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Abstract

For K ∈ R, N ≥ 1, and a pointed RCD∗(K,N) space (X, p), we define its col-
lapsing volume as the pointed Gromov–Hausdorff distance from (X, p) to a pointed
RCD∗(K,N) space whose rectifiable dimension is strictly less than the one of (X, p).
We use this notion of volume to obtain a version of Anderson finiteness for funda-
mental groups in this setting.

1 Introduction

For K ∈ R, N ∈ [1,∞), the class of RCD∗(K,N) spaces consists of proper metric measure
spaces that satisfy a synthetic condition of having Ricci curvature bounded below by K and
dimension bounded above by N . This class is closed under measured Gromov–Hausdorff
convergence and contains the class of complete Riemannian manifolds of Ricci curvature
≥ K and dimension ≤ N .

RCD∗(K,N) spaces have a well defined notion of dimension called rectifiable dimension
(see Theorem 16), which is always an integer between 0 andN , and is lower semi-continuous
with respect to pointed Gromov–Hausdorff convergence (see Theorem 20). This motivates
the following definition.

Definition 1. Let K ∈ R, N ∈ [1,∞), and (X, p) a pointed RCD∗(K,N) space. We
define the collapsing volume of (X, p) as

vol∗K,N(X, p) := inf dGH((X, p), (Y, q)),

where the infimum is taken among all pointed RCD∗(K,N) spaces (Y, q) whose rectifiable
dimension is strictly less than the one of X.

Proposition 2. Let (Xi, pi) be a sequence of pointed RCD∗(K,N) spaces that converges
in the Gromov–Hausdorff sense to a pointed RCD∗(K,N) space (X, p). If the rectifiable
dimension of Xi is n for each i, then the following are equivalent:

1. The rectifiable dimension of X is strictly less than n.

2. vol∗K,N(Xi, pi)→ 0.

3. vol∗K,N(Xik , pik)→ 0 for a subsequence.

Proof. (3 ⇒ 1) By hypothesis, there is a sequence of RCD∗(K,N) spaces (Yik , qik) of
rectifiable dimension strictly less than n and converging to (X, p) as k → ∞. From the
fact that rectifiable dimension is lower semi-continuous, we deduce 1. The implications
1⇒ 2⇒ 3 are tautological.
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Corollary 3. Let Xi be a sequence of RCD∗(K,N) spaces, and pi, p
′
i ∈ Xi pairs of points

with lim supi→∞ d(pi, p
′
i) <∞. Then vol∗K,N(Xi, pi)→ 0 if and only if vol∗K,N(Xi, p

′
i)→ 0.

The main result of this note is a generalization to RCD∗(K,N) spaces of a classical
finiteness result of Anderson [1].

Theorem 4. For each K ∈ R, N ∈ [1,∞), D > 0, ν > 0, the class of pointed RCD∗(K,N)
spaces of diameter ≤ D and vol∗K,N ≥ ν contains finitely many fundamental group isomor-
phism types.

Theorem 4 will be obtained from the following result which states that a lower bound
on the collapsing volume of the quotient of an RCD∗(K,N) space by a discrete group
yields a uniform discreteness gap on the corresponding group (see Equation 1 below for
the definition of dp).

Theorem 5. For each K ∈ R, N ∈ [1,∞), ν > 0, there is ε > 0 such that the following
holds. If (X, p) is a pointed RCD∗(K,N) space and Γ ≤ Iso(X) is a discrete group of
measure preserving isometries with vol∗K,N(X/Γ, [p]) ≥ ν, then

{g ∈ Γ| dp(g, IdX) ≤ ε} = {IdX}.

The remainder of this note contains the proof of theorems 4 and 5. In Section 2 we
cover the required material and in Section 3 we present the proofs.

2 Preliminaries

2.1 Notation

For a metric space X, p ∈ X, r > 0, the closed ball of radius r centered at p will be
denoted as B(p, r,X). We denote by X ∪ {∗} the metric space obtained by adjoining to
X a point ∗ with d(x, ∗) =∞ for all x ∈ X.

2.2 RCD spaces and isometries

A CD∗(K,N) space is a proper metric space (X, d) equipped with a fully supported Radon
measure m for which an appropriate entropy in its space of probability measures is in a
suitable sense concave with respect to the L2-Wasserstein distance. For a CD∗(K,N) space
(X, d,m), if its Sobolev space W 1,2 is a Hilbert space, we say that it is an RCD∗(K,N)
space. See [8] for a precise definition and different reformulations.

