Max-Planck-Institut für Mathematik Bonn

Compatible Poisson brackets associated with elliptic curves in $G(2,5)$
by

Nikita Markarian
Alexander Polishchuk

Max-Planck-Institut für Mathematik Preprint Series 2023 (21)

Compatible Poisson brackets associated with elliptic curves in $G(2,5)$

by
Nikita Markarian
Alexander Polishchuk

Max-Planck-Institut für Mathematik	Department of Mathematics
Vivatsgasse 7	University of Oregon
53111 Bonn	Eugene, OR 97403
Germany	USA
	National Research University
	Higher School of Economics
	Moscow
	Russia

COMPATIBLE POISSON BRACKETS ASSOCIATED WITH ELLIPTIC CURVES IN $G(2,5)$

NIKITA MARKARIAN AND ALEXANDER POLISHCHUK

Abstract

We prove that a pair of Feigin-Odesskii Poisson brackets on \mathbb{P}^{4} associated with elliptic curves given as linear sections of the Grassmannian $G(2,5)$ are compatible if and only if this pair of elliptic curves is contained in a del Pezzo surface obtained as a linear section of $G(2,5)$.

1. Introduction

We work over an algebraically closed field \mathbf{k} of characteristic 0 .
In this paper we continue to study compatible pairs among the Poisson brackets on projective spaces introduced by Feigin-Odesskii (see [1], [10]). Their construction associates with every stable vector bundle \mathcal{V} of degree $n>0$ and rank k on an elliptic curve E, a Poisson bracket on the projective space $\mathbb{P} H^{0}(E, \mathcal{V})^{*}$. We refer to such Poisson brackets as FO brackets of type $q_{n, k}$.

Two Poisson brackets are called compatible if the corresponding bivectors satisfy $\left[\Pi_{1}, \Pi_{2}\right]$ (equivalently, any linear combination of these brackets is again Poisson). In [9] Odesskii and Wolf discovered 9 -dimensional spaces of compatible FO brackets of type $q_{n, 1}$ on \mathbb{P}^{n-1} for each $n \geq 3$. Their construction was interpreted and extended in 3], where the authors showed that one gets compatible FO brackets if the elliptic curves are anticanonical divisors on a surface S and the stable bundles on them are restrictions of a single exceptional bundle on S that forms an exceptional pair with \mathcal{O}_{S} (see [3, Thm. 4.4]). One can ask whether any two compatible FO brackets of type $q_{n, k}$ on \mathbb{P}^{n-1} appear in this way. In [7] we have shown that this is the case for $k=1$ (for some specific rational surfaces containing normal elliptic curves in projective spaces). In the present work, we consider the case of FO brackets of type $q_{5,2}$ on \mathbb{P}^{4}. Note that the question of finding bihamiltonian structures with brackets of type $q_{5,2}$ was raised by Rubtsov in [11].

Let V be a 5 -dimensional vector space. Consider the Plucker embedding

$$
G(2, V) \rightarrow \mathbb{P}\left(\bigwedge^{2} V\right)
$$

It is well known that for a generic 5 -dimensional subspace $W \subset \bigwedge^{2} V$ the corresponding linear section

$$
E_{W}:=G(2, V) \cap \mathbb{P} W
$$

[^0]is an elliptic curve. Furthermore, if $\mathcal{U} \subset V \otimes \mathcal{O}$ is the universal subbundle on $G(2, V)$, then one can check that the restriction
$$
V_{W}:=\left.\mathcal{U}^{\vee}\right|_{E_{W}}
$$
is a stable bundle of rank 2 and degree 5 on E_{W} (see Lemma 2.2.1 below). Thus, we have the corresponding Feigin-Odesskii bracket of type $q_{5,2}$ on $\mathbb{P} H^{0}\left(E_{W}, V_{W}\right)^{*}$.

Furthermore, one can check that the restriction map

$$
V^{*}=H^{0}\left(G(2, V), \mathcal{U}^{\vee}\right) \rightarrow H^{0}\left(E_{W}, V_{W}\right)
$$

is an isomorphism (see Lemma 2.2.1). Thus, we get a Poisson bracket Π_{W} on $\mathbb{P} V$ (defined up to a rescaling).

On the other hand, we have a natural GL(V)-invariant map

$$
\pi_{5,2}: \bigwedge^{5}\left(\bigwedge^{2} V\right) \rightarrow H^{0}\left(\mathbb{P} V, \bigwedge^{2} T\right) \otimes \operatorname{det}^{2}(V)
$$

constructed as follows.
Note that we have a natural isomorphism $V \simeq H^{0}(\mathbb{P} V, T(-1))$, hence we get a natural map $V \otimes \mathcal{O}(1) \rightarrow T$, and hence, the composed map

$$
\phi: W \otimes \mathcal{O}(2) \rightarrow \bigwedge^{2} V \otimes \mathcal{O}(2) \rightarrow \bigwedge^{2} T
$$

on $\mathbb{P} V$. Taking the 5th exterior power of this map, we get a map

$$
\bigwedge^{5}(\phi): \operatorname{det}(W) \otimes \mathcal{O}(10) \rightarrow \bigwedge^{5}\left(\bigwedge^{2} T\right) \simeq\left(\bigwedge^{2} T\right)^{\vee} \otimes \operatorname{det}^{3}(T)
$$

where we used the identification $\operatorname{det}\left(\bigwedge^{2} T\right) \simeq \operatorname{det}^{3}(T)$. Note that we have a nondegenerate pairing given by the exterior product,

$$
\bigwedge^{2} T \otimes \bigwedge^{2} T \rightarrow \operatorname{det}(T)
$$

hence, we have an isomorphism $\bigwedge^{2} T \simeq\left(\bigwedge^{2} T\right)^{\vee} \otimes \operatorname{det}(T)$, and we can rewrite the above map as

$$
\operatorname{det}(W) \rightarrow \bigwedge^{2} T \otimes \operatorname{det}^{2}(T)(-10) \simeq \bigwedge^{2} T \otimes \operatorname{det}^{2}(V)
$$

Theorem A. For every 5-dimensional subspace $W \subset \bigwedge^{2} V$, such that $E_{W}:=G(2, V) \cap \mathbb{P} W$ is an elliptic curve, one has an equality

$$
\pi_{5,2}\left(\lambda_{W}\right)=\Pi_{W} \otimes \delta
$$

for some trivializations $\lambda_{W} \in \bigwedge^{5} W$ and $\delta \in \operatorname{det}^{2}(V)$.
Theorem B. (i) For 5-dimensional subspaces $W, W^{\prime} \subset \bigwedge^{2} V$ such that E_{W} and $E_{W^{\prime}}$ are elliptic curves, the Poisson brackets Π_{W} and $\Pi_{W^{\prime}}$ are compatible if and only if $\operatorname{dim} W \cap W^{\prime} \geq$ 4.
(ii) For any collection $\left(W_{i}\right)$ of 5 -dimensional subspaces in $\bigwedge^{2} V$, the brackets $\left(\Pi_{W_{i}}\right)$ are pairwise compatible if and only if either there exists a 6-dimensional subspace $U \subset \bigwedge^{2} V$ such that each W_{i} is contained in U, or there exists a 4-dimensional subspace $K \subset \bigwedge^{2} V$ such that each W_{i} contains K.

Corollary C. The maximal dimension of a linear subspace of Poisson brackets on $\mathbb{P}(V)$, where $\operatorname{dim} V=5$, spanned by some $F O$ brackets Π_{W} of type $q_{5,2}$, is 6 .

Theorems A and B suggest the following
Conjecture D. Let $W \subset \bigwedge^{2} V$ be a 5-dimensional subspace such that E_{W} is an elliptic curve. Consider the subspace

$$
T_{W}:=\left(\bigwedge^{4} W\right) \wedge\left(\bigwedge^{2} V\right) \subset \bigwedge^{5}\left(\bigwedge^{2} V\right)
$$

(the quotient of the latter subspace by $\bigwedge^{5} W$ is exactly the image of the tangent space to the Grassmannian $G\left(5, \bigwedge^{2} V\right)$ under Plücker embedding). Then the subspace of $\xi \in \bigwedge^{5}\left(\bigwedge^{2} V\right)$ satisfying $\left[\pi_{5,2}(\xi), \Pi_{W}\right]=0$ coincides with $T_{W}+\operatorname{ker}\left(\pi_{5,2}\right)$.

Note that we know the inclusion one way: the subspace T_{W} is spanned by $\bigwedge^{5}\left(W^{\prime}\right)$ such that $\operatorname{dim}\left(W^{\prime} \cap W\right) \geq 4$ and $E_{W^{\prime}}$ is an elliptic curve, and by Theorems A and B , $\left[\pi_{5,2}\left(\bigwedge^{5}\left(W^{\prime}\right)\right) \wedge \Pi_{W}\right]=0$.

Acknowledgments. We are grateful to Volodya Rubtsov for useful discussions. N.M. would like to thank the Max Planck Institute for Mathematics for hospitality and perfect work conditions.

2. Generalities

2.1. Feigin-Odesskii Poisson brackets of type $q_{n, k}$. Let E be an elliptic curve, with a fixed trivialization $\eta: \mathcal{O}_{E} \rightarrow \omega_{E}, \mathcal{V}$ a stable bundle on E of rank k and degree $n>0$. We consider the corresponding Feigin-Odesskii Poisson bracket $\Pi=\Pi_{E, \mathcal{V}}$ of type $q_{n, k}$ on the projective space $\mathbb{P} H^{1}\left(E, \mathcal{V}^{\vee}\right)$ defined as in [10].

We will need the following definition of Π in terms of triple Massey products. For nonzero $\phi \in H^{1}\left(E, \mathcal{V}^{\vee}\right)$, we denote by $\langle\phi\rangle$ the corresponding line, and we use the identification of the cotangent space to $\langle\phi\rangle$ with $\langle\phi\rangle^{\perp} \subset H^{0}(E, \mathcal{V})$ (where we use the Serre duality $\left.H^{0}(E, \mathcal{V}) \simeq H^{1}\left(E, \mathcal{V}^{\vee}\right)^{*}\right)$.
Lemma 2.1.1. ([3, Lem. 2.1]) For $s_{1}, s_{2} \in\langle\phi\rangle^{\perp}$ one has

$$
\Pi_{\phi}\left(s_{1} \wedge s_{2}\right)=\left\langle\phi, M P\left(s_{1}, \phi, s_{2}\right)\right\rangle
$$

where MP denotes the triple Massey product for the arrows

$$
\mathcal{O} \xrightarrow{s_{2}} \mathcal{V} \xrightarrow{\phi} \mathcal{O}[1] \xrightarrow{s_{1}} \mathcal{V}[1] .
$$

2.2. Formula for a family of complete intersections. Let X be a smooth projective variety of dimension $n, C \subset X$ a connected curve given as the zero locus of a regular section F of a vector bundle N of rank $n-1$, such that $\operatorname{det}(N)^{-1} \simeq \omega_{X}$. Then the normal bundle to C is isomorphic to $\left.N\right|_{C}$, so by the adjunction formula, ω_{C} is trivial, so C is an elliptic curve. Assume that P is a vector bundle on X, such that the following cohomology vanishing holds:

$$
\begin{equation*}
H^{i}\left(X, \bigwedge^{i} N^{\vee} \otimes P\right)=H^{i-1}\left(X, \bigwedge^{i} N^{\vee} \otimes P\right) \text { for } 1 \leq i \leq n-1 \tag{2.1}
\end{equation*}
$$

We have the following Koszul resolution for \mathcal{O}_{C} :

$$
0 \rightarrow \bigwedge^{n-1} N^{\vee} \rightarrow \ldots \rightarrow \bigwedge^{2} N^{\vee} \xrightarrow{\delta_{2}(F)} N^{\vee} \xrightarrow{\delta_{1}(F)} \mathcal{O}_{X} \rightarrow \mathcal{O}_{C} \rightarrow 0
$$

which induces a map $e_{C}: \mathcal{O}_{C} \rightarrow \bigwedge^{n-1} N^{\vee}[n-1]$ in the derived category of X. Here the differential $\delta_{i}(F)$ is given by the contraction with $F \in H^{0}(X, N)$, so it depends linearly on F.

