
0,k+1 (X,β) → M

spin
0,k (X,β) forgetting the last marked

point

• a forgetful map πspin : M spin
0,k (X,β)→M

spin
0,k forgetting the map,

• a gluing map glX : M spin
0,k1+1 (X,β1) ×X M

spin
0,k2+1 (X,β2) → M

spin
0,k1+k2 (X,β1 + β2)

identifying the last marked point of the first stable spin map to the first marked
point of the second stable spin map if their image in X coincides, and

• for any σ ∈ Sym(k) there is a relabeling automorphism sspinσ : M spin
0,k (X,β) →

M
spin
0,k (X,β) such that pspini ◦ sspinσ = pspinσ(j) .

All those maps on moduli stacks of stable spin maps are lifts of the corresponding maps
on moduli stacks of stable maps, that is, for example, F ◦ fspin = f ◦ F . Hence, we will
drop the superscript and write pi, f , π, gl and sσ instead of pspini , f spin, πspin, glspin and
sspinσ in the sequel.

Conjecture 2.4.1. There is a unique vector bundle Nk,β of rank rk,β = 〈c1(X), β〉+k−2
on M spin

0,k (X,β) such that for every family (c : C → B, {qi}, SC , φ) of stable spin maps of
genus zero and fixed tree type N(C,φ) = b∗Nk,β where b : B →M

spin
0,k (X,β) is the unique

classifying map. The vector bundle Nk,β satisfies

(i) If β = 0 and k ≥ 3, Nk,β = π∗Nk.

(ii) There is a short exact sequence

0 p∗k+1S Nk+1,β f∗Nk,β 0.

(iii) Let

ι : M spin
0,k1+1 (X,β1)×X M

spin
0,k2+1 (X,β2)→M

spin
0,k1+1 (X,β1)×M spin

0,k2+1 (X,β2) .

be the canonical inclusion. Then

gl∗XNk1+k2,β1+β2 = ι∗
(
Nk1+1,β1 ⊕Nk2+1,β2

)
.
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(iv) It holds s∗σNk,β = Nk,β.

We will discuss in Section 2.5 how this conjecture is part of a more general conjecture
on the existence of moduli stack of super stable maps.

2.5 Motivation
In this section we explain how Definitions 2.1.1 and 2.3.2, as well as the Conjectures 2.2.1
and 2.4.1 are motivated from the super differential geometric study of super stable curves
and super stable maps in Keßler, Sheshmani, and Yau 2022; Keßler, Sheshmani, and Yau
2020; Keßler, Sheshmani, and Yau 2023. This section is logically independent of most of
the rest of the article except for Sections 3.1 and 3.5.

Supergeometry is a generalization of geometry to spaces with so called odd dimensions
for which the coordinates anti-commute. For background on supergeometry and more
references we refer to Keßler 2019. A super Riemann surface is a complex supermanifoldM
of dimension 1|1 together with a distribution D ⊂ TM such that the commutator
induces an isomorphism D ⊗ D = TM�D. By the uniformization of super Riemann
surfaces P1|1

C is the only super Riemann surface of genus zero. There is a holomorphic
embedding P1

C → P1|1
C and its normal bundle is given by SP1

C
= O(1). Moreover, P1|1

C is
holomorphically split, that is, the supermanifold is completely determined by P1

C and the
normal bundle SP1

C
.

A Neveu–Schwarz marked point on P1|1
C over a base B is a map P : B → P1|1

C . As P1|1
C

is split, any Neveu–Schwarz marked point is determined by a point p : B → P1
C and a

section s ∈ p∗SP1
C
, see Keßler, Sheshmani, and Yau 2020, Lemma 4.2.2. All summands of

the form p∗SC in the Definitions 2.1.1 and 2.3.2 are motivated by Neveu–Schwarz marked
points P of the super Riemann surface P1|1

C .
In Keßler, Sheshmani, and Yau 2020 we have constructed the moduli spaceMsm

0,k of
super Riemann surfaces of genus zero with k marked points as a superorbifold of dimension
k − 3|k − 2. That is, Msm

0,k represents, in the sense of Shvarts and Molotkov–Sachse,
see Shvarts 1984; Molotkov 2010; Sachse 2009 the functorMsm

0,k : SPointop → Man from
the opposite of the category of superpoints to the category of smooth manifolds given by

Msm
0,k(B) =

{
P1, . . . , Pk : B → P1|1

C

∣∣∣ Pi ×B R0|0 and Pj ×B R0|0 distinct
}
�AutB(P1|1

C ).

The automorphism group AutB(P1|1
C ) is an extension of the group of Möbius transforma-

tions and has complex dimension 3|2.
For any three B-points P1, P2, P3 of P1|1

C there is a unique automorphism of P1|1
C

sending P1 to 0, P2 to 1ε and P3 to ∞, see Keßler, Sheshmani, and Yau 2020, Section 3.1;
Manin 1991, Chapter 2, 2.12. Here 0 and ∞ are the lift of the corresponding point in P1

C
to P1|1

C such that its spinor part vanishes. The point 1ε is the lift of the point 1 in P1
C such

that its spinor part is given by ε. The spinor part ε depends on the triple (P1, P2, P3)
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and is well defined up to sign. Consequently,

Msm
0,k =

(
P1|1
C

)k∣∣∣∣
Zk �Aut(P1|1

C ) = C0|1 ×
(
P1|1
C

)k−3
∣∣∣∣
Z̃k−3 �Z2

Here Zk ⊂
(
P1
C
)k is the submanifold such that no two projections to P1

C coincide and
Z̃k−3 ⊂

(
P1
C
)k−3 is the submanifold such that no two projections coincide nor agree with

0, 1 and ∞.
The superorbifold structure onMsm

0,k extends the manifold structure on the differential
geometric moduli space of curves of genus zero with k marked points

M sm
0,k =

(
P1
C

)k∣∣∣∣
Zk�AutC(P1

C),

that is, there is an embeddingM sm
0,k →Msm

0,k . We have calculated the normal bundle N sm
k

to that embedding (up to the Z2-action) in Keßler, Sheshmani, and Yau 2023 to be given
by

0 H0(SP1
C
)

k⊕
j=1

p∗jSP1
C

N sm
k 0

s
⊕
p∗js

Here the middle term is the sum of the spinorial part of the marked points P1, . . . , Pk
and the left hand part is the odd part of the automorphism group of P1|1

C . This motivates
Definition 2.1.1 in the case of a tree with a single vertex. To motivate the case of general
trees, note that a stable supercurve is obtained by gluing together smooth marked curves
of genus zero and the normal bundles add.
While the above constructions were done using the language of super differential

geometry, algebro-geometric treatment of moduli problems of super stable curves has
made much progress in the recent years, see Deligne 1987; Ott and A. Voronov 2019;
Bruzzo and Hernández Ruipérez 2021; Felder, Kazhdan, and Polishchuk 2020; Moosavian
and Zhou 2019. Besides more general cases a moduli stackM0,k of stable super curves
of genus zero with k Neveu–Schwarz punctures has been constructed as a smooth and
proper Deligne–Mumford superstack of dimension k − 3|k − 2. As any stable spin curve
gives rise to a unique super stable map there is an inclusion i : M spin

0,k → M0,k which
induces a bijection on SpecC-points. The inclusion i gives rise to a normal bundle Nk

of rank 0|k − 2. It is natural to assume that the differential geometric moduli space
Msm

0,k coincides with the open interior ofM0,k and consequently also that the bundle Nk

coincides with N sm
k . This is the content of Conjecture 2.2.1.

We now turn to a similar discussion for the moduli space of super stable maps. That
is, we first give a brief summary of the differential geometric results on super stable maps
obtained in Keßler, Sheshmani, and Yau 2022; Keßler, Sheshmani, and Yau 2020; Keßler,
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Sheshmani, and Yau 2023 and then give a conjectural algebro-geometric analogue. A super
J-holomorphic curve of genus zero in a Kähler manifold X is a map Φ: P1|1

C ×B → X
such that

DJΦ = 1
2 (1 + I⊗J) dΦ|D = 0. (2.5.1)

Here I is the almost complex structure on P1|1
C and J is the almost complex structure

on the target manifold X. We have defined super J-holomorphic curves in Keßler,
Sheshmani, and Yau 2022 and argued that they are a good generalization of classical
J-holomorphic maps because the Equation (2.5) implies that the map Φ is holomorphic
and a critical point of a supergeometric action functional.
In the case at hand, that is, when the domain is P1|1

C and the target is Kähler, the
map Φ is completely determined by a tuple (ϕ,ψ), where ϕ : P1

C ×B → X is a map and
ψ ∈ Γ

(
S∨P1

C
⊗R ϕ∗TX

)
is a twisted spinor satisfying

∂Jϕ = 0 (1 + I⊗J)ψ = 0 /Dψ = 0

Here the map ϕ is given by ϕ = Φ ◦ i, where i : P1
C → P1|1

C is the embedding from above.
In Keßler, Sheshmani, and Yau 2022, we have constructed the moduli spaceMsm (X,β)

of super J-holomorphic curves with fixed homology class β = [im Φ] ∈ H+
2 (X) as a

real supermanifold. The construction uses an implicit function theorem in the infinite
dimensional space of all maps Φ: M → X. In order to assure surjectivity of the differential,
the linearizations of the ∂J -operator and the Dirac operator /D need to be surjective,
which translates to the conditions on the target manifold X mentioned at the beginning
of Section 2.3. The supermanifoldMsm (X,β) has real dimension

dimRX + 2 〈c1(TX), β〉 |2 〈c1(TX), β〉

and comes with an embeddingM sm (X,β)→Msm (X,β) of the moduli spaceM sm (X,β)
of classical J-holomorphic curves of genus zero. The normal bundleN sm

β to this embedding
has fibers H0

(
S∨P1

C
⊗ ϕ∗TX

)
over ϕ ∈ M sm (X,β). That is the fibers over ϕ are the

space of fields ψ. When the domain is P1|1
C and the target is Kähler, the moduli

spaceMsm (X,β) is actually (smoothly) split, that is, the supermanifoldMsm (X,β) is
completely determined by M sm (X,β) and the normal bundle N sm

β .
In Keßler, Sheshmani, and Yau 2020, we have defined the moduli space of super

J-holomorphic curves of genus zero with k-marked points as

Msm
0,k (X,β) =

((
P1|1
C

)k∣∣∣∣
Zk

×Msm (X,β)
)
�Aut(P1|1

C ).

Ignoring the Z2-action, this moduli space comes with a smooth embeddingM sm
0,k (X,β)→

Msm
0,k (X,β) and its normal bundle is as in the short exact sequence in in Definition 2.3.2.

The terms in the middle of the short exact sequence come from the spinor parts of the
marked points and the map. The left hand part of the short exact sequences is the
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spinorial part of the automorphism group of P1|1
C which acts on marked points and the

map.
More generally, we have constructed moduli spacesMsm

τ (X,βτ ) of super stable maps
of fixed tree type and homology classes βτ by gluing moduli spaces of the formMsm

0,k (X,β)
together along pairs of marked points P and Q such that Φ1(P ) = Φ2(Q). We could show
in Keßler, Sheshmani, and Yau 2020 that the resulting moduli spaces of super stable
maps of fixed tree type are superorbifolds of (real) dimension

dimRX + 2 〈c1(TX), β〉 − 2#Eτ + 2k − 6|2 〈c1(TX), β〉+ 2k − 4.

It turns out that the condition Φ1(P ) = Φ2(Q) is automatically satisfied on the level of
normal bundles and normal bundles can be constructed by summing over the vertices of
the tree τ . The union of their point functors

Msm
0,k (X,β) : SPointop → Top

C 7→
⋃

(τ,βτ )
Msm

τ (X,βτ )(C)

can be equipped with a generalization of Gromov topology such thatMsm
0,k (X,β)(R0|0) =

M
sm
0,k (X,β) is compact and the strata carry the usual orbifold topology.
The algebro-geometric study of super stable maps and their moduli spaces has recently

been initiated in Bruzzo, Manin, and Hernández Ruipérez 2022. In particular a very
general definition of super stable maps has been given and their moduli stacks have been
defined. By analogy to our differential geometric treatment of super stable maps of genus
zero with Neveu–Schwarz punctures we expect the following result:

Conjecture 2.5.2. Let X be a convex (non-super) scheme. Then the moduli stack
M0,k (X,β) of super stable maps of genus zero with k Neveu–Schwarz punctures in X
representing the cohomology class β ∈ H+

2 (X) is a smooth and proper Deligne–Mumford
super stack of dimension

dimX + 〈c1(TX), β〉+ k − 3| 〈c1(TX), β〉+ k − 2.

There is a smooth inclusion i : M spin
0,k (X,β) → M0,k (X,β) inducing a bijection on

SpecC-points.

Similarly, we expect that forgetful maps

π : M0,k (X,β)→M0,k f : M0,k+1 (X,β)→M0,k (X,β)

as well as gluing and relabeling maps compatible with the ones for stable spin maps
can be constructed. The normal bundle to the inclusion i yields a vector bundle of rank
〈c1(TX), β〉+ k − 2. It is natural to assume that the algebro-geometric description of
Nk,β coincides with the one we have obtained in the differential geometric description.
This is the content of Conjecture 2.4.1.
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3 Definition of super Gromov–Witten invariants via localization
of the odd directions

In this section we give the definition of super Gromov–Witten invariants and show that
they satisfy generalizations of the Kontsevich–Manin axioms.

In Section 3.1 we give the motivation for super Gromov–Witten invariants by assuming
that we had a supergeometric cohomology theory that allows for torus localization and a
torus action that acts on the odd directions while leaving the even directions invariant.
The resulting formula for super Gromov–Witten invariants can be interpreted in the
equivariant cohomology of the moduli spaces of classical stable mapsM0,k (X,β) and used
as a definition in Section 3.2. Super Gromov–Witten invariants are not trivial when the
target space is a point. In Section 3.3, we show that the super Gromov–Witten invariants
of a point can be expressed as integrals of descendant classes on M0,k. Generalizations of
Kontsevich–Manin axioms for super Gromov–Witten invariants are proven in Section 3.4.
In Section 3.5, we give some comments on possible generalizations.

3.1 Motivation
In this section we motivate the Definitions 3.2.1 and 3.2.2 of super Gromov–Witten
classes and super Gromov–Witten invariants. Using a set of rather strong assumptions
on existence and properties of a supergeometric equivariant cohomology theory and
localization, we end up with the formulas of Definitions 3.2.1 and 3.2.2 which only depend
on Conjectures 2.2.1 and 2.4.1 and can be evaluated in classical, non-super equivariant
cohomology. The assumptions on supergeometric cohomology theories are suggested by
their analogy to the non-super theory.
Some approaches for cohomology theories for supermanifolds can be found in the

literature: In A. Voronov, Manin, and Penkov 1988 a supergeometric Riemann–Roch
Theorem is proven in a K-theoretic approach. For example, the book Bartocci, Bruzzo,
and Hernández Ruipérez 1991 and also Polishchuk 2023 discuss the supergeometric
analogue of de Rham cohomology which is shown in particular to reproduce de Rham
cohomology of the underlying reduced space. A variant of de Rham formalism that also
allows to construct integrals over arbitrary codimension is given in T. Voronov 2014.
The preprint Bruzzo, Manin, and Hernández Ruipérez 2022 defines a supergeometric
Chow group in the cases that the odd dimension is either zero or one. Yet none of those
approaches did seem to give a suitable definition of super Gromov–Witten invariants.

To motivate our definition of super Gromov–Witten invariants, assume Conjecture 2.5.1
that is, the construction of the moduli stack M0,k (X,β) of super stable maps to the
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classical, non-super, convex target scheme X together with maps

M
spin
0,k (X,β) Xk

M0,k (X,β)

M
spin
0,k

M0,k

i

ev

π

Ev

Π

If we assume furthermore, that we had good supergeometric cohomology rings SH•(M0,k)
and SH•(M0,k (X,β)) with the usual operations, the natural definition of super Gromov–
Witten invariants would be〈

SGWX,β
0,k

〉
(α1, . . . , αk) =

∫
M0,k(X,β)

Ev∗ (α1 ⊗ · · · ⊗ αk) . (3.1.1)

In Keßler, Sheshmani, and Yau 2023, we have constructed group actions of the torus
K = C∗ on all moduli spacesMτ (X,βτ ) such that the fixed point locus is given by the
embedding M sm

τ (X,βτ )→Msm
τ (X,βτ ) of the classical counterparts. Roughly, the torus

action is given by the multiplication of the spinorial part of the marked points and the
maps by the torus element. We assume, for a moment, that this torus action has an
algebraic counterpart

a : K ×M0,k (X,β)→M0,k (X,β)

such that the fixed point locus is given by M spin
0,k (X,β).

