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ENERGY-MINIMIZING MAPPINGS OF COMPLEX PROJECTIVE SPACES

JOSEPH ANSEL HOISINGTON

Abstract. We determine the infimum of the energy in all homotopy classes of mappings from
complex projective spaces to Riemannian manifolds, by showing that the infimum in each
homotopy class is proportional to the infimal area in the homotopy class of mappings of the
2-sphere representing its action on the second homotopy group. We then establish a family of
optimal lower bounds, for mappings from real and complex projective spaces to Riemannian
manifolds, for a larger class of energy functionals. We also give a new proof of a theorem
of Ohnita that stable harmonic mappings of complex projective spaces are pluriharmonic and
establish several properties of these maps.

1. Introduction

The first goal of this paper is to determine the infimum of the energy in homotopy classes of
mappings from complex projective spaces to Riemannian manifolds:

Theorem 1.1. Let (CPN , g0) be the complex projective space with its canonical Riemannian
metric normalized so the maximum of its sectional curvature is 4. Let Φ be a homotopy class
of mappings from (CPN , g0) to a Riemannian manifold (M, g) and ϕ the homotopy class of
mappings S2 → (M, g) represented by composing the inclusion CP 1 ⊆ CPN with F ∈ Φ. Let
A? be the infimum of the areas of mappings in ϕ, that is:

A? = inf
f∈ϕ

∫
S2

√
det(dfT ◦ df)dA. (1.1)

Then, letting E2(F ) be the energy of a mapping F and CN = πN−1

(N−1)! ,

inf
F∈Φ

E2(F ) = CNA
?. (1.2)

After proving Theorem 1.1, we will discuss conditions under which this infimum is realized by
a continuous mapping. One source of examples is the theorem of Lichnerowicz that holomorphic
and antiholomorphic mappings between compact Kähler manifolds minimize energy in their
homotopy classes, in [Li70]. We will explain in Remark 4.2 how, for energy minimizing mappings
of complex projective spaces, the following theorem of Ohnita can be thought of as a partial
converse to Lichnerowicz’s result:

Theorem 1.2. (Ohnita [Oh87]) Let F : (CPN , g0) → (M, g) be a stable harmonic mapping
from complex projective space to a Riemannian manifold. Then F is pluriharmonic; that is,
letting J be the complex structure of CPN and αF the second fundamental form of F (as in
Definition 2.1 below),

αF (JV, JW ) = −αF (V,W ). (1.3)
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2 J.A. HOISINGTON

We will give a new proof of Ohnita’s theorem, based on a result about stable harmonic
mappings of compact Hermitian symmetric spaces in Lemma 2.6. Before proving Theorem 1.1,
we will also show via a direct calculation in Proposition 3.6 that (1.2) gives the energy of any
holomorphic or antiholomorphic mapping from (CPN , g0) to a compact Kähler manifold.

The infimum in Theorem 1.1 coincides with a lower bound for the energy of mappings from
complex projective spaces to Riemannian manifolds which Croke established in [Cr87]. We will
extend Croke’s result to a sharp lower bound for a larger family of energy functionals:

Theorem 1.3. Let F : (CPN , g0) → (M, g) be a Lipschitz mapping from complex projective
space to a Riemannian manifold. Let A? be the invariant associated to the homotopy class of
F in Theorem 1.1 and Ep(F ) its p-energy (as in Definition 3.2 below). Then for all p > 2,

Ep(F ) ≥ πN

2N !

(
2N

π
A?
) p

2

. (1.4)

Equality for at least one p > 2 implies that F is a homothety onto a pluriharmonically
immersed minimal submanifold, and in particular that equality holds in (1.4) for all p ≥ 2.

Special cases of Theorems 1.1 and 1.3 state that the identity mapping of complex projective
space minimizes p-energy in its homotopy class for p ≥ 2. In [Wh86], White studied homotopy-
theoretic conditions under which there are positive infima for a very general class of energy
functionals in a homotopy class of mappings between Riemannian manifolds. His results imply
that for 1 ≤ p < 2, the infimum of the p-energy in any homotopy class of mappings from
complex projective space to a closed Riemannian manifold is 0. In this sense, the statement
that the identity mapping minimizes p-energy in its homotopy class for p ≥ 2 is optimal. For
p > 2, Theorem 1.3 implies that the only p-energy minimizing mappings in its homotopy class
are isometries, however for p = 2 Lichnerowicz’s theorem cited above implies that all biholo-
morphic mappings of (CPN , g0) minimize energy in their homotopy class. In the homotopy
class of the identity, this includes projective linear transformations which are not isometries.

White’s results in [Wh86] also imply that in all homotopy classes of mappings from quater-
nionic projective spaces (HPN , g0), the Cayley projective plane (CaP 2, g0) and round spheres
(Sn, g0) of dimension n ≥ 3 to Riemannian manifolds, the infimum of the energy is 0. Together
with Theorem 1.1, these results determine the infimum of the energy for all homotopy classes of
mappings of compact rank-one Riemannian symmetric spaces other than real projective spaces,
and in particular for all simply connected spaces of this type. For mappings of real projective
spaces, we have some results similar to our results for complex projective spaces above, but we
will show there are also some potentially significant differences:

Croke proved in [Cr87] that the identity mapping of real projective space minimizes energy
in its homotopy class. We will extend this result to a sharp lower bound for the full range of
p-energy functionals in real projective space:

Theorem 1.4. (See [Cr87] for p = 2) Let (RPn, g0), n ≥ 2, be the real projective space with
its Riemannian metric of constant curvature 1. Let F : (RPn, g0) → (M, g) be a Lipschitz
mapping to a Riemannian manifold, Ep(F ) its p-energy, and L? the infimum of the lengths of
closed curves freely homotopic to F∗(γ), where γ is a generator of π1(RPn). Then for all p ≥ 1,

Ep(F ) ≥ σ(n)

4

(√
n

π
L?
)p

, (1.5)
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where σ(n) is the volume of the unit n-sphere. Equality for at least one p > 1 implies F is
a homothety onto a totally geodesic submanifold, and in particular that equality holds for all
p ≥ 1. If F is a smooth immersion, equality for p = 1 also implies these conditions.

As with Theorems 1.1 and 1.3 for complex projective space, Theorem 1.4 implies that the
identity mapping of real projective space minimizes p-energy in its homotopy class for all p ≥ 1.
Unlike complex projective space however, in which the “threshold” value p = 2 admits a larger
family of energy minimizing mappings than the p-energy for p > 2, in real projective space the
characterization of p-energy minimizing mappings is equally rigid for all p ≥ 1. For p > 1 this
follows from an adaptation of Croke’s proof of the case p = 2 in [Cr87], however a key step in
this proof is not valid for p = 1. We will therefore give a different argument which draws on
the proof of the Blaschke conjecture by Berger, Green, Kazdan and Yang, cf. [Gn62, Be12].

