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COMPATIBLE POISSON BRACKETS ASSOCIATED WITH ELLIPTIC
CURVES IN G(2,5)

NIKITA MARKARIAN AND ALEXANDER POLISHCHUK

ABSTRACT. We prove that a pair of Feigin-Odesskii Poisson brackets on P* associated
with elliptic curves given as linear sections of the Grassmannian G(2,5) are compatible
if and only if this pair of elliptic curves is contained in a del Pezzo surface obtained as a
linear section of G(2,5).

1. INTRODUCTION

We work over an algebraically closed field k of characteristic 0.

In this paper we continue to study compatible pairs among the Poisson brackets on
projective spaces introduced by Feigin-Odesskii (see [I], [L0]). Their construction associates
with every stable vector bundle V of degree n > 0 and rank k£ on an elliptic curve F, a
Poisson bracket on the projective space PH?(E,V)*. We refer to such Poisson brackets as
FO brackets of type ¢, .

Two Poisson brackets are called compatible if the corresponding bivectors satisfy [II;, IIs]
(equivalently, any linear combination of these brackets is again Poisson). In [9] Odesskii
and Wolf discovered 9-dimensional spaces of compatible FO brackets of type g, on P"~*
for each n > 3. Their construction was interpreted and extended in [3], where the authors
showed that one gets compatible FO brackets if the elliptic curves are anticanonical divisors
on a surface S and the stable bundles on them are restrictions of a single exceptional bundle
on S that forms an exceptional pair with Og (see [3, Thm. 4.4]). One can ask whether any
two compatible FO brackets of type g, on P"~! appear in this way. In [7] we have shown
that this is the case for £k = 1 (for some specific rational surfaces containing normal elliptic
curves in projective spaces). In the present work, we consider the case of FO brackets of
type gs2 on P*. Note that the question of finding bihamiltonian structures with brackets
of type g5 was raised by Rubtsov in [11].

Let V' be a 5-dimensional vector space. Consider the Plucker embedding

G2, V) 5 B\ V).

It is well known that for a generic 5-dimensional subspace W C /\2V the corresponding
linear section

Ew = G(2,V)NPW

A.P. is supported in part by the NSF grant DMS-2001224, and within the framework of the HSE
University Basic Research Program.
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is an elliptic curve. Furthermore, if f C V ® O is the universal subbundle on G(2,V),
then one can check that the restriction

VW = Z/{V]EW

is a stable bundle of rank 2 and degree 5 on Ey (see Lemma [2.2.1| below). Thus, we have
the corresponding Feigin-Odesskii bracket of type g52 on PH"(Eyw, Viy)*.
Furthermore, one can check that the restriction map

V*=HY(G(2,V),u") = H(Ew, Vi)

is an isomorphism (see Lemma [2.2.1)). Thus, we get a Poisson bracket ITy, on PV (defined
up to a rescaling).
On the other hand, we have a natural GL(V')-invariant map

/\ /\V —>H°IP’V/\ ) @ det?(
constructed as follows.

Note that we have a natural isomorphism V ~ H°(PV,T(—1)), hence we get a natural
map V ® O(1) — T, and hence, the composed map

6 We0@2) > NVeoR) - \T
on PV. Taking the 5th exterior power of this map, we get a map

N(9) : det(W) @ 0(10) = N (N 'T) = (N\'T)Y @ det’(T),

where we used the identification det(/\*T) ~ det®(T"). Note that we have a nondegenerate
pairing given by the exterior product,

/\2T ® /\2T — det(T)

hence, we have an isomorphism A*T ~ (A°T)Y ® det(T), and we can rewrite the above
map as

det(W) — \'T @ det*(T)(~10) = \'T @ det* (V).

Theorem A. For every 5-dimensional subspace W C \°V', such that By = G(2,V)NPW
15 an elliptic curve, one has an equality

Ts52(Aw) = lw @6,
for some trivializations Ay € N°W and § € det?(V).

Theorem B. (i) For 5-dimensional subspaces W, W' C N\*V such that Ey and Ey: are
elliptic curves, the Poisson brackets 1y, and Iy are compatible if and only if dim WNW' >
4.

(ii) For any collection (W;) of 5-dimensional subspaces in \°V, the brackets (Iy,) are
pairwise compatible if and only if either there exists a 6-dimensional subspace U C /\2V

such that each W; is contained in U, or there ezists a 4-dimensional subspace K C N\*V
such that each W, contains K.



Corollary C. The maximal dimension of a linear subspace of Poisson brackets on P(V),
where dim V' =5, spanned by some FO brackets Iy, of type gs2, is 6.

Theorems A and B suggest the following

Conjecture D. Let W C /\2V be a 5-dimensional subspace such that Ey is an elliptic
curve. Consider the subspace

4 2 5 42
Ty = (A WMANV) ANV
(the quotient of the latter subspace by /\5W is exactly the image of the tangent space to the

Grassmannian G(5, \°V) under Pliicker embedding). Then the subspace of € € N°(\°V)
satisfying [m52(€), ] = 0 coincides with Ty + ker(ms 2).

Note that we know the inclusion one way: the subspace Ty is spanned by A”(W’)
such that dim(WW’ N W) > 4 and Ey- is an elliptic curve, and by Theorems A and B,

(w52 (A”(W")) A ] = 0.

Acknowledgments. We are grateful to Volodya Rubtsov for useful discussions. N.M.
would like to thank the Max Planck Institute for Mathematics for hospitality and perfect
work conditions.

2. GENERALITIES

2.1. Feigin-Odesskii Poisson brackets of type g, ;. Let E be an elliptic curve, with a
fixed trivialization n : O — wg, V a stable bundle on F of rank k£ and degree n > 0. We
consider the corresponding Feigin-Odesskii Poisson bracket II = IIgy of type g, on the
projective space PH'(E, V") defined as in [10].

We will need the following definition of II in terms of triple Massey products. For nonzero
¢ € HY(E,VY), we denote by (¢) the corresponding line, and we use the identification
of the cotangent space to (¢) with (¢)> C H°(E,V) (where we use the Serre duality
HY(E, V)~ HY(E,VV)*).

