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Abstract
We investigate the relationship between three natural invariants of complex hyperbolic disc orbibundles
over oriented and closed hyperbolic 2-orbifolds. These invariants are the Euler characteristic χ of the 2-
orbifold, the Euler number e of the disc orbibundle, and the Toledo invariant τ of a faithful representation
of the surface group into PU(2, 1) attached to the complex hyperbolic structure of the disc orbibundle.
Based on previous examples, we conjecture that −3|τ| = 2e + 2χ always holds. For complex hyperbolic
disc orbibundles over 2-orbifolds derived from quadrangles of bisectors via tessellation, we prove that
3τ = 2e + 2χ. Furthermore, we demonstrate that −3|τ| = 2e + 2χ holds when a section with no complex
tangent planes is present.

1 Introduction
Consider a complex hyperbolic disc bundle L→ Σ over an oriented, connected, closed surface with a genus
greater than one. When we say that L has a complex hyperbolic structure, we mean that L is a quotient of
the complex hyperbolic plane H2

C by a discrete group of holomorphic isometries, which is isomorphic to
PU(2, 1). Since the fibers are contractible, this discrete group is isomorphic to the fundamental group G of
the surface Σ, that is, there exists a discrete faithful representation ρ : G → PU(2, 1) such that L = H2

C/G.
Once we have a complex hyperbolic disc bundle, there are three discrete invariants at play: the Euler

characteristic χ of the surface, the Euler number e of the disc bundle, and the Toledo invariant τ of the
representation ρ. If we see Σ as a section of L, we can think of e as the Euler number of its normal bundle
and 3

2τ is the Euler number of the complex line bundle ∧2T L|Σ (see [GKL]).

Remark 1. We orient the disc bundle and the surface in a way that their orientation matches the orientation
of the total space, which is naturally oriented because it is a complex manifold. To be more specific, when
we embed Σ as a section, each point xxx on Σ has an orientation determined by vectors u1 and u2 in the
tangent space TxxxΣ. Similarly, the orientation of the disc bundle L at xxx is determined by vectors v1 and v2
in the tangent space TxxxLxxx. The compatibility of these orientations means that the vectors u1, u2, v1, and v2
agree with the orientation of the complex manifold L = H2

C/G. Here, if e1, e2 is a C-linear basis for TxxxL,
then e1, ie1, e2, ie2 provides its natural orientation.

The mentioned discrete invariants are involved in two key conjectures. The first is the complex variant
of the Gromov-Lawson-Thurston conjecture, stating that an oriented disc bundle has a complex hyperbolic
structure if, and only if, |e| ≤ |χ|. The second conjecture states that a complex hyperbolic disc bundle admits
a holomorphic section if, and only if, 3τ = 2e + 2χ.

Remark 2. The GLT-conjecture was initially stated for hyperbolic structure instead of complex hyperbolic
(see [GLT]). The complex variant was then proposed in [AGG].

The presence of a holomorphic section means that we have Σ embedded as Riemann surface in the
Kähler manifold L. In this situation, it is easy to see how 3τ = 2e + 2χ appears: consider the isomorphism
of complex vector bundles TΣ ⊕ NΣ ≃ T L|Σ, where NΣ is the normal bundle of Σ. Since TΣ and NΣ are
complex line bundles, we obtain the following identity

c1(T L|Σ) = c1(TΣ) + c1(NΣ),

where c1 stands for the first Chern number. Thus,

c1(T L|Σ) = c1(∧2T L|Σ) =
3
2
τ

*Supported by Max-Planck-Gesellschaft (MPG).
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and, as consequence, 3τ = 2e + 2χ, because for complex line bundles the first Chern number equals the
Euler number.

Remark 3. Since τ can be computed from the symplectic form ω of H2
C as

τ =
4

2π

∫
Σ

ω,

where ω is the imaginary part of the Hermitian metric of H2
C (see Section 2), we conclude that e ≤ −χ,

because τ is negative here. For details about the Toledo invariant, see [Tol], [Bot].

Similarly, the presence of an anti-holomorphic section also results in −3τ = 2e + 2χ. Indeed, we can
take the representation ρ as previously described and conjugate it by an anti-holomorphic isometry, thus
providing a new disc bundle with a holomorphic section. The Euler number and the Euler characteristic are
unchanged under this procedure, but the Toledo invariant changes sign.

Regardless of the situation, when holomorphic or anti-holomorphic sections exist, the identity −3|τ| =
2e + 2χ always holds.

The curious thing is that, to the best of the author’s knowledge, all examples of complex hyperbolic disc
bundles satisfy −3|τ| = 2e + 2χ (see Section 1.2).