Although Theorem 1.4 gives a lower bound for the energy of mappings of real projective
spaces which is similar to the lower bound for complex projective spaces implied by Theorem
1.1, determining the infimum of the energy in a homotopy class of mappings of (RPn, g0) may
be more complicated: let g be a Riemannian metric on RP 2 of area A(RP 2, g) and ψ the homo-
topy class of the identity mapping of RP 2, viewed as a collection of mappings from (RP 2, g0)
to (RP 2, g). A basic property of the energy is that for mappings of surfaces, the energy is
bounded below by the area of the image, with equality precisely for conformal mappings, cf.
Lemma 3.3 below. Therefore, for any f ∈ ψ, E2(f) ≥ A(RP 2, g). However, Pu’s inequal-

ity (Theorem 4.3 below) implies that, in the notation of Theorem 1.4, A(RP 2, g) ≥ 2
πL

?2 , with
equality only if g has constant curvature. Therefore, for any g which is not isometric to a rescal-
ing of g0, the infimum of the energy in ψ is strictly greater than the lower bound in Theorem 1.4.

In fact, it follows from the uniformization theorem that in this situation, A(RP 2, g) is the
minimum energy of mappings in ψ. This, together with the p = 2 case of Theorem 1.4 in [Cr87],
gives an alternate proof of Pu’s inequality. More generally, the uniformization theorem implies
that in any homotopy class of mappings from (RP 2, g0) to a Riemannian manifold, the infimum
of the energy is equal to the infimum of area, cf. Lemma 4.1. But although this determines
the infimum of the energy in homotopy classes of mappings of (RP 2, g0), the result of Lemma
4.4 suggests that, as a consequence of Pu’s inequality, the infimum of the energy in homotopy
classes of mappings of (RPn, g0), n ≥ 3 is also usually greater than the lower bound in Theorem
1.4 and may be more difficult to determine.

In contrast with these observations, though, in Theorem 4.6 we will give a two-sided estimate
for the infimum of the energy in a homotopy class of mappings of (RP 3, g0). This result suggests
this infimum may be determined in part by the same geometric data as in our result for complex
projective spaces above. We intend to take up this problem in future work, along with analogous
problems for quaternionic projective spaces and the Cayley plane.

Outline and Notation: In Section 2, we will prove a slight generalization of Theorem 1.2,
in Proposition 2.7, as a consequence of a result we will establish for stable harmonic mappings
of compact Hermitian symmetric spaces in Lemma 2.6. We will also review some background
related to the energy functional and harmonic mappings. In Section 3 we will prove Theorems
1.3 and 1.4, after reviewing the definition of the p-energy of a mapping. In Sections 2 and 3 we
will also establish several properties of pluriharmonic mappings of complex projective spaces. In
Section 4 we will prove Theorem 1.1, and we will discuss some of the issues involved in finding
the infimum of the energy in homotopy classes of mappings of real projective spaces. We will
also establish upper and lower bounds for the infimum of the energy in homotopy classes of
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mappings from (RP 3, g0) to Riemannian manifolds in Theorem 4.6. Throughout the paper, we
will write σ(k) for the volume of the unit sphere in Rk+1. We will write J for the complex
structure of any complex manifold.

Acknolwedgements: I am very happy to thank Werner Ballmann, Christopher Croke, and
Joseph H.G. Fu for helpful conversations about this work, and the Max Planck Institute for
Mathematics for support and hospitality.

2. Stable Harmonic and Pluriharmonic Mappings

In this section we will prove a slightly more general version of Theorem 1.2, in Proposition
2.7, as a corollary of a property we will establish for stable harmonic mappings of compact Her-
mitian symmetric spaces in Lemma 2.6. We will also discuss some properties of pluriharmonic
mappings of complex projective spaces, in Theorems 2.8 and 2.10.

The energy of a Lipschitz map F : (Nn, h)→ (Mm, g) of Riemannian manifolds is:

E2(F ) =
1

2

∫
N

|dFx|2dV olh, (2.1)

where |dFx| is the Euclidean norm of dF : TxN → TF (x)M at a point x ∈ N at which F is
differentiable. There are many equivalent ways to define this invariant, discussed by Eells and
Sampson in [ES64]. In this work, they initiated the study of mappings which are critical for the
energy, known as harmonic mappings. The Euler-Lagrange equation for harmonic mappings
can be formulated in terms of the second fundamental form of a mapping:

Definition 2.1. Let F : (N,h) → (M, g) be a smooth mapping of Riemannian manifolds, ∇h
and ∇g the Levi-Civita connections of (N,h) and (M, g), F ∗TM the pullback of the tangent
bundle of M via F , and F ∗∇g the induced connection in F ∗TM . Let F∗ : TN → F ∗TM be
the mapping induced by the differential dF of F . The second fundamental form αF of F is the
symmetric F ∗TM -valued 2-tensor on N which, for vector fields V , W , satisfies:

αF (V,W ) = F ∗∇gV F∗W − F∗(∇
h
VW ). (2.2)

The section of F ∗TM given by taking the trace of the second fundamental form is called the
tension vector field of the mapping F :

Theorem 2.2. (Eells, Sampson [ES64]) Let F : (N,h)→ (M, g) be a smooth mapping of Rie-
mannian manifolds and Tr(αF ) its tension field. Then F is harmonic if and only if Tr(αF ) = 0.

Continuous, weakly harmonic maps are smooth, cf. [Aub13, Ch.10]. In particular, a continu-
ous mapping which minimizes energy in its homotopy class is a smooth harmonic map. However
a homotopy class may not contain a continuous, energy minimizing map. One instance of this
is in the homotopy class of the identity mapping of (Sng0), n ≥ 3: the infimum of the energy is
0, but any mapping F ' IdSn is nonconstant and therefore has E2(F ) > 0.

A stable harmonic mapping is a harmonic map for which the second variation of the energy is
nonnegative, for all variations as in Lemma 2.3 below. Xin showed in [Xin80] that round spheres
of dimension n ≥ 3 do not admit any nonconstant stable harmonic mappings to Riemannian
manifolds. Ohnita then showed in [Oh86] that this is also the case for quaternionic projective
spaces and the Cayley plane. Smith studied the second variation formula for the energy of a
harmonic map in [Sm75]. A special case of this formula which we will use appears in Ohnita’s
work:
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Lemma 2.3. (Ohnita [Oh87, p.563–564, (1.4)]) Let F : (N,h)→ (M, g) be a harmonic mapping
between closed Riemannian manifolds. Let JF be the Jacobi operator of F ; that is, for a
variation Ft of F = F0 with ∂F

∂t |t=0 = W ,

d2

dt2
(E2(Ft))|t=0 =

∫
N

g(JF (W ),W ) dV olN . (2.3)

Then for a vector field V on N ,

JF (F∗V ) = −F∗
(
Tr(∇h∇hV ) +RicN (V )

)
− 2Tr(αF ◦ ∇hV ), (2.4)

where Tr(αF ◦ ∇hV ) =
n∑
i=1

αF (∇heiV, ei) for an orthonormal frame {e1, . . . , en} for TN .

