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Abstract. We first introduce the class of quasi-algebraically stable meromor-
phic maps of Pk

. This class is strictly larger than that of algebraically stable
meromorphic self-maps of Pk

. Then we prove that every quasi-algebraically sta-
ble meromorphic self-map enjoys a recurrent property. In particular, the first
dynamical degree of such a map is always an algebraic integer.

1. Introduction

Let f : Pk −→ Pk be a meromorphic self-map. It can be written f := [F ] := [F0 :
. . . : Fk] in homogeneous coordinates where the Fj’s are homogeneous polynomials
in the k + 1 variables z0, . . . , zk of the same degree d with no nontrivial common
factor. The polynomial F will be called a lifting of f in Ck+1. The number d(f) := d

will be called the algebraic degree of f. Moreover f is said to be dominating if it is
generically of maximal rank k, in other words, its jacobian determinant does not
vanish identically (in any local chart). The indeterminancy locus I(f) of f is the
set of all points of Pk where f is not holomorphic, or equivalently the common zero
set of k + 1 component polynomials F0, . . . , Fk. Observe that I(f) is a subvariety of
codimension at least 2. From now on, we always consider dominating meromorphic
self-maps f of Pk with k ≥ 2. For such a map f, The Julia set, noted by J (f),
is, by definition, the smallest closed set of Pk such that the family {fn : n ≥ 1} is
normal on P

k \ J (f). A survey on recent development in the dynamical theory of
meromorphic self-maps of Pk could be found in the expository article by Sibony [14].

For any map f with d(f) > 1, consider the following limit in the sense of current

(1.1) lim
n→∞

(f ∗)nω

d(f)n
,

where ω denotes the Fubiny-Study Kähler form on P
k so normalized that

∫

Pk

ωk = 1.

It is well-known (see for example [14]) that this limit exists and defines the so-called
Green current T = Tf associated to f. Let us introduce the following

Definition 1.1. A meromorphic self-map f : Pk −→ Pk is said to be algebraically
stable (or AS for short) if there is no hypersurface of Pk which would be sent, by
some iterate fN , to I(f).
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The notion of Green current plays a peculiar role in complex dynamics. For
example, if f is AS then the support of the Green current defined by formula (1.1)
is contained in the Julia set J (f) (see Theorem 1.6.5 in [14]). In this case the Green
current contains many important dynamical information of the corresponding map.
We refer the reader to the recent works of Fornæss-Sibony [12, 13], Diller and Favre
[4, 5, 6, 9], Dinh–Sibony [7, 8] for further explications.

However, the situation becomes much harder in the case of non AS maps. An
explicit example where the support of the Green current defined by formula (1.1) is
not contained in the Julia set is given by the birational B-Fibonacci map

R [z : w : t] :=
[

wt : wz : t2
]

.

Theorem 4.26 in the work of Bonifant–Fornæss [2] shows that J (R) contains the

real hypersurface
{

[z : w : t] ∈ P2 : |w| 1+
√

5

2 |z| = |t| 3+
√

5

2

}

. On the other hand, as

was proved in Theorem 2.4.6 of Favre’s thesis [9] (see also [10]), the Green current
(1.1) of a non AS map is supported in a countable union of complex hypersurfaces.
Obviously, J (R) is not of this type. This phenomenon occurs because d(f) is strictly

larger than its first dynamical degree λ1(f) := lim
n→∞

d(fn)
1

n . Therefore, the classical

definition (1.1) of the Green current cannot be appropriate for the non AS case.
This consideration motivates the study of the degree growth of non AS maps. One
of the first works in this direction is the article of Bonifant–Fornæss [2] where some
special non AS maps are thoroughly studied. In her thesis [1] Bonifant constructs
an appropriate Green current for these maps and then write down the functional
equation. Bedford and Kim [3] also study the degree growth of a class of birational
mappings. Favre and Jonsson [11] give a complete study of the case of polynomial
maps in C2. These works show in particular that the behavior of the algebraic degree
of the n-iterate fn for a non AS meromorphic self-map f : Pk −→ Pk may be very
complicated.