Lemma 2.1.1. ([3, Lem. 2.1]) For s1,s2 € {¢)* one has

H¢<81 N SZ) = <¢7 MP<817 ¢7 32)>a
where M P denotes the triple Massey product for the arrows

0-2.y_2.0[] V[1].

2.2. Formula for a family of complete intersections. Let X be a smooth projective
variety of dimension n, C' C X a connected curve given as the zero locus of a regular
section F of a vector bundle N of rank n — 1, such that det(N)~! ~ wx. Then the normal
bundle to C' is isomorphic to N|¢, so by the adjunction formula, we is trivial, so C' is an
elliptic curve. Assume that P is a vector bundle on X, such that the following cohomology
vanishing holds:

S1

H(X,N\N'@P)=H X, N\N'@P) for 1<i<n—1 (2.1)
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We have the following Koszul resolution for O¢:
n—1 2
O—>/\ NV%...%ANVMNVMOX%OC—H),

which induces a map ec : Oc = A" 'NV[n — 1] in the derived category of X. Here the
differential §;(F') is given by the contraction with F' € H°(X, N), so it depends linearly on
L.

Lemma 2.2.1. (i) The natural restriction map H°(X, P) — H°(C, P|c) and the map
Ext!(P,0c) —<» Ext"(P, \" NY) = Ext"(P,wy)
are isomorphisms. These maps are dual via the Serre duality isomorphisms
Ext'(P|c, Oc) ~ H°(C, P|¢)*, Ext"(P,wx)~ H°(X, P)*.

(i) Assume in addition that End(P) = k and we have the following vanishing:
Ext'(P, A\ NY® P) =Ext" (P, A\NV®P) =0 forl<i<n—1. (22

Then the bundle P|c is stable.

Proof. (i) This is obtained from the Koszul resolution of O¢.
(ii) Computing Hom(P|¢, P|c) = Hom(P, P|¢) using the Koszul resolution of P|c = P ®
Oc¢, we get that it is 1-dimensional. Hence, P|¢ is stable. O

Now we can rewrite the formula of Lemma for the FO-bracket Il¢ p, on PH*(C, PV|¢) =~
P Ext"(P,wx) in terms of higher products on X (obtained by the homological perturbation
from a dg-enhancement of D’(Coh(X))).

Proposition 2.2.2. For nonzero ¢ € Ext"(P,wx) ~ Ext{(Plc, Oc¢), and sy, 55 € (¢)* C
H°(X, P), one has

n

e ple,e(S1 A s2) = £(0, Z(—l)immg(&l(F), ey 01 (F), 81, 04(F), oo 61 (F), ¢, 52)).

i=1

Proof. The computation is completely analogous to that of [8, Prop. 3.1}, so we will only
sketch it. First, one shows that our Massey product can be computed as the triple product
ms for the arrows

Ox%P&OC—)Pk'



given by ss, ¢ and s;. Then we use resolutions A*NY — O¢ and A*NY® P — P|c. Thus,
we have to calculate the following triple product in the category of twisted complexes:

Ox
0
P
¢
ANV — ) e E 2O v 2 oy
NNV @ Pl — 1] 2t 2 Nvepn 2 L p

where we view ¢ as a morphism of degree 1 from P to the twisted complex @ A'NV[i].
Now, the result follows from the formula for m3 on twisted complexes (see [3], Sec. 7.6]). O

2.3. Conormal Lie algebra. Let V be a stable bundle of positive degree on an elliptic
curve F/, with a fixed trivialization of wg, and consider the corresponding FO bracket 11
on the projective space X = PH?(V)* = PExt'(V,0). Recall that for every point z of a
smooth Poisson variety (X, II) there is a natural Lie algebra structure on

g, = (imIl,)* C T7 X,

where we consider II, as a map T X — T, X. We call g, the conormal Lie algebra. In the
case when II vanishes on z, we have g, = 7.
Let us consider a nontrivial extension
00—V -"2V50

with the class ¢ € Ext'(V,0). By Serre duality, we have the corresponding hyperplane
(¢)* € H°(V), and we have an identification (¢)* ~ T;PH(V)*.
Consider a natural map

End(V)/(id) — (¢)* ~ T;PH(V)* : Avs po Aoi. (2.3)

The following result was proved in [2].

Theorem 2.3.1. The above map induces an isomorphism of Lie algebras from End(V)/(id)
to the conormal Lie algebra of 11 at the point ¢.

Note that in particular, the subspace (imII,)* C (¢)* is equal to the image of the map

Z3).
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3. FO BRACKETS ASSOCIATED WITH ELLIPTIC CURVES IN G(2,5)
3.1. Proof of Theorem A.

Lemma 3.1.1. The subset Z C Gr(5, /\ZV) of 5-dimensional subspaces W C /\2V such
that dim(PW N G(2,V)) > 2 has codimension > 1.

Proof. Let us denote by F' the variety of flags L € W C /\2V, where dim(L) = 3,
dim(W) = 5, such that PL N G(2,V) # (. We claim that F is irreducible of dimen-
sion < 30. Note that we have a proper closed subset Z CF consisting of (L, W) such
that dim(PW NG(2,V)) > 2 (as an example of a point in '\ Z, we can take W such that
Ew = PW N G(2,V) is an elliptic curve and pick PL € PW intersecting Ey ). Since Z
fibers over Z with fibers Gr(3,5), our claim would imply that dim(Z) =dim Z + 6 < 30,
i.e., dim Z < 24, as required.

To estimate the dimension of F', we observe that we have a fibration F' — Y with fibers
G(2,7), where Y C Gr(3, A\’V) is the subvariety of 3-dimensional subspaces L such that
PLNG(2,V) # (. Thus, it is s enough to prove that Y is irreducible of dimension < 20.