A pluriharmonic map F from a Kähler manifold (X,h) with complex structure J to a
Riemannian manifold (M, g) is a harmonic mapping with the property that αF (JV, JW ) =
−αF (V,W ). Holomorphic and antiholomorphic mappings between Kähler manifolds are pluri-
harmonic, but a pluriharmonic mapping between Kähler manifolds may not be either holo-
morphic or antiholomorphic – for example, all harmonic mappings of orientable surfaces are
pluriharmonic. The condition of being pluriharmonic is related to the condition of holomor-
phicity by the following:

Lemma 2.4. For a smoooth map F : (X,h)→ (M, g) from a Kähler manifold to a Riemannian
manifold, the following are equivalent:

i.) F is pluriharmonic.

ii.) For any holomorophic mapping G : (Y, h̃)→ (X,h), F ◦G is pluriharmonic.
iii.) For any germ of a complex curve Σ ⊆ X, F |Σ is a harmonic map.

Proof. That ii.) implies i.) and iii.) is immediate. That iii.) implies i.) is a theorem of
Rawnsley, see [BBdeBR89, Section 4]. To see that i.) implies ii.), we calculate the second

fundamental form of F ◦G: letting F̃∗ : G∗TX → (F ◦G)∗TM be the bundle homomorphism
induced by F∗ : TX → F ∗TM ,

αF◦G(V,W ) = α
F̃

(G∗V,G∗W ) + F̃∗αG(V,W ). (2.5)

The pluriharmonicity of F and the holomorphicity of G then imply that αF◦G(JV, JW ) =
−αF◦G(V,W ). �

The basis for our proof of Theorem 1.2 is a formula for the second variation of energy of a
harmonic map of a Kähler manifold along the flow generated by a holomorphic vector field:

Lemma 2.5. Let (X,h) be a Kähler manifold and F : (X,h) → (M, g) a harmonic mapping
to a Riemannian manifold. Let JF be the Jacobi operator of F , as in Lemma 2.3. If V is a
holomorphic vector field on X, then:

JF (F∗V ) = −2Tr(αF ◦ ∇hV ), (2.6)

where Tr(αF ◦ ∇hV ) is as in Lemma 2.3.

Proof. Let R be the curvature tensor of (X,h), with R(V,W )U = ∇hV∇hWU − ∇hW∇hV U −
∇h[V,W ]U , and let V be a holomorphic vector field on (X,h). By extending a unit tangent vector

e ∈ TxX to a locally defined holomorphic vector field E, we have:
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∇h∇hV (e, e) +∇h∇hV (Je, Je) +R(V, e)e+R(V, Je)Je

= ∇hE [E, V ] +∇hJE [JE, V ]−∇h[V,E]E −∇
h
[V,JE]JE = 0, (2.7)

which implies Tr(∇h∇hV ) +Ric(V ) = 0. By Lemma 2.3 this implies the identity (2.6). �

For a compact Hermitian symmetric space, Lemma 2.5 implies:

Lemma 2.6. Let (Z0, h0) be a compact Hermitian symmetric space, g the Lie algebra of Killing
vector fields on (Z0, h0), and g̃ the space of holomorphic vector fields on Z0 of the form {JV :
V ∈ g}. Let F : (Z0, h0) → (M, g) be a harmonic mapping to a Riemannian manifold, JF the
Jacobi operator of F as in Lemma 2.5, and II the bilinear form on g̃ defined by:

II(Ṽ , W̃ ) =

∫
Z0

g(JF (F∗Ṽ ), F∗W̃ )dV olh0 . (2.8)

Then Tr(II) = 0. In particular, if F is a stable harmonic mapping, then for any Killing

vector field V on (Z0, h0), letting Ṽ = JV , we have F∗Ṽ ∈ ker(JF ).

Proof. Let V1, V2, . . . , Vr be an orthonormal basis for g relative to the negative of the Killing

form and Ṽi = JVi. Then we have:

Tr(II) =

∫
Z0

r∑
i=1

g(JF (F∗Ṽi), F∗Ṽi)dV olh0 . (2.9)

The pointwise value of the integrand
∑r

i=1 g(JF (F∗Ṽi), F∗Ṽi) in (2.9) is independent of the
orthonormal basis Vi for g. Because (Z0, h0) is a symmetric space, for each z ∈ Z0 we have an
orthogonal decomposition g = pz ⊕ kz, where pz is the space Killing fields V with ∇h0V = 0
at z and kz is the space of V with V = 0 at z. Choosing an orthonormal basis for g such that
V1, . . . , Vn is a basis for pz and Vn+1, . . . , Vr is a basis for kz, Lemma 2.5 implies that:

g(JF (F∗Ṽi), F∗Ṽi) = −2g(Tr(αF ◦ ∇h0 Ṽi), F∗Ṽi). (2.10)

For i = 1, . . . , n we have g(JF (F∗Ṽi), F∗Ṽi) = 0 at z because ∇h0 Ṽi = J ◦ ∇h0Vi = 0 at z,

and for i = n + 1, . . . , r we have g(JF (F∗Ṽi), F∗Ṽi) = 0 because Ṽi = 0 at z. The integrand
in (2.9) therefore vanishes identically and Tr(II) = 0. If F is a stable harmonic map, let
0 = λ0 < λ1 < · · · < λj < · · · be the distinct eigenvalues of JF acting on sections of F ∗TM .

Let Ṽ1, . . . , Ṽr be an orthonormal basis for g̃, and let Ṽ j
i be the component of F∗Ṽi belonging

to the jth eigenspace of JF . By (2.8), we then have:

0 = Tr(II) =

r∑
i=1

∫
Z0

g(JF (F∗Ṽi), F∗Ṽi) =

∞∑
j=0

λj

 r∑
i=1

∫
Z0

|Ṽ j
i |

2dV olh0

 , (2.11)

which implies Ṽ j
i = 0 for all j ≥ 1 and i = 1, . . . , r, and therefore that F∗Ṽi is in the 0-eigenspace

of JF . �

For mappings of complex projective space, Lemma 2.6 implies:
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Proposition 2.7. Let F : (CPN , g0)→ (M, g) be a harmonic mapping from complex projective
space to a Riemannian manifold and JF its Jacobi operator. Suppose that for all Killing vector

fields V on (CPN , g0), letting Ṽ = JV , we have F∗Ṽ ∈ ker(JF ).

Then F is pluriharmonic. In particular, stable harmonic mappings of (CPN , g0) are pluri-
harmonic.