Torus localization with respect to this torus action would yield an isomorphism of the
equivariant cohomologies:

SH•K

(
M0,k (X,β)

)
⊗ C(κ)→ H•K(M spin

0,k (X,β))⊗ C(κ)

α 7→ i∗α

2eK(Nk,β)

Here κ is the equivariant character of K and eK(Nk,β) the equivariant Euler class of
the normal bundle Nk,β to the embedding i : M spin

0,k (X,β)→M0,k (X,β). The 2 in the
denominator is the order of the isotropy group Z2 of the fixed point set M spin

0,k (X,β).
The integral in Equation (3.1) reduces to

〈
SGWX,β

0,k

〉
(α1, . . . , αk) =

∫
M
spin
0,k (X,β)

ev∗ (α1 ⊗ · · · ⊗ αk)
2eK(Nk,β)

.
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We use the right hand side of the above equation in the definition of super Gromov–Witten
invariants which can be evaluated in classical algebraic geometry.
Using the same localization argument, we motivate Gromov–Witten classes via:

SGWX,β
0,k (α1, . . . , αk) = Π∗ (Ev∗1α1 ∪ · · · ∪ Ev∗kαk) = π∗

(
ev∗1α1 ∪ · · · ∪ ev∗kαk

2eK(Nk,β)

)

When defining the Gromov–Witten classes and Gromov–Witten invariants below,
we will ignore the torus action on the classes ev∗iαi and consider them as the classes
ev∗iαi⊗1 ∈ H•(M spin

0,k (X,β))⊗C(κ). Consequently, the resulting Gromov–Witten classes
and numbers will be monomials in κ with strictly negative exponent in contrast to what
the above motivation via torus localization suggests. We will see in the next Section 3.2,
that this interpretation allows to define invariants that pick up information from the
normal bundles Nk,β. We hope that our invariants are an approximation to results of a
suitable, yet to be developed supergeometric intersection theory for supermoduli spaces.

3.2 Definition of super Gromov–Witten invariants

The forgetful maps F : M spin
0,k (X,β) → M0,k (X,β) and F : M spin

0,k → M0,k induce iso-
morphisms on the coarse moduli spaces. Consequently, the rational cohomologies
H•(M spin

0,k (X,β) ,Q) and H•(M0,k (X,β) ,Q) as well as H•(M spin
0,k ,Q) and H•(M0,k,Q)

are isomorphic. We use here Chow cohomology with rational coefficients and a coho-
mological grading, that is, a cycle of codimension d induces a class in H2d. For a brief
introduction see Manin 1999, Chapter V. The cup product is denoted ∪.
The moduli stacks M0,k and M0,k (X,β) carry a trivial K = C∗ action leaving

all points invariant. The equivariant cohomology of those spaces is hence given by
H•(M0,k,C) ⊗ C[κ] and H•(M0,k (X,β) ,C) ⊗ C[κ]. The variable of the polynomial
ring C[κ] is the equivariant character of K given by the identity κ : K = C∗ → C. For a
brief introduction to equivariant cohomology in algebraic geometry, we refer to Cox and
Katz 1999, Section 9.1.
We will use the following slightly larger equivariant cohomology

H•K

(
M0,k

)
= H•

(
M0,k,Q

)
⊗ C(κ),

H•K

(
M0,k (X,β)

)
= H•

(
M0,k (X,β) ,Q

)
⊗ C(κ).

that is, the field of fractions of polynomials in the equivariant character κ with coefficients
in cohomology. This equivariant cohomology has two gradings, a cohomological degree dc
and a polynomial degree dp.

H•K

(
M0,k

)
=

2dk⊕
dc=0

∞⊕
dp=−∞

Hdc
(
M0,k,C

)
⊗ κdp ,

H•K

(
M0,k (X,β)

)
=

2dk,β⊕
dc=0

∞⊕
dp=−∞

Hdc
(
M0,k (X,β) ,C

)
⊗ κdp .
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The cup product on cohomologyH• extends to a product onH•K and yields a C(κ)-algebra
structure which is compatible with the gradings.

We equip the vector bundles Nk →M
spin
0,k and Nk,β →M

spin
0,k (X,β) with the K-action

given by multiplication of the fibers by t ∈ C∗ = K. Hence the vector bundles Nk and
Nk,β are K-equivariant with respect to the trivial action on the base and consider their
equivariant Euler classes

eK(Nk) ∈ H•K
(
M0,k

)
, eK(Nk,β) ∈ H•K

(
M0,k (X,β)

)
.

Notice that the equivariant Euler class eK(Nk,β) is invertible in H•K(M0,k (X,β))
because it is a nilpotent perturbation of an invertible polynomial: By the splitting principle
we can assume that the bundle Nk,β is a sum of complex line bundles N1⊕ . . .⊕Nrk,β with
c1(Nj) = nj ∈ H2(M0,k (X,β)). As the action of the torus K = C∗ is rescaling of the
fibers by t ∈ K, we have that the equivariant Chern roots are given by cK1 (Nj) = nj + κ
and hence

eK(Nk,β) = cK1 (N1) ∪ · · · ∪ cK1 (Nrk,β ) = (n1 + κ) ∪ · · · ∪ (nrk,β + κ)

=
rk,β∑
i=0

σrk,β−i(n1, . . . , nrk,β )κi

where σi(n1, . . . , nrk,β ) is the i-th elementary symmetric polynomial in the Chern roots nj .
The summands σrk,β−i(n1, . . . , nrk,β )κi have cohomological degree dc = 2(rk,β − i) and
polynomial degree dp = i. The term with dp = 0 equals the non-equivariant Euler class
of Nk,β and the term with dc = 0 is κrk,β .
The top term κrk,β is invertible as we are working with C(κ) and all terms involving

nj are nilpotent hence eK(Nk,β) is invertible. An explicit formula for the inverse of the
equivariant Euler class can be given as follows:

1
eK(Nk,β)

= 1
(n1 + κ) ∪ · · · ∪ (nrk,β + κ) = 1

κrk,β
1

(n1
κ + 1) ∪ · · · ∪ (

nrk,β
κ + 1)

= 1
κrk,β

∑
i1≥0

(
−n1
κ

)i1
∪ · · · ∪

∑
irk,β≥0

(
−
nrk,β
κ

)irk,β
=
∑
j≥0

(−1)j 1
κrk,β+j

∑
i1≥0,...,irk,β≥0
i1+···+irk,β=j

(n1)i1 ∪ · · · ∪
(
nrk,β

)irk,β
(3.2.1)

All sums are finite because nj ∈ H2(M0,k (X,β)) are nilpotent in H•K(M0,k (X,β)). All
summands are homogeneous, that is for any choice of (i1, . . . , irk,β ) with i1 + · · ·+irk,β = j
we have

dc

(
(n1)i1 ∪ · · · ∪

(
nrk,β

)irk,β) = 2j

The summand of highest polynomial degree is κ−rk,β for i1 = · · · = irk,β = 0.
The equivariant Euler class of Nk is invertible in H•K(M0,k) by the same arguments.
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Definition 3.2.2. For k ≥ 3, the super Gromov–Witten class is the multi-linear map

SGWX,β
0,k : (H•(X))k → H•K(M0,k)

(α1, . . . , αk) 7→ π∗
ev∗1α1 ∪ · · · ∪ ev∗kαk

2eK(Nk,β)

Here the product ev∗1α1 ∪ · · · ∪ ev∗kαk is the cup product of cohomology classes in
H•(M0,k (X,β)) and π∗ : H•K(M0,k (X,β))→ H•K(M0,k) is the pushforward along

π : M0,k (X,β)→M0,k.

As the super Gromov–Witten classes are linear in αi, we can assume without loss of
generality that the classes αi are homogeneous with respect to cohomological degree. In
that case,

SGWX,β
0,k (α1, . . . , αk) ∈

⊕
j

Hdegα+2(j−dk,β+dk)(M0,k)⊗ κ−rk,β−j ⊂ H•K(M0,k)

with degα =
∑
i degαi. Here the index j runs over all non-negative integers such that

0 ≤ degα+ 2 (j − dk,β + dk) ≤ 2dk.

Definition 3.2.3. For k ≥ 1 and (α1, . . . , αk) ∈ (H•(X))k we define the super Gromov–
Witten numbers by〈

SGWX,β
0,k

〉
(α1, . . . , αk) =

∫
M0,k(X,β)

ev∗1α1 ∪ · · · ∪ ev∗kαk
eK(Nk,β)

∈ C(κ)

For k ≥ 3, the super Gromov–Witten numbers are integrals over super Gromov–Witten
classes: 〈

SGWX,β
0,k

〉
(α1, . . . , αk) =

∫
M0,k(X,β)

ev∗1α1 ∪ · · · ∪ ev∗kαk
eK(Nk,β)

=
∫
M0,k

π∗
ev∗1α1 ∪ · · · ∪ ev∗kαk

eK(Nk,β)
=
∫
M
spin
0,k

π∗
ev∗1α1 ∪ · · · ∪ ev∗kαk

2eK(Nk,β)

=
∫
M
spin
0,k

SGWX,β
0,k (α1, . . . , αk)

Note that [M spin
0,k ] = 2[M0,k] in H•K(M0,k) because the generic point ofM spin

0,k has isotropy
group Z2.

Using (3.2) to expand the inverse of the equivariant Euler class, we obtain:〈
SGWX,β

0,k

〉
(α1, . . . , αk) = (−1)jκ−rk,β−j

∫
M0,k(X,β)

ev∗1α1 ∪ · · · ∪ ev∗kαk

∪
∑

i1≥0,...,irk,β≥0
i1+···+irk,β=c

(n1)i1 ∪ · · · ∪
(
nrk,β

)irk,β
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where 2c = 2dk,β−degα. In particular, if degα is odd or degα ≥ 2dk,β , the super Gromov–
Witten numbers vanish. But, in contrast to classical Gromov–Witten numbers the super
Gromov–Witten numbers

〈
SGWX,β

0,k

〉
(α1, . . . , αk) may be non-zero if 0 ≤ degα ≤ 2dk,β .

For low values of c we obtain:

c = 0 〈
SGWX,β

0,k

〉
(α1, . . . , αk) = κ−rk,β

∫
M0,k(X,β)

ev∗1α1 ∪ · · · ∪ ev∗kαk

Up to the polynomial prefactor this are classical Gromov–Witten invariants.

c = 1 〈
SGWX,β

0,k

〉
(α1, . . . , αk) = −κ−rk,β−1

∫
M0,k(X,β)

ev∗1α1 ∪ · · · ∪ ev∗kαk ∪ c1(Nk,β)

c = 2 〈
SGWX,β

0,k

〉
(α1, . . . , αk)

= κ−rk,β−2
∫
M0,k(X,β)

ev∗1α1 ∪ · · · ∪ ev∗kαk ∪
((
c1(Nk,β)

)2
− c2(Nk,β)

)
c = 3 〈

SGWX,β
0,k

〉
(α1, . . . , αk)

= − κ−rk,β−3
∫
M0,k(X,β)

ev∗1α1 ∪ · · · ∪ ev∗kαk

∪
((
c1(Nk,β)

)3
− 5c2(Nk,β)c1(Nk,β)− 2c3(Nk,β)

)
3.3 Super Gromov–Witten invariants of a point
The simplest case for which super Gromov–Witten numbers are non-trivial is the case of
the target space being a point. In that case M0,k (X,β) = M0,k as there is precisely one
map to a point and H2(pt) = ∅. This motivates:

Definition 3.3.1. For k ≥ 3, we call〈
SGW pt

0,k

〉
=
∫
M0,k

1
eK(Nk)

the k-point super Gromov–Witten numbers of a point.

Proposition 3.3.2. The k-point super Gromov–Witten numbers of a point are given by〈
SGW pt

0,k

〉
= (−1)k−3

2k−3κ2k−5

∑
i4≥0,...,ik≥0
i4+···+ik=k−3

∫
M0,k

(f∗)k−4ψi44 ∪ · · · ∪ f
∗ψ

ik−1
k−1 ∪ ψ

ik
k ,

where the ψj = c1(p∗jω) ∈ H2(M0,k).
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Proof. By Conjecture 2.2.1, (i), the vector bundle N3 is trivial of rank one and the
K-action given by multiplication. Using Conjecture 2.2.1, (ii) and f∗Sj = Sj one sees

Nk = C⊕
k⊕
j=4

(f∗)k−jSj .

for k > 3. For any j > 3 we have eK(Sj) = κ − 1
2ψj where ψj = c1(ωj) because

Sj ⊗ Sj = ω∨j . Hence, using a calculation similar to (3.2), we obtain

1
eK(Nk+1)

=
∑
j≥0

(−1)j

2jκk−2+j

∑
i4≥0,...,ik≥0
i4+···+ik=j

(f∗)k−4ψi44 ∪ · · · ∪ f
∗ψ

ik−1
k−1 ∪ ψ

ik
k

and the claim follows because only terms with j = k − 3 are of top degree in cohomology.
Note that if i4 + · · · + il > l − 3 for some l < k, the summand vanishes for degree

reasons.

Integrals over tautological classes such as the ψ-classes appearing in the above expression
for the super Gromov–Witten invariants of the point have been calculated in Kontsevich
1992; Witten 1990. For more pedagogical approaches see also Zvonkine 2012; Kock 2001
and for a computer algebra program to calculate with tautological classes, see Delecroix,
Schmitt, and Zelm 2021. We will calculate as examples the super Gromov–Witten
invariants of a point for k = 3, 4, 5, 6 marked points. The method of using projection
formula and push-downs of ψ-classes iteratively as in the examples k = 5, 6 works in
principle for any k.
Example 3.3.3 (Super Gromov–Witten invariants of a point for k = 3 marked points).
For k = 3, the moduli space M0,3 is a point. Hence,〈

SGW pt
0,3

〉
=
∫
M0,3

1
eK(N0,3)

=
∫
pt

1
κ

= κ−1.

Example 3.3.4 (Super Gromov–Witten invariants of a point for k = 4 marked points). In
the case k = 4 there is only one possible summand in the sum formula of Proposition 3.3.2.
Hence, by Proposition 3.3.2:〈

SGW pt
0,4

〉
= −1

2κ3

∫
M0,4

ψ4 = − 1
2κ3 .

Integrals over products of powers of ψ-classes such as
∫
ψ4 = 1 can be calculated directly

using, for example, Kontsevich 1995, Section 3.3.2.
Example 3.3.5 (Super Gromov–Witten invariants of a point for k = 5 marked points).
For k = 5 there are two summands:〈

SGW pt
0,5

〉
= 1

4κ5

∫
M0,5

(f∗ψ4)ψ5 + ψ2
5 = 1

4κ5 (2 + 1) = 3
4κ5 .
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While the second summand
∫
ψ2

5 = 1 can be calculated directly by Kontsevich 1995,
Section 3.3.2, we use projection formula for the second summand:∫

M0,5
(f∗ψ4)ψ5 =

∫
M0,4

ψ4 (f∗ψ5) = 2
∫
M0,4

ψ4 = 2

Here f∗ψ5 = 2[M0,4] as explained, for example, in Kock 2001, Section 2.2.
Example 3.3.6 (Super Gromov–Witten invariants of a point for k = 6 marked points).〈

SGW pt
0,6

〉
= −1

8κ7

∫
M0,6

(
(f∗)2ψ4

)
(f∗ψ5)ψ6 +

(
(f∗)2ψ4

)
ψ2

6 + (f∗ψ5)ψ6 + ψ3
6

= − 1
8κ7 (6 + 2 + 3 + 1) = − 3

2κ7 .

For the first summand we use again the projection formula and the κ-class κ0 = f∗ψl+1 =
(l − 2) [M0,l]:∫

M0,6

(
(f∗)2ψ4

)
(f∗ψ5)ψ6 =

∫
M0,5

(f∗ψ4)ψ5κ0 = 3
∫
M0,5

(f∗ψ4)ψ5

= 3
∫
M0,4

ψ4κ0 = 6

The for the second and third summand we need higher κ-classes κa = f∗ψ
a+1
l+1 , as well as

their pullback formula κa = f∗κa + ψal , see Kock 2001, Lemma 2.2.3:∫
M0,6

(
(f∗)2ψ4

)
ψ2

6 =
∫
M0,5

(f∗ψ4)κ1 =
∫
M0,5

(f∗ψ4) (f∗κ1 + ψ5) =
∫
M0,5

f∗ψ4ψ5 = 2

∫
M0,6

(f∗ψ5)ψ2
6 =

∫
M0,5

ψ5κ1 =
∫
M0,5

ψ5 (f∗κ1 + ψ5) =
∫
M0,4

κ1κ0 + κ1

= 3
∫
M0,4

κ1 = 3
∫
M0,5

ψ2
5 = 3

3.4 Axioms
In Kontsevich and Manin 1994, Chapter 2 there is a list of axioms that Gromov–Witten
classes and Gromov–Witten numbers satisfy. In this section we will give their extension
to the super Gromov–Witten classes defined in Definition 3.2.1 and the super Gromov–
Witten invariants defined in Definition 3.2.2.

