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§1. Introduction

In [15] Rapoport-Zink proved that the formal completion of a Shimura variety of PEL-type A along its basic
locus Z admits a uniformization by a formal scheme. Rapoport conjectures ([12, p. 427 Remark 2.2 (i)], [15,
p. xvii]) that the basic locus is non-empty . In this paper we prove that excluding the cases of 0-dimensional
quaternionic Shimura varieties, basic points do exist in every irreducible component of the special fiber; see
Theorem 3.4 and Corollary 3.5. This confirms that theory of Rapoport-Zink about the tubular neighborhood
of the basic loci is indeed non-empty.

The basic loci of Shimura varieties, or concretely of PEL-type, also have deep connection with the theory
of automorphic forms. The idea may be traced back to Deligne who proves that the (part of) Langlands
correspondence for GL(2) can be realized in the cohomology of modular curves. This global method is
employed in the proof of the local Langlands correspondence for GL(n) in the work of Harris and Taylor [4].
Extending Boyer’s localization principle [1], Harris conjectures that if Π = Π∞ ⊗Πp ⊗Πp

f is an automorphic
representation so that Π∞ is of cohomological type and Πp is supercuspidal, then the Π-isotypic component
of the cohomology of the Shimura variety is contributed from that of the basic locus (see [5, Conjecture 5.2],
[6, Conjecture 8.3.4]). The conjecture is verified in several cases of PEL-type by Fargues [3]. The non-
emptiness of the basic locus sets up the framework for this theory. Indeed, this will imply that such an
automorphic representation occurs in the cohomology of the Shimura variety.

The existence of basic points in the Siegel moduli spaces or Hilbert-Blumenthal moduli spaces, those
exactly are supersingular, is well-known. Some cases in type C or type A of good reduction are certainly
known. The cases where the defining group G is connected and the moduli space has good reduction seems
to be proved in Fargues [3]. Our proof is different from previous ones; the Honda-Tate theory or the Kottwitz
invariant [8] is not used. The main ingredient is using the Hecke orbits. In fact, we modified slightly the
definition (Definition 3.2) of basic points and show that a prime-to-p Hecke orbit is finite if and only if it
contains basic points (Proposition 4.8). Then using the specialization argument we conclude the existence
of basic points in each irreducible component.

We work on slightly more general moduli spaces of PEL-type than ones considered in Rapoport and Zink
[15] where the determinant condition and separability condition are imposed. However, it turns out to be
convenient to work on this more general setting. We think this formulation should be considered when one
wants to study the inseparable isogenies and correspondences.

The paper is organized as follows. Sections 2 and 3 contains the definition of the moduli spaces of PEL-
type, the basic points and the statements of our main results. Section 4 introduces the Hecke orbits and
leaves, and gives the proof of Theorem 3.4. Section 5 compares our definition of basic points and Kottwitz’s
one.
Acknowledgments The present work is directly benefited from the author’s participation of Hecke orbit project
with Ching-Li Chai. He is indebted to Chai for helpful discussions and especially for communicating a proof
of Theorem 3.6. The manuscript is completed while the author’s stay at MPIM in the fall of 2005. He also
wishes to thank the Institute for the hospitality and excellent working environment.

§2. Preliminaries

(2.1) A rational PEL-datum D is a 4-tuple (B, ∗, V, ψ), where

• B is a finite-dimensional semi-simple algebra Q with a positive involution ∗;

• V is a finite faithful B-module together with a non-degenerate Q-valued skew-Hermitian form ψ. That
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is, ψ : V × V → Q is a non-degenerate alternating form such that ψ(bx, y) = ψ(x, b∗y) for all x, y ∈ V
and b ∈ B.

The datum D gives rise to two reductive groups over Q as usual:

G(D)(Q) = {x ∈ EndB(V ) |x∗x ∈ Q× },

G1(D)(Q) = {x ∈ EndB(V ) |x∗x = 1 },

where x∗ is the adjoint of x with respect to ψ. We shall write G for G(D) and G1 for G1(D) when the PEL
datum D is chosen.

(2.2) Lemma Let D be a rational PEL datum.

(1) There is an R-linear ∗-homomorphism h from C to HomB⊗R(VR) such that the symmetric bilinear form
(x, y) := 〈x, h(i)y〉 is positive definite.

(2) If h′ : C → HomB⊗R(VR) is another homomorphism satisfying the same property, then there is an element
g ∈ G1(R) such that h′ = Int(g) ◦ h.