Proof. By Lemma 2.5, for all Killing vector fields V on (CPN , g0), letting Ṽ = JV , we have:

JF (Ṽ ) = −2Tr(αF ◦ ∇g0 Ṽ ) = 0. (2.12)

At x ∈ CPN , the Lie algebra kx of Killing vector fields which vanish at x is isomorphic to
u(N), and the identification V 7→ ∇g0V gives an isomorphism of kx with the algebra of skew-
Hermitian linear transformations of TxCPN . Given any unit tangent vector e to CPN at x,
there is therefore a Killing vector field V ∈ kx with ∇g0e V = Je, ∇g0JeV = −e and ∇g0e′ V = 0

for e′ orthogonal to the real 2-plane spanned by {e, Je}. Letting Ṽ = JV , we then have

∇g0 Ṽ = J∇g0V , and by (2.12), we therefore have:

0 = Tr(αF ◦ ∇g0 Ṽ ) = αF (∇g0e Ṽ , e) + αF (∇g0JeṼ , Je)

= − [αF (e, e) + αF (Je, Je)] , (2.13)

so that αF (Je, Je) = −αF (e, e). By the polarization identity, the bilinear form αF then satisfies
the identity αF (JV, JW ) = −αF (V,W ) and F is pluriharmonic. By Lemma 2.6, this is the
case for stable harmonic mappings of (CPN , g0). �

Pluriharmonic mappings of complex projective spaces retain some properties of holomorphic
mappings, even when the target is only assumed to be a Riemannian manifold. First, note that
harmonic mappings of CP 1 are conformal branched immersions:

Theorem 2.8. (Lemaire [Lem78, Theorem 2.8]) A harmonic mapping f : (S2, g0) → (M, g)
from the 2-sphere to a Riemannian manifold is a conformal branched immersion. In particular,
f∗g = µ(x)g0 for a smooth, nonnegative function µ on S2.

Together with Lemma 2.4, Theorem 2.8 implies that pluriharmonic mappings of complex
projective space have complex-linear derivatives, in the sense of Lemma 2.9 below. Later we
will quote a result of Ohnita, in Theorem 2.10, which subsumes this result, but Lemma 2.9 is
sufficient for several of our purposes and follows from what we have already established by a
short, direct proof. We therefore include this argument below:

Lemma 2.9. Let F : (CPN , g0)→ (M, g) be a pluriharmonic mapping from complex projective
space to a Riemannian manifold. Then F ∗g is a Hermitian bilinear form on CPN ; that is:

F ∗g(JV, JW ) = F ∗g(V,W ). (2.14)

Proof. Let F be a pluriharmonic mapping of (CPN , g0). By Lemma 2.4, F |CP 1 is harmonic for
all degree-1 curves CP 1 ⊆ CPN . Every unit tangent vector ~u to CPN is tangent to a unique
such curve, which we will denote T(~u), to which J~u is also tangent. By Theorem 2.8 applied
to F |T(~u), |dF (~u)| = |dF (J~u)|. The polarization identity then implies the bilinear form F ∗g is
Hermitian. �

In fact, we have:
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Theorem 2.10. (Ohnita [Oh87, Proposition 4.2], see also [BBdeBR89, Lemmas 4 and 5])
Let X be a closed complex manifold which admits a Kähler-Einstein metric with positive Ricci
curvature. Let h be any Kähler metric on X, and let F : (X,h) → (M, g) be a pluriharmonic
mapping to a Riemannian manifold. Then F ∗g is a Hermitian bilinear form on (X,h), as in
Lemma 2.9. Moreover, the 2-form ω∗(V,W ) = F ∗g(JV,W ) on X is closed.

3. Lower Bounds for Energy Functionals of Mappings

In this section, we will prove Theorems 1.3 and 1.4, and we will establish more properties of
pluriharmonic mappings of complex projective spaces, in Proposition 3.6 and Lemma 3.7. In
proving Theorem 1.3, we will also show that the quantity CNA

? associated to the homotopy
class Φ in Theorem 1.1 is a lower bound for the energy of mappings F ∈ Φ. We will then
complete the proof of Theorem 1.1 in Section 4 by showing that it is the infimum in each
homotopy class. The starting point for all these results is the following formula for the energy
of a mapping due to Croke:

Lemma 3.1. (Croke [Cr87, Proposition 1]) Let F : (Nn, h)→ (Mm, g) be a Lipschitz mapping
of Riemannian manifolds and x ∈ N a point at which F is differentiable. Then:

|dFx|2 =
n

σ(n− 1)

∫
Ux(N,h)

|dF (~u)|2d~u. (3.1)

In particular,

E2(F ) =
n

2σ(n− 1)

∫
U(N,h)

|dF (~u)|2d~u, (3.2)

where U(N,h) is the unit tangent bundle of (N,h) and Ux(N,h) its fibre at x.

The energy E2(F ) fits naturally into a 1-parameter family of functionals:

Definition 3.2 (cf. [Wh86, HL87, Wh88, We98]). Let F : (Nn, h) → (Mm, g) be a Lipschitz
mapping of Riemannian manifolds. For p ≥ 1, the p-energy Ep(F ) of F is:

1

2

∫
N

|dFx|pdV olh. (3.3)

Note that for p 6= 2, continuous maps which are critical for Ep(F ) need not be smooth, or
even C1,1, cf. [HL87]. Note also that the definition of p-energy in some papers differs by a
constant from the formula in (3.3).

At all x ∈ N at which the mapping F in Definition 3.2 is differentiable, F ∗g is a positive
semidefinite, symmetric bilinear form on TxN which can be diagonalized relative to h. Letting
e1, e2, · · · , en be an orthonormal basis for TxN (relative to h) of eigenvectors for F ∗g, we then
have:

|dFx|2 =

n∑
i=1

|dF (ei)|2. (3.4)

Lemma 3.1 can be derived from this identity, which also gives the following elementary lower
bound for the p-energy of F : (Nn, h)→ (Mm, g) for p ≥ dim(N):
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Lemma 3.3. Let (Nn, h) be a finite volume Riemannian manifold and F : (Nn, h)→ (Mm, g)
a Lipschitz mapping, and define V olh(N,F ∗g) to be:∫

N

√
det(dF Tx ◦ dFx)dV olh. (3.5)

Then for p ≥ n,

Ep(F ) ≥ n
p
2V olh(N,F ∗g)

p
n

2 V ol(N,h)
p−n
n

. (3.6)

For p = n, equality holds if and only if dFx is a homothety at almost all x ∈ N . For p > n,
equality holds if and only if dFx is a homothety, by a constant factor κF , at almost all x ∈ N .

Proof. For p = n Lemma 3.3 follows from the inequality |dFx|p ≥ n
p
2 (
√
det(dF Tx ◦ dFx))

p
n ,

which follows from (3.4) and the arithmetic-geometric mean inequality for the eigenvalues of
F ∗g relative to h. For p > n, Lemma 3.3 follows from this pointwise inequality together with
Hölder’s inequality. �

Note that in Lemma 3.3, equality for at least one p > n implies equality for all p ≥ n, and
in fact that (3.6) is an equality for all p ≥ 1. If F is smooth, the equality condition for p = n
in Lemma 3.3 says that F is a semiconformal mapping, that is F ∗g = µ(x)h for a nonnegative
function µ on N , and the equality condition for p > n says that F is a homothety, i.e. F ∗g is a
rescaling of h. This generalizes the well-known fact that for mappings of surfaces, the energy is
pointwise bounded below by the area of the image, with equality precisely where the mapping
is conformal. Also, note that if F is a pluriharmonic mapping of (CPN , g0), then by Lemma
2.9 we can diagonalize F ∗g as in (3.4) by a unitary basis e1, e2 = Je1, · · · , e2N = Je2N−1, with
|dF (ei)| = |dF (Jei)|.