Now we use a surjective map Y — Y, where Y is the variety of flags ¢ C L C /\ V', where
dim(¢) = 1, dim(L) = 3, such that ¢ € G(2,V). We have a fibration Y — G(2,V) with

fibers G(2,9), hence Y is irreducible of dimension 6 + 14 = 20. Hence, Y is irreducible of
dimension < 20. O

Proof of Theorem A. First, we can apply Proposition to an elliptic curve Ey C X =
G(2,V). Namely, as a bundle P on X we take U, the dual of the universal subbundle.
We can view the embedding

Ri=W*— NV = H(X,00)),

where O(1) = det(U"), as a regular section F € H°(X, N), where N = R* @ O(1). Tt is
easy to see that we have a GL(V)-invariant identification

wx =~ det(V) 2 @ O(-5).
Thus, by adjunction we get an isomorphism
Wiy = det(N) ® wx gy, =~ det(R*) @ det(V)? ® Op,,.
Since det(R*) ~ det(A*V) ® det(W*) ~ det(V)* @ det(W*), we can rewrite this as
Wiy = det(W*) @ det(V)? @ Og,, . (3.1)
The vanishings and in this case follow from the well known vanishings
H*(X,Z/{V(—i)) =0, forl1<i<5,
Ext*UY,U"(—i)) =0, for 1 <i <3, Ext~°WU",U"(—4)) = Ext=°(U",U"(-5)) =0
(see [4]). Thus, Proposition [2.2.2] gives a formula for Iy



This shows that the association W + Ily, gives a regular morphism
f:Ga(s, N'V) —» PHO®V, \'T)
Furthermore, we claim that
F1O(1) 2 Ogyis p21) (1) @ det (V)

Indeed, we have a family of Gorenstein curves 7 : C — B = Gr(5, A’V) \ Z, where Z was
defined in Lemma [3.1.1], such that

weyp ~ 1 (O(1) ® det(V)?).
Indeed, this is implied by the argument leading to , which works for any curve (not
necessarily smooth) cut out by PW in G(2,V). Now [3], Prop. 4.1] implies that the relation
f*O(1) = O(1) ® det(V)~2 holds over Gr(5, \°V) \ Z. Since Z has codimension > 1, it
holds over the entire Gr(5, A*V).
Next, since H(Gr(5, A°V), O(1)) ~ A’(A*V)*, the map f is given by a GL(V)-invariant

linear map
/\ /\V —>HOIP’V/\ ) @ det(V

To show that this map coincides with 20 up to a constant factor, it remains to show that
the space Homer,v) (A 5(A*V), H'(PV, A*T) @ det(V)?) is 1-dimensional.

The representation of GL(V) on H°(PV, A\*T) is easy to identify due to the exact se-
quence

2 2
0—-k=VeV e/ \VesV - H®V, \'T) -0
Using the Littlewood-Richardson rule, we deduce

2
H(PV, \ T) @ det(V*) ~ £3W1(V7),

where ¥* denotes the Schur functor associated with a partition A. It follows that
PV, /\ ® det(V)? ~ £3322(V).

On the other hand, the decomposition of the plethysm ej o ey (see [0, Ex. 1.8.6]) shows
that ¥3%22(V) appears with multiplicity 1 in the GL(V)-representation A’(A*V). This
implies the claimed assertion about GL(V')-maps. O

3.2. Rank stratification for a bracket of type ¢;2. Let E be an elliptic curve, V be a
stable vector bundle of rank 2 and degree 5. We consider the FO bracket IT on the projective
space PExt!(V, 0) ~ PH°(V)*. We want to describe the corresponding rank stratification
of PH°(V)* = P*. For every point p € E, we consider the subspace L, := V[; ¢ H°(V)*
and the corresponding projective line PL, C PHY(V)*.

Recall that the rank of II at a point corresponding to an extension Vs equal to 5 —
dim End(V') (see [3, Prop. 2.3]).
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Lemma 3.2.1. (i) The bracket I1 vanishes at the point of PExt*(V, Q) corresponding to
an extension _
0=-0—=V—=V-=0

if and only if this extension splits under O — O(p) for some point p € E, which happens
if and only if V ~ O(p) ® V', where V' is semistable of rank 2 and degree 4. Furthermore,
in this case dim End(V') = 2, so V' is either indecomposable, or V' ~ Ly & Lo, where L,
and Lo are nonisomorphic line bundles of degree 2. N
(ii) The bracket 11 has rank < 2 if and only the corresponding extension V is unstable, or
equivalently, there exists a line bundle Ly of degree 2 such that the extension splits over the
unique embedding Ly — V. In other words, the extension class comes from a subspace of
the form

Wy, == H(Ly)* c HY(V)* =V, (3.2)
where we use the unique embedding Lo — V and consider the induced embedding H®(Ly) —
HO(V).
(iii) Each plane PWp, C PV is a Poisson subvariety, and there is an embedding of the
curve E into PWp, by a degree 3 linear system, so that PWp, \ E is a symplectic leaf.

Proof. (i) Suppose a nontrivial extension

050=Y =Y =0

splits under @ — O(p). Then V is an extension of O(p) by V' where V' C V is the kernel
of the corresponding surjective map V — O,. Hence, V' is semistable of slope 2, which
implies that

VeOp) aV.
It follows that dim End()’) > 2, and so

dim End(V) = 3 + dim End (V') > 5.

Hence, 1l vanishes on the points of the line PL, C PV, and we have dim End(}’) = 2,
which means that either V' is indecomposable or V' ~ Ly & L, for two nonisomorphic line
bundles Ly, Ly of degree 2.

Conversely, assume II vanishes at the point corresponding to ]7, so dim End(]?) = .
Then HN-components of V cannot be three line bundles (since they would have to have
different positive degrees that add up to 5), so V = L&V where L is a line bundle and )’
is semistable of rank 2, deg(L) > 0, 0 < deg()’), deg(L) + deg(V’) = 5.

The case deg(L) = 1 leads to the locus discussed above. If deg(L) = 2 and deg(V') = 3
then dim Hom(V', L) = 1, so we get dim End(V’) = 3 which is impossible. If deg(L) > 3,
then deg()') < 2 and dim Hom(V’, L) > 4, so dim End(V) > 5, a contradiction.