The purpose of this paper is to define a big class of self-maps of P
k which is called

the class of quasi-algebraically stable (or QAS for short) meromorphic self-maps.
This class contains strictly that of all AS self-maps. The QAS self-maps have a
closed connection with the AS self-maps. More precisely, the QAS self-maps share a
recurrent property with the AS ones. Let us explain this more explicitly. For an AS
self-map f we may define a sequence of polynomial maps (Fn)∞n=0 : Ck+1 −→ Ck+1

such that Fn is a lifting of fn, n ≥ 0, in the following recurrent way:

Fn := F1 ◦ Fn−1, n ≥ 1,

where F1, F0 are arbitrarily fixed lifting of f, f 0 = Id . Following the same pattern,
the recurrent law for a QAS self-map f which is not AS may be stated as follows:

Fn :=
F1 ◦ Fn−1

H0 ◦ Fn−n0−1

for all n > n0. Here n0 ≥ 1 is an integer and H0 is a homogeneous polynomial. The
recurrent phenomenon happens when the orbits of the hypersurfaces which are sent
to I(f) by some iterate fN (see Definition 1.1 above) are, in some sense, not so
complicated. That is the main point of our observation.
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This paper is organized as follows.
We begin Section 2 by collecting some background and introducing some notation.

This preparatory is necessary for us to state the results afterwards.
Section 3 starts with the definition of quasi-algebraically stable meromorphic self-

maps. Then we provide some examples illustrating this definition.
The last section is devoted to the formulation and the proof of the main theorem.

Some examples including some considered by Bonifant–Fornæss are also analyzed
in the light of this theorem. Finally, we conclude the paper with some remarks.

Acknowledgment. The author is supported by The Alexander von Humboldt
Foundation and The Max-Planck Institut für Mathematik in Bonn (Germany) dur-
ing the preparation of this paper. He wishes to express his gratitude to these or-
ganisations. He would like to thank N. Sibony and T.-C. Dinh for introducing him
to Complex Dynamics and for many help. He is also grateful to C. Favre for many
suggestions and ideas.

2. Background and notation

Let f be a dominating meromorphic self-map of P
k, Γ the graph of f in P

k × P
k

and π1, π2 the natural projections of Pk × Pk onto its factors. Let A be a (not
necessarily irreducible) analytic subset of Pk. We define the following analytic sets

f(A) := f |Pk\I(f)(A) and f−1(A) := π1(π
−1
2 (A)).

In the sequel, codim(A) denotes the codimension of A. Moreover. we recall that a
hypersurface is an analytic set of pure codimension 1 in Pk. Let Crit(f) denote the
critical set of f (i.e. the hypersurface defined outside I(f) by the zero set of the
jacobian of f in any local coordinates). The following result is very useful.

Proposition 2.1. Let f be as above. Then, for every irreducible analytic set A ⊂ Pk,

f(A) is also an irreducible analytic set.

Proof. Suppose in order to get a contradiction that f(A) = B1∪B2, where B1, B2 are
analytic sets in Pk, distinct from f(A). It follows that (A∩f−1(B1))∪(A∩f−1(B2)) =
A and the two analytic sets A ∩ f−1(B1), A ∩ f−1(B2) are distinct from A. We
therefore get the desired contradiction. This finishes the proof. �

We denote by C+
1 (Pk) the set of positive closed currents of bidegree (1, 1). A

current T ∈ C+
1 (Pk) can be written locally as T = ddcu for some plurisubharmonic

function u (which is called a local potential of T ). The mass of T is defined by
‖T‖ :=

∫

Pk

T ∧ωk−1. Fix a point z ∈ Pk and local coordinates sending z to the origin

in Ck. Choose a local plurisubharmonic potential u for T defined around 0 in these
coordinates. We can define the Lelong number of u at 0 as follows

ν(u, 0) := max {c ≥ 0 : u(z) ≤ c log |z| + O(1)}
which is a finite nonnegative real number. We then set ν(T, z) := ν(u, 0), which
does not depend on any choice we made.
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For a current T ∈ C+
1 (Pk), we use local potentials to define the induced pull-back

f ∗T ∈ C+
1 (Pk). More precisely, for any z ∈ Pk \ I(f), T has a local potential u in

a neghborhood of f(z), and we define f ∗T := ddc(u ◦ f) in a neighborhood of z.

