
Max-Planck-Institut für Mathematik
Bonn

A note on the squarefree density of polynomials

by

Robert C. Vaughan
Yuriy G. Zarhin

Max-Planck-Institut für Mathematik
Preprint Series 2023 (29)

Date of submission: December 10, 2023



A note on the squarefree density of
polynomials

by

Robert C. Vaughan
Yuriy G. Zarhin

Max-Planck-Institut für Mathematik
Vivatsgasse 7
53111 Bonn
Germany

Department of Mathematics
Pennsylvania State University
University Park, PA 16802
USA

MPIM 23-29



A NOTE ON THE SQUAREFREE DENSITY OF POLYNOMIALS

R. C. VAUGHAN AND YU. G. ZARHIN

Abstract. The conjectured squarefree density of an integral polynomial P in s variables
is an Euler product SP which can be considered as a product of local densities. We
show that a necessary and sufficient condition for SP to be 0 when P ∈ Z(X1, . . . , Xs)
is a polynomial in s variables over the integers, is that the polynomial is not squarefree
as a polynomial. We also show that generally the upper squarefree density DP satisfies
DP ≤ SP .

1. Introduction

There is a long history of research into the squarefree density of polynomials in one,
or more, variables. The progenitor of such conclusions is the famous estimate∑

n≤X

µ(n)2 =
6

π2
X +O

(
X1/2

)
of Gegenbauer [1885]. Let P ∈ Z[X1, . . . , Xs] be a polynomial with integers coeffi-
cients and total degree

d = deg(P) ≥ 2

and let for any integer m > 1

ρP(m) = card{x ∈ Zs/mZs = (Z/mZ)s : P(x) ≡ 0 (mod m)}. (1.1)

Given Pj ∈ R, Pj ≥ 1 (j = 1, . . . s) and h ∈ Z, we define

P = {x = (x1, . . . , xs) | xj ∈ [−Pj, Pj] ∩ Z}, rP(h) = card{x ∈ P | P(x) = h}.
(1.2)

Then we extend the definition of the Möbius function µ by taking µ(0) = 0 and define

NP(P) =
∑
h∈Z

µ(|h|)2rP(h), (1.3)

the number of squarefree values of P(x) with

x ∈ P = Zs ∩
s∏

j=1

[−Pj, Pj].
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It is readily conjectured that

NP(P) ∼ 2sP1 . . . PsSP as min
j

Pj → ∞ (1.4)

where

SP =
∏
p

(
1− ρP(p

2)

p2s

)
. (1.5)

Here p runs through the set of all primes.
There is a considerable body of work on various special cases, some even quite

general. See, for example, Bhargava [2014], Bhargava et al [2022], Filaseta [1994],
Greaves [1992], Hooley [1967], [1977], [2009a],[2009b], Kowalski [2020], [2021], Kowal-
ski and Vaughan [2023], Lapkova and Xiao [2021], Poonen [2003] Sanjaya and Wang
[2023] and Uchiyama [1972]. In Kowalski and Vaughan [2023] it was noted that∏

p≤n

(
1− ρP(p

2)

p2s

)
is a non-negative decreasing sequence so it converges as n → ∞ to a non-negative
limit.

It seems that (1.4) should hold in all cases. Thus if P is such that it has a shortage
of squarefree values, then we expect that

SP = 0. (1.6)

Indeed the converse case (1.4) is easy to prove. See for instance Theorem 1.3 of
Kowalski and Vaughan ibidem.
Let

P ∈ Z[X1, . . . , Xs] (1.7)

be a nonzero polynomial of degree d, which, except where otherwise stated explicitly,
we will suppose satisfies d ≥ 2.

Theorem 1.1. For a polynomial P satisfying (1.7) and s ≥ 1 we have

SP = 0 (1.8)

if and only if one of the following holds.
(a) There is a prime p such that P(a1, . . . , as) ∈ p2Z for all a1, . . . , as ∈ Z.
(b) There are polynomials L1,L2 ∈ Z[x1, . . . , xs] such that deg(L2) ≥ 1 and

P(x) = L1(x)L2(x)
2. (1.9)

In addition, if d = deg(P) is odd, then deg(L1) ≥ 1.