Remark 6. If (X, d,m) is an RCD∗(K,N) space, then for any c > 0, (X, d, cm) is also an
RCD∗(K,N) space, and for any λ > 0, (X,λd,m) is an RCD∗(λ−2K,N) space. Also, if a
metric measure space (X, d,m) is an RCD∗(K − ε,N) space for all ε > 0, then it is also
an RCD∗(K,N) space.
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Along this note we are interested only in topological properties of RCD∗(K,N) spaces,
so by an abuse of notation, we say that a proper metric space (X, d) is an RCD∗(K,N)
space if it admits a Radon measure that makes it an RCD∗(K,N) space. Any two such
measures are equivalent [5], so we can still talk about full (or zero) measure sets even after
this abuse.

Even though we don’t know much about the global topology of RCD∗(K,N) spaces,
we know they are semi-locally-simply-connected [18], and their universal cover is still an
RCD∗(K,N) space [16].

Theorem 7. (Wang) Let X be an RCD∗(K,N) space. Then X is semi-locally-simply-
connected, so for any p ∈ X we can identify the fundamental group π1(X, p) with the
group of deck transformations of the universal cover X̃.

Theorem 8. (Mondino–Wei) If X is an RCD∗(K,N) space, then its universal cover X̃
admits a π1(X)-invariant measure that makes it an RCD∗(K,N) space.

Recall that for Riemannian manifolds, if an isometry coincides with the identity up to
first order at a point, then it is necessarily the identity. An analogue of this statement for
RCD∗(K,N) spaces if the following [12].

Lemma 9. Let (X, d,m) be an RCD∗(K,N) space and f : X → X a non-trivial isometry.
Then the set of fixed points of f has zero m-measure.

For a pointed proper metric space (X, p), we define the compact-open distance between
two functions h1, h2 : X → X as

dp(h1, h2) := inf
r>0

{
1

r
+ sup

x∈B(p,r,X)

d(h1x, h2x)

}
. (1)

When we restrict this metric to the group of isometries Iso(X), we get a left invariant (not
necessarily geodesic) metric that induces the compact open topology (independent of p)
and makes Iso(X) a proper metric group. However, this distance is defined on the full
class of functions X → X, where it is not left invariant nor proper anymore.

Recall that if X is a proper geodesic space and Γ ≤ Iso(X) is a closed group of
isometries, the metric d′ on X/Γ defined as d′([x], [y]) := infg∈Γ(d(gx, y)) makes it a proper
geodesic space. By the work of Galaz–Kell–Mondino–Sosa, the class of RCD∗(K,N) spaces
is closed under quotients by discrete groups [10].

Theorem 10. (Galaz–Kell–Mondino–Sosa) Let (X, d,m) be an RCD∗(K,N) space and
Γ ≤ Iso(X) a discrete group of measure preserving isometries. Then the metric space
(X/Γ, d′) admits a measure m′ that makes it an RCD∗(K,N) space. Moreover, if ρ : X →
X/Γ denotes the projection, m′ can be taken so that m(A) = m′(ρ(A)) for all Borel subsets
A of X sent isometrically to X/Γ by ρ.
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2.3 Gromov–Hausdorff topology

The Gromov–Hausdorff topology in the class of pointed proper metric spaces quantifies
how much two spaces are from being isometric.

Definition 11. Let (X, p), (Y, q) be pointed proper metric spaces and ε > 0. We say that
a function f : X → Y ∪ {∗} is an ε-approximation if d(f(p), q) ≤ ε and for R = 1/ε one
has

f−1(B(q, R, Y )) ⊂ B(p, 2R,X), (2)

sup
x1,x2∈B(p,2R,X)

|d(f(x1), f(x2))− d(x1, x2)| ≤ ε, (3)

sup
y∈B(q,R,Y )

inf
x∈B(p,2R,X)

d(f(x), y) ≤ ε. (4)

The pointed Gromov–Hausdorff distance between (X, p) and (Y, q) is defined as

dGH((X, p), (Y, q)) := inf{ε > 0| there is an ε-approximation f : X → Y ∪ {∗}}.

Strictly speaking, dGH as defined above is not a distance as it is not symmetric. How-
ever, it still generates a first countable Hausdorff topology in the class of pointed proper
metric spaces (see [4, Chapter 8]). This is called the Gromov–Hausdorff topology.