In proving Theorems 1.1, 1.3 and 1.4, we will work with the following measure spaces asso-
ciated to the canonical Riemannian metrics on real and complex projective space:

Definition 3.4. A. Let G be the space of oriented geodesics γ in (RPn, g0); that is, the quotient
of the unit tangent bundle U(RPn, g0) by the geodesic flow. Let dV olU be the canonical measure
on U(RPn, g0), ζ : U(RPn, g0)→ G the quotient map, ζ#dV olU the push-forward of dV olU via

ζ and dγ the measure on G which is given by 1
π ζ#dV olU(RPn).

B. Let L be the family of linearly embedded subspaces CP 1 ⊆ CPN , which we define as
the quotient of the unit tangent bundle U(CPN , g0) by the quotient mapping T which sends
~u ∈ U(CPN , g0) to the unique degree-1 curve CP 1 ⊆ CPN to which ~u is tangent, as in the proof
of Lemma 2.9. Let dV olU be the canonical measure on U(CPN , g0), T#dV olU its push-foward

by T and dP the measure on L given by 1
2π2T#dV olU .

The total volumes of G and L in the measures dγ and dP in Definition 3.4 are σ(n)σ(n−1)
2π and

π2N−2

N !(N−1)! respectively. The normalizations for these measures are chosen so that, for example,

if η is an integrable function on U(RPn, g0), then by Fubini,∫
U(RPn,g0)

η(~u) d~u =

∫
G

∫
γ

η(γ′(t))dtdγ. (3.7)

The identity in (3.1), together with an identity as in (3.7), is the basis for the following
formula for the energy of a mapping of complex projective space:
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Lemma 3.5. Let F : (CPN , g0)→ (M, g) be a Lipschitz mapping from complex projective space
to a Riemannian manifold. Let L and dP be as in Definition 3.4.B, and for P ∈ L let E2(F |P)
be the energy of the mapping P → (M, g) given by composing the inclusion P ⊆ CPN with F .
Then:

E2(F ) =
N !

πN−1

∫
L

E2(F |P)dP. (3.8)

Proof. By Lemma 3.1, we have:

E2(F ) =
N

σ(2N − 1)

∫
U(CPN ,g0)

|dF (~u)|2d~u.

Letting U(P, g0) be the unit tangent bundle of P ∈ L in the metric g0|P , by Fubini’s theorem
as in (3.7),

E2(F ) =
N

σ(2N − 1)

∫
L

∫
U(P,g0)

|dF (~u)|2 d~u dP. (3.9)

For each P ∈ L, the mapping F |P is also Lipschitz and has a well-defined energy which can

be calculated using Lemma 3.1, so (3.9) is equal to
N !

πN−1

∫
L

E2(F |P)dP. �

Proposition 3.6. Let F : (CPN , g0) → (M, g) be a pluriharmonic mapping to a Riemannian
manifold and L as in Definition 3.4.B.

Then there is a constant A such that E2(F |P) = |F (P)| = A for all P ∈ L, and E2(F ) =
CNA, where CN is as in Theorem 1.1. In particular, if F is a holomorphic or antiholomorphic
mapping to a compact Kähler manifold, then E2(F ) = CNA

?, where A? is as in (1.1).

Proof. Because F is pluriharmonic, by Lemma 2.4, F |P is harmonic for all P ∈ L. To see that
E2(F |P) is the same for all P ∈ L, note that any two elements P0, P1 of L can be joined by a 1-
parameter family {Pt}0≤t≤1, by composing the inclusion P0 ⊆ CPN with a 1-parameter family
of isometries of (CPN , g0). Because F |Pt is harmonic for all 0 ≤ t ≤ 1, the total energy of F |Pt
is constant in t, so E2(F |P0) = E2(F |P1). By Theorem 2.8, for all P ∈ L, F |P is conformal, so
that the area of its image is equal to its energy, and by Lemma 3.5, E2(F ) = CNA, where A is
the common value of E2(F |P) for P ∈ L.

If F is a holomorphic or antiholomorphic mapping to a compact Kähler manifold (X,h),
then for P ∈ L, F (P) is a closed complex curve in (X,h) and has the minimum area of any
cycle representing its homology class. In particular, its area is minimal among mappings in its
homotopy class, so that A = A?. �

For nonconstant pluriharmonic mappings of (CPN , g0), we have:

Lemma 3.7. Let F : (CPN , g0) → (M, g) be a nonconstant pluriharmonic mapping from
complex projective space to a Riemannian manifold. Then F is an immersion on an open,
dense subset of CPN .
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Proof. The subset of CPN on which rk(dF ) = 2N is defined by the condition
√

det(dF T ◦ dF ) 6=
0 and is therefore open. To see that it is dense, suppose x ∈ CPN is a point with rk(dFx) < 2N .
By Lemma 2.9, ker(dFx) and ker(dFx)⊥ are complex subspaces of TxCPN , so rk(dFx) = 2k =
dim(ker(dFx)⊥). Let ~u ∈ ker(dFx), and let T(~u) ∈ L be the degree-1 curve to which ~u is tangent,
as in the proof of Lemma 2.9. By Proposition 3.6, F |T(~u) is nonconstant, and by Lemma 2.4 it is
harmonic. By Theorem 2.8, F |T(~u) is therefore a branched conformal immersion. The structure
of F |T(~u) near x is that of a branch point, and for y 6= x in a sufficiently small neighborhood of

x in T(~u), the rank of dF |T(~u) at y is 2 and the rank of dF on TyCPN is therefore at least 2k+2.

Any open subset of CPN containing x must therefore contain points y with rk(dFy) ≥ 2k + 2.
Repeating this argument, the set of points z with rk(dFz) = 2N must intersect all open subsets
of CPN . �

Proof of Theorem 1.3. Let F : (CPN , g0) → (M, g) be a Lipschitz mapping. By Lemma 3.5
and the fact that for all P ∈ L we have E2(F |P) ≥ |F (P)| ≥ A?, we have:

E2(F ) ≥ πN−1

(N − 1)!
A?, (3.10)

in other words, the quantity CNA
? associated to the homotopy class of F in Theorem 1.1 is a

lower bound for E2(F ). For p > 2, Hölder’s inequality then implies:

Ep(F ) =
1

2

∫
CPN

|dF |pdV olg0 ≥
1

2
V ol(CPN , g0)1− p

2

 ∫
CPN

|dF |2dV olg0


p
2

=

(
πN

2N !

)1− p
2

E2(F )
p
2 , (3.11)

which together with (3.10) implies the inequality in Theorem 1.3.

Suppose p > 2 and equality holds for Ep(F ) in Theorem 1.3. Equality then holds in (3.10),
which implies F is energy minimizing in its homotopy class and is therefore a stable harmonic
map, in particular smooth, and pluriharmonic by Theorem 1.2. We also have equality in Hölder’s
inequality in (3.11), which implies |dF | is constant and therefore that equality holds in Theorem
1.3 for all p ≥ 2. Letting ω∗ be the closed 2-form associated to the Hermitian form F ∗g as in
Theorem 2.10, for P ∈ L we have: ∫

P

ω∗ = |F (P)| = A?. (3.12)

Letting ω0 be the Kähler form of g0, this implies ω∗ is cohomologous to A?