As an immediate corollary we have

Corollary 1.2. If P satisfies (a), then

NP(P) = 0. (1.10)
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If it satisfies (b), then

NP(P) ≪ P1 . . . Ps

min(P1, . . . , Ps)
. (1.11)

This improves upon Theorem 1.3 of Kowalski and Vaughan.
Let dP and DP denote the lower and upper densities

dP = lim inf
min{P1,...,Ps}→∞

NP(P)

2sP1 . . . Ps

and

DP = lim sup
min{P1,...,Ps}→∞

NP(P)

2sP1 . . . Ps

respectively. Then we have the following further consequence of Theorem 1.1 that
will be proven in Section 4.

Corollary 1.3. We have DP ≤ SP and in particular if DP > 0, then SP > 0 and
P is not of the kind described in (a) and (b) of Theorem 1.1.

One can speculate as to whether it is possible to prove that dP > 0 without showing
that dP = DP = SP > 0.

Remark 1.4. In the course of the proof of Theorem 1.1, we will use induction on
s. We may and will assume that all the variables appear in P explicitly, i.e., all the
partial derivatives

Pj :=
∂P
∂xj

∈ Z[x1, . . . , xs] (1 ≤ j ≤ s)

are nonzero polynomials of degree ≤ d− 1. Indeed, if not we can reduce to the case
s− 1 and use the induction assumption.

With regard to notation we follow that enunciated by Schmidt [2004] in that quite
often x, y, z, . . . will be elements which lie in a ground field or are algebraic over a
ground field, and X, Y, Z, . . . will be algebraically independent over a ground field.

2. Proof of Theorem 1.1

In what follows we freely use standard classical results about convergence of infinite
products, see G. M. Fikhtengol’ts [1965, Ch. 15, Sect. 5, Subsect. 250]. We will also
need the following assertion that will be proven in Section 3

Lemma 2.1. Let s ≥ 2 and d be positive integers, and f(X1, . . . , Xs) ∈ Z[X1, . . . , Xs]
be a nonzero polynomial of degree d. Then there are a set of primes S = S(f) and
positive real numbers δ = δ(f) and Q = Q(f) such that

ρf (p) ≥
1

2
ps−1 for p ∈ S(f) (2.1)

and

πS(R) = card{p ≤ R : p ∈ S} ≥ δR

logR
for R ≥ Q. (2.2)
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Now let us start the proof of Theorem 1.1. We first deal with the situation when
(a) or (b) hold. If (a) holds, then at once ρP(p

2) = p2s and so (1.8) holds trivially.
Let us assume that (a) does not hold but (b) holds. Then obviously

p2s > ρP(p
2) ≥ ρL2

2
(p2) = ρL2(p) · ps. (2.3)

Applying Lemma 2.1 with f = L2, we conclude that there is a set S = S(L2) of
primes p and positive real numbers δ and Q such that

ρL2(p) ≥
1

2
ps−1 for p ∈ S and πS(R) >

δR

logR
for R ≥ Q. (2.4)

Combining the inequalities (2.3) and (2.4), when p ∈ S we have

p2s > ρP(p
2) ≥ 1

2
p2s−1.

Thus ∏
p

(
1− ρP(p

2)

p2s

)
≤

∏
p∈S(P)

exp

(
log

(
1− ρP(p

2)

p2s

))

≤ exp

(
−
∑
p∈S

1

2p

)
since log(1− z) ≤ −z when z < 1. Now∑

p≤R
p∈S

1

2p
=
∑
p≤R
p∈S

(
1

2R
+

∫ R

p

dt

2t2

)

=
πS(R)

2R
+

∫ R

1

πS(t)

2t2
dt

≥
∫ R

Q

δ

2t log t
dt

=
δ

2
log

logR

logQ

→ ∞ as R → ∞.

Thus ∏
p∈S

(
1− ρP(p

2)

p2s

)
= 0.

It follows readily that (1.8) holds.
Now suppose that (1.8) holds. One possibility is that there is a prime p such that

ρP(p
2) = p2s.

Thus
P(a1, . . . , as) ≡ 0 (mod p2)
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for every a1, . . . , as ∈ Z, which means that (a) holds.
Thus we may henceforward suppose that (a) is false, (1.8) holds and that for all

primes p we have

ρP(p
2) < p2s. (2.5)

We need to prove that (b) holds.
At this stage it is useful to transform the polynomial so that at least one of the

variables, for example X1, has non-zero Xd
1 term.

