π_{1} of Smooth Points of a Log Del Pezzo Surface is Finite : I

R.V. Gurjar
D.-Q. Zhang **

*

School of Mathematics
Tata Institute of Fundamental Research
Homi-Bhabha Road
Bombay 400005
Max-Planck-Institut fur Mathematik
Gottfried-Claren-Straße 26
D-5300 Bonn 3

Germany

India
**
Department of Mathematics
Faculty of Science
National University of Singapore
10 Kent Ridge Crescent
Singapore 0511

π_{1} of Smooth Points of a Log Del Pezzo Surface Is Finite : I

R.V. GURJAR and D.-Q. ZHANG

February 2, 1993

Introduction

A normal projective surface S over C is called a \log del Pezzo surface if S has at worst quotient singularities and $-K_{S}$ is ample, where K_{S} denotes the canonical divisor of S.

Recall that the divisor class group of a quotient singularity is always finite. Hence for any Weil divisor D on a log del Pezzo surface $S, n D$ is a Cartier divisor for some integer $n \geq 1$.

The principal result of this paper is the following :
Main Theorem. The fundamental group of the space of smooth points of a log del Pezzo surface is finite.

In the case of a Gorenstein log del Pezzo surface, this result was proved in [13] by first classifying such surfaces. In this paper, we also give a very easy proof of the result in the case of Gorenstein log del Pezzo surfaces. So far, there are not many results about general log del Pezzo surfaces. Recently, V.A. Alekseev and V.V. Nikulin have classified all \log del Pezzo surfaces of index ≤ 2 (i.e., where $2 K_{S}$ is Cartier) (cf. [1]).

The index of a log del Pezzo surface S is defined to be the smallest positive integer n such that $n K_{S}$ is a Cartier divisor. In [15], Nikulin has proved that the rank of the Picard group of a minimal resolution of S is bounded by a universal function of the index of S. From this also one can deduce Proposition 1.7 below.
M. Miyanishi has made the following :

Conjecture Let S be a log del Pezzo surface of rank 1. Then there is a finite unramified covering of S-SingS which contains a Zariski-open subset isomorphic to $C \times \mathbf{A}^{1}$, where C is a smooth curve.

It follows easily from the Lemmas 1.2 and 2.2 of this paper that if Miyanishi's conjecture is true then the Main Theorem of this paper is true. The Main Theorem thus lends a partial support to Miyanishi's conjecture.

Due to the length of the proof of the Main Theorem, this paper is being written in two parts. We will now give some indication of key ideas used in the proof.

Following an important idea of Miyanishi and Tsunoda, in $\S 3$ we use a "minimal" (-1) curve C on the minimal resolution of singularities, \widetilde{S}, of S. Using the assumption that $-K_{S}$ is ample we analyse the intersection behavior of the exceptional divisor D with C. The proof splits into two main cases according as the linear system $\left|K_{\tilde{S}}+C+D\right|$ is empty or nonempty. The bulk of the paper goes into handling the first case. The first case itself splits into the " 2 -component" case and the " 3 -component" case. The part II of this paper deals exclusively with the " 2 "-component" case. It should be remarked that we can prove much more precise results about the intersection behavior of C and D than given in $\S 6$, but the Main Theorem stated above has been our main goal in this paper and so we have given only those details which are crucial for the proof (cf. the remark after the proof of Theorem 6.14). Several sub-cases from the " 3 -component" case are reduced to the " 2 -component" case. We could have given a self-contained proof for the " 3 -component" case, but this would have made the proof even more technical. As a consequence, the proof of the Main Theorem (even in the " 3 -component" case) is completed only in the part II of this paper.

The main ingradients in the proof of the Main Theorem are the following:

1) Several results of the paper [18]. The lemmas $1.5,1.6$ from [18] are frequently used.
2) A reduction to the case when the Picard group of S is infinite cyclic.
3) A somewhat precise information about the configuration of singular points when $\operatorname{Pic} S \simeq \mathbf{Z}$.
4) A version of the Lefschetz hyperplance section theorem for fundamental groups given in [16].
5) A version of Van- kampen's theorem for non-connected intersections
due to P . Wagreich.
There are easy examples of normal projective rational surfaces over \mathbf{C} with quotient singularities (even double points) and with numerically effective anti-canonical divisor, such that the fundamental group of the space of smooth points is infinite. See $\S 1.15$. This shows that the condition about the ampleness of $-K_{S}$ in the Main Theorem cannot be dropped.

From the Main theorem, we see easily that any log del Pezzo surface S is a quotient of a log del Pezzo surface T modulo a finite group such that the space of smooth points of T is simply-connected (the group acting freely outside a finite set of points of T).

Acknowledgements This work was started when both the authors were visiting the Max Planck Institut für Mathematik in Bonn. We are very much thankful to the Max Planck Institut and to Prof.F. Hirzebruch for the financial support and hospitality.

§1. Some easy results

In this section we fix the following notations and terminology which will be used throughout the paper.

Let S be a \log del Pezzo surface as defined in the introduction. Denote by $S^{\circ}:=S-($ Sing $S)$ the smooth part of S. Let $f: \tilde{S} \rightarrow S$ be a minimal resolution of singularities and denote by $D:=f^{-1}$ (Sing S) the exceptional divisor. A divisor H on \tilde{S} is numerically effective (nef, for short) if and only if $H \cdot \Delta \geq 0$ for any curve Δ on \tilde{S}. A nef divisor H is big if $\left(H^{2}\right)>0$. By a $(-n)$-curve on \widetilde{S} we mean a nonsingular rational curve of self intersection $-n$.
K_{S} : canonical divisor of S.
$f^{*}(H)$: total transform of H by f.
$f^{\prime}(H)$: proper transform of H by a birational morphism f.
$H_{1} \sim H_{2}$: linear equivalence.
$H_{1} \equiv H_{2}$: numerical equivalence.
\#H: the number of irreducible components of Supp H.
The dual graphs of minimal resolutions of quotient singularities are classified in [2].

Write $D=\sum_{i=1}^{n} D_{i}$ where D_{i} is irreducible. The first part of Lemma 1.1 below follows from the definition of a quotient singularity. The second part is trivial and the third part follows from the ampleness of $-K_{S}$ (cf. [9]).

Lemma 1.1. (1) There exists a Q -coefficient divisor $D^{*}=\sum_{i=1}^{n} \alpha_{i} D_{i}$ such that $0 \leq \alpha_{i}<1$ and

$$
f^{*}\left(K_{S}\right) \equiv K_{\tilde{s}}+D^{*}
$$

Moreover, $\alpha_{j}=0$ i financial support andf and only if the connected component of D containing D_{j} is contracted to a rational double point on S.
(2) Let p be the smallest positive integer such that $p D^{*}$ is an integral divisor. Then $p K_{S}$ is a Cartier divisor and

$$
f^{*}\left(p K_{S}\right) \sim p\left(K_{\tilde{\mathcal{S}}}+D^{*}\right) .
$$

(3) $-\left(K_{\tilde{S}}+D^{*}\right)$ is a nef and big divisor. Moreover, $-\left(K_{\tilde{\mathcal{S}}}+D^{*}\right) \cdot B=0$ if and only if the support of B is contained in D.
(4) Suppose that B is an irreducible curve on \widetilde{S} with negative self intersection. Then either B is a (-1)-curve or $B \leq D$.

Proof. (4) Suppose that B is not contained in D. Then $B . K_{\tilde{S}}<0$ by (3). Now it follows from the genus formula that B is a (-1)-curve.

Lemma 1.2. Let T be a normal projective surface with a finite morphism $\varphi: T \rightarrow S$ which is unramified over S°. Then T is a log del Pezzo surface.

Proof. If $T^{\circ}=T-(\operatorname{Sing} T)$, then clearly $K_{T^{\circ}} \sim \varphi^{*}\left(K_{S^{o}}\right)$. This implies that $K_{T} \sim \varphi^{*}\left(K_{S}\right)$. Since $-K_{S}$ is ample, $-K_{T}$ is also ample. Since φ is unramified over S°, the local fundamental group of T at any point is finite. Hence T is a log del Pezzo surface.

Lemma 1.3. A log del Pezzo surface is rational.
Proof. Let $f: \tilde{S} \rightarrow S$ be as in the beginning of this section. Then for suitable large integer $p,-p\left(K_{\tilde{S}}+D^{*}\right)$ is a Cartier divisor linearly equivalent to a nonzero effective divisor Δ. Hence $\left|p K_{\tilde{S}}\right|=\phi$. Now \tilde{S} is a ruled surface or \mathbf{P}^{2}.

Suppose \tilde{S} is a ruled surface with a morphism $\varphi: \widetilde{S} \rightarrow B$ onto a smooth projective curve B such that a general fiber of φ is \mathbf{P}^{1}.

First we consider the case where one of the irreducible components of D maps surjectively onto B under φ. In this case $B \approx \mathbf{P}^{\mathbf{1}}$ and \widetilde{S} is rational.

Now we assume that D is contained in a union of fibers of φ. We have an induced P^{1}-fibration $\varphi^{\prime}: S \rightarrow B$. Clearly, rank $S \geq 2$. We borrow part of the argument from the proof of Lemma 2.1. We argue by a suitable induction on rank S.
By Kawamata's contraction theorem, there is a contraction $\sigma: S \rightarrow Y$. If Y is a surface then rank $Y<\operatorname{rank} S, Y$ is a log del Pezzo surface. By induction, Y and hence S is rational.
Suppose Y is a non-singular curve. If a "horizontal" irreducible curve for φ^{\prime} is contracted to a point by σ, then that "horizontal" curve is a rational curve and hence B is rational. Assume now that an irreducible curve C contained in a fiber of φ^{\prime} is contracted by σ. As C generates an extremal ray, we see that every fiber of φ^{\prime} is irreducible and φ^{\prime} is the contraction map.
Suppose Y is not a rational curve. Using a branched covering $Z \rightarrow Y$ as in the proof of Lemma 2.1 with suitable ramification divisor on Y and Lemma 1.2 , we see that $S_{1}=\overline{S \times x_{Y} Z}$ is a \log del Pezzo surface with a \mathbf{P}^{1}-fibration $\varphi^{\prime \prime}: S_{1} \rightarrow Z$. All the fibers of $\varphi^{\prime \prime}$ are reduced. Hence we can now assume that φ^{\prime} itself has all the fibers reduced. Now \tilde{S} is obtained from a minimal ruled fibration $\psi: X \rightarrow B$ by a composition of blowing ups. Using the fact that all the fibers of φ^{\prime} are reduced, we see that the contraction $\widetilde{S} \rightarrow X$ can be so chosen that we have an induced morphism $S \rightarrow X$. But then $S=X$. We have $K_{S}^{2}=8(1-g)$, where g is the genus of B. From the ampleness of K_{S} we know that $K_{S}^{2}>0$. Hence $g=0$ and B is rational. This completes the proof of Lemma 1.2.

Lemma 1.4. $\quad H_{1}\left(S^{\circ}, \mathbf{Z}\right)$ is finite.
Proof. By Lemma 1.3, \tilde{S} is rational and hence $H_{1}(\tilde{S}, \mathrm{Z})=0$. We consider the long exact cohomology sequence of the pair (\widetilde{S}, D) with integral coefficients :

$$
H^{2}(\widetilde{S}) \rightarrow H^{2}(D) \rightarrow H^{3}(\widetilde{S}, D) \rightarrow H^{3}(\widetilde{S}) \rightarrow(0)
$$

The irreducible components of D give linearly independent homology classes
in $H_{2}(\widetilde{S})$ as the intersection matrix of D is negative definite. From this we see that the cokernel of the map $H^{2}(\widetilde{S}) \rightarrow H^{2}(D)$ is finite. By Poincare duality, $H^{3}(\widetilde{S}) \cong H_{1}(\widetilde{S})=(0)$. Now the result follows.

Lemma 1.5. $\bar{\kappa}\left(S^{o}\right)=-\infty$, where $\bar{\kappa}$ is the logarithmic Kodaira dimension as defined by S. Iitaka (cf. [8]).

Proof. Suppose $\left|n\left(K_{\tilde{S}}+D\right)\right| \neq \phi$ for some $n \geq 1$. Since $-n\left(K_{\tilde{S}}+D^{*}\right)$ is a nef and big Cartier divisor for some integer $n \gg 0$, the complete linear system $\left|n\left(K_{\tilde{S}}+D\right)-n\left(K_{\tilde{S}}+D^{*}\right)\right|$ has dimension ≥ 1. This contradicts the negative definiteness of the intersection matrix of D.

Remark 1.6. If the Picard group of S has rank one, then M. Miyanishi has proved the converse of Lemma 1.5 viz . in this case, if $\bar{\kappa}\left(S^{\circ}\right)=-\infty$, then S is a \log del Pezzo surface (cf. [18, Remark 1.2]). This result is false if the rank of Pic S is bigger than one (cf. Example in §1.15).

The next result is a very useful step in the proof of the Main Theorem of this paper.

Proposition 1.7. The algebraic fundamental group of S° is finite.
Proof. We have to show that S° does not have finite unramified covers of arbitrarily large degrees.

So, suppose that $\cdots \rightarrow S_{n} \rightarrow S_{n-1} \rightarrow \cdots \rightarrow S_{0}:=S$ is a sequence of finite Galois covers of S unramified over S°. Let q be any singular point of S. Then all the points in S_{n} lying over q are conjugate to each other under the Galois group of S_{n} over S. The local fundamental groups of S_{n} at these points are then mutually isomorphic and isomorphic to a subgroup of the local fundamental group of S at q.

From this observation we see easily that the maps $S_{n} \rightarrow S_{n-1}$ are unramified for large n. By Lemma 1.2 each S_{n} is a \log del Pezzo surface and hence rational by Lemma 1.3. But any normal projective rational surface is simply-connected. Thus $S_{n} \rightarrow S_{n-1}$ is an isomorphism for large n. This proves the result.

In the remaining part of this section we collect together some known results which will be used crucially in the proof of the theorem.

The following result is proved in [11, Chapter 1, §2.1.2].
Let X be a smooth projective rational surface and $\Delta=\Delta_{1}+\cdots \Delta_{r}$ be a reduced divisor with irreducible components Δ_{i}.

Let m be the number of connected components of $\operatorname{Supp}(\Delta)$.
Let $e(\Delta)=m-r+\Sigma_{i<j} \Delta_{i} \cdot \Delta_{j}$, which is clearly a nonnegative integer.
Lemma 1.8. $\operatorname{dim} H^{0}\left(X, O\left(K_{X}+\Delta\right)\right)=\sum_{i=1}^{r} p_{a}\left(\Delta_{i}\right)+e(\Delta)$. Further, $H^{0}\left(X, O\left(K_{X}+\Delta\right)\right)=0$ if and only if Supp Δ is a normal crossing divisor of nonsingular rational curves such that each connected component of Supp Δ is a tree.

The following two results are proved by Madhav Nori in [16].
Lemma 1.9. Let X be a nonsingular quasi-projective surface with a surjective morphism $\varphi: X \rightarrow B$, where B is a nonsingular curve. Assume that the general fiber F of φ is connected and each scheme-theoretic fiber of φ contains a reduced irreducible component. Then the following sequence is exact :

$$
\pi_{1}(F) \rightarrow \pi_{1}(X) \rightarrow \pi_{1}(B) \rightarrow(1)
$$

The next result is a very useful version of Lefschetz hyperplane section theorem.

Lemma 1.10. Let X be a nonsingular projective surface and Δ any effective divisor on X such that the Iitaka D-dimension $\kappa(X, \Delta) \geq 2$. Let $R \subset X$ be any proper Zariski closed subset. Then for any open neighbourhood U of Δ, the homomorphism $\pi_{1}(U-R) \rightarrow \pi_{1}(X-R)$ is surjective.