π ω0, and therefore

that, letting V olg0(CPN , F ∗g) be as defined in Lemma 3.3,

V olg0(CPN , F ∗g) =
1

N !

∫
CPN

ω∗
N

=
A?

N

N !
. (3.13)

This implies that for p ≥ 2N , the lower bound in Theorem 1.3 coincides with the lower bound
in Lemma 3.3, and therefore that F realizes equality in Lemma 3.3 for all p ≥ 2N . Because F
realizes equality in Lemma 3.3 for p > 2N it is a homothety. �
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In our result for mappings of (RPn, g0) in Theorem 1.4, the equality condition implies that
a mapping F : (RPn, g0) → (M, g) which minimizes p-energy in its homotopy class is a homo-
thety onto a totally geodesic submanifold; that is, the second fundamental form αF vanishes
identically. Totally geodesic mappings of Kähler manifolds are pluriharmonic, so in this sense,
the condition that a mapping is totally geodesic in Theorem 1.4 is stronger than the condition
that a mapping is pluriharmonic in Theorem 1.3. The homogeneous quadric curve in CP 2,
described in homogeneous coordinates [z0 : z1 : z2] by z2

0 + z2
1 + z2

2 = 0, shows that a mapping
need not be totally geodesic for equality to hold in Theorem 1.3.

Proof of Theorem 1.4. Let F : (RPn, g0) → (M, g) be a Lipschitz map. By (3.1) and the
Cauchy-Schwarz inequality,

E1(F ) =
1

2

∫
RPn

|dFx|dV olg0 =
1

2

∫
RPn

 n

σ(n− 1)

∫
Ux(RPn,g0)

|dF (~u)|2d~u


( 1
2

)

dV olg0

≥
√
n

2σ(n− 1)

∫
U(RPn,g0)

|dF (~u)|d~u. (3.14)

Letting the space G and measure dγ be as in Definition 3.4.A, and writing γ : [0, π]→ RPn for
a unit-speed parametrization of γ ∈ G and F ◦γ : [0, π]→M for the associated parametrization
of F ◦ γ,

|F ◦ γ| =
π∫

0

|(F ◦ γ)′(t)|dt. (3.15)

By (3.14), (3.15), and Fubini, we then have:

E1(F ) ≥
√
n

2σ(n− 1)

∫
G

|F ◦ γ|dγ. (3.16)

Because |F ◦ γ| ≥ L? for all γ ∈ G, this implies the inequality in Theorem 1.4 for p = 1. For
p > 1, by Hölder’s inequality,

Ep(F ) =
1

2

∫
RPN

|dFx|pdV olg0 ≥
(

4

σ(n)

)p−1

E1(F )p, (3.17)

which gives the inequality for p > 1.

Suppose equality holds for p = 1.

Supposing only that F is Lipschitz, this implies equality holds in the Cauchy-Schwarz in-
equality in (3.14) for a.e. x ∈ RPn. For all x at which F is differentiable and for which this
equality holds, |dFx(~u)| depends only on x. This implies that F ∗g is a.e. equal to µ(x)g0, where
µ is a nonnegative function on RPn. Because all γ ∈ G map to rectifiable curves F ◦γ in (M, g)
with well-defined lengths, equality also implies that for almost all γ ∈ G, |F ◦ γ| = L?. Because
|F ◦γ| ≥ L? and |F ◦γ| is a lower semicontinuous function of γ ∈ G, we in fact have |F ◦γ| = L?

for all γ. The image via F of each geodesic γ is therefore a closed geodesic in (M, g), of minimal
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length L? in its free homotopy class, although we have not inferred that t 7→ (F ◦ γ)(t) is a
constant speed parametrization or even locally injective.

If in addition F is a smooth immersion, then because each geodesic γ in (RPn, g0) maps to a
closed geodesic in (M, g), the image of F is a totally geodesic submanifold of (M, g). Because
F ◦ γ is of minimal length in its free homotopy class in (M, g), F ∗g is a Blaschke metric on
RPn, cf. Remark 3.8 below. By the Berger-Green-Kazdan-Yang proof of the Blaschke con-
jecture in [Gn62, Be12], F ∗g therefore has constant curvature. This does not yet imply that
the mapping F is an isometry or a homothety. However after rescaling F ∗g if necessary and
letting ι be a diffeomorphism of RPn which gives an isometry from (RPn, F ∗g) to (RPn, g0),
we have ι∗g0 = F ∗g = µ(x)g0, where µ is the semiconformal factor as above and is in fact a
conformal factor, i.e. is everywhere-defined and positive, because F is a smooth immersion. As
a conformal diffeomorphism of (RPn, g0), ι must in fact be an isometry of (RPn, g0), so µ is
constant and F is an isometry or a homothety.

Now suppose p > 1 and equality holds for p.

Assuming only that F is Lipschitz, this implies all the conditions which hold for Lipshitz
mappings which realize equality for p = 1 and also implies equality in Hölder’s inequality in
(3.17), which implies |dF | is constant and equality holds for all p ≥ 1. Because equality holds
for p = 2, F is a harmonic mapping and therefore smooth, and because |dF | is constant, the
semiconformal factor µ is a constant function. F is therefore either a constant map, if µ ≡ 0,
or a homothety if µ ≡ const. > 0. In the latter case, the equality conditions for p = 1 imply
that F is totally geodesic. �

Remark 3.8. To see that the conditions for equality when p = 1 and F is an immersion imply
that F ∗g is a Blaschke metric, i.e. that the first conjugate locus of each point x0 in (RPn, F ∗g)
is a single point, in fact x0, note that each unit-speed geodesic c : [0, L?] → (RPn, F ∗g) has
a conjugate point at c(L?) = c(0), where all geodesics based at c(0) intersect, and that this
must be the first conjugate point to c(0) along c because c([0, L?]) is length minimizing in its
homotopy class.

Also, the p = 1 case of Theorem 1.4 is false without the stipulation that n ≥ 2: any
diffeomorphism of RP 1 homotopic to the identity has 1-energy equal to the identity. This is
essentially the same observation as in the proof of Theorem 1.4 that although Lipschitz maps
F for which equality holds for p = 1 must map each geodesic γ in (RPn, g0) onto a geodesic
of (M, g), we do not know if (F ◦ γ)(t) is an arclength parametrization. This is why we have
assumed F is a smooth immersion in characterizing the equality case in Theorem 1.4 for p = 1.
It would be interesting to know if this assumption can be removed.

4. Infima of the Energy Functional in Homotopy Classes of Mappings

In this section we will complete the proof of Theorem 1.1. We will also discuss the problem
of determining the infimum of the energy in a homotopy class of mappings of real projective
space. We will prove a two-sided estimate for the infimum of the energy in a homotopy class of
mappings of (RP 3, g0) in Theorem 4.6.