Lemma 2.2. Given a nonzero form Pd (1.7) of degree d ≥ 1, there is a unimodular
transformation

T =


1 t2 · · · ts
0 1 · · · 0
...

...
. . .

...
0 0 · · · 1

 ,

X = (X1, . . . Xs) 7→ XT = (X1, t2X1 +X2, . . . , tsX1 +Xs)

so that all t2, . . . , ts are integers and

Pd(XT ) = P∗(X)

where

P∗
d(X) = aXd

1 +
d∑

k=1

FkX
d−k
1 , (2.6)

the integer

a = Pd(1, t2, . . . , ts) ̸= 0

and each Fk ∈ Z[X2, . . . Xs] is a degree k form in X2, . . . , Xs with integer coefficients.

Proof. The proof is essentially inductive on d. The case d = 1 is easy. Suppose d ≥ 2
and the lemma is established with d replaced by d − 1. When Pd is divisible by X1

in Z[X1, . . . Xs] the inductive hypothesis at once gives the desired conclusion. Thus
we may assume that Pd is not divisible by X1 in Z[X1, . . . Xs], i.e.,

Pd(0, X2, . . . , Xs) ̸≡ 0.

We now argue by contradiction. Suppose on the contrary that Pd(1, t2, . . . , ts) = 0
for all integers t2, . . . , ts. Since Pd is a form, it follows that

Pd

(
1

N
,
t2
N
, . . . ,

ts
N

)
=

1

Nd
Pd(1, t2, . . . , ts) = 0

for any positive integer N . Let r2, . . . rs ∈ R be any (s − 1)-tuple of real numbers.
There exist integers t2,N , . . . , ts,N such that∣∣∣rj − tj,N

N

∣∣∣ ≤ 1

N
∀j = 2, . . . s.
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Since Pd is a continuous function on Rs,

Pd(0, r2, . . . , rs) = lim
N→∞

Pd

(
1

N
,
t2,N
N

, . . . ,
ts,N
N

)
= 0,

which implies that the form Pd(0, X2, . . . , Xs) ≡ 0. This gives us a contradiction that
proves the desired result. □

Let us return to the case of an arbitrary nonzero polynomial P ∈ Z[X1, . . . Xs] of
degree d and present P as a sum

P =
d∑

i=0

Pi

of degree i forms Pi ∈ Z[X1, . . . Xs]. Notice that Pd ̸= 0. Applying to Pd Lemma 2.2,
we conclude that there is a unimodular transformation

X = (X1, . . . Xs) 7→ XT = (X1, t2X1 +X2, . . . , tsX1 +Xs)

so that all t2, . . . , ts are integers and

P(XT ) = P∗(X)

where

P∗(X) = aXd
1 +

d∑
k=1

FkX
d−k
1 , (2.7)

the integer

a = Pd(1, t2, . . . , ts) ̸= 0

and each Fk ∈ Z[X2, . . . Xs] is a polynomial of degree ≤ k in X2, . . . , Xs with integer
coefficients.

Clearly, ρP(p
2) = ρP∗(p2) for all primes p, which implies (in light of (2.5)) that

ρP∗(p2) = ρP(p
2) < p2s, SP∗ = SP . (2.8)

So the assertion of Theorem 1.1 holds for the polynomial P if and only if it holds
for the polynomial P∗. If one of partial derivatives ∂P∗

∂Xj
of P∗ is identically 0, then

P∗ may be viewed as a degree d polynomial in the remaining (s − 1) variables and
the assertion of Theorem 1.1 holds for P∗ by the induction assumption and therefore
holds for P as well. Thus we may assume that all the partial derivatives ∂P∗

∂Xj
are

not identically 0 and so are nonzero polynomials of degree ≤ (d − 1) in X1, . . . , Xs

with integer coefficients. Hence, where necessary replacing P by P∗, we may and will
assume that

P(X) = aXd
1 +

d∑
k=1

FkX
d−k
1 , (2.9)

where a is a nonzero integer and each polynomial Fk ∈ Z[X2, . . . Xs] is a polynomial
in X2, . . . , Xs of degree ≤ k with integer coefficients. In addition, all the partial
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derivatives ∂P
∂Xj

of P are nonzero polynomials of degree ≤ (d− 1) in X1, . . . , Xs with

integer coefficients.
By (2.5) and Lemma 3.1 of Chapter 4 of Schmidt [2004], for every prime p not

dividing a we have

ρP(p) ≤ dps−1.