Objectives of this paper

We aim to shed some light on the identity

−3|τ| = 2e + 2χ (r)

which frequently emerges in complex hyperbolic disc bundles.
More precisely:

1. We show that the identity 3τ = 2e + 2χ holds for a widely used construction based on quad-
rangles of bisectors. This result is significant because it enables us to calculate the value of
e using the Toledo invariant, which is generally straightforward to compute, whereas evalu-
ating e directly can be challenging. The fact that 3τ = 2e + 2χ is true for constructions based
on quadrangles of bisectors was first conjectured by Sasha Anan’in, Carlos H. Grossi, Niko-
lay Gusevskii on [AGG] based on thousands of examples and it is nicknamed Kalashnikov
conjecturea.

2. We prove that if a complex hyperbolic disc bundle admits a section with no complex tangent
planes, then the identity (r) holds.

aThe mention of Kalashnikov here is meant as a humorous reference. There is an anecdote that suggests every Soviet
factory, regardless of its intended production, would inevitably produce Kalashnikov rifles unintentionally. Similarly, in our
search for examples, we consistently encounter the result 3τ = 2e + 2χ.

1.1. Construction of examples. We avoid working directly with surfaces when building examples because
their fundamental groups are too complicated. Instead, we employ oriented, connected, closed hyperbolic
2-orbifolds to build complex hyperbolic disc orbibundles, then use that every closed hyperbolic 2-orbifold
is finitely covered by a closed hyperbolic surface1, and finally pullback the disc orbibundle to a disc bundle
over a surface, which will inherit the complex hyperbolic structure. Additionally, the relative values e/χ
and τ/χ are unchanged under pullback, thus if 3τ = 2e + 2χ, for instance, holds on the orbifold level, then
the same happens for the derived surfaces (see [Bot] for a detailed exposition about orbibundles and the
described invariants).

Let G be a cocompact Fuchsian group, i.e., the quotient space Σ := H1
C/G is an oriented, closed, and

connected hyperbolic 2-orbifold. Consider as well a faithful discrete representation ρ : G → PU(2, 1) such
that the quotient L = H2

C/G is a disc orbibundle over Σ.
More precisely, we have a smooth action of G on the 4-ball H1

C × D
2 of the form

g(x, f ) = (gx, a(g, x) f ),

1Selberg’s lemma guarantees that every cocompact Fuchsian group admits a finite index torsion-free normal subgroup.
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where a(g, x) is a automorphism of the disc D2 and depends smoothly of x, and a G-equivariant diffeomor-
phism H1

C × D
2 → H2

C. With these ingredients, we have the disc orbibundle

H2
C/G ≃ (H1

C × D
2)/G → H1

C/G,

where this last map is simply [x, f ] 7→ [x]. See [BGr, Euler number for orbigoodles] for more details.
To construct such complex hyperbolic disc orbibundles, one usually builds a fundamental domain Q in

the complex hyperbolic plane for the action of the fundamental group G of Σ and then fibers Q by discs in
such a way that this fibration can be extended to the whole complex hyperbolic space via tessellation.

1.2. Known examples. We provide a list of all complex hyperbolic disc bundles to the author’s knowledge.
All of them satisfy the equation (r).

The first examples ever constructed were those in [GKL]. The authors produced one complex hyper-
bolic disc bundle for each possible even Toledo number τ and we believe they satisfy −3|τ| = 2e + 2χ by
construction. This identity is not the one found in their paper. It is a small correction we propose in their
computation of the Euler number (see Remark 4 for details).

For the remaining examples mentioned in this list, 3τ = 2e + 2χ and τ ≤ 0 were observed empirically.
The turnover group is defined as

G(n1, n2, n3) = ⟨g1, g2, g3 : gn1
1 = gn2

2 = gn3
3 = g3g2g1 = 1⟩,

where n1, n2, n3 are positive integers satisfying 1
n1
+ 1

n2
+ 1

n3
< 1. It is the fundamental group of the hyperbolic

2-orbifold S2(n1, n2, n3), a sphere with 3 conic points of angles 2π
n1
, 2π

n2
, 2π

n3
. In essence, the turnover is the

simplest cocompact Fuchsian group.
The turnover group was used in [AGG] with n1 = n2 and n3 = 2 to obtain thousands of examples of disc

orbibundles, all of then satisfying 0 < e/χ < 1/2.
Each complex hyperbolic disc orbibundle up to isomorphism corresponds to a point of the PU(2, 1)-

character variety of G(n1, n2, n3), the space of all faithful representations G(n1, n2, n3) → PU(2, 1) modulo
PU(2, 1)-conjugation. The examples in [AGG] are rigid, i.e., they form isolated points in the corresponding
character variety, which means it is not possible to deform their complex hyperbolic structure. Misha
Kapovich used this rigidity to prove that these examples actually admit holomorphic sections (see [Kap,
Example 8.10]).