Axiom 3.4.1 (Linearity). Super Gromov–Witten classes and super Gromov–Witten
invariants are linear as maps from (H•(X))k to H•K(M0,k) resp. C(κ).

Axiom 3.4.2 (Grading). The map SGWX,β
0,k : (H•(X))k → H•K(M0,k) is a sum of

homogeneous maps of degree (2j,−rk,β − j), that is, for homogeneous αi ∈ Hdegαi(X)
we have

SGWX,β
0,k (α1, . . . , αk) ∈

⊕
j

Hdegα+2(j−dk,β+dk)(M0,k)⊗ κ−rk,β−j ⊂ H•K(M0,k)
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where degα =
∑k
i=1 degαi and the index j runs over non-negative integers such that

0 ≤ degα+ 2 (j − dk,β + dk) ≤ 2dk.
The super Gromov–Witten numbers

〈
SGWX,β

0,k

〉
(α1, . . . , αk) vanish if degα is odd or

degα > 2dk,β . Otherwise, the super Gromov–Witten number
〈
SGWX,β

0,k

〉
(α1, . . . , αk) is

a monomial in C(κ) of degree

−rk,β − dk,β + 1
2 degα = −dimX − 2 〈c1(TX), β〉 − 2k + 5 + 1

2 degα ≤ −rk,β ≤ 0.

Axiom 3.4.3 (Extension of classical Gromov–Witten invariants). The restriction of the
super Gromov–Witten class to Hdc ⊗ κdp with dc = degα− 2dk,β + 2dk and dp = −rk,β
yields classical Gromov–Witten classes up to a factor of κ−rk,β :

SGWX,β
0,k (α1, . . . , αk)

∣∣∣
H

degα−2dk,β+2dk⊗κ−rk,β
= κ−rk,βπ∗ (ev∗1α1 ∪ · · · ∪ ev∗kαk)

= κ−rk,βGWX,β
0,k (α1, . . . , αk)

If degα = 2dk,β the super Gromov–Witten numbers coincide with Gromov–Witten
numbers up to the factor κ−rk,β :〈

SGWX,β
0,k

〉
(α1, . . . , αk) = κ−rk,β

∫
M0,k(X,β)

ev∗1α1 ∪ · · · ∪ ev∗kαk

= κ−rk,β
〈
GWX,β

0,k

〉
(α1, . . . , αk)

In this sense, all of the following axioms reduce to their classical counterpart when
imposing the right restrictions on dc, dp and degα.

Axiom 3.4.4 (Effectivity Axiom). If β ∈ H2(X) is not effective, then SGWX,β
0,k = 0.

For every stable map φ : C → X the class [imφ] ∈ H2(X) is effective. Consequently,
the moduli space M0,k (X,β) is empty if the class β is not effective and all super
Gromov–Witten classes vanish.

Axiom 3.4.5 (Sym(k)-equivariance). The symmetric group Sym(k) acts on the super
vector space (H•(X))k and on H•K(M0,k) via permutation of the marked points. The
super Gromov–Witten class is equivariant with respect to this action. That is, for any
αi ∈ H•(X)

SGWX,β
0,k (α1, . . . , αi, αi+1, . . . , αk)

= (−1)degαi·degαi+1SGWX,β
0,k (α1, . . . , αi+1, αi, . . . , αk).

This follows from the super commutativity of the product in cohomology and Conjec-
ture 2.4.1, (iv).
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Axiom 3.4.6 (Fundamental class). Let [X] ∈ H0(X) be the fundamental class of X.
Then for k ≥ 3〈

SGWX,β
0,k+1

〉
(α1, . . . , αk, [X])

= 1
κ

∫
M0,k+1(X,β)

f∗
(

ev∗1α1 ∪ · · · ∪ ev∗kαk
eK(Nk,β)

)
∪
∑
j>0

(
−c1(Sk+1)

κ

)j
.

Note that the pullback class has at least real codimension two and hence the summation
runs over j > 0.

Proof. By Conjecture 2.4.1, (ii) it holds eK(Nk+1,A) = eK(Sk+1) · eK(f∗Nk,β) where
Sk+1 is equipped with the K action that multiplies each fiber with t ∈ K. Then

eK(f∗Nk,β)
eK(Nk+1,A)

= 1
eK(Sk+1) = 1

κ+ c1(Sk+1) = 1
κ
(
1 + c1(Sk+1)

κ

)
= 1
κ

∑
j≥0

(
−c1(Sk+1)

κ

)j
Note that evi ◦ f = evi for all i ≤ k. Hence,

ev∗1α1 ∪ · · · ∪ ev∗kαk ∪ ev∗k+1αk+1

eK(Nk+1,A)

= f∗
ev∗1α1 ∪ · · · ∪ ev∗kαk

eK(Nk,β)
∪ ev∗k+1αk+1 ∪

eK(f∗Nk,β)
eK(Nk+1,A)

= 1
κ
f∗

ev∗1α1 ∪ · · · ∪ ev∗kαk
eK(Nk,β)

∪ ev∗k+1αk+1 ∪
∑
j≥0

(
−c1(Sk+1)

κ

)j (3.4.7)

Integrating over M0,k+1 (X,β) and using αk+1 = 1 we obtain the result.

Remark 3.4.8. We conjecture that the following stronger Fundamental Class Axiom for
super Gromov–Witten classes holds:

SGWX,β
0,k+1(α1, . . . , αk, [X]) = 1

κ
f∗SGWX,β

0,k (α1, . . . , αk) ∪
∑
j≥0

(
−c1(Sk+1)

κ

)j
.

Axiom 3.4.9 (Divisor). Let k ≥ 3 and f : M0,k+1 →M0,k the map forgetting the last
marked point. Then

f∗SGW
X,β
0,k+1(α1, . . . , αk, αk+1)

= 1
κ
SGWX,β

0,k (α1, . . . , αk) ∪ π∗f∗

ev∗k+1αk+1 ∪
∑
j≥0

(
−c1(Sk+1)

κ

)j
Proof. Applying f∗π∗ to (3.4), using f∗π∗ = π∗f∗ and the projection formula yields the
result.
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To compare this divisor axiom to the one in Kontsevich and Manin 1994, assume∑k
i=1 degαi = 2dk,β as well as degαk+1 = 2 and obtain using the Extension Axiom 3.4.3:

SGWX,β
0,k+1(α1, . . . , αk+1)

∣∣∣
H

degα−2dk+1,β+2dk+1⊗κ−rk+1,β

= 1
κ
SGWX,β

0,k (α1, . . . , αk)
∣∣∣
H

degα−2dk,β+2dk⊗κ−rk,β
π∗f∗ev∗k+1αk+1

= κ−rk+1,βGWX,β
0,k (α1, . . . , αk) 〈αk+1, β〉

Axiom 3.4.10 (Mapping to a point). Suppose that β = 0 and k ≥ 3. The super
Gromov–Witten classes are given by

SGWX,0
0,k (α1, . . . , αk) =

(∫
X
α1 ∪ · · · ∪ αk

) 1
eK(Nk)

,

and the super Gromov–Witten numbers are given by〈
SGWX,0

0,k

〉
(α1, . . . , αk) =

〈
SGW pt

0,k

〉 ∫
X
α1 ∪ · · · ∪ αk.

Here
〈
SGW pt

0,k

〉
is a monomial in C(κ) of degree 5−2k independent of X, see Section 3.3.

That is, both super Gromov–Witten classes and super Gromov–Witten numbers vanish
unless degα = dimRX.

Proof. When the homology class β vanishes the moduli space of stable maps can be
written as a product M0,k(X,β = 0) = M0,k ×X. The map π : M0,k(X,β = 0)→M0,k
coincides with projection on the first factor and the evaluation maps coincide with the
projection on the second factor. The normal bundle Nk,β=0 coincides with π∗Nk by
Conjecture 2.4.1, (i).

SGWX,0
0,k (α1, . . . , αk) = π∗

ev∗1α1 ∪ · · · ∪ ev∗kαk
eK(Nk,β)

= (p1)∗
p∗2α1 ∪ · · · ∪ p∗2αk

eK(π∗Nk)

=
(∫

X
α1 ∪ · · · ∪ αk

) 1
eK(Nk)

.

Integrating further over M0,k yields〈
SGWX,0

0,k

〉
(α1, . . . , αk) =

∫
X
α1 ∪ · · · ∪ αk ·

∫
M0,k

1
eK(Nk)

.

The second factor of the last line is by definition
〈
SGW pt

0,k

〉
.

Axiom 3.4.11 (Splitting Axiom). For non-negative integers k1, k2 such that k =
k1 + k2 and effective homology classes β1, β2 ∈ H2(X) such that β = β1 + β2 let
D = [M0,k1+1 (X,β1)×X M0,k2+1 (X,β2)] be the divisor in M0,k (X,β) obtained as the
image of the map glX . Recall, glX : M0,k1+1 (X,β1) ×X M0,k2+1 (X,β2) → M0,k (X,β)
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is the gluing map connecting the last point of the first factor to the first marked point of
the second factor to a node if the map agrees on the two marked points. Then∫

D

ev∗1α1 ∪ · · · ∪ ev∗k1+k2
αk

eK(Nk,β)

= gab
〈
SGWX,β1

0,k1+1

〉
(α1, . . . , αk1 , Ta)

〈
SGWX,β2

0,k2+1

〉
(Tb, αk1+1, . . . , αk).

Here Tj ∈ H∗(X), j = 0, . . . ,dimH•(X)− 1 is a homogeneous basis of H•(X) with T0 =
1 = [X], gab =

∫
X Ta ∪ Tb, and gab its inverse matrix. Note that gba = (−1)dc(Ta)dc(Tb)gab.

We use the convention to implicitly sum over indices that appear once as an upper and
once as a lower index.

Proof. We first prove a variant of Fulton and Pandharipande 1997, Lemma 16. Consider
the following commutative diagram:

M0,k1+1 (X,β1)×M0,k2+1 (X,β2) Xk+2

M0,k1+1 (X,β1)×X M0,k2+1 (X,β2) Xk+1

M0,k (X,β) Xk

ρ×σ

(ρ,σ)

gl

ι

p

δ

ev

Here

ρ : M0,k1+1 (X,β1)→ Xk1+1 σ : M0,k2+1 (X,β2)→ Xk2+1

are the evaluation maps, p : Xk+1 → Xk the projection omitting the k1 + 1st factor,
δ : Xk+1 → Xk+2 the diagonal embedding doubling the k1 + 1st factor. It follows that
the lower square is a fiber square.
Using the above commutative diagram, the class of the diagonal ∆ = gabTa × Tb as

well as Conjecture 2.4.1(iii) one shows

ι∗gl
∗
X

ev∗1α1 ∪ · · · ∪ ev∗k1+k2
αk

eK(Nk,β)

= ι∗
gl∗Xev∗ (α1 × · · · × αk)

eK(gl∗XNk,β)

= ι∗

(
ι∗
((
eK(Nk1+1,β1)

)−1(
eK(Nk2+1,β2)

)−1
)
∩ (ρ, σ)∗p∗ (α1 × · · · × αk)

)
=
(
eK(Nk1+1,β1)

)−1(
eK(Nk2+1,β2)

)−1

∩ ι∗(ρ, σ)∗ (α1 × · · · × αk1 × [X]× αk1+1 × · · · × αk)

=
(
eK(Nk1+1,β1)

)−1(
eK(Nk2+1,β2)

)−1

∩ (ρ× σ)∗δ∗ (α1 × · · · × αk1 × [X]× αk1+1 × · · · × αk)
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= gab
(
eK(Nk1+1,β1)

)−1(
eK(Nk2+1,β2)

)−1

∩ (ρ× σ)∗ (α1 × · · · × αk1 × Ta × Tb × αk1+1 × · · · × αk)

= gab
ρ∗1α1 ∪ · · · ∪ ρ∗k1

αk1 ∪ ρ∗k1+1Ta

eK(Nk1+1,β1)
×
σ∗1Tb ∪ σ∗2αk1+1 ∪ · · · ∪ σ∗k2+1αk

eK(Nk2+1,β2)
The claim follows by integrating the above equation over D:∫

D

ev∗1α1 ∪ · · · ∪ ev∗k1+k2
αk

eK(Nk,β)

=
∫
M0,k1+1(X,β1)×M0,k2 (X,β2)

ι∗gl
∗
X

ev∗1α1 ∪ · · · ∪ ev∗k1+k2
αk

eK(Nk,β)

=
∫
gab

ρ∗1α1 ∪ · · · ∪ ρ∗k1
αk1 ∪ ρ∗k1+1Ta

eK(Nk1+1,β1)
×
σ∗1Tb ∪ σ∗2αk1+1 ∪ · · · ∪ σ∗k2+1αk

eK(Nk2+1,β2)

= gab
〈
SGWX,β1

0,k1+1

〉
(α1, . . . , αk1 , Ta)

〈
SGWX,β2

0,k2+1

〉
(Tb, αk1+1, . . . , αk1+k2).

Remark 3.4.12. The maps gl and glX fit into the following commutative diagram:

M0,k1+1 (X,β1)×X M0,k2+1 (X,β2) M0,k (X,β)

M0,k1+1 (X,β1)×M0,k2+1 (X,β2)

M0,k1+1 ×M0,k2+1 M0,k

ι

glX

π

π×π

gl

If one could show

gl∗π∗

((
eK(Nk,β)

)−1
∪ ev∗1α1 ∪ · · · ∪ ev∗kαk

)
= (π × π)∗ι∗gl

∗
X

((
eK(Nk,β)

)−1
∪ ev∗1α1 ∪ · · · ∪ ev∗kαk

)
the stronger splitting equation for super Gromov–Witten classes

gl∗SGWX,β
0,k (α1, . . . , αk)

= 2
∑

β=β1+β2

gabSGWX,β1
0,k1+1(α1, . . . , αk1 , Ta)⊗ SGW

X,β2
0,k2+1(Tb, αk1+1, . . . , αk).

would follow. In the classical case, that is without the inverse of the equivariant Euler
class, the above equation is shown using dimension considerations, see Behrend and
Manin 1996, which do not apply in presence of the inverse of the equivariant Euler class.
Conjecture 3.4.13 (Deformation Axiom). Let x : X → B be a smooth proper map
with connected base B and Xb = x−1(b). The super Gromov–Witten classes

SGWXb,βb
0,k : (H•(Xb))k → H•K(M0,k)

is independent of b for locally constant βb ∈ H+
2 (Xb).
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3.5 Remarks on Generalizations
Remark 3.5.1 (Non-convex targets). In principle, it should be possible to generalize the
construction of super Gromov–Witten invariants to non-convex targets by using the
virtual fundamental classes, see Behrend and Manin 1996. Our restriction to convex target
is motivated by simplicity of exposition and the fact that we have needed assumptions
similar to convexity in the construction of the moduli spaces of super J-holomorphic
curves and super stable maps in Keßler, Sheshmani, and Yau 2022; Keßler, Sheshmani,
and Yau 2020.

Technically, we are using convexity to assure that the moduli spaces of stable maps are
of the correct dimension and that the rank of N(C,φ) is constant on the moduli space of
stable maps. The latter requirement can be preserved while omitting H1(S∨⊗φ∗TX) = 0
when defining N(C,φ) as an element in K-theory. To this end, define

[N(C,φ)] =
∑
e node

[p∗eS] +
k∑
i=1

[p∗iS] +
[
R0c∗

(
S∨ ⊗ φ∗TX

)]
−
[
R1c∗

(
S∨ ⊗ φ∗TX

)]
− [c∗S]

in K-theory.
In the special case that X is Calabi–Yau, an argument similar to Proposition 3.3.2

shows that Nk,β =
⊕k

j=3 (f∗)k−jSj and hence all super Gromov–Witten invariants
reduce to classical Gromov–Witten invariants with descendant classes.
Remark 3.5.2 (Ramond punctures). The most general constructions of moduli spaces
of super Riemann surfaces and super stable curves include the case where the nodes
and marked points can be of Ramond type in addition to the special points of Neveu–
Schwarz type considered here, see Deligne 1987; Felder, Kazhdan, and Polishchuk 2020;
Moosavian and Zhou 2019; Bruzzo and Hernández Ruipérez 2021; Ott and A. Voronov
2019. For a definition of super stable maps with Ramond punctures see Bruzzo, Manin,
and Hernández Ruipérez 2022. Yet, moduli spaces of super J-holomorphic curves or super
stable maps from a domain with Ramond punctures have, to our knowledge, not yet been
constructed. The construction of the moduli of super J-holomorphic curves in Keßler,
Sheshmani, and Yau 2022 and the construction of moduli spaces of super stable maps
in Keßler, Sheshmani, and Yau 2020 do not directly allow to include Ramond punctures
because the component field approach has not been developed for super Riemann surfaces
with Ramond punctures.