(ii) The rank of Il is < 2 at V if and only if dim End(V) > 3. Clearly, such V has to be
unstable. Conversely, any unstable V would have form L & V' with either Hom(L, V') # 0
or Hom(V', L) # 0, hence dim End(V) > 3.

Note that (V) = 5/3. Hence, if the extension splits over some Ly C V, then V is

unstable. Conversely, if V is unstable then either it has a line subbundle of degree 2, or a



semistable subbundle V' of rank 2 and degree > 4. But any such V'’ has a line subbundle
of degree > 2.

(iii) We can identify H®(Lo)* with H(Ls)* € H°(V)*, where Ly := V/Ly. 1t is easy to
see that the intersection of PW}, with the zero locus of II is exactly the image of E under
the map given by |Ls|.

Given an extension V> V, split over Ly C V), the splitting Ly — V is unique, and the
quotient V/L, is an extension of Ly = V/Ly by O. It is well known that for points of
PW;, \ E the latter extension is stable, so Vi, = V/Ls is a stable bundle of rank 2 with
determinant Lz. Since Ext!(Vy,, Ly) = 0, we deduce that V = Vi, & Ly. Now we can
calculate the image of the map (2.3). The space End(V)/(id) has a basis (id,, ), where
e is a generator of Hom(Vy,, Ly). Their images under both factor through L, — FE,
hence the image of (which is 2-dimensional) is H°(Ly) € H°(V). But this is exactly
the conormal subspace to the projective plane PWp,. This shows that PWp,\ £ (and hence
PW7p,) is a Poisson subvariety. Since the rank of IT on PW, \ E is equal to 2 and II|g = 0,
we deduce that PW, \ E is a symplectic leaf. g

By Lemma M(l) the vanishing locus of II corresponds to extensions V by O, which
split over O(p). This is the union Sg of the lines PL,, where L, = V| C PH°(V)*, over
p € E. The surface Sg is the image of the natural map P(VY) — P(V), associated with
the embedding of bundles V¥V — V ® Op. We will prove that in fact this map induces an
isomorphism of the projective bundle P(VY) with Sg.

Lemma 3.2.2. Let € be a vector bundle over a smooth curve C and let W — H°(C, &) be
a linear map from a vector space W, such that for any x € C' the composition p, : W —
HY(C, &) — &|,. is surjective, so that we have a morphism

f:P(EY) — P(WH).
Assume that we have a closed subset Z C P(EY) with the following properties.

o For every x,y € C, © # y, consider p,(ker(p,)) C Elz. Then any { € P(EY],),
which is orthogonal to p,(ker(p,)), is contained in Z.
e For every x € C, consider the map W — H°(E|s,) and the induced map

K, =ker(W = €&|,) = T:C®E|,

(where we use the identification TFC' ® E|, = ker(H(Ela,) — E|:)). Then any
e P(EY|,), which is orthogonal to the image of K, ® T,,C, is contained in Z.

Then the map P(EY)\ Z — P(W™*) is a locally closed embedding.

Proof. Assume that for x # y, we have two nonzero functionals ¢, : €|, = k, ¢, : €|, = k
such that ¢, o p, = ¢, o p,. Then (¢, © py)|ker(e,) = 0. Hence, ¢, vanishes on p,(ker(p,)).
By assumption, this can happen only when ¢, is in Z. Thus, the map from P(EY) \ Z is
set-theoretically one-to-one.

Next, we need to check that our map is injective on tangent spaces. The tangent space
to P(EY) at a point corresponding to £ C £Y|, can be described as follows. Consider the
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canonical extension

0T CREl, = H(E|w) — El. — 0.
Passing to the dual extension of T,C ® £Y|, by £Y|,, and restricting it to T,C ® ¢ C
T.C ® EY|., we get an extension

0—=&, > H —-T,C2(—0

Now the quotient (¢! @ Hy)/k, where we use the natural embedding
k=0"@l—= 1", = 0 ®H,
is identified with the tangent space T,P(EY).
The restriction of the map H°(E|y,)Y — W*, dual to the natural map W — H°(E|s,),
to Hy, induces a map
('@ Hy)) /k — W* /¢,
which is exactly the tangent map to f. It is injective if and only if the map H, — W* is
injective. Equivalently, the dual map W — H; should be surjective. The latter map is
compatible with (surjective) projections to £|,, so this is equivalent to surjectivity of the
map
K, =ker(W — &|,) = ker(H; — &|,) =T:C @ /(.

The latter map factors as a composition

K, »T:C®El, »T:CL™

so it is surjective (equivalently, nonzero) if and only if ¢ is not orthogonal to the image of
K, — T:C ® &|,. By assumption, this never happens for points of P(EY) \ Z. O

Lemma 3.2.3. The map P(VY) — Sg is an isomorphism.

Proof. We will check the conditions of Lemma [3.2.2 It suffices to check surjectivity of the
maps H°(V) — V|, @ V|, for  # y and of H°(V) — H°(V|z,). But this follows from the
exact sequence

0—=V(-D)—=V—=V|p—0
for any effective divisor D of degree 2 and from the vanishing of H'(V(—D)) by stability
of V. O

By Lemma the degeneracy locus Dg of our Poisson bracket (which is a quintic
hypersurface) is the union of planes PW;, C PV over Ly, € Pic*(E) (see (3.2))). Let us
consider the vector bundle W over E := Pic?(E), such that the fiber of W over Ly is W,
Note that we have a natural identification E ~ Pic*(E) : Ly — Ls := det(V) ® Ly'. In
terms of Ly we have W, = HY(L3)* C H°(V)*, where we use a surjection V — L3. To
define the vector bundle W precisely, we consider the universal line bundle L3 of degree 3
over E x E ~ E x Pic}(E), normalized so that the line bundle po, Hom(ptV, L) is trivial.
We set

W= pQ*('CS)v'
Note that applying ps. to the natural surjection p;V — L3 we get a surjection H°(V)®0 —
pox(L3). Passing to the dual, we get a morphism P(W) — PV, whose image is Dg.
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Lemma 3.2.4. The morphism P(W) — Dg is an isomorphism over Dg \ Sg.

