Max-Planck-Institut für Mathematik Bonn

A note on the squarefree density of polynomials
by

Robert C. Vaughan
Yuriy G. Zarhin

Max-Planck-Institut für Mathematik Preprint Series 2023 (29)

A note on the squarefree density of polynomials

by
Robert C. Vaughan
Yuriy G. Zarhin

Max-Planck-Institut für Mathematik
Vivatsgasse 7
53111 Bonn
Germany
Department of Mathematics
Pennsylvania State University University Park, PA 16802
USA

A NOTE ON THE SQUAREFREE DENSITY OF POLYNOMIALS

R. C. VAUGHAN AND YU. G. ZARHIN

Abstract

The conjectured squarefree density of an integral polynomial \mathcal{P} in s variables is an Euler product $\mathfrak{S}_{\mathcal{P}}$ which can be considered as a product of local densities. We show that a necessary and sufficient condition for $\mathfrak{S}_{\mathcal{P}}$ to be 0 when $\mathcal{P} \in \mathbb{Z}\left(X_{1}, \ldots, X_{s}\right)$ is a polynomial in s variables over the integers, is that the polynomial is not squarefree as a polynomial. We also show that generally the upper squarefree density $\mathfrak{D}_{\mathcal{P}}$ satisfies $\mathfrak{D}_{\mathcal{P}} \leq \mathfrak{S}_{\mathcal{P}}$.

1. Introduction

There is a long history of research into the squarefree density of polynomials in one, or more, variables. The progenitor of such conclusions is the famous estimate

$$
\sum_{n \leq X} \mu(n)^{2}=\frac{6}{\pi^{2}} X+O\left(X^{1 / 2}\right)
$$

of Gegenbauer [1885]. Let $\mathcal{P} \in \mathbb{Z}\left[X_{1}, \ldots, X_{s}\right]$ be a polynomial with integers coefficients and total degree

$$
d=\operatorname{deg}(\mathcal{P}) \geq 2
$$

and let for any integer $m>1$

$$
\begin{equation*}
\rho_{\mathcal{P}}(m)=\operatorname{card}\left\{\mathbf{x} \in \mathbb{Z}^{s} / m \mathbb{Z}^{s}=(\mathbb{Z} / m \mathbb{Z})^{s}: \mathcal{P}(\mathbf{x}) \equiv 0(\bmod m)\right\} . \tag{1.1}
\end{equation*}
$$

Given $P_{j} \in \mathbb{R}, P_{j} \geq 1(j=1, \ldots s)$ and $h \in \mathbb{Z}$, we define

$$
\begin{equation*}
\mathbf{P}=\left\{\mathbf{x}=\left(x_{1}, \ldots, x_{s}\right) \mid x_{j} \in\left[-P_{j}, P_{j}\right] \cap \mathbb{Z}\right\}, \quad r_{\mathcal{P}}(h)=\operatorname{card}\{\mathbf{x} \in \mathbf{P} \mid \mathcal{P}(\mathbf{x})=h\} . \tag{1.2}
\end{equation*}
$$

Then we extend the definition of the Möbius function μ by taking $\mu(0)=0$ and define

$$
\begin{equation*}
N_{\mathcal{P}}(\mathbf{P})=\sum_{h \in \mathbb{Z}} \mu(|h|)^{2} r_{\mathcal{P}}(h), \tag{1.3}
\end{equation*}
$$

the number of squarefree values of $\mathcal{P}(\mathbf{x})$ with

$$
\mathbf{x} \in \mathbf{P}=\mathbb{Z}^{s} \cap \prod_{j=1}^{s}\left[-P_{j}, P_{j}\right]
$$

[^0]It is readily conjectured that

$$
\begin{equation*}
N_{\mathcal{P}}(\mathbf{P}) \sim 2^{s} P_{1} \ldots P_{s} \mathfrak{S}_{\mathcal{P}} \text { as } \min _{j} P_{j} \rightarrow \infty \tag{1.4}
\end{equation*}
$$

where

$$
\begin{equation*}
\mathfrak{S}_{\mathcal{P}}=\prod_{p}\left(1-\frac{\rho_{\mathcal{P}}\left(p^{2}\right)}{p^{2 s}}\right) \tag{1.5}
\end{equation*}
$$

Here p runs through the set of all primes.
There is a considerable body of work on various special cases, some even quite general. See, for example, Bhargava [2014], Bhargava et al [2022], Filaseta [1994], Greaves [1992], Hooley [1967], [1977], [2009a], [2009b], Kowalski [2020], [2021], Kowalski and Vaughan [2023], Lapkova and Xiao [2021], Poonen [2003] Sanjaya and Wang [2023] and Uchiyama [1972]. In Kowalski and Vaughan [2023] it was noted that

$$
\prod_{p \leq n}\left(1-\frac{\rho_{\mathcal{P}}\left(p^{2}\right)}{p^{2 s}}\right)
$$

is a non-negative decreasing sequence so it converges as $n \rightarrow \infty$ to a non-negative limit.

It seems that (1.4) should hold in all cases. Thus if \mathcal{P} is such that it has a shortage of squarefree values, then we expect that

$$
\begin{equation*}
\mathfrak{S}_{\mathcal{P}}=0 \tag{1.6}
\end{equation*}
$$

Indeed the converse case (1.4) is easy to prove. See for instance Theorem 1.3 of Kowalski and Vaughan ibidem.

Let

$$
\begin{equation*}
\mathcal{P} \in \mathbb{Z}\left[X_{1}, \ldots, X_{s}\right] \tag{1.7}
\end{equation*}
$$

be a nonzero polynomial of degree d, which, except where otherwise stated explicitly, we will suppose satisfies $d \geq 2$.

Theorem 1.1. For a polynomial \mathcal{P} satisfying (1.7) and $s \geq 1$ we have

$$
\begin{equation*}
\mathfrak{S}_{\mathcal{P}}=0 \tag{1.8}
\end{equation*}
$$

if and only if one of the following holds.
(a) There is a prime p such that $\mathcal{P}\left(a_{1}, \ldots, a_{s}\right) \in p^{2} \mathbb{Z}$ for all $a_{1}, \ldots, a_{s} \in \mathbb{Z}$.
(b) There are polynomials $\mathcal{L}_{1}, \mathcal{L}_{2} \in \mathbb{Z}\left[x_{1}, \ldots, x_{s}\right]$ such that $\operatorname{deg}\left(\mathcal{L}_{2}\right) \geq 1$ and

$$
\begin{equation*}
\mathcal{P}(\mathbf{x})=\mathcal{L}_{1}(\mathbf{x}) \mathcal{L}_{2}(\mathbf{x})^{2} \tag{1.9}
\end{equation*}
$$

In addition, if $d=\operatorname{deg}(\mathcal{P})$ is odd, then $\operatorname{deg}\left(\mathcal{L}_{1}\right) \geq 1$.
As an immediate corollary we have
Corollary 1.2. If \mathcal{P} satisfies (a), then

$$
\begin{equation*}
N_{\mathcal{P}}(\mathbf{P})=0 \tag{1.10}
\end{equation*}
$$

If it satisfies (b), then

$$
\begin{equation*}
N_{\mathcal{P}}(\mathbf{P}) \ll \frac{P_{1} \ldots P_{s}}{\min \left(P_{1}, \ldots, P_{s}\right)} \tag{1.11}
\end{equation*}
$$

This improves upon Theorem 1.3 of Kowalski and Vaughan.
Let $\mathfrak{d}_{\mathcal{P}}$ and $\mathfrak{D}_{\mathcal{P}}$ denote the lower and upper densities

$$
\mathfrak{d}_{\mathcal{P}}=\liminf _{\min \left\{P_{1}, \ldots, P_{s}\right\} \rightarrow \infty} \frac{N_{\mathcal{P}}(\mathbf{P})}{2^{s} P_{1} \ldots P_{s}}
$$

and

$$
\mathfrak{D}_{\mathcal{P}}=\limsup _{\min \left\{P_{1}, \ldots, P_{s}\right\} \rightarrow \infty} \frac{N_{\mathcal{P}}(\mathbf{P})}{2^{s} P_{1} \ldots P_{s}}
$$

respectively. Then we have the following further consequence of Theorem 1.1 that will be proven in Section 4
Corollary 1.3. We have $\mathfrak{D}_{\mathcal{P}} \leq \mathfrak{S}_{\mathcal{P}}$ and in particular if $\mathfrak{D}_{\mathcal{P}}>0$, then $\mathfrak{S}_{\mathcal{P}}>0$ and \mathcal{P} is not of the kind described in (a) and (b) of Theorem 1.1.