In particular, the case of stable super curves of genus zero with only Neveu–Schwarz
marked points is the only one where the moduli space contains no super stable curves with
Ramond nodes. That is, to consider moduli spaces of super stable curves or super stable
maps of genus higher than zero requires understanding of Ramond nodes. For further
combinatorial properties of moduli spaces of super stable curves see Keßler, Manin, and
Wu 2023.

The same principles as in Sections 2.5 and 3.1 can be used to obtain a proposal for
super Gromov–Witten invariants. LetM0,kNS ,kR be the moduli stack of super curves
of genus zero with kNS marked points of Neveu–Schwarz type and kR marked points of
Ramond type as well asMg,kNS ,kR (X,β) the conjectural moduli stack of stable maps
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from a prestable super curve of genus zero with kNS marked points of Neveu–Schwarz type
and kR marked points of Ramond type and representing the homology class β ∈ H+

2 (X).
The inclusions

M
spin
0,kNS ,kR ↪→M0,kNS ,kR M

spin
0,kNS ,kR (X,β) ↪→M0,kNS ,kR (X,β)

have normal bundles NkNS ,kR and NkNS ,kR,β respectively. The rank rkNkNS ,kR =
kNS + 1

2kR − 2 as well as a few more properties of NkNS ,kR can be obtained from
the construction of the moduli stack of super stable curves cited above. Properties of
NkNS ,kR,β , even the rank, are unknown to us at the moment. Dividing by the equivariant
Euler class of the normal bundle NkNS ,kR,β as in Definition 3.2.1, it should be possible
to develop a theory of super Gromov–Witten invariants with marked points of Neveu–
Schwarz and Ramond type. Particularly interesting in this theory would be the splitting
axiom for Ramond marked points because the gluing is not unique as can be seen in Felder,
Kazhdan, and Polishchuk 2020, Section 8.
Remark 3.5.3 (Higher Genus). As discussed in Remark 3.5.2 in order to construct moduli
stacks of super stable curves and super stable maps it is necessary to understand Ramond
nodes. In addition, in genus higher than zero the forgetful maps

F : M spin
g,kNS ,kR

→Mg,kNS+kR F : M spin
g,kNS ,kR

(X,β)→Mg,kNS+kR (X,β)

do not induce isomorphisms on coarse moduli spaces but rather finite covers.
Remark 3.5.4. The axioms of super Gromov–Witten invariants depend essentially on
the properties of the SUSY normal bundles Nk and Nk,β laid out in Conjectures 2.2.1
and 2.4.1. If one had another collection Ek and Ek,β of vector bundles over M0,k and
M0,k (X,β) respectively satisfying Conjectures 2.2.1 and 2.4.1, a corresponding theory
of “super Gromov–Witten invariants” obtained by using Ek and Ek,β instead of Nk and
Nk,β would have very similar properties.

4 Super Small Quantum Cohomology
In this section we extend the definition of the quantum product on H•(X) to a super
quantum product on H•(X)⊗C[[κ−1]] using the previously defined super Gromov–Witten
invariants.
Let again Tj ∈ H•(X), j = 0, . . . ,dimH•(X)− 1 be a homogeneous basis of H•(X)

with T0 = 1 = [X], gab =
∫
X Ta∪Tb, and gab its inverse matrix. Let furthermore R be the

ring freely generated over C by symbols qβ for β ∈ H2(X) with relations qβ1 ·qβ2 = qβ1+β2

and q0 = 1.

Definition 4.1. For two homogeneous classes α = α⊗ 1⊗ 1, γ = γ ⊗ 1⊗ 1 ∈ H•(X)⊗
R⊗ C[[κ−1]] we define their super quantum product as

α ? γ =
∑

β∈H2(X)

〈
SGWX,β

0,3

〉
(α, γ, Ta)T aqβκr3,β (4.2)
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and extend R⊗ C[[κ−1]]-linearly to all of H•(X)⊗R⊗ C[[κ−1]]. Here we use again the
summation convention for a and T a = Tbg

ba. The powers of κ in α ? β are all less or
equal to zero by the Grading Axiom 3.4.2. The sum appearing in the definition of α ? γ
is infinite and will be treated as formal here.

Proposition 4.3. Let X be a convex variety such that H+
2 (X) has a finite Z≥0-basis,

for example, a homogeneous space. Then α ? γ is a formal power series in κ−1 where
each coefficient is given by a finite sum.

Proof. The summand
〈
SGWX,β

0,3

〉
(α, γ, Ta)T aqβκr3,β in (4.1) is of polynomial degree

dp (β, α, γ, a) = 1
2 (degα+ deg γ + deg Ta)− dimX − 〈c1(TX), β〉 ≤ 0.

After reordering with respect to orders of κ we get

α ? γ =
∑
j≤0

dimH•(X)−1∑
a,b=0

∑
β∈H2(X)

dp(β,α,γ,a)=j

〈
SGWX,β

0,3

〉
(α, γ, Ta)gabTbqβκr3,β

For fixed j the remaining sum is finite because

{β ∈ H2(X) | dp(β, α, γ, a) = j} ⊂ {β ∈ H2(X) | 〈c1(TX), β〉 ≤ 2 dimX − j}

and the second set is finite because β is a finite Z≥0-linear combination of the basis
elements bi ∈ H+

2 (X) and 〈c1(X), bi〉 ≥ 2. Compare also Fulton and Pandharipande
1997, Lemma 15.

Further questions of convergence and different possible interpretations of qβ are
referred to later work, see also Cox and Katz 1999, Chapter 8.1. Proving conver-
gence of the infinite sum in (4.1) might be harder than the results presented there
because

〈
SGWX,β

0,k

〉
(α, γ, Ta) is non-vanishing for more combinations of β and Ta than〈

GWX,β
0,k

〉
(α, γ, Ta).

Proposition 4.4. The super quantum product

? : H•(X)⊗R⊗ C[[κ−1]]×H•(X)⊗R⊗ C[[κ−1]]→ H•(X)⊗R⊗ C[[κ−1]]

is supercommutative with respect to the cohomological degree and associative. Hence it
equips H•(X)⊗R⊗ C[[κ−1]] with the structure of an R⊗ C[[κ−1]]-algebra.

Proof. The proof proof of this proposition is very similar to the proof in the non-super
case, see, for example Cox and Katz 1999, Theorem 8.1.4 and follows essentially from
the Equivariance Axiom 3.4.5 and the Splitting Axiom 3.4.10.

The super quantum product is indeed supercommutative with respect to the cohomo-
logical degree. That is,

α ? γ = (−1)dc(α)·dc(γ)γ ? α,
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which follows from the Equivariance Axiom 3.4.5 because〈
SGWX,β

0,3

〉
(α, γ, Ta) = (−1)dc(α)·dc(γ)

〈
SGWX,β

0,3

〉
(γ, α, Ta).

To show associativity of the super quantum product we need to show α ? (γ ? δ) =
(α ? γ) ? δ for all homogeneous classes α = α ⊗ 1 ⊗ 1, γ = γ ⊗ 1 ⊗ 1, δ = δ ⊗ 1 ⊗ 1 ∈
H•(X)⊗R⊗ C[[κ−1]]. Expanding yields

α ? (γ ? δ) =∑
β∈H2(X)

∑
β=β1+β2

gab
〈
SGWX,β1

0,3

〉
(γ, δ, Ta)

〈
SGWX,β2

0,3

〉
(α, Tb, Tc)qβT cκr3,β1+β2 ,

and

(α ? γ) ? δ =∑
β∈H2(X)

∑
β=β1+β2

gab
〈
SGWX,β1

0,3

〉
(α, γ, Ta)

〈
SGWX,β2

0,3

〉
(Tb, δ, Tc)qβT cκr3,β1+β2 .

To show equality of the two expressions, we use the Splitting Axiom 3.4.10.

gab
〈
SGWX,β1

0,3

〉
(γ, δ, Ta)

〈
SGWX,β2

0,3

〉
(α, Tb, Tc)

= (−1)dc(Tb)dc(α)gab
〈
SGWX,β1

0,3

〉
(γ, δ, Ta)

〈
SGWX,β2

0,3

〉
(Tb, α, Tc)

= (−1)dc(Tb)dc(α)
∫
D

ev∗1γ ∪ ev∗2δ ∪ ev∗3α ∪ ev∗4Tc
eK(N4,β)

=
∫
D

ev∗1α ∪ ev∗2γ ∪ ev∗3δ ∪ ev∗4Tc
eK(N4,β)

= gab
〈
SGWX,β1

0,3

〉
(α, γ, Ta)

〈
SGWX,β2

0,3

〉
(Tb, δ, Tc)

Here we have used that the divisors associated to splitting moduli spaces with four
marked points into two moduli spaces with two marked points are identical. To verify the
signs note that dc(γ) + dc(δ) + dc(Ta) is even by the grading axiom and dc(Ta) + dc(Tb)
is even because Ta ∪ Tb is a class of degree 2 dimX.

Example 4.5 (Super Small Quantum Cohomology of Pn). When the target X is projective
space of dimension n, any effective homology class β ∈ H2(Pn) is a non-negative multiple
of a line, that is β = d[l] with d ≥ 0. In that case,

d3,β = n+ d(n+ 1) r3,β = d(n+ 1) + 1

The cohomology ring of Pn is given by

H∗(Pn) = Z[Λ]�Λn+1
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for a generator Λ ∈ H2(Pn). The generator Λ is the Poincaré dual of the hyperplane class.
We use Ta = Λa with a = 0, . . . , n as basis for the cohomology ring and with respect to
this basis

gab = g(Ta, Tb) =
∫
Pn

Λa ∪ Λb = δa,n−b.

Hence, T a = Λn−a.
To obtain the super small quantum cohomology ring of Pn it would be sufficient, by

linearity, to compute all three-point super Gromov–Witten invariants〈
SGW

Pn,d
0,3

〉
(Λa,Λb,Λc).

As the Grading Axiom 3.4.2 is more permissive than the classical grading axiom there
are for given a and b possibly infinitely many combinations of power c and degree d for
which the three-point super Gromov–Witten invariants do not vanish. We will see in
Section 5 that we are, in principle, able to compute three-point super Gromov–Witten
invariants for Pn but do not have a closed formula for all of them even when n = 1.
Hence, we will only give some further restrictions derived from the Grading Axiom 3.4.2
and the Point-Mapping Axiom 3.4.9.
For d = 0 the Point-Mapping-Axiom 3.4.9 implies that

〈
SGW

Pn,0
0,3

〉
(Λa,Λb,Λc) =

{
κ−1 if a+ b+ c = n

0 else

If d = 1 the Grading Axiom implies that three-point super Gromov–Witten invariants
vanish for a+ b+ c > 2n+ 1. For d > 1, no super three-point Super Gromov–Witten
invariants vanish for degree reasons.
It follows for a+ b ≤ n that

Λa ? Λb = Λa+b +
∞∑
d=1

n∑
c=0

〈
SGW

Pn,d
0,3

〉 (
Λa,Λb,Λc

)
Λn−cqdκd(n+1)+1

The three point super Gromov–Witten invariant has polynomial degree

a+ b+ c− n− 2d (n+ 1)− 1.

Consequently, the first term is the one of highest degree in κ.
If a+ b > n,

Λa ? Λb =
2n+1−a−b∑

c=0

〈
SGW

Pn,1
0,3

〉
(Λa,Λb,Λc)Λn−cqκn+2

+
∞∑
d=2

n∑
c=0

〈
SGW

Pn,d
0,3

〉 (
Λa,Λb,Λc

)
Λn−cqdκd(n+1)+1

Here the term of highest polynomial degree is〈
SGW

Pn,1
0,3

〉
(Λa,Λb,Λ2n+1−a−b)Λa+b−n−1qκn+2 = Λa+b−n−1q.
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Proposition 4.6. Let p : C[[κ−1]]→ C the ring homomorphism which sends κ−1 to zero.
Then

p = id⊗p : H•(X)⊗R⊗ C[[κ−1]]→ H•(X)⊗R

maps the super quantum product ? to the classical quantum product � and extends to a
homomorphism of R-algebras.

Proof. By the Grading Axiom 3.4.2, the only terms of polynomial degree zero in

α ? γ =
∑

β∈H2(X)

〈
SGWX,β

0,3

〉
(α, γ, Ta)T aqβκr3,β

are the terms such that degα+ deg γ + deg Ta = 2 dimM0,3 (X,β). In this case by the
Extension Axiom 3.4.3, super Gromov–Witten invariants agree with Gromov–Witten
invariants up to a polynomial prefactor

p(α ? γ) =
∑

β∈H2(X)

〈
GWX,β

0,3

〉
(p(α), p(γ), p(Ta))T aqβ

= p(α) � p(γ).

Remark 4.7. There is no known unit for the super quantum product ?. Recall that T0 = 1
is the unit for the non-super quantum product �. But for the super quantum product we
have

α ? T0 =
∑

β∈H2(X)

〈
SGWX,β

0,3

〉
(α, T0, Ta)T aqβκr3,β

=
(∫

X
α ∪ Ta

)
T a

+
∑
β 6=0

1
κ

∫
M0,3(X,β)

f∗
ev∗1α ∪ ev∗2Ta

N2,β
∪
∑
j>0

(
−c1(S3)

κ

)j qβT aκr3,β
by the Point-Mapping Axiom 3.4.9 and the Fundamental class Axiom 3.4.6. The first
summand is equal to α by the definition of T a. That is, the super quantum product of α
with T0 yields α up to lower order terms in κ.

Lemma 4.8. Let g be the R⊗ C[[κ−1]]-bilinear form

g : H•(X)⊗R⊗ C[[κ−1]]×H•(X)⊗R⊗ C[[κ−1]]→ R⊗ C[[κ−1]]

such that g(α⊗ 1⊗ 1, γ ⊗ 1⊗ 1) =
∫
X α ∪ γ. Then

g(α ? γ, δ) = g(α, γ ? δ) =
∑

β∈H2(X)

〈
SGWX,β

0,3

〉
(α, γ, δ)qβκ3,β

∫
X
α ? γ = g(T0 ? α, γ).
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5 Super Gromov–Witten invariants of Pn

In this section we explain a method that allows, in principle, to calculate arbitrary super
Gromov–Witten invariants of projective spaces Pn. The idea is to use an additional
geometric torus localization with respect to the torus action of T = (C∗)n+1 acting on Pn
by rescaling the projective coordinates. Fixed points and normal bundles of the induced
torus action on the stable maps moduli spaces M0,k (Pn, β) have been studied in the
important paper Kontsevich 1995. As the stable maps which are invariant under the torus
action are of fixed tree types we can use the gluing properties of SUSY normal bundles to
reduce to simple building blocks which can be evaluated. Expressions for super Gromov–
Witten invariants are then obtained by working with sums of quotients of polynomials in
the torus characters. We give explicit calculations of super Gromov–Witten invariants
of P1 in degree one and with one, two or three marked points. For n ≤ 5 we list super
Gromov–Witten invariants obtained with the help of computer algebra software.

In Section 5.1 we discuss how torus actions on the target X induce torus actions on the
moduli spaces of super stable maps and the normal bundles. Section 5.2 sets notation for
the torus action on Pn and recalls an enumeration of fixed loci in the moduli spaces of
stable maps via graphs. In Section 5.3 we calculate equivariant Euler class of the SUSY
normal bundle restricted to fixed loci with particularly simple graphs. In Sections 5.4–5.6
we calculate super Gromov–Witten invariants of Pn with one, two or three marked points
for degree one.