Proof. We need to check two conditions of Lemma for the morphism H°(V)®0 — WY
over E, with Z C P(W) being the preimage of S. Note that the intersection of Z with
each plane PHY(L3)* € H°(V)* is the elliptic curve E embedded by the linear system | L.
To check the first condition, we use the exact sequence
0— H(Ly) — H°(V) — H(L3) = 0

where Ly ® Ly ~ V. If L} is different from Lf then the composed map Ly — V — Lf is
nonzero, hence, it identifies Ly with the subsheaf L;(—x) for some point p € E. Hence,
the image of H°(Ls) is precisely the plane H°(L;(—p)) C H°(L}). Hence, the only point
of PH(L%)* orthogonal to this plane is the point p € E C PH?(L})*, which lies in Z.

To check the second condition, we need to understand the map H°(V) — H°(W"|,,) for
rekl ~ Pic3(E). For this we observe that this map is equal to the composition

HO(V) = HO(E x {22}, p{V]pxgan) = HO(E x {22}, Lalpxgor),
which is the map induced on H® by the morphism of sheaves on E,

a: V=V HOs) = pru(piV]exizey) = pie(Lslpxi2e))-
Note that for = Lg, the bundle F, := p1,(Ls|gxq2)) on E is an extension of Lz by

T E® L3, which gives the Kodaira-Spencer map for the family L3, so this extension is
nontrivial. The composition

V-2 F, — Ly

is the canonical surjection with the kernel L, C V. Hence, « fits into a morphism of exact
sequences

0 Lo Y Ls 0
alry a id
0 T*E ® Ls F, Ls 0

Note that the map «a|r, is nonzero, since otherwise we would get a splitting of the extension
}71:,3 — L3.

Now the kernel of the map H°(V) — WY|, = H°(L3) is identified with H°(L,), and the
induced map H(Ly) — T*E @ H(Ls) is given by a nonzero map

a|p, i Ly — THE ® Ly ~ L.

Hence, its image is the subspace of the form H°(Lz(—p)), and we again deduce that any
point of PH?(L3)* orthogonal to it lies in Z. d

Corollary 3.2.5. (i) There is a reqular map Dg \ Sp — E such that the fiber over Ly is
the symplectic leaf PWp, \ E.
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(ii) Any line contained in Dg is either contained in Sg or in some plane PWp,, where
Ly € Pic*(E).

Proof. For (ii) we observe that given a line L C Dg not contained in Sg, the restriction
of the map D\ S — E to L\ Sg — F is necessarily constant. Hence, L is contained in
some plane PW,. g

3.3. Two-dimensional distribution on G(2,5) associated with the elliptic curve.
Let E C G(2,V) be the elliptic curve obtained as the intersection with the linear subspace
PW c P(A\*V) in the Plucker embedding, where dim W = 5. Equivalently, E is cut out
by the linear subspace of sections W+ c A*V* ~ H(G(2,V),O(1)). As before, we denote
by V the restriction of ¥, the dual of the universal bundle. Then A*(V) is the restriction
of O(1), and we have an exact sequence

0— W+ — /\2V* — H(E, /\2(]2)) — 0.

In other words, we can identify the dual map to the embedding W — /\2V with the natural
map

2 2
N\ E'V) = H(\ V).
We have a regular map
f:G2,V)\E P!
given by the linear system |[W=| C |O(1)|.
Then for every point p € G(2,V) \ E, we define the subspace D, C T,G(2,V) as the

kernel of the tangent map to f at p. Note that for generic p, one has dim D, = 2.
We have the following characterization of D,,.

Lemma 3.3.1. Let L, C V denote the 2-dimensional subspace corresponding to p €
G(2,V)\ E.
(1) Under the identification T,G(2,V) ® det(L,) ~ L, ® V/L, we have

D, ®det(L,) =WN(L,ANV)=WnN(L,®V/L,),

where the second intersection is taken in \°V/\>L,.

(ii) For each v € L,, let us denote by m, : T,G(2,V) — V/L, the natural projection.
Assume that llg, has rank 4, for some nonzero v € L,. Then D, is 2-dimensional, and
mo(Dp) is the 2-dimensional subspace of V/L, given as follows:

(D) ={x € V/L, |v ANTIE™ = 0},
where 7™ € N (V/L,) is the image of g, € N*(V/v).

Proof. (i) The map dg f is the composition of the Plucker embedding G(2,V) — IP’(/\QV)
with the linear projection

PN\ V) \BW) = BN\ V/W).
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Thus, the tangent map to f at L C W is the composition

Hom(L,V/L) —— Hom(/\2L, /\QV//\2L) — Hom(/\zL, /\2V/(/\2L +W)),

where a(A)(l1 ANlg) = Aly Ay + 14 A Als mod /\2L. Equivalently, the map « is the natural
map

* —1 —1 2 2
Hom(L,V/L) ~ L*® V/L ~det™ (L) ® L® V/L — det (L) ® \"V//\'L,

given by | ® (vmod L) — | A vmod \’L.
Now the assertion follows from the identification

W =ker(A V/N'L— N\ V/NL+W)).

(ii) Our identification of Il from Theorem A implies the following property of the bivector
My, € A*(V/v). Consider the natural map ¢, : W — A*(V/v). Let S = Sg C PV denote
the surface, obtained as the union of lines corresponding to £ C G(2,V). We claim that
the map ¢, is injective if and only if (v) is not in S. Indeed, an element in the kernel of
¢, is an element v A v contained in W, so the plane (v, v) corresponds to a point of E.
Hence, this is true when Ilyy, is nonzero.