Proposition 12. (Gromov) For pointed proper metric spaces (X, p) and (Xi, pi), we have
dGH((Xi, pi), (X, p)) → 0 as i → ∞ if and only if dGH((X, p), (Xi, pi)) → 0 as i → ∞.
Moreover, in either case there are sequences φi : Xi → X ∪ {∗} and ψi : X → Xi ∪ {∗} of
εi-approximations with εi → 0 and such that

lim
i→∞

dp(φi ◦ ψi, IdX) = 0. (5)

Corollary 13. Let (Xi, pi) be a sequence of pointed proper metric spaces that converges
in the Gromov–Hausdorff sense to a pointed proper metric space (X, p). Then for each
R > 0, ε > 0, there is M ∈ N such that any set S ⊂ B(pi, R,Xi) with d(s1, s2) ≥ ε for
each s1, s2 ∈ S, one has |S| ≤M .

One of the main features of the class of RCD∗(K,N) spaces is the Gromov–Hausdorff
compactness property [2].

Theorem 14. (Bacher–Sturm) If (Xi, pi) is a sequence of pointed RCD∗(K,N) spaces,
then one can find a subsequence that converges in the Gromov–Hausdorff sense to a pointed
RCD∗(K,N) space (X, p).

Definition 15. Let X be an RCD∗(K,N) space and n ∈ N. We say that p ∈ X is an n-
regular point if for each λi →∞, the sequence (λiX, p) converges in the Gromov–Hausdorff
sense to (Rn, 0).
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Mondino–Naber showed that the set of regular points in an RCD∗(K,N) space has full
measure [15]. This result was refined by Brué–Semola who showed that almost all points
have the same local dimension [3].

Theorem 16. (Brué–Semola) Let X be an RCD∗(K,N) space. Then there is a unique
n ∈ N∩ [0, N ] such that the set of n-regular points in X has full measure. This number n
is called the rectifiable dimension of X.

Definition 17. Let Xi be a sequence of RCD∗(K,N) spaces of rectifiable dimension n.
A choice of points xi ∈ Xi is said to be a Reifenberg sequence if for any λi → ∞, the
sequence (λiXi, xi) converges in the Gromov–Hausdorff sense to (Rn, 0).

Theorem 18. (Mondino–Naber) For each i ∈ N, let (Xi, di,mi) be an RCD∗(−εi, N) space
with εi → 0 of rectifiable dimension n. Assume that for some choice pi ∈ Xi, the sequence
(Xi, pi) converges in the Gromov–Hausdorff sense to (Rn, 0). Then there is a sequence of
subsets Ui ⊂ B(pi, 1, Xi) with mi(Ui)/mi(B(pi, 1, Xi))→ 1 such that any sequence xi ∈ Ui
is a Reifenberg sequence.

Remark 19. A previous version of this manuscript included a wrong interpretation of
Theorem 18, claiming that any RCD∗(K,N) space contains an open dense subset locally
bi-Lipschitz homeomorphic to the Euclidean space. This is wrong (see [13]). The author
is sorry for this mistake.

Using the results above, Kitabeppu showed that the rectifiable dimension is lower semi-
continuous with respect to Gromov–Hausdorff convergence [14].

Theorem 20. (Kitabeppu) Let (Xi, pi) be a sequence of pointed RCD∗(K,N) spaces of
rectifiable dimension n converging in the Gromov–Hausdorff sense to the space (X, p).
Then the rectifiable dimension of X is at most n.

The well known Cheeger–Gromoll splitting theorem [7] was extended by Cheeger–
Colding for limits of Riemannian manifolds with lower Ricci curvature bounds [6], and
later by Gigli to this setting [11].

Theorem 21. (Gigli) Let (X, d,m) be an RCD∗(0, N) space of rectifiable dimension n. If
(X, d) contains an isometric copy of Rm, then there is c > 0 and a metric measure space
(Y, dY , n) such that (X, d, cm) is isomorphic to the product (Rm × Y, dRm × dY ,Hm ⊗ n).
Moreover, (Y, dY , n) is an RCD∗(0, N −m) space of rectifiable dimension n−m.