In proving Theorem 1.1, we will use the fact that the infimum of the energy in any homotopy
class of mappings from the 2-sphere to a Riemannian manifold (M, g) is equal to the infimum of
the area (i.e. the theorem as it applies to CP 1). If a homotopy class of mappings of CP 1 contains
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an energy minimizing mapping, this follows from Theorem 2.8, however a homotopy class of
mappings from the 2-sphere to a Riemannian manifold may not contain such a minimizing
map. Sacks and Uhlenbeck studied the existence of harmonic and energy minimizing mappings
of 2-spheres in [SU81] and discuss this issue. We will show the two infima are equal via the
following lemma, which we will prove by an argument adapted from the solution of Plateau’s
problem as in [Law80]:

Lemma 4.1. Let f : (CP 1, g0)→ (M, g) be a smooth mapping to a Riemannian manifold, and
let A(f) be the area of its image, as in the integral expression in (1.1).

Then for any δ > 0 there is a diffeomorphism φ : CP 1 → CP 1, which we can take to be
homotopic to the identity, such that E2(f ◦ φ) < A(f) + δ. In particular, f is homotopic to
a map with energy less than A(f) + δ. If f is antipodally invariant, we can choose φ to be
antipodally invariant, so that the same conclusion holds for mappings of (RP 2, g0).

Proof. Given f as above, let fr : (CP 1, g0)→ (M, g)× (S2, g0r) be the product of the mapping
f with a homothety to a round sphere (S2, g0r) of constant curvature 1

r2
. fr is then a smooth

immersion of CP 1 into N × S2. By the uniformization theorem, there is a diffeomorphism
φr : CP 1 → CP 1 such that fr ◦ φr is a conformal mapping of (CP 1, g0). We therefore have:

E2(fr ◦ φr) = |Im(fr ◦ φr)| = |Im(fr)|. (4.1)

An elementary calculation shows that E2(f ◦φr) < E2(fr ◦φr), and that by choosing r small
enough, we can ensure that |Im(fr)| < |Im(f)|+ δ for any δ > 0. Because φr is homotopic to
the identity, f is homotopic to f ◦ φr. If f is antipodally invariant, then fr is as well, and the
uniformization theorem implies we can choose φr to be antipodally invariant. �

Proof of Theorem 1.1. Let Φ be a homotopy class of mappings from (CPN , g0) to a Riemannian
manifold (M, g), and let ϕ be the associated homotopy class of mappings S2 → (M, g). Let
[z0 : z1 : z2 : · · · : zN ] be homogeneous coordinates for CPN and P0 the following linearly
embedded subspace of CPN isomorphic to CP 1:

P0 = {[z0 : z1 : 0 : · · · : 0]}. (4.2)

Let F0 ∈ Φ and f0 = F0|P0 . By the definition of A? and Lemma 4.1, for any ε > 0, f0 is
homotopic to a smooth mapping f1 : P0 → (M, g) with E2(f1) < A? + ε

CN
, where CN is the

constant in Theorem 1.1. By the homotopy extension property for CP 1 ⊆ CPN , any homotopy
f0 ' f1 can be extended to a homotopy F0 ' F1. Let F1 ∈ Φ be such a mapping, which we
assume to be smooth, with F1|P0 = f1. For λ > 0, let Tλ : CPN → CPN be the projective
linear transformation associated to the following linear transformation of CN+1:

(z0, z1, z2, . . . , zN ) 7→ (λz0, λz1, z2, . . . , zN ). (4.3)

Let L be as in Definition 3.4.B. Because Tλ : CPN → CPN is biholomorphic, Tλ|P is a
conformal diffeomorphism for all P ∈ L, and for any Lipschitz mapping F : (CPN , g0)→ (M, g)
and P ∈ L we therefore have:

E2(F ◦ Tλ|P) = E2(F |Tλ(P)). (4.4)

Let C(P0) = {[0 : 0 : z2 : · · · : zN ]} ⊆ CPN be the intersection of the cut loci in (CPN , g0) of
points in P0. For all P ∈ L which do not intersect C(P0) in CPN , as λ→∞, Tλ(P) converges
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to P0 in the C1 topology on submanifolds of CPN . By (4.4), for any C1 mapping F and P ∈ L
disjoint from C(P0), we therefore have:

lim
λ→∞

E2(F ◦ Tλ|P) = E2(F |P0). (4.5)

Letting S ⊆ L be {P : P ∩ C(P0) 6= ∅}, S has measure 0 relative to the measure dP. Letting
F1 be the mapping above, by Lemma 3.5, (4.5) and the dominated convergence theorem,

lim
λ→∞

E2(F1 ◦ Tλ) = lim
λ→∞

N !

πN−1

∫
L

E2(F1 ◦ Tλ(P))dP

= CNE2(f1) < CNA
? + ε. (4.6)

Because ε > 0 was arbitrary, this completes the proof of Theorem 1.1. �

Remark 4.2. Theorems 1.2 and 2.10 and Lemma 3.7 imply that if F : (CPN , g0)→ (M, g) is
a nonconstant map which minimizes energy in its homotopy class, then F ∗g is a Kähler metric
on an open, dense subset Ω of CPN on which F is an immersion. This can be thought of
as a partial converse, for mappings of complex projective spaces, to Lichnerowicz’s theorem
in [Li70] that holomorphic and antiholomorphic mappings between compact Kähler manifolds
minimize energy in their homotopy classes, in the following two senses: First, (2.5) implies that
the second fundamental form of F (Ω) in (M, g) can be diagonalized by a unitary basis, like
the second fundamental form of a Kähler submanifold. In this sense, F is indistinguishable “to
second order” along Ω from a holomorphic mapping to a Kähler manifold. Second, letting ω∗

be the 2-form associated to F ∗g and ω0 the Kähler form of g0, ω∗ is cohomologous up to scale
to ω0, as in the proof of Theorem 1.3. By the ∂∂-lemma, after rescaling if necessary, we have:

ω∗ = ω0 + i∂∂ξ, (4.7)

where ξ is a smooth, real-valued function on CPN . By the positivity of the 2-form ω0 and the
nonnegativity of the 2-form ω∗, for all 0 ≤ ρ < 1 the 2-form ω0 + ρi∂∂ξ is positive and thus
induces a Kähler metric gρ on CPN . In this sense, even if F ∗g is singular on a nonempty subset

ΩC of CPN , F can be seen as a limit of holomorphic mappings given by the identity mapping
(CPN , g0)→ (CPN , gρ) as ρ→ 1.

In some situations, stable harmonic mappings of complex projective spaces must be holomor-
phic or antiholomorphic: Ohnita proved in [Oh87], as a corollary of Theorem 1.2, that this is
the case for stable harmonic mappings between complex projective spaces. Burns, Burstall, de
Bartolomeis and Rawnsley extended this result to all stable harmonic mappings from complex
projective spaces to compact, simple Hermitian symmetric spaces in [BBdeBR89]. It also follows
from the results of Lichnerowicz in [Li70] that if a homotopy class of mappings between com-
pact Kähler manifolds contains a holomorphic mapping then all energy minimizing mappings in
that class are holomorphic, with a parallel statement for antiholomorphic mappings. In general
however, although energy minimizing mappings of (CPN , g0) resemble holomorphic mappings
locally as described above, they may not be globally orientation-preserving. For example, the
double covering S2 → RP 2 minimizes energy in its homotopy class.