Now assume the rank of Iy, is 4. We have a nondegenerate symmetric pairing on
A*(V/v) with values in det(V/v), given by the exterior product. Now our description of
[Ty implies that for (v) ¢ S, Iy, is nonzero and

¢W<W> = <HW,1)>J_'

Since Iy, has maximal rank, the skew-symmetric form (xy, x2) = 21 Aza Ay, on V/v
is nondegenerate. Hence, the subspace (L,/(v)) ® (V/L,) cannot be contained in (ITy,)*
(this would mean that L,/(v) lies in the kernel of (-,-)). Hence, the intersection

I:=(Lyp/(v)) ® (V/Lp) N ()™

is 2-dimensional. Since the subspace ¢,(W N (L, A V') is contained in I, we deduce that
its dimension is < 2, and so dim D,, < 2. But we also know that dim D, > 2, hence in fact,
we have dim D, = 2 and ¢,(W N (L, AV)) = 1.

The last assertion follows from the fact that under trivialization of L,/(v), the subspace
I c V/L, coincides with 7,(D,). O

Definition 3.3.2. We define ¥y C G(2,V) as the closed locus of points p € G(2, V') such
that dimW N (L, A V) > 3.

Lemma 3.3.3. One has ¥ C G(2,V) \ E.

Proof. Let L = H°(V|,)* C H°(V)* =V for some p € E. We have to prove that dim W N
(LAV) < 2. We have, L+ = H°(V(—p)) € H°(V) and so,

V/L~ H°(V(=p))*.
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The intersection W N (L A V) is the kernel of the composed map

wueA%h»Aﬂwm.

The dual map can be identified with the composition
250 250 0
N\ E'V(-p)) = \ H'(V) = H’(det V)

which also factors as the composition

N HO () = HON (V(=p))) = HO((det V)(~2p)) € HO(det V).

We need to check that this map has corank 2, or equivalently the first arrow is an isomor-
phism.

Set V' = V(—p). This is a stable bundle of rank 2 and degree 3. We need to check that
the map

N HOV) - H(det V)
is surjective. For any point p € E, we have an exact sequence
0— H(O(p)) = H' (V') — H°((det V')(=p)) — 0
and it is easy to see that the restriction of the above map to H°(O(p)) A H°(V') surjects

onto the subspace H°((detV')(—p)) C H%(det)V’). Varying the point p, we get the needed
surjectivity. U

Thus, by Lemma 3.3.1](i), X is exactly the set of points p € G(2,V)\ E where dim D,, >
3. We have the following geometric description of Xp. Recall that we have a collection of
3-dimensional subspaces W, C V, associated with points of E = Pic*(E) (see (3.2)).

Proposition 3.3.4. Forp € G(2,V), we have p € ¥ if and only if the corresponding line
qGEG(27 WQ) ‘

Proof. Assume first that p € ¥g. As we have seen above, this means that p € G(2,V)\ E
and dim D, > 3. By Lemma m(ii), this implies that the rank of the Poisson bracket
Iy on points of L, is < 2. Hence, by Lemma M(ii), L, is contained in the quintic Dg.
By Corollary , this implies that L, is contained in some plane PW,.

Conversely, assume that we have a 2-dimensional subspace L C H*(M)* c H(V)* =V,
where ¥V — M is a surjection to a degree 3 line bundle M. Then L = (s)* C H°(M)*
for some 1-dimensional subspace (s) C H°(M). Set P = L+ C H°(V). Then P is the
preimage of (s) C H°(M) under the projection H°(V) — H°(M).

By Lemma the space D, (where L = L, for p € G(2,V)) is isomorphic to the
kernel of the composed map

L, is contained in some plane PW,, where ¢ € E. In other words, ¥ = U

W — /\2V — /\Q(V/L).

Hence, dim(D,) is equal to the corank of the dual map

NPy = N\ HW) = BN\ V). (3.3)
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Let B denote the divisor of zeroes of s. We claim that the image of ( is contained
in the subspace H(A*V(—B)) ¢ H°(A*V). Indeed, we have an exact sequence

O->N—=V—-M-—=0

where N is a line bundle of degree 2. It is easy to see that the composed map
H(N) A HO(V <—>/\ H(V —>H°(/\2V)
coincides with the natural multiplication map
N) A B (V) \ HO(N) = H(N) @ H(M) — H(N @ M) ~ H(\ V).

The exact sequence

0— H'N)—=P—(s) =0
shows that AP C H°(N) A H°(V) and its image in H°(N) ® H°(M) is contained in
H°(N) ® (s). This proves our claim about the image of the map (3.3)). It follows that the
corank of this map is > 3, so p € Xg. O

Lemma 3.3.5. Let L, C V denote the 2-dimensional subspace corresponding to p €
G(2,V)\ E.

(i) For any 3-dimensional subspace M C V' containing L,, one has W N /\2M = /\2Lp.
(ii) Assume that for generic v € L,, the rank of llg, is 4. Then the map D, ® O —
V/L,® O(1) over the projective line PL, is an embedding of a rank 2 subbundle.

Proof. (i) Since all elements of \*M are decomposable, the intersection Q := W N A*M
is a linear subspace consisting of decomposable elements. But all decomposable elements
of W are of the form /\2Lq for some point ¢ € E. Hence, we would get an embedding
P(Q) — E, which implies that @ is 1-dimensional, so ) = /\2Lp.
(ii) From part (i) and from Lemma3.3.1] we get that for any 3-dimensional subspace M C V/
containing L,, one has D, N L, ® M/L, = 0. Let us set P = V/L,, and let us consider the
exact sequence
0—-D,00(-1) P00 —Q —0.

We want to prove that the rank 1 sheaf @ on P! has no torsion. Since deg(Q) = 2 and Q
is generated by global sections, we only have to exclude the possibilities ) ~ O, & O(1)
and QQ ~ T @ O, where T is a torsion sheaf of length 2.

Assume first that Q ~ O, ® O(1). Consider the composed surjection f: PR O — Q —
O(1). Tt is induced by a surjection P — H°(O(1)), which has 1-dimensional kernel (v). Tt
follows that the inclusion of D, ® O(—1) into P ® O factors as

D,20(-1) = ()0 0(-1) - P® O.