Proof. (2) is proved in Kottwitz [8, Lemma 4.3]. (1) should be well-known and it is implicit in Sec. 4
(p. 386-387) of loc. cit. We indicate a proof for the convenience of the reader. It suffices to construct a
complex structure J ∈ EndB(VR) satisfying the Riemann condition, and define h by h(a + bi) := a + bJ .
Using Morita’s equivalence, one reduces to the three cases:

(C) (V, ψ) is a non-degenerate symplectic real space;
(A) V is a C-vector space together with an R-valued skew-Hermitian form ψ;
(D) V is an H-vector space together with an R-valued skew-Hermitian form ψ.

(C) Choose a symplectic basis {ei, fi} for V with respect to ψ. Define J(ei) = fi and J(fi) = −ei for
1 ≤ i ≤ n. Then {ei, fi} is an orthonormal basis for ψJ(x, y) = ψ(x, Jy).

(A) There is a unique lifting ψ′ : V × V → C such that ψ(x, y) = TrC/R( i
2ψ

′(x, y)). Then there is an
orthogonal basis such that

ψ′(
∑

ziei,
∑

z′iei) =

p∑

i=1

ziz̄
′
i −

n∑

i=p+1

ziz̄
′
i.

Define

J(ej) =

{
iej 1 ≤ j ≤ p,

−iej p+ 1 ≤ j ≤ n.

Then ψJ(
∑
ziei,

∑
z′iei) =

∑
1≤i≤n ziz̄

′
i.

(D) We lift ψ to ψ′ : V × V → H such that ψ = TrdH/R ψ
′. We can choose an orthogonal basis {ei} for

V over H with respect to ψ′. Put αi = ψ′(ei, ei), and we have

ψ′(
∑

λiei,
∑

λ′iei) =

n∑

i=1

λiαiλ̄
′
i, ᾱi = −αi.

Let J(ei) = αi/|αi| ei, and one checks J2 = −I and

ψ′(
∑

λiei, J(
∑

λ′iei)) =
∑

λiλ̄
′
i.

It follows that ψJ is positive definite.

Let h be a homomorphism as above. One also calls (B, ∗, V, ψ, h) a rational PEL datum, although h is
uniquely determined by D up to conjugation of G1(R).

Let X be the G(R)-conjugacy class of h; it has a natural HSD structure on which G(R) acts biholo-
morphically. The pair (G,X) satisfies the axioms for defining Shimura varieties. For each open compact
subgroup U of G(Af ), one has a quasi-polarized algebraic variety ShU (G,X) over the reflex field E. The
Shimura variety Sh(G,X) consists of the tower of algebraic varieties {ShU (G,X)}U together with the right
action of G(Af ).
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(2.3) Let p be a fixed rational prime. Let OB be an order of B stable under ∗ such that OB ⊗ Zp is a

maximal order. Choose an OB ⊗ Ẑ(p)-lattice V p in V ⊗ A
(p)
f such that ψ(V p, V p) ⊂ Ẑ(p). The choice of V p

gives rise to a Ẑ(p)-structure of G and that of G1. Let n ≥ 3 be a prime-to-p integer, and let Un be the open

compact subgroup ker(G1(Ẑ
(p)) → G1(Ẑ

(p)/nẐ(p))) of G1(A
(p)
f ). Let g := 1

2 dimQ V .

Recall a polarized abelian OB-variety is a triple A = (A, λ, ι), where A is an abelian variety, λ : A → At

is a polarization, ι : OB → End(A) is a ring monomorphism such that λι(b∗) = ι(b)tλ for all b ∈ OB .
By a (V p, Un)-level structure on a g-dimensional polarized abelian OB-variety A, we mean an Un-orbit η̄

of isomorphisms, compatible with the additional structures,

η : V p ' H1(A, Ẑ
(p))

such that the pull-pack of the Weil pairing is ψ, for a suitable trivialization Ẑ(p) ' Ẑ(p)(1) modulo (1 +
nẐ(p))×. (Note that Isom(Ẑ(p), Ẑ(p)(1)) is a (Ẑ(p))×-torsor. Any isomorphism η as above determines uniquely
a trivialization so that the pull-back of the Weil pairing is the ψ. A Un-orbit η of isomorphisms then
determines a (1 + nẐ(p))×-orbit of trivializations.) We will assume for simplicity that n is prime to the
discriminant of ψ on V p as well. In this case, the level structure above will reduce to a usual OB-linear
symplectic level-n structure η : V p/nV p ' A[n] for a suitable trivialization Z/nZ ' µn. Let us choose a
primitive n-th root of unity ζn ∈ Q ⊂ C, and choose an embedding Q ⊂ Qp; hence we fix the trivialization
Z/nZ ' µn in both characteristic 0 and p. Note that for a polarized abelian OB-scheme A over a connected
Z(p)-scheme S, the map s 7→ [H1(As̄, Ẑ