Moreover each non-singular solution (b1, . . . , bs) ∈ (Z/pZ)s of the congruence

P(X1, . . . , Xs) ≡ 0 (mod p)

modulo p lifts to precisely ps−1 solutions modulo p2. Strangely we can find no reference
for this in the published literature, but see Theorem 2.1 of Conrad [unpub.]. Of course
it is readily seen by expanding each monomial (Xj + pYj)

k by the binomial theorem
and collecting terms together that

P(X1 + pY1, . . . , Xs + pYs) ≡ P(X1, . . . , Xs) + py · ∇P(X1, . . . , Xs) (mod p2)

and that if ∂P(X1, . . . , Xs)/∂Xj ̸≡ 0 (mod p) for some j then there are exactly ps−1

choices for Y which ensure that P(X1 + pY1, . . . , Xs + pYs) ≡ 0 (mod p2). Thus if
there are no singular solutions modulo p, i.e., P is “non-singular” modulo p, then

ρP(p
2) ≤ dp2s−2.

Let H(P) denote the height of P , i.e., H(P) is the maximum of the absolute values
of the coefficients of the polynomial P , and let R denote the set of primes p such that

(i) p ≤ max
{
d,H(P)

}
, or

(ii) ρP(p
2) ≤ (d3 + d) p2s−2.

Since ∑
p∈R

ρP(p
2)

p2s

converges and (2.5) holds for every p, so that every factor in the product below is
positive, it follows that

λ =
∏
p∈R

(
1− ρP(p

2)

p2s

)
> 0.

Let

R′ := {p | p /∈ R}.
The condition (i) implies no prime p ∈ R′ divides a and p > d. In addition, the
reduction modulo p of each of the partial derivatives Pj is a nonzero polynomial of
degree ≤ (d− 1) with coefficients in Fp.

By (1.8), ∏
p∈R′

(
1− ρP(p

2)

p2s

)
= 0.
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For this to occur, by (2.5), R′ will have to be infinite. Moreover, for each prime
p ∈ R′, we have (in light of condition (ii))

ρP(p
2) >

(
d3 + d

)
p2s−2.

Recall that all the partial derivatives Pj modulo p are nonzero polynomials of degree
≤ d− 1. Since ρP(p) ≤ dps−1 and each non-singular solution of the congruence

P(x1, . . . , xs) ≡ 0 (mod p)

modulo p can lift to precisely ps−1 solutions of P ≡ 0 modulo p2, there are more
that d3ps−2 solutions which lift from singular solutions modulo p. But each singular
solution to

P(x1, . . . , xs) ≡ 0 (mod p),

can lift to at most ps solutions modulo p2 so there will be more than d3ps−2 singular
points x = (x1, . . . , xs) ∈ Fs

p, i.e., points such that P(x1, . . . , xs) = 0 and for every j

Pj(x1, . . . , xs) =
∂P
∂xj

(x1, . . . , xj) = 0.

On the other hand Lemma 3.4 of Chapter 4 of Schmidt [2004] states (in particular)
the following.

Lemma 2.3. Suppose that s ≥ 2 and t ≥ 2. Let u1(X1, . . . , Xs), . . . , ut(X1, . . . , Xs)
be nonzero polynomials without common non-constant factor over the field Fp = Z/pZ
of respective total degrees at most e. Then the number of their common zeros in Fs

p

is at most
ps−2e3.

Remark 2.4. Notice that Lemma 2.3 automatically holds when s = 1, because in this
case the number of common zeros is just 0.

Let us continue our proof. Using Lemma 2.3 and Remark 2.4, and taking into
account that all (s+ 1) polynomials

P mod p; P1 mod p, . . . ,Ps mod p ∈ Fp[X1, . . . , Xs],

have degrees ≤ d and t := s + 1 ≥ 2, we conclude that all these polynomials have a
common factor of positive degree in the polynomial ring Fp[X1, . . . , Xs], say,

w(X1, . . . , Xn) ∈ Fp[X1, . . . , Xs].

Our conditions on p imply that the coefficient at Xd
1 of the degree d polynomial

P(X1, . . . , Xs) mod p ∈ Fp[X1, . . . , Xs]

is a nonzero element of Fp while the coefficient atXd−1
1 of the degree (d−1) polynomial

P1(X1, . . . , Xs) mod p is also a nonzero element of Fp.