Using Lemma 1.10, we will now give an easy proof of the special case of the Main Theorem when S is Gorenstein. This was proved earlier in [13] by first classifying such surfaces.

Proposition 1.11. Let S be a Gorenstein log del Pezzo surface. Then $\pi_{1}\left(S^{\circ}\right)$ is abelian and finite.

Proof. By Lemma 1.5, it is enough to prove that $\pi_{1}\left(S^{\circ}\right)$ is abelian. By [4, Theorem 1, p.39], there is a nonsingular elliptic curve $A \in\left|-K_{S}\right|$. Since $-K_{\mathcal{S}}$ is ample and $K_{\tilde{S}}=f^{*}\left(K_{\mathcal{S}}\right)$, the Iitaka D-dimension $\kappa\left(\widetilde{S},-K_{\tilde{S}}\right)=2$. Also A is disjoint from $\operatorname{sing} S$ as S has only rational double points. Now by Lemma 1.10, we have a surjective map $\mathbf{Z} \times \mathbf{Z}=\pi_{1}(A) \rightarrow \pi_{1}(\tilde{S}-D)$. Thus $\pi_{1}\left(S^{\circ}\right)$ is abelian.

Remark 1.12. The proof shows that if $\left|-K_{S}\right|$ contains a member A which is a rational cuspidal curve disjoint from $\operatorname{sing} S$ then $\pi_{1}\left(S^{\circ}\right)=(1)$ because $\pi_{1}(A)=(1)$.

The next result follows from the well-known result of Mumford giving the presentation of the fundamental group of the boundary of a nice tubular neighborhood of a tree of non-singular rational curves on a smooth complex surface. (cf. [14]).

Lemma 1.13 Let X be a non-singular projective surface and Δ a connected normal crossing divisor on X with all the irreducible components nonsingular rational curves. Assume one of the following two conditions:
(1) The dual graph of Δ is linear and Δ supports a divisor with positive self-intersection.
(2) The dual graph of Δ has exactly one branch point and the three linear branches T_{1}, T_{2}, T_{3} are such that:
(i) Δ supports a divisor with positive self-intersection
(ii) the intersection form on $T_{1}+T_{2}+T_{3}$ is negative definite and $1 / d_{1}+$ $1 / d_{2}+1 / d_{3}>1$, where d_{i} is the absolute value of the determinant of the intersection matrix of T_{i}.

If U is a "nice" tubular neighborhood of Δ in X, then $\pi_{1}(U-\Delta)$ is finite.
We will need the following generalization of the Van- Kampen theorem proved by P. Wagreich (cf. [17,Prop. 2.1]).

Lemma 1.14 Suppose A is a connected simplicial complex with connected subcomplexes A_{0}, A_{1} such that $A=A_{0} \cup A_{1}, A_{0} \cap A_{1}=B_{0} \cup B_{1}$ where, B_{i} is a connected subcomplex of A_{j} for all i, j and $B_{0} \cap B_{1}=\phi$. Let $\varphi_{i j}: \pi_{1}\left(B_{i}\right) \rightarrow \pi_{1}\left(A_{j}\right)$ be the map induced by the inclusion. Then $\pi_{1}(A)$ is
isomorphic to $\pi_{1}\left(A_{0}\right) * \pi_{1}\left(A_{1}\right) * \mathbf{Z}(u) / G$ where, $\mathbf{Z}(u)$ denotes the free group with one generator u and G is the normal subgroup generated by the relations :

$$
\varphi_{0,0}(b)=\varphi_{0,1}(b)
$$

for all $b \in \pi_{1}\left(B_{0}\right)$

$$
\varphi_{1,0}(b)=u^{-1} \varphi_{1,1}(b) u
$$

for all $b \in \pi_{1}\left(B_{1}\right)$.

§1.15. An example

Let σ be an involution which acts diagonally and non-trivially on a product $\mathrm{P}^{1} \times E$, where E is an elliptic curve and let T be the quotient of this product modulo σ. Then T has only singularities of type A_{1}. The quotient morphism g is unramified over the smooth part of T. It follows that the fundamental group of $T-$ Sing T is infinite. Clearly, $g^{*}\left(K_{T}\right) \simeq K_{\mathbf{P}^{1} \times E}$. Hence we see by projection formula that $-K_{T}$ is numerically effective but not big. It is easy to see that T is a rational surface and Pic T has rank >1.

§2. Reduction to the rank one case

In this section, using Kawamata's contraction theorem, we will show that it is enough to prove the main theorem when Pic $S \cong \mathrm{Z}$. (Note that since S is simply-connected, Pic S is isomorphic to Z if the rank of $\operatorname{Pic} S$ is one.)

Suppose rank Pic $S \geq 2$. Since K_{S} is not nef, there is a contraction $\varphi: S \rightarrow Y$ of an extremal ray by [10, Theorem 3.2.1]. (Note that a twodimensional quotient singularity is nothing but a log-terminal singularity (cf. [9].) We have two cases :

Case 1. Y is a surface.
In this case φ is birational and the exceptional divisor of φ is an irreducible curve Δ (cf. [10, Prop. 5.1.6]).

Lemma 2.1. Y is a log del Pezzo surface.

Proof. From [9] we know that S has at worst log-terminal singularities. The proof of the Contraction Theorem shows that Y also has log-terminal singularities, hence quotient singularities.

Clearly, $\varphi_{*}\left(K_{S}\right)=K_{Y}$. We can write

$$
K_{S}=\varphi^{*}\left(K_{Y}\right)+a \Delta \text { for some } a \in \mathbf{Q} .
$$

We have $K_{S} \cdot \Delta=a \Delta \cdot \Delta<0$ and $\Delta \cdot \Delta<0$ hence $a>0$. Let $Z \in \overline{N E}(Y)-\{0\}$. By projection formula,
$\left(-K_{Y}\right) \cdot Z=-\left(\varphi^{*} K_{Y}\right) \cdot \varphi^{*}(Z)=-K_{S} \cdot \varphi^{*}(Z)+a \Delta \cdot \varphi^{*}(Z)=-K_{S} \cdot \varphi^{*}(Z)>0$
by the ampleness of $-K_{S}$. Now by Kleiman's criterion of ampleness, $-K_{Y}$ is ample.

This proves that Y is a \log del Pezzo surface.
Now $S-\Delta \cong Y-\varphi(\Delta)$, hence $Y^{0}-\{$ one smooth point $\}$ is a Zariski-open subset of S°. This implies that we have a surjection $\pi_{1}\left(Y^{\circ}\right) \rightarrow \pi_{1}\left(S^{\circ}\right)$. On the other hand, rank Pic $Y<\operatorname{rank} \operatorname{Pic} S$.

Case 2. $\quad Y$ is a smooth projective curve.
In this case by Lemma $1.3, Y \cong \mathrm{P}^{1}$. We claim that a general fiber of φ is isomorphic to P^{1}. For, if F is a general fiber of φ, then $-K_{S} \cdot F>0$ and $F \cdot F=0$. Now by adjunction formula we see that $F \cong \mathbf{P}^{1}$.

By restriction, we get a surjective morphism $S^{0} \rightarrow \mathbf{P}^{1}$ whose general fibers are P^{1}. For any scheme-theoretic fiber F of $S^{\circ} \rightarrow \mathrm{P}^{1}$, the g.c.d. of the multiplicities of the irreducible components of F is called the multiplicity of F.

Let $F_{1}, F_{2}, \cdots, F_{r}$ be all the multiple fibers of $S^{o} \rightarrow \mathbf{P}^{1}$ with multiplicities $m_{1}, m_{2}, \cdots, m_{r}$ bigger than one.

Suppose first $r \geq 3$. Then by the solution of Fenchel's conjecture due to R. Fox, there is a finite Galois morphism $B \rightarrow Y$ such that for any point in B lying over $\varphi\left(F_{i}\right)$, the ramification index is m_{i} (cf. [5]). By usual arguments, the normalization T^{o} of $S^{o} \times_{Y} B$ in its function field is an etale covering of S°. The normalization of S in the function field of T° is therefore a \log del Pezzo surface T by Lemma 1.2. By Lemma 1.3, T is rational and hence $B \cong \mathrm{P}^{1}$. The morphism $T^{\circ} \rightarrow B$ has no fibers of multiplicity >1 and has
\mathbf{P}^{1} as a general fiber. Then the proof of Lemma 1.9 shows that we have a surjection $\pi_{1}(F) \rightarrow \pi_{1}\left(T^{\circ}\right)$ for a general fiber F of $T^{\circ} \rightarrow B$.

Hence T° is simply connected and hence $\pi_{1}\left(S^{\circ}\right)$ is finite.
Suppose $r \leq 2$.
If $r=2$, let F_{1}, F_{2} be the multiple fibers with multiplicities m_{1}, m_{2} and $d=$ g.c.d. $\left(m_{1}, m_{2}\right)$. we consider the cyclic $d-$ fold covering $B \rightarrow Y$ ramified precisely over $\varphi\left(F_{1}\right)$ and $\varphi\left(F_{2}\right)$ with ramification index d. Then we work with $S^{\circ} \times_{Y} B$ exactly as above and complete the proof.
The case $r=1$ is also easy.
This completes the proof of the Main Theorem when there is a Kawamata contraction of fiber type.

For future use, we state the following result whose proof is completely similar to the proof in Case 2 above.

Lemma 2.2. Let Y be a log del Pezzo surface with a morphism φ : $Y \rightarrow \mathbf{P}^{1}$. Assume that a general fiber of φ is isomorphic to either \mathbf{C} or \mathbf{C}^{*}. Then $\pi_{1}(Y-\operatorname{Sing} Y)$ is finite.

Combining the arguments in Cases 1 and 2, by a repeated application of contractions of extremal rays we reduce the proof of the main theorem to the case when Pic $S \cong$ Z.

§3. Some analysis of the rank one case

In this section we give a somewhat detailed description of rank one log del Pezzo surfaces.

So let S be a log del Pezzo surface of rank one. We use the notation introduced in the beginning of $\S 1$. Let p be the smallest positive integer such that $p D^{*}$ is an integral divisor. Then for every curve B on \tilde{S} not contained in $D, \quad-\left(K_{\tilde{S}}+D^{*}\right) \cdot B \in \frac{1}{p} \mathrm{~N}=\{n / p \mid n \in \mathrm{~N}\}$ (cf. Lemma 1.1). From this we obtain the following :

Definition and Lemma 3.1. (1) There exists an irreducible curve C on \tilde{S} such that $-\left(K_{\tilde{S}}+D^{*}\right) \cdot C$ attains the smallest positive value. Such a curve satisfies $C^{2} \geq-1$ (cf. Lemma 1.1,(4)).
(2) A curve C as in (1) above is called minimal.

For the time being, we fix the curve C of Lemma 3.1. We shall treat the two cases $\left|K_{\tilde{S}}+C+D\right| \neq \phi,=\phi$ separately.
§3.1. The case $\left|K_{\tilde{S}}+C+D\right| \neq \phi$
In this subsection, we always assume $\left|K_{\tilde{S}}+C+D\right| \neq \phi$.
Lemma 3.2 (cf. [18, Lemma 2.1]). Let C be as in Lemma 3.1. Suppose $\left|C+D+K_{\tilde{S}}\right| \neq \phi$. Then there exists a unique decomposition $D=D^{\prime}+D^{\prime \prime}$ such that:
(1) $K_{\widetilde{S}}+C+D^{\prime \prime} \sim 0$,
(2) D^{\prime} is disjoint from $C \cup D^{\prime \prime}$ and consists of (-2)-curves; hence D^{\prime} is contracted to rational double points on S.

Remark 3.3. Write $\tilde{C}:=f^{*} f_{*}(C)=C+G$. As Pic $S \cong \mathbf{Z}, C+G$ is a nef and big divisor and G is an effective divisor with support contained in $D^{\prime \prime}$. In particular, the Iitaka D-dimension $\kappa\left(\widetilde{S}, C+D^{\prime \prime}\right)=2$.

Remark 3.4. We can divide the case $\left|C+D+K_{\tilde{\mathcal{S}}}\right| \neq \phi$ into the following subcases:

Case ($\mathrm{I}-1$) $D^{\prime \prime}=0$. Then S is a log del Pezzo surface with only rational double points. By Proposition 1.11, $\pi_{1}\left(S^{\circ}\right)$ is finite abelian.

In the following subcases, assume that $D^{\prime \prime} \neq 0$. Now from $K_{\tilde{s}}+C+D^{\prime \prime} \sim 0$ and from Lemma 1.8 we see that each irreducible component of $C \cup D^{\prime \prime}$ is isomorphic to \mathbf{P}^{1}, e.g. $K_{\tilde{S}}+C \sim-D^{\prime \prime}$ implies that $\left|K_{\tilde{s}}+C\right|=\phi$, etc.

Case (1-2) $D^{\prime \prime} \neq 0$ and $C+D$ is a divisor with only simple normal crossings. By Lemmas 1.8 and 3.2, there is a loop Δ of nonsingular rational curves contained in $C+D^{\prime \prime}$ and we have $\left|K_{\tilde{S}}+\Delta\right| \neq \phi$. Now $K_{\tilde{S}}+C+D^{\prime \prime} \sim$ 0 implies that $\Delta=C+D^{\prime \prime}$ and $C+D^{\prime \prime}$ is a simple loop of nonsingular rational curves, i.e., each irreducible curve in $C+D^{\prime \prime}$ meets exactly two other irreducible components of $C+D^{\prime \prime}$.

Case (I-3) $D^{\prime \prime} \neq 0$ and $\left(C^{2}\right) \geq 0$. This case can be reduced to the case(I2) above by replacing C with a new irreducible curve linearly equivalent to C. Indeed, by the Riemann-Roch theorem, the Serre duality and the genus formula, we have :

$$
\operatorname{dim}|C|=h^{1}(\tilde{S}, \mathcal{O}(C))+\frac{1}{2}\left(C, C-K_{\tilde{\mathcal{S}}}\right) \geq 1
$$

Then $|C|$ has no base points (as $C \cong \mathrm{P}^{1}$). Choose $C^{\prime} \in|C|$ such that $C^{\prime}+D$ has only simple normal crossings. Then $-\left(K_{\tilde{S}}+D^{*}\right) \cdot C^{\prime}$ attains the smallest positive value and $\left|K_{\tilde{S}}+C^{\prime}+D\right| \neq \phi$.

Case (I-4) $\quad D^{\prime \prime} \neq 0,\left(C^{2}\right) \leq-1$ and $C+D$ is not a divisor with only simple normal crossings. Then C is a (-1)-curve by Lemma 3.1 and the arguments as in Case (I-2) shows that one of the following two cases occurs.

Case (I-4a) $D^{\prime \prime}$ is an irreducible curve such that $C \cdot D^{\prime \prime}=2$ and $C \cap D^{\prime \prime}$ is a single point. By Remark 3.3, the intersection matrix of $C+D^{\prime \prime}$ has one positive eigenvalue and hence $\left(D^{\prime \prime}\right)^{2}=-2$ or -3 .

Case (I-4b) $D^{\prime \prime}$ consists of two irreducible components $D_{1}^{\prime \prime}, D_{2}^{\prime \prime}$ such that $C \cdot D_{1}^{\prime \prime}=C \cdot D_{2}^{\prime \prime}=1$ and $C \cap D_{1}^{\prime \prime} \cap D_{2}^{\prime \prime}$ consists of a single point. By the same reasoning as in Case (I-4a), we have $\left(\left(D_{1}^{\prime \prime}\right)^{2},\left(D_{2}^{\prime \prime}\right)^{2}\right)=(-2,-2),(-2,-3),(-2,-4)$ after interchanging the subscripts of $D_{i}^{\prime \prime}$, if necessary.