This yields a well-defined, positive closed (1, 1)-current on the set Pk \ I(f). Since
codim(I(f)) > 1, we can extend f ∗T to Pk by assigning zero mass on the set I(f)
to the coefficients measures of (f ∗T )|Pk\I(f).

Any hypersurface H of P
k defines a current of integration [H] ∈ C+

1 (Pk), and
‖[H]‖ = deg(H), where H : Ck+1 −→ C is any homogeneous polynomial defining
H. Finally, for any current T ∈ C+

1 (Pk), it holds that

(2.1) ‖f ∗T‖ = d(f) · ‖T‖.
For further information on this matter, the reader is invited to consult the surveys
[12] and [14].

3. Quasi-algebraically stable meromorphic self-maps

In [13] Fornæss and Sibony establish the following definition.

Definition 3.1. A hypersurface H ⊂ Pk is said to be a degree lowering hypersurface
of f if, for some (smallest) n ≥ 1, fn(H) ⊂ I(f). The integer n is then called the
height of H.

The following proposition gives us the structure of a non AS self-map.

Proposition 3.2. Let f be a meromorphic self-map of Pk. Then there are exactly one
integer M ≥ 0, M degree lowering hypersurfaces Hj with height nj, j = 1, . . . , M,

satisfying the following properties:
(i) all the numbers nj , j = 1, . . . , M, are pairwise different;
(ii) codim (fm(Hj)) > 1 for m = 1, . . . , nj, and j = 1, . . . , M ;
(iii) for any degree lowering irreducible hypersurface H of f, there are integers n ≥ 0
and 1 ≤ j ≤ M such that fn(H) is a hypersurface and fn(H) ⊂ Hj

In particular, f is AS if and only if M = 0.

Proof. First, we give the construction of M and Hj, nj, j = 1 . . . , M. To this end
observe that every hypersurface H satisfying codim (f(H)) > 1 should be contained
in Crit(f). Therefore, one takes the family F of all degree lowering irreducible
components H of Crit(f) such that codim (fm(H)) > 1 for 1 ≤ m ≤ n, where
n is the height of H. Let 1 ≤ n1 < · · · < nM be all the heights of elements in F (it
is easy to see that M is finite). Let Hj be the (finite) union of all elements in F
with the same height nj. Then properties (i) and (ii) are satisfied.

To prove (iii) let H be a degree lowering irreducible hypersurface with height h.

In virtue of Proposition 2.1, let n be the greatest integer such that 0 ≤ n < h

and fn(H) is a hypersurface. The choice of n implies that codim (fm(H)) > 1,
m = n+1, . . . , h. Consequently, in virtue of the above construction, we deduce that
fn(H) ⊂ Hj for some 1 ≤ j ≤ M. This proves (iii).

Since the uniqueness of M and Hj, nj, j = 1 . . . , M, is almost trivial, it is therefore
left to the interested reader. This completes the proof. �
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Definition 3.3. Under the hypothesis and the notation of Proposition 3.2, for every
j = 1, . . . , M, Hj is called the primitive degree lowering hypersurface of f with the
height nj.

We are now able to define the class of quasi-algebraically stable self-maps.

Definition 3.4. A meromorphic self-map f of P
k is said to be quasi-algebraically

stable (or QAS for short) if either it is AS or it satisfies the following properties:

(i) there is only one primitive degree lowering hypersurface (let H0 be this hy-
persurface and let n0 be its height);

(ii) for every irreducible component H of H0 and every m = 1, . . . , n0, fm(H) 6⊂
H0;

(iii) for every irreducible component H of H0, one of the following two conditions
holds
(iii)1 fm(H) 6⊂ I(f) for all m ≥ n0 + 1,
(iii)2 there is an m0 ≥ n0 such that fm0+1(H) is a hypersurface and fm(H) 6⊂
I(f) for all m verifying n0 + 1 ≤ m ≤ m0.