5.1 Geometric localization
Assume that the target variety X is equipped with an algebraic action of of a torus
T = (C∗)m:

a : T ×X → X

(t, x) 7→ at(x)

For fixed t ∈ T we obtain an automorphism at : X → X.
For any stable map φ : C → X the composition at ◦ φ is again a stable map. Hence we

obtain a T -action on the moduli spacesM0,k (X,β) which we denote again by a. Similarly,
for any stable spin map φ : C → X from a prestable spin curve C the composition at ◦ φ
is again a stable spin map. The induced action on the moduli stack of stable spin maps
commutes with the forgetful maps

T ×M spin
0,k (X,β) M

spin
0,k (X,β)

T ×M0,k (X,β) M0,k (X,β)

a

id×F F

a

because the torus T does not act on the spinor bundles.
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For any twisted spinor ψ ∈ H0 (S∨C ⊗ φ∗TX), the differential of at induces a map

idS∨C⊗φ∗ dat : H0 (S∨C ⊗ φ∗TX)→ H0 (S∨C ⊗ (at ◦ φ)∗TX
)

between the holomorphic sections of twisted spinors along φ and twisted spinors along
at ◦ φ. Applying this map to the summand in the middle term of (2.3.2), we see that
Nk,β is an equivariant bundle over a : T ×M spin

0,k (X,β)→M
spin
0,k (X,β).

The fixed point locus of the action a on M0,k (X,β) is a union of smooth connected
componentsMΓ indexed by Γ ∈ I some finite set. We denote by iΓ : MΓ →M0,k (X,β) the
inclusion maps and by NΓ its normal bundle. As the T -action on stable spin maps does not
operate on spinor bundles, the fixed points of the action a : M spin

0,k (X,β)→M
spin
0,k (X,β)

are precisely the preimage M spin
Γ = MΓ ×M0,k(X,β) M

spin
0,k (X,β) of MΓ under F . The

inclusionM spin
Γ →M

spin
0,k (X,β) is likewise denoted iΓ and the normal bundle is isomorphic

to F ∗NΓ. This implies eT (NΓ) = eT (F ∗NΓ) ∈ H•T
(
M0,k (X,β)

)
.

Following the calculations explained in Cox and Katz 1999, Section 9.1.3, we can
calculate super Gromov–Witten invariants using localization with respect to the T -action
as follows:〈

SGWX,β
0,k

〉
(α1, . . . , αk) =

∫
M0,k(X,β)

ev∗1α1 ∪ · · · ∪ ev∗kαk
eK(Nk,β)

=
∫
M
spin
0,k (X,β)

ev∗1α1 ∪ · · · ∪ ev∗kαk
2eK(Nk,β)

=
∑
Γ∈I

∫
Mspin

Γ

(
i∗Γev∗1α1 ∪ · · · ∪ i∗Γev∗kαk
oΓeK×T (i∗ΓNk,β)eT (NΓ)

)∣∣∣∣∣
dp=−rk,β−dk,β+ 1

2 degα

=
∑
Γ∈I

∫
MΓ

(
i∗Γev∗1α1 ∪ · · · ∪ i∗Γev∗kαk
eK×T (i∗ΓNk,β)eT (NΓ)

)∣∣∣∣∣
dp=−rk,β−dk,β+ 1

2 degα
.

(5.1.1)

Here the restriction to terms of polynomial degree dp = −rk,β − dk,β + 1
2 degα in κ

selects the terms of top cohomological degree in the integral over M0,k (X,β). As in
Definition 3.2.2, the order oΓ of the isotropy group of the generic point ofM spin

Γ appearing
in the denominator cancels against [M spin

Γ ] = oΓ[MΓ].
Remark 5.1.2. The T -action on M0,k (X,β) and Nk,β given above is motivated by the
component field formalism for super J-holomorphic curves developed in Keßler, Sheshmani,
and Yau 2022: Let Φ: P1|1

C → X be a super J-holomorphic curve with component fields
(ϕ,ψ, F = 0) with respect to i : P1

C → P1|1
C . Then, for every t ∈ T , also Φt = at ◦ Φ is a

super J-holomorphic curve and its component fields are given by

ϕt = at ◦ Φ ◦ i = at ◦ ϕ
ψt = i∗ d(at ◦ Φ)|D = i∗a∗t dΦ ◦ i∗ dΦ|D = ϕ∗ dat ◦ ψ

Here ϕt : P1
C → X is a J-holomorphic curve and ψt ∈ Γ (S∨C ⊗ ϕ∗tTX) is a holomorphic

twisted spinor. The map Φ 7→ at ◦ Φ induces an action of T on the moduli spaces

44



Msm (X,β),Msm
0,k (X,β) andMsm

τ (X,β). This action commutes with the action of K
given by the rescaling of the odd directions.

In the same way, there should be an algebraic T -action on the moduli stackM0,k (X,β)
of algebraic super stable maps from Conjecture 2.5.1. The inclusion M

spin
0,k (X,β) →

M0,k (X,β) is then T -equivariant and consequently, the normal bundle Nk,β is an
equivariant bundle.

5.2 Torus action on Pn

In this section we describe an action of T = (C∗)n+1 on Pn and recall from Kontsevich
1995 that the fixed point loci of the induced action on stable maps moduli spaces are
classified by certain labeled graphs.
Before turning to the torus action, let us fix the following notation: The cohomology

ring of Pn is a polynomial ring in one generator Λ ∈ H2(Pn,Z), such that

H∗(Pn,Z) = Z[Λ]�Λn+1.

The generator Λ is the Poincaré dual of the hyperplane class. Similarly, we denote the
generator of H2(P1,Z) by λ.

For β = d[l] that is the d-fold multiple of the class of a line in Pn, write M0,k (Pn, d) for
the moduli spaces of stable maps of degree d in Pn with k marked points. Similarly, we
write Nk,d for the normal bundle over M0,k (Pn, d). Recall that 〈c1 (TPn) , d[l]〉 = d(n+1)
and hence the dimension of M0,k (Pn, d) and the rank of Nk,d are given by

dk,d = n+ d(n+ 1) + k − 3, rk,d = d(n+ 1) + k − 2.

In the remainder of Section 5, we use the action of the torus T = (C∗)n+1 on Pn that
acts on homogeneous coordinates via

a : (C∗)n+1 × Pn → Pn(
(t0, . . . , tn), [X0 : · · · : Xn]

)
7→
[
X0

t0
: · · · : X

n

tn

]
.

(5.2.1)

We follow the notation introduced in Cox and Katz 1999, Chapter 9.2: Fixed points of
the T -action are called q0, . . . , qn where qi is the point where all homogeneous coordinates
except the i-th vanish.
The weights corresponding to the coordinates of T = (C∗)n+1 are denoted τ0, . . . , τn.

That is, H•T (pt) = C[τ0, . . . , τn]. In particular, the one-dimensional representation
(t0, . . . , tn) · v = td0

0 · · · · · tdnn · v has weight −d0τ0 − · · · − dnτn.
The action of T induces an action on the moduli spaces M0,k (Pn, d) of stable maps in

Pn by composition. Stable maps fixed under the T -action map every marked point to
one of the fixed points and components of the curve are either mapped to a fixed point
or a coordinate line connecting the fixed points. It was worked out in Kontsevich 1995
that stable curves fixed under the T -action can be characterized by a labeled graph Γ as
follows:
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• vertices v of Γ correspond to the fixed points qi that are in the image of the stable
map. The vertex v is labeled by the number iv of the fixed point it corresponds to
and the set of indices of the marked point that map to qi.

• two vertices v and v′ are connected by an edge e if the coordinate line between qiv
and qi′v is in the image of the stable map. The edge is labeled by the degree of the
map mapping to the coordinate line.

Let φ : C → Pn be a stable map of genus zero fixed under the torus action and with
graph Γ. Then the curve C decomposes into irreducible components as follows:

• one irreducible component per edge which is mapped to a coordinate line in Pn.
Up to a choice of identification with P1, the points 0 and ∞ are mapped to torus
fixed points of Pn.

• if for a given vertex the number of outgoing edges plus marked points at that vertex
are larger than two, there are components which are contracted under φ to a fixed
point of the T -action.

The graph describes the non-contracted components uniquely. Consequently, the fixed
point loci MΓ ⊂M0,k (Pn, d) of all stable maps fixed under the torus action and of type Γ
is roughly a product of moduli spaces of stable curves. For the precise description of
the stack structure of MΓ we refer to Kontsevich 1995; Cox and Katz 1999; Graber and
Pandharipande 1999.
The equivariant Euler classes of the normal bundles NΓ to the inclusions iΓ : MΓ →

M0,k (Pn, d) have been worked out in Kontsevich 1995 as well, see also Cox and Katz
1999, Theorem 9.2.1.
Example 5.2.2. T -invariant stable maps P1 → Pn of degree one with k marked points are
characterized by graphs of the form

a

A

b

B
d = 1

Here a and b are elements of {0, . . . , n} with a < b and A, B ⊂ {1, . . . , k} are a partition,
that is B = {1, . . . , k} \ A. We denote the graph above by Γk,1a,b,A. More generally, we
denote the above graph with general degree d by Γk,da,b,A.
The graph Γk,da,b,A represents T -invariant stable maps φ with k-marked points where

the marked points pi for i ∈ A are mapped to the fixed point qa ∈ Pn and the marked
points pj for j ∈ B are mapped to qb ∈ Pn. Hence, if A or B contain more than one
point, the domain nodal curve of φ needs to consist of several components. All of those
components except one collapse either on qa or qb. The remaining component is a degree d
map onto the line going through qa and qb.
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5.3 Equivariant Euler class of SUSY normal bundle for the moduli space MΓ

In this section we show how to calculate the equivariant Euler classes

eK×T
(
i∗ΓNk,d

)
of the SUSY normal bundles restricted to fixed point loci iΓ : M spin

Γ →M
spin
0,k (Pn, d).

If Γ = Γka is the graph that describes the moduli space of k marked points mapped
to the fixed point qa ∈ Pn by a degree zero map, the fixed point spaces are MΓ = M0,k

and M spin
Γ = M

spin
0,k . Hence the equivariant Euler classes of Nk coincide with the ones

obtained in Section 3.3.
If instead Γ is one of the following graphs

Γ1,d
a,b,∅, Γ1,d

a,b,{1}, Γ2,d
a,b,{1}, Γ2,d

a,b,{2},

describing a map of degree d from P1 to Pn going through the T -fixed points qa and qb,
the moduli space MΓ is a point and we have described the SUSY normal bundles i∗ΓNk,d

in Example 2.3.4. In order to describe the equivariant Euler classes of the SUSY normal
bundles i∗ΓNk,d it remains to calculate the T -action.
For an arbitrary graph Γ describing a fixed point locus of the T -action the moduli

spaceMΓ is a product of the moduli spaces corresponding to the above elementary graphs.
By the gluing properties of the SUSY normal bundles, see Proposition 2.3.7, the normal
bundles add up and hence the equivariant Euler classes multiply.

Proposition 5.3.1. Let Γ = Γ2,d
a,b,{1} or Γ = Γ2,d

a,b,{2}. Then MΓ is a point and the
equivariant Euler class is given by

eK×T (i∗ΓN2,d) =
∏

0≤q≤2d−1

(
κ+ 2d− 2q − 1

2d τa −
2d− 2q − 1

2d τb

)

·
∏

0≤m≤n
m 6=a,b

∏
0≤q≤d−1

(
κ+ 2q − 1

2d τa −
2d− 2q − 1

2d τb + τm

)
.

Proof. We treat the case Γ = Γ2,d
a,b,{1} first. That is, C = P1 with the two marked points

p1 = 0 = [0 : 1], p2 =∞ = [1 : 0] and the map is

φ : P1 → Pn[
Z1 : Z2

]
7→
[
0 : · · · : 0 :

(
Z1
)d

: 0 : · · · : 0 :
(
Z2
)d

: 0 : · · · : 0
]

By Definition i∗ΓN2,d = N(C,φ) is given by the short exact sequence

0 H0 (SC) p∗1SC ⊕ p∗2SC ⊕H0 (S∨C ⊗ φ∗TPn) N(C,φ) 0
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The equivariant Euler class of N(C,φ) is consequently given by

eK×T (i∗ΓN (C,φ)) = eK×T (p∗1SC) ∪ eK×T (p∗2SC) ∪ eK×T
(
H0 (S∨C ⊗ φ∗TPn)

)
eK×T (H0(SC)) (5.3.2)

The torus K acts on all summands by rescaling. The torus T acts on the summand
H0(S∨C ⊗ φ∗TPn) by

idS∨C⊗φ∗ dat : H0 (S∨C ⊗ φ∗TPn)→ H0 (S∨C ⊗ (at ◦ φ)∗TPn
)

while p∗1SC and p∗2SC as well as H0(SC) are invariant. This induces the K × T -action on
N(C,φ).
However, the T -action does not map H0(S∨C ⊗ φ∗TX) to itself because at ◦ φ differs

from φ by a Möbius transformation ξt such that at ◦ φ = φ ◦ ξt. We will see below that
the combined action of at and ξt maps H0(S∨C ⊗ φ∗TX) to itself and even preserves the
direct sum decomposition

H0 (S∨C ⊗ φ∗TPn) = H0 (O(2d− 1))⊕
(
H0 (O(d− 1))

)n−1

from Example 2.3.4. Even though the Möbius transformation ξt is T -dependent, its
induced action on N(C,φ) is trivial as discussed in Keßler, Sheshmani, and Yau 2023.
Hence, it will be easier to use the combined action of at and ξt to read off the T -action
on H0(S∨C ⊗ φ∗TPn) at the expense of considering a non-trivial T -action on H0(SC) and
p∗iSC .
To be more explicit, we will use the notation for coordinates and local frames from

Example 2.3.4. The torus action at : Pn → Pn defined in Equation (5.2) is given in the
coordinates xql by a

#
t x

q
l = tl

tq
xql . Hence, at ◦ φ is given in local coordinates by

φ#a#
t x

a
b = tb

ta
z1
d, φ#a#

t x
m
a = 0, for m 6= a, b,

φ#a#
t x

b
a = ta

tb
(−z2)d, φ#a#

t x
m
a = 0, for m 6= a, b.

Hence,

gt =

 2d
√

tb
ta

0
0 2d

√
ta
tb


is an element of SL(2) such that the induced Möbius transformation ξt satisfies at ◦ φ =
φ ◦ ξt. In order to understand the combined action of at and ξt on N(C, φ) we need to
make the combined action on p∗iSC , H0(SC) and H0(S∨C ⊗ φ∗TPn) explicit.

The Möbius transformation ξt : P1 → P1 induced from gt is given in local coordinates
by ξ#

t z1 = A2z1 and ξ#
t z2 = A−2z2 where we write A = 2d

√
tb
ta

for simplicity. The Möbius
transformation ξt preserves the two points 0 and ∞ so that the triples (0,∞, at ◦ φ) and
(0,∞, φ) represent the same point in M0,2 (Pn, d).
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The element gt induces the map σt : SC → ξ∗t SC given by

σ(s1) = Aξ∗t s1, σ(s2) = A−1ξ∗t s2.

The map σ induces the following maps p∗iσ : p∗iSC → p∗i ξ
∗
t S = p∗iSC

p∗1S → p∗1SC p∗2S → p∗2SC

p∗1s1 7→ Ap∗1s1 p∗2s2 7→ A−1p∗1s2

Consequently, their equivariant Euler classes are given by

eK×T (p∗1S) = κ+ 1
2dτa −

1
2dτb, eK×T (p∗2S) = κ− 1

2dτa + 1
2dτb. (5.3.3)

Composing sections s : P1 → SC with σ gives a map H0(SC) → H0(ξ∗SC). As ξt is
an isomorphism, all sections of H0(ξ∗t SC) can be obtained as pullbacks from sections
s̃ ∈ H0(SC). The resulting map wich sends a section s ∈ H0(SC) to σ ◦ s ∈ H0(SC) and
then to s̃ is given by

H0(SC)→ H0(SC)

s = (uz1 + v) s1 7→ s̃ =
(
A−1uz1 +Av

)
s1

Hence,
eK×T (H0(SC)) =

(
κ − 1

2dτa + 1
2dτb

)(
κ+ 1

2dτa −
1
2dτb

)
. (5.3.4)

Let now ψ ∈ H0(S∨C ⊗ φ∗TX) given locally by

ψ(z1) =
2d−1∑
q=0

ψabq z1
qs∨1 ⊗ φ∗∂xab +

∑
m6=a,b

d−1∑
q=0

ψmq z1
qs∨1 ⊗ φ∗∂xmb ,

ψ(z2) = −
2d−1∑
q=0

ψabq (−z2)2d−1−qs∨2 ⊗ φ∗∂xba +
∑
m 6=a,b

d−1∑
q=0

ψmq (−z2)d−1−qs∨2 ⊗ φ∗∂xma .