§3.2. The Case $\left|K_{\widetilde{s}}+C+D\right|=\phi$

In this section we always assume that $\left|K_{\tilde{S}}+C+D\right|=\phi$. First of all, by Lemma 1.8, we have the following :

Lemma 3.5. $C+D$ has only simple normal crossings, consists of nonsingular rational curves and has a disjoint union of trees as the dual graph.

We need the following results from [18].
Proposition 3.6 (cf. the proof of [18, Lemma 2.2]). Let C be as in Lemma 3.1. Suppose $\left|C+D+K_{\tilde{S}}\right|=\phi$. Then either C is a (-1)-curve or S
is the Hirzebruch surface with the minimal section contracted. In the latter case, S° is simply connected.

From now on till the end of the present section, we assume always that C is a (-1)-curve.

Lemma 3.7 (cf. [18, Lemma 4.1]). Let D_{1}, \cdots, D_{r} exhaust all irreducible components of D with $\left(C, D_{i}\right)>0$. Suppose $\left(D_{1}^{2}\right) \geq \cdots \geq\left(D_{\tau}^{2}\right)$. Then $\left\{-\left(D_{1}^{2}\right), \cdots,-\left(D_{r}^{2}\right)\right\}$ is one of the following :

$$
\left\{2^{a}, n\right\}(n \geq 2),\left\{2^{a}, 3,3\right\},\left\{2^{a}, 3,4\right\},\left\{2^{a}, 3,5\right\}
$$

where 2^{a} signifies that 2 is repeated a-times.
Lemma 3.8 (1) Suppose C meets exactly one irreducible component D_{0} of D. Then $\left(D_{0}^{2}\right)=-2$.
(2) C meets at least one component of D.

Proof. (1) Suppose $\left(D_{0}^{2}\right) \leq-3$. Then $C+D$ is contractible to quotient singularities. This leads to $1+\#(D)=\rho(\widetilde{S}) \geq 1+\#(C+D)$, a contradiction.
(2) can be similarly verified.

Lemma 3.9 (cf. [18, Lemma 4.4]). Suppose C meets exactly two irreducible components D_{0}, D_{1} of D. Then $\left(D_{i}^{2}\right)=-2$ for $i=0$ or 1 .

Lemma 3.10 (cf. [18, Lemma 4.3]). Assume that one of the following cases takes place :
(1) C meets only one irreducible component D_{0} of D.
(2) C meets exactly two irreducible components D_{0}, D_{1} of D with $\left(D_{1}^{2}\right) \leq$ -3 .

Let $\sigma: \tilde{S} \rightarrow \tilde{T}$ be the blowing-down of the (-1)-curve C, let $E=\sigma\left(D_{0}\right)$ and let $B=\sigma\left(D-D_{0}\right)$. Then there exists a log del Pezzo surface T of Picard number one and there exists a birational morphism $g: \tilde{T} \rightarrow T$ such that g is a minimal resolution and $B=g^{-1}($ Sing $T)$.

Remark 9.11. Let $D_{1}, \cdots, D_{\mathrm{r}}$ be all irreducible components of D with $\left(C, D_{i}\right)>0$ (hence $\left(C, D_{i}\right)=1$ by Lemma 3.5). Suppose $\left(D_{1}^{2}\right) \geq \cdots \geq\left(D_{r}^{2}\right)$.

By virtue of Lemmas 3.5, 3.7, 3.8 and 3.9, in the case where C is a (-1 -curve, we can divide into the following cases:

Case (II-1) $r \geq 2$ and $\left(D_{1}^{2}\right)=\left(D_{2}^{2}\right)=-2$.
Case (II-2) $r=1$ and $\left(D_{1}^{2}\right)=-2$.
Case (II-3) $r=3$ and $\left\{\left(D_{1}^{2}\right),\left(D_{2}^{2}\right),\left(D_{3}^{2}\right)\right\}=\{-2,-3,-3\},\{-2,-3,-4\}$ or $\{-2,-3,-5\}$.

Case (II-4) $r=2$ and $\left(D_{1}^{2}\right)=-2,\left(D_{2}^{2}\right) \leq-3$.
We shall consider these cases separately in $\S 5, \S 6$ and part II. As remarked in the Introduction, Cases (II-3), (II-4) are "3-component case" and " 2 -component case" respectively.

In $\S 6$ and II we shall be tacitly using the following useful result very often for estimating the coefficients of irreducible components in D^{*}. (For proof, cf. [18, Lemma 1.7]). Write $D=\sum_{i=1}^{n} D_{i}$.

Lemma 3.12 Let $\left\{B_{1}, \cdot \cdot, B_{r}\right\}(1 \leq r \leq n)$ be a subset of $\left\{D_{1}, \cdots D_{n}\right\}$, say $B_{i}=D_{i}(1 \leq i \leq r)$. Assign formally the numbers B_{i}^{2} to B_{i} so that $D_{i}^{2} \leq B_{i}^{2} \leq-2$ and $B_{i} \cdot K_{\tilde{S}}:=-2-B_{i}^{2}$. Write $D^{*}=\sum_{i=1}^{n}$ alpha D_{i}. Define rational numbers b_{1}, \cdots, b_{r} by the conditions

$$
B_{j} \cdot\left(K_{\widetilde{S}}+\sum_{i=1}^{r} b_{i} B_{i}\right)=0(j=1, \cdots, r),
$$

where $B_{i} \cdot B_{j}:=D_{i} \cdot D_{j}$ if $i \neq j$.
Then $\alpha_{i} \geq b_{i} \geq 0(i=1, \cdots, r)$. Taking $r=1$, we obtain $\alpha_{i} \geq 1+2 / D_{i}^{2}$.

§4. The proof of the Main theorem when $\left|K_{\tilde{S}}+C+D\right| \neq \phi$

In this section we prove the Main Theorem stated in the introduction under assumption that $\left|K_{\tilde{S}}+C+D\right| \neq \phi$.

By the discussion in Remark 3.4, we need only to consider the cases (I-2), (I-4a) and (I-4b).

First we dispose of the cases (I-4a) and (I-4b).
Consider the case (I-4a). By two blowing-ups we get a smooth projective surface X with a morphism $g: X \rightarrow \tilde{S}$ such that the total transform B of
$C \cup D^{\prime \prime}$ is a divisor with simple normal crossings and has four irreducible components with a (-1)-curve B_{0} meeting the three other components B_{1}, B_{2}, B_{3}. Further, $B_{1}^{2}=-2, B_{2}^{2}=-3, B_{3}^{2}=-4$ or -5 .

Let U be a small nice "tubular" neighbourhood of $B_{0} \cup B_{1} \cup B_{2} \cup B_{3}$ in X. Then Mumford's result in [14] shows that $\pi_{1}(\partial U)$ has the following presentation :

$$
<e_{0}, e_{1}, e_{2}, e_{3} \mid e_{1}^{2}=e_{2}^{3}=e_{3}^{\ell}=e_{0}, e_{1} e_{2} e_{3}=e_{0}>
$$

where $\ell=4$ or 5 .
It is well known that $\pi_{1}(\partial U)$ is then a finite group. On the other hand, the intersection matrix of $B_{0}+B_{1}+B_{2}+B_{3}$ has one positive eigenvalue. Hence by Lemma 1.10, we have a surjection

$$
\pi_{1}\left(U-B_{0} \cup B_{1} \cup B_{2} \cup B_{3}\right) \rightarrow \pi_{1}\left(X-g^{-1}(C \cup D)\right) .
$$

We have also a surjection $\pi_{1}(\tilde{S}-C \cup D) \rightarrow \pi_{1}(\tilde{S}-D)$. Now it follows from $\pi_{1}\left(X-g^{-1}(C \cup D)\right) \cong \pi_{1}(\tilde{S}-C \cup D)$ that $\pi_{1}(\tilde{S}-D)$ is finite.

The proof for the case ($\mathrm{I}-4 \mathrm{~b}$) is completely similar.
Now we consider the case (I-2). Then $C+D^{\prime \prime}$ has simple normal crossings, the dual graph of $C+D^{\prime \prime}$ is a simple loop of smooth rational curves and $D^{\prime}=D-D^{\prime \prime}$ is disjoint from $C+D^{\prime \prime}$.

Let U_{0} be a small nice tubular neighbourhood of $D^{\prime \prime}$ in \tilde{S} and U_{1} that of C in \widetilde{S}.

We can write $\left(U_{0}-D\right) \cap\left(U_{1}-D\right)$ as a disjoint union $N_{0} \cup N_{1}$, where each N_{i} is homeomorphic to $\Delta^{*} \times \Delta$, where

$$
\Delta=\{z \in \mathrm{C} \| z \mid<1\} \Delta^{*}=\Delta-\{0\} .
$$

By Mumford's presentation for $\pi_{1}\left(\partial U_{0}\right)$, we see immediately that "the" loop γ_{1} in N_{0} around $D^{\prime \prime}$ generates $\pi_{1}\left(\partial U_{0}\right)$. Similarly, the loop γ_{2} in N_{1} around $D^{\prime \prime}$ generates $\pi_{1}\left(\partial U_{0}\right)$. We can assume that γ_{1} is a small loop in C around one point in $C \cap D^{\prime \prime}$ and γ_{2} a small loop in C around the other point in $C \cap D^{\prime \prime}$. In $\pi_{1}(C-D)$, we have $\gamma_{1} \cdot \gamma_{2}=1$. Further, $\pi_{1}\left(U_{1}-D\right) \cong \mathbf{Z}$ generated by γ_{1}.

Now we use Lemma 1.14.

We apply this to the space $A=\left(U_{0}-D\right) \cup\left(U_{1}-D\right)$ with $A_{0}=U_{0}-D, A_{1}=$ $U_{1}-D$. Since $D "$ is contracted to a quotient singularity on $S, \pi_{1}\left(U_{0}-D\right)$ is a cyclic finite group. Then $\pi_{1}\left(U_{0} \cup U_{1}-D\right)$ has the presentation :

$$
\pi_{1}\left(U_{0}-D\right) * \pi_{1}\left(U_{1}-D\right) * \mathbf{Z}(u)
$$

with relations

$$
\gamma_{1}=g_{0}, g_{0}^{n}=u^{-1} \gamma_{1}^{-1} u
$$

where g_{0} is the generator of $\pi_{1}\left(U_{0}-D\right)$ coming from γ_{1} and g_{0}^{n} the generator of $\pi_{1}\left(U_{0}-D\right)$ coming from γ_{2}.

It follows that we have an exact sequence

$$
(1) \rightarrow \pi_{1}\left(U_{0}-D\right) \rightarrow \pi_{1}\left(U_{0} \cup U_{1}-D\right) \rightarrow \mathbf{Z} \rightarrow(1)
$$

The intersection matrix of $C+D$ has one positive eigenvalue. Heñce by Lemma 1.10, we have a surjection

$$
\pi_{1}\left(U_{0} \cup U_{1}-D\right) \rightarrow \pi_{1}\left(S^{o}\right)
$$

Let K be the kernel of this homomorphism. Then we get an isomorphism

$$
\pi_{1}\left(U_{0} \cup U_{1}-D\right) /\left(\pi_{1}\left(U_{0}-D\right) \cdot K\right) \cong \mathbf{Z} /(a)
$$

for some $a \geq 0$, i.e.,

$$
\pi_{1}\left(S^{\circ}\right) /\left(\pi_{1}\left(U_{0}-D\right) \cdot K / K\right) \cong \mathbf{Z} /(a)
$$

The group $\left(\pi_{1}\left(U_{0}-D\right) \cdot K / K\right)$ is clearly finite.
Now by Proposition 1.7, $\pi_{1}\left(S^{\circ}\right)$ does not have normal subgroups of arbitrarily large indices. It follows that $\pi_{1}\left(S^{\circ}\right)$ is finite.
§5. The proof of the main theorem in the case (II-1) and (II-2)
We consider the case (II-1) or (II-2) in Remark 3.11. We shall employ the notation there. First of all, we have the following Theorem 5.1 which is the consequence of $\S 4$, Theorem 5.2 below and Lemma 2.2 .

Theorem 5.1. Assume the case (II-1) of Remark 3.11 takes place. Then $\pi_{1}\left(S^{\circ}\right)$ is a finite group.

Theorem 5.2 (cf. [18, Theorem 5.1]). Assume the case (II-1) of Remark 3.11 takes place. Then one of the following cases occurs :
(1) S° is affine-ruled.
(2) There is an irreducible curve C^{\prime} such that $-C^{\prime} \cdot\left(K_{\tilde{S}}+D^{*}\right)=-C$. $\left(K_{\tilde{s}}+D^{*}\right)$ while $\left|C^{\prime}+D+K_{\tilde{s}}\right| \neq \phi$.
(3) $C+D$ has the configuration given in [18, Picture 10]. In particular, there exists a P^{1}-fibration $\varphi=\Phi_{\left|2 C+D_{1}+D_{2}\right|}: \tilde{S} \rightarrow \mathrm{P}^{1}$ and there are two irreducible components D_{3}, D_{4} of D such that $D-D_{3}-D_{4}$ are contained in fibers and D_{3} and D_{4} are cross-sections. Hence the restriction morphism $\varphi_{\mid S^{\circ}}: S^{o} \rightarrow \mathbf{P}^{1}$ is a \mathbf{C}^{*}-fibration.

Next we consider the case(II-2) of Remark 3.11. We employ the following notations. Let Δ be the connected component of D containing D_{1}. Then either Δ is a linear chain, or a fork with a central component R and three twigs T_{i} 's, i.e., $\Delta=R+T_{1}+T_{2}+T_{3}$.

Remark 5.3. Denote by $d_{i}=d\left(T_{i}\right)$ the absolute value of the determinant of the intersection matrix of T_{i}. Suppose $d_{1} \leq d_{2} \leq d_{3}$. Then $\left\{d_{1}, d_{2}, d_{3}\right\}$ is one of the following : $\{2,2, n\},\{2,3,3\},\{2,3,4\},\{2,3,5\}$. In particular, $\sum \frac{1}{d_{i}}>1$.

Now we shall prove the following Theorem 5.4.
Theorem 5.4. Assume that the case(II-2) of Remark 3.11 takes place. Then $\pi_{1}\left(S^{\circ}\right)$ is a finite group.

Proof. Let Δ be the connected component of D such that C meets the irreducible component D_{0} of Δ. Let U be a small tubular neighborhood of $C \cup \Delta$ in \widetilde{S}. A small loop γ around D_{o} can be taken to be in C around the point $C \cap D_{0}$. As S has rank 1, $C+\Delta$ supports an effective divisor with strictly positive self-intersection. By Lemma 1.10 we have a surjection $\pi_{1}(U-\Delta) \rightarrow$ $\pi_{1}\left(S^{\circ}\right)$. We can write U as a union $U_{1} \cup U_{2}$, where U_{1} is a small tubular neighborhood of Δ and U_{2} that of C. Then $U-\Delta=\left(U_{1}-\Delta\right) \cup\left(U_{2}-D_{o}\right)$ and $\left(U_{1}-\Delta\right) \cap\left(U_{2}-D_{0}\right)$ is homeomorphic to $B^{*} \times B$, where $\left.B=\{z \in \mathrm{C}\}|z|<1\right\}$ and $B^{*}=B-\{0\}$. Since $U_{2}-D_{o}$ is a disc bundle over A^{1}, we see by VanKampen theorem that $\pi_{1}(U-\Delta)$ is a homomorphic image of $\pi_{1}\left(U_{1}-\Delta\right)$.