Non-rigid examples with similar construction are found in [Gaye], where 0 < e/χ < 1/2 as well.
The turnover group with parameters n1, n2, n3 with no restriction is used to construct new examples

in [BGr]. Unlike [AGG], here we find hundreds of non-rigid examples. Additionally, the space of the
complex hyperbolic structures of each disc orbibundle is two-dimensional. The examples here have relative
Euler number e/χ spread on the interval [−1, 1/2), including cotangent orbibundles (e = −χ) and trivial
orbibundles (e = 0). We also found rigid examples with negative relative Euler numbers and e = 0. It is
unknown if these non-rigid examples have holomorphic sections.

The example in [AGu] was the first example of a trivial bundle (e = 0). It was constructed using
representation of the hyperelliptic group

H5 = ⟨r1, r2, r3, r4, r5 : r5r4r3r2r1 = r2
i = 1⟩,

the fundamental domain of S2(2, 2, 2, 2, 2), into PU(2, 1). Currently, Felipe de Aguilar Franco and I are
building non-rigid trivial bundles using the same techniques.

Remark 4. The formula present in [GKL] is e − χ = |τ|/2. As mentioned before, we suspect that their
formula for the Euler number has a minor error. They used that the Euler number of the normal bundle of a
Lagrangian submanifold is χ, which is false. The correct value is −χ. Indeed, if Σ is an oriented, connected,
closed Lagrangian submanifold of a Kähler 4-manifold, then the Euler number of its normal bundle is −χ(Σ)
because there is a natural orientation-reversing isomorphism between the tangent and normal bundles of Σ,
given by v 7→ iv. Another proof of this fact is given at Lemma 9.

Now we explain why the identity −3|τ| = 2e+ 2χ holds in their examples. In [GKL, 4.2. Calculation of
Euler number and Toledo invariant], we have a disc bundle M over the oriented, connected, closed surface
Σ with genus g > 1. The surface Σ is embedded in the complex hyperbolic disc bundle as a piecewise totally
geodesic surface. There are two disjoint circles in Σ separating it in two surfaces Σ1 and Σ2. Thus, each Σk

is a surface having two disjoint circles as the boundary.
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The surface Σ1 is embedded as a complex geodesic component and Σ2 is embedded as a Lagrangian
component.

The correct formula for the Euler number is

e = χ(Σ1)/2 − χ(Σ2),

because Σ1 is embedded as complex geodesics and, as consequence, the contribution from its normal bundle
is χ(Σ)/2. Similarly, −χ(Σ2) is the contribution arising from the normal bundle over the Lagrangian part.

From their construction, the genus of Σ1 is g1 := g − 1 − t and the genus of Σ2 is g2 := t, where
t := g − 1 − |τ|/2, a non-negative integer because |τ| ≤ |χ| (Toledo’s rigidity). Now, the Euler characteristic
of Σk is given by

2 − 2gk = χ(Σk) + χ(D2 ⊔ D2) − χ(S1 ⊔ S1) = χ(Σk) + 2,

because by gluing discs to the boundaries of Σk we obtain a closed surface of genus gk. Simplifying the
above formula we obtain χ(Σk) = −2gk and, as consequence,

e = χ(Σ1)/2 − χ(Σ2)
= −g1 + 2g2

= −g + 1 + 3t

= 2g − 2 −
3|τ|
2
.

Therefore, 2e + 2χ = −3|τ|.

2 The complex hyperbolic plane, bisectors, and quadrangles
We present basic facts about real and complex hyperbolic geometry from the projective viewpoint following
the works [AGG], [AGr], and [Gol].

Let K = R or C. A (n + 1)-dimensional K-linear space V endowed with a Hermitian form ⟨−,−⟩ with
signature − + · · ·+ gives rise to the n-dimensional K-hyperbolic space

Hn
K = {xxx ∈ PK(V) : ⟨x, x⟩ < 0},

where we use x ∈ V \ {0} to denote a representative for xxx ∈ PK(V). As a metric space, the distance between
two points in Hn

K is given by cosh2 (d(xxx,yyy)) = ta(xxx,yyy), where the function

ta(xxx,yyy) :=
⟨x, y⟩⟨y, x⟩
⟨x, x⟩⟨y, y⟩

.

is called tance.
From a differential geometry viewpoint, we have the natural isomorphism TxxxHK ≃ hom(Kx, x⊥) and the

Hermitian metric
⟨u, v⟩ = −

⟨u(x), v(x)⟩
⟨x, x⟩

, u, v ∈ TxxxH
n
K.

In the real case, the Hermitian metric is a Riemannian metric of constant sectional curvature −1. In
the complex case, Hn

C is a Kähler manifold with Riemannian metric g := Re ⟨−,−⟩ and symplectic form
ω := Im ⟨−,−⟩. The sectional curvature of Hn

C
assume all values in the interval [−4,−1] when n > 1. For

n = 1, the space H1
C is a Poincaré disc with curvature −4.