Composing with idS∨C ⊗φ
∗ dat yields

(
idS∨C ⊗φ

∗ dat
)
ψ ∈ H0(S∨C ⊗ φ∗a∗tTPn) given by

(
idS∨C ⊗φ

∗ dat
)
ψ(z1) =

2d−1∑
q=0

ψabq
tb
ta
z1
qs∨1 ⊗ φ∗a∗t∂xab +

∑
m 6=a,b

d−1∑
q=0

ψmq
tb
tm
z1
qs∨1 ⊗ φ∗a∗t∂xmb ,

(
idS∨C ⊗φ

∗ dat
)
ψ(z2) = −

2d−1∑
q=0

ψabq
ta
tb

(−z2)2d−1−qs∨2 ⊗ φ∗a∗t∂xba

+
∑
m6=a,b

d−1∑
q=0

ψmq
ta
tm

(−z2)d−1−qs∨2 ⊗ φ∗a∗t∂xma
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The action of gt on
(
idS∨C ⊗φ

∗ dat
)
ψ ∈ H0(S∨C ⊗ φ∗a∗tTPn) is obtained in two steps.

First, composing with (σ∨)−1 ⊗ idφ∗a∗tTPn yields a section of H0(ξ∗t S∨C ⊗ φ∗a∗tTPn) =
H0(ξ∗t (S∨C ⊗ φ∗TPn)). In a second step the unique ψ̃ ∈ H0(S∨C ⊗ φ∗TPn) such that((

σ∨
)−1 ⊗ idφ∗a∗tTPn

) (
idS∨C ⊗φ

∗ dat
)
ψ = ξ∗t ψ̃

is identified. The resulting combined action of at and gt on H0(S∨C ⊗ φ∗TPn) is then
given by ψ 7→ ψ̃.

In the above local expressions we have((
σ∨
)−1 ⊗ idφ∗a∗tTPn

) (
idS∨C ⊗φ

∗ dat
)
ψ(z1)

=
2d−1∑
q=0

ψabq
tb
ta

2d

√
ta
tb
z1
qξ∗t

(
s∨1 ⊗ φ∗∂xab

)

+
∑
m6=a,b

d−1∑
q=0

ψmq
tb
tm

2d

√
ta
tb
z1
qξ∗t

(
s∨1 ⊗ φ∗∂xmb

)
,

((
σ∨
)−1 ⊗ idφ∗a∗tTPn

) (
idS∨C ⊗φ

∗ dat
)
ψ(z2)

= −
2d−1∑
q=0

ψabq
ta
tb

2d

√
tb
ta

(−z2)2d−1−qξ∗t

(
s∨2 ⊗ φ∂xba

)

+
∑
m 6=a,b

d−1∑
q=0

ψmq
ta
tm

2d

√
tb
ta

(−z2)d−1−qξ∗t
(
s∨2 ⊗ φ∗∂xma

)
,

and hence

ψ̃(z1) =
2d−1∑
q=0

ψabq t
2d−2q−1

2d
b t

− 2d−2q−1
2d

a z1
qs∨1 ⊗ φ∗∂xab

+
∑
m 6=a,b

d−1∑
q=0

ψmq t
−1
m t
− 2q−1

2d
a t

2d−2q−1
2d

b z1
qs∨1 ⊗ φ∗∂xmb ,

ψ̃(z2) = −
2d−1∑
q=0

ψabq t
2d−2q−1

2d
b t

− 2d−2q−1
2d

a (−z2)2d−1−qs∨2 ⊗ φ∗∂xba

+
∑
m 6=a,b

d−1∑
q=0

ψmq t
−1
m t
− 2q−1

2d
a t

2d−2q−1
2d

b (−z2)d−1−qs∨2 ⊗ φ∗∂xma .

Consequently, the equivariant Euler class of H0(S∨C ⊗ φ∗TPn) is given by

eK×T
(
H0(S∨C ⊗ φ∗TPn)

)
=

∏
0≤q≤2d−1

(
κ+ 2d− 2q − 1

2d τa −
2d− 2q − 1

2d τb

)

·
∏

0≤m≤n
m6=a,b

∏
0≤q≤d−1

(
κ+ 2q − 1

2d τa −
2d− 2q − 1

2d τb + τm

)
.
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The claim for Γ = Γ2,d
a,b,{1} now follows from eK×T (i∗ΓN2,d) = eK×T

(
H0(S∨C ⊗ φ∗TPn)

)
because the contributions of H0(SC) and p∗iSC in (5.3) cancel by (5.3) and (5.3).

The case Γ = Γ2,d
a,b,{2} can be treated as above while reversing the roles of p1 and p2.

Proposition 5.3.5. Let Γ = Γ1,d
a,b,{1}. Then MΓ is a point and the equivariant Euler

class is given by

eK×T (i∗ΓN1,d) =
∏

0≤q≤2d−1
q 6=d

(
κ+ 2d− 2q − 1

2d τa −
2d− 2q − 1

2d τb

)

·
∏

0≤m≤n
m 6=a,b

∏
0≤q≤d−1

(
κ+ 2q − 1

2d τa −
2d− 2q − 1

2d τb + τm

)
.

Proof. In this case, the moduli space MΓ consists of the point (p1, φ) where p1 = 0 is
the only marked point on C = P1 and φ is the d-fold cover of the coordinate line with
coordinates Xa and Xb as in the proof of 5.3.1. In this case the SUSY normal bundle is
defined by

0 H0 (SC) p∗1SC ⊕H0 (S∨C ⊗ φ∗TPn) N(C,φ) 0

and the equivariant Euler class of N(C,φ) is given by

eK×T (i∗ΓN (C,φ)) = eK×T (p∗1SC) ∪ eK×T
(
H0 (S∨C ⊗ φ∗TPn)

)
eK×T (H0(SC)) .

The K- and T action on the bundles is as described in the proof of Proposition 5.3.1. In
particular from (5.3) and (5.3) we obtain

eK×T (p∗1SC)
eK×T (H0(SC)) = 1

κ− 1
2dτa + 1

2dτb

which cancels the first factor with q = d in eK×T
(
H0 (S∨C ⊗ φ∗TPn)

)
and the claim

follows.

In the same way, using p1 =∞ instead of p1 = 0, one can prove:

Proposition 5.3.6. Let Γ = Γ1,d
a,b,∅. Then MΓ is a point and the equivariant Euler class

is given by

eK×T (i∗ΓN1,d) =
∏

0≤q≤2d−1
q 6=d−1

(
κ+ 2d− 2q − 1

2d τa −
2d− 2q − 1

2d τb

)

·
∏

0≤m≤n
m 6=a,b

∏
0≤q≤d−1

(
κ+ 2q − 1

2d τa −
2d− 2q − 1

2d τb + τm

)
.
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5.4 One-point Super Gromov–Witten Invariants of Pn of degree one
In this section we calculate one point Super Gromov–Witten invariants of Pn of degree
one. In this case, d1,1 = 2n − 1 and r1,1 = n. The fixed points of the T -action on
M0,1 (Pn, d = 1) are labeled by the graphs Γ1,1

a,b,A where 0 ≤ a < b ≤ n and A ⊂ {1}, that
is, A = ∅ or A = {1}. Consequently, by (5.1):〈

SGW
Pn,d=1
0,1

〉
(α)

=
∑

0≤a<b≤n

∑
A⊂{1}

∫
M

Γ1,1
a,b,A

 i∗Γ1,1
a,b,A

ev∗1α

eK×T
(
i∗
Γ1,1
a,b,A

N1,1

)
eT (NΓ1,1

a,b,A
)


∣∣∣∣∣∣∣∣
dp=−(3n−1)+ 1

2 degα

As all moduli spaces MΓ1,1
a,b,A

are points, taking the integral is a trivial operation. By
linearity, we can assume that α = Λj for some j = 0, 1, . . . , n.
Note that ev1 ◦ iΓ1,1

a,b,A
= qa if 1 ∈ A and ev1 ◦ iΓ1,1

a,b,A
= qb if j 6∈ A. As qa and qb

are the fixed points of the T -action, we have that the pullback of the hyperplane class
Λ ∈ H2(Pn,Z) is given by q∗jΛ = τj , see Cox and Katz 1999, Equation (9.5).

From Proposition 5.3.3 and 5.3.2 we have

eK×T (i∗Γ1,1
a,b,∅

N1,1) =
∏

0≤m≤n
m6=a

(
κ− 1

2τa −
1
2τb + τm

)
,

eK×T (i∗Γ1,1
a,b,{1}

N1,1) =
∏

0≤m≤n
m 6=b

(
κ− 1

2τa −
1
2τb + τm

)
.

The inverse is calculated as follows:

eK×T (i∗Γ1,1
a,b,∅

N1,1)−1 = 1
κn

∏
0≤m≤n
m6=a

1

1−
1
2 τa+ 1

2 τb−τm
κ

= 1
κn

∏
0≤m≤n
m6=a

∑
l≥0

( 1
2τa + 1

2τb − τm
κ

)l

=
∑
l≥0

1
κn+l

∑
l0≥0,...,la=0,...ln≥0

l0+···+ln=l

∏
m

(1
2τa + 1

2τb − τm
)lm

and analogously

eK×T (i∗Γ1,1
a,b,{1}

N1,1)−1 =
∑
l≥0

1
κn+l

∑
l0≥0,...,lb=0,...ln≥0

l0+···+ln=l

∏
m

(1
2τa + 1

2τb − τm
)lm

.
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The equivariant Euler class of the normal bundle NΓ1,1
a,b,A

can be calculated by the
methods developed in Kontsevich 1995. We use the reformulation in Cox and Katz 1999,
Theorem 9.2.1 where eT (NΓ1,1

a,b,A
) is given as a product:

eFΓ1,1
a,b,∅

= 1∏
j 6=a (τa − τj)

∏
j 6=b (τb − τj)

evΓ1,1
a,b,∅

=
∏
j 6=a (τa − τj)

∏
j 6=b (τb − τj)

τa − τb
eeΓ1,1

a,b,∅
= −(τa − τb)2 ∏

j 6=a,b
(τa − τj) (τb − τj)

eT (NΓ1,1
a,b,∅

) = eFΓ1,1
a,b,∅

evΓ1,1
a,b,∅

eeΓ1,1
a,b,∅

= (τb − τa)
∏
j 6=a,b

(τa − τj) (τb − τj)

and, in the same way

eT (NΓ1,1
a,b,{1}

) = (τa − τb)
∏
j 6=a,b

(τa − τj) (τb − τj) .

Example 5.4.1 (One point Super Gromov–Witten invariants of P1 of degree one). Let us
first rewrite the above formulas for n = 1 and a = 0, b = 1:

eK×T (i∗Γ1,1
0,1,∅

N1,1)−1 =
∑
l≥0

1
2lκl+1 (τ0 − τ1)l eT (NΓ1,1

a,b,∅
) = (τ1 − τ0)

eK×T (i∗Γ1,1
0,1,{1}

N1,1)−1 =
∑
l≥0

1
2lκl+1 (τ1 − τ0)l eT (NΓ1,1

a,b,{1}
) = (τ0 − τ1)

It follows:

〈
SGW

P1,d=1
0,1

〉
(λ) =

∫
M

Γ1,1
0,1,∅

 i∗Γ1,1
0,1,∅

ev∗1λ

eK×T (i∗
Γ1,1

0,1,∅
N1,1)eT (NΓ1,1

0,1,∅
)


∣∣∣∣∣∣∣
dp=−1

+
∫
M

Γ1,1
0,1,{1}

 i∗Γ1,1
0,1,{1}

ev∗1λ

eK×T (i∗
Γ1,1

0,1,{1}
N1,1)eT (NΓ1,1

0,1,{1}
)


∣∣∣∣∣∣∣
dp=−1

= τ1
κ (τ1 − τ0) + τ0

κ (τ0 − τ1)

= 1
κ

By the Extension Axiom 3.4.3, we have〈
SGW

P1,d=1
0,1

〉
(λ) = 1

κ

〈
GW

P1,d=1
0,1

〉
(λ).
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The first super Gromov–Witten invariant which does not arise from a classical Gromov–
Witten invariant is:

〈
SGW

P1,d=1
0,1

〉
(1) =

∫
M

Γ1,1
0,1,∅

 1
eK×T (i∗

Γ1,1
0,1,∅

N1,1)eT (NΓ1,1
0,1,∅

)


∣∣∣∣∣∣∣
dp=−2

+
∫
M

Γ1,1
0,1,{1}

 1
eK×T (i∗

Γ1,1
0,1,{1}

N1,1)eT (NΓ1,1
0,1,{1}

)


∣∣∣∣∣∣∣
dp=−2

= τ0 − τ1
2κ2 (τ1 − τ0) + τ1 − τ0

2κ2 (τ0 − τ1)

= − 1
κ2

Example 5.4.2 (One-point Super Gromov–Witten invariants of Pn of degree one for
n = 2, 3, 4, 5). We have evaluated the formulas from this section using the computer
algebra program “Sage”. Note that all of the following super Gromov–Witten invariants
are non-classical, that is, are not obtained from classical Gromov–Witten invariants via
the Extension Axiom 3.4.3 for degree reasons. We obtain for P2:〈

SGW
P2,d=1
0,1

〉
(Λ2) = 2

κ3 ,
〈
SGW

P2,d=1
0,1

〉
(Λ) = 3

4κ4 ,
〈
SGW

P2,d=1
0,1

〉
(1) = − 3

2κ5 .

For P3: 〈
SGW

P3,d=1
0,1

〉
(Λ3) = 7

2κ5 ,
〈
SGW

P3,d=1
0,1

〉
(Λ2) = 5

κ6 ,〈
SGW

P3,d=1
0,1

〉
(Λ) = 15

8κ7 ,
〈
SGW

P3,d=1
0,1

〉
(1) = − 35

8κ8 .

For P4: 〈
SGW

P4,d=1
0,1

〉
(Λ4) = 25

4κ7 ,
〈
SGW

P4,d=1
0,1

〉
(Λ3) = 245

16κ8 ,〈
SGW

P4,d=1
0,1

〉
(Λ2) = 35

2κ9 ,
〈
SGW

P4,d=1
0,1

〉
(Λ) = 105

16κ10 ,〈
SGW

P4,d=1
0,1

〉
(1) = − 525

32κ11 .

For P5: 〈
SGW

P5,d=1
0,1

〉
(Λ5) = 91

8κ9 ,
〈
SGW

P5,d=1
0,1

〉
(Λ4) = 315

8κ10 ,〈
SGW

P5,d=1
0,1

〉
(Λ3) = 2205

32κ11 ,
〈
SGW

P5,d=1
0,1

〉
(Λ2) = 1155

16κ12 ,〈
SGW

P5,d=1
0,1

〉
(Λ) = 3465

128κ12 ,
〈
SGW

P5,d=1
0,1

〉
(1) = − 9009

128κ12 .
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5.5 Two-point Super Gromov–Witten Invariants of Pn of degree one
In this section we calculate two-point super Gromov–Witten invariants of Pn of degree
one using the same methods as in the previous Section 5.4. In this case d2,1 = 2n
and r2,1 = n + 1. Fixed points of the T -action are labeled by the graphs Γ2,1

a,b,A for
0 ≤ a,< b ≤ n and A ⊂ {1, 2}. Consequently, by (5.1):〈

SGW
Pn,d=1
0,2

〉
(α1, α2)

=
∑

0≤a<b≤n

∑
A⊂{1,2}

∫
M

Γ2,1
a,b,A

 i∗Γ2,1
a,b,A

ev∗1α1 ∪ i∗Γ2,1
a,b,A

ev∗2α2

eK×T
(
i∗
Γ2,1
a,b,A

N2,1

)
eT (NΓ2,1

a,b,A
)


∣∣∣∣∣∣∣∣
dp=−(3n+1)+ 1

2 degα

Again, all moduli spaces MΓ2,1
a,b,A

are points. But, for A = ∅ and A = {1, 2} the stable
maps that are represented by MΓ2,1

a,b,A
consist of two irreducible components. When the

two marked points are mapped to the same fixed point of the T -action they must lie on
a separate component which is contracted under the stable map and hence

MΓ2,1
a,b,∅

= M0,3 ×MΓ1,1
a,b,∅

where the three marked points arise as the two marked points of MΓ2,1
a,b,∅

and a preimage
of a nodal point under gluing. The one marked point of MΓ1,1

a,b,∅
is the other preimage

of the nodal point. By the Splitting Axiom 3.4.10 together with Proposition 3.3.2 and
Proposition 5.3.3:

eK×T (i∗Γ2,1
a,b,∅

N2,1) = eK(N3)eK×T (i∗Γ1,1
a,b,∅

N1,1)

= κ
∏

0≤m≤n
m6=a

(
κ− 1

2τa −
1
2τb + τm

)

The inverse is

eK×T (i∗Γ2,1
a,b,∅

N2,1)−1 =
∑
l≥0

1
κn+1+l

∑
l0≥0,...,la=0,...ln≥0

l0+···+ln=l

∏
m

(1
2τa + 1

2τb − τm
)lm

.