As Δ contracts to a quotient singularity, $\pi_{1}\left(U_{1}-\Delta\right)$ is finite and hence so is $\pi_{1}\left(S^{o}\right)$.
§6. The proof of the main theorem in the case (II-3)
In the present section, we consider the case (II-3) in Remark 3.11. So, the (-1)-curve C meets exactly three irreducible components D_{1}, D_{2}, D_{3} of D and $D_{1}^{2}=-2, D_{2}^{2}=-3, D_{3}^{2}=-3,-4,-5$. Let $\Delta_{i}(i=1,2,3)$ be the connected component of D containing D_{i}. Since $|K+C+D|=\phi$ in our case, $C+\Delta_{1}+\Delta_{2}+\Delta_{3}$ is a tree of \mathbf{P}^{1} 's (cf. Lemma 3.5).

We shall prove the following Theorem 6.1 which is a consequence of Lemma 6.5, Theorems 6.12, 6.14 and 6.15.

Theorem 6.1. Suppose that the case(II-8) in Remark 3.11 occurs. Then either $\pi_{1}\left(S^{\circ}\right)$ is finite or there is a minimal (-1)-curve E on \widetilde{S} such that Case (II-4) in Remark 3.11, with C replaced by E, takes place.

First of all, we quote the following lemma from [18, Lemma 2.3]).
Lemma 6.2. Suppose the case(II-3) occurs. Then either $G\left(:=K_{\tilde{S}}+\right.$ $\left.2 C+D_{1}+D_{2}+D_{3}\right) \sim 0$, or there exists a (-1)-curve Γ such that $G \sim \Gamma$ and $\Gamma \cap\left(C+D_{1}+D_{2}+D_{2}\right)=\phi$.

Lemma 6.3. Suppose $K_{\tilde{S}}+2 C+D_{1}+D_{2}+D_{3} \sim 0$. Then D_{i} is an isolated irreducible component of D for $i=1,2$ and 3 .

Proof. Suppose to the contrary that D_{i} is not an isolated irreducible component of D for some i. Then D_{i} meets an irreducible component B_{i} of $D-D_{i}$. This leads to $0=B_{i} \cdot\left(K_{\tilde{s}}+2 C+D_{1}+D_{2}+D_{3}\right) \geq B_{i} . D_{i}>0$, a contradiction.

Remark 6.4. In fact, the converse of Lemma 6.3 is also true. Namely, assume that D_{i} is isolated for $i=1,2$ and 3 . Then $G\left(:=K_{\tilde{S}}+2 C+D_{1}+\right.$ $\left.D_{2}+D_{3}\right) \sim 0$.

Lemma 6.5. Suppose that for $i=1,2$ and $3, D_{i}$ is an isolated irreducible component of D, i.e., $\Delta_{i}=D_{i}$. Then $\pi_{1}\left(S^{\circ}\right)$ is a finite group.

Proof. We use $D_{1}^{2}=-2, D_{2}^{2}=-3, D_{3}^{2}=-3,-4$ or -5 and Lemmas 1.10 and 1.13 .

In view of Lemma 6.5, we may assume, from now on till the end of the section, that D_{i} is not an isolated irreducible component for $i=1,2$ or 3 . Therefore, $K_{\tilde{S}}+2 C+D_{1}+D_{2}+D_{3} \sim \Gamma$ by Lemma 6.3.

Lemma 6.6. (1) There are no $(-n)$-curves in $D-D_{2}-D_{3}$ with $n \geq 4$ and there are at most two (-3)-curves in $D-D_{2}-D_{3}$.
(2) Each connected component of D contains at most one $(-n)$-curve with $n \geq 3$. In particular, $\Delta_{i}-D_{i}$ consists of (-2)-curves for $i=2$ and 3 , and Δ_{1} consists of (-2)-curves and possibly one (-3)-curve.

Proof. (1) Let $B_{i}(i=1, \cdots, s)$ be all $\left(-n_{i}\right)$-curves in $D-D_{1}-D_{2}-D_{3}$ with $n_{i} \geq 3$. Note that $D^{*} \geq \sum_{i}\left(n_{i}-2\right) / n_{i} B_{i}$, and by Lemma 1.1, $0<$ $-\Gamma .\left(K+D^{*}\right)=1-\Gamma . D^{*} \leq 1-\sum_{i}\left(n_{i}-2\right) / n_{i} \Gamma \cdot B_{i} \leq 1-\sum_{i}\left(n_{i}-2\right) / n_{i} K_{\tilde{S}} \cdot B_{i}$ (cf. Lemma 6.2) $=1-\sum_{i}\left(n_{i}-2\right)^{2} / n_{i}$. Then the assertion (1) follows from this observation.
(2) Let Δ be a connected component of D. Suppose to the contrary that Δ contains two irreducible components of self intersection number ≤-3. Take a linear chain $G=G_{1}+\cdots+G_{t}(t \geq 2)$ in Δ such that $G_{1}^{2} \leq-3, G_{t}^{2} \leq$ $-3, G_{i} \cdot G_{i+1}=1(i=1, \cdots, t-1)$. Then $D^{*} \geq 1 / 2 \sum_{i} G_{i}$. Note that $0<$ $-\Gamma .\left(K_{\tilde{s}}+D^{*}\right) \leq 1-1 / 2 \sum_{i}$ Г. G_{i}. So, Г. $\sum_{i} G_{i}=0,1$.

If $\Delta \neq \Delta_{i}$ for $i=2$ and 3 , then for $k=1$ and t we have $\Gamma . G_{k} \geq K_{\tilde{S}} \cdot G_{k}$ (cf. Lemma 6.2) ≥ 1. So, $\Gamma . \sum_{i} G_{i} \geq 2$. This is a contradiction.

Suppose $\Delta=\Delta_{i}$ for $i=2$ or 3 . We may assume that $G_{1}=D_{i}$. If $t=2$, then $\Gamma \cdot G_{2} \geq\left(K_{\tilde{S}}+D_{i}\right) \cdot G_{2} \geq 2$, a contradiction. If $t \geq 3$, then $\Gamma .\left(G_{2}+G_{t}\right) \geq\left(K_{\tilde{S}}+D_{i}\right) \cdot\left(G_{2}+G_{t}\right) \geq 2$, a contradiction.

Now the following lemma follows from Lemmas 6.2 and 6.6.
Lemma 6.7. Let B be an irreducible component of D. Then $B . \Gamma>0$ if and only if one of the following cases occurs :
(1) $B . D_{i}=1$ for $i=1,2$ or $3, B^{2}=-2$ and $B . \Gamma=1$.
(2) $B \cdot D_{1}=1, B^{2}=-3$ and $B \cdot \Gamma=2$.
(3) $B \leq \Delta_{1}, B . D_{1}=0, B^{2}=-3$ and $B \cdot \Gamma=1$.
(4) B is contained in a connected component Δ of D other than Δ_{i} ($i=$ $1,2,3), \quad B^{2}=-3, \Delta-B=0$ or consists of only (-2)-curves, and $B \cdot \Gamma=1$.

Lemma 6.8. $K_{\tilde{S}}^{2}=2+D_{3}^{2}$.
Proof. Use Lemma 6.2.
Lemma 6.9. (1) For $i=2$ or $3, \Delta_{i}$ is a linear chain with D_{i} as a tip.
(2) Suppose that $D_{3}^{2} \leq-4$. Then for both $i=2$ and $3, \Delta_{i}$ is a linear chain with D_{i} as a tip.
(3) Suppose that Δ_{i} is a fork for $i=2$ or 3 . Then D_{i} is a tip.
(4) If Δ_{1} is a fork, then Δ_{1} consists of (-2)-curves.

Proof. (1) Suppose to the contrary that for both $i=2$ and 3 , either Δ_{i} is a fork or Δ_{i} is a linear chain but D_{i} is not a tip. Then $D^{*} \geq 1 / 2 D_{2}+1 / 2 D_{3}$. This leads to $0<-C .\left(K+D^{*}\right) \leq 1-C .\left(1 / 2 D_{2}+1 / 2 D_{3}\right)=0$, a contradiction.
(2) Assume $D_{3}^{2} \leq-4$. Suppose that (2) is not true for $i=2$ (resp. $i=3$). Then $D^{*} \geq 1 / 2 D_{2}+1 / 2 D_{3}$ (resp. $D^{*} \geq 1 / 3 D_{2}+2 / 3 D_{3}$). We reach a contradiction as in (1). So, (2) is true.
(3) Suppose that Δ_{i} is a fork but D_{i} is not a tip for $i=2$ or 3 . Then $D^{*} \geq 2 / 3 D_{i}+1 / 3 D_{j}$ where $\{i, j\}=\{2,3\}$ as sets. We reach a contradiction as in (1).
(4) Suppose that Δ_{1} is fork but does not consist of (-2)-curves. Then Δ_{1} contains a (-3)-curve B and $\Delta_{1}-B$ consists of (-2)-curves (cf. Lemma 6.6). Note that $D^{*} \geq 1 / 2 B$.

Case(1) B is adjacent to D_{1}. Then $\Gamma . B=2$ by Lemma 6.7. This leads to $0<-\Gamma .\left(K_{\widetilde{\mathcal{S}}}+D^{*}\right) \leq 1-\Gamma \cdot(1 / 2 B) \leq 0$, a contradiction. So, B is not adjacent to D_{1}.

Let $B_{1}, B_{2}, \cdots, B_{s}$ be all irreducible components of Δ_{1} adjacent to D_{1}. Then $\Gamma \cdot B_{i}=\Gamma \cdot B=1$ by Lemma 6.7.

Case(2) D_{1} is the central component. Then $s=3$ and $D^{*} \geq 1 / 2 B+$ $1 / 2 D_{1}+1 / 2 B_{i}+1 / 4 B_{j}+1 / 4 B_{k}$, where $\{i, j, k\}=\{1,2,3\}$ as sets and B_{i} and B are contained in one and the same twig of Δ_{1}. This leads to $0<-\Gamma$. $\left(K_{\tilde{s}}+\right.$ $\left.D^{*}\right) \leq 1-\Gamma .\left(1 / 2 B+1 / 2 B_{i}+1 / 4 B_{j}+1 / 4 B_{k}\right)=-1 / 2$, a contradiction. So, D_{1} is not the central component of Δ_{1}.

Case(3) B is the central component of Δ_{1}. So, D_{1} is contained in a twig T_{1} of Δ_{1}. Let $G=G_{1}+\cdots+G_{t}(t \geq 2)$ be a linear chain in $T_{1}+B$ such that
$G_{1}=D_{1}, G_{i} \cdot G_{i+1}=1(i=1, \cdots, t-1), G_{t}=B$. Then $D^{*} \geq \sum_{i=1}^{t} i /(t+1) G_{i}$. Note that $G_{2}=B_{j}$ for $j=1, \cdots, s-1$ or s. This leads to $0<-\Gamma .\left(K_{\tilde{s}}+D^{*}\right) \leq$ $1-\Gamma .\left(2 /(t+1) B_{j}+t /(t+1) B\right)=-1 /(t+1)$, a contradiction. So, B is not the central component of Δ_{1}.

Since the above cases (2) and (3) are impossible, D_{1} and B are all contained in twigs of Δ_{1}. We shall see in the cases (4) and (5) below that this again leads to a contradiction.

Case(4) D_{1} and B are in one and the same twig of Δ_{1}. Let $G=G_{1}+$ $\cdots+G_{t}(t \geq 2)$ be a linear chain in the twig such that $G_{1}=D_{1}, G_{i} \cdot G_{i+1}=$ $1(i=1, \cdots, t-1), G_{t}=B$. Note that $G_{2}=B_{j}$ for $j=1, \cdots, s-1$ or s. If the distance from D_{1} to the central component of Δ_{1} is shorter than that from B to the central component, then $D^{*} \geq \sum_{i} 1 / 2 G_{i}$. This leads to $0<-\Gamma .\left(K_{\tilde{S}}+D^{*}\right) \leq 1-\Gamma .\left(1 / 2 B+1 / 2 B_{j}\right)=0$, a contradiction. If the distance from D_{1} to the central component of Δ_{1} is longer than that from B to the central component, then $D^{*} \geq \sum_{i} i /(t+1) G_{i}$. This leads to $0<-\Gamma .\left(K_{\tilde{S}}+D^{*}\right) \leq 1-\Gamma .\left(2 /(t+1) B_{j}+t /(t+1) B\right)=-1 /(t+1)$, a contradiction. So, Case(4) is impossible.

Case(5) D_{1} and B are contained in two different twigs T_{1}, T_{2} of Δ_{1}. Let R be the central component of Δ_{1}. Let $G=G_{1}+\cdots+G_{t}(t \geq 2)$ be a linear chain in $T_{1}+R$ such that $G_{1}=D_{1}, G_{i} . G_{i+1}=1(i=1, \cdots, t-1), G_{t}=R$. Then $G_{2}=B_{j}$ for $j=1, \cdots, s-1$ or s.

Case(5.a) T_{2} has more than two irreducible components. Then $T_{1}=$ D_{1} because Δ_{1} is contractible to a quotient singularity, and $R=B_{j}$ for $j=1, \cdots, s-1$ or s. This leads to $D^{*} \geq 1 / 2 B+1 / 2 B_{j}+1 / 4 D_{1}$ and $0<$ $-\Gamma .\left(K_{\tilde{s}}+D^{*}\right) \leq 1-\Gamma .\left(1 / 2 B+1 / 2 B_{j}\right)=0$, a contradiction. So, Case(5.a) is impossible.

Case(5.b) $T_{2}=B$. Then $D^{*} \geq(t+2) /(t+6) B+\sum_{i} 2 i /(t+6) G_{i}$. This leads to $0<-\Gamma .\left(K_{\tilde{S}}+D^{*}\right) \leq 1-\Gamma \cdot\left((t+2) /(t+6) B+4 /(t+6) B_{j}\right)=0$, a contradiction. So, Case(5.b) is impossible.

Case(5.c) $T_{2}=B+B^{\prime}$ where B^{\prime} is adjacent to R. Then $t=2,3$ because Δ_{1} is contractible to a quotient singularity. Moreover, $D^{*} \geq 4 /(10-t) B+$ $(2+t) /(10-t) B^{\prime}+\sum_{i} 2 i /(10-t) G_{i}$. This implies that $0<-\Gamma .\left(K_{\tilde{S}}+D^{*}\right) \leq$ $1-\Gamma .\left(4 /(10-t) B+4 /(10-t) B_{j}\right)=(2-t) /(10-t) \leq 0$, a contradiction. So, Case(5.c) is impossible.

Case(5.d) $T_{2}=B+B^{\prime}$ where B is adjacent to R. Then we have also $D^{*} \geq(t+2) /(t+10) B^{\prime}+2(t+2) /(t+10) B+\sum_{i} 4 i /(t+10) G_{i}$. We reach
$0<-\Gamma .\left(K_{\tilde{s}}+D^{*}\right) \leq 1-\Gamma \cdot\left(2(t+2) /(t+10) B+8 /(t+10) B_{j}\right)=-(t+$ 2) $/(t+10)<0$, a contradiction. So, Case(5.d) is impossible.

This proves Lemma 6.9.
Lemma 6.10. Assume that Δ_{1} does not consist of (-2)-curves. Then for both $i=2$ and $3, \Delta_{i}$ is a linear chain with D_{i} as a tip.

Proof. Suppose Lemma 6.10 is false. Then for $k=2$ or 3 , either Δ_{k} is a fork or a linear chain but D_{k} is not a tip. Decompose D^{*} into the form : $D^{*}=$ $\sum_{i=1}^{3} \Delta_{i}^{*}+D^{\prime *}$ such that $\operatorname{Supp} \Delta_{i}^{*} \subseteq \Delta_{i}$ and $\operatorname{Supp} D^{\prime *} \subseteq D^{\prime}:=D-\sum_{i=1}^{3} \Delta_{i}$. On the one hand, we have $0<1-\Gamma \cdot \sum_{i} \Delta_{i}^{*}-\Gamma \cdot D^{\prime *}$. On the other hand, we shall show that $\Gamma . \Delta_{1}^{*} \geq 1 / 2$ and $\Gamma . \Delta_{k}^{*} \geq 1 / 2$. Thus, we would reach a contradiction and therefore prove Lemma 6.10.