Lemma 2.2.1. (i) The natural restriction map $H^{0}(X, P) \rightarrow H^{0}\left(C,\left.P\right|_{C}\right)$ and the map

$$
\operatorname{Ext}^{1}\left(P, \mathcal{O}_{C}\right) \xrightarrow{e_{C}} \operatorname{Ext}^{n}\left(P, \bigwedge^{n-1} N^{\vee}\right) \simeq \operatorname{Ext}^{n}\left(P, \omega_{X}\right)
$$

are isomorphisms. These maps are dual via the Serre duality isomorphisms

$$
\operatorname{Ext}^{1}\left(\left.P\right|_{C}, \mathcal{O}_{C}\right) \simeq H^{0}\left(C,\left.P\right|_{C}\right)^{*}, \quad \operatorname{Ext}^{n}\left(P, \omega_{X}\right) \simeq H^{0}(X, P)^{*}
$$

(ii) Assume in addition that $\operatorname{End}(P)=\mathbf{k}$ and we have the following vanishing:

$$
\begin{equation*}
\operatorname{Ext}^{i}\left(P, \bigwedge^{i} N^{\vee} \otimes P\right)=\operatorname{Ext}^{i-1}\left(P, \bigwedge^{i} N^{\vee} \otimes P\right)=0 \quad \text { for } 1 \leq i \leq n-1 \tag{2.2}
\end{equation*}
$$

Then the bundle $\left.P\right|_{C}$ is stable.
Proof. (i) This is obtained from the Koszul resolution of \mathcal{O}_{C}.
(ii) Computing $\operatorname{Hom}\left(\left.P\right|_{C},\left.P\right|_{C}\right)=\operatorname{Hom}\left(P,\left.P\right|_{C}\right)$ using the Koszul resolution of $\left.P\right|_{C}=P \otimes$ \mathcal{O}_{C}, we get that it is 1-dimensional. Hence, $\left.P\right|_{C}$ is stable.

Now we can rewrite the formula of Lemma 2.1.1 for the FO-bracket $\Pi_{C,\left.P\right|_{C}}$ on $\mathbb{P} H^{1}\left(C,\left.P^{\vee}\right|_{C}\right) \simeq$ $\mathbb{P} \operatorname{Ext}^{n}\left(P, \omega_{X}\right)$ in terms of higher products on X (obtained by the homological perturbation from a dg-enhancement of $\left.D^{b}(\operatorname{Coh}(X))\right)$.

Proposition 2.2.2. For nonzero $\phi \in \operatorname{Ext}^{n}\left(P, \omega_{X}\right) \simeq \operatorname{Ext}_{C}^{1}\left(\left.P\right|_{C}, \mathcal{O}_{C}\right)$, and $s_{1}, s_{2} \in\langle\phi\rangle^{\perp} \subset$ $H^{0}(X, P)$, one has

$$
\Pi_{C,\left.P\right|_{C}, \phi}\left(s_{1} \wedge s_{2}\right)= \pm\left\langle\phi, \sum_{i=1}^{n}(-1)^{i} m_{n+2}\left(\delta_{1}(F), \ldots, \delta_{i-1}(F), s_{1}, \delta_{i}(F), \ldots, \delta_{n-1}(F), \phi, s_{2}\right)\right\rangle
$$

Proof. The computation is completely analogous to that of [8, Prop. 3.1], so we will only sketch it. First, one shows that our Massey product can be computed as the triple product m_{3} for the arrows

$$
\left.\mathcal{O}_{X} \rightarrow P \xrightarrow{[1]} \mathcal{O}_{C} \rightarrow P\right|_{C}
$$

given by s_{2}, ϕ and s_{1}. Then we use resolutions $\Lambda^{\bullet} N^{\vee} \rightarrow \mathcal{O}_{C}$ and $\left.\Lambda^{\bullet} N^{\vee} \otimes P \rightarrow P\right|_{C}$. Thus, we have to calculate the following triple product in the category of twisted complexes:

where we view ϕ as a morphism of degree 1 from P to the twisted complex $\bigoplus \bigwedge^{i} N^{\vee}[i]$. Now, the result follows from the formula for m_{3} on twisted complexes (see [5, Sec. 7.6]).
2.3. Conormal Lie algebra. Let \mathcal{V} be a stable bundle of positive degree on an elliptic curve E, with a fixed trivialization of ω_{E}, and consider the corresponding FO bracket Π on the projective space $X=\mathbb{P} H^{0}(\mathcal{V})^{*}=\mathbb{P} \operatorname{Ext}^{1}(\mathcal{V}, \mathcal{O})$. Recall that for every point x of a smooth Poisson variety (X, Π) there is a natural Lie algebra structure on

$$
\mathfrak{g}_{x}:=\left(\mathrm{im} \Pi_{x}\right)^{\perp} \subset T_{x}^{*} X,
$$

where we consider Π_{x} as a map $T_{x}^{*} X \rightarrow T_{x} X$. We call \mathfrak{g}_{x} the conormal Lie algebra. In the case when Π vanishes on x, we have $\mathfrak{g}_{x}=T_{x}^{*}$.

Let us consider a nontrivial extension

$$
0 \rightarrow \mathcal{O} \xrightarrow{i} \widetilde{\mathcal{V}} \xrightarrow{p} \mathcal{V} \rightarrow 0
$$

with the class $\phi \in \operatorname{Ext}^{1}(\mathcal{V}, \mathcal{O})$. By Serre duality, we have the corresponding hyperplane $\langle\phi\rangle^{\perp} \subset H^{0}(\mathcal{V})$, and we have an identification $\langle\phi\rangle^{\perp} \simeq T_{\phi}^{*} \mathbb{P} H^{0}(\mathcal{V})^{*}$.

Consider a natural map

$$
\begin{equation*}
\operatorname{End}(\widetilde{\mathcal{V}}) /\langle\mathrm{id}\rangle \rightarrow\langle\phi\rangle^{\perp} \simeq T_{\phi}^{*} \mathbb{P} H^{0}(\mathcal{V})^{*}: A \mapsto p \circ A \circ i \tag{2.3}
\end{equation*}
$$

The following result was proved in [2].
Theorem 2.3.1. The above map induces an isomorphism of Lie algebras from $\operatorname{End}(\widetilde{\mathcal{V}}) /\langle\mathrm{id}\rangle$ to the conormal Lie algebra of Π at the point ϕ.

Note that in particular, the subspace $\left(\operatorname{im} \Pi_{x}\right)^{\perp} \subset\langle\phi\rangle^{\perp}$ is equal to the image of the map (2.3).

3. FO Brackets associated with elliptic curves in $G(2,5)$

3.1. Proof of Theorem A.

Lemma 3.1.1. The subset $Z \subset \operatorname{Gr}\left(5, \bigwedge^{2} V\right)$ of 5-dimensional subspaces $W \subset \bigwedge^{2} V$ such that $\operatorname{dim}(\mathbb{P} W \cap G(2, V)) \geq 2$ has codimension >1.

Proof. Let us denote by F the variety of flags $L \subset W \subset \bigwedge^{2} V$, where $\operatorname{dim}(L)=3$, $\operatorname{dim}(W)=5$, such that $\mathbb{P} L \cap G(2, V) \neq \emptyset$. We claim that F is irreducible of dimension ≤ 30. Note that we have a proper closed subset $\widetilde{Z} \subset F$ consisting of (L, W) such that $\operatorname{dim}(\mathbb{P} W \cap G(2, V)) \geq 2$ (as an example of a point in $F \backslash \widetilde{Z}$, we can take W such that $E_{W}=\mathbb{P} W \cap G(2, V)$ is an elliptic curve and pick $\mathbb{P} L \subset \mathbb{P} W$ intersecting $\left.E_{W}\right)$. Since \widetilde{Z} fibers over Z with fibers $\operatorname{Gr}(3,5)$, our claim would imply that $\operatorname{dim}(\widetilde{Z})=\operatorname{dim} Z+6<30$, i.e., $\operatorname{dim} Z<24$, as required.

To estimate the dimension of F, we observe that we have a fibration $F \rightarrow Y$ with fibers $G(2,7)$, where $Y \subset \operatorname{Gr}\left(3, \bigwedge^{2} V\right)$ is the subvariety of 3 -dimensional subspaces L such that $\mathbb{P} L \cap G(2, V) \neq \emptyset$. Thus, it is enough to prove that Y is irreducible of dimension ≤ 20. Now we use a surjective map $\widetilde{Y} \rightarrow Y$, where \tilde{Y} is the variety of flags $\ell \subset L \subset \bigwedge^{2} V$, where $\operatorname{dim}(\ell)=1, \operatorname{dim}(L)=3$, such that $\ell \in G(2, V)$. We have a fibration $\widetilde{Y} \rightarrow G(2, V)$ with fibers $G(2,9)$, hence \widetilde{Y} is irreducible of dimension $6+14=20$. Hence, Y is irreducible of dimension ≤ 20.

Proof of Theorem A. First, we can apply Proposition 2.2 .2 to an elliptic curve $E_{W} \subset X=$ $G(2, V)$. Namely, as a bundle P on X we take \mathcal{U}^{\vee}, the dual of the universal subbundle. We can view the embedding

$$
R:=W^{\perp} \rightarrow \bigwedge^{2} V^{*}=H^{0}(X, \mathcal{O}(1))
$$

where $\mathcal{O}(1)=\operatorname{det}\left(\mathcal{U}^{\vee}\right)$, as a regular section $F \in H^{0}(X, N)$, where $N=R^{*} \otimes \mathcal{O}(1)$. It is easy to see that we have a $\mathrm{GL}(V)$-invariant identification

$$
\omega_{X} \simeq \operatorname{det}(V)^{-2} \otimes \mathcal{O}(-5)
$$

Thus, by adjunction we get an isomorphism

$$
\left.\omega_{E_{W}} \simeq \operatorname{det}(N) \otimes \omega_{X}\right|_{E_{W}} \simeq \operatorname{det}\left(R^{*}\right) \otimes \operatorname{det}(V)^{-2} \otimes \mathcal{O}_{E_{W}}
$$

Since $\operatorname{det}\left(R^{*}\right) \simeq \operatorname{det}\left(\bigwedge^{2} V\right) \otimes \operatorname{det}\left(W^{*}\right) \simeq \operatorname{det}(V)^{4} \otimes \operatorname{det}\left(W^{*}\right)$, we can rewrite this as

$$
\begin{equation*}
\omega_{E_{W}} \simeq \operatorname{det}\left(W^{*}\right) \otimes \operatorname{det}(V)^{2} \otimes \mathcal{O}_{E_{W}} \tag{3.1}
\end{equation*}
$$

The vanishings (2.1) and 2.2 in this case follow from the well known vanishings

$$
H^{*}\left(X, \mathcal{U}^{\vee}(-i)\right)=0, \text { for } 1 \leq i \leq 5
$$

$\operatorname{Ext}^{*}\left(\mathcal{U}^{\vee}, \mathcal{U}^{\vee}(-i)\right)=0$, for $1 \leq i \leq 3, \operatorname{Ext}^{<6}\left(\mathcal{U}^{\vee}, \mathcal{U}^{\vee}(-4)\right)=\operatorname{Ext}^{<6}\left(\mathcal{U}^{\vee}, \mathcal{U}^{\vee}(-5)\right)=0$
(see [4]). Thus, Proposition 2.2 .2 gives a formula for Π_{W}.