Our last results give some information about the infimum of the energy in homotopy classes
of mappings of (RPn, g0). In discussing this problem, we will draw on the result of Pu’s systolic
inequality:
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Theorem 4.3. (Pu [Pu52], see also [CK03]) Let g be a Riemannian metric on RP 2. Let
A(RP 2, g) be its area and sys(g) the length of the shortest noncontractible curve in (RP 2, g),
known as a systole. Then:

A(RP 2, g) ≥ 2

π
sys(g)2. (4.8)

Equality holds precisely if g has constant curvature.

The work of Katz-Nowik [KN20] and Katz-Sabourau [KS21] gives quantitative versions of
(4.8), similar to Bonnesen’s quantitative isoperimetric inequalities in the plane, cf. [Os79].
These results give a precise sense in which Riemannian metrics on RP 2 that are nearly optimal
for Pu’s inequality must be close to the round metric. The following formula for the energy of
a mapping of real projective space can be derived from Lemma 3.1:

Lemma 4.4. Let F : (RPn, g0) → (M, g) be a Lipschitz mapping to a Riemannian manifold.
Let H be the set of totally geodesic Q ∼= RP 2 ⊆ RPn and dQ the measure on H which is
invariant under the action of the isometry group of (RPn, g0), normalized to have total mass
nσ(n)

8π . Then:

E2(F ) =

∫
H

E2(F |Q)dQ. (4.9)

If Ψ is a homotopy class of mappings from (RPn, g0) to (M, g), ψ the homotopy class of
mappings of RP 2 represented by composing the inclusion RP 2 ⊆ RPn with F ∈ Ψ, and B? the
infimum of the areas of mappings in ψ, Lemma 4.4 implies:

inf
F∈Ψ

E2(F ) ≥ nσ(n)

8π
B?. (4.10)

If the infimal area B? is realized by an immersion f : RP 2 → (M, g), then by Theorem 4.3,

B? ≥ 2

π
sys(f∗g)2 ≥ 2

π
L?

2
, (4.11)

where L? is as in Theorem 1.4. Moreover, (4.11) must be a strict inequality unless (RP 2, f∗g)
is isometric up to a rescaling to (RP 2, g0). If (4.11) is a strict inequality, then by (4.10),

inf
F∈Ψ

E2(F ) >
nσ(n)

4π2
L?

2
, (4.12)

so that the infimum is strictly greater than the lower bound in Theorem 1.4. When the infi-
mal area B? is not realized by a smooth immersion, one can show by considering minimizing
sequences for the area of mappings f ∈ ψ, perhaps together with the proof of Lemma 4.1, that
the strict inequality in (4.12) holds unless there is a minimizing sequence with a fairly rigid
geometry, as indicated by the results in [KN20, KS21] cited above.

Our final result gives upper and lower bounds for the infimum of the energy in homotopy
classes of mappings of (RP 3, g0) in terms of the induced homotopy class of mappings of RP 2.
The following, which is an immediate corollary of [Wh86, Corollary 1] in the results of White
cited above, implies that this infimum is determined by the induced class of mappings of RP 2

in the following sense:
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Proposition 4.5. (see [Wh86, Corollary 1]) Let Ψ be a homotopy class of mappings from

(RPn, g0) to a closed Riemannian manifold (M, g), and let Ψ̃ be the union of all homotopy
classes of mappings from (RPn, g0) to (M, g) which give the same homotopy class of mappings
of RP 2 as Ψ when composed with the inclusion RP 2 ⊆ RPn. Then:

inf
F∈Ψ

E2(F ) = inf
F∈Ψ̃

E2(F ). (4.13)

In connection with Theorem 1.1, one can also infer from [Wh86, Corollary 1] that the infimum
of the energy in a homotopy class of mappings Φ from (CPN , g0) to (M, g) depends only on
the induced homomorphism Φ∗ : π2(CPN )→ π2(M). These observations about the homotopy-
theoretic dependence of the infimum do not seem to lead to estimates for the infimal energy in
most homotopy classes, although in some cases they imply it is 0. They also do not seem to
indicate explicitly how the infimum is determined by the geometry and topology of the spaces
in question. For homotopy classes of mappings of (RP 3, g0) however, the infimum of the energy
never exceeds the lower bound in (4.10) by more than a third:

Theorem 4.6. Let Ψ be a homotopy class of mappings from (RP 3, g0) to a Riemannian man-
ifold (M, g), ψ the induced homotopy class RP 2 → (M, g) and B? the infimal area of mappings
f ∈ ψ as above. Then:

3π

4
B? ≤ inf

F∈Ψ
E2(F ) ≤ πB?. (4.14)

Proof. That 3π
4 B

? ≤ inf
F∈Ψ

E2(F ) is (4.10). To show that inf
F∈Ψ

E2(F ) ≤ πB?, note that any

F0 ∈ Ψ is homotopic to a mapping F1 where, for a fixed totally geodesic Q0
∼= RP 2 ⊆ RP 3

and any δ > 0, we have E2(F1|Q0) < B? + δ, as in the proof of Theorem 1.1. Let δ > 0 and
consider a mapping F ∈ Ψ which satisfies the condition E2(F |Q0) < B? + δ

π . Let p0 ∈ RP 3

be the unique point at distance π
2 from Q0, let p̃0 ∈ S3 be a point in the preimage of p0 via

the covering τ : S3 → RP 3 and let β : S3 \ {−p̃0} → R3 be the stereographic projection which
takes p̃0 to the origin. An elementary calculation shows that, letting θt : S3 → S3 be the
conformal diffeomorphism of S3 given by multiplication by t in the coordinates given by β, we
have lim

t→∞
E2(θt) = 0.

Let D(p̃0) ⊆ S3 be the open hemisphere centered at p̃0, which we regard as a fundamental
domain for the covering τ . Define the mapping Θt : RP 3 → RP 3 as follows: for p ∈ RP 3 with
a preimage τ−1(p) belonging to θ−1

t (D(p̃0)), let Θt(p) = τ ◦ θt(τ−1(p)). For p ∈ RP 3 with a
preimage τ−1(p) ∈ D(p̃0) \ θ−1

t (D(p̃0)), let Θt be the image of p under the radial projection
from p0 onto Q0, and for p ∈ Q0, let Θt(p) ≡ p. Because θt maps θ−1

t (D(p̃0)) conformally to
D(p̃0) and lim

t→∞
E2(θt|θ−1

t (D(p̃0))) = 0, the energy of F ◦Θt|τ(θ−1
t (D(p̃0))) goes to 0 as t→∞. We

then have:

lim
t→∞

E2(F ◦Θt) = lim
t→∞

1

2

π
2∫

0

∫
∂Br(p0)

|d(F ◦Θt)x|2dxdr =
π

2
× 2× E2(F |Q0) < πB? + δ. (4.15)

Because δ > 0 was arbitrary, this completes the proof. �

By a similar argument, one can establish a two-sided estimate for the infimum of the energy
in homotopy classes of mappings of higher-dimensional real projective spaces.
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