We conclude this section by studying some examples.

Example 3.5. Consider the following meromorphic self-map of P2 :

(3.1) f ([z : w : t]) :=
[

2tz −
(

z2 + w2
)

: 2tw −
(

z2 + w2
)

: 2t2 −
(

z2 + w2
)]

.

It can be checked that I(f) = {[1 : 1 : 1] , [1 : i : 0] , [1 : −i : 0]} , and Crit(f) =
{t(2t2 + w2 + z2 − 2zt − 2wt) = 0}. Moreover we have

f ({t = 0}) = [1 : 1 : 1] ∈ I(f),

f
({

2t2 + w2 + z2 − 2zt − 2wt = 0
})

= {t − z − w = 0} .

Therefore, {t = 0} is the unique primitive degree lowering hypersurface and its
height is 1. Since [1 : 1 : 1] 6∈ {t = 0} and f 2({t = 0}) is a hypersurface, f is QAS.

Example 3.6. For all integers d ≥ 2 and m ≥ 1, the following map is given by
Bonifant-Fornæss in [2]

f ([z : w : t]) :=
[

ztd−1 :
(

wtd−1 + zd
)

cos
π

m
− td sin

π

m
:
(

wtd−1 + zd
)

sin
π

m
+ td cos

π

m

]

.

It can be checked that I(f) = [0 : 1 : 0] , Crit(f) = {t = 0}, and {t = 0} is the
only primitive degree lowering hypersurface of f. Moreover, its height is m. Since
fn({t = 0}) =

[

0 : cos nπ
m

: sin nπ
m

]

∈ {t = 0} for n = 1, . . . , m, f is not a QAS
according to Definition 3.4 (ii). However, f satisfies conditions (i) and (iii)2 of this
definition. Similarly, it is not difficult to construct examples of meromorphic self-
maps of P2 which satisfy (i)–(ii) but do not satisfy (iii)1 (resp. but do not satisfy
(iii)2).

Example 3.7. Consider the following meromorphic self-map of P
2 :

(3.2) f ([z : w : t]) :=
[

(z + w + t)2(z3 + w3 + t3)z2 − 27z3w4 :

(z + w + t)2(z3 + w3 + t3)w2 − 27z3w4 : (z + w + t)2(z3 + w3 + t3)t2 − 27z3w4
]

.
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It can be checked that

I(f) = [1 : 1 : 1]∪{[z : w : t], z + w + t = zw = 0}∪
{

[z : w : t], z3 + w3 + t3 = zw = 0
}

,

and

f ({z + w + t = 0}) = f
({

z3 + w3 + t3 = 0
})

= [1 : 1 : 1] ∈ I(f).

Moreover, it is not difficult to see that there is no hypersurface H which is not con-
tained in H0 := {(z + w + t)2(z3 + w3 + t3) = 0} and which satisfies codim(f(H)) >

1. In other words, H0 is the unique primitive degree lowering hypersurface and its
height is 1. Since [1 : 1 : 1] 6∈ H0, and f 2({z + w + t = 0}), f 2({z3 + w3 + t3 = 0})
are hypersurfaces, it follows that f is QAS.

4. The main result

Now we are ready to formulate the main result of this article.

The Main Theorem. Let f be a QAS meromorphic self-map of Pk which is not
AS. Let H0 be its unique primitive degree lowering hypersurface and let n0 be its
height. We define a sequence {Fn : n ≥ 1} of maps Ck+1 −→ Ck+1 as follows :

F1, . . . , Fn0
, Fn0+1 are arbitrarily fixed liftings of f 1(≡ f), . . . , fn0, fn0+1 respec-

tively. Let H0 be the unique homogeneous polynomial which verifies the equality

(4.1) F1 ◦ Fn0
= H0 · Fn0+1.