Lemma 2.5. Let r = deg(w) ≥ 1 be the total degree of w. Then the coefficient of w
at Xr

1 is nonzero, i.e., the X1-degree degX1
(w) of w is also r.
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Proof of Lemma 2.5. There exists a nonzero polynomial v ∈ Fp[X1, . . . , Xs] such that
P mod p = wv. Taking into account that the total degree, deg, of any polynomial is
greater or equal than its X1-degree degX1

, so that

deg(w) ≥ degX1
(w), deg(v) ≥ degX1

(v)

we get

d = deg(P mod p) = deg(w) + deg(v)

≥ degX1
(w) + degX1

(v)

= degX1
(wv)

= degX1
(P mod p) = d.

Therefore we have equality throughout and so we conclude that deg(w) = degX1
(w)

which ends the proof. □

Lemma 2.5 implies that the common factor w(X1, . . . , Xn) does depend on X1, i.e.,
does not lie in Fp[X2, . . . , Xs]. In light of Cox, Little & O’Shea [1998, Ch. 3, Sect.
5, Prop. 8], it follows that if we consider P mod p as the degree d polynomial in X1

with the coefficients in Fp[X2, . . . , Xs] then its discriminant (i.e., the resultant of P
and P1)

∆p ∈ Fp[X2, . . . , Xs]

is actually 0. Since this holds for all primes p from the infinite set R′, the similar
assertion holds for P . Namely, let us consider P as the degree d polynomial

P = f(X1) = aXd
1 +

d∑
k=1

FkX
d−k
1 , Fk ∈ Z[X2, . . . , Xs] (2.10)

in X1 and let ∆ ∈ Z[X2, . . . , Xs] be its discriminant. Since ∆ mod p ∈ Fp[X2, . . . , Xs]
coincides with ∆p = 0 for infinitely many primes p, we conclude that

∆ ≡ 0 ∈ Z[X2, . . . , Xs].

We will need the following elementary assertion Cox, Little & O’Shea [1998, Ch. 3,
Sect. 5, Ex. 8] that will be proven later.

Lemma 2.6. Let d ≥ 2 be in integer and K be a field of characteristic 0. Further,
let h(x) ∈ K[x] be a degree d polynomial in the independent variable x with leading
coefficient a and discriminant 0. Then there are monic polynomials u(x), v(x) ∈ K[x]
such that deg(u) ≥ 1 and

h(x) = a · u(x)v(x)2.
Moreover, if d is odd, then deg(u) ≥ 1.

We apply Lemma 2.6 to the field K = Q(X2, . . . Xs) of rational functions in
X2, . . . , Xs with coefficients in the field Q of rational numbers and the degree d poly-
nomial f(X1) defined in (2.10). Recall that the leading coefficient a is a nonzero



10 R. C. VAUGHAN AND YU. G. ZARHIN

integer. By Lemma 2.6, there are monic polynomials u(x), v(x) ∈ K[x] such that
deg(v) ≥ 1 and

f(X1) = au(X1)v(X1)
2.

Multiplying by ad−1, we get

(aX1)
d +

d∑
k=1

akFk(aX1)
d−k = ad−1f(X1)

= adu(X1)v(X1)
2 =

(
adeg uu(X1)

) (
adeg(v)v(X1)

)2
. (2.11)

Clearly there are monic polynomials ũ(x) ∈ K[x] and ṽ(x) ∈ K[x] (of degree deg(v) ≥
1) such that

ũ(ax) = adeg(u)u(x), ṽ(ax) = adeg(v)u(x). (2.12)

It follows that if we consider the degree d monic polynomial

f̃(x) := xd +
d−1∑
k=0

akFkx
d−k

in x with coefficients in the ring Z[X2, . . . , Xs] then

f̃(x) = ũ(x)ṽ(x)2.

Since Z[X2, . . . , Xn] is integrally closed with field of fractions K, and f̃(x) is monic,
it follows from a variant of Gauss’ Lemma, see Dummit & Foot [2004, Sect. 9.3, Cor.
6 on p. 304], that both monic polynomials ũ(x) and ṽ(x) also have coefficients in
Z[X2, . . . , Xs]. Combining this with (2.12), we conclude that the polynomials u(x)
and v(x) have coefficients in 1

adeg(u)
Z[X2, . . . , Xs] and

1
adeg(v)

Z[X2, . . . , Xs] respectively.
It follows that

L̃1 := adeg(u)u(X1) ∈ Z[X1, X2, . . . , Xs], L̃2 := adeg(v)v(X1) ∈ Z[X1, X2, . . . , Xs].