(p))] from S to the set of isomorphism classes of skew-Hermitian

OB ⊗ Ẑ(p)-lattices is constant. This follows from the invariance of étale cohomologies under specialization.
Now we can formulate a general PEL-type moduli space.

Keep the notation as above; we write D
p
f := (B, ∗, OB , V, ψ, V

p, Un, ζn). Let M[Dp
f ] denote the moduli

space over Z(p)[ζn] of polarized abelian OB-varieties with a (V p, Un)-level structure. An object in M[Dp
f ] is

denoted by A = (A, λ, ι, η). The moduli scheme is locally of finite type and we have the forgetful morphism

f : M[Dp
f ] → Ag,dp∗,n :=

∐

m≥0

Ag,dpm,n, (A, λ, ι, η) 7→ (A, λ, η) (1)

for which the induced morphism fm : M[Dp
f ]m → Ag,dpm,n is finite if the source scheme is non-empty, where

d2 = disc(ψ).
The moduli space we are interested is M[Dp

f ]F̄p
, the special fiber of M[Dp

f ] (at the chosen place corre-

sponding to Q ⊂ Qp). For simplicity, we shall write MD for it, keeping in mind some other auxiliary items
are chosen.

(2.4) Remark

(1) We do not require the existence of a self-dual OB ⊗ Zp-lattice for the choice of the datum D. Therefore
the moduli space M[Dp

f ]0 could be empty and the moduli space MD may not contain separably polarized
objects.

(2) We do not impose the usual determinant condition on our moduli problem. Hence it is defined over
Z(p)[ζn] in stead of over OE,p[ζn], and the moduli space is not flat over Z(p)[ζn] in general. However, our
main theorem works well for its reduction MD mod p.

(3) The definition of M[Dp
f ] only uses the induced A

(p)
f -structure of V , not its Q-structure. Therefore the

moduli space also includes the abelian varieties of additional structures coming from other data (D′)p
f =

(B, ∗, OB , V
′, ψ′, V ′p, U ′

n
, ζn) such that the prime-to-p (V ′p, OB , ψ

′) is isomorphic to (V p, OB , ψ).

(4) It is more flexible to work with MD than a moduli space on which a determinant condition and the
separable polarization condition both are imposed. Because these two conditions are not preserved under
an inseparable isogeny, and it is our interest to allow performing the correspondences from isogenies of p-
power degrees. Another reason we do not wish to impose a determinant condition even for smooth cases is
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that inseparable isogenies can “connect” points in two moduli spaces with different determinant conditions
imposed. For example, let OK be the integral ring of an imaginary quadratic field K in which p is inert.
Then an abelian OK-fourfold whose Lie algebra has signature type (1, 3) in characteristic p can be isogenous
to another OK-fourfold with signature type (2, 2).

§3. Statement of main theorems

(3.1) Let k be an algebraically closed field of characteristic p, W the ring of Witt vectors over k, and let
L := Frac(W ) and σ the Frobenius map on L. Keep the notation as in the previous section.

In practice, we can assume that B is a division algebra, as the moduli space MD is essentially a finite
product of the moduli spaces MD′ of this simpler kind (and it is so when OB is a maximal order).

(3.1.1) If B is a division algebra, the neutral component G0 of G is commutative if
(CM) B = K is a CM field and dimK V = 1, or
(0-dim D) B is a totally definite quaternion algebra over a totally real field F and dimB V = 1.

These are the cases where the Shimura variety Sh(G,X) is 0-dimensional.

Let A = (A, λ, ι) be a g-dimensional polarized abelian OB-variety over k, where 2g = dimQ V . Let H be
the associated p-divisible group and M the attached covariant Dieudonné module.

(3.2) Definition Suppose that B is a division algebra.