One can speculate as to whether it is possible to prove that $\mathfrak{d}_{\mathcal{P}}>0$ without showing that $\mathfrak{d}_{\mathcal{P}}=\mathfrak{D}_{\mathcal{P}}=\mathfrak{S}_{\mathcal{P}}>0$.

Remark 1.4. In the course of the proof of Theorem 1.1, we will use induction on s. We may and will assume that all the variables appear in \mathcal{P} explicitly, i.e., all the partial derivatives

$$
\mathcal{P}_{j}:=\frac{\partial \mathcal{P}}{\partial x_{j}} \in \mathbb{Z}\left[x_{1}, \ldots, x_{s}\right](1 \leq j \leq s)
$$

are nonzero polynomials of degree $\leq d-1$. Indeed, if not we can reduce to the case $s-1$ and use the induction assumption.

With regard to notation we follow that enunciated by Schmidt 2004] in that quite often x, y, z, \ldots will be elements which lie in a ground field or are algebraic over a ground field, and X, Y, Z, \ldots will be algebraically independent over a ground field.

2. Proof of Theorem 1.1

In what follows we freely use standard classical results about convergence of infinite products, see G. M. Fikhtengol'ts [1965, Ch. 15, Sect. 5, Subsect. 250]. We will also need the following assertion that will be proven in Section 3

Lemma 2.1. Let $s \geq 2$ and d be positive integers, and $f\left(X_{1}, \ldots, X_{s}\right) \in \mathbb{Z}\left[X_{1}, \ldots, X_{s}\right]$ be a nonzero polynomial of degree d. Then there are a set of primes $S=S(f)$ and positive real numbers $\delta=\delta(f)$ and $Q=Q(f)$ such that

$$
\begin{equation*}
\rho_{f}(p) \geq \frac{1}{2} p^{s-1} \text { for } p \in S(f) \tag{2.1}
\end{equation*}
$$

and

$$
\begin{equation*}
\pi_{S}(R)=\operatorname{card}\{p \leq R: p \in S\} \geq \frac{\delta R}{\log R} \text { for } R \geq Q \tag{2.2}
\end{equation*}
$$

Now let us start the proof of Theorem 1.1. We first deal with the situation when (a) or (b) hold. If (a) holds, then at once $\rho_{\mathcal{P}}\left(p^{2}\right)=p^{2 s}$ and so 1.8 holds trivially.

Let us assume that (a) does not hold but (b) holds. Then obviously

$$
\begin{equation*}
p^{2 s}>\rho_{\mathcal{P}}\left(p^{2}\right) \geq \rho_{\mathcal{L}_{2}^{2}}\left(p^{2}\right)=\rho_{\mathcal{L}_{2}}(p) \cdot p^{s} . \tag{2.3}
\end{equation*}
$$

Applying Lemma 2.1 with $f=\mathcal{L}_{2}$, we conclude that there is a set $S=S\left(\mathcal{L}_{2}\right)$ of primes p and positive real numbers δ and Q such that

$$
\begin{equation*}
\rho_{\mathcal{L}_{2}}(p) \geq \frac{1}{2} p^{s-1} \text { for } p \in S \text { and } \pi_{S}(R)>\frac{\delta R}{\log R} \text { for } R \geq Q . \tag{2.4}
\end{equation*}
$$

Combining the inequalities (2.3) and (2.4), when $p \in S$ we have

$$
p^{2 s}>\rho_{\mathcal{P}}\left(p^{2}\right) \geq \frac{1}{2} p^{2 s-1}
$$

Thus

$$
\begin{aligned}
\prod_{p}\left(1-\frac{\rho_{\mathcal{P}}\left(p^{2}\right)}{p^{2 s}}\right) & \leq \prod_{p \in S(\mathcal{P})} \exp \left(\log \left(1-\frac{\rho_{\mathcal{P}}\left(p^{2}\right)}{p^{2 s}}\right)\right) \\
& \leq \exp \left(-\sum_{p \in S} \frac{1}{2 p}\right)
\end{aligned}
$$

since $\log (1-z) \leq-z$ when $z<1$. Now

$$
\begin{aligned}
\sum_{\substack{p \leq R \\
p \in S}} \frac{1}{2 p} & =\sum_{\substack{p \leq R \\
p \in S}}\left(\frac{1}{2 R}+\int_{p}^{R} \frac{d t}{2 t^{2}}\right) \\
& =\frac{\pi_{S}(R)}{2 R}+\int_{1}^{R} \frac{\pi_{S}(t)}{2 t^{2}} d t \\
& \geq \int_{Q}^{R} \frac{\delta}{2 t \log t} d t \\
& =\frac{\delta}{2} \log \frac{\log R}{\log Q} \\
& \rightarrow \infty \text { as } R \rightarrow \infty
\end{aligned}
$$

Thus

$$
\prod_{p \in S}\left(1-\frac{\rho_{\mathcal{P}}\left(p^{2}\right)}{p^{2 s}}\right)=0
$$

It follows readily that $\sqrt{1.8})$ holds.
Now suppose that (1.8) holds. One possibility is that there is a prime p such that

$$
\rho_{\mathcal{P}}\left(p^{2}\right)=p^{2 s}
$$

Thus

$$
\mathcal{P}\left(a_{1}, \ldots, a_{s}\right) \equiv 0\left(\bmod p^{2}\right)
$$

for every $a_{1}, \ldots, a_{s} \in \mathbb{Z}$, which means that (a) holds.
Thus we may henceforward suppose that (a) is false, (1.8) holds and that for all primes p we have

$$
\begin{equation*}
\rho_{\mathcal{P}}\left(p^{2}\right)<p^{2 s} \tag{2.5}
\end{equation*}
$$

We need to prove that (b) holds.
At this stage it is useful to transform the polynomial so that at least one of the variables, for example X_{1}, has non-zero X_{1}^{d} term.
Lemma 2.2. Given a nonzero form $\mathcal{P}_{d} \sqrt{1.7}$) of degree $d \geq 1$, there is a unimodular transformation

$$
\begin{gathered}
\mathcal{T}=\left(\begin{array}{cccc}
1 & t_{2} & \cdots & t_{s} \\
0 & 1 & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & 1
\end{array}\right), \\
\mathbf{X}=\left(X_{1}, \ldots X_{s}\right) \mapsto \mathbf{X} \mathcal{T}=\left(X_{1}, t_{2} X_{1}+X_{2}, \ldots, t_{s} X_{1}+X_{s}\right)
\end{gathered}
$$

so that all $t_{2}, \ldots, t_{\text {s }}$ are integers and

$$
\mathcal{P}_{d}(\mathbf{X} \mathcal{T})=\mathcal{P}^{*}(\mathbf{X})
$$

where

$$
\begin{equation*}
\mathcal{P}_{d}^{*}(\mathbf{X})=a X_{1}^{d}+\sum_{k=1}^{d} F_{k} X_{1}^{d-k} \tag{2.6}
\end{equation*}
$$