Hence, by (2.11), in Z[X1, X2, . . . , Xs] we have the equality

ad−1P = L̃1L̃
2
2.

Since P is a nonzero polynomial and a ̸= 0, the product ad−1P is also a nonzero
polynomial in X1, . . . , Xs. Now the desired result follows readily from the following
assertion.

Lemma 2.7. Let F ∈ Z[X1, . . . , Xs] be a nonzero polynomial of degree d ≥ 2. Sup-
pose that there are a nonzero integer b and polynomials N1,N2 ∈ Z[X1, . . . , Xs] such
that deg(N1) ≥ 1 and

bF = N1N 2
2 .

Then there are exist polynomials Ñ1, Ñ2 ∈ Z[X1, . . . , Xs] such that Ñ2 is an irreducible
polynomial over Q (in particular, deg(Ñ2) ≥ 1) and

F = Ñ1Ñ 2
2 .
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Proof of Lemma 2.7. Replacing if necessary N1 by −N1 and b by −b, we may and
will assume that b is a positive integer. Let H2 ∈ Q[X1, . . . , Xs] be an irreducible
polynomial that divides N2 in Q[X1, . . . , Xs]. Without loss of generality, we may and
will assume that

H2 ∈ Z[X1, . . . , Xs].

It follows that both H2 and H2
2 divide the polynomial bF in Q[X1, . . . , Xs]. The latter

means that there is a polynomial E ∈ Q[X1, . . . , Xs] such that

bF = H2
2E .

Notice that there is a positive integer b0 such that E ′ = b0E ∈ Z[X1, . . . , Xs] and
therefore b0 · b is a positive integer such that

(b0b)F = H2
2(b0E) = H2

2 · E ′.

Consider the set Z of positive integers c such that there exist polynomials D1,D2 ∈
Z[X1, . . . , Xs] for which D2 is irreducible over Q and

cF = D1D2
2.

The set Z is non-empty, because it contains b0b. Let c be the smallest element of Z
and D1,D2 be the corresponding polynomials in X1, . . . , Xs with integer coefficients.
If c = 1 then we are done.
Suppose that c > 1. Then there is a prime p dividing c. This means that there is

a positive integer c1 such that c = pc1 and

pc1F = D1D2
2.

Hence,
(D1 mod p) (D2 mod p)2 ≡ 0

in the polynomial ring Fp[x1, . . . , xs]. Since this ring is a domain, either D1 mod p ≡ 0
or D2 mod p ≡ 0. Thus either D1 ∈ p · Z[X1, . . . , Xs] or D2 ∈ p · Z[X1, . . . , Xs].

In the former case, there is a polynomial D̃1 ∈ Z[X1, . . . , Xs] such that D1 = pD̃1

and therefore
pc1F = pD̃1D2

2,

which implies that
c1F = D̃1D2

2

and therefore c1 ∈ Z. Since, c1 < c, it contradicts the minimality of c ∈ Z.
It follows that D2 ∈ p · Z[X1, . . . , Xs], i.e., there is a form D̃2 ∈ Z[X1, . . . , Xs] such

that D2 = pD̃2 and therefore D̃2 is also irreducible over Q and

pc1F = p2D1D̃2
2,

which implies that
c1F = (pD1) D̃2

2

and therefore c1 ∈ Z, which again contradicts the minimality of c ∈ Z.
Hence c = 1 and we are done. □
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Proof of Lemma 2.6. Without loss of generality we may assume that h(x) is monic.
Let L be the splitting field of h(x), which is a finite Galois extension of K with (finite)
Galois group G.
The vanishing of the discriminant of h(x) means that the (finite) set Σ ⊂ L of

repeated roots α of h(x) is nonempty. Since all the coefficients of h(x) lie in K, the
set Σ is G-invariant and therefore the monic polynomial

v(x) =
∏
α∈Σ

(x− α) ∈ L[x]

actually lies in K[x]. As Σ is nonempty, deg(v) ≥ 1. Moreover, since each α ∈ Σ is a
repeated root of h(x), the product∏

α∈Σ

(x− α)2 = v(x)2

divides h(x) in L[x]. Since both h(x) and v(x)2 lie in K[x], the ratio h(x)/v(x)2

actually lies in K[x], i.e., there is u(x) ∈ K[x] such that

h(x) = u(x)v(x)2.