This shows that the association $W \mapsto \Pi_{W}$ gives a regular morphism

$$
f: \operatorname{Gr}\left(5, \bigwedge^{2} V\right) \rightarrow \mathbb{P} H^{0}\left(\mathbb{P} V, \bigwedge^{2} T\right)
$$

Furthermore, we claim that

$$
f^{*} \mathcal{O}(1) \simeq \mathcal{O}_{\operatorname{Gr}\left(5, \wedge^{2} V\right)}(1) \otimes \operatorname{det}(V)^{-2}
$$

Indeed, we have a family of Gorenstein curves $\pi: \mathcal{C} \rightarrow B=\operatorname{Gr}\left(5, \bigwedge^{2} V\right) \backslash Z$, where Z was defined in Lemma 3.1.1, such that

$$
\omega_{\mathcal{C} / B} \simeq \pi^{*}\left(\mathcal{O}(1) \otimes \operatorname{det}(V)^{2}\right)
$$

Indeed, this is implied by the argument leading to (3.1), which works for any curve (not necessarily smooth) cut out by $\mathbb{P} W$ in $G(2, V)$. Now [3, Prop. 4.1] implies that the relation $f^{*} \mathcal{O}(1)=\mathcal{O}(1) \otimes \operatorname{det}(V)^{-2}$ holds over $\operatorname{Gr}\left(5, \bigwedge^{2} V\right) \backslash Z$. Since Z has codimension ≥ 1, it holds over the entire $\operatorname{Gr}\left(5, \bigwedge^{2} V\right)$.

Next, since $H^{0}\left(\operatorname{Gr}\left(5, \bigwedge^{2} V\right), \mathcal{O}(1)\right) \simeq \bigwedge^{5}\left(\bigwedge^{2} V\right)^{*}$, the map f is given by a GL (V)-invariant linear map

$$
\bigwedge^{5}\left(\bigwedge^{2} V\right) \rightarrow H^{0}\left(\mathbb{P} V, \bigwedge^{2} T\right) \otimes \operatorname{det}(V)^{2}
$$

To show that this map coincides with $\pi_{5,2}$, up to a constant factor, it remains to show that the space $\operatorname{Hom}_{\mathrm{GL}(V)}\left(\bigwedge 5\left(\bigwedge^{2} V\right), H^{0}\left(\mathbb{P} V, \bigwedge^{2} T\right) \otimes \operatorname{det}(V)^{2}\right)$ is 1-dimensional.

The representation of $\mathrm{GL}(V)$ on $H^{0}\left(\mathbb{P} V, \bigwedge^{2} T\right)$ is easy to identify due to the exact sequence

$$
0 \rightarrow \mathbf{k} \rightarrow V \otimes V^{*} \otimes \bigwedge^{2} V \otimes S^{2} V^{*} \rightarrow H^{0}\left(\mathbb{P} V, \bigwedge^{2} T\right) \rightarrow 0
$$

Using the Littlewood-Richardson rule, we deduce

$$
H^{0}\left(\mathbb{P} V, \bigwedge^{2} T\right) \otimes \operatorname{det}\left(V^{*}\right) \simeq \Sigma^{3,1,1}\left(V^{*}\right)
$$

where Σ^{λ} denotes the Schur functor associated with a partition λ. It follows that

$$
H^{0}\left(\mathbb{P} V, \bigwedge^{2} T\right) \otimes \operatorname{det}(V)^{2} \simeq \Sigma^{3,3,2,2}(V)
$$

On the other hand, the decomposition of the plethysm $e_{5} \circ e_{2}$ (see [6, Ex. I.8.6]) shows that $\Sigma^{3,3,2,2}(V)$ appears with multiplicity 1 in the $\operatorname{GL}(V)$-representation $\bigwedge^{5}\left(\bigwedge^{2} V\right)$. This implies the claimed assertion about GL(V)-maps.
3.2. Rank stratification for a bracket of type $q_{5,2}$. Let E be an elliptic curve, \mathcal{V} be a stable vector bundle of rank 2 and degree 5 . We consider the FO bracket Π on the projective space $\mathbb{P} \operatorname{Ext}^{1}(\mathcal{V}, \mathcal{O}) \simeq \mathbb{P} H^{0}(\mathcal{V})^{*}$. We want to describe the corresponding rank stratification of $\mathbb{P} H^{0}(\mathcal{V})^{*}=\mathbb{P}^{4}$. For every point $p \in E$, we consider the subspace $L_{p}:=\left.\mathcal{V}\right|_{p} ^{*} \subset H^{0}(\mathcal{V})^{*}$ and the corresponding projective line $\mathbb{P} L_{p} \subset \mathbb{P} H^{0}(\mathcal{V})^{*}$.

Recall that the rank of Π at a point corresponding to an extension $\widetilde{\mathcal{V}}$ is equal to 5 $\operatorname{dim} \operatorname{End}(\widetilde{V})($ see [3, Prop. 2.3]).

Lemma 3.2.1. (i) The bracket Π vanishes at the point of $\mathbb{P}_{\operatorname{Ext}}{ }^{1}(\mathcal{V}, \mathcal{O})$ corresponding to an extension

$$
0 \rightarrow \mathcal{O} \rightarrow \widetilde{\mathcal{V}} \rightarrow \mathcal{V} \rightarrow 0
$$

if and only if this extension splits under $\mathcal{O} \rightarrow \mathcal{O}(p)$ for some point $p \in E$, which happens if and only if $\widetilde{\mathcal{V}} \simeq \mathcal{O}(p) \oplus \mathcal{V}^{\prime}$, where \mathcal{V}^{\prime} is semistable of rank 2 and degree 4 . Furthermore, in this case $\operatorname{dim} \operatorname{End}\left(\mathcal{V}^{\prime}\right)=2$, so \mathcal{V}^{\prime} is either indecomposable, or $\mathcal{V}^{\prime} \simeq L_{1} \oplus L_{2}$, where L_{1} and L_{2} are nonisomorphic line bundles of degree 2 .
(ii) The bracket Π has rank ≤ 2 if and only the corresponding extension $\widetilde{\mathcal{V}}$ is unstable, or equivalently, there exists a line bundle L_{2} of degree 2 such that the extension splits over the unique embedding $L_{2} \hookrightarrow \mathcal{V}$. In other words, the extension class comes from a subspace of the form

$$
\begin{equation*}
W_{L_{2}}:=H^{0}\left(L_{2}\right)^{\perp} \subset H^{0}(\mathcal{V})^{*}=V \tag{3.2}
\end{equation*}
$$

where we use the unique embedding $L_{2} \rightarrow \mathcal{V}$ and consider the induced embedding $H^{0}\left(L_{2}\right) \hookrightarrow$ $H^{0}(\mathcal{V})$.
(iii) Each plane $\mathbb{P} W_{L_{2}} \subset \mathbb{P} V$ is a Poisson subvariety, and there is an embedding of the curve E into $\mathbb{P} W_{L_{2}}$ by a degree 3 linear system, so that $\mathbb{P} W_{L_{2}} \backslash E$ is a symplectic leaf.
Proof. (i) Suppose a nontrivial extension

$$
0 \rightarrow \mathcal{O} \rightarrow \widetilde{\mathcal{V}} \rightarrow \mathcal{V} \rightarrow 0
$$

splits under $\mathcal{O} \rightarrow \mathcal{O}(p)$. Then $\widetilde{\mathcal{V}}$ is an extension of $\mathcal{O}(p)$ by \mathcal{V}^{\prime} where $\mathcal{V}^{\prime} \subset \mathcal{V}$ is the kernel of the corresponding surjective map $\mathcal{V} \rightarrow \mathcal{O}_{p}$. Hence, \mathcal{V}^{\prime} is semistable of slope 2 , which implies that

$$
\widetilde{\mathcal{V}} \simeq \mathcal{O}(p) \oplus \mathcal{V}^{\prime}
$$

It follows that $\operatorname{dim} \operatorname{End}\left(\mathcal{V}^{\prime}\right) \geq 2$, and so

$$
\operatorname{dim} \operatorname{End}(\widetilde{\mathcal{V}})=3+\operatorname{dim} \operatorname{End}\left(\mathcal{V}^{\prime}\right) \geq 5
$$

Hence, Π_{E} vanishes on the points of the line $\mathbb{P} L_{p} \subset \mathbb{P} V$, and we have $\operatorname{dim} \operatorname{End}\left(\mathcal{V}^{\prime}\right)=2$, which means that either \mathcal{V}^{\prime} is indecomposable or $\mathcal{V}^{\prime} \simeq L_{1} \oplus L_{2}$, for two nonisomorphic line bundles L_{1}, L_{2} of degree 2 .

Conversely, assume Π vanishes at the point corresponding to $\widetilde{\mathcal{V}}$, so $\operatorname{dim} \operatorname{End}(\widetilde{\mathcal{V}})=5$. Then HN-components of $\widetilde{\mathcal{V}}$ cannot be three line bundles (since they would have to have different positive degrees that add up to 5), so $\widetilde{\mathcal{V}}=L \oplus \mathcal{V}^{\prime}$ where L is a line bundle and \mathcal{V}^{\prime} is semistable of $\operatorname{rank} 2, \operatorname{deg}(L)>0,0<\operatorname{deg}\left(\mathcal{V}^{\prime}\right), \operatorname{deg}(L)+\operatorname{deg}\left(\mathcal{V}^{\prime}\right)=5$.

The case $\operatorname{deg}(L)=1$ leads to the locus discussed above. If $\operatorname{deg}(L)=2$ and $\operatorname{deg}\left(\mathcal{V}^{\prime}\right)=3$ then $\operatorname{dim} \operatorname{Hom}\left(\mathcal{V}^{\prime}, L\right)=1$, so we get $\operatorname{dim} \operatorname{End}\left(\mathcal{V}^{\prime}\right)=3$ which is impossible. If $\operatorname{deg}(L) \geq 3$, then $\operatorname{deg}\left(\mathcal{V}^{\prime}\right) \leq 2$ and $\operatorname{dim} \operatorname{Hom}\left(\mathcal{V}^{\prime}, L\right) \geq 4$, so $\operatorname{dim} \operatorname{End}(\mathcal{V})>5$, a contradiction.
(ii) The rank of Π is ≤ 2 at $\widetilde{\mathcal{V}}$ if and only if $\operatorname{dim} \operatorname{End}(\widetilde{\mathcal{V}}) \geq 3$. Clearly, such $\widetilde{\mathcal{V}}$ has to be unstable. Conversely, any unstable $\widetilde{\mathcal{V}}$ would have form $L \oplus \mathcal{V}^{\prime}$ with either $\operatorname{Hom}\left(L, \mathcal{V}^{\prime}\right) \neq 0$ or $\operatorname{Hom}\left(\mathcal{V}^{\prime}, L\right) \neq 0$, hence $\operatorname{dim} \operatorname{End}(\widetilde{\mathcal{V}}) \geq 3$.

Note that $\mu(\widetilde{\mathcal{V}})=5 / 3$. Hence, if the extension splits over some $L_{2} \subset \mathcal{V}$, then $\widetilde{\mathcal{V}}$ is unstable. Conversely, if $\widetilde{\mathcal{V}}$ is unstable then either it has a line subbundle of degree 2 , or a
semistable subbundle \mathcal{V}^{\prime} of rank 2 and degree ≥ 4. But any such \mathcal{V}^{\prime} has a line subbundle of degree ≥ 2.
(iii) We can identify $H^{0}\left(L_{2}\right)^{\perp}$ with $H^{0}\left(L_{3}\right)^{*} \subset H^{0}(\mathcal{V})^{*}$, where $L_{3}:=\mathcal{V} / L_{2}$. It is easy to see that the intersection of $\mathbb{P} W_{L_{2}}$ with the zero locus of Π is exactly the image of E under the map given by $\left|L_{3}\right|$.