the integer

$$
a=\mathcal{P}_{d}\left(1, t_{2}, \ldots, t_{s}\right) \neq 0
$$

and each $F_{k} \in \mathbb{Z}\left[X_{2}, \ldots X_{s}\right]$ is a degree k form in X_{2}, \ldots, X_{s} with integer coefficients.
Proof. The proof is essentially inductive on d. The case $d=1$ is easy. Suppose $d \geq 2$ and the lemma is established with d replaced by $d-1$. When \mathcal{P}_{d} is divisible by X_{1} in $\mathbb{Z}\left[X_{1}, \ldots X_{s}\right]$ the inductive hypothesis at once gives the desired conclusion. Thus we may assume that \mathcal{P}_{d} is not divisible by X_{1} in $\mathbb{Z}\left[X_{1}, \ldots X_{s}\right]$, i.e.,

$$
\mathcal{P}_{d}\left(0, X_{2}, \ldots, X_{s}\right) \not \equiv 0
$$

We now argue by contradiction. Suppose on the contrary that $\mathcal{P}_{d}\left(1, t_{2}, \ldots, t_{s}\right)=0$ for all integers t_{2}, \ldots, t_{s}. Since \mathcal{P}_{d} is a form, it follows that

$$
\mathcal{P}_{d}\left(\frac{1}{N}, \frac{t_{2}}{N}, \ldots, \frac{t_{s}}{N}\right)=\frac{1}{N^{d}} \mathcal{P}_{d}\left(1, t_{2}, \ldots, t_{s}\right)=0
$$

for any positive integer N. Let $r_{2}, \ldots r_{s} \in \mathbb{R}$ be any ($s-1$)-tuple of real numbers. There exist integers $t_{2, N}, \ldots, t_{s, N}$ such that

$$
\left|r_{j}-\frac{t_{j, N}}{N}\right| \leq \frac{1}{N} \forall j=2, \ldots s
$$

Since \mathcal{P}_{d} is a continuous function on \mathbb{R}^{s},

$$
\mathcal{P}_{d}\left(0, r_{2}, \ldots, r_{s}\right)=\lim _{N \rightarrow \infty} \mathcal{P}_{d}\left(\frac{1}{N}, \frac{t_{2, N}}{N}, \ldots, \frac{t_{s, N}}{N}\right)=0
$$

which implies that the form $\mathcal{P}_{d}\left(0, X_{2}, \ldots, X_{s}\right) \equiv 0$. This gives us a contradiction that proves the desired result.

Let us return to the case of an arbitrary nonzero polynomial $\mathcal{P} \in \mathbb{Z}\left[X_{1}, \ldots X_{s}\right]$ of degree d and present \mathcal{P} as a sum

$$
\mathcal{P}=\sum_{i=0}^{d} \mathcal{P}_{i}
$$

of degree i forms $\mathcal{P}_{i} \in \mathbb{Z}\left[X_{1}, \ldots X_{s}\right]$. Notice that $\mathcal{P}_{d} \neq 0$. Applying to \mathcal{P}_{d} Lemma 2.2, we conclude that there is a unimodular transformation

$$
\mathbf{X}=\left(X_{1}, \ldots X_{s}\right) \mapsto \mathbf{X} \mathcal{T}=\left(X_{1}, t_{2} X_{1}+X_{2}, \ldots, t_{s} X_{1}+X_{s}\right)
$$

so that all t_{2}, \ldots, t_{s} are integers and

$$
\mathcal{P}(\mathbf{X} \mathcal{T})=\mathcal{P}^{*}(\mathbf{X})
$$

where

$$
\begin{equation*}
\mathcal{P}^{*}(\mathbf{X})=a X_{1}^{d}+\sum_{k=1}^{d} F_{k} X_{1}^{d-k} \tag{2.7}
\end{equation*}
$$

the integer

$$
a=\mathcal{P}_{d}\left(1, t_{2}, \ldots, t_{s}\right) \neq 0
$$

and each $F_{k} \in \mathbb{Z}\left[X_{2}, \ldots X_{s}\right]$ is a polynomial of degree $\leq k$ in X_{2}, \ldots, X_{s} with integer coefficients.

Clearly, $\rho_{\mathcal{P}}\left(p^{2}\right)=\rho_{\mathcal{P}^{*}}\left(p^{2}\right)$ for all primes p, which implies (in light of (2.5) that

$$
\begin{equation*}
\rho_{\mathcal{P}^{*}}\left(p^{2}\right)=\rho_{\mathcal{P}}\left(p^{2}\right)<p^{2 s}, \mathfrak{S}_{\mathcal{P}^{*}}=\mathfrak{S}_{\mathcal{P}} \tag{2.8}
\end{equation*}
$$

So the assertion of Theorem 1.1 holds for the polynomial \mathcal{P} if and only if it holds for the polynomial \mathcal{P}^{*}. If one of partial derivatives $\frac{\partial \mathcal{P}^{*}}{\partial X_{j}}$ of \mathcal{P}^{*} is identically 0 , then \mathcal{P}^{*} may be viewed as a degree d polynomial in the remaining $(s-1)$ variables and the assertion of Theorem 1.1 holds for \mathcal{P}^{*} by the induction assumption and therefore holds for \mathcal{P} as well. Thus we may assume that all the partial derivatives $\frac{\partial \mathcal{P}^{*}}{\partial X_{j}}$ are not identically 0 and so are nonzero polynomials of degree $\leq(d-1)$ in X_{1}, \ldots, X_{s} with integer coefficients. Hence, where necessary replacing \mathcal{P} by \mathcal{P}^{*}, we may and will assume that

$$
\begin{equation*}
\mathcal{P}(\mathbf{X})=a X_{1}^{d}+\sum_{k=1}^{d} F_{k} X_{1}^{d-k} \tag{2.9}
\end{equation*}
$$

where a is a nonzero integer and each polynomial $F_{k} \in \mathbb{Z}\left[X_{2}, \ldots X_{s}\right]$ is a polynomial in X_{2}, \ldots, X_{s} of degree $\leq k$ with integer coefficients. In addition, all the partial
derivatives $\frac{\partial \mathcal{P}}{\partial X_{j}}$ of \mathcal{P} are nonzero polynomials of degree $\leq(d-1)$ in X_{1}, \ldots, X_{s} with integer coefficients.

By (2.5) and Lemma 3.1 of Chapter 4 of Schmidt [2004], for every prime p not dividing a we have

$$
\rho_{\mathcal{P}}(p) \leq d p^{s-1}
$$

Moreover each non-singular solution $\left(b_{1}, \ldots, b_{s}\right) \in(\mathbb{Z} / p \mathbb{Z})^{s}$ of the congruence

$$
\mathcal{P}\left(X_{1}, \ldots, X_{s}\right) \equiv 0(\bmod p)
$$

modulo p lifts to precisely p^{s-1} solutions modulo p^{2}. Strangely we can find no reference for this in the published literature, but see Theorem 2.1 of Conrad unpub. Of course it is readily seen by expanding each monomial $\left(X_{j}+p Y_{j}\right)^{k}$ by the binomial theorem and collecting terms together that

$$
\mathcal{P}\left(X_{1}+p Y_{1}, \ldots, X_{s}+p Y_{s}\right) \equiv \mathcal{P}\left(X_{1}, \ldots, X_{s}\right)+p \mathbf{y} \cdot \nabla \mathcal{P}\left(X_{1}, \ldots, X_{s}\right)\left(\bmod p^{2}\right)
$$

and that if $\partial \mathcal{P}\left(X_{1}, \ldots, X_{s}\right) / \partial X_{j} \not \equiv 0(\bmod p)$ for some j then there are exactly p^{s-1} choices for \mathbf{Y} which ensure that $\mathcal{P}\left(X_{1}+p Y_{1}, \ldots, X_{s}+p Y_{s}\right) \equiv 0\left(\bmod p^{2}\right)$. Thus if there are no singular solutions modulo p, i.e., \mathcal{P} is "non-singular" modulo p, then

$$
\rho_{\mathcal{P}}\left(p^{2}\right) \leq d p^{2 s-2}
$$

Let $H(\mathcal{P})$ denote the height of \mathcal{P}, i.e., $H(\mathcal{P})$ is the maximum of the absolute values of the coefficients of the polynomial \mathcal{P}, and let \mathfrak{R} denote the set of primes p such that
(i) $p \leq \max \{d, H(\mathcal{P})\}$, or
(ii) $\rho_{\mathcal{P}}\left(p^{2}\right) \leq\left(d^{3}+d\right) p^{2 s-2}$.