If d = deg(h) is odd, deg(u) = d− 2 deg(v) is also odd and therefore ≥ 1.
□

Remark 2.8. Lemma 2.6 remains true without restrictions on the characteristic of
K, see Cox, Little & O’Shea [1998, Ch. 3, Sect. 5, Ex. 8] where the proof is sketched.

3. Proof of Lemma 2.1

Step 1. First, let us assume that our polynomial f is absolutely irreducible, i.e., is
irreducible over an algebraic closure Q̄ of the field Q of rational numbers. Then our
assertion is contained in Schmidt [2004, Ch. 5, Cor. 5.1 on p. 164–165] where one
may take as S(f) the set of all primes p > p0(f) for a suitable p0(f)
Step 2. Each non-constant polynomial f ∈ Z[X1, . . . Xs] splits in Q[X1, . . . Xs]

into a product

f =
r∏

i=1

fi

of irreducible polynomials fi ∈ Q[X1, . . . Xs]. For each i there is a positive integer
bi such that the polynomial bifi has integer coefficients; in addition, bifi remains
irreducible in Q[X1, . . . Xs]. If we put b =

∏r
i=1 bi then

bf =
r∏

i=1

(bifi)

splits in Z[X1, . . . Xs] into a product of polynomials bifi irreducible over Q. This
implies that for all primes p not dividing b

ρf (p) = ρbf (p) ≥ ρbifi(p) ∀i.
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If some fi is absolutely irreducible, then bifi is also absolutely irreducible. In light of
Step 1 (applied to bifi) our assertion would hold for S(bf), and thus for S(f) taken
to be S(bf) \ {p : p|b}.
Step 3. In general, our non-constant f splits in Q̄ into a product

f =
m∏
j=1

hj (3.1)

of irreducible polynomials hj ∈ Q̄[X1, . . . , Xs]. In particular

deg(hj) ≤ d.

There is a finite Galois field extension K/Q such that all

hj ∈ K[X1, . . . , Xs] ⊂ Q̄[X1, . . . , Xs].

Notice that one may view K as a subfield of Q̄ and the latter is an algebraic closure
of K. Let OK be the ring of integers in K. Similarly to the previous case, for each
j there is a positive integer cj such that the polynomial cjhj has coefficients in OK

and remains irreducible in Q̄[X1, . . . Xs]. In addition, if we put c =
∏m

j=1 cj, then the

polynomial cf splits in OK [X1, . . . Xs] into a product of polynomials cjhj which are
irreducible over Q̄,

cf =
m∏
j=1

(cjhj)

Clearly, for all primes p not dividing c

ρf (p) = ρcf (p).

Since the set of prime divisors of c is finite, we may assume (replacing f by cf and
every hj by cjhj) without loss of generality that all hj have coefficients in OK and
the equality (3.1) holds in OK [X1, . . . Xs].

Step 4. We keep the notation and assumption of Step 3. Let P be a maximal
ideal in OK . Then one may assign to P its residual characteristic p that is a prime
that is uniquely determined by the following equivalent properties.

The residue field k(P) := OK/P is a (finite) field of characteristic p;

the intersection P ∩ Z = p · Z. (3.2)

We have in the polynomial ring

k(P)[X1, . . . Xs] = OK [X1, . . . Xs]/POK [X1, . . . Xs]

the equality

f mod P =
m∏
j=1

(hj mod P).
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We claim that if k(P) is the prime finite field Fp, then ρf (p) is greater or equal than
the number Nj,P of zeros of hj mod P in k(P)s = Fs

p for any j. (More precisely, each
zero of hj mod P is a zero of f in Fs

p.) Indeed, let

α = (α1, . . . , αs) ∈ k(P)s = Fs
p = Zs/pZs

be a zero of hj mod P. This means that if

(α1, . . . , αs) = (a1, . . . , as) + pZs for some (a1, . . . , as) ∈ Zs ⊂ Os
K

then hj(a1, . . . , as) ∈ P. On the other hand, since each hl is a polynomial with
coefficients in OK , its value hl(a1, . . . , as) lies in OK for all l = 1, . . . ,m. It follows
that

f(a1, . . . , as) =
m∏
l=1

hl(a1, . . . ar) = hj(a1, . . . , as) ·
∏
l ̸=j

hl(a1, . . . , as) ∈ P ·OK = P.