A geodesic G is described as the projectivization of a real 2-dimensional subspace W of V such that
⟨−,−⟩|W×W is real-valued and has signature−+. More precisely, G = PK(W)∩Hn

K. In the complex hyperbolic
geometry, we also have the complex geodesics, non-trivial intersections of complex projective lines with
Hn
C. It is important to note that every geodesic G is contained in one, and only one, complex geodesic L.

Indeed, if G = PC(W) ∩ H2
C, then L = PC(W ⊕ iW) ∩ H2

C.
The complex hyperbolic plane is H2

C and it admits 3 types of non-trivial totally geodesic submanifolds:
geodesics, complex geodesics, and real planes. A real plane is an isometrically embedded Beltrami-Klein
model H2

R of the form PC(W) ∩ H2
C, where W ⊂ V is a 3-dimensional real subspace of V such that ⟨−,−⟩

restricted to W is real-valued and has signature −++. Observe that each complex geodesic is aH1
C embedded

as a Riemann surface and each real plane is a H2
R embedded as a Lagrangian submanifold. Additionally,
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there are no 3-dimensional totally geodesic submanifolds, a misfortune, because they would be natural
candidates to build fundamental domains. Nevertheless, we have bisectors.

Complex geodesics are obtained from the projectivization of two-dimensional complex subspaces of V
with signature −+. Thus, complex geodesics are always of the form P(p⊥) ∩ H2

C, where ppp ∈ PC(V) and
⟨p, p⟩ > 0, that is, ppp is a positive point. Two distinct complex geodesics L1, L2, with Li = P(p⊥i ) ∩ H2

C, are
said to be ultraparallel, asymptotic, concurrent if the point P(p⊥1 )∩ P(p⊥2 ) is positive, null, negative, respec-
tively. Algebraically, the two complex geodesics are ultraparallel, asymptotic, concurrent if ta(ppp1, ppp2) > 1,
ta(ppp1, ppp2) = 1, ta(ppp1, ppp2) < 1, respectively.

Bisectors appear naturally when constructing Dirichlet domains, where hypersurfaces like

{xxx ∈ H2
C : d(ppp, xxx) = d(xxx, ppp′)}

are used to construct the boundary for the domain. Here ppp, ppp′ are distinct points of H2
C.

A hypersurface like the one above is called a bisector. Nevertheless, this definition is quite complicated
to manipulate because different pairs of points ppp, ppp′ can produce the same bisector.

An algebraic way of defining such an object is the following: Consider a geodesic G = PC(W) ∩ H2
C,

where W is real 2-dimensional subspace of V such that ⟨−,−⟩|W×W is real-valued and has signature −+. The
complex geodesic L = PC(W ⊕ iW)∩H2

C contains G. Since W + iW is a two-dimensional complex subspace
of V , it possesses a unit vector f orthogonal to it by projective duality, i.e., f⊥ = W + iW. Additionally,
⟨ f , f ⟩ = 1 because W ⊕ iW has signature −+ and the signature os V is − + +. The bisector defined by G is
given by B = PC(W + C f ) ∩ H2

C and, topologically, it is a cylinder:

B =
⊔
xxx∈G

PC(Cx + C f ) ∩ H2
C.

The geodesic G is called the real spine of the bisector, the complex geodesic L is its complex spine, and fff
is its polar. The complex geodesics PC(Cx + C f ) ∩ H2

C, with xxx ∈ G, are called slices.
The boundary of a fundamental domain constructed using bisectors is formed by segments of bisectors:

if we have two ultraparallel complex geodesics C1,C2, then there exists a unique geodesic G orthogonal to
both complex geodesics. The geodesic intersect C1 and C2 in points ccc1 and ccc2 and the segment of geodesic
G[ccc1,ccc2] connect the two complex geodesics. Since C1,C2 are ultraparallel, their corresponding projective
lines intersect in a positive point fff . Thus we have the bisector defined by G with fff as polar. The segment
of bisector connecting C1 to C2 is just

B[C1,C2] =
⊔

xxx∈G[ccc1,ccc2]

P(Cx + C f ).

With these ingredients, we are prepared to talk about quadrangles of bisectors. Consider four pairwise
ultraparallel complex geodesic C1,C2,C3,C4. We can define the quadrangle

Q = B[C1,C2] ∪ B[C2,C3] ∪ B[C3,C4] ∪ B[C4,C1] (♦)

and on the right conditions Q bounds a 4-ball.