Since

$$
\sum_{p \in \mathfrak{R}} \frac{\rho_{\mathcal{P}}\left(p^{2}\right)}{p^{2 s}}
$$

converges and 2.5 holds for every p, so that every factor in the product below is positive, it follows that

$$
\lambda=\prod_{p \in \Re}\left(1-\frac{\rho_{\mathcal{P}}\left(p^{2}\right)}{p^{2 s}}\right)>0 .
$$

Let

$$
\mathfrak{R}^{\prime}:=\{p \mid p \notin \mathfrak{R}\} .
$$

The condition (i) implies no prime $p \in \mathfrak{R}^{\prime}$ divides a and $p>d$. In addition, the reduction modulo p of each of the partial derivatives \mathcal{P}_{j} is a nonzero polynomial of degree $\leq(d-1)$ with coefficients in \mathbb{F}_{p}.

By (1.8),

$$
\prod_{p \in \mathfrak{R}^{\prime}}\left(1-\frac{\rho_{\mathcal{P}}\left(p^{2}\right)}{p^{2 s}}\right)=0
$$

For this to occur, by (2.5), \mathfrak{R}^{\prime} will have to be infinite. Moreover, for each prime $p \in \mathfrak{R}^{\prime}$, we have (in light of condition (ii))

$$
\rho_{\mathcal{P}}\left(p^{2}\right)>\left(d^{3}+d\right) p^{2 s-2} .
$$

Recall that all the partial derivatives \mathcal{P}_{j} modulo p are nonzero polynomials of degree $\leq d-1$. Since $\rho_{\mathcal{P}}(p) \leq d p^{s-1}$ and each non-singular solution of the congruence

$$
\mathcal{P}\left(x_{1}, \ldots, x_{s}\right) \equiv 0(\bmod p)
$$

modulo p can lift to precisely p^{s-1} solutions of $\mathcal{P} \equiv 0$ modulo p^{2}, there are more that $d^{3} p^{s-2}$ solutions which lift from singular solutions modulo p. But each singular solution to

$$
\mathcal{P}\left(x_{1}, \ldots, x_{s}\right) \equiv 0(\bmod p),
$$

can lift to at most p^{s} solutions modulo p^{2} so there will be more than $d^{3} p^{s-2}$ singular points $\mathbf{x}=\left(x_{1}, \ldots, x_{s}\right) \in \mathbb{F}_{p}^{s}$, i.e., points such that $\mathcal{P}\left(x_{1}, \ldots, x_{s}\right)=0$ and for every j

$$
\mathcal{P}_{j}\left(x_{1}, \ldots, x_{s}\right)=\frac{\partial \mathcal{P}}{\partial x_{j}}\left(x_{1}, \ldots, x_{j}\right)=0 .
$$

On the other hand Lemma 3.4 of Chapter 4 of Schmidt [2004] states (in particular) the following.

Lemma 2.3. Suppose that $s \geq 2$ and $t \geq 2$. Let $u_{1}\left(X_{1}, \ldots, X_{s}\right), \ldots, u_{t}\left(X_{1}, \ldots, X_{s}\right)$ be nonzero polynomials without common non-constant factor over the field $\mathbb{F}_{p}=\mathbb{Z} / p \mathbb{Z}$ of respective total degrees at most e. Then the number of their common zeros in \mathbb{F}_{p}^{s} is at most

$$
p^{s-2} e^{3} .
$$

Remark 2.4. Notice that Lemma 2.3 automatically holds when $s=1$, because in this case the number of common zeros is just 0 .

Let us continue our proof. Using Lemma 2.3 and Remark 2.4, and taking into account that all $(s+1)$ polynomials

$$
\mathcal{P} \bmod p ; \mathcal{P}_{1} \bmod p, \ldots, \mathcal{P}_{s} \bmod p \in \mathbb{F}_{p}\left[X_{1}, \ldots, X_{s}\right]
$$

have degrees $\leq d$ and $t:=s+1 \geq 2$, we conclude that all these polynomials have a common factor of positive degree in the polynomial ring $\mathbb{F}_{p}\left[X_{1}, \ldots, X_{s}\right]$, say,

$$
w\left(X_{1}, \ldots, X_{n}\right) \in \mathbb{F}_{p}\left[X_{1}, \ldots, X_{s}\right]
$$

Our conditions on p imply that the coefficient at X_{1}^{d} of the degree d polynomial

$$
\mathcal{P}\left(X_{1}, \ldots, X_{s}\right) \bmod p \in \mathbb{F}_{p}\left[X_{1}, \ldots, X_{s}\right]
$$

is a nonzero element of \mathbb{F}_{p} while the coefficient at X_{1}^{d-1} of the degree $(d-1)$ polynomial $\mathcal{P}_{1}\left(X_{1}, \ldots, X_{s}\right) \bmod p$ is also a nonzero element of \mathbb{F}_{p}.

Lemma 2.5. Let $r=\operatorname{deg}(w) \geq 1$ be the total degree of w. Then the coefficient of w at X_{1}^{r} is nonzero, i.e., the X_{1}-degree $\operatorname{deg}_{X_{1}}(w)$ of w is also r.

Proof of Lemma 2.5. There exists a nonzero polynomial $v \in \mathbb{F}_{p}\left[X_{1}, \ldots, X_{s}\right]$ such that $\mathcal{P} \bmod p=w v$. Taking into account that the total degree, deg, of any polynomial is greater or equal than its X_{1}-degree $\operatorname{deg}_{X_{1}}$, so that

$$
\operatorname{deg}(w) \geq \operatorname{deg}_{X_{1}}(w), \quad \operatorname{deg}(v) \geq \operatorname{deg}_{X_{1}}(v)
$$

we get

$$
\begin{aligned}
d=\operatorname{deg}(\mathcal{P} \bmod p) & =\operatorname{deg}(w)+\operatorname{deg}(v) \\
& \geq \operatorname{deg}_{X_{1}}(w)+\operatorname{deg}_{X_{1}}(v) \\
& =\operatorname{deg}_{X_{1}}(w v) \\
& =\operatorname{deg}_{X_{1}}(\mathcal{P} \bmod p)=d
\end{aligned}
$$

Therefore we have equality throughout and so we conclude that $\operatorname{deg}(w)=\operatorname{deg}_{X_{1}}(w)$ which ends the proof.

Lemma 2.5 implies that the common factor $w\left(X_{1}, \ldots, X_{n}\right)$ does depend on X_{1}, i.e., does not lie in $\mathbb{F}_{p}\left[X_{2}, \ldots, X_{s}\right]$. In light of Cox, Little \& O'Shea [1998, Ch. 3, Sect. 5 , Prop. 8], it follows that if we consider $\mathcal{P} \bmod p$ as the degree d polynomial in X_{1} with the coefficients in $\mathbb{F}_{p}\left[X_{2}, \ldots, X_{s}\right]$ then its discriminant (i.e., the resultant of \mathcal{P} and \mathcal{P}_{1})

$$
\Delta_{p} \in \mathbb{F}_{p}\left[X_{2}, \ldots, X_{s}\right]
$$

is actually 0 . Since this holds for all primes p from the infinite set \mathfrak{R}^{\prime}, the similar assertion holds for \mathcal{P}. Namely, let us consider \mathcal{P} as the degree d polynomial

$$
\begin{equation*}
\mathcal{P}=f\left(X_{1}\right)=a X_{1}^{d}+\sum_{k=1}^{d} F_{k} X_{1}^{d-k}, \quad F_{k} \in \mathbb{Z}\left[X_{2}, \ldots, X_{s}\right] \tag{2.10}
\end{equation*}
$$

in X_{1} and let $\Delta \in \mathbb{Z}\left[X_{2}, \ldots, X_{s}\right]$ be its discriminant. Since $\Delta \bmod p \in \mathbb{F}_{p}\left[X_{2}, \ldots, X_{s}\right]$ coincides with $\Delta_{p}=0$ for infinitely many primes p, we conclude that

$$
\Delta \equiv 0 \in \mathbb{Z}\left[X_{2}, \ldots, X_{s}\right]
$$

We will need the following elementary assertion Cox, Little \& O'Shea [1998, Ch. 3, Sect. 5, Ex. 8] that will be proven later.