Next we define Fn for all n > n0 + 1 as follows :

(4.2) Fn :=
F1 ◦ Fn−1

H0 ◦ Fn−n0−1
.

Then H0 = {H0(z) = 0}, and for any n ≥ 0, Fn is a lifting of fn. Moreover, for
any current T ∈ C+

1 (Pk),

(4.3) (fn)∗T =

{

(fn−1)∗(f ∗T ), n = 1, . . . , n0,

(fn−1)∗(f ∗T ) − ‖T‖ · (fn−n0−1)∗[H0], n > n0.

Prior to the proof of the theorem we need a preparatory result.

Lemma 4.1. We keep the above hypothesis and notation. Let m ∈ N, m ≥ 1.
Then, for any current T := [l(z) = 0], where {l(z) = 0} is a generic 1 complex
hyperplane in P

k, for any irreducible component H of the hypersurface (fm)−1(H0),
the following equalities hold

ν
(

(f p)∗[H0], z
)

= 0, p = max{0, m − n0 + 1}, . . . , m − 1;(4.4)

ν
(

(fm)∗(fn0+1)∗T, z
)

= 0,(4.5)

where z is a generic point of H.

1A generic element of a family has a certain property means exactly that the set of elements
in the family that do not have that property is contained in an analytic set of strictly smaller
dimension.
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Proof of Lemma 4.1. To prove (4.4), fix an arbitrary irreducible component H of
the hypersurface (fm)−1(H0), and an integer p : max{0, m − n0 + 1} ≤ p ≤ m − 1.

Suppose in order to reach a contradiction that ν
(

(f p)∗[H0], z
)

> 0 for any generic

point z ∈ H. Putting G := f p(H), the latter inequality implies that

(4.6) G ⊂ H0.

In virtue of Proposition 2.1, there are two cases to consider.
Case 1: G is a hypersurface.

In this case it follows from the inclusion H ⊂ (fm)−1(H0) that fm−p(G) =
fm(H) ⊂ H0. On the other hand, since m − p ≤ n0, G ⊂ H0 (by (4.6)), and f

is QAS (see Definition 3.4(ii)), one gets fm−p(G) 6⊂ H0. One therefore leads to a
contradiction. This case cannot happen.
Case 2: G is an irreducible analytic set of codimension strictly greater than 1.

In virtue of Proposition 2.1, let q be the greatest integer such that 0 ≤ q < p and
f q(H) is a hypersurface. Consider three subcases.

Case 2a: there is a smallest integer r such that q < r < p and f r(H) ⊂ I(f).
In virtue of the choice of q, r, and of Definition 3.4, we see that f q(H) is

an irreducible component of H0. In addition, by invoking Definition 3.4 (iii), we
see that none of the following analytic sets f r+1(H), . . . , f p(H)(= G) is a sub-
set of I(f). On the other hand, using (4.6) and the hypothesis that f is QAS,
we see that there is a smallest integer s such that p < s ≤ p + n0, and
codim(f p+1(H)), . . . , codim(f s(H)) > 1, and none of the following sets f t(H)
(p + 1 ≤ t ≤ s − 1) is a subset of I(f), but f s(H) ⊂ I(f). We therefore obtain a
contradiction with Definition 3.4 (iii).

Case 2b: f r(H) 6⊂ I(f), r = q + 1, . . . , p − 1, but f p(H) ⊂ I(f).
In virtue of the choice of q, and of Definition 3.4, we see that f q(H) is an irreducible

component of H0, and p = q + n0. However, by (4.6), fn0(f q(H)) = f p(H) ⊂ H0.

This is a contradiction with Definition 3.4 (ii).
Case 2c: f r(H) 6⊂ I(f), r = q + 1, . . . , p.
Using (4.6) and arguing as in Case 2a, we see that there is a smallest integer s such

that p < s ≤ p+n0, and none of the following sets f t(H) (p+1 ≤ t ≤ s−1) is a subset
of I(f), but f s(H) ⊂ I(f). This implies that f q(H) is an irreducible component of
H0, and s = q + n0. Since f p(H) ⊂ H0 (by (4.6)) we obtain a contradiction with
Definition 3.4 (ii).