It follows that D, has a nontrivial intersection with H°(O(1)) ® (v) = L, ® M/L, C
L,®V/L,, for some 3-dimensional M C V, containing L,. This is a contradiction, as we
proved that there could be no such M.

In the case Q ~ T ® O, we get that D, ® O(—1) is contained in the kernel of a surjection
PO — 0, ie., D,@0(—1) is contained in O? C PRO. But any embedding O(—1)? — O?
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factors through some O(—1)® O — O? (occurring as kernel of the surjection O? — O,, for
some point p in the support of the quotient). Hence, we can finish again as in the previous
case. Il

Remark 3.3.6. The rational map f from G(2,V) to P* has the following interpretation,
which can be proved using projective duality. Start with a generic line L C P(V'). Then
the intersection L NDp with the degeneration quintic of IIp consists of 5 points. Taking
the images of these points under the projection Dg \ Sp — E (see Cor. we get a

divisor Dy, of degree 5 on E. All these divisors will belong to a certain linear system P* of
degree 5, and the map L — Dy is exactly our map f.

3.4. Calculation of the Schouten bracket and proof of Theorem B.

Lemma 3.4.1. (i) Let E C G(2,V) be the elliptic curve defined by W C N*V. Then
for each point p € E, the bivector Il vanishes on the projective line PL, C PV, where
L, C V is the 2-dimensional subspace corresponding to p. For a generic point v of L, the
Lie algebra g = TPV has a basis (hy, he,e1,e3) such that

[hlahQ] = [61762] = 07
[hi, €] = 2e;, [hj,ei] = —e; fori#j.

Equivalently, the linearization of Ilg takes form
H%n = 2618h1 A 661 — 616h2 A\ (961 + 2626h2 N 852 — egﬁhl A 862.

Furthermore, the conormal subspace N]PYLM C g* is spanned by ey, ez, hy + hy (dually the
tangent space to Tpr, is spanned by Op, — Oh, ).
(i) We have an identification

H°(PL,, Npr,) ~ H°(PL,,V/L,® O(1)) ~ Ly ® V/L, ~ T,G(2,V).

Under this identification, the line T,E C T,G(2,V) has the property that the corresponding
global section of Npr, evaluated at generic v € PL, spans the line

<ah178h2>/<8h1 - ah2> C NPLP,U = V/Lp

FEquivalently, the tangent space at v to the surface Sp C PV is (Op,, On,) C T,PV.
(i1i) Let II' be a Poisson bracket compatible with Ilg. Then for p € E and a generic v € Ly,
one has

H; c <(28h1 — 8h2) A 861, (28h2 — 8h1) A 862, 8h1 A 8h2>. (34)

Proof. (i) Extensions Vofy by O, corresponding to the line PL,,, are exactly the extensions
that split under O — O(p). We claim that for a generic point of PL, we have Y ~
O(p) @ L1 &® Lo, where L; and Lo are nonisomorphic line bundles of degree 2. Indeed,
by Lemma (ii), the only other possibility is ¥V ~ O(p) & V', where V' is a nontrivial
extension of M by M, where M? ~ det(V). Since the corresponding extension splits over
the unique embedding M — V), this gives one point on the line PL, for each of the four
possible line bundles M.
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We can compute the Lie algebra g for the point corresponding to Y~ O(p) ® L1 & Lo
using the isomorphism of Theorem [2.3.1],

End(V)/(id) ——~ g ¢ H(V). (3.5)
We consider the following basis in End(V)/(id):
h; = ldLl — id@(p), e; € HOHI(O(p), Ll), 1=1,2.

Then it is easy to check the claimed commutator relations between these elements.
The conormal subspace to PL, is identified with L, = H°(V(—p)). The image of the
subspace Hom(O(p), L1 @ Ly) under the map (3.5)) will consist of compositions

O—=0(p) = Li®Ly—V,
which vanish at p, so they are contained in H°(V(—p)). We have
hi + hy = idy, ®idy, —2ido) = —3ide) mod(idy),
and the element idp(,) is mapped under to the composition
O — O(p) =V,

which also vanishes at p. This proves our claim about the conormal subspace.
(ii) To identify the direction corresponding to T, E, we first recall that the map £ — G(2,V)
is associated with the subbundle V¥ < V ® O over E. We have an exact sequence

0T EQV|, — H°(V|) — V|, — 0.

The dual of the natural map V* — H"(V|y,) fits into a morphism of exact sequences

0 Vv|p HO(V|2P)* - TpE ® Vv|p 0
~ B
0 L, V V/Lp 0

and the map /3 corresponds to a map 7, — Hom(V"|,,V/L,) = Hom(L,, V/L,) which is
the tangent map to E — G(2,V'). Note that the dual to g is the natural linear map

(V/Lp)* = ker(H*(V) = V|,) = ker(H°(V|2,) = V) ~ Ty E @ V|, (3.6)

Now, given a functional v : V|, — k, the image of T,F under 7, : Ly ® V/L, —
V/L, corresponds to the composition of with v. In other words, it is given by the
composition

Ly = H'(V(=p)) = V(=p)lo = V|, — k
(here we use a trivialization of T, E).
Let V — V be the extension corresponding to v. As we have seen in (i), for a generic v,

we have V ~ O(p) @ Ly ® Ly, where L; are as above. As we have seen in (i), under the
isomorphism (3.5), Ly = H°(V(—p)) is the image of the subspace (h; + hy, €1, €3).
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Hence, it remains to check that under the composition
(er,e1) = H'V(=p)) = V(=p)|, = V|, — k,

is zero (where the first arrow is induced by (3.5])). Let us consider the element e; (the case
of ey is similar). It maps to the element of H°(V(—p)) given by the embedding

O — Li(—=p) = V(-p),

where we use the composed map L; — V. Thus, we need to check that the com-
position L; — V —— k is zero. But this follows from the fact that the extension V is
the pull-back of the standard extension O(p) — O, via v, so that we have a commutative
diagram

0 O O(p) 0, 0
id v
0 0] y % 0

L@ Ly~ L, & L,

(iii) This is obtained by a straightforward computation using the vanishing of [Ilg, 1|
and the formula for I from part (i). O

Lemma 3.4.2. Let E, E' C G(2,V) be a pair of elliptic curves obtained as linear sections,
such that [I1g, g = 0. Then E is not contained in g C G(2,V).