Figure 1: Turnover fundamental domain in H1
C and H2

C.
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The quadrangle is commonly used to build complex hyperbolic disc orbibundle since its boundary
is already fibered by discs. The examples in [AGG], [BGr], [AGu], and [Gaye] were constructed using
quadrangles. The reason for this common use is not really a surprise. If we have to build examples, it is
better to construct over 2-orbifolds, since they have simple fundamental domains and the idea is to mimic
those inside H2

C.
The fundamental domain for the turnover group is just a quadrilateral like the one described in the

Figure 1: we construct a triangle with vertices ccc1,ccc2,ccc3 with inner triangle π/n1, π/n2, π/n3 and reflect it
with respect to the line ccc1,ccc3, thus obtaining a quadrilateral. The isometries g1 and g3 are just rotations
centered at ccc1,ccc3 by angles −2π/n1 and −2π/n3 respectively. The isometry g2 is then defined as g−1

3 g−1
1 and

it is indeed a rotation of angle −2π/n2 centered at ccc2.
Now assume we have a faithful representation of G(n1, n2, n3) → PU(2, 1). The corresponding version

of the fundamental domain for the action of the turnover on H2
C (Figure 1 to the right) is formed by four

segments of bisectors connecting the vertices C1,C2,C3,C4. Here Ci is a complex geodesic stable under
action of gi for i = 1, 2, 3 and C4 := g−1

1 C2 = g3C2. Under the right conditions, which we discuss in Sec-
tion 3, this quadrangle bound a ball fibered by discs respecting the fibration of the boundary and tessellate
H2
C, thus forming a complex hyperbolic disc orbibundle H2

C/G → H
1
C/G.

Figure 2: hyperelliptic H5 fundamental domain in H1
C and H2

C.

The fundamental group for the hyperelliptic group H5 is the quadrilateral to the left in the Figure 2,
where we assume that the sum of the inner angles αi total π. The isometries r2, r3, r4, r5 are reflections at
ppp2, ppp3, ppp4, ppp5, where pppi, with i , 1, is the middle point of a geodesic segment as described in the Figure 2
and ppp1 is the vertex at the top. Due to the choices of angles, r1 := r5r4r3r2 is a reflection at ppp1. The candidate
for a fundamental domain in H2

C for a faithful representation H5 → PU(2, 1) is the following: take ppp1 to be
a positive point and ppp2, ppp3, ppp4, ppp5 to be negative points. Define the reflections

ri(x) = −x + 2
⟨x, pi⟩

⟨pi, pi⟩
pi.

The isometries r2, r3, r4, r5 are reflections at points pppi in H2
C. On the other hand, r1 is a reflection at the

complex geodesic C1 := PC(p⊥1 ) ∩ H2
C. If we are able to find points ppp1, . . . , ppp5 such that r5r4r3r2r1 = 1

in H2
C, then we can construct C2 = r2C1, C3 = r3C2, C4 = r4C3 and under the right conditions we have

a tessellation of H2
C. This technique was the one used on the paper [AGu] to build the first instance of

complex hyperbolic trivial disc bundle, and Felipe Franco and I have been exploring faithful representations
of H5 → PU(2, 1) using the same construction.
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3 The geometry of the quadrangle

Figure 3: Two adjacent triangles of bisectors.

Consider the quadrangle Q as defined in (♦). We
now lay down the conditions for this quadrangle
to bound a ball and be fibered by discs. The
terms in italics will be explained next.

K1 All pairs of vertices Ci must be ultraparal-
lel to one another.

K2 The triangles of bisectors △(C1,C2,C4)
and △(C3,C4,C2) must be transversal and
counterclockwise-oriented.

K3 The triangles of bisectors △(C1,C2,C4)
and △(C3,C4,C2) must be transversally
adjacent.

Now, we detail the terms used above.

Let ppp1, ppp2, ppp3, ppp4 be the polar points of the
projective lines defining C1,C2,C3,C4.

Remark 5. The intersection of two transver-
sal bisectors is always a complex geodesic, slice
shared by both bisectors (see [AGG]).

The triangle of bisectors △(C1,C2,C3) is transversal when adjacent bisectors (seemed as extended
hypersurfaces) intersect transversally. Define

ti j :=
√

ta(pi, p j) and ε0 + iε1 :=
⟨p1, p2⟩⟨p2, p3⟩⟨p3, p1⟩

|⟨p1, p2⟩⟨p2, p3⟩⟨p3, p1⟩|
.

Algebraically, to say the triangle △(C1,C2,C3) is transversal mean that

ε2
0t2

12 + t2
23 + t2

31 < 1 + 2t12t23t31ε0,

ε2
0t2

31 + t2
12 + t2

23 < 1 + 2t12t23t31ε0,

ε2
0t2

23 + t2
31 + t2

12 < 1 + 2t12t23t31ε0.