Hence, the proof of (4.4) is complete.
To prove (4.5) fix an arbitrary irreducible component H of the hypersur-

face (fm)−1(H0), and a current T := [l(z) = 0], where {l(z) = 0} is a
generic complex hyperplane of Pk. Suppose in order to reach a contradiction that

ν
(

(fm)∗(fn0+1)∗T, z
)

> 0 for any generic point z ∈ H. Putting G := fm(H), the

latter inequality and the choice of H imply that

(4.7) G ⊂ H0 ∩ I(fn0+1).

Let q be the greatest integer such that 0 ≤ q ≤ m and f q(H) is a hypersurface.
Clearly, q < m because of (4.7): codim(I(fn0+1)) > 1. In virtue of the choice of
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q, and of Definition 3.4, and of the inclusion G = fm(H) ⊂ I(fn0+1) (see (4.7)),
we conclude that f q(H) is an irreducible component of H0. Since fm(H) ⊂ H0, we
obtain a contradiction with Definition 3.4 (ii)–(iii).

Hence, the proof of (4.5) is finished. This completes the proof of the lemma. �

Now we arrive at

The proof of the Main Theorem. The assertion H0 = {H0(z) = 0} follows
immediately from (4.1) and the hypothesis on H0 and n0. Moreover, the hypothesis
of the theorem implies that Fn is a lifting of fn and (4.3) is valid for n = 1, . . . , n0.

We will prove (4.3) and the fact that Fn is a lifting of fn by induction on n ≥ n0+1.
For n = n0 +1, these assertions are immediate consequences of (4.2). Suppose them
true for n − 1, we like to show them for n.

To this end let G be the homogeneous polynomial given by

(4.8) G · Fn := F1 ◦ Fn−1,

and let G be the hypersurface {G(z) = 0} . We may rewrite (4.8) as

(4.9) (fn−1)∗(f ∗T ) = (fn)∗T + [G],

for any current T ∈ C+
1 (Pk) of mass 1. In virtue of (4.2) and (4.9), we only need to

show that

(4.10) [G] = (fn−n0−1)∗[H0].

One breaks the proof of this identity into two steps.
Step I: Proof of the inclusion G ⊂ (fn−n0−1)−1(H0).

Consider an arbitrary irreducible component H of G. Then we deduce from (4.9)
that

ν
(

(fn−1)∗(f ∗T ), z
)

> 0

for any current T := [l(z) = 0], where {l(z) = 0} is a generic complex hyperplane
in Pk, and for a generic point z ∈ H. Since f ∗T has bounded local potentials on
Pk \ I(f), it follows that (fn−1)(H) ⊂ I(f).

Now let m be the greatest integer such that 0 ≤ m < n − 1 and fm(H) is a
hypersurface. Put F := fm(H). Therefore, fm+1(H), . . . , fn−1(H) are analytic sets
of codimension strictly greater than 1. Since we have shown that f n−1(H) ⊂ I(f),
there is a smallest integer p such that m + 1 ≤ p ≤ n − 1 and f p(H) ⊂ I(f). Using
the hypothesis that f is QAS, one concludes that F := fm(H) is an irreducible
component of H0. Moreover, one has p = n0 + m.

Next, observe that fn−1−m(F) = fn−1(H) ⊂ I(f) with n − 1 − m ≥ p − m = n0.

Invoking Definition 3.4(iii), it follows that p = n − 1, and hence m = n − n0 − 1.
In summary, we have shown that fn−n0−1(H) = F ⊂ H0. Since H is an arbitrary
component of G, we deduce that G ⊂ (fn−n0−1)−1(H0). This completes Step I.
Step II: Proof of identity (4.10).