Given an extension $\tilde{\mathcal{V}} \rightarrow \mathcal{V}$, split over $L_{2} \subset \mathcal{V}$, the splitting $L_{2} \rightarrow \widetilde{\mathcal{V}}$ is unique, and the quotient $\widetilde{\mathcal{V}} / L_{2}$ is an extension of $L_{3}=\mathcal{V} / L_{2}$ by $\tilde{\mathcal{O}}$. It is well known that for points of $\mathbb{P} W_{L_{2}} \backslash E$ the latter extension is stable, so $\mathcal{V}_{L_{3}}=\widetilde{\mathcal{V}} / L_{2}$ is a stable bundle of rank 2 with determinant L_{3}. Since $\operatorname{Ext}^{1}\left(\mathcal{V}_{L_{3}}, L_{2}\right)=0$, we deduce that $\widetilde{\mathcal{V}}=\mathcal{V}_{L_{3}} \oplus L_{2}$. Now we can calculate the image of the map (2.3). The space $\operatorname{End}(\widetilde{\mathcal{V}}) /\langle\mathrm{id}\rangle$ has a basis $\left\langle\mathrm{id}_{L_{2}}, e\right\rangle$, where e is a generator of $\operatorname{Hom}\left(\mathcal{V}_{L_{3}}, L_{2}\right)$. Their images under (2.3) both factor through $L_{2} \rightarrow E$, hence the image of (2.3) (which is 2-dimensional) is $H^{0}\left(L_{2}\right) \subset H^{0}(\mathcal{V})$. But this is exactly the conormal subspace to the projective plane $\mathbb{P} W_{L_{2}}$. This shows that $\mathbb{P} W_{L_{2}} \backslash E$ (and hence $\left.\mathbb{P} W_{L_{2}}\right)$ is a Poisson subvariety. Since the rank of Π on $\mathbb{P} W_{L_{2}} \backslash E$ is equal to 2 and $\left.\Pi\right|_{E}=0$, we deduce that $\mathbb{P} W_{L_{2}} \backslash E$ is a symplectic leaf.

By Lemma 3.2.1(i) the vanishing locus of Π corresponds to extensions \mathcal{V} by \mathcal{O}, which split over $\mathcal{O}(p)$. This is the union S_{E} of the lines $\mathbb{P} L_{p}$, where $L_{p}=\left.\mathcal{V}\right|_{p} ^{*} \subset \mathbb{P} H^{0}(\mathcal{V})^{*}$, over $p \in E$. The surface S_{E} is the image of the natural map $\mathbb{P}\left(\mathcal{V}^{\vee}\right) \rightarrow \mathbb{P}(V)$, associated with the embedding of bundles $\mathcal{V}^{\vee} \rightarrow V \otimes \mathcal{O}_{E}$. We will prove that in fact this map induces an isomorphism of the projective bundle $\mathbb{P}\left(\mathcal{V}^{\vee}\right)$ with S_{E}.

Lemma 3.2.2. Let \mathcal{E} be a vector bundle over a smooth curve C and let $W \rightarrow H^{0}(C, \mathcal{E})$ be a linear map from a vector space W, such that for any $x \in C$ the composition $p_{x}: W \rightarrow$ $\left.H^{0}(C, \mathcal{E}) \rightarrow \mathcal{E}\right|_{x}$ is surjective, so that we have a morphism

$$
f: \mathbb{P}\left(\mathcal{E}^{\vee}\right) \rightarrow \mathbb{P}\left(W^{*}\right)
$$

Assume that we have a closed subset $Z \subset \mathbb{P}\left(\mathcal{E}^{\vee}\right)$ with the following properties.

- For every $x, y \in C, x \neq y$, consider $\left.p_{x}\left(\operatorname{ker}\left(p_{y}\right)\right) \subset \mathcal{E}\right|_{x}$. Then any $\ell \in \mathbb{P}\left(\left.\mathcal{E}^{\vee}\right|_{x}\right)$, which is orthogonal to $p_{x}\left(\operatorname{ker}\left(p_{y}\right)\right)$, is contained in Z.
- For every $x \in C$, consider the map $W \rightarrow H^{0}\left(\left.\mathcal{E}\right|_{2 x}\right)$ and the induced map

$$
K_{x}:=\left.\operatorname{ker}\left(\left.W \rightarrow \mathcal{E}\right|_{x}\right) \rightarrow T_{x}^{*} C \otimes \mathcal{E}\right|_{x}
$$

(where we use the identification $\left.T_{x}^{*} C \otimes \mathcal{E}\right|_{x}=\operatorname{ker}\left(\left.H^{0}\left(\left.\mathcal{E}\right|_{2 x}\right) \rightarrow \mathcal{E}\right|_{x}\right)$). Then any $\ell \in \mathbb{P}\left(\left.\mathcal{E}^{\vee}\right|_{x}\right)$, which is orthogonal to the image of $K_{x} \otimes T_{x} C$, is contained in Z.
Then the map $\mathbb{P}\left(\mathcal{E}^{\vee}\right) \backslash Z \rightarrow \mathbb{P}\left(W^{*}\right)$ is a locally closed embedding.
Proof. Assume that for $x \neq y$, we have two nonzero functionals $\phi_{x}:\left.\mathcal{E}\right|_{x} \rightarrow k, \phi_{y}:\left.\mathcal{E}\right|_{y} \rightarrow k$ such that $\phi_{x} \circ p_{x}=\phi_{y} \circ p_{y}$. Then $\left.\left(\phi_{x} \circ p_{x}\right)\right|_{\operatorname{ker}\left(\phi_{y}\right)}=0$. Hence, ϕ_{x} vanishes on $p_{x}\left(\operatorname{ker}\left(p_{y}\right)\right)$. By assumption, this can happen only when ϕ_{x} is in Z. Thus, the map from $\mathbb{P}\left(\mathcal{E}^{\vee}\right) \backslash Z$ is set-theoretically one-to-one.

Next, we need to check that our map is injective on tangent spaces. The tangent space to $\mathbb{P}\left(\mathcal{E}^{\vee}\right)$ at a point corresponding to $\left.\ell \subset \mathcal{E}^{\vee}\right|_{x}$ can be described as follows. Consider the
canonical extension

$$
\left.\left.0 \rightarrow T_{x}^{*} C \otimes \mathcal{E}\right|_{x} \rightarrow H^{0}\left(\left.\mathcal{E}\right|_{2 x}\right) \rightarrow \mathcal{E}\right|_{x} \rightarrow 0
$$

Passing to the dual extension of $\left.T_{x} C \otimes \mathcal{E}^{\vee}\right|_{x}$ by $\left.\mathcal{E}^{\vee}\right|_{x}$, and restricting it to $T_{x} C \otimes \ell \subset$ $\left.T_{x} C \otimes \mathcal{E}^{\vee}\right|_{x}$, we get an extension

$$
\left.0 \rightarrow \mathcal{E}^{\vee}\right|_{x} \rightarrow H_{\ell} \rightarrow T_{x} C \otimes \ell \rightarrow 0
$$

Now the quotient $\left(\ell^{-1} \otimes H_{\ell}\right) / \mathbf{k}$, where we use the natural embedding

$$
k=\left.\ell^{-1} \otimes \ell \rightarrow \ell^{-1} \otimes \mathcal{E}^{\vee}\right|_{x} \rightarrow \ell^{1} \otimes H_{\ell}
$$

is identified with the tangent space $T_{\ell} \mathbb{P}\left(\mathcal{E}^{\vee}\right)$.
The restriction of the map $H^{0}\left(\left.\mathcal{E}\right|_{2 x}\right)^{\vee} \rightarrow W^{*}$, dual to the natural map $W \rightarrow H^{0}\left(\left.\mathcal{E}\right|_{2 x}\right)$, to H_{ℓ}, induces a map

$$
\left(\ell^{-1} \otimes H_{\ell}\right) / \mathbf{k} \rightarrow W^{*} / \ell
$$

which is exactly the tangent map to f. It is injective if and only if the map $H_{\ell} \rightarrow W^{*}$ is injective. Equivalently, the dual map $W \rightarrow H_{\ell}^{*}$ should be surjective. The latter map is compatible with (surjective) projections to $\left.\mathcal{E}\right|_{x}$, so this is equivalent to surjectivity of the map

$$
K_{x}=\operatorname{ker}\left(\left.W \rightarrow \mathcal{E}\right|_{x}\right) \rightarrow \operatorname{ker}\left(\left.H_{\ell}^{*} \rightarrow \mathcal{E}\right|_{x}\right)=T_{x}^{*} C \otimes \ell^{-1}
$$

The latter map factors as a composition

$$
\left.K_{x} \rightarrow T_{x}^{*} C \otimes \mathcal{E}\right|_{x} \rightarrow T_{x}^{*} C \otimes \ell^{-1}
$$

so it is surjective (equivalently, nonzero) if and only if ℓ is not orthogonal to the image of $\left.K_{x} \rightarrow T_{x}^{*} C \otimes \mathcal{E}\right|_{x}$. By assumption, this never happens for points of $\mathbb{P}\left(\mathcal{E}^{\vee}\right) \backslash Z$.
Lemma 3.2.3. The map $\mathbb{P}\left(\mathcal{V}^{\vee}\right) \rightarrow S_{E}$ is an isomorphism.
Proof. We will check the conditions of Lemma 3.2.2. It suffices to check surjectivity of the maps $\left.\left.H^{0}(\mathcal{V}) \rightarrow \mathcal{V}\right|_{x} \oplus \mathcal{V}\right|_{y}$ for $x \neq y$ and of $H^{0}(\mathcal{V}) \rightarrow H^{0}\left(\left.\mathcal{V}\right|_{2 x}\right)$. But this follows from the exact sequence

$$
\left.0 \rightarrow \mathcal{V}(-D) \rightarrow \mathcal{V} \rightarrow \mathcal{V}\right|_{D} \rightarrow 0
$$

for any effective divisor D of degree 2 and from the vanishing of $H^{1}(\mathcal{V}(-D))$ by stability of \mathcal{V}.

By Lemma 3.3.3 the degeneracy locus \mathcal{D}_{E} of our Poisson bracket (which is a quintic hypersurface) is the union of planes $\mathbb{P} W_{L_{2}} \subset \mathbb{P} V$ over $L_{2} \in \operatorname{Pic}^{2}(E)$ (see (3.2). Let us consider the vector bundle \mathcal{W} over $\widetilde{E}:=\operatorname{Pic}^{2}(E)$, such that the fiber of \mathcal{W} over L_{2} is $W_{L_{2}}$. Note that we have a natural identification $\widetilde{E} \simeq \operatorname{Pic}^{3}(E): L_{2} \mapsto L_{3}:=\operatorname{det}(\mathcal{V}) \otimes L_{2}^{-1}$. In terms of L_{3} we have $W_{L_{2}}=H^{0}\left(L_{3}\right)^{*} \subset H^{0}(\mathcal{V})^{*}$, where we use a surjection $\mathcal{V} \rightarrow L_{3}$. To define the vector bundle \mathcal{W} precisely, we consider the universal line bundle \mathcal{L}_{3} of degree 3 over $E \times \widetilde{E} \simeq E \times \operatorname{Pic}^{3}(E)$, normalized so that the line bundle $p_{2 *} \underline{\operatorname{Hom}}\left(p_{1}^{*} \mathcal{V}, \mathcal{L}_{3}\right)$ is trivial. We set

$$
\mathcal{W}:=p_{2 *}\left(\mathcal{L}_{3}\right)^{\vee}
$$

Note that applying $p_{2 *}$ to the natural surjection $p_{1}^{*} \mathcal{V} \rightarrow \mathcal{L}_{3}$ we get a surjection $H^{0}(\mathcal{V}) \otimes \mathcal{O} \rightarrow$ $p_{2 *}\left(\mathcal{L}_{3}\right)$. Passing to the dual, we get a morphism $\mathbb{P}(\mathcal{W}) \rightarrow \mathbb{P} V$, whose image is \mathcal{D}_{E}.