To say that such a transversal triangle is counterclockwise-oriented means that ε1 < 0. To under-
stand the meaning of this statement it is important to understand that the space of all transversal and
counterclockwise-oriented triangles of bisectors is path-connected, which means we can deform one on
the other (see [AGG, Lemma A. 31]), and among then there is a very special one, the triangle of bisectors
over a complex geodesic: consider a complex geodesic L = PC( f⊥) ∩ H2

C, where f is a positive point,
and a geodesic triangle with vertices c1, c2, c3 in L such that the path going along c1, c2, c3 forms a coun-
terclockwise loop. In this case, the triangle of bisectors defined by Ci = PC(Cci ⊕ C f ) is transversal and
counterclockwise-oriented with ε1 < 0. In fact, its value is ε0 + iε1 = exp (−2 area(△(c1, c2, c3)i) with
area(△(c1, c2, c3)) < π/4 because the curvature of a complex geodesic is −4. Thus, to be a transversal and
counterclockwise-oriented triangle of bisectors just mean it was obtained from this simple configuration
over a complex geodesic. Observe that the conditions K1 and K2 guarantee that each triangle of bisector
bounds an open 4-ball. Furthermore, its boundary insideH2

C is a solid torus, since each bisector is a cylinder.
To say that the triangles △(C1,C2,C4) and △(C3,C4,C2) are transversally adjacent mean that the bi-

sectors for B(C1,C2) and B(C3,C2) intersect transversally at C2, the bisectors for B(C1,C4) and B(C3,C4)
intersect transversally at C4, and C3 is inside the sector defined by the segments of bisectors B[C1,C2) and
B[C1,C4) starting at C1 and extended pass C2 and C4 (see subsection [BGr, 6.1. Quadrangle of bisectors]
and [AGG]). Additionally, under K1, K2, and K3, the quadrangle Q bounds an open 4-ball in the complex
hyperbolic plane. The union of the quadrangle Q with the ball bounded by it forms a domain Q in H2

C.
Following Lemma A. 31 from [AGG], there is an isotopy between two transversal and counterclockwise-

oriented triangles of bisectors in such a manner that in each step of the isotopy the region is a transversal
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and counterclockwise-oriented triangle. Adapting this result, if we have a quadrangle Q satisfying the three
conditions K1, K2, and K3 and fff is the polar of the bisector B[C2,C4] dividing the quadrangle in half, then
we can deform the quadrangle to a quadrangle Q′ over the complex geodesic P( f⊥)∩H2

C by deforming each
triangle △(C1,C2,C4) and △(C3,C4,C2) separately always keeping B[C2,C4] unmoved. Thus we have an
isotopy between Q and Q′, a quadrangle over a complex geodesic. This isotopy is formed by quadrangles
satisfying K1 and K2 at every step (see Subsection [BGr, 7.2. Deformation lemma]).

More precisely, there is an isotopy Ft : Q→ H2
C such that F0 is the inclusion and F1 maps Q to Q′. For

each t, the image Ft(Q) is a quadrangle of bisectors, each bisector is mapped to a bisector, each vertex of Q
is mapped to a vertex of Ft(Q), each slice is mapped to a slice isometrically.

Since the ball Q′ is naturally fibered by discs, we can transport such fibration to Q. Thus, we reached
the required fibration necessary for the construction of complex hyperbolic disc orbibundles.
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4 The Kalashnikov
The Kalashnikov conjecture states that every fundamental domain created using a quadrangle of bisectors as
described in section 3 leads to the identity 3τ = 2e+2χ, where, by convention, we orient the disc orbibundle
in agreement with the orientation of the discs fibering the quadrangle (if we orient the disc orbibundle with
opposite orientation, then −3τ = 2e + 2χ).

Our objective here is to prove the validity of such conjecture. Consider a quadrangle Q satisfying K1,
K2, and K3, a cocompact Fuchsian group G and a discrete faithful representation G → PU(2, 1) such that
the quadrangle defines a fundamental domain for the complex hyperbolic disc orbibundle H2

C/G → H
1
C/G.

Let us denote the total space H2
C/G by L and the base space H1

C/G by Σ.
We can see Σ as a section of L → Σ. On the complex hyperbolic plane, we consider a lift Σ̃ for this

section, meaning that Σ̃ is G-invariant and Σ = Σ̃/G. We can also identify L with a rank 2 oriented vector
orbibundle by identifying Lxxx with TxxxLxxx, with xxx ∈ Σ, that is, we identify each Lxxx with the plane tangent of
Lxxx at xxx ∈ Σ.

Note that Σ̃ can be seen as a G-equivariant smooth embedding of the discH1
C intoH2

C. Thus, the polygon
P := Q ∩ Σ̃ is a fundamental domain for H1

C/G.

Remark 6. For an n-dimensional R-linear space V , the quotient V/R>0 is an (n − 1)-sphere.
Similarly, if E → Σ is a rank 2 oriented vector orbibundle, we denote by S(E)→ Σ its associated circle

bundle, where S(E)xxx = Exxx/R>0.