Lemma 2.6. Let $d \geq 2$ be in integer and K be a field of characteristic 0 . Further, let $h(x) \in K[x]$ be a degree d polynomial in the independent variable x with leading coefficient a and discriminant 0 . Then there are monic polynomials $u(x), v(x) \in K[x]$ such that $\operatorname{deg}(u) \geq 1$ and

$$
h(x)=a \cdot u(x) v(x)^{2} .
$$

Moreover, if d is odd, then $\operatorname{deg}(u) \geq 1$.
We apply Lemma 2.6 to the field $K=\mathbb{Q}\left(X_{2}, \ldots X_{s}\right)$ of rational functions in X_{2}, \ldots, X_{s} with coefficients in the field \mathbb{Q} of rational numbers and the degree d polynomial $f\left(X_{1}\right)$ defined in (2.10). Recall that the leading coefficient a is a nonzero
integer. By Lemma [2.6, there are monic polynomials $u(x), v(x) \in K[x]$ such that $\operatorname{deg}(v) \geq 1$ and

$$
f\left(X_{1}\right)=a u\left(X_{1}\right) v\left(X_{1}\right)^{2} .
$$

Multiplying by a^{d-1}, we get

$$
\begin{align*}
\left(a X_{1}\right)^{d}+\sum_{k=1}^{d} a^{k} F_{k}\left(a X_{1}\right)^{d-k} & =a^{d-1} f\left(X_{1}\right) \\
& =a^{d} u\left(X_{1}\right) v\left(X_{1}\right)^{2}=\left(a^{\operatorname{deg} u} u\left(X_{1}\right)\right)\left(a^{\operatorname{deg}(v)} v\left(X_{1}\right)\right)^{2} \tag{2.11}
\end{align*}
$$

Clearly there are monic polynomials $\tilde{u}(x) \in K[x]$ and $\tilde{v}(x) \in K[x]$ (of degree $\operatorname{deg}(v) \geq$ 1) such that

$$
\begin{equation*}
\tilde{u}(a x)=a^{\operatorname{deg}(u)} u(x), \tilde{v}(a x)=a^{\operatorname{deg}(v)} u(x) \tag{2.12}
\end{equation*}
$$

It follows that if we consider the degree d monic polynomial

$$
\tilde{f}(x):=x^{d}+\sum_{k=0}^{d-1} a^{k} F_{k} x^{d-k}
$$

in x with coefficients in the ring $\mathbb{Z}\left[X_{2}, \ldots, X_{s}\right]$ then

$$
\tilde{f}(x)=\tilde{u}(x) \tilde{v}(x)^{2} .
$$

Since $\mathbb{Z}\left[X_{2}, \ldots, X_{n}\right]$ is integrally closed with field of fractions K, and $\tilde{f}(x)$ is monic, it follows from a variant of Gauss' Lemma, see Dummit \& Foot [2004, Sect. 9.3, Cor. 6 on p. 304], that both monic polynomials $\tilde{u}(x)$ and $\tilde{v}(x)$ also have coefficients in $\mathbb{Z}\left[X_{2}, \ldots, X_{s}\right]$. Combining this with (2.12), we conclude that the polynomials $u(x)$ and $v(x)$ have coefficients in $\frac{1}{a^{\operatorname{deg}(u)}} \mathbb{Z}\left[X_{2}, \ldots, X_{s}\right]$ and $\frac{1}{a^{\operatorname{deg}(v)}} \mathbb{Z}\left[X_{2}, \ldots, X_{s}\right]$ respectively. It follows that

$$
\tilde{L}_{1}:=a^{\operatorname{deg}(u)} u\left(X_{1}\right) \in \mathbb{Z}\left[X_{1}, X_{2}, \ldots, X_{s}\right], \quad \tilde{L}_{2}:=a^{\operatorname{deg}(v)} v\left(X_{1}\right) \in \mathbb{Z}\left[X_{1}, X_{2}, \ldots, X_{s}\right]
$$

Hence, by (2.11), in $\mathbb{Z}\left[X_{1}, X_{2}, \ldots, X_{s}\right]$ we have the equality

$$
a^{d-1} \mathcal{P}=\tilde{L}_{1} \tilde{L}_{2}^{2}
$$

Since \mathcal{P} is a nonzero polynomial and $a \neq 0$, the product $a^{d-1} \mathcal{P}$ is also a nonzero polynomial in X_{1}, \ldots, X_{s}. Now the desired result follows readily from the following assertion.
Lemma 2.7. Let $\mathcal{F} \in \mathbb{Z}\left[X_{1}, \ldots, X_{s}\right]$ be a nonzero polynomial of degree $d \geq 2$. Suppose that there are a nonzero integer b and polynomials $\mathcal{N}_{1}, \mathcal{N}_{2} \in \mathbb{Z}\left[X_{1}, \ldots, X_{s}\right]$ such that $\operatorname{deg}\left(\mathcal{N}_{1}\right) \geq 1$ and

$$
b \mathcal{F}=\mathcal{N}_{1} \mathcal{N}_{2}^{2}
$$

Then there are exist polynomials $\tilde{\mathcal{N}}_{1}, \tilde{\mathcal{N}}_{2} \in \mathbb{Z}\left[X_{1}, \ldots, X_{s}\right]$ such that $\tilde{\mathcal{N}}_{2}$ is an irreducible polynomial over \mathbb{Q} (in particular, $\operatorname{deg}\left(\tilde{\mathcal{N}}_{2}\right) \geq 1$) and

$$
\mathcal{F}=\tilde{\mathcal{N}}_{1} \tilde{\mathcal{N}}_{2}^{2}
$$

Proof of Lemma 2.7. Replacing if necessary \mathcal{N}_{1} by $-\mathcal{N}_{1}$ and b by $-b$, we may and will assume that b is a positive integer. Let $\mathcal{H}_{2} \in \mathbb{Q}\left[X_{1}, \ldots, X_{s}\right]$ be an irreducible polynomial that divides \mathcal{N}_{2} in $\mathbb{Q}\left[X_{1}, \ldots, X_{s}\right]$. Without loss of generality, we may and will assume that

$$
\mathcal{H}_{2} \in \mathbb{Z}\left[X_{1}, \ldots, X_{s}\right]
$$

It follows that both \mathcal{H}_{2} and \mathcal{H}_{2}^{2} divide the polynomial $b \mathcal{F}$ in $\mathbb{Q}\left[X_{1}, \ldots, X_{s}\right]$. The latter means that there is a polynomial $\mathcal{E} \in \mathbb{Q}\left[X_{1}, \ldots, X_{s}\right]$ such that

$$
b \mathcal{F}=\mathcal{H}_{2}^{2} \mathcal{E}
$$

Notice that there is a positive integer b_{0} such that $\mathcal{E}^{\prime}=b_{0} \mathcal{E} \in \mathbb{Z}\left[X_{1}, \ldots, X_{s}\right]$ and therefore $b_{0} \cdot b$ is a positive integer such that

$$
\left(b_{0} b\right) \mathcal{F}=\mathcal{H}_{2}^{2}\left(b_{0} \mathcal{E}\right)=\mathcal{H}_{2}^{2} \cdot \mathcal{E}^{\prime} .
$$

Consider the set Z of positive integers c such that there exist polynomials $\mathcal{D}_{1}, \mathcal{D}_{2} \in$ $\mathbb{Z}\left[X_{1}, \ldots, X_{s}\right]$ for which \mathcal{D}_{2} is irreducible over \mathbb{Q} and

$$
c \mathcal{F}=\mathcal{D}_{1} \mathcal{D}_{2}^{2} .
$$

The set Z is non-empty, because it contains $b_{0} b$. Let c be the smallest element of Z and $\mathcal{D}_{1}, \mathcal{D}_{2}$ be the corresponding polynomials in X_{1}, \ldots, X_{s} with integer coefficients. If $c=1$ then we are done.