The equivariant Euler class of the normal bundle NΓ2,1
a,b,∅

is calculated by Cox and Katz
1999, Theorem 9.2.1 as

eFΓ2,1
a,b,∅

= τb − τa∏
j 6=a (τa − τj)

∏
j 6=b (τb − τj)

evΓ2,1
a,b,∅

=
∏
j 6=a (τa − τj)

∏
j 6=b (τb − τj)

τa − τb
eeΓ2,1

a,b,∅
= −(τa − τb)2 ∏

j 6=a,b
(τa − τj) (τb − τj)

eT (NΓ2,1
a,b,∅

) = eFΓ2,1
a,b,∅

evΓ2,1
a,b,∅

eeΓ2,1
a,b,∅

= −
∏
j 6=a

(τa − τj)
∏
j 6=b

(τb − τj)
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The case of the full set A = {1, 2} is handled in the same way and yields:

eK×T (i∗Γ2,1
a,b,{1,2}

N2,1)−1 =
∑
l≥0

1
κn+1+l

∑
l0≥0,...,lb=0,...ln≥0

l0+···+ln=l

∏
m

(1
2τa + 1

2τb − τm
)lm

,

eT (NΓ2,1
a,b,{1,2}

) = eT (NΓ2,1
a,b,∅

) = −
∏
j 6=a

(τa − τj)
∏
j 6=b

(τb − τj) .

When the set A = {A1} has a single element, the curve of the stable map representing
Γ2,1
a,b,A consist of a single irreducible component with two marked points. That is, the

equivariant Euler class of the SUSY normal bundle can be obtained from Proposition 5.3.1
as

eK×T
(
i∗Γ2,1
a,b,{A1}

N2,1

)
=

∏
0≤m≤n

(
κ− 1

2τa −
1
2τb + τm

)
,

and hence

eK×T (i∗Γ2,1
a,b,{A1}

N2,1)−1 =
∑
l≥0

1
κn+1+l

∑
l0≥0,...,ln≥0
l0+···+ln=l

∏
m

(1
2τa + 1

2τb − τm
)lm

.

The equivariant Euler class of the normal bundle NΓ is:

eFΓ2,1
a,b,{A1}

= 1∏
j 6=a (τa − τj)

∏
j 6=b (τb − τj)

evΓ2,1
a,b,{A1}

=
∏
j 6=a

(τa − τj)
∏
j 6=b

(τb − τj)

eeΓ2,1
a,b,{A1}

= −(τa − τb)2 ∏
j 6=a,b

(τa − τj) (τb − τj)

eT (NΓ2,1
a,b,{A1}

) = eFΓ2,1
a,b,{A1}

evΓ2,1
a,b,{A1}

eeΓ2,1
a,b,{A1}

=
∏
j 6=a

(τa − τj)
∏
j 6=b

(τb − τj)

Example 5.5.1. Specializing the results of this section to n = 1, a = 0 and b = 1 yields:

eK×T (i∗Γ2,1
0,1,∅

N2,1)−1 =
∑
l≥0

1
2lκl+2 (τ0 − τ1)l eT (NΓ2,1

a,b,∅
)−1 = 1

(τ1 − τ0)2

eK×T (i∗Γ2,1
0,1,{A1}

N2,1)−1 =
∑
l≥0

1
22lκ2l+2 (τ1 − τ0)2l eT (NΓ2,1

0,1,{A1}
)−1 = − 1

(τ1 − τ0)2

eK×T (i∗Γ2,1
0,1,{1,2}

N2,1)−1 =
∑
l≥0

1
2lκl+2 (τ1 − τ0)l eT (NΓ2,1

a,b,{1,2}
)−1 = 1

(τ1 − τ0)2

〈
SGW

P1,d=1
0,2

〉
(λ, λ) =

∑
A⊂{1,2}

∫
M

Γ2,1
0,1,A

 i∗Γ2,1
0,1,A

ev∗1λ · i∗Γ2,1
0,1,A

ev∗2λ

eK×T (i∗
Γ2,1

0,1,A
N2,1)eT (NΓ2,1

0,1,A
)


∣∣∣∣∣∣∣
dp=−2

= 1
κ2

(
τ2

1
(τ1 − τ0)2 − 2 τ1τ0

(τ1 − τ0)2 + τ2
0

(τ1 − τ0)2

)

= 1
κ2
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〈
SGW

P1,d=1
0,2

〉
(λ, 1) =

∑
A⊂{1,2}

∫
M

Γ2,1
0,1,A

 i∗Γ2,1
0,1,A

ev∗1λ

eK×T (i∗
Γ2,1

0,1,A
N2,1)eT (NΓ2,1

0,1,A
)


∣∣∣∣∣∣∣
dp=−3

= 1
2κ3

(
τ1 (τ0 − τ1)
(τ1 − τ0)2 + τ0 (τ1 − τ0)

(τ1 − τ0)2

)

= − 1
2κ3

〈
SGW

P1,d=1
0,2

〉
(1, 1) =

∑
A⊂{1,2}

∫
M

Γ2,1
0,1,A

 1
eK×T (i∗

Γ2,1
0,1,A

N2,1)eT (NΓ2,1
0,1,A

)


∣∣∣∣∣∣∣
dp=−4

= 1
4κ4

(
(τ0 − τ1)2

(τ1 − τ0)2 −
(τ1 − τ0)2

(τ1 − τ0)2 −
(τ1 − τ0)2

(τ1 − τ0)2 + (τ1 − τ0)2

(τ1 − τ0)2

)
= 0

Using the above formulas and computer algebra we have also calculated the following
examples:
Example 5.5.2 (Two-point Super Gromov–Witten invariants of P2 of degree one).〈

SGW
P2,d=1
0,2

〉
(Λ2,Λ2) = 1

κ3 ,
〈
SGW

P2,d=1
0,2

〉
(Λ2,Λ) = 3

2κ4 ,〈
SGW

P2,d=1
0,2

〉
(Λ,Λ) = 3

4κ5 ,
〈
SGW

P2,d=1
0,2

〉
(Λ2, 1) = − 3

4κ5 ,〈
SGW

P2,d=1
0,2

〉
(Λ, 1) = − 3

4κ6 ,
〈
SGW

P2,d=1
0,2

〉
(1, 1) = 0,

Example 5.5.3 (Two-point Super Gromov–Witten invariants of P3 of degree one).〈
SGW

P3,d=1
0,2

〉
(Λ3,Λ3) = 1

κ4〈
SGW

P3,d=1
0,2

〉
(Λ3,Λ2) = 2

κ5〈
SGW

P3,d=1
0,2

〉
(Λ3,Λ) = 5

2κ6

〈
SGW

P3,d=1
0,2

〉
(Λ2,Λ2) = 5

κ6〈
SGW

P3,d=1
0,2

〉
(Λ3, 1) = − 5

4κ7

〈
SGW

P3,d=1
0,2

〉
(Λ2,Λ) = − 15

4κ7〈
SGW

P3,d=1
0,2

〉
(Λ2, 1) = − 5

2κ8

〈
SGW

P3,d=1
0,2

〉
(Λ,Λ) = 15

8κ8〈
SGW

P3,d=1
0,2

〉
(Λ, 1) = − 35

16κ9〈
SGW

P3,d=1
0,2

〉
(1, 1) = 0
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Example 5.5.4 (Two-point Super Gromov–Witten invariants of P4 of degree one).〈
SGW

P4,d=1
0,2

〉
(Λ4,Λ4) = 1

κ5〈
SGW

P4,d=1
0,2

〉
(Λ4,Λ3) = 5

2κ6〈
SGW

P4,d=1
0,2

〉
(Λ4,Λ2) = 15

4κ7

〈
SGW

P4,d=1
0,2

〉
(Λ3,Λ3) = 15

2κ7〈
SGW

P4,d=1
0,2

〉
(Λ4,Λ) = 35

8κ8

〈
SGW

P4,d=1
0,2

〉
(Λ3,Λ2) = 105

8κ8〈
SGW

P4,d=1
0,2

〉
(Λ4, 1) = − 35

16κ9

〈
SGW

P4,d=1
0,2

〉
(Λ3,Λ) = 175

16κ9〈
SGW

P4,d=1
0,2

〉
(Λ2,Λ2) = 315

16κ9〈
SGW

P4,d=1
0,2

〉
(Λ3, 1) = − 105

16κ10

〈
SGW

P4,d=1
0,2

〉
(Λ2,Λ) = 105

8κ10〈
SGW

P4,d=1
0,2

〉
(Λ2, 1) = − 315

32κ11

〈
SGW

P4,d=1
0,2

〉
(Λ,Λ) = − 525

64κ11〈
SGW

P4,d=1
0,2

〉
(Λ, 1) = − 35

16κ12〈
SGW

P4,d=1
0,2

〉
(1, 1) = 0

Example 5.5.5 (Two-point Super Gromov–Witten invariants of P5 of degree one).〈
SGW

P5,d=1
0,2

〉
(Λ5,Λ5) = 1

κ6〈
SGW

P5,d=1
0,2

〉
(Λ5,Λ4) = 3

κ7〈
SGW

P5,d=1
0,2

〉
(Λ5,Λ3) = 21

4κ8

〈
SGW

P5,d=1
0,2

〉
(Λ4,Λ4) = 21

2κ8〈
SGW

P5,d=1
0,2

〉
(Λ5,Λ2) = 7

κ9

〈
SGW

P5,d=1
0,2

〉
(Λ4,Λ3) = 21

κ9〈
SGW

P5,d=1
0,2

〉
(Λ5,Λ) = 63

8κ10

〈
SGW

P5,d=1
0,2

〉
(Λ4,Λ2) = 63

2κ10〈
SGW

P5,d=1
0,2

〉
(Λ3,Λ3) = 189

4κ10〈
SGW

P5,d=1
0,2

〉
(Λ5, 1) = − 63

16κ11

〈
SGW

P5,d=1
0,2

〉
(Λ4,Λ) = 441

16κ11〈
SGW

P5,d=1
0,2

〉
(Λ3,Λ2) = 1071

16κ11〈
SGW

P5,d=1
0,2

〉
(Λ4, 1) = − 63

4κ12

〈
SGW

P5,d=1
0,2

〉
(Λ3,Λ) = 1575

316κ12〈
SGW

P5,d=1
0,2

〉
(Λ2,Λ2) = 1365

16κ12
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〈
SGW

P5,d=1
0,2

〉
(Λ3, 1) = − 2079

64κ13

〈
SGW

P5,d=1
0,2

〉
(Λ2,Λ) = 3465

64κ13〈
SGW

P5,d=1
0,2

〉
(Λ2, 1) = − 693

16κ14

〈
SGW

P5,d=1
0,2

〉
(Λ,Λ) = − 3465

128κ14〈
SGW

P5,d=1
0,2

〉
(Λ, 1) = − 9009

2566κ15〈
SGW

P5,d=1
0,2

〉
(1, 1) = 0

5.6 Three-point Super Gromov–Witten Invariants of Pn of degree one
In this section we calculate three point Super Gromov–Witten invariants of Pn of degree
one. In this case d3,1 = 2n + 1 and r3,1 = n + 2. The fixed points of the T action are
labeled by the graphs Γ3,1

a,b,A where A ⊂ {1, 2, 3} and 0 ≤ a < b ≤ n.〈
SGW

Pn,d=1
0,3

〉
(α1, α2, α3) =

∑
0≤a<b≤n

∑
A⊂{1,2,3}

∫
M

Γ3,1
a,b,A

 i
∗
Γ3,1
a,b,A

ev∗1α1 ∪ i∗Γ3,1
a,b,A

ev∗2α2 ∪ i∗Γ3,1
a,b,A

ev∗3α3

eK×T
(
i∗
Γ3,1
a,b,A

N3,1

)
eT (NΓ3,1

a,b,A
)


∣∣∣∣∣∣∣∣
dp=−(3n+3)+ 1

2 degα

If the cardinality #A of A is zero or three the moduli space MΓ3,1
a,b,A

is isomorphic to
M0,4, otherwise the moduli space is a point. The equivariant Euler classes of the SUSY
normal bundles also depend on the cardinality of A.
Let us first treat the case A = ∅. In this case, all four three marked points are

mapped to the fixed point qb ∈ Pn. Consequently, the marked points must lie on a
different component than the one that is mapped to the coordinate line through qa and
qb. The component that is contracted contains four special points and the non-contracted
component one. Hence

MΓ3,1
a,b,∅

= M0,4 ×MΓ1,1
a,b,∅

= P1.

It follows from the splitting principle together with Proposition 3.3.2 and Proposi-
tion 5.3.3 that

eK×T (i∗Γ3,1
a,b,∅

N3,1) = eK(N4)eK×T (i∗Γ1,1
a,b,∅

N1,1)

= κ

(
κ− 1

2λ
) ∏

0≤m≤n
m 6=a

(
κ− 1

2τa −
1
2τb + τm

)

As the inverse of κ
(
κ− 1

2λ
)
is given by κ−3

(
κ+ 1

2λ
)
, the inverse of the equivariant

Euler class is given by

eK×T (i∗Γ3,1
a,b,∅

N3,1)−1 =
∑
l≥0

κ+ 1
2λ

κn+3+l

∑
l0≥0,...,la=0,...ln≥0

l0+···+ln=l

∏
m

(1
2τa + 1

2τb − τm
)lm

.
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By Cox and Katz 1999, Theorem 9.2.1, the equivariant Euler class of the normal bundle
NΓ3,1

a,b,∅
is given by

eFΓ3,1
a,b,∅

= (τb − τa − λ)∏
j 6=a (τa − τj)

∏
j 6=b (τb − τj)

evΓ3,1
a,b,∅

=
∏
j 6=a (τa − τj)

∏
j 6=b (τb − τj)

(τa − τb)
eeΓ3,1

a,b,∅
= −(τa − τb)2 ∏

j 6=a,b
(τa − τj) (τb − τj)

eT (NΓ3,1
a,b,∅

) = eFΓ3,1
a,b,∅

evΓ3,1
a,b,∅

eeΓ3,1
a,b,∅

=
(τb − τa − λ)

∏
j 6=a (τa − τj)

∏
j 6=b (τb − τj)

(τa − τb)
Note that the class eb = ψb in Cox and Katz 1999, Theorem 9.2.1 is equal to λ in the
case at hand M0,4 = P1. The inverse is calculated as follows:

eT (NΓ3,1
a,b,∅

)−1 = − 1
1− λ

τb−τa

1∏
j 6=a (τa − τj)

∏
j 6=b (τb − τj)

= −
1 + λ

τb−τa∏
j 6=a (τa − τj)

∏
j 6=b (τb − τj)

= τa − τb − λ
(τb − τa)

∏
j 6=a (τa − τj)

∏
j 6=b (τb − τj)

The case A = {1, 2, 3} is very similar to the case A = ∅ and one obtains

eK×T (i∗Γ3,1
a,b,{1,2,3}

N3,1)−1 =
∑
l≥0

κ+ 1
2λ

κn+3+l

∑
l0≥0,...,lb=0,...ln≥0

l0+···+ln=l

∏
m

(1
2τa + 1

2τb − τm
)lm

and

eT (NΓ3,1
a,b,{1,2,3}

)−1 = τb − τa − λ
(τa − τb)

∏
j 6=a (τa − τj)

∏
j 6=b (τb − τj)

.

In the case that A = {A1}, that is A has cardinality #A = 1, the marked point with
label A1 is mapped to qa and the other two marked points with labels {1, 2, 3} \ {A1}
are mapped to the marked point qb. Consequently, the two marked points must lie on a
different component of the prestable curve than the one that is mapped to the coordinate
line through qa and qb. The contracted component has three special points and the
non-contracted two and the resulting moduli space is a point:

MΓ3,1
a,b,{A1}

= M0,3 ×MΓ1,1
a,b,{A1}

It follows from the Splitting Axiom 3.4.10 together with Proposition 3.3.2 and Proposi-
tion 5.3.1 that

eK×T
(
i∗Γ3,1
a,b,{A1}

N3,1

)
= eK(N3)eK×T

(
i∗Γ2,1
a,b,{A1}

N2,1

)
= κ

∏
0≤m≤n

(
κ− 1

2τa −
1
2τb + τm

)
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and hence

eK×T (i∗Γ3,1
a,b,{A1}

N3,1)−1 =
∑
l≥0

1
κn+2+l

∑
l0≥0,...,ln≥0
l0+···+ln=l

∏
m

(1
2τa + 1

2τb − τm
)lm

.