(1) (Excluding Case (0-dim D)) The object A is called basic if it satisfies the following conditions

(a) dimL EndB⊗L(M ⊗ Qp) = dimQp
End0

B(H),

(b) dimQp
End0

B(H) = dimQ End0
B(A).

(2) (Case (0-dim D)) Any object A is called basic unconditionally.

Note that in Case (CM), any object A is basic as the conditions in (1) of Definition 3.2 are satisfied.

(3.2.1) One can similarly define the basic objects for the case where B is semi-simple. Write B = ⊕Mni
(Bi)

into simple factors, where each Bi is a division algebra. Then the object A is isogenous to ⊕Ani

i , where each
Ai is a polarized abelian OBi

-variety. Define A to be basic if each member Ai is basic as in (3.2). Then one
can easily check that if (B, V ) has no factor of type (0-dim D), A is basic if and only if the conditions (a)
and (b) above are satisfied.

The notion of basic points (or classes) is due to Kottwitz [7]. It plays the similar role in Shimura varieties
in positive characteristic as supersingular abelian varieties do in the Siegel moduli spaces. We include
Kottwitz’s definition for convenience of discussion. Note that when G is not connected, the definition for
the basic classes is not given explicitly in [9] but the notion should be clear (cf. [15, p. 291, 6.25]).

(3.3) Definition (Kottwitz)

(1) Let (Vp, ψp) be a Qp-valued non-degenerate skew-Hermitian Bp-module, where Bp := B ⊗Qp. An object
A is said to be related to (Vp, ψp) if there is a Bp ⊗ L-linear isomorphism α : M(A) ⊗W L ' (Vp, ψp) ⊗ L
which preserves the pairings for a suitable identification L(1) ' L.

Let G′ := GAutBp
(Vp, ψp) be the algebraic group of Bp-linear similitudes. A choice α gives rise to an

element b ∈ G′(L) so that one has an isomorphism of isocrystals with additional structures M(A) ⊗ L '
(Vp ⊗L,ψp, b(id⊗σ)). The decomposition of Vp ⊗L into isoclinic components induces a Q-graded structure,
and thus defines a (slope) homomorphism ν[b] : D → G′ over some finite extension Qps of Qp, where D is
the pro-torus over Qp with character group Q.
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(2) An object A is called basic with respect to (Vp, ψp) if
(i) A is related to (Vp, ψp), and
(ii) the slope homomorphism ν is central.

(3) An object A is called basic if it is basic with respect to (Vp, ψp) for some skew-Hermitian space (Vp, ψp).

The main result of this paper is the following

(3.4) Theorem Let MD be as in (2.3). Then any irreducible component of MD contains a basic point in
the sense of (3.2).

Our definition is not the same as Kottwitz’s when the datum D contains a factor of type (0-dim D). It is
not hard to see that the condition (b) of (3.2) is equivalent to that for Kottwitz’s (Lemma 5.3). Therefore,
Theorem 3.4 particularly implies

(3.5) Corollary If D does not contain a factor of type (0-dim D), then any irreducible component of MD

contains a basic point (in the sense of Kottwitz).

When the rational PEL datum D has no factor of type (0-dim), Corollary 3.5 confirms a conjecture of
Rapoport [12, p. 427 Remark 2.2 (i)] on the existence of basic points in the moduli space of PEL-type.
We remark our result is stronger than Rapoport’s conjecture. We do not assume the existence of self-dual
lattices for D nor impose a determinant condition as well as the separability condition for the moduli spaces
MD; and basic points do exist in each component not just in the reduction of a Shimura variety of PEL-type,
which consists of finitely many irreducible components.

For the case (0-dim D) (in fact for cases of type (C) and (D)), Kottwitz’s basic points are exactly
supersingular points. In this case, one can construct directly a supersingular point in the Shimura variety.
See an example in (3.7).

In Theorem 3.4, we prove the existence of points which are seemingly stronger than Kottwitz’s basic
ones. However, like supersingular points, Kottwitz’s basic points should also share the properties (a) and
(b) in (3.2). We further prove that it is indeed the case. The proof we give, which is much simpler than our
original one, is communicated to the author by C.-L. Chai.

(3.6) Theorem An object A satisfies the conditions (a) and (b) in (3.2) if and only if it is basic in the
sense of Kottwitz.