2.4 Equivariant Gromov–Hausdorff convergence

Recall from Proposition 12 that if a sequence of pointed proper metric spaces (Xi, pi)
converges in the Gromov–Hausdorff sense to the pointed proper metric space (X, p), one
has εi-approximations φi : Xi → X∪{∗} and ψi : X → Xi∪{∗} with εi → 0 and satisfying
Equation 5.
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Definition 22. Consider a sequence of pointed proper metric spaces (Xi, pi) that con-
verges in the Gromov–Hausdorff sense to a pointed proper metric space (X, p) and a se-
quence of closed groups of isometries Γi ≤ Iso(Xi). We say that the sequence Γi converges
equivariantly to a closed group Γ ≤ Iso(X) if:

� For each g ∈ Γ, there is a sequence gi ∈ Γi with dp(ψi ◦ gi ◦ φi, g)→ 0 as i→∞.

� For a sequence gi ∈ Γi and g ∈ Iso(X), if there is a subsequence gik with dp(ψik ◦
gik ◦ φik , g)→ 0 as k →∞, then g ∈ Γ.

We say that a sequence of isometries gi ∈ Iso(Xi) converges to an isometry g ∈ Iso(X) if

dp(ψi ◦ gi ◦ φi, g)→ 0 as i→∞.

Equivariant convergence allows one to take limits before or after taking quotients [9].

Lemma 23. Let (Yi, qi) be a sequence of proper metric spaces that converges in the
Gromov–Hausdorff sense to a proper space (Y, q), and Γi ≤ Iso(Yi) a sequence of closed
groups of isometries that converges equivariantly to a closed group Γ ≤ Iso(Y ). Then the
sequence (Yi/Γi, [qi]) converges in the Gromov–Hausdorff sense to (Y/Γ, [q]).

Fukaya–Yamaguchi obtained an Arzelá-Ascoli type result for equivariant convergence
[9, Proposition 3.6].

Theorem 24. (Fukaya–Yamaguchi) Let (Yi, qi) be a sequence of proper metric spaces
that converges in the pointed Gromov–Hausdorff sense to a proper space (Y, q), and take
a sequence Γi ≤ Iso(Yi) of closed groups of isometries. Then there is a subsequence
(Yik , qik ,Γik)k∈N such that Γik converges equivariantly to a closed group Γ ≤ Iso(Y ).

Proposition 25. Let (Xi, pi) be a sequence of pointed proper metric spaces that converges
in the Gromov–Hausdorff sense to a pointed proper metric space (X, p). Assume a sequence
of closed groups Γi ≤ Iso(Xi) converges equivariantly to a closed group Γ ≤ Iso(X). Then
the sequence of pointed metric spaces (Γi, dpi , IdXi

) converges in the Gromov–Hausdorff
sense to (Γ, dp, IdX).

Proof. Recall that one has εi-approximations φi : Xi → X∪{∗} and ψi : X → Xi∪{∗} with
εi → 0 and satisfying Equation 5. With these functions, one could define fi : Γi → Γ∪{∗}
in the following way: for each g ∈ Γi, if there is an element γ ∈ Γ with dp(φi◦g◦ψi, γ) ≤ 1,
choose fi(g) to be an element of Γ that minimizes dp(φi ◦ g ◦ ψi, fi(g)). Otherwise, set
fi(g) = ∗. Now we verify that fi are δi-approximations for some δi → 0. The fact that
fi(IdXi

)→ IdX follows from Equation 5.
The fourth condition, corresponding to Equation 4, follows directly from the first con-

dition in the definition of equivariant convergence and our construction.
To check that fi satisfy the second condition, corresponding to Equation 2, assume by

contradiction that after taking a subsequence we can find gi ∈ Γi such that dpi(gi, IdXi
)→
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∞ but dp(fi(gi), IdX) is bounded. This implies that d(gi(pi), pi) → ∞ and since gi is
an isometry, d(gi ◦ ψi(p), pi) → ∞. As φi are εi-approximations for εi → 0, d(φi ◦ gi ◦
ψi(p), p) → ∞ as well. On the other hand, as dp(fi(gi), IdX) is bounded, fi(gi) 6= ∗ and
dp(φi ◦ gi ◦ψi, fi(gi)) ≤ 1 for all i, meaning that dp(φi ◦ gi ◦ψi, IdX) is bounded, which is a
contradiction.

To verify the third condition, corresponding to Equation 3, assume by contradiction
that after taking a subsequence we can find two sequences gi, hi ∈ Γi such that the se-
quences dpi(gi, IdXi

), dpi(hi, IdXi
) are bounded but |dpi(gi, hi) − dp(fi(gi), fi(hi))| ≥ η for

some η > 0. After again taking a subsequence we can assume gi converges to g ∈ Γ and hi
converges to h ∈ Γ. This means that dp(fi(gi), φi ◦ gi ◦ψi)→ 0, dp(fi(hi), φi ◦ hi ◦ψi)→ 0.
Hence for i large enough one has |dpi(gi, hi)− dp(φi ◦ gi ◦ ψi, φi ◦ hi ◦ ψi)| ≥ η/2.