Let B_{1}, \cdots, B_{s} be all irreducible components of Δ_{k} adjacent to D_{k}. Then $\Gamma . B_{i}=1$ (cf. Lemmas 6.6 and 6.7). If $s \geq 2$, then $\Delta_{k}^{*} \geq 1 / 2 D_{k}+1 / 4 \sum_{i} B_{i}$ and $\Gamma . \Delta_{k}^{*} \geq 1 / 2$. If $s=1$ then, by the additional assumption, Δ_{k} is a fork with D_{k} as a tip. Therefore, $\Delta_{k}^{*} \geq 1 / 2 D_{k}+1 / 2 B_{1}$ and $\Gamma . \Delta_{k}^{*} \geq 1 / 2$.

Let B_{1}, \cdots, B_{s} be all irreducible components of Δ_{1} adjacent to D_{1}. If $B_{i}^{2} \leq-3$ for some i, then $\Delta_{1}^{*} \geq 1 / 5 D_{1}+2 / 5 B_{i}$. This leads to $\Gamma . \Delta_{1}^{*} \geq 4 / 5>$ $1 / 2$ because $B_{i}^{2}=-3$ and $\Gamma . B_{i}=2$ (cf. Lemmas 6.6 and 6.7). Suppose that $B_{i}^{2}=-2$ for all i. By the hypothesis, $\Delta_{1}-\sum_{i} B_{i}$ contains a (-3)- curve B (cf. Lemma 6.6). Let $G:=G_{1}+\cdots+G_{t}(t \geq 3)$ be a linear chain in Δ_{1} such that $G_{1}=D_{1}, G_{2}=B_{1}$ and $G_{t}=B$. Then $\Delta_{1}^{*} \geq \sum_{i} i /(2 t+1) G_{i}$. This leads to $\Gamma . \Delta_{1}^{*} \geq \Gamma \cdot\left(2 /(2 t+1) B_{1}+t /(2 t+1) B\right)=(t+2) /(2 t+1)>1 / 2(\mathrm{cf}$. Lemma 6.7).

This proves Lemma 6.10.
Lemma 6.11. Assume that Δ_{1} is linear chain but D_{1} is not a tip of Δ_{1}. Then Δ_{1} consists of (-2)-curves.

Proof. Suppose Lemma 6.11 is false. Then by Lemma 6.11, Δ_{2}, Δ_{3} are linear with D_{2}, D_{3} as tips. Then Δ_{1} contains a (-3)- curve B and $\Delta_{1}-B$ consists of (-2)-curves (cf. Lemma 6.6). By the hypothesis, D_{1} meets two irreducible components B_{1}, B_{2} of Δ_{1}.

Claim(1). B is not adjacent to D_{1}.
If B is adjacent to D_{1}, say $B=B_{2}$, then $D^{*} \geq 3 / 7 B+2 / 7 D_{1}+1 / 7 B_{1}$.

By Lemma 6.7, $. B=2$ and $\Gamma . B_{2}=1$. This leads to $0<-\Gamma .\left(K_{\tilde{S}}+D^{*}\right) \leq$ $1-\Gamma .\left(3 / 7 B+1 / 7 B_{2}\right)=0$, a contradiction. This proves Claim(1).

By Claim(1), $B_{1}^{2}=B_{2}^{2}=-2$. Let $S_{0}:=2\left(C+D_{1}\right)+B_{1}+B_{2}$ and let $\varphi: \widetilde{S} \rightarrow \mathrm{P}^{1}$ be the P^{1}-fibration with S_{0} as a singular fiber. Then D_{2} and D_{3} are 2-sections of φ. Let S_{1} be an arbitray singular fiber, let $E_{i}(i=1, \cdots, s)$ be all (-1)-curves in S_{1} and let a_{i} be the coefficient of E_{i} in S_{1}. By the minimality of $-C .\left(K_{\tilde{S}}+D^{*}\right)$ and by noting that C has coefficient two in S_{0}, we see that $\sum_{i} a_{i}=2$ and for all $i,-E_{i} \cdot\left(K_{\tilde{S}}+D^{*}\right)=-C .\left(K_{\tilde{S}}+D^{*}\right)$. Thus S_{1} has one of the following two dual graphs:

$$
\begin{align*}
& (-1)-(-2)-(-2)-\cdots-(-2)-(-2)-(-2) \tag{1}\\
& (-1)-(-2)-(-2)-\cdots-(-2)-(-2)-(-1)
\end{align*}
$$

[Bwhere in the first (resp. second) graph S_{1} has three or more (resp. two or more) irreducible components. So, no singular fiber contains a ($-n$)-curve with $n \geq 3$. In particular, B must be adjacent to B_{1} or B_{2}, say B_{2}, and B is a cross-section of φ.

Claim(2). $\Delta_{1}=B_{1}+D_{1}+B_{2}+B$. In particular, $D^{*}=1 / 9 B_{1}+2 / 9 D_{1}+$ $3 / 9 B_{2}+4 / 9 B+\sum_{i=2}^{3} \Delta_{i}^{*}+D^{\prime *}$ where Supp $\Delta_{i}^{*} \subseteq \Delta_{i}$ and $\operatorname{Supp} D^{\prime *} \subseteq D^{\prime}:=$ $D-\sum_{i=1}^{3} \Delta_{i}$.

Claim(2) is equivalent to saying that B_{1} and B are tips. If B_{1} is not a tip then $D^{*} \geq 2 / 11 B_{1}+3 / 11 D_{1}+4 / 11 B_{2}+5 / 11 B$. This leads to $0<$ $-\Gamma .\left(K_{\tilde{s}}+D^{*}\right) \leq 1-\Gamma .\left(2 / 11 B_{1}+4 / 11 B_{2}+5 / 11 B\right)=0(\mathrm{cf}$. Lemma 6.7), a contradiction. If B is not a tip, then $D^{*} \geq 1 / 7 B_{1}+2 / 7 D_{1}+3 / 7 B_{2}+4 / 7 B$. This leads to $0<-\Gamma .\left(K_{\tilde{s}}+D^{*}\right) \leq 1-\Gamma .\left(1 / 7 B_{1}+3 / 7 B_{2}+4 / 7 B\right)=-1 / 7$, again a contradiction. This proves Claim(2).

Claim(3). (1) For both $i=2$ and $3, \Delta_{i}$ is a linear chain with D_{i} as a tip. (cf. Lemma 6.10.)
(2) For $i=2$ or $3, \quad \Delta_{i}=D_{i}$.

If for both $i=2$ and $3, \Delta_{i}>D_{i}$, then $D^{*} \geq 2 / 9 D_{1}+2 / 5 D_{2}+2 / 5 D_{3}$. This leads to $0<-C .\left(K_{\tilde{S}}+D^{*}\right) \leq 1-C .\left(2 / 9 D_{1}+2 / 5 D_{2}+2 / 5 D_{3}\right)=-1 / 45<0$, a contradiction. This proves (2). Thus, Claim(3) is proved.

Since B, D_{2}, D_{3} are not contained in fibers of φ and since $\rho(S)=1$, there are two singular fibers S_{1}, S_{2} of φ each of which has the second type of the above picture. By Claim(3), both 2 -sections D_{2} and D_{3} meet only (-1)curves of S_{i} for $i=1$ or 2 , say $i=1$. Let E_{1}, E_{2} be two (-1)-curves in S_{1}.

Note that the cross-section B meets E_{1} or E_{2}. Thus, $5=\left(B+D_{2}+D_{3}\right) \cdot S_{1}=$ $\left(B+D_{2}+D_{3}\right) \cdot\left(E_{1}+E_{2}\right)$. Thus, $\left(B+D_{2}+D_{3}, E_{k}\right) \geq 3$ for $k=1$ or 2 . This, together with $D^{*} \geq 4 / 9 B+1 / 3 D_{2}+1 / 3 D_{3}$, implies that $0<-E_{k} \cdot\left(K_{\tilde{s}}+D^{*}\right) \leq$ $1-E_{k} \cdot\left(4 / 9 B+1 / 3 D_{2}+1 / 3 D_{3}\right) \leq 0$, a contradiction.

This proves Lemma 6.11.
Now we shall prove the following
Theorem 6.12. Suppose that either Δ_{1} is a fork, or Δ_{1} is a linear chain but D_{1} is not a tip of Δ_{1}. Then we reduce to the case in $\S 3.1$ with C replaced by a new minimal (-1)-curve.

Proof. By the assumption, Δ_{1} consists of only (-2)-curves (cf. Lemmas 6.9 and 6.11). So, there are irreducible components $B_{1}, \cdots, B_{r}(r \geq 3)$ of Δ_{1} such that $B_{1}=D_{1}, B_{i} . B_{i+1}=B_{r-2} . B_{r}=1(i=1, \cdots, r-2)$ and $S_{0}:=2\left(C+\sum_{i=1}^{r-2} B_{i}\right)+B_{r-1}+B_{r}$ has the first type of the picture in Lemma 6.11. We see that $r=3$ if Δ_{1} is a linear chain or a fork with D_{1} as the central component.

Let $\varphi: \tilde{S} \rightarrow \mathbf{P}^{1}$ be the \mathbf{P}^{1} - fibration with S_{0} as a singular fiber. Then D_{2} and D_{3} are 2 -sections of φ. By the same reasoning as in Lemma 6.11, every singular fiber of φ has one of two types in Lemma 6.11. Moreover, $-E .\left(K_{\tilde{S}}+D^{*}\right)=-C .\left(K_{\tilde{S}}+D^{*}\right)$ for every (-1)-curve E in a singular fiber of φ. Let $S_{0}, S_{1}, \cdots, S_{s}$ (resp. T_{1}, \cdots, T_{t}) be all singular fibers of the first (resp. second) type in Lemma 6.11. Then those $s+t+1$ ones are all singular fibers of φ. Let E_{i} (resp. $E_{j 1}, E_{j 2}$) be the (-1)-curve(s) in S_{i} (resp. T_{j}). Let $G_{i m}, H_{j n}$ be irreducible components of D. We can write S_{i}, T_{j} in the following forms :

$$
\begin{gathered}
S_{i}=2\left(E_{i}+\sum_{k=1}^{s_{i}-2} G_{i, k}\right)+G_{i, s_{i}-1}+G_{i, s_{i}}, \\
T_{j}=E_{j 1}+\sum_{k=1}^{t_{j}} H_{j, k}+E_{j 2},
\end{gathered}
$$

where $E_{0}=C, E_{i} \cdot G_{i, 1}=G_{i, k} \cdot G_{i, k+1}=G_{i, s_{i}-2} \cdot G_{i, s_{i}}=1\left(k=1, \cdots, s_{i}-\right.$ 2), $E_{j, 1} . H_{j, 1}=H_{j, k} \cdot H_{j, k+1}=H_{j, t_{j}} \cdot E_{j, 2}=1\left(k=1, \cdots, t_{j}-1\right)$.

Let $\sigma: \widetilde{S} \rightarrow \Sigma_{d}$ be a smooth blowing-down of all irreducible components in S_{i} 's and T_{j} 's except for $G_{i, s_{i}}$'s and $E_{j, 2}$'s. Here Σ_{d} is a Hirzebruch surface of
degree d. Let M_{d} be the minimal section of Σ_{d}. Then $\sigma\left(D_{k}\right) \sim 2 M_{d}+b_{k} \sigma\left(S_{0}\right)$ for $k=2$, 3. In particular, $\sigma\left(D_{k}\right)^{2} \equiv \sigma\left(D_{2}\right)^{2}-\sigma\left(D_{3}\right)^{2} \equiv 0(\bmod 4)$ for $k=2,3$.

Claim(1). (1) Suppose that $D_{k} \cdot E_{j a}=0$ for some j in $\{1, \cdots, t\}$, some k in $\{2,3\}$ and some a in $\{1,2\}$. Then we are reduced to the case in $\S 4$ with C replaced by $E_{j b}$ where $\{a, b\}=\{1,2\}$ as sets.
(2) Suppose that for $k=2$ or 3 and for some i in $\{1, \cdots, s\}$, we have $D_{k} \cdot E_{i}=0$ in the case $s_{i}=2$ and $D_{k} \cdot E_{i}=D_{k} \cdot G_{i, 1}=0$ in the case $s_{i} \geq 3$. Then we are reduced to the case in $\S 4$ with C replaced by E_{i}.

By the assumption, $2=D_{k} \cdot S_{j}=D_{k} \cdot\left(S_{j}-E_{j a}\right)$. So, $E_{j b}+D$ contains a loop and $\left|K_{\tilde{S}}+E_{j b}+D\right| \neq \phi$ (cf. Lemma 1.8). The first assertion of Claim(1) is proved.

In the case $s_{i}=2$, we have $2=D_{k} \cdot S_{i}=D_{k} \cdot\left(G_{i, 1}+G_{i, 2}\right)$. Hence $E_{i}+D$ contains a loop and the claim is proved. In the case $s_{i} \geq 3$, we have $D_{k} . G_{i, n}=$ 1 for some $2 \leq n \leq s_{i}-2$ or $D_{k} .\left(G_{i, s_{i}-1}+G_{i, s_{i}}\right)=2$ by the assumption and by $D_{k} \cdot S_{i}=2$. Then Δ_{k} can not be contracted to a quotient singularity, a contradiction.

This proves Claim(1).
By Claim(1), we may assume that for both $k=2$ and 3 , we have $D_{k} \cdot E_{j 1}=$ $D_{k} \cdot E_{j 2}=1$ for all j 's, that $D_{k} \cdot E_{i}=1$ for all i 's with $s_{i}=2$ and that $D_{k} \cdot\left(E_{i}+G_{i, 1}\right)=1$ for all i 's with $s_{i} \geq 3$.

Case(1). $D_{k} \cdot G_{i, 1}=1$ for some k in $\{2,3\}$ and some i in $\{1, \cdots, s\}$ with $s_{i} \geq 3$, say $i=1$. Then Δ_{k} is a fork with $G_{1, s_{1}-2}$ as the central component. Thus, $\Delta_{k} \cdot E_{i}=1$ for all $i \neq 1$ because Δ_{k} is contractible to a quotient singularity. By Lemma $6.9, \Delta_{k^{\prime}}$ is a linear chain with $D_{k^{\prime}}$ as a tip and $D_{3}^{2}=-3$, where $\left\{k, k^{\prime}\right\}=\{2,3\}$ as sets. Hence $D_{k^{\prime}} \cdot E_{i}=1$ for all i for otherwise $\Delta_{k^{\prime}}$ would be a fork. But then $\sigma\left(D_{k}\right)^{2}=-3+\sum_{i} s_{i}+\sum_{j}\left(t_{j}+1\right)-1$ and $\sigma\left(D_{k^{\prime}}\right)^{2}=-3+\sum_{i} s_{i}+\sum_{j}\left(t_{j}+1\right)$. This contradicts $\sigma\left(D_{2}\right)^{2}-\sigma\left(D_{3}\right)^{2} \equiv 0$ $(\bmod 4) . S o$ Case(1) is impossible.