(3.7) Example Let D be a definite quaternion algebra over Q. It is known that the canonical involution
is the unique positive one. Take an ordinary elliptic curve E over a finite field k such that End(E) is the
maximal order of K := End(E) ⊗ Q. Note that p splits in K.

Assume that D splits over K. This means that for every place v of Q for which D is ramified, Kv is a
field. This particularly implies that p is unramified in D.

Let A = E ⊕ E. Then we have an embedding D → D ⊗K ' End(A) ⊗ Q = M2(K) so that a maximal
order OD is contained in End(A). One can choose a principal OK -linear polarization on A. Then it induces
the positive involution on D. Then we get an ordinary principally polarized abelian OD-surface.

However, we also can construct a principally polarized abelian OD-surface which is superspecial. For
simplicity, assume that D is ramified exactly at {∞, `}. Let D′ be the quaternion algebra over Q which is
ramified at {`, p}. Then D ⊗ D′ ' M2(D

′′) = End(A) ⊗ Q for a superspecial abelian surface A on which
OD-acts. Again one can choose a principal polarization on A which preserves D, and thus construct a desire
one.

We find a definite quaternion algebra D, together with a maximal order OD, in which p is unramified
such that the moduli space over Fp of principally polarized abelian OD-surfaces is non-empty and contains
both superspecial points and ordinary points.

5



§4. Hecke orbits and proof of Theorem 3.4

(4.1) Keep the notation as in Section 2. Let x = A = (A, λ, ι, η) ∈ MD(k). Let Gx denote the automorphism
group scheme over Z associated to x; for any commutative ring R, its group of R-points is

{ g ∈ EndOB
(A) ⊗R; g′g = 1},

where g 7→ g′ is the Rosati involution induced by λ.
Denote by C(x,MD) the leaf passing through x in MD ([11, Section 3],[17]); it is a reduced subscry heme

of MD over k that is characterized by the property

C(x,MD)(K) = {y ∈ MD(K); ∃ϕ : Ay[p∞] ' A[p∞] over K }

for any algebraically closed field K containing k. Write Cx for the irreducible component of C(x,MD)
containing x. We will also write C(x) for C(x,MD) when the moduli space MD is fixed.

(4.2) Proposition Notation as above.

(1) For any x ∈ MD(k), C(x) is quasi-affine, smooth and of equi-dimensional.

(2) If dim C(x) > 0, then the Zariski closure Cy of any irreducible component Cy in MD is strictly larger than
Cy.

Proof. (1) The quasi-affineness follows from the finiteness of the forgetful morphism from MD to Ag,dp∗,n

and a result of Oort that any leaf in a Siegel moduli space is quasi-affine [11]. It follows from the Serre-Tate
theorem and Corollary 1.7 in [11] that for any two points x1, x2 in C(x), one has C(x)∧x1

' C(x)∧x2
(cf. [11,

Theorem 3.13]). Then the remaining two properties follow.
(2) (TO BE FILLED)

Let H(p)(x) denote the prime-to-p Hecke orbit of x in MD(k); it is the subset of MD(k) that consists
of objects Ay such that there is a prime-to-p OB-linear quasi-isogeny ϕ : Ay → A which preserves the

polarizations. Clearly, one has H(p)(x) ⊂ C(x)(k).

(4.3) Proposition There is a natural isomorphism between H(p)(x) and Gx(Z(p))\G1(A
p
f )/Un.

Proof. For any two objects Ai = (Ai, λi, ιi, ηi) ∈ MD(k) (i = 1, 2) and any prime ` 6= p, we let

• Isom(A1, A2) (resp. Isom(A1[`
∞], A2[`

∞])) be the set ofOB-linear isomorphisms fromA1 toA2 (resp. from
A1[`

∞] to A2[`
∞]) which preserve the polarizations and the level structures, and

• Q-isom(p)(A1, A2) (resp. Q-isom(A1[`
∞], A2[`

∞])) be the set of prime-to-p OB-linear quasi-isogenies
from A1 to A2 (resp. from A1[`

∞] to A2[`
∞]) which preserve the polarizations.

One has, and via η̄ has

Q-isom(p)(A,A) = Gx(Z(p)), Q-isom(A[`∞], A[`∞]) = G1(Q`),

∏

`6=p

Isom(A[`∞], A[`∞]) = Un, Gx(Q`) ⊂ G1(Q`).