We first deal with the case when

dp(φi ◦ gi ◦ ψi, φi ◦ hi ◦ ψi) ≥ dpi(gi, hi) + η/2 (6)

for infinitely many i. By definition of dpi , there is a sequence ρi > 0 with

dpi(gi, hi) +
η

4
≥ 1

ρi
+ sup

x∈B(pi,ρi,Xi)

d(gix, hix).

Setting ri := min{ρi, 12/η}, we obtain a bounded sequence such that

dpi(gi, hi) +
η

3
≥ 1

ri
+ sup

x∈B(pi,ri,Xi)

d(gix, hix).

For i large enough and x ∈ B(p, ri − 2εi, X),

d(φi ◦ gi ◦ ψi(x), φi ◦ hi ◦ ψi(x)) ≤ εi + d(gi(ψi(x)), hi(ψi(x)))

≤ εi −
1

ri
+ dpi(gi, hi) +

η

3
.

Again from the definition of dp we deduce

dp(φi ◦ gi ◦ ψi, φi ◦ hi ◦ ψi) ≤
1

ri − 2εi
+ sup

x∈B(p,ri−2εi,X)

d(φi ◦ gi ◦ ψi(x), φi ◦ hi ◦ ψi(x))

≤ 1

ri − 2εi
− 1

ri
+ dpi(gi, hi) +

η

3
+ εi.

From the fact that dpi(gi, IdXi
), dpi(hi, IdXi

) are bounded, we get that ri is bounded away
from 0. Then the right hand side is less than dpi(gi, hi) + η/2 for i large enough, contra-
dicting Equation 6. The other case when

dpi(gi, hi) ≥ dp(φi ◦ gi ◦ ψi, φi ◦ hi ◦ ψi) + η/2

for infinitely many i is analogous.
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As a consequence of Theorem 21, it is easy to understand the situation when the
quotients of a sequence converge to Rn.

Lemma 26. For each i ∈ N, let (Xi, pi) be a pointed RCD∗(−εi, N) space of rectifiable
dimension n with εi → 0. Assume (Xi, pi) converges in the Gromov–Hausdorff sense to
a pointed RCD∗(0, N) space (X, p), there is a sequence of closed groups of isometries
Γi ≤ Iso(Xi) that converges equivariantly to Γ ≤ Iso(X), and the sequence of pointed
proper metric spaces (Xi/Γi, [pi]) converges in the Gromov–Hausdorff sense to (Rn, 0).
Then Γ is trivial.

Proof. One can use the submetry X → X/Γ = Rn to lift the lines of Rn to lines in X
passing through p. By iterated applications of Theorem 21, we get that X = Rn × Y for
some RCD∗(0, N − n) space Y . But from Theorem 20, the rectifiable dimension of X is
at most n, so Y is a point. Since Γ ≤ Iso(Rn) satisfies Rn/Γ = Rn, it must be trivial.

2.5 Group norms

Let (X, p) be a pointed proper geodesic space and Γ ≤ Iso(X) a group of isometries. The
norm ‖ · ‖p : Γ→ R associated to p is defined as ‖g‖p := d(gp, p). The spectrum σ(Γ, X, p)
is defined as the set of r ≥ 0 such that

〈{g ∈ Γ|‖g‖p ≤ r}〉 6= 〈{g ∈ Γ|‖g‖p ≤ r − ε}〉 for all ε > 0.

This spectrum is closely related to the covering spectrum introduced by Sormani–Wei in
[17], and it also satisfies a continuity property.

Proposition 27. Let (Xi, pi) be a sequence of pointed proper metric spaces that converges
in the Gromov–Hausdorff sense to (X, p) and consider a sequence of closed isometry groups
Γi ≤ Iso(Xi) that converges equivariantly to a closed group Γ ≤ Iso(X). Then for any
convergent sequence ri ∈ σ(Γi, Xi, pi), we have limi→∞ ri ∈ σ(Γ, X, p).