In what follows T is a current in C+
1 (Pk) of mass 1, and d := d(f). Moreover, we

make the following convention (fm)∗[H0] := 0 for all m < 0. Next, we apply the
hypothesis of induction (i.e. identity (4.3)) for n−1, . . . , n−n0 repeatedly by taking
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into account the identity ‖(fm)∗T‖ = dm, m = 1, . . . , n0, (see (2.1)). Consequently,
one gets

(fn−1)∗(f ∗)T = (fn−2)∗(f ∗f ∗)T − d(fn−n0−2)∗[H0]

= · · ·
= (fn−n0)∗(fn0)∗T − dn0−1(fn−2n0)∗[H0] − · · · − d(fn−n0−2)∗[H0]

= (fn−n0−1)∗f ∗(fn0)∗T − dn0(fn−2n0+1)∗[H0] − · · · − d(fn−n0−2)∗[H0]

= (fn−n0−1)∗(fn0+1)∗T + (fn−n0−1)∗[H0]

− dn0(fn−2n0+1)∗[H0] − · · · − d(fn−n0−2)∗[H0].

(4.11)

On the one hand, applying Lemma 4.1 to the right-hand side of (4.11), we deduce
that

ν
(

(fn−1)∗(f ∗)T, z
)

= ν
(

(fn−n0−1)∗[H0], z
)

for any current T := [l(z) = 0], where {l(z) = 0} is a generic complex hyperplane in
Pk, and for a generic point z in any irreducible component of (fn−n0−1)−1(H0). On
the other hand, under the same condition,

ν
(

(fn)∗T, z
)

= 0.

We combine the latter two equalities with (4.9) and taking into account the result
of Step I. Consequently, (4.10) follows. This completes Step II. The proof of the
theorem is thereby finished. �

Corollary 4.2. Let f be a QAS meromorphic self-map of Pk. Then its first dynam-
ical degree λ1(f) is an algebraic integer.

Proof. If f is AS, then the corollary is trivial since λ1(f) = d(f). Suppose now that
f is non AS. Then in virtue of identities (4.1)–(4.2), we have that

d(fn) =

{

d(f)n, n = 0, . . . , n0,

d(f) · d(fn−1) − deg(H0) · d(fn−n0−1), n > n0.

Consequently, the conclusion of the corollary follows. �

Applications. We apply the main theorem to the examples given in Section 3.
First consider Example 3.5. Put H(z, w, t) := t and let F : C3 −→ C3 be the

lifting of f given by the right-hand side of (3.1). In the light of the Main Theorem,
a sequence of liftings Fn of fn may be defined as follows

F0 := Id, F1 := F, Fn :=
F ◦ Fn−1

H(Fn−2)
, n ≥ 2.

As a consequence, one obtains the equation d(fn)−2 d(fn−1)+d(fn−2) = 0. There-
fore, a straightforward computation shows that d(fn) = n + 1 and λ1(f) = 1.
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Next consider Example 3.7. Put H(z, w, t) := (z + w + t)2(z3 + w3 + t3) and let
F : C3 −→ C3 be the lifting of f given by the right-hand side of (3.2). Using the
Main Theorem, a sequence of liftings Fn of fn may be defined as follows

F0 := Id, F1 := F, Fn :=
F ◦ Fn−1

H(Fn−2)
, n ≥ 2.

As a consequence, one obtains the equation d(fn) − 7 d(fn−1) + 5 d(fn−2) = 0.
Therefore, a straightforward computation shows that

d(fn) =
1√
29

·
(7 +

√
29

2

)n+1

− 1√
29

·
(7 −

√
29

2

)n+1

,

and λ1(f) = 7+
√

29
2

.

Concluding remarks. One may widen the class of QAS self-maps by weakening
considerably the conditions in Definition 3.4. Of course the recurrent law would be
then more complicating. One might also seek to

• for any given k, d ≥ 2, find many families of QAS (but non AS) self-maps of
Pk with the algebraic degree d;

• generalize the Main Theorem to meromorphic self-maps in compact Kähler
manifolds;

• construct an appropriate Green current for every QAS self-map f with
λ1(f) > 1.

We hope to come back these issues in a future work.
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