Lemma 3.2.4. The morphism $\mathbb{P}(\mathcal{W}) \rightarrow \mathcal{D}_{E}$ is an isomorphism over $\mathcal{D}_{E} \backslash S_{E}$.
Proof. We need to check two conditions of Lemma 3.2 .2 for the morphism $H^{0}(\mathcal{V}) \otimes \mathcal{O} \rightarrow \mathcal{W}^{\vee}$ over \widetilde{E}, with $Z \subset \mathbb{P}(\mathcal{W})$ being the preimage of S. Note that the intersection of Z with each plane $\mathbb{P} H^{0}\left(L_{3}\right)^{*} \subset H^{0}(\mathcal{V})^{*}$ is the elliptic curve E embedded by the linear system $\left|L_{3}\right|$.

To check the first condition, we use the exact sequence

$$
0 \rightarrow H^{0}\left(L_{2}\right) \rightarrow H^{0}(\mathcal{V}) \rightarrow H^{0}\left(L_{3}\right) \rightarrow 0
$$

where $L_{2} \otimes L_{2} \simeq \mathcal{V}$. If L_{3}^{\prime} is different from L_{3}^{\prime} then the composed map $L_{2} \rightarrow \mathcal{V} \rightarrow L_{3}^{\prime}$ is nonzero, hence, it identifies L_{2} with the subsheaf $L_{3}^{\prime}(-x)$ for some point $p \in E$. Hence, the image of $H^{0}\left(L_{2}\right)$ is precisely the plane $H^{0}\left(L_{3}^{\prime}(-p)\right) \subset H^{0}\left(L_{3}^{\prime}\right)$. Hence, the only point of $\mathbb{P} H^{0}\left(L_{3}^{\prime}\right)^{*}$ orthogonal to this plane is the point $p \in E \subset \mathbb{P} H^{0}\left(L_{3}^{\prime}\right)^{*}$, which lies in Z.

To check the second condition, we need to understand the map $H^{0}(\mathcal{V}) \rightarrow H^{0}\left(\left.\mathcal{W}^{\vee}\right|_{2 x}\right)$ for $x \in \widetilde{E} \simeq \operatorname{Pic}^{3}(E)$. For this we observe that this map is equal to the composition

$$
H^{0}(\mathcal{V}) \rightarrow H^{0}\left(E \times\{2 x\},\left.p_{1}^{*} \mathcal{V}\right|_{E \times\{2 x\}}\right) \rightarrow H^{0}\left(E \times\{2 x\},\left.\mathcal{L}_{3}\right|_{E \times\{2 x\}}\right),
$$

which is the map induced on H^{0} by the morphism of sheaves on E,

$$
\alpha: \mathcal{V} \rightarrow \mathcal{V} \otimes H^{0}\left(\mathcal{O}_{2 x}\right)=p_{1 *}\left(\left.p_{1}^{*} \mathcal{V}\right|_{E \times\{2 x\}}\right) \rightarrow p_{1 *}\left(\left.\mathcal{L}_{3}\right|_{E \times\{2 x\}}\right)
$$

Note that for $x=L_{3}$, the bundle $F_{x}:=p_{1 *}\left(\left.\mathcal{L}_{3}\right|_{E \times\{2 x\}}\right)$ on E is an extension of L_{3} by $T_{x}^{*} \widetilde{E} \otimes L_{3}$, which gives the Kodaira-Spencer map for the family \mathcal{L}_{3}, so this extension is nontrivial. The composition

$$
\mathcal{V} \xrightarrow{\alpha} F_{x} \rightarrow L_{3}
$$

is the canonical surjection with the kernel $L_{2} \subset \mathcal{V}$. Hence, α fits into a morphism of exact sequences

Note that the map $\left.\alpha\right|_{L_{2}}$ is nonzero, since otherwise we would get a splitting of the extension $F_{x} \rightarrow L_{3}$.

Now the kernel of the map $\left.H^{0}(\mathcal{V}) \rightarrow \mathcal{W}^{\vee}\right|_{x}=H^{0}\left(L_{3}\right)$ is identified with $H^{0}\left(L_{2}\right)$, and the induced map $H^{0}\left(L_{2}\right) \rightarrow T_{x}^{*} \widetilde{E} \otimes H^{0}\left(L_{3}\right)$ is given by a nonzero map

$$
\left.\alpha\right|_{L_{2}}: L_{2} \rightarrow T_{x}^{*} \widetilde{E} \otimes L_{3} \simeq L_{3}
$$

Hence, its image is the subspace of the form $H^{0}\left(L_{3}(-p)\right)$, and we again deduce that any point of $\mathbb{P} H^{0}\left(L_{3}\right)^{*}$ orthogonal to it lies in Z.
Corollary 3.2.5. (i) There is a regular map $\mathcal{D}_{E} \backslash S_{E} \rightarrow \widetilde{E}$ such that the fiber over L_{2} is the symplectic leaf $\mathbb{P} W_{L_{2}} \backslash E$.
(ii) Any line contained in \mathcal{D}_{E} is either contained in S_{E} or in some plane $\mathbb{P} W_{L_{2}}$, where $L_{2} \in \operatorname{Pic}^{2}(E)$.

Proof. For (ii) we observe that given a line $L \subset \mathcal{D}_{E}$ not contained in S_{E}, the restriction of the map $\mathcal{D}_{E} \backslash S \rightarrow \widetilde{E}$ to $L \backslash S_{E} \rightarrow \widetilde{E}$ is necessarily constant. Hence, L is contained in some plane $\mathbb{P} W_{L_{2}}$.
3.3. Two-dimensional distribution on $G(2,5)$ associated with the elliptic curve. Let $E \subset G(2, V)$ be the elliptic curve obtained as the intersection with the linear subspace $\mathbb{P} W \subset \mathbb{P}\left(\bigwedge^{2} V\right)$ in the Plucker embedding, where $\operatorname{dim} W=5$. Equivalently, E is cut out by the linear subspace of sections $W^{\perp} \subset \bigwedge^{2} V^{*} \simeq H^{0}(G(2, V), \mathcal{O}(1))$. As before, we denote by \mathcal{V} the restriction of \mathcal{U}^{\vee}, the dual of the universal bundle. Then $\bigwedge^{2}(\mathcal{V})$ is the restriction of $\mathcal{O}(1)$, and we have an exact sequence

$$
0 \rightarrow W^{\perp} \rightarrow \bigwedge^{2} V^{*} \rightarrow H^{0}\left(E, \bigwedge^{2}(\mathcal{V})\right) \rightarrow 0
$$

In other words, we can identify the dual map to the embedding $W \hookrightarrow \bigwedge^{2} V$ with the natural map

$$
\bigwedge^{2} H^{0}(\mathcal{V}) \rightarrow H^{0}\left(\bigwedge^{2} \mathcal{V}\right)
$$

We have a regular map

$$
f: G(2, V) \backslash E \rightarrow \mathbb{P}^{4}
$$

given by the linear system $\left|W^{\perp}\right| \subset|\mathcal{O}(1)|$.
Then for every point $p \in G(2, V) \backslash E$, we define the subspace $D_{p} \subset T_{p} G(2, V)$ as the kernel of the tangent map to f at p. Note that for generic p, one has $\operatorname{dim} D_{p}=2$.

We have the following characterization of D_{p}.
Lemma 3.3.1. Let $L_{p} \subset V$ denote the 2-dimensional subspace corresponding to $p \in$ $G(2, V) \backslash E$.
(i) Under the identification $T_{p} G(2, V) \otimes \operatorname{det}\left(L_{p}\right) \simeq L_{p} \otimes V / L$, we have

$$
D_{p} \otimes \operatorname{det}\left(L_{p}\right)=W \cap\left(L_{p} \wedge V\right)=W \cap\left(L_{p} \otimes V / L_{p}\right)
$$

where the second intersection is taken in $\bigwedge^{2} V / \bigwedge^{2} L_{p}$.
(ii) For each $v \in L_{p}$, let us denote by $\pi_{v}: T_{p} G(2, V) \rightarrow V / L_{p}$ the natural projection. Assume that $\Pi_{E, v}$ has rank 4, for some nonzero $v \in L_{p}$. Then D_{p} is 2-dimensional, and $\pi_{v}\left(D_{p}\right)$ is the 2-dimensional subspace of V / L_{p} given as follows:

$$
\pi_{v}\left(D_{p}\right)=\left\{x \in V / L_{p} \mid x \wedge \Pi_{E, v}^{n o r m}=0\right\}
$$

where $\Pi_{E, v}^{\text {norm }} \in \Lambda^{2}\left(V / L_{p}\right)$ is the image of $\Pi_{E, v} \in \bigwedge^{2}(V / v)$.
Proof. (i) The map $d_{L} f$ is the composition of the Plucker embedding $G(2, V) \rightarrow \mathbb{P}\left(\bigwedge^{2} V\right)$ with the linear projection

$$
\mathbb{P}\left(\bigwedge^{2} V\right) \backslash \mathbb{P}(W) \rightarrow \mathbb{P}\left(\bigwedge^{2} V / W\right)
$$

Thus, the tangent map to f at $L \subset W$ is the composition

$$
\operatorname{Hom}(L, V / L) \xrightarrow{\alpha} \operatorname{Hom}\left(\bigwedge^{2} L, \bigwedge^{2} V / \bigwedge^{2} L\right) \rightarrow \operatorname{Hom}\left(\bigwedge^{2} L, \bigwedge^{2} V /\left(\bigwedge^{2} L+W\right)\right)
$$

where $\alpha(A)\left(l_{1} \wedge l_{2}\right)=A l_{1} \wedge l_{2}+l_{1} \wedge A l_{2} \bmod \bigwedge^{2} L$. Equivalently, the map α is the natural map

$$
\operatorname{Hom}(L, V / L) \simeq L^{*} \otimes V / L \simeq \operatorname{det}^{-1}(L) \otimes L \otimes V / L \rightarrow \operatorname{det}^{-1}(L) \otimes \bigwedge^{2} V / \bigwedge^{2} L
$$

given by $l \otimes(v \bmod L) \mapsto l \wedge v \bmod \bigwedge^{2} L$.
Now the assertion follows from the identification

$$
W=\operatorname{ker}\left(\bigwedge^{2} V / \bigwedge^{2} L \rightarrow \bigwedge^{2} V /\left(\bigwedge^{2} L+W\right)\right)
$$

(ii) Our identification of Π_{W} from Theorem A implies the following property of the bivector $\Pi_{W, v} \in \bigwedge^{2}(V / v)$. Consider the natural map $\phi_{v}: W \rightarrow \bigwedge^{2}(V / v)$. Let $S=S_{E} \subset \mathbb{P} V$ denote the surface, obtained as the union of lines corresponding to $E \subset G(2, V)$. We claim that the map ϕ_{v} is injective if and only if $\langle v\rangle$ is not in S. Indeed, an element in the kernel of ϕ_{v} is an element $v \wedge v^{\prime}$ contained in W, so the plane $\left\langle v, v^{\prime}\right\rangle$ corresponds to a point of E. Hence, this is true when $\Pi_{W, v}$ is nonzero.

Now assume the rank of $\Pi_{W, v}$ is 4 . We have a nondegenerate symmetric pairing on $\bigwedge^{2}(V / v)$ with values in $\operatorname{det}(V / v)$, given by the exterior product. Now our description of Π_{W} implies that for $\langle v\rangle \notin S, \Pi_{W, v}$ is nonzero and

$$
\phi_{v}(W)=\left\langle\Pi_{W, v}\right\rangle^{\perp}
$$

Since $\Pi_{W, v}$ has maximal rank, the skew-symmetric form $\left(x_{1}, x_{2}\right)=x_{1} \wedge x_{2} \wedge \Pi_{W, v}$ on V / v is nondegenerate. Hence, the subspace $\left(L_{p} /\langle v\rangle\right) \otimes\left(V / L_{p}\right)$ cannot be contained in $\left\langle\Pi_{W, v}\right\rangle^{\perp}$ (this would mean that $L_{p} /\langle v\rangle$ lies in the kernel of $\left.(\cdot, \cdot)\right)$. Hence, the intersection

$$
I:=\left(L_{p} /\langle v\rangle\right) \otimes\left(V / L_{p}\right) \cap\left\langle\Pi_{W, v}\right\rangle^{\perp}
$$

is 2-dimensional. Since the subspace $\phi_{v}\left(W \cap\left(L_{p} \wedge V\right)\right)$ is contained in I, we deduce that its dimension is ≤ 2, and so $\operatorname{dim} D_{p} \leq 2$. But we also know that $\operatorname{dim} D_{p} \geq 2$, hence in fact, we have $\operatorname{dim} D_{p}=2$ and $\phi_{v}\left(W \cap\left(L_{p} \wedge V\right)\right)=I$.