Consider two unit vector fields u, v over P, where u is tangent to P and v is normal to P.

Lemma 7 (Extension Lemma). The section u ∧ v of ∧2TH2
C defined over ∂P can be extended to a non-

vanishing section on P.

Proof. Let Ft be the isotopy described by the end of Section 3. We need to show that the loop

λ0 : ∂P→ S
(
∧2TH2

C

)
xxx 7→ u(xxx) ∧ v(xxx)

is contractible, i.e., we need to show that

λ0 ≃ 0 in H1

(
S
(
∧2TH2

C

)
,Z
)
.

Note that
ut(x) = dFt

(
u
(
F−1

t (x)
))

and vt(x) = dFt

(
v
(
F−1

t (x)
))

define non-zero vector for each t ∈ [0, 1] and x ∈ ∂Ft(P). Additionally, ut(xxx) ∧ vt(xxx) never vanishes for
t ∈ [0, 1] and xxx ∈ ∂Ft(P), because vt(xxx) is always tangent to a slice (complex geodesic) of the bisectors
forming the quadrangle Ft(Q) and ut(xxx) is not.

Thus, the section

λ1 : F1(∂P)→ S(∧2TH2
C)

xxx 7→ u1(xxx) ∧ v1(xxx)

defines a loop in S(∧2TH2
C) equal to λ0 in homology.

Since u1 and v1 extend over F1(P) via the isotopy, we have u1 ∧ v1 defined on F1(P). Note that this
section does not vanish, because u1 and v1 are non-vanishing and u1 is tangent to a complex geodesic to
which v1 is never tangent. Thus, we conclude u1 ∧ v1 does not vanish. Therefore, λ0 ≃ 0 in homology.
Thus, u ∧ v|∂P extends to a non-vanishing section over P.

□

Now we use the following trick. We have the rank 2 oriented vector orbibundle L over Σ. Let T be the
vector orbibundle normal to L in T (H2

C/G)|Σ. Note that T is a rank 2 oriented vector orbibundle isomorphic
to the tangent space TΣ. Thus, we identify TΣ with T and, as consequence, the Euler characteristic of Σ is
the Euler number of T.

Theorem 8. The identity 3τ = 2e + 2χ holds if we orient the orbibundle in accordance with the discs
fibering the quadrangle. That is, the Kalashnikov conjecture is true.

9



Proof. Consider unit vector fields u, v over P such that u is section of T and v is a section of L. Let η := u∧v
on ∂P. As consequence of the Extension Lemma 7, we can extend η to P as a section such that ⟨η, η⟩ = 1.

Let v1 = v and v2 be the rotation of v in L by 90 degrees in the counter-clockwise orientation. Do the
same with respect to T : we take u1 = u and u2 is the 90 degrees rotation of u in T . For xxx ∈ ∂P, Lxxx and
Txxx are complex lines. Thus, we either have u2 = iu and v2 = iv or u2 = −iu and v2 = −iv on ∂P. For η as
section of ∧2TH2

C, the rotation of η by 90 degrees in the counter-clockwise direction is simply iη.

⟨∇iη, η⟩ = ⟨(∇iu) ∧ v + u ∧ (∇iv), u ∧ v⟩

= ⟨(∇iu) ∧ v, u ∧ v⟩ + ⟨u ∧ (∇iv), u ∧ v⟩

= ⟨∇iu, u⟩ + ⟨∇iv, v⟩.

Thus, taking the real part we obtain

g(∇iη, η) = g(∇iu, u) + g(∇iv, v),

and by Stokes theorem ∫
P

dg(∇u2, u1) +
∫

P
dg(∇v2, v1) = ±

∫
P

dg(∇iη, η).

Therefore, 2e + 2χ = ±3τ.
Note that by orienting the disc orbibundle and the discs fibering the quadrangle in a compatible way, we

have u2 = iu and v2 = iv and, as consequence, 3τ = 2e + 2χ. Otherwise, we obtain −3τ = 2e + 2χ. □

10



5 Avoiding complex points
Now we prove that if complex hyperbolic disc bundles admit a section with no complex tangent planes,
then the equation (r) holds. We conjecture that all complex hyperbolic disc bundles satisfy the equation (r)
and we believe that an adaptation of the argument below might be a way to prove such a statement.

Consider an arbitrary complex hyperbolic disc bundle L → Σ, where now we take Σ to be an oriented
and connected closed surface with genus greater than one instead of an orbifold. We can assume that Σ is
embedded as a section of L. Let N be the normal bundle of Σ ⊂ L. As bundles, L → Σ and N → Σ are
isomorphic.

The following lemma is well-known in symplectic geometry.