Given an element A1 ∈ H(p)(x), consider the natural map

m(A1) : Q-isom(p)(A1, A) ×
∏

`

Isomk(A[`∞], A1[`
∞]) →

∏

`6=p

′ Q-isom(A[`∞], A[`∞]) = G1(A
p
f ) (2)

which sends (φ, (α`)`) to (φα`)`. Clearly if c1 is an element in the image c(A1) of m(A1), then c(A1) equals
to the double coset Gx(Z(p)) c1 Un. Thus, c(A1) defines an element in Gx(Z(p))\G(Ap

f )/Un.
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If we have A1, A2 ∈ H(p)(x) such that c(A1) = c(A2). Write c(A1) = [(φ1α`)`] and c(A2) = [(φ2α
′
`)`].

Then there exist b ∈ Gx(Z(p)) and k` ∈ Un,` for all ` 6= p such that bφ1α`k` = φ2α
′
`. Then

(bφ1)
−1φ2 = α`k`(α

′
`)

−1 ∈ Q-isom(p)(A2, A1) ∩
∏

`6=p

Isom(A2[`
∞], A1[`

∞]) = Isom(A2, A1).

Thus A2 ' A1 and this shows the injectivity of c.
Given [(φ`)`] in Gx(Z(p))\G1(A

p
f )/Un, choose an positive prime-to-p integer N so that f` := Nφ−1

` is

an isogeny for all ` 6= p. Let H be the product of the kernels of Nφ−1
` ; it is a finite subgroup scheme of

A invariant under the OB-action. Take A1 := A/H and let π : A → A1 be the natural projection; A1 is
equipped with a natural action by OB so that π is OB-linear. Let λ1 ∈ Hom(A1, A

t
1)⊗Z(p) be the fractional

polarization on A1 such that (N−1π)∗λ1 = λ; it is OB-linear as π is so. As π` and f` have the same kernel,
there is an element α` ∈ Isomk(A[`∞], A1[`

∞]) such that α`f` = π`. This shows that λ1 is actually in
HomOB

(A,At) and one obtains A1 ∈ H(p)(x). Put φ := (N−1π)−1 ∈ Q-isom(p)(A1, A). One checks

φα` = Nπ−1
` α` = Nf−1

` = φ`.

This shows c(A1) = [(φ`)`] and the surjectivity of c.

(4.4) Remark A special case of Proposition 4.3 is proved in [2, Section 1] for the Siegel moduli spaces.

(4.5) Lemma Let H be an algebraic group over Q. Then H0(Af )\H(Af )/U is finite, where U is an open
compact subgroup of H(Af ) and H0 is the neutral component of H.

Proof. Choose a faithful representation H → GLn and fix an integral structure of H . Then it suffices to
show that H0(Af )\H(Af )/H(Ẑ) is finite, or equivalently that H0(Q`)\H(Q`)/H(Z`) is trivial for almost all
`. One has

H(Z`)/H
0(Z`) ⊂ H(Q`)/H

0(Q`) ⊂ H/H0(Q`) = H/H0(Z`).

By Lang’s Theorem, H(Z`)/H
0(Z`) = H/H0(Z`) for almost all `. Hence H0(Q`)\H(Q`)/H(Z`) is trivial

for almost all `.

(4.6) Lemma If each factor of D is of type (0-dim D), then H(p)(x) is finite.

Proof. By Proposition 4.3, we want to show thatGx(Z(p))\G1(A
p
f )/Up

1 , for any open compact subgroup Up
1

of G1(A
p
f ), is finite. Let K be a field of finite type over Fp for which A is defined. As G0 is commutative, the

image of the `-adic representations of Gal(Ksep/K) is commutative after replacing K by a finite extension.
By Zarhin’s theorem [18], A is of CM-type, and hence we may assume, by a theorem of Grothendieck, that
K is finite, after replacing A by an isogeny. By Tate’s theorem on endomorphisms of abelian varieties, we
proved

G0
x(Ap

f ) = G0
1(A

p
f ) (3)

By Lemma 4.5, G0
1(A

p
f )\G1(A

p
f )/Up

1 is finite. Let c1, . . . , ch be a set of complete representatives forG0
1(A

p
f )\G1(A

p
f )/Up

1 .
Then we have

G1(A
p
f )/Up

1 '

h∐

i=1

G0
1(A

p
f )/Ui, Ui := ciU

p
1 ci

−1 ∩G0
1(A

p
f ).