The last assertion follows from the fact that under trivialization of $L_{p} /\langle v\rangle$, the subspace $I \subset V / L_{p}$ coincides with $\pi_{v}\left(D_{p}\right)$.

Definition 3.3.2. We define $\Sigma_{E} \subset G(2, V)$ as the closed locus of points $p \in G(2, V)$ such that $\operatorname{dim} W \cap\left(L_{p} \wedge V\right) \geq 3$.

Lemma 3.3.3. One has $\Sigma_{E} \subset G(2, V) \backslash E$.
Proof. Let $L=H^{0}\left(\left.\mathcal{V}\right|_{p}\right)^{*} \subset H^{0}(\mathcal{V})^{*}=V$ for some $p \in E$. We have to prove that $\operatorname{dim} W \cap$ $(L \wedge V) \leq 2$. We have, $L^{\perp}=H^{0}(\mathcal{V}(-p)) \subset H^{0}(\mathcal{V})$ and so,

$$
V / L \simeq H^{0}(\mathcal{V}(-p))^{*}
$$

The intersection $W \cap(L \wedge V)$ is the kernel of the composed map

$$
W \hookrightarrow \bigwedge^{2} V \rightarrow \bigwedge^{2}(V / L)
$$

The dual map can be identified with the composition

$$
\bigwedge^{2} H^{0}(\mathcal{V}(-p)) \rightarrow \bigwedge^{2} H^{0}(\mathcal{V}) \rightarrow H^{0}(\operatorname{det} \mathcal{V})
$$

which also factors as the composition

$$
\bigwedge^{2} H^{0}(\mathcal{V}(-p)) \rightarrow H^{0}\left(\bigwedge^{2}(\mathcal{V}(-p))\right)=H^{0}((\operatorname{det} \mathcal{V})(-2 p)) \subset H^{0}(\operatorname{det} \mathcal{V})
$$

We need to check that this map has corank 2, or equivalently the first arrow is an isomorphism.

Set $\mathcal{V}^{\prime}=\mathcal{V}(-p)$. This is a stable bundle of rank 2 and degree 3 . We need to check that the map

$$
\bigwedge^{2} H^{0}\left(\mathcal{V}^{\prime}\right) \rightarrow H^{0}\left(\operatorname{det} \mathcal{V}^{\prime}\right)
$$

is surjective. For any point $p \in E$, we have an exact sequence

$$
0 \rightarrow H^{0}(\mathcal{O}(p)) \rightarrow H^{0}\left(\mathcal{V}^{\prime}\right) \rightarrow H^{0}\left(\left(\operatorname{det} \mathcal{V}^{\prime}\right)(-p)\right) \rightarrow 0
$$

and it is easy to see that the restriction of the above map to $H^{0}(\mathcal{O}(p)) \wedge H^{0}\left(\mathcal{V}^{\prime}\right)$ surjects onto the subspace $H^{0}\left(\left(\operatorname{det} \mathcal{V}^{\prime}\right)(-p)\right) \subset H^{0}\left(\operatorname{det} \mathcal{V}^{\prime}\right)$. Varying the point p, we get the needed surjectivity.

Thus, by Lemma 3.3.1(i), Σ_{E} is exactly the set of points $p \in G(2, V) \backslash E$ where $\operatorname{dim} D_{p} \geq$ 3. We have the following geometric description of Σ_{E}. Recall that we have a collection of 3-dimensional subspaces $W_{q} \subset V$, associated with points of $\widetilde{E}=\operatorname{Pic}^{2}(E)$ (see (3.2)).
Proposition 3.3.4. For $p \in G(2, V)$, we have $p \in \Sigma_{E}$ if and only if the corresponding line L_{p} is contained in some plane $\mathbb{P} W_{q}$, where $q \in \widetilde{E}$. In other words, $\Sigma_{E}=\cup_{q \in \widetilde{E}} G\left(2, W_{q}\right)$.
Proof. Assume first that $p \in \Sigma_{E}$. As we have seen above, this means that $p \in G(2, V) \backslash E$ and $\operatorname{dim} D_{p} \geq 3$. By Lemma 3.3.1(ii), this implies that the rank of the Poisson bracket Π_{W} on points of L_{p} is ≤ 2. Hence, by Lemma 3.2.1(ii), L_{p} is contained in the quintic \mathcal{D}_{E}. By Corollary 3.2.5, this implies that L_{p} is contained in some plane $\mathbb{P} W_{q}$.

Conversely, assume that we have a 2-dimensional subspace $L \subset H^{0}(M)^{*} \subset H^{0}(\mathcal{V})^{*}=V$, where $\mathcal{V} \rightarrow M$ is a surjection to a degree 3 line bundle M. Then $L=\langle s\rangle^{\perp} \subset H^{0}(M)^{*}$ for some 1-dimensional subspace $\langle s\rangle \subset H^{0}(M)$. Set $P=L^{\perp} \subset H^{0}(\mathcal{V})$. Then P is the preimage of $\langle s\rangle \subset H^{0}(M)$ under the projection $H^{0}(\mathcal{V}) \rightarrow H^{0}(M)$.

By Lemma 3.3.1, the space D_{p} (where $L=L_{p}$ for $p \in G(2, V)$) is isomorphic to the kernel of the composed map

$$
W \rightarrow \bigwedge^{2} V \rightarrow \bigwedge^{2}(V / L)
$$

Hence, $\operatorname{dim}\left(D_{p}\right)$ is equal to the corank of the dual map

$$
\begin{equation*}
\bigwedge^{2}(P) \rightarrow \bigwedge^{2} H^{0}(\mathcal{V}) \rightarrow H^{0}\left(\bigwedge^{2} \mathcal{V}\right) \tag{3.3}
\end{equation*}
$$

Let B denote the divisor of zeroes of s. We claim that the image of (3.3) is contained in the subspace $H^{0}\left(\bigwedge^{2} \mathcal{V}(-B)\right) \subset H^{0}\left(\bigwedge^{2} \mathcal{V}\right)$. Indeed, we have an exact sequence

$$
0 \rightarrow N \rightarrow \mathcal{V} \rightarrow M \rightarrow 0
$$

where N is a line bundle of degree 2 . It is easy to see that the composed map

$$
H^{0}(N) \wedge H^{0}(\mathcal{V}) \hookrightarrow \bigwedge^{2} H^{0}(\mathcal{V}) \rightarrow H^{0}\left(\bigwedge^{2} \mathcal{V}\right)
$$

coincides with the natural multiplication map

$$
H^{0}(N) \wedge H^{0}(\mathcal{V}) / \bigwedge^{2} H^{0}(N) \simeq H^{0}(N) \otimes H^{0}(M) \rightarrow H^{0}(N \otimes M) \simeq H^{0}\left(\bigwedge^{2} \mathcal{V}\right)
$$

The exact sequence

$$
0 \rightarrow H^{0}(N) \rightarrow P \rightarrow\langle s\rangle \rightarrow 0
$$

shows that $\bigwedge^{2} P \subset H^{0}(N) \wedge H^{0}(\mathcal{V})$ and its image in $H^{0}(N) \otimes H^{0}(M)$ is contained in $H^{0}(N) \otimes\langle s\rangle$. This proves our claim about the image of the map (3.3). It follows that the corank of this map is ≥ 3, so $p \in \Sigma_{E}$.

Lemma 3.3.5. Let $L_{p} \subset V$ denote the 2-dimensional subspace corresponding to $p \in$ $G(2, V) \backslash E$.
(i) For any 3-dimensional subspace $M \subset V$ containing L_{p}, one has $W \cap \bigwedge^{2} M=\bigwedge^{2} L_{p}$.
(ii) Assume that for generic $v \in L_{p}$, the rank of $\Pi_{E, v}$ is 4 . Then the map $D_{p} \otimes \mathcal{O} \rightarrow$ $V / L_{p} \otimes \mathcal{O}(1)$ over the projective line $\mathbb{P} L_{p}$ is an embedding of a rank 2 subbundle.

Proof. (i) Since all elements of $\bigwedge^{2} M$ are decomposable, the intersection $Q:=W \cap \bigwedge^{2} M$ is a linear subspace consisting of decomposable elements. But all decomposable elements of W are of the form $\bigwedge^{2} L_{q}$ for some point $q \in E$. Hence, we would get an embedding $\mathbb{P}(Q) \rightarrow E$, which implies that Q is 1-dimensional, so $Q=\bigwedge^{2} L_{p}$.
(ii) From part (i) and from Lemma 3.3.1 we get that for any 3-dimensional subspace $M \subset V$ containing L_{p}, one has $D_{p} \cap L_{p} \otimes M / L_{p}=0$. Let us set $P=V / L_{p}$, and let us consider the exact sequence

$$
0 \rightarrow D_{p} \otimes \mathcal{O}(-1) \rightarrow P \otimes \mathcal{O} \rightarrow Q \rightarrow 0
$$

We want to prove that the rank 1 sheaf Q on \mathbb{P}^{1} has no torsion. Since $\operatorname{deg}(Q)=2$ and Q is generated by global sections, we only have to exclude the possibilities $Q \simeq \mathcal{O}_{p} \oplus \mathcal{O}(1)$ and $Q \simeq T \oplus \mathcal{O}$, where T is a torsion sheaf of length 2 .

Assume first that $Q \simeq \mathcal{O}_{p} \oplus \mathcal{O}(1)$. Consider the composed surjection $f: P \otimes \mathcal{O} \rightarrow Q \rightarrow$ $\mathcal{O}(1)$. It is induced by a surjection $P \rightarrow H^{0}(\mathcal{O}(1))$, which has 1-dimensional kernel $\langle v\rangle$. It follows that the inclusion of $D_{p} \otimes \mathcal{O}(-1)$ into $P \otimes \mathcal{O}$ factors as

$$
D_{p} \otimes \mathcal{O}(-1) \rightarrow\langle v\rangle \otimes \mathcal{O} \oplus \mathcal{O}(-1) \rightarrow P \otimes \mathcal{O}
$$

It follows that D_{p} has a nontrivial intersection with $H^{0}(\mathcal{O}(1)) \otimes\langle v\rangle=L_{p} \otimes M / L_{p} \subset$ $L_{p} \otimes V / L_{p}$, for some 3-dimensional $M \subset V$, containing L_{p}. This is a contradiction, as we proved that there could be no such M.

In the case $Q \simeq T \oplus \mathcal{O}$, we get that $D_{p} \otimes \mathcal{O}(-1)$ is contained in the kernel of a surjection $P \otimes \mathcal{O} \rightarrow \mathcal{O}$, i.e., $D_{p} \otimes \mathcal{O}(-1)$ is contained in $\mathcal{O}^{2} \subset P \otimes \mathcal{O}$. But any embedding $\mathcal{O}(-1)^{2} \rightarrow \mathcal{O}^{2}$
factors through some $\mathcal{O}(-1) \oplus \mathcal{O} \rightarrow \mathcal{O}^{2}$ (occurring as kernel of the surjection $\mathcal{O}^{2} \rightarrow \mathcal{O}_{p}$, for some point p in the support of the quotient). Hence, we can finish again as in the previous case.

Remark 3.3.6. The rational map f from $G(2, V)$ to \mathbb{P}^{4} has the following interpretation, which can be proved using projective duality. Start with a generic line $L \subset \mathbb{P}(V)$. Then the intersection $L \cap \mathcal{D}_{E}$ with the degeneration quintic of Π_{E} consists of 5 points. Taking the images of these points under the projection $\mathcal{D}_{E} \backslash S_{E} \rightarrow \widetilde{E}$ (see Cor. 3.2.5) we get a divisor D_{L} of degree 5 on \widetilde{E}. All these divisors will belong to a certain linear system \mathbb{P}^{4} of degree 5 , and the map $L \mapsto D_{L}$ is exactly our map f.