Case(2) $D_{k} \cdot E_{\mathrm{i}}=1$ for both $k=2$ and 3 and for all i in $\{1, \cdots, s\}$. Then $\sigma\left(D_{k}\right)^{2}=D_{k}^{2}+\sum_{i} s_{i}+\sum_{j}\left(t_{j}+1\right)$ for both $k=2$ and 3 . Since $\sigma\left(D_{2}\right)^{2}-\sigma\left(D_{3}\right)^{2} \equiv$ $0(\bmod 4)$, we must have $D_{3}^{2}=-3$. Then $\sigma\left(D_{2}\right)^{2}=\sigma\left(D_{3}\right)^{2}$. Hence $\sigma\left(D_{2}\right) \sim$ $\sigma\left(D_{3}\right)$.Thus, $\sigma\left(D_{2}\right) \cdot \sigma\left(D_{3}\right)=\sigma\left(D_{2}\right)^{2}$. But $\sigma\left(D_{2}\right) \cdot \sigma\left(D_{3}\right)=\sum_{i} s_{i}+\sum_{j}\left(t_{j}+1\right)$. We reach a contradiction. So, Case(2) is impossible.

This proves Theorem 6.12.
Theorem 6.13. Suppose that Δ_{1} is a linear chain with D_{1} as a tip.

Then for both $i=2$ and $3, \Delta_{i}$ is a linear chain with D_{i} as a tip.
Proof. We consider, througout the proof, the case where Δ_{1} is a linear chain with D_{1} as a tip and for $k=2$ or $3, \Delta_{k}$ is either a fork or a linear chain but D_{k} is not a tip. We want to get a contradiction. By Lemma 6.10, Δ_{1} consists of (-2)-curves. By Lemma 6.9, we have $D_{3}^{2}=-3$ and $\Delta_{k^{\prime}}$ is a linear chain with $D_{k^{\prime}}$ as a tip, where $\left\{k^{\prime}, k\right\}=\{2,3\}$ as sets. So, we may assume that $k^{\prime}=2, k=3$ because $D_{2}^{2}=D_{3}^{2}=-3$. Let $G_{i}(1 \leq i \leq s ; s \geq 3)$ be irreducible components of Δ_{3} such that $G_{1}=D_{3}, G_{i} \cdot G_{i+1}=G_{s-2} \cdot G_{s}=$ $1(1 \leq i \leq s-2)$. If Δ_{3} is a linear chain then $s=3$, and if Δ_{3} is a fork then $s \geq 4$ because D_{3} is then a tip by Lemma 6.9.

Claim(1). $D-\sum_{i=1}^{3} \Delta_{i}$ consists of (-2 - curves.
Suppose to the contrary that $D-\sum_{i=1}^{3} \Delta_{i}$ contains a ($-n$)-curve B with $n \geq 3$. Then $B^{2}=-3$ by Lemma 6.6. Moreover, $\Delta_{2}=D_{2}$ for otherwise $D^{*} \geq 2 / 5 D_{2}+1 / 5 D_{2}^{\prime}+1 / 3 B+1 / 2\left(D_{3}+G_{2}+\cdots+G_{s-2}\right)+1 / 4 G_{s-1}+1 / 4 G_{s}$ and $0<-\Gamma .\left(K_{\tilde{S}}+D^{*}\right) \leq 1-\Gamma .\left(1 / 5 D_{2}^{\prime}+1 / 3 B+1 / 2 \sum_{i=1}^{s-2} G_{i}+1 / 4 G_{s-1}+1 / 4 G_{s}\right)=$ $1-1 / 5-1 / 3-1 / 2=-1 / 30$ (cf. Lemma 6.7), a contradiction. Here D_{2}^{\prime} is an irreducible component of Δ_{2} adjacent to D_{2}.

Let $R_{0}:=2\left(\Gamma+\sum_{i=2}^{s-2} G_{i}\right)+G_{s-1}+G_{s}$ and let $\psi: \widetilde{S} \rightarrow \mathbf{P}^{\mathbf{1}}$ be the \mathbf{P}^{1}-fibration with R_{0} as a singular fiber. Let R_{1} be the singular fiber of ψ containing $C+D_{1}+D_{2}$. Then there exists a (-1)-curve E such that $E . D_{2}=1$ and $R_{1}=2 C+D_{1}+D_{2}+E$. Note that B is a 2 -section of ψ because $R_{0} \cdot B=2 \Gamma \cdot B=2$ (cf. Lemma 6.7). Hence $2=R_{1} \cdot B=E \cdot B$. This leads to $0<-E \cdot\left(K_{\tilde{s}}+D^{*}\right) \leq 1-E \cdot\left(1 / 3 B+1 / 3 D_{2}\right)=0$ because $D^{*} \geq 1 / 3 B+1 / 3 D_{2}$. We reach a contradiction. This proves Claim(1).

Let $S_{0}:=4 C+2\left(D_{1}+G_{1}+\cdots+G_{s-2}\right)+G_{s-1}+G_{s}$. Let $\varphi: \widetilde{S} \rightarrow \mathrm{P}^{1}$ be the P^{1}-fibration with S_{0} as a singular fiber. Then D_{2} is a 4 -section. By Claim(1), every singular fiber S_{1} of φ other than S_{0} consists of (-1)-curves and (-2)-curves. So, it is easy to see that S_{1} has one of two types in Lemma 6.11. Let $S_{i}(i=1, \cdots, m)$, (resp. $\left.T_{j}(j=1, \cdots, n)\right)$ be all singular fibers of the first (resp. second) type. Then S_{i} 's, T_{j} 's are all singular fibers of φ. Let E_{i} (resp. $E_{i 1}, E_{i 2}$) be the (-1)-curve(s) in S_{i} (resp. T_{j}).

Claim(2). $\Delta_{2}=D_{2}$.
Suppose to the contrary that $\Delta_{2}=H_{1}+\cdots+H_{t}$ with $t \geq 2, H_{1}=$ $D_{2}, H_{i} \cdot H_{i+1}=1(i=1, \cdots, t-1)$. Let L_{1} be the singular fiber of φ containing $H_{2}+\cdots+H_{t}$. Then $L_{1}=T_{j}$ for some j, say $j=1$ because D_{2} is a 4 -section and D_{2} is a tip of the linear chain Δ_{2}. Then $T_{1}=E_{11}+H_{2}+\cdots+H_{t}+E_{12}$
with, say $E_{11} \cdot H_{2}=E_{12} \cdot H_{t}=1$. Since D_{2} is a 4 -section, we have $D_{2} \cdot E_{1 k} \geq 2$ for $k=1$ or 2 . This leads to $0<-E_{k} \cdot\left(K_{\tilde{s}}+D^{*} \leq 1-E_{k} \cdot \sum_{i} i /(2 t+1) H_{i} \leq\right.$ $1-2 t /(2 t+1)-1 /(2 t+1)=0$ because $D^{*}=\sum_{i=1}^{t} i /(2 t+1) H_{i}+$ (other terms). We reach a contradiction. This proves Claim(2).

By Claim (2), D_{2} meets only (-1)-curves in singular fibers. So, $D_{2} . E_{i}=$ $D_{2} \cdot E_{j 1}=D_{2} \cdot E_{j 2}=2$ for all $i=1, \cdots, m$ and $j=1, \cdots, n$ because $-E_{i k} \cdot\left(K_{\tilde{S}}+\right.$ $\left.D^{*}\right)>0$ for $k=1,2$ and $D^{*} \geq 1 / 3 D_{2}$. Let $\sigma: \widetilde{S} \rightarrow \Sigma_{d}$ be a smooth blowingdown of curves in singular fibers. Here Σ_{d} is a Hirzebruch surface of degree d. Let M_{d} be a minimal section on Σ_{d}. Then we have $\sigma\left(D_{2}\right) \sim 4 M_{d}+b \sigma\left(S_{0}\right)$ and $\sigma\left(D_{2}\right)^{2} \equiv 0(\bmod 8)$. On the other hand, by the above description on the intersection of D_{2} with singular fibers, we have $\sigma\left(D_{2}\right)^{2} \equiv D_{2}^{2}+2(\bmod$ 4). We reach a contradiction. This proves Theorem 6.13.

Next we prove the following Theorem 6.14.
Theorem 6.14. Assume the same hypothesis as in Theorem 6.19 and assume further that Δ_{1} is not a (-2)-chain. Then either Theorem 6.1 is true, or there is a minimal (-1)-curve E such that Case (II-3) in Remark 3.11, with C, Δ_{i} replaced by $E, \widetilde{\Delta_{i}}$, is true and that $\overline{\Delta_{1}}$ consists of exactly two (-2)-curves. Here, $\widetilde{\Delta_{i}}$ for $i=1,2,3$ are all the connected components of D meeting E.

Proof. In view of Lemma 6.6, Δ_{1} consists of one (-3)-curve and several (-2)-curves (cf. Lemma 6.6). By Theorem 6.13, Δ_{i} is a linear chain with D_{i} as a tip for $i=2$ and 3 . Let D_{i}^{\prime} be the irreducible component of D adjacent to $D_{i}(i=1,2,3)$. Let $D^{\prime}:=D-\sum_{i=1}^{3} \Delta_{i}$. Write $\Delta_{1}=R_{1}+\cdots+R_{r}+\cdots+R_{d}$ such that $R_{1}=D_{1}, R_{r}^{2}=-3, R_{i} \cdot R_{i+1}=1(i=1, \cdots, d-1)$. So, $R_{2}=D_{1}^{\prime}$. We have :

$$
\begin{gathered}
D^{*}=\sum_{i=1}^{r} i(d-r+1) /(d+1+r(d-r+1)) R_{i} \\
+\sum_{i=r+1}^{d} r(d-i+1) /(d+1+r(d-r+1)) R_{i}+\Delta_{2}^{*}+\Delta_{3}^{*}+D^{\prime *}
\end{gathered}
$$

where Supp $\Delta_{i}^{*} \subseteq \Delta_{i}$ and $\operatorname{Supp} D^{\prime *} \subseteq D^{\prime}$.
Case(1). $\Delta_{i}=D_{i}$ for $i=2$ and 3.

Before we consider the Case(1), we will make some remarks which will be used often till the end of the proof of Theorem 6.1.

We will often use a different minimal (-1)-curve E instead of the original curve C. Let $\widetilde{D_{i}}$ be all the irreducible components of D which intersect E and let ${\widetilde{\Delta_{i}}}_{i}$ be the connected component of D containing $\widetilde{D_{i}}$. By repeated use of results in $\S 3, \S 4, \S 5$, Lemmas $6.2,6.3,6.5$ and Theorems 6.12 .6 .13 we see that one of the following situations takes place :
(a) Case (II-3) in Remark 3.11, with C, Δ_{i} replaced by $E, \widetilde{\Delta}_{i}$, is true. Moreover, $\widetilde{\Delta_{i}}$ is a linear chain with $\widetilde{D_{i}}$ as a tip, $\overline{\Delta_{1}}, \widetilde{\Delta_{2}}-\widetilde{D_{2}}, \widetilde{\Delta_{3}}-\widetilde{D_{3}}$ are (-2)-chains and ${\widetilde{D_{2}}}^{2}=-3,{\widetilde{D_{3}}}^{2}=-3,-4,-5$.
(b) Case (II-4) in Remark 3.11, with C, Δ_{i} replaced by \cdots, is true.
(c) $\pi_{1}\left(S^{\circ}\right)$ is finite.

To prove Theorem 6.14, we can always assume assume that every minimal curve E fits case (a).

Consider the case where $\Delta_{i}=D_{i}$ for $i=2$ and 3 . If D^{\prime} contains two (-3)-curves B_{1}, B_{2}, then $D^{*} \geq 1 / 3 B_{1}+1 / 3 B_{2}+\sum_{i=1}^{r} i /(2 r+1) R_{i}$ and $0<$ $-\Gamma .\left(K_{\tilde{S}}+D^{*}\right) \leq 1-\Gamma .\left(1 / 3 B_{1}+1 / 3 B_{2}+r /(2 r+1) R_{r}\right) \leq 1-1 / 3-1 / 3-2 / 5<0$, a contradiction. So, D^{\prime} consists of (-2)-curves and possibly one (-3)-curve (cf. Lemma 6.6).

First assume that $r>2$.
Consider the $\mathrm{P}^{1}-$ fibration φ with $S_{0}:=3 C+2 D_{1}+R_{2}+D_{2}$ as one of the singular fibers. Then Γ and R_{3} are cross-sections, D_{3} is a $3-$ section and $D-\left(D_{3}+R_{3}\right)$ is contained in fibers.

Case(1.1). $\quad r>2$ and D^{\prime} contains a (-3)-curve B.
Consider the fiber S_{1} containing B. Since $\Gamma \cdot R_{\tau}=1=\Gamma \cdot B, R_{r}$ cannot lie in S_{1}. Hence S_{1} has a unique (-3)-curve and all the components are (-1) or (-2) curves. By Lemma 1.6 of [18], the sum of the coefficients of all the (-1) curves in S_{1} is at least 3 . As C is minimal, we see that each (-1) curve E_{i} in S_{1} is minimal and the sum of the coefficients of the E_{i} 's is precisely 3.

Case(1.1)(1). $\quad S_{1}$ contains a unique (-1) curve E. Then the multiplicity
of E is 3 . Since E fits the Case (a) above, we have $E \cdot B=E \cdot D_{3}=E \cdot G_{1}=1$ for some (-2)-curve G_{1}. Hence $\bar{D}_{1}=G_{1}, \widetilde{D}_{2}=B, \widetilde{D_{3}}=D_{3}$. Thus, S_{1} has the configuration : $B-E-G_{1}-G_{2}$ for some (-2)-curve G_{2}.

Now $\Delta_{1}=R_{1}+\cdots+R_{5}, r=3, G_{2}=R_{4}, G_{1}=R_{5}$.
Now $D^{*} \geq 1 / 3 B+\sum_{i=1}^{3} i / 5 R_{i}$, leading to a contradiction $0<-\Gamma \cdot(K+$ $\left.D^{*}\right) \leq 1-1 / 3-(2 / 5+3 / 5)<0$ (cf. Lemma 6.7).

Case(1.1)(2). Suppose S_{1} has exactly two (-1) curves E_{1}, E_{2} with multiplicity of E_{2} equal to 2 . Now $R_{3} \cap E_{2}=\phi$. Since E_{1} and E_{2} fit Case (a) above, we have $E_{2} \cdot B=E_{2} \cdot D_{3}=1$ and S_{1} has exactly two possible configurations :
(a) $S_{1}=G-E_{2}-B-E_{1}$, where G is a (-2) curve. As E_{1} has to intersect some (-2) curve, we see that R_{3} is a (-2) curve, $R_{3} \cdot E_{1}=1$ and hence $r>3$. But then R_{3} is not a tip of Δ_{1} which intersects E_{1}, a contradiction.
(β) $\quad d=r=3, S_{1}=(-2)-E_{2}-B_{1}-\cdots-B_{m}-E_{1}, B_{1}=B, E_{1} \cdot D_{3}=E_{1}$. $R_{3}=E_{1} \cdot B_{m}=E_{2} \cdot D_{3}=E_{2} \cdot B_{1}=1$. However, $-C \cdot\left(K+D^{*}\right)=-E_{2} \cdot\left(K+D^{*}\right)$ implies that $m=10$. But as in the assertion (3) in Case(2) below, we can see that the $\rho(\tilde{S}) \leq 13$. This is a contradiction.

Case(1.1)(3). $\quad S_{1}$ has three (-1) curves E_{1}, E_{2}, E_{3}. Since each E_{i} fits Case (a) above, using Lemma 1.6 of [18] we can assume that E_{2} meets only the curve B from S_{1}. Again since E_{2} has to meet some (-2) curve, R_{3} is a (-2) curve meeting E_{2}. But again in that case R_{3} is not a tip of Δ_{1}, a contradiction.