Using (3), it remains to prove the finiteness of G0
x(Z(p))\G

0
x(Ap

f )/Ui. But this follows from the finiteness
theorem of Borel, and thus the proof is complete.
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(4.7) Lemma If D has no factor of type (0-dim D), then A is basic if and only if H(p)(x) is finite.

Proof. If x is basic, then Gx(Ap
f ) = G1(A

p
f ) by the conditions (a) and (b) of (3.2). By Proposition 4.3

and the finiteness theorem of Borel, H(p)(x) is finite.
Suppose that x is not basic. This implies that G0

x is a proper reductive subgroup of G0
1 over Q` for

all ` 6= p. Using the proof of Lemma 4.6, the finiteness of Gx(Z(p))\G1(A
p
f )/Up

1 is the same as that of

G0
x(Z(p))\G

0
1(A

p
f )/U ′p

1 , where U ′p
1 is an open compact subgroup ofG0

1(A
p
f ). As the spaceG0

x(Z(p))\G
0
x(Ap

f )/Up
x

is finite, the finiteness is also the same as that of G0
x(Ap

f )\G0
1(A

p
f )/U ′p

1 . As G0
x(Q`)\G

0
1(Q`)/G

0
1(Z`) is in-

cluded in the latter double coset space for some ` and it is not finite, G0
x(Ap

f )\G0
1(A

p
f )/U ′p

1 is not finite.

Indeed, choose a parabolic subgroup P of G0
1 which contains G0

x as a Levi factor and write P = G0
xU

(U=the unipotent radical of P ), then G0
x(Q`)\P (Q`)/P (Z`) = U(Q`)/U(Z`) is not finite. Therefore, the

proof is complete.

By Lemmas 4.6 and 4.7, we proved

(4.8) Proposition An object x = A is basic if and only if H(p)(x) is finite.

A special case of Proposition 4.8 is proved in [2, Proposition 1] for Siegel moduli spaces by a different
proof. The proof presented here is elementary and does not rely on Wang’s generalization of the Borel
density theorem ([16, Cor. 1.4]).

(4.9) Proof of Theorem 3.4. Let M′ be an irreducible component of MD. Pick any point x on M′. If x
is basic, then we are done. Suppose that x is not basic, then C(x,MD) has positive dimension. By (2) of
Proposition 4.2, there is a point y in Cx r Cx in M

′ with dim C(y,MD) smaller. Continuing this process we
achieve a basic point in M′. This completes the proof.

§5. Properties of basic points

(5.1) The goal of this section is to prove Theorem 3.6. We follow closely Chapter 6 of Rapoport-Zink [15].
For the convenience of the reader, we include some results in loc. cit. on basic abelian varieties in question.
The only new result is Proposition 5.6.

Keep the notation as in Section 2. Let F be the center of B and F0 be the subfield fixed by the involution
on F , which we will denote by a 7→ ā. Let Σp be the set of primes of F over p, and for a prime p|p, write
ordp the corresponding p-adic valuation normalized so that ordp(p) = 1. Let Fp := F ⊗ Qp =

∏
p|p Fp be

the decomposition as a product of local fields. For each isocrystal N with an Fp-linear action, let

N = ⊕p|pNp,

be the decomposition with respect to the Fp-action.
In this section, basic points will mean those in the sense of Kottwitz (3.3).

(5.2) Lemma

(1) The center of G is the algebraic group over Q whose group of Q-rational points is

{g ∈ F×; gḡ ∈ Q× }.

(2) Let N be an isocrystal with additional structures and suppose that it is related to (V ⊗Qp, ψ) (3.3). Then
N is basic with respect to (V ⊗ Qp, ψ) if and only if each component Np is isotypic. In particular, if N is
basic, then Np is supersingular for primes p with p = p̄.

Proof. This is proved in 6.25 of loc. cit.
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(5.3) Lemma Let H be a quasi-polarized p-divisible OBp
-group. Suppose that the associated isocrystal

N := M ⊗Qp is related to (V ⊗Qp, ψ). Then the condition (a) of (3.2) is satisfied for H if and only if each
component Np is isotypic. Therefore, N is basic if and only if it satisfies the condition (a).

Proof. This follows immediately from the dimensions of the endomorphism algebras.

(5.4) Lemma Given any set {λp}p|p of rational numbers with 0 ≤ λp ≤ 1 and λp + λp̄ = 1, then there is
a positive integer s and u ∈ OF [ 1p ]× such that

uu = q, and ordp u = sλp, ∀p ∈ Σp,

where q = ps.