Proof. Let r = limi→∞ ri By definition, there is a sequence gi ∈ Γi with ‖gi‖p = ri, and
gi /∈ 〈{γ ∈ Γi|‖γ‖pi ≤ ri − ε}〉 for all ε > 0. Up to subsequence, we can assume that gi
converges to some g ∈ Iso(X) with ‖g‖p = r.

If r /∈ σ(Γ, X, p), it would mean there are h1, . . . , hk ∈ Γ with ‖hj‖p < r for each
j ∈ {1, . . . , k}, and h1 · · ·hk = g. For each j, choose sequences hij ∈ Γi that converge to
hj. As the norm is continuous with respect to convergence of isometries, for i large enough
one has ‖hij‖p < ri for each j.

The sequence gi(h
i
1 · · ·hik)−1 ∈ Γi converges to g(h1 · · ·hk)−1 = e ∈ Γ, so its norm is

less than ri for i large enough, allowing us to write gi as a product of k + 1 elements with
norm < ri, thus a contradiction.

Definition 28. Let G be a group and S ⊂ G a generating subset containing the identity.
We say that S is a determining set if G has a presentation G = 〈S|R〉 with R consisting
of words of length 3 using as letters the elements of S ∪ S−1.
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Proposition 29. For each M ∈ N, there are only finitely many isomorphism types of
groups admitting a determining set of size ≤M .

The following lemma can be found in [19, Section 2.12].

Lemma 30. Let D > 0, (Y, q) a pointed proper geodesic space and G ≤ Iso(Y ) a closed
group of isometries with diam(Y/G) ≤ D. If {g ∈ G|‖g‖q ≤ 20D} is not a determining
set, then there is a non-trivial covering map Ỹ → Y .

3 Proof of main theorems

Proof of Theorem 5. By contradiction, assume there is a sequence (Xi, pi) of pointed
RCD∗(K,N) spaces, discrete groups Γi ≤ Iso(Xi) of measure preserving isometries such
that vol∗K,N (Xi/Γi, [pi]) ≥ ν, and elements gi ∈ Γi\{IdXi

} with dpi(gi, IdXi
)→ 0. After tak-

ing a subsequence, we can assume the spaces Xi have dimension n for some n ∈ N∩ [0, N ],
the sequence (Xi/Γi, [pi]) converges to a pointed RCD∗(K,N) space (Y, q) of rectifiable
dimension n. By Corollary 3, we can also assume that q is n-regular.

Choose ηi → ∞ diverging so slowly that (ηiXi/Γi, [pi]) converges to (Rn, 0) and
ηidpi(gi, IdXi

) → 0, and set Yi := ηiXi. By Theorem 18, we can find a Reifenberg se-
quence yi ∈ Yi/Γi and ỹi ∈ B(pi, 1, Yi) with [ỹi] = yi, which by Lemma 9 can be taken so
that ‖gi‖ỹi 6= 0.

Notice that by Corollary 3, we still have dỹi(gi, IdYi) → 0. Hence we can find 1/λi ∈
σ(Γi, Yi, ỹi) with λi →∞. As yi is a Reifenberg sequence, (λiYi/Γi, yi) converges to (Rn, 0),
so by Lemma 26, the actions of Γi on λiYi converge equivariantly to the trivial group. This
contradicts Proposition 27, as by construction we have 1 ∈ σ(Γi, λiYi, ỹi) for all i.

Proof of Theorem 4: Assuming the contrary, we could find a sequence (Xi, pi) of pointed
RCD∗(K,N) spaces of diameter≤ D and collapsing volume≥ ν whose fundamental groups
are pairwise non-isomorphic. After taking a subsequence, we may assume their universal
covers (X̃i, p̃i) converge to an RCD∗(K,N) space (X̃, p̃), and the actions of π1(Xi) converge
to the action of a group Γ in X̃.

By Theorem 5, there is ε > 0 such that the elements of Γi are at pairwise dp̃i-distance
≥ ε. By Lemma 30, for each i the set Si := {g ∈ Γi|‖g‖p̃i ≤ 20D} is determining in
Γi, and by plugging r = 1 in Equation 1, we get Si ⊂ {g ∈ Γi|dp̃i(g, IdX̃i

) ≤ 20D + 3}.
As (Γi, dp̃i , IdX̃i

) converges in the Gromov–Hausdorff sense to (Γ, dp̃, IdX̃), Corollary 13
implies that |Si| ≤M for some M ∈ N, so by Proposition 29 there are only finitely many
isomorphism types in the sequence {π1(Xi)}i∈N, contradicting our initial assumption.
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