Case(1.2). $\quad r>2$ and D^{\prime} has only (-2). Hence $\Gamma \cap D^{\prime}=\phi$.
Case(1.2)(1). $\quad r>3$.
Let S_{1} be the singular fiber containing the (-3) curve R_{r}. We consider three cases as in Case(1.1) above. We are easily reduced to considering the case when S_{1} has the configuration :
$R_{r}-E-G_{1}-G_{2}$, where $E^{2}=-1, G_{1}^{2}=G_{2}^{2}=-2$. As in the assertion in Case 2, part (3) below, $\# D=7+a, D_{3}^{2}=-a$. Since E fits Case (a) above, we have $E \cdot D_{3}=1$ and $r=d=4$. By taking E as the minimal curve, we have the case (a) in the statement of Theorem 6.14. Indeed, $\overline{\Delta_{1}}=G_{1}+G_{2}, \widetilde{\Delta_{2}}=$ $R_{1}+\cdots+R_{4}, \overline{\Delta_{3}}=D_{3}$.

Case(1.2)(2). $\quad r=3$.
Let $\lambda=d-r$. Then the determinant of the intersection matrix of $\Delta_{1}=$ $\pm(4 \lambda+7)$.

Now Γ meets only R_{2}, R_{3}. We will apply Lemma 1.14.
Let U be a tubular neighborhood of $\Delta_{1} \cup \Gamma$. Let a small loop around D_{1} be denoted by γ. If γ_{2}, γ_{3} are small loops around R_{2} and R_{3} respectively, then in $\pi_{1}\left(U-\Delta_{1}\right), \gamma_{2}=\gamma^{2}, \gamma_{3}=\gamma^{3}$.

Then $\pi_{1}(U-D)=\left\langle\gamma, u \mid u^{-1} \gamma^{2} u=\gamma^{-3}\right\rangle$.
Since $(\gamma)=\left(\gamma^{2}\right)$ as the order of γ is $4 \lambda+7$, the group generated by γ is normal in $\pi_{1}(U-D)$. Now the same argument as in $\S 4$ shows that $\pi_{1}\left(S^{0}\right)$ is finite.

Case(1.2)(3). Now we are left with the case $r=2$.
Again first assume that D^{\prime} has a (-3) curve B. Then $D^{*} \geq 1 / 5 R_{1}+$ $2 / 5 R_{2}+1 / 3 B$ and $0<-\Gamma \cdot\left(K+D^{*}\right) \leq 1-(4 / 5+1 / 3)<0$, a contradiction.

Hence D^{\prime} consists of only (-2) curves and $\Gamma \cap D^{\prime}=\phi$.
Now again the same argument above using Lemma 1.14 shows that $\pi_{1}\left(S^{0}\right)$ is finite.

Case(2). $\Delta_{k} \neq D_{k}$ for $k=2$ or 3 . Then the following assertions are true.
(1) D^{\prime} consists of (-2)-curves. Hence $D^{*}=\sum_{i=1}^{3} \Delta_{i}^{*}$.
(2) $D_{3}^{2}=-3,-4$ and $r \geq 3$, i.e., $\left(D_{1}^{\prime}\right)^{2}=-2$.
(3) $7-D_{3}^{2}=\sum_{i=1}^{3} \#\left(\Delta_{i}\right)+\#\left(D^{\prime}\right)$, where $\#(\Delta)$ denotes the number of irreducible component in Δ.
(4) Suppose $D_{3}^{2}=-4$. Then $D_{3} \cdot E \leq 1$ for every (-1)-curve E.

If D^{\prime} contains a $(-n)$-curve B with $n \geq 3$, then $n=3$ (cf. Lemma 6.6) and $D^{*} \geq 1 / 3 B+\sum_{i=1}^{r} i /(2 r+1) R_{i}+1 / 5 D_{k}^{\prime}+2 / 5 D_{k}$. This leads to $0<-\Gamma .\left(K_{\tilde{S}}+D^{*}\right) \leq 1-\Gamma .\left(1 / 3 B+\sum_{i=1}^{r} i /(2 r+1) R_{i}+1 / 5 D_{k}^{\prime}\right)=1-1 / 3-$ $(r+2) /(2 r+1)-1 / 5<0$ (cf. Lemma 6.7), a contradiction. This proves the first assertion of Case(2).

If $D_{3}^{2}=-5$, then $D^{*} \geq 1 / 5 D_{2}^{\prime}+2 / 5 D_{2}+3 / 5 D_{3}$ (resp. $D^{*} \geq 1 / 3 D_{2}+$ $\left.1 / 3 D_{3}^{\prime}+2 / 3 D_{3}\right)$ in the case $k=2$ (resp. $\left.k=3\right)$. This leads to $-C .\left(K_{\tilde{s}}+\right.$ $\left.D^{*}\right)=1-C . D^{*} \leq 0$, a contradiction. So, $D_{3}^{2}=-3,-4$.

If $r=2$, then $D^{*} \geq 1 / 5 D_{1}+2 / 5 D_{1}^{\prime}+1 / 5 D_{k}^{\prime}+2 / 5 D_{k}$ and $0<-\Gamma .\left(K_{\tilde{S}}+\right.$ $\left.D^{*}\right) \leq 1-\Gamma .\left(2 / 5 D_{1}^{\prime}+1 / 5 D_{k}^{\prime}\right)=0(\mathrm{cf}$. Lemma 6.7), a contradiction. So, $r \geq 3$.
(3) follows using Noether's equality and from the following observation : $10-\left(2+D_{3}^{2}\right)=10-K_{\tilde{S}}^{2}=\rho(\tilde{S})=1+\#(D)$ (cf. Lemma 6.8).
(4) follows from the fact that $D^{*} \geq 1 / 2 D_{3}$ and $-E .\left(K_{\tilde{S}}+D^{*}\right)>0$.

This proves all the assertions of Case(2).
From now on until the end of the proof of Theorem 6.14 . we will assume that we are in the situation of Case(2).

Claim(1). It is impossible that $\Delta_{i} \neq D_{i}$ for $i=2$ and 3.
Consider the case where $\Delta_{i} \neq D_{i}$ for $i=2$ and 3 . Then $D^{*} \geq 1 / 5 D_{2}^{\prime}+$ $2 / 5 D_{2}+1 / 5 D_{3}^{\prime}+2 / 5 D_{3}+\sum_{i=1}^{r} i /(2 r+1) R_{i}$. Note that $0<-\Gamma .\left(K_{\tilde{S}}+D^{*}\right) \leq 1-$ $\Gamma .\left(1 / 5 D_{2}^{\prime}+1 / 5 D_{3}^{\prime}+2 /(2 r+1) R_{2}+r /(2 r+1) R_{r}\right)=1-1 / 5-1 / 5-(r+2) /(2 r+1)$ (cf. Lemma 6.7). Hence, $r \geq 8$. On the other hand, by the assertion (3)in Case(2), $11 \geq 7-D_{3}^{2}=\sum_{i=1}^{3} \#\left(\Delta_{i}\right)+\#\left(D^{\prime}\right) \geq r+2+2 \geq 12$. We get a contradiction.

Therefore Claim(1) is true.
Now we have either $\Delta_{2}=D_{2}$ or $\Delta_{3}=D_{3}, D_{3}^{2}=-3$ or -4 . Further, D^{\prime} has only (-2) curves by the assertions in Case(2).

Claim(2) $\quad r>4$.
Now we may assume that $\Delta_{k} \neq D_{k}, \Delta_{k^{\prime}}=D_{k^{\prime}}$ for some $\left\{k, k^{\prime}\right\}=\{2,3\}$ as sets. Write $D_{k}^{2}=-a, D_{k^{\prime}}^{2}=-b$. Then $(a, b)=(3,3),(4,3),(3,4)$.

Write $\Delta_{k}=\sum_{i=1}^{t} T_{i}$ such that $T_{1}=D_{k}, T_{i} \cdot T_{i+1}=1(i=1, \cdots, t-1)$. Then we have

$$
\begin{aligned}
& D^{*}=\sum_{i=1}^{r} i(d-r+1) /(d+1+r(d-r+1)) R_{i}+\sum_{i=r+1}^{d} r(d-i+1) /(d+1+r(d-r+1)) R_{i} \\
&+\sum_{i=1}^{t}(a-2)(t-i+1) /((a-1) t+1) T_{i}+(b-2) / b D_{k^{\prime}} .
\end{aligned}
$$

We now calculate (cf. Lemma 6.7) :
$-C .\left(K_{\tilde{S}}+D^{*}\right)=1-(d-r+1) /(d+1+r(d-r+1))-(a-2) t /((a-1) t+1)-(b-2) / b$,

$$
\begin{gathered}
-\Gamma .\left(K_{\widetilde{S}}+D^{*}\right)=1-2(d-r+1) /(d+1+r(d-r+1)) \\
-r(d-r+1) /(d+1+r(d-r+1))-(a-2)(t-1) /((a-1) t+1)
\end{gathered}
$$

Since $-C .\left(K_{\tilde{S}}+D^{*}\right) \leq-\Gamma .\left(K_{\tilde{S}}+D^{*}\right)$, we get
$(r+1)(d-r+1) /(d+1+r(d-r+1)) \leq(b-2) / b+(a-2) /((a-1) t+1)$,
and

$$
\begin{equation*}
2 / b \leq(a-2) /((a-1) t+1)+r /(d+1+r(d-r+1)) . \tag{14}
\end{equation*}
$$

On the other hand, by the assertions in Case(2), one has

$$
6-D_{3}^{2}=d+t+\#\left(D^{\prime}\right)
$$

Consider the case where $(a, b)=(3,3)$. May assume $\Delta_{2}=D_{2}, D_{3}^{2}=-3$ and $\Delta_{3}=\sum_{i=1}^{t} T_{i}$. By (14), we get
(14.1) $7 / 15 \leq 2 / 3-1 /(2 t+1) \leq r /((d+1+r(d-r+1))<1 /(d-r+1)$.

Hence $d-r \leq 1$. If $d-r=1$, then (14.1) implies that $7 / 15 \leq r /(3 r+2)<1 / 3$, a contradiction.

So, $d=r$. Then (14.1) implies that $7 / 15 \leq r /(2 r+1)$ and $r \geq 7$.
Consider the case where $(a, b)=(4,3)$. Then $\Delta_{2}=D_{2}, D_{3}^{2}=-4$ and $\Delta_{3}=\sum_{i=1}^{t} T_{i}$. (14) implies that
(15.2) $8 / 21 \leq 2 / 3-2 /(3 t+1) \leq r /(d+1+r(d-r+1))<1 /(d-r+1)$.

Hence, $d-r \leq 1$. If $d-r=1$, then (15.2) implies that $8 / 21 \leq r /(3 r+2)<1 / 3$, a contradiction.

So, $d=r$. Then (15.2) implies that $2 / 3-2 /(3 t+1) \leq r /(2 r+1)<1 / 2$ and $t=2,3$. On the other hand, $0<-C .\left(K_{\tilde{s}}+D^{*}\right)=1-1 /(2 r+1)-$ $2 t /(3 t+1)-1 / 3 \leq 1-1 /(2 r+1)-4 / 7-1 / 3$. Hence $r \geq 5$ and $r \geq 8$ if $t=3$.

Consider the case where $(a, b)=(3,4)$. Then $\Delta_{3}=D_{3}$ with $D_{3}^{2}=-4$ and $\Delta_{2}=\sum_{i=1}^{t} T_{i}$. (14) implies that

$$
\begin{equation*}
3 / 10 \leq 1 / 2-1 /(2 t+1) \leq r /(d+1+r(d-r+1))<1 /(d-r+1) \tag{15.3}
\end{equation*}
$$

Hence $d-r \leq 2$. If $d-r=2$, then (15.3) implies that $3 / 10 \leq r /(4 r+3)<1 / 4$, a contradiction. Thus, $d-r=0,1$.

If $d=r+1$, then
$0<-C \cdot\left(K+D^{*}\right)=1-2 /(3 r+2)-t /(2 t+1)-1 / 2 \leq 1-2 /(3 r+2)-$ $2 / 5-1 / 2=1 / 10-2 /(3 r+2)$.

Hence $r>6$ and $r>8$ if $t \geq 3$.
If $d=r$, then $0<-C \cdot\left(K+D^{*}\right)=1-1 /(2 r+1)-t /(2 t+1)-1 / 2 \leq$ $1-1 /(2 r+1)-2 / 5-1 / 2=1 / 10-1 /(2 r+1)$. Hence $r>4$.

Thus Claim(2) is proved.
Let $S_{0}=3 C+2 D_{1}+R_{2}+D_{2}$ and $\varphi: \tilde{S} \rightarrow \mathbf{P}^{1}$ the fibration as before with S_{0} as one of the fibers. Recall that $r>4$ and consider the fiber S_{1} containing the (-3) curve R_{r}. Now D_{3} is a 3 -section, R_{3} is a cross-section, $R_{4}+\cdots+R_{d}$ is contained in S_{1}.
Since each E_{i} fits Case (a) above, $E_{i} \cdot R_{r}=E_{i} \cdot D_{3}=1$. Clearly $l<4$ and if $l=3$ then $S_{1}=R_{r}+E_{1}+E_{2}+E_{3}$ and $r=4$ which is not true.

Hence $l<3$.
From Lemma 1.6 of [18], if $l=1$ then $r=4$. Thus $l=2$ and $S_{1}=$ $E_{1}-R_{r}-E_{2}-(-2)$. This again means $r=4$ and Theorem 6.14 is proved.

Remark. By using a more detailed argument we can prove the following more precise result : With the same hypothesis as in Theorem 6.13, the connected component Δ_{1} consists of only (-2) curves.

Now we can prove the following Theorem 6.15 which consists of Lemmas $6.16,6.18,6.21,6.22,6.23$ and 6.24 below.

Theorem 6.15. Assume the hypothesis as in Theorem 6.19 and assume further that Δ_{1} is a (-2)-chain. Then Theorem 6.1 is true.

Now we consider the case where Δ_{1} is a linear chain with D_{1} as a tip. By Theorem 6.13, for both $i=2$ and $3, \Delta_{i}$ is a linear chain with D_{i} as a
tip. By Lemma 6.6, $\Delta_{1}, \Delta_{2}-D_{2}$ and $\Delta_{3}-D_{3}$ consist of only (-2)-curves. Write $f(C) \equiv-c K_{S}, f(\Gamma) \equiv-\gamma K_{S}$. Then $-C .\left(K_{\tilde{S}}+D^{*}\right)=c\left(K_{\tilde{S}}+D^{*}\right)^{2}$ and $-\Gamma .\left(K_{\tilde{s}}+D^{*}\right)=\gamma\left(K_{\tilde{s}}+D^{*}\right)^{2}$. By the choice of C, we have $\gamma \geq c$. By Lemma 6.2 , we have $f\left(K_{\tilde{S}}+2 C+D_{1}+D_{2}+D_{3}\right) \equiv f(\Gamma)$ and hence $-1+2 c=\gamma \geq c$. Therefore, $c \geq 1$ and $c=1$ if and only if $\gamma=1$, if and only if $\gamma=c$. We can write $f^{*} f(C) \equiv C+D_{c}^{*}$ where $D_{c}^{*} \geq 0$ and Supp $D_{c}^{*} \subseteq D$. It is easy to see that $K_{s}+f(C) \equiv(c-1)\left(-K_{S}\right)$ and $K_{\tilde{s}}+C+D^{*}+D_{c}^{*} \equiv P_{1}$. Here $P_{1}:=-(c-1)\left(K_{\tilde{S}}+D^{*}\right)$ which is zero (resp. a nef and big divisor) in the case $c=1$ (resp. $c>1$).

Write $\Delta_{1}=\sum_{i=1}^{r} R_{i}$ such that $R_{r}=D_{1}, R_{i} . R_{i+1}=1(i=1, \cdots, r-1)$, $\Delta_{2}=\sum_{i=1}^{s} S_{i}$ such that $S_{s}=D_{2}, S_{i} \cdot S_{i+1}=1(i=1, \cdots, s-1)$ and $\Delta_{3}=$ $\sum_{i=1}^{t} T_{i}$ such that $T_{t}=D_{3}, T_{i} \cdot T_{i+1}=1(i=1, \cdots, t-1)$.