Proof. Assume E C Y. Then, by the description of X in Proposition [3.3.4], for every
p € E there exists a line bundle Ly of degree 2 on E’ such that the image of H°(V|,)* —
HO(E,V)* =V is contained in H*(E', Ly)* € H°(E',V')* = V. In other words, each line
PL, C PV, for p € E, is contained in the projective plane PH?(E’, Ly)* C PV. This
plane intersects the zero locus of Il in a smooth cubic (see Lemma [3.2.1{(iii)), hence, for
a generic point v € L, the rank of IIg/|, is 2.

Hence, Ilg/|, = wy A wg, where (wy,ws) is the tangent plane to the leaf of IIg (i.e., to
the projective plane PH?(E’, Ly)'). Furthermore, the plane (wy,w;) contains the tangent
line to PL, at v. In the notation of Lemma [3.4.1](i), the latter tangent line is spanned by
Oy — Ony- S0, I pr|y = (Oh, — Ohy) A w for some tangent vector w. But we also know by
Lemma [3.4.1{(iii) that IIz|, is a linear combination of (204, — 9p,) A Oy, (20, — Ony) A Ok,
and Op, A Op,. This is possible only when w € (0y,, Op,), which is the tangent plane to the
surface Sp (see Lemma [3.4.1](ii)).
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This implies that Sg is tangent to the corresponding projective plane PHY(E’, Ly)* C
Dpg:. Assume first that Sg ¢ Sg. Then we get that the regular morphism

SE \ SE/ — DE/ \ SE’ — PiCQ(E/)

(see Corollary has zero tangent map at every point. Hence, Sg is contained in a
projective plane, which is a contradiction (since the map P(VY) — PH°(V)* = PV induces
an isomorphism on sections of O(1)).

Finally, if Sg C Sg then E = E' C G(2,V) and, we get a contradiction by Lemma
B33 O

Proof of Theorem B. (i) We can assume that F # E’. We will check that for a generic
point p € E, one has
TpE - DE/J, C TpG(Q, V) (37)
By Lemma [3.4.2 for a generic p € E, we have p ¢ X, hence, the line PL, is not
contained in the degeneracy locus Dg of Ilg. Let us pick a generic point v of L,, so that
the rank of I, is 4. We want to study the normal projection

g™ e AX(T,PV/T,PL,) ~ N*(V/L,)

(see Lemma [3.3.1)).

Recall that in the notation of Lemma [3.4.1} the tangent space to PL, at v is spanned
by O, — Oh,. Hence, the inclusion (3.4) implies that I is proportional to a bivector of
the form dj,, A £ . By Lemma [3.4.1f(ii), we can reformulate this as

g € my(T,E) ANV/L, € N*(V/L,).

By Lemma W(ii), the subspace 7,(Dgr ;) C V/L, consists of z such that x AT = 0.
Thus, we deduce the inclusion

m(T,E) C my(Dpr ) C V/L,

for generic v € L,,.
In other words, the section s generating

T,E C T1,,G(2,V) ~ Hom(L,,V/L,) ~ H*(PL,,V/L, ® O(1))

has the property that for generic point v € PL, the evaluation s(v) belongs to the image
of the evaluation at v of the embedding D), ® O — V/L, ® O(1). Since by Lemma [3.3.5]
the latter is an embedding of a subbundle, this implies that in fact s € Dp, as claimed.

This proves the inclusion for a generic p € E. But this implies that the composed
map

E\E - G2, V)\E —P*

has zero derivative everywhere, so it is constant. Hence, F is contained in a linear section of
PUNG(2,V), for some 6-dimensional subspace U C AV containing W’. Hence, dim(W +
W’ <6.

Conversely, assume W and W' are such that U = W 4+ W' is 6-dimensional. Then we
claim that [IIy, IIy~] = 0. Indeed, since the space of such pairs (W, W’) is irreducible, it
is enough to consider the case when the surface S = PU N G(2,V) is smooth. Then Ey
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and Ey are anticanonical divisors on S, and we can apply [3, Thm. 4.4] to the bundle
Vs := UY|s on S. The fact that (Og,Vs) is an exceptional pair is easily checked using
Koszul resolutions, as in Sec. [2.2]

(ii) It is well known that if a collection of k-dimensional subspaces in a vector space has
the property that any two subspaces intersect in a (k — 1)-dimensional space, then either
all of them are contained in a fixed (k + 1)-dimensional subspace, or they contain a fixed
(k — 1)-dimensional subspace. The statement immediately follows from (i) using this fact

for k =5 and the collection (W;). 0

Proof of Corollary C. By Theorem B(ii), the brackets (IIy,) are pairwise compatible when
either there exists a 6-dimensional subspace U C /\QV, containing all W;, or there is a 4-
dimensional subspace K C /\QV, contained in all W;. In the former case the corresponding
tensors /\2Wi are all contained in the 6-dimensional subspace

5 5 a2
AU N AV
In the latter case all the tensors A*W; are contained in the 6-dimensional subspace

N EeNV/E) = NEAA VI SN AT,

Conversely, by [3, Thm. 4.4], if we take a smooth linear section S = PUNG(2,V), where
dimU = 6, we claim that we will get a 6-dimensional subspace of compatible Poisson
brackets coming from anticanonical divisors of S. We just need to show that the corre-
sponding linear map from H°(S,wg") to the space of Poisson bivectors on P(V) is injective.
Suppose there exists an anticanonical divisor £y C E such that the corresponding Poisson
bivector is zero. Pick a generic anticanonical divisor £. Then all elliptic curves in the
pencil E + tEy map to the same Poisson bivector. But this is impossible since we can
recover F C G(2,V) from the corresponding Poisson bracket I1z on P(V'), as the set of all
lines lying in the zero locus Sg (see Sec. [3.2)). O
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