3.4. Calculation of the Schouten bracket and proof of Theorem B.

Lemma 3.4.1. (i) Let $E \subset G(2, V)$ be the elliptic curve defined by $W \subset \bigwedge^{2} V$. Then for each point $p \in E$, the bivector Π_{E} vanishes on the projective line $\mathbb{P} L_{p} \subset \mathbb{P} V$, where $L_{p} \subset V$ is the 2-dimensional subspace corresponding to p. For a generic point v of L_{p} the Lie algebra $\mathfrak{g}=T_{v}^{*} \mathbb{P} V$ has a basis $\left(h_{1}, h_{2}, e_{1}, e_{2}\right)$ such that

$$
\begin{gathered}
{\left[h_{1}, h_{2}\right]=\left[e_{1}, e_{2}\right]=0,} \\
{\left[h_{i}, e_{i}\right]=2 e_{i}, \quad\left[h_{j}, e_{i}\right]=-e_{i} \quad \text { for } i \neq j .}
\end{gathered}
$$

Equivalently, the linearization of Π_{E} takes form

$$
\Pi_{E}^{l i n}=2 e_{1} \partial_{h_{1}} \wedge \partial_{e_{1}}-e_{1} \partial_{h_{2}} \wedge \partial_{e_{1}}+2 e_{2} \partial_{h_{2}} \wedge \partial_{e_{2}}-e_{2} \partial_{h_{1}} \wedge \partial_{e_{2}}
$$

Furthermore, the conormal subspace $N_{\mathbb{P} L_{p}, v}^{\vee} \subset \mathfrak{g}^{*}$ is spanned by $e_{1}, e_{2}, h_{1}+h_{2}$ (dually the tangent space to $T_{\mathbb{P} L_{p}}$ is spanned by $\partial_{h_{1}}-\partial_{h_{2}}$).
(ii) We have an identification

$$
H^{0}\left(\mathbb{P} L_{p}, N_{\mathbb{P} L_{p}}\right) \simeq H^{0}\left(\mathbb{P} L_{p}, V / L_{p} \otimes \mathcal{O}(1)\right) \simeq L_{p}^{*} \otimes V / L_{p} \simeq T_{p} G(2, V)
$$

Under this identification, the line $T_{p} E \subset T_{p} G(2, V)$ has the property that the corresponding global section of $N_{\mathbb{P} L_{p}}$ evaluated at generic $v \in \mathbb{P} L_{p}$ spans the line

$$
\left\langle\partial_{h_{1}}, \partial_{h_{2}}\right\rangle /\left\langle\partial_{h_{1}}-\partial_{h_{2}}\right\rangle \subset N_{\mathbb{P} L_{p}, v} \simeq V / L_{p}
$$

Equivalently, the tangent space at v to the surface $S_{E} \subset \mathbb{P V}$ is $\left\langle\partial_{h_{1}}, \partial_{h_{2}}\right\rangle \subset T_{v} \mathbb{P} V$.
(iii) Let Π^{\prime} be a Poisson bracket compatible with Π_{E}. Then for $p \in E$ and a generic $v \in L_{p}$, one has

$$
\begin{equation*}
\Pi_{v}^{\prime} \in\left\langle\left(2 \partial_{h_{1}}-\partial_{h_{2}}\right) \wedge \partial_{e_{1}},\left(2 \partial_{h_{2}}-\partial_{h_{1}}\right) \wedge \partial_{e_{2}}, \partial_{h_{1}} \wedge \partial_{h_{2}}\right\rangle \tag{3.4}
\end{equation*}
$$

Proof. (i) Extensions $\widetilde{\mathcal{V}}$ of \mathcal{V} by \mathcal{O}, corresponding to the line $\mathbb{P} L_{p}$, are exactly the extensions that split under $\mathcal{O} \rightarrow \mathcal{O}(p)$. We claim that for a generic point of $\mathbb{P} L_{p}$ we have $\widetilde{\mathcal{V}} \simeq$ $\mathcal{O}(p) \oplus L_{1} \oplus L_{2}$, where L_{1} and L_{2} are nonisomorphic line bundles of degree 2. Indeed, by Lemma 3.2.1 (ii), the only other possibility is $\widetilde{\mathcal{V}} \simeq \mathcal{O}(p) \oplus \mathcal{V}^{\prime}$, where \mathcal{V}^{\prime} is a nontrivial extension of M by M, where $M^{2} \simeq \operatorname{det}(\mathcal{V})$. Since the corresponding extension splits over the unique embedding $M \rightarrow \mathcal{V}$, this gives one point on the line $\mathbb{P} L_{p}$ for each of the four possible line bundles M.

We can compute the Lie algebra \mathfrak{g} for the point corresponding to $\widetilde{\mathcal{V}} \simeq \mathcal{O}(p) \oplus L_{1} \oplus L_{2}$ using the isomorphism of Theorem 2.3.1,

$$
\begin{equation*}
\operatorname{End}(\widetilde{\mathcal{V}}) /\langle\mathrm{id}\rangle \xrightarrow{\sim} \mathfrak{g} \subset H^{0}(\mathcal{V}) \tag{3.5}
\end{equation*}
$$

We consider the following basis in $\operatorname{End}(\widetilde{\mathcal{V}}) /\langle\mathrm{id}\rangle$:

$$
h_{i}=\operatorname{id}_{L_{i}}-\operatorname{id}_{\mathcal{O}(p)}, \quad e_{i} \in \operatorname{Hom}\left(\mathcal{O}(p), L_{i}\right), i=1,2
$$

Then it is easy to check the claimed commutator relations between these elements.
The conormal subspace to $\mathbb{P} L_{p}$ is identified with $L_{p}^{\perp}=H^{0}(\mathcal{V}(-p))$. The image of the subspace $\operatorname{Hom}\left(\mathcal{O}(p), L_{1} \oplus L_{2}\right)$ under the map (3.5) will consist of compositions

$$
\mathcal{O} \rightarrow \mathcal{O}(p) \rightarrow L_{1} \oplus L_{2} \rightarrow \mathcal{V}
$$

which vanish at p, so they are contained in $H^{0}(\mathcal{V}(-p))$. We have

$$
h_{1}+h_{2}=\operatorname{id}_{L_{1}} \oplus \operatorname{id}_{L_{2}}-2 \operatorname{id}_{\mathcal{O}(p)} \equiv-3 \operatorname{id}_{\mathcal{O}(p)} \bmod \left\langle\mathrm{id}_{\tilde{\mathcal{V}}}\right\rangle
$$

and the element $\operatorname{id}_{\mathcal{O}(p)}$ is mapped under (3.5) to the composition

$$
\mathcal{O} \rightarrow \mathcal{O}(p) \rightarrow \mathcal{V}
$$

which also vanishes at p. This proves our claim about the conormal subspace.
(ii) To identify the direction corresponding to $T_{p} E$, we first recall that the map $E \rightarrow G(2, V)$ is associated with the subbundle $\mathcal{V}^{\vee} \hookrightarrow V \otimes \mathcal{O}$ over E. We have an exact sequence

$$
\left.\left.0 \rightarrow T_{p}^{*} E \otimes \mathcal{V}\right|_{p} \rightarrow H^{0}\left(\left.\mathcal{V}\right|_{2 p}\right) \rightarrow \mathcal{V}\right|_{p} \rightarrow 0
$$

The dual of the natural map $V^{*} \rightarrow H^{0}\left(\left.\mathcal{V}\right|_{2 p}\right)$ fits into a morphism of exact sequences

and the map β corresponds to a map $T_{p} E \rightarrow \operatorname{Hom}\left(\left.\mathcal{V}^{\vee}\right|_{p}, V / L_{p}\right)=\operatorname{Hom}\left(L_{p}, V / L_{p}\right)$ which is the tangent map to $E \rightarrow G(2, V)$. Note that the dual to β is the natural linear map

$$
\begin{equation*}
\left(V / L_{p}\right)^{*}=\left.\operatorname{ker}\left(\left.H^{0}(\mathcal{V}) \rightarrow \mathcal{V}\right|_{p}\right) \rightarrow \operatorname{ker}\left(\left.H^{0}\left(\left.\mathcal{V}\right|_{2 p}\right) \rightarrow \mathcal{V}\right|_{p}\right) \simeq T_{p}^{*} E \otimes \mathcal{V}\right|_{p} \tag{3.6}
\end{equation*}
$$

Now, given a functional $v:\left.\mathcal{V}\right|_{p} \rightarrow k$, the image of $T_{p} E$ under $\pi_{v}: L_{p}^{*} \otimes V / L_{p} \rightarrow$ V / L_{p} corresponds to the composition of (3.6) with v. In other words, it is given by the composition

$$
L_{p}^{\perp}=\left.\left.H^{0}(\mathcal{V}(-p)) \rightarrow \mathcal{V}(-p)\right|_{v} \simeq \mathcal{V}\right|_{p} \xrightarrow{v} k
$$

(here we use a trivialization of $T_{p} E$).
Let $\widetilde{\mathcal{V}} \rightarrow \mathcal{V}$ be the extension corresponding to v. As we have seen in (i), for a generic v, we have $\widetilde{V} \simeq \mathcal{O}(p) \oplus L_{1} \oplus L_{2}$, where L_{i} are as above. As we have seen in (i), under the isomorphism (3.5), $L_{p}^{\perp}=H^{0}(\mathcal{V}(-p))$ is the image of the subspace $\left\langle h_{1}+h_{2}, e_{1}, e_{2}\right\rangle$.

Hence, it remains to check that under the composition

$$
\left.\left.\left\langle e_{1}, e_{1}\right\rangle \rightarrow H^{0}(\mathcal{V}(-p)) \rightarrow \mathcal{V}(-p)\right|_{p} \simeq \mathcal{V}\right|_{p} \xrightarrow{v} k
$$

is zero (where the first arrow is induced by (3.5). Let us consider the element e_{1} (the case of e_{2} is similar). It maps to the element of $H^{0}(\mathcal{V}(-p))$ given by the embedding

$$
\mathcal{O} \rightarrow L_{1}(-p) \rightarrow \mathcal{V}(-p)
$$

where we use the composed map $L_{1} \rightarrow \widetilde{\mathcal{V}} \rightarrow \mathcal{V}$. Thus, we need to check that the composition $L_{1} \rightarrow \mathcal{V} \xrightarrow{v} k$ is zero. But this follows from the fact that the extension $\widetilde{\mathcal{V}}$ is the pull-back of the standard extension $\mathcal{O}(p) \rightarrow \mathcal{O}_{p}$ via v, so that we have a commutative diagram

(iii) This is obtained by a straightforward computation using the vanishing of $\left[\Pi_{E}, \Pi_{E^{\prime}}\right]$ and the formula for $\Pi_{E}^{l i n}$ from part (i).

Lemma 3.4.2. Let $E, E^{\prime} \subset G(2, V)$ be a pair of elliptic curves obtained as linear sections, such that $\left[\Pi_{E}, \Pi_{E^{\prime}}\right]=0$. Then E is not contained in $\Sigma_{E^{\prime}} \subset G(2, V)$.

Proof. Assume $E \subset \Sigma_{E^{\prime}}$. Then, by the description of $\Sigma_{E^{\prime}}$ in Proposition 3.3.4, for every $p \in E$ there exists a line bundle L_{2} of degree 2 on E^{\prime} such that the image of $H^{0}\left(\left.\mathcal{V}\right|_{p}\right)^{*} \rightarrow$ $H^{0}(E, \mathcal{V})^{*}=V$ is contained in $H^{0}\left(E^{\prime}, L_{2}\right)^{\perp} \subset H^{0}\left(E^{\prime}, \mathcal{V}^{\prime}\right)^{*}=V$. In other words, each line $\mathbb{P} L_{p} \subset \mathbb{P} V$, for $p \in E$, is contained in the projective plane $\mathbb{P} H^{0}\left(E^{\prime}, L_{2}\right)^{\perp} \subset \mathbb{P} V$. This plane intersects the zero locus of $\Pi_{E^{\prime}}$ in a smooth cubic (see Lemma 3.2.1(iii)), hence, for a generic point $v \in L_{p}$ the rank of $\left.\Pi_{E^{\prime}}\right|_{v}$ is 2 .