Suppose that $c>1$. Then there is a prime p dividing c. This means that there is a positive integer c_{1} such that $c=p c_{1}$ and

$$
p c_{1} \mathcal{F}=\mathcal{D}_{1} \mathcal{D}_{2}^{2}
$$

Hence,

$$
\left(\mathcal{D}_{1} \bmod p\right)\left(\mathcal{D}_{2} \bmod p\right)^{2} \equiv 0
$$

in the polynomial ring $\mathbb{F}_{p}\left[x_{1}, \ldots, x_{s}\right]$. Since this ring is a domain, either $\mathcal{D}_{1} \bmod p \equiv 0$ or $\mathcal{D}_{2} \bmod p \equiv 0$. Thus either $\mathcal{D}_{1} \in p \cdot \mathbb{Z}\left[X_{1}, \ldots, X_{s}\right]$ or $\mathcal{D}_{2} \in p \cdot \mathbb{Z}\left[X_{1}, \ldots, X_{s}\right]$.

In the former case, there is a polynomial $\tilde{\mathcal{D}}_{1} \in \mathbb{Z}\left[X_{1}, \ldots, X_{s}\right]$ such that $\mathcal{D}_{1}=p \tilde{\mathcal{D}}_{1}$ and therefore

$$
p c_{1} \mathcal{F}=p \tilde{\mathcal{D}}_{1} \mathcal{D}_{2}^{2}
$$

which implies that

$$
c_{1} \mathcal{F}=\tilde{\mathcal{D}}_{1} \mathcal{D}_{2}^{2}
$$

and therefore $c_{1} \in Z$. Since, $c_{1}<c$, it contradicts the minimality of $c \in Z$.
It follows that $\mathcal{D}_{2} \in p \cdot \mathbb{Z}\left[X_{1}, \ldots, X_{s}\right]$, i.e., there is a form $\tilde{\mathcal{D}}_{2} \in \mathbb{Z}\left[X_{1}, \ldots, X_{s}\right]$ such that $\mathcal{D}_{2}=p \tilde{\mathcal{D}}_{2}$ and therefore $\tilde{\mathcal{D}}_{2}$ is also irreducible over \mathbb{Q} and

$$
p c_{1} \mathcal{F}=p^{2} \mathcal{D}_{1} \tilde{\mathcal{D}}_{2}^{2}
$$

which implies that

$$
c_{1} \mathcal{F}=\left(p \mathcal{D}_{1}\right) \tilde{\mathcal{D}}_{2}^{2}
$$

and therefore $c_{1} \in Z$, which again contradicts the minimality of $c \in Z$.
Hence $c=1$ and we are done.

Proof of Lemma 2.6. Without loss of generality we may assume that $h(x)$ is monic. Let L be the splitting field of $h(x)$, which is a finite Galois extension of K with (finite) Galois group G.

The vanishing of the discriminant of $h(x)$ means that the (finite) set $\Sigma \subset L$ of repeated roots α of $h(x)$ is nonempty. Since all the coefficients of $h(x)$ lie in K, the set Σ is G-invariant and therefore the monic polynomial

$$
v(x)=\prod_{\alpha \in \Sigma}(x-\alpha) \in L[x]
$$

actually lies in $K[x]$. As Σ is nonempty, $\operatorname{deg}(v) \geq 1$. Moreover, since each $\alpha \in \Sigma$ is a repeated root of $h(x)$, the product

$$
\prod_{\alpha \in \Sigma}(x-\alpha)^{2}=v(x)^{2}
$$

divides $h(x)$ in $L[x]$. Since both $h(x)$ and $v(x)^{2}$ lie in $K[x]$, the ratio $h(x) / v(x)^{2}$ actually lies in $K[x]$, i.e., there is $u(x) \in K[x]$ such that

$$
h(x)=u(x) v(x)^{2} .
$$

If $d=\operatorname{deg}(h)$ is odd, $\operatorname{deg}(u)=d-2 \operatorname{deg}(v)$ is also odd and therefore ≥ 1.

Remark 2.8. Lemma 2.6 remains true without restrictions on the characteristic of K, see Cox, Little ${ }^{6}$ O'Shea [1998, Ch. 3, Sect. 5, Ex. 8] where the proof is sketched.

3. Proof of Lemma 2.1

Step 1. First, let us assume that our polynomial f is absolutely irreducible, i.e., is irreducible over an algebraic closure $\overline{\mathbb{Q}}$ of the field \mathbb{Q} of rational numbers. Then our assertion is contained in Schmidt [2004, Ch. 5, Cor. 5.1 on p. 164-165] where one may take as $S(f)$ the set of all primes $p>p_{0}(f)$ for a suitable $p_{0}(f)$

Step 2. Each non-constant polynomial $f \in \mathbb{Z}\left[X_{1}, \ldots X_{s}\right]$ splits in $\mathbb{Q}\left[X_{1}, \ldots X_{s}\right]$ into a product

$$
f=\prod_{i=1}^{r} f_{i}
$$

of irreducible polynomials $f_{i} \in \mathbb{Q}\left[X_{1}, \ldots X_{s}\right]$. For each i there is a positive integer b_{i} such that the polynomial $b_{i} f_{i}$ has integer coefficients; in addition, $b_{i} f_{i}$ remains irreducible in $\mathbb{Q}\left[X_{1}, \ldots X_{s}\right]$. If we put $b=\prod_{i=1}^{r} b_{i}$ then

$$
b f=\prod_{i=1}^{r}\left(b_{i} f_{i}\right)
$$

splits in $\mathbb{Z}\left[X_{1}, \ldots X_{s}\right]$ into a product of polynomials $b_{i} f_{i}$ irreducible over \mathbb{Q}. This implies that for all primes p not dividing b

$$
\rho_{f}(p)=\rho_{b f}(p) \geq \rho_{b_{i} f_{i}}(p) \quad \forall i
$$

If some f_{i} is absolutely irreducible, then $b_{i} f_{i}$ is also absolutely irreducible. In light of Step 1 (applied to $b_{i} f_{i}$) our assertion would hold for $S(b f)$, and thus for $S(f)$ taken to be $S(b f) \backslash\{p: p \mid b\}$.