Since f(a1, . . . , as) ∈ Z, it follows from (3.2) that f(a1, . . . , as) ∈ pZ, i.e.,
(α1, . . . , αs) = (a1 mod p, . . . , as mod p)

is a zero of f in Fs
p. This implies that

ρf (p) ≥ Nj,P if k(P) = Fp. (3.3)

By the Chebotarev density theorem ([1989, Ch. I, Sect. 2.2], [1996]), there is a
set SK of primes p, of positive density in the primes, so that each prime p splits
completely in K. In particular, for each p ∈ SK there is a maximal ideal P of OK

with residual characteristic p such that k(P) = Fp.
By a theorem of Ostrowski-Noether [2000, Sect. 3.1, Cor. 4 on p. 203], for all but

finitely many maximal ideals P of OK the reduction modulo P of the polynomial h1,

h̃1 = h1 mod P ∈ (OK/P)[X1, . . . Xs]

is absolutely irreducible, i.e., irreducible over an algebraic closure of k(P); in addition,

the degrees of h1 and h̃1 coincide and do not exceed d. By removing from SK a finite
set of primes, we get a set S of primes having positive density in the primes and
which enjoys the following properties.

If p ∈ S then there is a maximal ideal P of OK such that:

(a) k(P) = Fp, P ∩ Z = p · Z;
(b) the polynomial

h̃1 := h1 mod P ∈ k(P)[X1, . . . Xs] = Fp[X1, . . . , Xs]

is absolutely irreducible.

By Schmidt [1974, p. 448], the absolute irreducibility of h1 mod P implies the
existence of a positive real number C such that C depends only on s and d (but does
not depend on a choice of p and P) such that

N1,P ≥ pd−1 − Cpd−(3/2).
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It remains to observe that ρf (p) ≥ N1,P, and then Lemma 2.1 follows on taking Q
sufficiently large.

4. Proof of Corollary 1.2

The first part of Corollary 1.2 is clear. Thus we may suppose that (b) of Theorem
1.1 holds. if necessary by relabeling we can suppose that P1 = minj Pj. Then, by
Lemma 2.2 there are s integers t1, . . . , ts such that (in the notation of Lemma 2.2)

L2(YT ) = L∗(Y)

where

L∗ = aY d
1 +

d∑
k=1

FkY
d−k
1

and Fk is a polynomial in Y2, . . . , Ys of degree ≤ k with integer coefficients and a is a
nonzero integer. Hence the number of solutions y = (y1, . . . , ys) of

L2(yT ) = ±1

in integers y1, . . . , ys with |y1| ≤ P1 and |yj| ≤ Pj + |tj|P1 (2 ≤ j ≤ s) is at most

2d
s∏

j=2

(2Pj + 2|tj|P1 + 1) ≪ P2 . . . Ps.

Moreover for any x = (x1, . . . , xs) with integers xj such that |xj| ≤ Pj there is a
unique y = (y1, . . . ys) with integers yj such that yT = x given by y = xT −1. Thus
|y1| = |x1| ≤ P1 and |yj| = |xj − tjx1| ≤ Pj + |tj|P1 (2 ≤ j ≤ s). Hence the number
of possible x with |xj| ≤ Pj and

L2(x) = ±1

is
≪ P2 . . . Ps,

as required.

5. Proof of Corollary 1.3

Let M be a positive number at our disposal and define

r =
∏
p≤M

p.

Then

NP(P) ≤
∑
x∈P

∑
m|r

m2|P(x)

µ(m) =
∑
m|r

µ(m)
∑

y (mod m2)
m2|P(y)

∑
x∈P

xj≡yj (mod m2)

1

=
∑
m|r

µ(m)ρ(m2)

(
P1

m2
+O(1)

)
. . .

(
Ps

m2
+O(1)

)
.
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Hence

DP ≤
∑
m|r

µ(m)
ρ(m2)

m2s
=
∏
p≤M

(
1− ρ(p2)

p2s

)
and so letting M → ∞

DP ≤ SP .
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