Hence, $\left.\Pi_{E^{\prime}}\right|_{v}=w_{1} \wedge w_{2}$, where $\left\langle w_{1}, w_{2}\right\rangle$ is the tangent plane to the leaf of $\Pi_{E^{\prime}}$ (i.e., to the projective plane $\left.\mathbb{P} H^{0}\left(E^{\prime}, L_{2}\right)^{\perp}\right)$. Furthermore, the plane $\left\langle w_{1}, w_{2}\right\rangle$ contains the tangent line to $\mathbb{P} L_{p}$ at v. In the notation of Lemma 3.4.1(i), the latter tangent line is spanned by $\partial_{h_{1}}-\partial_{h_{2}}$. So, $\left.\Pi_{E^{\prime}}\right|_{v}=\left(\partial_{h_{1}}-\partial_{h_{2}}\right) \wedge w$ for some tangent vector w. But we also know by Lemma 3.4.1 (iii) that $\left.\Pi_{E^{\prime}}\right|_{v}$ is a linear combination of $\left(2 \partial_{h_{1}}-\partial_{h_{2}}\right) \wedge \partial_{e_{1}},\left(2 \partial_{h_{2}}-\partial_{h_{1}}\right) \wedge \partial_{e_{2}}$ and $\partial_{h_{1}} \wedge \partial_{h_{2}}$. This is possible only when $w \in\left\langle\partial_{h_{1}}, \partial_{h_{2}}\right\rangle$, which is the tangent plane to the surface S_{E} (see Lemma 3.4.1(ii)).

This implies that S_{E} is tangent to the corresponding projective plane $\mathbb{P} H^{0}\left(E^{\prime}, L_{2}\right)^{\perp} \subset$ $\mathcal{D}_{E^{\prime}}$. Assume first that $S_{E} \not \subset S_{E^{\prime}}$. Then we get that the regular morphism

$$
S_{E} \backslash S_{E^{\prime}} \rightarrow \mathcal{D}_{E^{\prime}} \backslash S_{E^{\prime}} \rightarrow \operatorname{Pic}^{2}\left(E^{\prime}\right)
$$

(see Corollary 3.2.5) has zero tangent map at every point. Hence, S_{E} is contained in a projective plane, which is a contradiction (since the map $\mathbb{P}\left(\mathcal{V}^{\vee}\right) \rightarrow \mathbb{P} H^{0}(\mathcal{V})^{*}=\mathbb{P} V$ induces an isomorphism on sections of $\mathcal{O}(1))$.

Finally, if $S_{E} \subset S_{E^{\prime}}$ then $E=E^{\prime} \subset G(2, V)$ and, we get a contradiction by Lemma 3.3.3.

Proof of Theorem B. (i) We can assume that $E \neq E^{\prime}$. We will check that for a generic point $p \in E$, one has

$$
\begin{equation*}
T_{p} E \subset D_{E^{\prime}, p} \subset T_{p} G(2, V) \tag{3.7}
\end{equation*}
$$

By Lemma 3.4.2, for a generic $p \in E$, we have $p \notin \Sigma_{E}$, hence, the line $\mathbb{P} L_{p}$ is not contained in the degeneracy locus \mathcal{D}_{E} of $\Pi_{E^{\prime}}$. Let us pick a generic point v of L_{p}, so that the rank of $\Pi_{E^{\prime}, v}$ is 4 . We want to study the normal projection

$$
\Pi_{E^{\prime}, v}^{n o r m} \in \wedge^{2}\left(T_{v} \mathbb{P} V / T_{v} \mathbb{P} L_{p}\right) \simeq \wedge^{2}\left(V / L_{p}\right)
$$

(see Lemma 3.3.1).
Recall that in the notation of Lemma 3.4.1, the tangent space to $\mathbb{P} L_{p}$ at v is spanned by $\partial_{h_{1}}-\partial_{h_{2}}$. Hence, the inclusion (3.4) implies that $\Pi_{E^{\prime}, v}^{n o r m}$ is proportional to a bivector of the form $\partial_{h_{1}} \wedge \xi$. By Lemma 3.4.1(ii), we can reformulate this as

$$
\Pi_{E^{\prime}, v}^{\text {norm }} \in \pi_{v}\left(T_{p} E\right) \wedge V / L_{p} \subset \wedge^{2}\left(V / L_{p}\right)
$$

By Lemma 3.3.1(ii), the subspace $\pi_{v}\left(D_{E^{\prime}, p}\right) \subset V / L_{p}$ consists of x such that $x \wedge \Pi_{E^{\prime}, v}^{n o r m}=0$. Thus, we deduce the inclusion

$$
\pi_{v}\left(T_{p} E\right) \subset \pi_{v}\left(D_{E^{\prime}, p}\right) \subset V / L_{p}
$$

for generic $v \in L_{p}$.
In other words, the section s generating

$$
T_{p} E \subset T_{L_{p}} G(2, V) \simeq \operatorname{Hom}\left(L_{p}, V / L_{p}\right) \simeq H^{0}\left(\mathbb{P} L_{p}, V / L_{p} \otimes \mathcal{O}(1)\right)
$$

has the property that for generic point $v \in \mathbb{P} L_{p}$ the evaluation $s(v)$ belongs to the image of the evaluation at v of the embedding $D_{E^{\prime}, p} \otimes \mathcal{O} \rightarrow V / L_{p} \otimes \mathcal{O}(1)$. Since by Lemma 3.3.5 the latter is an embedding of a subbundle, this implies that in fact $s \in D_{E^{\prime}, p}$ as claimed.

This proves the inclusion (3.7) for a generic $p \in E$. But this implies that the composed map

$$
E \backslash E^{\prime} \rightarrow G(2, V) \backslash E^{\prime} \rightarrow \mathbb{P}^{4}
$$

has zero derivative everywhere, so it is constant. Hence, E is contained in a linear section of $\mathbb{P} U \cap G(2, V)$, for some 6 -dimensional subspace $U \subset \bigwedge^{2} V$ containing W^{\prime}. Hence, $\operatorname{dim}(W+$ $\left.W^{\prime}\right) \leq 6$.

Conversely, assume W and W^{\prime} are such that $U=W+W^{\prime}$ is 6 -dimensional. Then we claim that $\left[\Pi_{W}, \Pi_{W^{\prime}}\right]=0$. Indeed, since the space of such pairs $\left(W, W^{\prime}\right)$ is irreducible, it is enough to consider the case when the surface $S=\mathbb{P} U \cap G(2, V)$ is smooth. Then E_{W}
and $E_{W^{\prime}}$ are anticanonical divisors on S, and we can apply [3, Thm. 4.4] to the bundle $\mathcal{V}_{S}:=\left.\mathcal{U}^{\vee}\right|_{S}$ on S. The fact that $\left(\mathcal{O}_{S}, \mathcal{V}_{S}\right)$ is an exceptional pair is easily checked using Koszul resolutions, as in Sec. 2.2 .
(ii) It is well known that if a collection of k-dimensional subspaces in a vector space has the property that any two subspaces intersect in a $(k-1)$-dimensional space, then either all of them are contained in a fixed $(k+1)$-dimensional subspace, or they contain a fixed ($k-1$)-dimensional subspace. The statement immediately follows from (i) using this fact for $k=5$ and the collection $\left(W_{i}\right)$.

Proof of Corollary C. By Theorem B(ii), the brackets $\left(\Pi_{W_{i}}\right)$ are pairwise compatible when either there exists a 6 -dimensional subspace $U \subset \bigwedge^{2} V$, containing all W_{i}, or there is a 4dimensional subspace $K \subset \bigwedge^{2} V$, contained in all W_{i}. In the former case the corresponding tensors $\bigwedge^{2} W_{i}$ are all contained in the 6 -dimensional subspace

$$
\bigwedge^{5} U \subset \bigwedge^{5}\left(\bigwedge^{2} V\right)
$$

In the latter case all the tensors $\bigwedge^{2} W_{i}$ are contained in the 6 -dimensional subspace

$$
\bigwedge^{4} K \otimes\left(\bigwedge^{2} V / K\right) \simeq\left(\bigwedge^{4} K\right) \wedge\left(\bigwedge^{2} V\right) \subset \bigwedge^{5}\left(\bigwedge^{2} V\right)
$$

Conversely, by [3, Thm. 4.4], if we take a smooth linear section $S=\mathbb{P} U \cap G(2, V)$, where $\operatorname{dim} U=6$, we claim that we will get a 6 -dimensional subspace of compatible Poisson brackets coming from anticanonical divisors of S. We just need to show that the corresponding linear map from $H^{0}\left(S, \omega_{S}^{-1}\right)$ to the space of Poisson bivectors on $\mathbb{P}(V)$ is injective. Suppose there exists an anticanonical divisor $E_{0} \subset E$ such that the corresponding Poisson bivector is zero. Pick a generic anticanonical divisor E. Then all elliptic curves in the pencil $E+t E_{0}$ map to the same Poisson bivector. But this is impossible since we can recover $E \subset G(2, V)$ from the corresponding Poisson bracket Π_{E} on $\mathbb{P}(V)$, as the set of all lines lying in the zero locus S_{E} (see Sec. 3.2).

References

[1] B. L. Feigin, A. V. Odesskii, Vector bundles on an elliptic curve and Sklyanin algebras, in Topics in quantum groups and finite-type invariants, 65-84, Amer. Math. Soc., Providence, RI, 1998.
[2] L. Gorodetsky, N. Markarian, On conormal Lie algebras of Feigin-Odesskii Poisson structures, preprint.
[3] Z. Hua, A. Polishchuk, Elliptic bihamiltonian structures from relative shifted Poisson structures, arXiv:2007.12351.
[4] M. M. Kapranov, Derived category of coherent sheaves on Grassmann manifolds, Izv. Akad. Nauk SSSR Ser. Mat. 48 (1984), no. 1, 192-202.
[5] B. Keller, Introduction to A-infinity algebras and modules, Homology Homotopy Appl. 3 (2001), 1-35.
[6] I. Macdonald, Symmetric Functions and Hall Polynomials, Oxford, 1995.
[7] N. Markarian, A. Polishchuk, Compatible Feigin-Odesskii Poisson brackets, arXiv:2207.07770, to appear in Manuscripta Math.
[8] V. Nordstrom, A. Polishchuk, Ten compatible Poisson brackets on \mathbb{P}^{5}, SIGMA 19(2023), Paper No. 059, 10 pp .
[9] A. Odesskii, T. Wolf, Compatible quadratic Poisson brackets related to a family of elliptic curves, J. Geom. Phys. 63 (2013), 107-117.
[10] A. Polishchuk, Poisson structures and birational morphisms associated with bundles on elliptic curves, IMRN 13 (1998), 683-703.
[11] V. Rubtsov, Quadro-cubic Cremona transformations and Feigin-Odesskii-Sklyanin algebras with 5 generators, in Recent Developments in Integrable Systems and Related Topics of Mathematical Physics: Kezenoi-Am, Russia, 2016, 75-106, Springer, 2018.

Max Planck Institute for Mathematics, Bonn, Germany
E-mail address: nikita.markarian@gmail.com
Department of Mathematics, University of Oregon, Eugene, OR 97403, USA; and National Research University Higher School of Economics, Moscow, Russia

E-mail address: apolish@uoregon.edu

[^0]: A.P. is supported in part by the NSF grant DMS-2001224, and within the framework of the HSE University Basic Research Program.