Proof. Consider the map

ord : OF [
1

p
]× → ZΣp , u 7→ (ordp(u))p∈Σp

.

By Dirichlet’s unit theorem, the image is of finite index. Therefore, there is a positive integer s such that
there is an element u ∈ OF [ 1p ]× so that ordp(u) = sλp =: rp for all p ∈ Σp. Let q = ps and u′ := qu/ū, then
one computes

ordp u
′ = 2rp, u

′u′ = q2.

Replacing u by u′ and q by q2, one gets the desire results.

(5.5) Lemma Fix {λp}p|p, q = ps as in Lemma 5.4. Then there is a positive integer N such that for any
basic polarized abelian OB-variety A over a finite extension Fqm of Fq with slopes {λp}p|p, the N -th power
of relative Frobenius morphism πN

A lies in ι(F ).

Proof. We first prove that the statement holds for one such object A. Let M be the Dieudonné module of
A. Within the isogeny class, we can choose A so that F sMp = prpMp for all p ∈ Σp, where rp = sλp. Let
u be as in Lemma 5.4, then ι(u)−mπA as an automorphism of A that preserves the polarization. Therefore,
a power of it is the identity.

Let C := End0
B(A). By the result we just proved, C is independent of A and has center ι(F ). Therefore,

there is a positive integer N so that any roots of unity ζ in C satisfies ζN = 1.
Repeat the same proof above and we get πN

A ∈ ι(F ) for all such objects A.

(5.6) Proposition Let A be a basic polarized abelian OB-variety over k. Then there exist a polarized abelian
OB-variety A′ over a finite field and an OB-linear isogeny ϕ : A′ → A over k that preserves the polarizations.

Proof. It suffices to show that A is of CM-type. Then there exist an abelian OB-variety (A′, ι′) over a
finite field and an OB-linear isogeny ϕ : A′ → A over k. Then take the pull-back polarization λ′ on A′, which
particularly is defined over a finite field.

Let {λp}p|p be the set of slopes for A. Let q = ps and N be as in Lemmas 5.4 and 5.5. Let K be a field
of finite type of Fq that A is defined. The A extends to a polarized abelian OB-scheme A over a subring R
of K with Frac(R) = K, smooth and of finite type over Fq . Let S = SpecR. Let s be a closed point of S
and η be the generic point. By Grothendieck’s specialization theorem, the special fiber As over s also has
the same slopes {λp}p|p, and hence is basic.

We identify the endomorphism rings EndR(A) = EndK(A) ⊂ End(As̄), and write ι for the OB-actions
on these abelian varieties. Let

ρ` : π1(S, η̄) → Aut(T`(Aη̄))
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be the associated `-adic representation. The action of Gal(η̄/η) on T`(Aη̄) factors through ρ`. Again we

identify the Tate modules T`(As̄) = T`(AeSs̄
) = T`(Aη̄), where S̃s̄ is the (strict) Henselization of S at s̄.

Let πAs
be the relative Frobenius morphism on As and Frobs the geometric Frobenius element in π1(S, η̄)

corresponding to the closed point s. We have

(i) πN
As

∈ ι(F ) ⊂ End(T`(As̄)), by Lemma 5.5;

(ii) ρ`(FrobN
s ) = πN

As
lies in the center Z(Q`) of GAutB`

(T`(Aη̄), 〈 , 〉), by identifying the Tate modules and
(i);

(iii) the Frobenius elements Frobs for all closed points generate a dense subgroup of π1(S, η̄).

Let G` := ρ`(π1(S, η̄)) be the `-adic monodromy group. Let mN : G` → G` be the multiplication by
N . It is an open mapping and the image of mN contains an open subgroup U of G`. Clearly U lies in
the center Z(Q`) by (ii) and (iii). Replacing K by a finite extension, we have G` ⊂ Z(Q`). Let Q`[π] be
the (commutative) subalgebra of End(T`(Aη̄)) generated by G`. By Zarhin’s theorem [18], Q`[π] is semi-
simple and commutative, and EndQ`[π](T`(Aη̄)) = End(A)⊗Q`. This shows that any maximal commutative

semi-simple subalgebra of End0(A) has degree 2g. This completes the proof.

Theorem 3.6 follows from Lemmas 5.3, 5.5 and Proposition 5.6.
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