Step 3. In general, our non-constant f splits in $\overline{\mathbb{Q}}$ into a product

$$
\begin{equation*}
f=\prod_{j=1}^{m} h_{j} \tag{3.1}
\end{equation*}
$$

of irreducible polynomials $h_{j} \in \overline{\mathbb{Q}}\left[X_{1}, \ldots, X_{s}\right]$. In particular

$$
\operatorname{deg}\left(h_{j}\right) \leq d
$$

There is a finite Galois field extension K / \mathbb{Q} such that all

$$
h_{j} \in K\left[X_{1}, \ldots, X_{s}\right] \subset \overline{\mathbb{Q}}\left[X_{1}, \ldots, X_{s}\right]
$$

Notice that one may view K as a subfield of $\overline{\mathbb{Q}}$ and the latter is an algebraic closure of K. Let O_{K} be the ring of integers in K. Similarly to the previous case, for each j there is a positive integer c_{j} such that the polynomial $c_{j} h_{j}$ has coefficients in O_{K} and remains irreducible in $\overline{\mathbb{Q}}\left[X_{1}, \ldots X_{s}\right]$. In addition, if we put $c=\prod_{j=1}^{m} c_{j}$, then the polynomial $c f$ splits in $O_{K}\left[X_{1}, \ldots X_{s}\right]$ into a product of polynomials $c_{j} h_{j}$ which are irreducible over \mathbb{Q},

$$
c f=\prod_{j=1}^{m}\left(c_{j} h_{j}\right)
$$

Clearly, for all primes p not dividing c

$$
\rho_{f}(p)=\rho_{c f}(p) .
$$

Since the set of prime divisors of c is finite, we may assume (replacing f by $c f$ and every h_{j} by $c_{j} h_{j}$) without loss of generality that all h_{j} have coefficients in O_{K} and the equality (3.1) holds in $O_{K}\left[X_{1}, \ldots X_{s}\right]$.

Step 4. We keep the notation and assumption of Step 3. Let \mathfrak{P} be a maximal ideal in O_{K}. Then one may assign to \mathfrak{P} its residual characteristic p that is a prime that is uniquely determined by the following equivalent properties.

The residue field $k(\mathfrak{P}):=O_{K} / \mathfrak{P}$ is a (finite) field of characteristic p;

$$
\begin{equation*}
\text { the intersection } \mathfrak{P} \cap \mathbb{Z}=p \cdot \mathbb{Z} \text {. } \tag{3.2}
\end{equation*}
$$

We have in the polynomial ring

$$
k(\mathfrak{P})\left[X_{1}, \ldots X_{s}\right]=O_{K}\left[X_{1}, \ldots X_{s}\right] / \mathfrak{P} O_{K}\left[X_{1}, \ldots X_{s}\right]
$$

the equality

$$
f \bmod \mathfrak{P}=\prod_{j=1}^{m}\left(h_{j} \bmod \mathfrak{P}\right)
$$

We claim that if $k(\mathfrak{P})$ is the prime finite field \mathbb{F}_{p}, then $\rho_{f}(p)$ is greater or equal than the number $N_{j, \mathfrak{F}}$ of zeros of $h_{j} \bmod \mathfrak{P}$ in $k(\mathfrak{P})^{s}=\mathbb{F}_{p}^{s}$ for any j. (More precisely, each zero of $h_{j} \bmod \mathfrak{P}$ is a zero of f in \mathbb{F}_{p}^{s}.) Indeed, let

$$
\alpha=\left(\alpha_{1}, \ldots, \alpha_{s}\right) \in k(\mathfrak{P})^{s}=\mathbb{F}_{p}^{s}=\mathbb{Z}^{s} / p \mathbb{Z}^{s}
$$

be a zero of $h_{j} \bmod \mathfrak{P}$. This means that if

$$
\left(\alpha_{1}, \ldots, \alpha_{s}\right)=\left(a_{1}, \ldots, a_{s}\right)+p \mathbb{Z}^{s} \quad \text { for some }\left(a_{1}, \ldots, a_{s}\right) \in \mathbb{Z}^{s} \subset O_{K}^{s}
$$

then $h_{j}\left(a_{1}, \ldots, a_{s}\right) \in \mathfrak{P}$. On the other hand, since each h_{l} is a polynomial with coefficients in O_{K}, its value $h_{l}\left(a_{1}, \ldots, a_{s}\right)$ lies in O_{K} for all $l=1, \ldots, m$. It follows that

$$
f\left(a_{1}, \ldots, a_{s}\right)=\prod_{l=1}^{m} h_{l}\left(a_{1}, \ldots a_{r}\right)=h_{j}\left(a_{1}, \ldots, a_{s}\right) \cdot \prod_{l \neq j} h_{l}\left(a_{1}, \ldots, a_{s}\right) \in \mathfrak{P} \cdot O_{K}=\mathfrak{P} .
$$

Since $f\left(a_{1}, \ldots, a_{s}\right) \in \mathbb{Z}$, it follows from (3.2) that $f\left(a_{1}, \ldots, a_{s}\right) \in p \mathbb{Z}$, i.e.,

$$
\left(\alpha_{1}, \ldots, \alpha_{s}\right)=\left(a_{1} \bmod p, \ldots, a_{s} \bmod p\right)
$$

is a zero of f in \mathbb{F}_{p}^{s}. This implies that

$$
\begin{equation*}
\rho_{f}(p) \geq N_{j, \mathfrak{F}} \quad \text { if } k(\mathfrak{P})=\mathbb{F}_{p} \tag{3.3}
\end{equation*}
$$

By the Chebotarev density theorem ([1989, Ch. I, Sect. 2.2], [1996]), there is a set S_{K} of primes p, of positive density in the primes, so that each prime p splits completely in K. In particular, for each $p \in S_{K}$ there is a maximal ideal \mathfrak{P} of O_{K} with residual characteristic p such that $k(\mathfrak{P})=\mathbb{F}_{p}$.

By a theorem of Ostrowski-Noether [2000, Sect. 3.1, Cor. 4 on p. 203], for all but finitely many maximal ideals \mathfrak{P} of O_{K} the reduction modulo \mathfrak{P} of the polynomial h_{1},

$$
\tilde{h}_{1}=h_{1} \bmod \mathfrak{P} \in\left(O_{K} / \mathfrak{P}\right)\left[X_{1}, \ldots X_{s}\right]
$$

is absolutely irreducible, i.e., irreducible over an algebraic closure of $k(\mathfrak{P})$; in addition, the degrees of h_{1} and \tilde{h}_{1} coincide and do not exceed d. By removing from S_{K} a finite set of primes, we get a set S of primes having positive density in the primes and which enjoys the following properties.

If $p \in S$ then there is a maximal ideal \mathfrak{P} of O_{K} such that:
(a) $k(\mathfrak{P})=\mathbb{F}_{p}, \quad \mathfrak{P} \cap \mathbb{Z}=p \cdot \mathbb{Z}$;
(b) the polynomial

$$
\tilde{h}_{1}:=h_{1} \bmod \mathfrak{P} \in k(\mathfrak{P})\left[X_{1}, \ldots X_{s}\right]=\mathbb{F}_{p}\left[X_{1}, \ldots, X_{s}\right]
$$

is absolutely irreducible.
By Schmidt [1974, p. 448], the absolute irreducibility of $h_{1} \bmod \mathfrak{P}$ implies the existence of a positive real number C such that C depends only on s and d (but does not depend on a choice of p and \mathfrak{P}) such that

$$
N_{1, \mathfrak{P}} \geq p^{d-1}-C p^{d-(3 / 2)}
$$

It remains to observe that $\rho_{f}(p) \geq N_{1, \mathfrak{P}}$, and then Lemma 2.1 follows on taking Q sufficiently large.