Lemma 9. If Σ is an oriented, connected, closed Lagrangian surface of a 4-dimensional complex hyperbolic
manifold L, then e(N) = −χ, where e(N) is the Euler number of the normal bundle N of Σ.

Additionally, whenever L is a disc bundle and Σ is a section, we have that τ = 0 and, as consequence,
−3|τ| = 2e(L) + 2χ because the normal bundle is isomorphic to the disc bundle under such circumstance.

Proof. Let u1, u2 be a positively oriented orthonormal frame of TΣwith respect to the Riemannian metric g.
Since Σ is Lagrangian, these two vector fields are orthogonal concerning the Hermitian metric as well. Thus,
we have that v1 = iu2, v2 = iu1 form a positively oriented orthonormal frame of N, because u1, u2, v1, v2
induces the same orientation as u1, iu1, u2, iu2, the natural orientation of L as a complex manifold.

The curvature for the tangent and normal bundles are given by the 2-forms

ΩT = dg(∇u2, u1), ΩN = dg(∇v2, v1),

from where we conclude e(N) = −e(TΣ) = −χ(Σ). □

Theorem 10. If Σ is embedded as a section and does not have complex tangent spaces, then −3|τ| = 2e+2χ.

Proof. By Lemma 9, we may assume there exists a point ppp such that ω|TpppΣ , 0.
Since the punctured surface Σ′ := Σ \ {ppp} is homotopically equivalent to a graph, every rank 2 oriented

real vector bundle is trivial over it. Thus, TΣ′ is a trivial bundle and we can consider a tangent unit vector
field u over Σ′.

The morphism of bundles
λ : N |Σ′ → R

given by (xxx, v) 7→ ω(u(xxx), v) has constant rank 1. Indeed, if for some xxx ∈ Σ′ we have ω(u(xxx), v) = 0 for all
v ∈ N, then Nxxx = u(xxx)⊥ with respect to the Hermitian form. Since TΣ and N are orthogonal, that would
imply that TxxxΣ = Cu(xxx), contradicting the hypothesis of the theorem.

Therefore, we have a line bundle given by ker λ ⊂ N. Inside N we consider the line bundle J → Σ′,
orthogonal to ker λwith respect to the Riemannian metric g. The line bundle J is trivial since for each n ∈ Jxxx

we have λ(n) > 0 or λ(n) < 0. Consider a section n for J → Σ′ such that |n| = 1 and ω(u(xxx), n(xxx)) > 0. By
rotating n by 90 degrees in the counterclockwise direction, we obtain a section v for ker λ with |v| = 1.

Thus, we have the unit vector fields u, v with ω(u, v) = 0. This means that ⟨u, v⟩ = 0, that is, u, v are
orthogonal with respect to the Hermitian metric.

Consider two unit vector fields e1, e2 defined in a neighborhood of ppp with e1 tangent to Σ, e2 normal to
Σ, and ⟨e1, e2⟩ = 0. These vector fields exist by the same argument we did for u and v.

Let e′1 be the rotation of e1 by 90 degrees in the counter-clockwise direction at TΣ, and e′2 the rotation
of e2 by 90 degrees in the counter-clockwise direction at N. Thus, the local frames e1, e′1 and e2, e′2 are
positively oriented in TΣ and N.

Consider a small closed disc D centered at ppp where the sections e1, e′1, e2, e′2 are defined. We may assume
that ω(e1, e′1) does not vanishes over D. Consider as well a covering map g : R→ ∂D with period 1.

From the map ∂D→ S1 given by xxx→
(
g(u(xxx), e1(xxx)), g(u(xxx), e′1(xxx))

)
, there exists a map θ : R→ R such

that
u(t) = cos(θ(t))e1 + sin(θ(t))e′1,

where we abbreviate u(g(t)) as u(t). Similarly, we have the map ϕ : R→ R such that

v(t) = cos(ϕ(t))e2 + sin(ϕ(t))e′2.
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In the same style as the Poincaré-Hopf theorem, we have

χ = e(TΣ) =
θ(1) − θ(0)

2π
, e(N) =

ϕ(1) − ϕ(0)
2π

.

Now observe that,

u(t) ∧ v(t) =
(
cos (θ(t) + ϕ(t)) − iω(e1(t), e′1(t)) sin (θ(t) + ϕ(t))

)
e1 ∧ e2

and, therefore, the Euler number of ∧2T L is e + χ if ω(e1, e′1) < 0, and −(e + χ) if ω(e1, e′1) > 0.
If τ ≥ 0, we can take ppp for which ω(e1, e′1) > 0, thus

3
2
τ = −e − χ.

On the other hand, if τ < 0, we take ppp for which ω(e1, e′1) < 0 and we obtain

3
2
τ = e + χ.

Therefore, −3|τ| = 2e + 2χ.
□
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