The equivariant Euler class of the normal bundle NΓ3,1
a,b,{A1}

can be calculated by Cox and
Katz 1999, Theorem 9.2.1 as

eFΓ3,1
a,b,{A1}

= (τb − τa)∏
j 6=a (τa − τj)

∏
j 6=b (τb − τj)

evΓ3,1
a,b,{A1}

=
∏
j 6=a

(τa − τj)
∏
j 6=b

(τb − τj)

eeΓ3,1
a,b,{A1}

= −(τa − τb)2 ∏
j 6=a,b

(τa − τj) (τb − τj)

eT (NΓ3,1
a,b,{A1}

) = eFΓ3,1
a,b,{A1}

evΓ3,1
a,b,{A1}

eeΓ3,1
a,b,{A1}

= (τb − τa)
∏
j 6=a

(τa − τj)
∏
j 6=b

(τb − τj)

The case A = {A1, A2} is analogous and one obtains

eK×T (i∗Γ3,1
a,b,{A1,A2}

N3,1)−1 =
∑
l≥0

1
κn+2+l

∑
l0≥0,...,ln≥0
l0+···+ln=l

∏
m

(1
2τa + 1

2τb − τm
)lm

and
eT (NΓ3,1

a,b,{A1,A2}
) = (τa − τb)

∏
j 6=a

(τa − τj)
∏
j 6=b

(τb − τj) .

In a first step we want to calculate the super Gromov–Witten invariants of P1 for
stable maps of degree one and three marked points. In this case, we have d3,1 = 3 and
r3,1 = 3. We call the number d3,1 − 2 degα codegree.
Example 5.6.1 (Codegree zero, degα = d3,1). The first example is the case of codegree
zero, that is αj = λ for j = 1, 2, 3.〈

SGW
P1,d=1
0,3

〉
(λ, λ, λ)

=
∑

A⊂{1,2,3}

∫
M

Γ3,1
0,1,A

 i∗Γ3,1
0,1,A

ev∗1λ · i∗Γ3,1
0,1,A

ev∗2λ · i∗Γ3,1
0,1,A

ev∗3λ

eK×T (i∗
Γ3,1

0,1,A
N3,1)eT (NΓ3,1

0,1,A
)


∣∣∣∣∣∣∣
dp=−3
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Specializing the results of this section to n = 1, a = 0 and b = 0 yields:

eK×T (i∗Γ3,1
0,1,∅

N3,1)−1 =
∑
l≥0

2κ+ λ

2l+1κl+4 (τ0 − τ1)l eT (NΓ3,1
a,b,∅

)−1 = λ+ τ1 − τ0

(τ1 − τ0)3

eK×T (i∗Γ3,1
0,1,{A1}

N3,1)−1 =
∑
l≥0

1
22lκ2l+3 (τ1 − τ0)2l eT (NΓ3,1

0,1,{A1}
)−1 = − 1

(τ1 − τ0)3

eK×T (i∗Γ3,1
0,1,{A1,A2}

N3,1)−1 =
∑
l≥0

1
22lκ2l+3 (τ1 − τ0)2l eT (NΓ3,1

0,1,{A1,A2}
)−1 = 1

(τ1 − τ0)3

eK×T (i∗Γ3,1
0,1,{1,2,3}

N3,1)−1 =
∑
l≥0

2κ+ λ

2l+1κl+4 (τ1 − τ0)l eT (NΓ3,1
a,b,{1,2,3}

)−1 = τ1 − τ0 − λ
(τ1 − τ0)3

(5.6.2)
In particular, the summand of eK×T (i∗Γ0,1,A

N3,1) that is of polynomial degree dp = −3 is
given by κ−3 for all A.

We will evaluate the integral for the different sets separately. First, in the case where
A = ∅, we use Equations (5.6.1) to obtain:

∫
M

Γ3,1
0,1,∅

 i
∗
Γ3,1

0,1,∅
ev∗1λ · i∗Γ3,1

0,1,∅
ev∗2λ · i∗Γ3,1

0,1,∅
ev∗3λ

eK×T (i∗
Γ3,1

0,1,∅
N3,1)eT (NΓ3,1

0,1,∅
)


∣∣∣∣∣∣∣
dp=−3

= κ−3 τ3
1

(τ1 − τ0)3

Similarly,for A = {A1}:

∫
M

Γ3,1
0,1,{A1}

 i
∗
Γ3,1

0,1,{A1}
ev∗1λ · i∗Γ3,1

0,1,{A1}
ev∗2λ · i∗Γ3,1

0,1,{A1}
ev∗3λ

eK×T (i∗
Γ3,1

0,1,{A1}
N3,1)eT (NΓ3,1

0,1,{A1}
)


∣∣∣∣∣∣∣
dp=−3

= −κ−3 τ0τ
2
1

(τ1 − τ0)3

and for the two-element set A = {A1, A2}:

∫
M

Γ3,1
0,1,{A1,A2}

 i
∗
Γ3,1

0,1,{A1,A2}
ev∗1λ · i∗Γ3,1

0,1,{A1,A2}
ev∗2λ · i∗Γ3,1

0,1,{A1,A2}
ev∗3λ

eK×T (i∗
Γ3,1

0,1,{A1,A2}
N3,1)eT (NΓ3,1

0,1,{A1,A2}
)


∣∣∣∣∣∣∣
dp=−3

= κ−3 τ2
0 τ1

(τ1 − τ0)3

The case of the full set A = {1, 2, 3} is:

∫
M

Γ3,1
0,1,{1,2,3}

 i
∗
Γ3,1

0,1,{1,2,3}
ev∗1λ · i∗Γ3,1

0,1,{1,2,3}
ev∗2λ · i∗Γ3,1

0,1,{1,2,3}
ev∗3λ

eK×T (i∗
Γ3,1

0,1,{1,2,3}
N3,1)eT (NΓ3,1

0,1,{1,2,3}
)


∣∣∣∣∣∣∣
dp=−3

= −κ−3 τ3
0

(τ1 − τ0)3
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Summing up:〈
SGW

P1,d=1
0,3

〉
(λ, λ, λ)

= κ−3 τ3
1

(τ1 − τ0)3 − κ
−3 3τ0τ

2
1

(τ1 − τ0)3 + κ−3 3τ2
0 τ1

(τ1 − τ0)3 − κ
−3 τ3

0
(τ1 − τ0)3

= κ−3

This result is expected by the Extension Axiom 3.4.3. Because the 2d3,1 = degα〈
SGW

P1,d=1
0,3

〉
(λ, λ, λ) = κ−3

〈
GW

P1,d=1
0,3

〉
(λ, λ, λ)

where the only data not present in Gromov–Witten invariants is the power of κ in the
prefactor given by −r3,1 = −3.

〈
GW

P1,d=1
0,3

〉
(λ, λ, λ) = 1 because there is a unique

automorphism of P1 that fixes three points.
Example 5.6.3 (Codegree two, 2d3,1 − degα = 2). The case where 2d3,1 − degα = 2
involves also characteristic classes of the normal bundle N3,1.

〈
SGW

P1,d=1
0,3

〉
(λ, λ, 1) =

∑
A⊂{1,2,3}

∫
M

Γ3,1
0,1,A

 i∗Γ3,1
0,1,A

ev∗1λ · i∗Γ3,1
0,1,A

ev∗2λ

eK×T (i∗
Γ3,1

0,1,A
N3,1)eT (NΓ3,1

0,1,A
)


∣∣∣∣∣∣∣
dp=−4

We again calculate the integral with the help of Equations (5.6.1). For the empty set
A = ∅ we have:

∫
M

Γ3,1
0,1,∅

 i∗Γ3,1
0,1,∅

ev∗1λ · i∗Γ3,1
0,1,∅

ev∗2λ

eK×T (i∗
Γ3,1

0,1,∅
N3,1)eT (NΓ3,1

0,1,∅
)


∣∣∣∣∣∣∣
dp=−4

=
∫
P1

1
2 (λ+ τ0 − τ1) λ+ τ1 − τ0

(τ1 − τ0)3 = 0

The contributions of the one-element and two-element sets vanish because the coefficient
of −κ4 of the equivariant Euler class of the SUSY normal bundles vanishes by Equa-
tions (5.6.1). The case of the full set A = {1, 2, 3} is treated analogously to the case of
the empty set:

∫
M

Γ3,1
0,1,{1,2,3}

 i∗Γ3,1
0,1,{1,2,3}

ev∗1λ · i∗Γ3,1
0,1,{1,2,3}

ev∗2λ

eK×T (i∗
Γ3,1

0,1,{1,2,3}
N3,1)eT (NΓ3,1

0,1,{1,2,3}
)


∣∣∣∣∣∣∣
dp=−4

= 0

Summing up: 〈
SGW

P1,d=1
0,3

〉
(λ, λ, 1) = 0
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Example 5.6.4 (Codegree four, 2d3,1 − degα = 4). The case of codegree four is treated in
the same way. First we calculate the summands using Equations (5.6.1):

∫
M

Γ3,1
0,1,∅

 i∗Γ3,1
0,1,∅

ev∗1λ

eK×T (i∗
Γ3,1

0,1,∅
N3,1)eT (NΓ3,1

0,1,∅
)


∣∣∣∣∣∣∣
dp=−5

=
∫
P1

1
4
(
λ (τ0 − τ1) + (τ0 − τ1)2

) λ+ τ1 − τ0

(τ1 − τ0)3 = 0

∫
M

Γ3,1
0,1,{1}

 i∗Γ3,1
0,1,{1}

ev∗1λ

eK×T (i∗
Γ3,1

0,1,{1}
N3,1)eT (NΓ3,1

0,1,{1}
)


∣∣∣∣∣∣∣
dp=−5

= −κ−5 τ0
4 (τ1 − τ0)

∫
M

Γ3,1
0,1,{2}

 i∗Γ3,1
0,1,{2}

ev∗1λ

eK×T (i∗
Γ3,1

0,1,{2}
N3,1)eT (NΓ3,1

0,1,{2}
)


∣∣∣∣∣∣∣
dp=−5

=
∫
M

Γ3,1
0,1,{3}

 i∗Γ3,1
0,1,{3}

ev∗1λ

eK×T (i∗
Γ3,1

0,1,{3}
N3,1)eT (NΓ3,1

0,1,{3}
)


∣∣∣∣∣∣∣
dp=−5

= −κ−5 τ1
4 (τ1 − τ0)

∫
M

Γ3,1
0,1,{2,3}

 i∗Γ3,1
0,1,{2,3}

ev∗1λ

eK×T (i∗
Γ3,1

0,1,{2,3}
N3,1)eT (NΓ3,1

0,1,{2,3}
)


∣∣∣∣∣∣∣
dp=−5

= κ−5 τ1
4 (τ1 − τ0)

∫
M

Γ3,1
0,1,{1,3}

 i∗Γ3,1
0,1,{1,3}

ev∗1λ

eK×T (i∗
Γ3,1

0,1,{1,3}
N3,1)eT (NΓ3,1

0,1,{1,3}
)


∣∣∣∣∣∣∣
dp=−5

=
∫
M

Γ3,1
0,1,{1,2}

 i∗Γ3,1
0,1,{1,2}

ev∗1λ

eK×T (i∗
Γ3,1

0,1,{1,2}
N3,1)eT (NΓ3,1

0,1,{1,2}
)


∣∣∣∣∣∣∣
dp=−5

= κ−5 τ0
4 (τ1 − τ0)

∫
M

Γ3,1
0,1,{1,2,3}

 i∗Γ3,1
0,1,{1,2,3}

ev∗1λ

eK×T (i∗
Γ3,1

0,1,{1,2,3}
N3,1)eT (NΓ3,1

0,1,{1,2,3}
)


∣∣∣∣∣∣∣
dp=−5

= 0
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Summing up yields:

〈
SGW

P1,d=1
0,3

〉
(λ, 1, 1) =

∑
A⊂{1,2,3}

∫
M

Γ3,1
0,1,A

 i∗Γ3,1
0,1,A

ev∗1λ

eK×T (i∗
Γ3,1

0,1,A
N3,1)eT (NΓ3,1

0,1,A
)


∣∣∣∣∣∣∣
dp=−5

= − κ−5 τ0
4 (τ1 − τ0) − κ

−5 τ1
4 (τ1 − τ0) − κ

−5 τ1
4 (τ1 − τ0)

+ κ−5 τ1
4 (τ1 − τ0) + κ−5 τ0

4 (τ1 − τ0) + κ−5 τ0
4 (τ1 − τ0)

= − 1
4κ
−5

Example 5.6.5 (Codegree six, 2d3,1 − degα = 6). The summands for the fixed point loci
MΓ3,1

0,1,A
are:

∫
M

Γ3,1
0,1,∅

 1
eK×T (i∗

Γ3,1
0,1,∅

N3,1)eT (NΓ3,1
0,1,∅

)


∣∣∣∣∣∣∣
dp=−6

=
∫
P1

1
8
(
λ(τ0 − τ1)2 + (τ0 − τ1)3

) λ+ τ1 − τ0

(τ1 − τ0)3 = 0

∫
M

Γ3,1
0,1,{A1}

 1
eK×T (i∗

Γ3,1
0,1,{A1}

N3,1)eT (NΓ3,1
0,1,{A1}

)


∣∣∣∣∣∣∣
dp=−6

= 0

∫
M

Γ3,1
0,1,{A1,A2}

 1
eK×T (i∗

Γ3,1
0,1,{A1,A2}

N3,1)eT (NΓ3,1
0,1,{A1,A2}

)


∣∣∣∣∣∣∣
dp=−6

= 0

∫
M

Γ3,1
0,1,{1,2,3}

 1
eK×T (i∗

Γ3,1
0,1,{1,2,3}

N3,1)eT (NΓ3,1
0,1,{1,2,3}

)


∣∣∣∣∣∣∣
dp=−6

= 0

Summing up yields: 〈
SGW

P1,d=1
0,3

〉
(1, 1, 1) = 0
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Example 5.6.6 (Three-point Super Gromov–Witten invariants of P2 of degree one).〈
SGW

P2,d=1
0,3

〉
(Λ2,Λ2,Λ) = 1

κ4〈
SGW

P2,d=1
0,3

〉
(Λ2,Λ2, 1) = 0

〈
SGW

P2,d=1
0,3

〉
(Λ2,Λ,Λ) = 3

2κ5〈
SGW

P2,d=1
0,3

〉
(Λ2,Λ, 1) = 0

〈
SGW

P2,d=1
0,3

〉
(Λ,Λ,Λ) = 3

2κ6〈
SGW

P2,d=1
0,3

〉
(Λ2, 1, 1) = − 3

8κ7

〈
SGW

P2,d=1
0,3

〉
(Λ,Λ, 1) = − 3

8κ7〈
SGW

P2,d=1
0,3

〉
(Λ, 1, 1) = − 3

8κ7〈
SGW

P2,d=1
0,3

〉
(1, 1, 1) = 0

Example 5.6.7 (Three-point Super Gromov–Witten invariants of P3 of degree one).〈
SGW

P3,d=1
0,3

〉
(Λ3,Λ3,Λ) = 1

κ5

〈
SGW

P3,d=1
0,3

〉
(Λ3,Λ2,Λ2) = 1

κ5〈
SGW

P3,d=1
0,3

〉
(Λ3,Λ3, 1) = 0

〈
SGW

P3,d=1
0,3

〉
(Λ3,Λ2,Λ) = 2

κ6〈
SGW

P3,d=1
0,3

〉
(Λ3,Λ2, 1) = 0

〈
SGW

P3,d=1
0,3

〉
(Λ3,Λ,Λ) = 5

2κ7〈
SGW

P3,d=1
0,3

〉
(Λ2,Λ2,Λ) = 5

κ7〈
SGW

P3,d=1
0,3

〉
(Λ3,Λ, 1) = 0

〈
SGW

P3,d=1
0,3

〉
(Λ2,Λ2, 1) = 0〈

SGW
P3,d=1
0,3

〉
(Λ2,Λ,Λ) = 5

κ8〈
SGW

P3,d=1
0,3

〉
(Λ2,Λ, 1) = − 5

8κ9

〈
SGW

P3,d=1
0,3

〉
(Λ,Λ,Λ) = 15

4κ9〈
SGW

P3,d=1
0,3

〉
(Λ2, 1, 1) = − 5

4κ10

〈
SGW

P3,d=1
0,3

〉
(Λ,Λ, 1) = − 5

4κ10〈
SGW

P3,d=1
0,3

〉
(Λ, 1, 1) = − 35

32κ11〈
SGW

P3,d=1
0,3

〉
(1, 1, 1) = 0
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