4. Proof of Corollary 1.2

The first part of Corollary 1.2 is clear. Thus we may suppose that (b) of Theorem 1.1 holds. if necessary by relabeling we can suppose that $P_{1}=\min _{j} P_{j}$. Then, by Lemma 2.2 there are s integers t_{1}, \ldots, t_{s} such that (in the notation of Lemma 2.2)

$$
\mathcal{L}_{2}(\mathbf{Y} \mathcal{T})=\mathcal{L}^{*}(\mathbf{Y})
$$

where

$$
\mathcal{L}^{*}=a Y_{1}^{d}+\sum_{k=1}^{d} F_{k} Y_{1}^{d-k}
$$

and F_{k} is a polynomial in Y_{2}, \ldots, Y_{s} of degree $\leq k$ with integer coefficients and a is a nonzero integer. Hence the number of solutions $\mathbf{y}=\left(y_{1}, \ldots, y_{s}\right)$ of

$$
\mathcal{L}_{2}(\mathbf{y} \mathcal{T})= \pm 1
$$

in integers y_{1}, \ldots, y_{s} with $\left|y_{1}\right| \leq P_{1}$ and $\left|y_{j}\right| \leq P_{j}+\left|t_{j}\right| P_{1}(2 \leq j \leq s)$ is at most

$$
2 d \prod_{j=2}^{s}\left(2 P_{j}+2\left|t_{j}\right| P_{1}+1\right) \ll P_{2} \ldots P_{s}
$$

Moreover for any $\mathrm{x}=\left(x_{1}, \ldots, x_{s}\right)$ with integers x_{j} such that $\left|x_{j}\right| \leq P_{j}$ there is a unique $\mathbf{y}=\left(y_{1}, \ldots y_{s}\right)$ with integers y_{j} such that $\mathbf{y} \mathcal{T}=\mathbf{x}$ given by $\mathbf{y}=\mathbf{x} \mathcal{T}^{-1}$. Thus $\left|y_{1}\right|=\left|x_{1}\right| \leq P_{1}$ and $\left|y_{j}\right|=\left|x_{j}-t_{j} x_{1}\right| \leq P_{j}+\left|t_{j}\right| P_{1}(2 \leq j \leq s)$. Hence the number of possible \mathbf{x} with $\left|x_{j}\right| \leq P_{j}$ and

$$
\mathcal{L}_{2}(\mathbf{x})= \pm 1
$$

is

$$
\ll P_{2} \ldots P_{s}
$$

as required.

5. Proof of Corollary 1.3

Let M be a positive number at our disposal and define

$$
r=\prod_{p \leq M} p
$$

Then

$$
\begin{aligned}
N_{\mathcal{P}}(\mathbf{P}) \leq \sum_{\mathbf{x} \in \mathbf{P}} \sum_{\substack{m\left|r \\
m^{2}\right| \mathcal{P}(\mathbf{x})}} \mu(m) & =\sum_{m \mid r} \mu(m) \sum_{\substack{\mathbf{y}\left(\bmod m^{2}\right) \\
m^{2} \mid \mathcal{P}(\mathbf{y})}} \sum_{\substack{\mathbf{x} \in \mathbf{P} \\
x_{j} \equiv y_{j}\left(\bmod m^{2}\right)}} 1 \\
& =\sum_{m \mid r} \mu(m) \rho\left(m^{2}\right)\left(\frac{P_{1}}{m^{2}}+O(1)\right) \cdots\left(\frac{P_{s}}{m^{2}}+O(1)\right)
\end{aligned}
$$

Hence

$$
\mathfrak{D}_{\mathcal{P}} \leq \sum_{m \mid r} \mu(m) \frac{\rho\left(m^{2}\right)}{m^{2 s}}=\prod_{p \leq M}\left(1-\frac{\rho\left(p^{2}\right)}{p^{2 s}}\right)
$$

and so letting $M \rightarrow \infty$

$$
\mathfrak{D}_{\mathcal{P}} \leq \mathfrak{S}_{\mathcal{P}}
$$

References

[2014] Manjul Bhargava, The geometric sieve and the density of squarefree values of invariant polynomials, arXiv:1402.0031 [math.NT]. https://doi.org/10.48550/arXiv.1402.0031
[2022] Manjul Bhargava, Arul Shankar, and Xiaoheng Wang, Squarefree values of polynomial discriminants I, Invent. Math. 228 (2022), no. 3, 1037-1073.
[unpub.] K. Conrad, A multivariable Hensel's lemma, unpublished. https://kconrad.math.uconn.edu/ blurbs/gradnumthy/multivarhensel.pdf
[1998] D. Cox, J. Little, D. O'Shea, Ideals, Varieties and Algorithms, Corrected second printing. SpringerVerlag New York Inc., 1998.
[2004] D.S. Dummit \& R.M. Foot, Abstract Algebra, 3rd edition. John Wiley \& Sons, Inc., 2004.
[1965] G. M. Fikhtengol'ts, The Fundamentals of Mathematical Analysis, volume 2. Pergamon Press, 1965.
[1994] M. Filaseta, Powerfree values of binary forms. J. Number Theory 49 (1994), 250-268.
[1885] L. Gegenbauer, Asymptotische Gesetze der Zahlentheorie, Denkschriften Österreich. Akad. Wiss. Math.-Natur. Cl. 49 (1885), 37-80.
[1992] G. Greaves, Power-free values of binary forms, Quarterly J. Math, 43 (1992), 45-65.
[1967] C. Hooley, On the power-free values of polynomials, Mathematika, 14 (1967), 21-26.
[1977] C. Hooley, On the power-free numbers and polynomials II, J. Reine Angew. Math., 295 (1977), 1-21.
[2009a] C. Hooley, On the power-free values of polynomials in two variables, Analytic number theory, 235-266.
[2009b] C. Hooley, On the power-free values of polynomials in two variables: II, Journal of Number Theory, 129 (2009), 1443-1455.
[2020] J. M. Kowalski, On the squarefree values of polynomials, Ph.D. Thesis, Penn State University, 2020. https://etda.libraries.psu.edu/catalog/17522jmk672
[2021] J. M. Kowalski, On the proportion of squarefree numbers among sums of cubic polynomials, Ramanujan J., 54 (2021), 343-354.
[2023] J. M. Kowalski \& R. C. Vaughan, Squarefree density of cubic forms, to appear in Acta Arithmetica.
[2021] K. Lapkova \& S. Y. Xiao, Density Of Power-Free Values Of Polynomials II. arXiv:2005.14655 [math.NT] https://doi.org/10.48550/arXiv. 2005.14655
[2006] H. L. Montgomery \& R. C. Vaughan, Multiplicative Number Theory I. Classical Theory, Cambridge University Press, xii $+516 \mathrm{pp}, 2006$.
[2003] B. Poonen, Squarefree values of multivariable polynomials, Duke Math. J., 118 (2003), 353-373.
[2023] G. C. Sanjaya \& X. Wang, On the squarefree values of $a^{4}+b^{3}$, Math. Annalen, 386 (2023), 1237-1265.
[2000] A. Schinzel, Polynomials with special regard to reducibility. With an appendix by Umberto Zannier. Encyclopedia Math. Appl., 77 Cambridge University Press, Cambridge, 2000. x+558 pp.
[1974] W. M. Schmidt, A lower bound for the number of solutions of equations over finite fields. J. Number Theory 6 (1974), 448-480.
[2004] W. M. Schmidt, Equations over Finite Fields, An Elementary Approach, Second Edition, Kendrick Press, 2004.
[1989] J.-P. Serre, Abelian ℓ-adic representations and elliptic curves, Second Edition. Addison Wesley Publishing Company, Inc., 1989.
[1996] P. Stevenhagen and H.W. Lenstra, Jr, Chebotarëv and his Density Theorem. Math. Intelligencer 18:2 (1996), 26-37.
[1972] S. Uchiyama, On the power-free values of a polynomial. Tensor (N.S.), 24 (1972), 43-48.

RCV: Dept. of Mathematics, Pennsylvania State University, University Park, PA 16802, USA.

Email address: rcv4@psu.edu
YGZ: Dept. of Mathematics, Pennsylvania State University, University Park, PA 16802, USA.

Email address: zarhin@math.psu.edu

[^0]: Research of RCV is partially supported by the Simons Foundation Collaboration Grant OSP1857531.
 Research of YGZ is partially supported by the Simons Foundation Collaboration Grant \# 585711. Part of this work was done during his stay at the Max-Planck Institut für Mathematik (Bonn, Germany), whose hospitality and support are gratefully acknowledged.

 AMS Mathematics Subject Classification 2020: 11E76, 11N25, 11N32.