Lemma 6.16. (1) $D^{*}=\sum_{i} i /(2 s+1) S_{i}+\sum_{i}(a-2) i /((a-1) t+1) T_{i}+D^{\prime *}$ where $a:=-D_{3}^{2}$ and Supp $D^{\prime *} \subseteq D^{\prime}:=D-\sum_{i=1}^{3} \Delta_{i}$.
(2) $N:=D-D^{*}-D_{c}^{*} \geq 0$ and Supp $N=D$.
(3) $\kappa\left(\widetilde{S}, K_{\tilde{\mathcal{S}}}+C+D\right) \geq 0$ and $K_{\tilde{\mathcal{S}}}+C+D=P+N$ is the Zariski decomposition where $P:=K_{\tilde{S}}+C+D^{*}+D_{c}^{*}$. Moreover, $P \equiv-(c-1) f^{*}\left(K_{\tilde{S}}\right)$ and hence either $c>\gamma>1$ and $\kappa\left(\widetilde{S}, K_{\tilde{S}}+C+D\right)=2$ or $c=\gamma=1$ and $\kappa\left(\tilde{S}, K_{\tilde{S}}+C+D\right)=0$.

Proof. (1) follows from that $B .\left(K_{\widetilde{S}}+D^{*}\right)=0$ for every $B \leq D$. By a similar reasoning, one obtains $D_{c}^{*}=\sum_{i} i /(r+1) R_{i}+\sum_{i} i /(2 s+1) S_{i}+$ $\sum_{i} i /((a-1) t+1) T_{i}$. So, $N=\sum_{i}(r+1-i) /(r+1) R_{i}+\sum_{i}(2(s-i)+1) /(2 s+$ 1) $S_{i}+\sum_{i}((a-1)(t-i)+1) /((a-1) t+1) T_{i}+D^{\prime}-D^{\prime *}$. Then (2) follows (cf. Lemma 1.1,(1)).
(3) Note that $\kappa\left(\tilde{S}, K_{\tilde{s}}+C+D\right) \geq \kappa(\tilde{S}, P)=\kappa\left(\tilde{S}, P_{1}\right)$ (because \widetilde{S} is a rational surface) $=0$ (resp. 2) if $c=1$ (resp. $c>1$). So, $\kappa\left(\tilde{S}, K_{\tilde{S}}+C+D\right) \geq$ 0 . So, there is a Zariski decomposition for $K_{\tilde{S}}+C+D$. Since $P\left(\equiv P_{1}\right)$ is nef, $N \geq 0$ and $P . N_{i}=0$ for every irreducible component N_{i} of D, the decomposition given in (2) above is the Zariski decomposition. Therefore, $\kappa\left(\widetilde{S}, K_{\tilde{S}}+C+D\right)=\kappa(\widetilde{S}, P)=0,2$.

This proves Lemma 6.16.
Remark 6.17. Note that every twig of $C+D$ is admissible. Since $\operatorname{Supp} N=D \subseteq C+D, \quad N=B k^{*}(C+D)$ by Fujita [6, 6.17 and 6.18]. In
particular, if $\kappa\left(\widetilde{S}, K_{\tilde{S}}+C+D\right)=0$, then $P \equiv P_{1}=0, \quad K_{\widetilde{S}}+C+D \equiv N=$ $B k^{*}(C+D)$ and hence $\left(K_{\tilde{\mathcal{S}}}+C+D\right) \cdot C=B k^{*}(C+D) . C$.

Lemma 6.18. Assume $\kappa\left(\widetilde{S}, K_{\tilde{S}}+C+D\right)=0$. Then Theorem 6.1 is true.

Proof. Let $D^{\prime}:=D-\sum_{i=1}^{3} \Delta_{i}$. By Remark 6.17, we can apply Fujita $[6,8.7]$ to the pair $(\tilde{S}, C+D)$. Since in our case $\beta(C)=3, D_{i}^{2} \leq-3$ and $D_{i} \cdot C=1$ for both $i=2$ and 3 , only the case(4) there takes place. Therefore, $\sum_{i=1}^{3} d\left(\Delta_{i}\right)=1$. This, together with $D_{2}^{2}=-3, D_{3}^{2}=-3,-4,-5$, implies that $D_{3}^{2}=-3, \Delta_{2}=D_{2}, \Delta_{3}=D_{3}, \Delta_{1}=D_{1}+R_{1}$ where R_{1} is a (-2)-curve. By Lemma 6.7, Г. $\sum_{i=1}^{3} \Delta_{i}=$ Г. $R_{1}=1$. Moreover, $D^{*}=1 / 3 D_{2}+1 / 3 D_{3}+D^{\prime *}$, where Supp $D^{\prime *} \subseteq D^{\prime}$. Hence C. $D^{*}=2 / 3$.

By Lemma 6.16, $\gamma=c=1$. Hence $-\Gamma \cdot\left(K_{\tilde{S}}+D^{*}\right)=-C \cdot\left(K_{\tilde{S}}+D^{*}\right), \Gamma$. $D^{*}=C \cdot D^{*}=2 / 3>0$ and Γ is a minimal curve.
By the arguments in the beginning of Theorem 6.14 , we may assume that Γ fits Case (a) there. So by Theorem 6.14 and Lemma 1.5 of [18], Γ meets two (-3)-curves B_{1}, B_{2} of D^{\prime}.

Suppose first that B_{1}, B_{2} are not both isolated components of D. This will lead to $\Gamma . D^{*}=\Gamma \cdot D^{\prime *}>1 / 3+1 / 3$ because at least one of the connected components which contains B_{1} or B_{2} has more than two irreducible components. This is a contradiction.

Now we assume that both B_{1}, B_{2} are isolated. We consider again the fibration φ given by $S_{0}:=3 C+2 D_{1}+R_{1}+D_{2}$. The curve Γ is a section of this fibration and B_{1}, B_{2} lie in different singular fibers, say S_{1}, S_{2} respectively. Since $\rho(\widetilde{S})=\#(D)+1, S_{i}$ contains only one (-1)-curve E_{i} which is also minimal. We may assume that each E_{i} fits Case (a) in Theorem 6.14. So we reduce to the situation (cf. Theorem 6.14) :
$S_{1}=B_{1}-E_{1}-G_{1}-G_{2}, S_{2}=B_{2}-E_{2}-G_{3}-G_{4}$ where $G_{j}^{2}=-2$ for $j=1,2,3,4$.

The 3 -section D_{3} meets only the (-1) curves from the three singular fibers. The triple cover $\varphi: D_{3} \rightarrow \mathbf{P}^{1}$ has at least 3 ramification points with ramification index 3 . This clearly contradicts Hurwitz formula.

This completes the proof of Lemma 6.18.
Remark. $\kappa\left(\tilde{S}, K_{\tilde{S}}+C+D\right)=0$ is impossible.

Now we consider, till the end of the proof for Theorem 6.15, the case $\kappa\left(\tilde{S}, K_{\tilde{S}}+C+D\right)=2$.

Lemma 6.19. $\quad \Delta_{4}:=D-\sum_{i=1}^{3} \Delta_{i}$ is zero or a single connected component of D.

Proof. We will need the following result from [7].
'Let V be an affine surface with atmost quotient singularities. Assume that $H_{0}(V ; \mathbf{Q}) \approx \mathbf{Q}$ and $H_{i}(V ; \mathbf{Q})=(0)$ for $i>0$. If $\bar{\kappa}(V-\operatorname{Sing} V)=2$, then V does not contain any irreducible curve homeomorphic to C and V has at most one singular point.' (In [7], the assertion about V having atmost one singular point is not made but it follows very easily from the Lemma 8 of [7].)

To apply this, we notice that $V=S-f(C)$ satisfies the hypothesis in the result above. Hence Δ_{4} is connected.

Lemma 6.20. (1) $\Delta_{4}=D-\sum_{i=1}^{3} \Delta_{i}$ is a single connected component of D and consists of one (-3)-curve B and several (-2)-curves.
(2) Write $D^{*}=\alpha B+\sum_{i} i /(2 s+1) S_{i}+\sum_{i}(a-2) i /((a-1) t+1) T_{i}+$ (other terms) in notations of Lemma 6.16. Then $1>s /(2 s+1)+(a-2) t /((a-1) t+1)$ and $\alpha<1 /(2 s+1)+(a-2) /((a-1) t+1)$.
(3) $r+s+t+u=7-D_{3}^{2}$ where r, s, t, u are respectively the numbers of irreducible components in $\Delta_{i}(i=1,2,3,4)$.

Proof. (1) In view of Lemmas 6.6 and 6.19 , it suffices to show the assertion that Δ_{4} contains a (-3)-curve. Suppose to the contrary that this assertion is false. Then $D-\left(D_{2}+D_{3}\right)$ consists of (-2)-curves (cf. Lemma 6.6 and Theorem 6.14). By Lemma 6.8, we have $K_{\widetilde{S}}^{2}=2-a$ where $a:=-D_{3}^{2}$. Write $D^{*}=\alpha D_{2}+\beta D_{3}+$ (other terms). First one has $0<-C .\left(K_{\tilde{S}}+D^{*}\right)=$ $1-\alpha-\beta$. So, one can calculate as follows :

$$
\begin{gathered}
0<\left(K_{\tilde{S}}+D^{*}\right)^{2}=K_{\tilde{S}} \cdot\left(K_{\tilde{S}}+D^{*}\right)=K_{\tilde{S}}^{2}+\alpha+(a-2) \beta=2-a+\alpha+(a-2) \beta \\
=(2-a)+(\alpha+\beta)+(a-3) \beta<(3-a)+(a-3) \beta=(a-3)(\beta-1) \leq 0 .
\end{gathered}
$$

We reach a contradiction. So, Δ_{4} contains a (-3)-curve. Thus, (1) is proved.
(2) First $0<-C .\left(K_{\tilde{S}}+D^{*}\right)=1-s /(2 s+1)-(a-2) t /((a-1) t+1)$. So, the first inequality follows. Next, by (1) and Lemma 6.7, $-\Gamma .\left(K_{\tilde{S}}+D^{*}\right)=$ $1-\Gamma .\left(\alpha B+(s-1) /(2 s+1) S_{s-1}+(a-2)(t-1) /((a-1) t+1) T_{t-1}\right.$. Now the second inequality in (2) follows from that $-C .\left(K_{\tilde{S}}+D^{*}\right)=c\left(K_{\tilde{S}}+D^{*}\right)^{2}<$ $\gamma\left(K_{\tilde{s}}+D^{*}\right)^{2}=-\Gamma .\left(K_{\tilde{s}}+D^{*}\right)$.
(3) By Lemma 6.8, $K_{\tilde{S}}^{2}=2+D_{3}^{2}$. Hence $\rho(\widetilde{S})=8-D_{3}^{2}$. Now (3) follows from that the number of irreducible components in D is equal to $\rho(\tilde{S})-1$.

We have proved Lemma 6.20.
Lemma 6.21. It is impossible that $\Delta_{i}=D_{i}$ for two of i 's in $\{1,2,3\}$. In particular, $D_{3}^{2}=-3,-4$.

Proof. Assume that $\Delta_{i}=D_{i}, \Delta_{j}=D_{j}$ for some distinct i, j in $\{1,2$, 3\}. Then $\Gamma \cdot\left(\Delta_{1}+\Delta_{2}+\Delta_{3}\right)=1$ and $\Gamma \cdot \Delta_{4}=1$ by Lemma 6.20(1). From the proof of Lemma 6.19 , we know that $S-f(C)$ does not contain any curve homeomorphic to C. But the image of Γ in S gives rise to such a curve. This is a contradiction.

Suppose that $D_{3}^{2}=-5$. By the first assertion $D_{2}<\Delta_{2}$ or $D_{3}<\Delta_{3}$. This leads to $D^{*} \geq 2 / 5 D_{2}+3 / 5 D_{3}$ or $D^{*} \geq 1 / 3 D_{2}+2 / 3 D_{3}$. Either of the two cases leads to $-C .\left(K_{\tilde{\mathcal{S}}}+D^{*}\right) \geq 0$, a contradiction. So, $D_{3}^{2}=-3,-4$.

This proves Lemma 6.21.
Lemma 6.22. Suppose that $D_{3}^{2}=4$. Then either Theorem 6.1 is true or there is a P^{1}-fibration $\varphi: \widetilde{S} \rightarrow \mathrm{P}^{1}$ such that all singular fibers and irreducible components of D are as described in the proof of Claim 2 below.

Proof. Consider the case $D_{3}^{2}=-4$. We use the notations in Lemmas 6.16 and 6.20 . We also let $D_{1}^{\prime}=R_{r-1}, D_{2}^{\prime}=S_{s-1}, D_{3}^{\prime}=T_{t-1}$. These are (-2)-curves and adjacent to D_{1}, D_{2}, D_{3} respectively. By the first inequality in Lemma $6.20,(2)$, we obtain the following :

$$
\operatorname{Claim}(1) .(s, t)=(2,2),(1, t),(s, 1) .
$$

Consider first the case $(s, t)=(2,2)$. Then, one has $\Delta_{i}=D_{i}+D_{i}^{\prime}$ for $i=2$ and 3. By Lemma 6.20, one has $\alpha<1 / 5+2 / 7<1 / 2$. Hence Δ_{4} is a linear chain with B as a tip. Write $\Delta_{4}=\sum_{i=1}^{u} B_{i}$ such that $B_{i} \cdot B_{i+1}=1$ and
$B_{u}=B$. By the same lemma, one has $r+u=7$.
Claim(2). Suppose that $(s, t)=(2,2)$ and $r=1$. Then there is a minimal (-1)-curve E_{2} on \widetilde{S} and two connected components Δ_{3}, Δ_{4} of D, both linear chains, $\Delta_{3}=D_{3}+D_{3}^{\prime}, \Delta_{4}=B_{1}+\cdots+B_{6}$ such that $D_{3}^{2}=-4, B_{6}^{2}=-3, D_{3}^{\prime 2}=$ $-2=B_{1}^{2}=\cdots=B_{5}^{2}$. Further, $E_{2} \cdot \Delta_{3}=E_{2} \cdot D_{3}=E_{2} \cdot \Delta_{4}=E_{2} \cdot B_{5}=1$.

Consider the case where $(s, t)=(2,2)$ and $r=1$. In the present case, we have $\Delta_{1}=D_{1}$ and $u=6$. Hence

$$
\begin{gathered}
\Delta_{1}=D_{1}, \Delta_{2}=D_{2}+D_{2}^{\prime}, \Delta_{3}=D_{3}+D_{3}^{\prime}, \Delta_{4}=\sum_{i=1}^{6} B_{i}\left(B_{6}=B\right) \\
\Delta_{i}(i=1,2,3,4)
\end{gathered}
$$

are all connected components of D. Then $\Gamma . D=\Gamma .\left(B+D_{2}^{\prime}+D_{3}^{\prime}\right)=3$ (cf. Lemma 6.7).

Let

$$
\begin{gathered}
F_{0}:=2 \Gamma+D_{2}^{\prime}+D_{3}^{\prime}, \\
\varphi: \widetilde{S} \rightarrow \mathrm{P}^{1}
\end{gathered}
$$

the \mathbf{P}^{1}-fibration with F_{0} as a singular fiber. Let F_{1} (resp. F_{2}) be the singular fiber containing $C+D_{1}$ (resp. $B_{1}+\cdots+B_{5}$). Then there exists a (-1)-curve E such that $E \cdot D_{1}=1, E \cdot B_{6}=2$ and

$$
F_{1}=C+D_{1}+E
$$

because B_{6} is a 2 -section. Note that F_{2} consists of only (-1) and (-2)-curves (cf. Lemma 1.1,(4)). So, F_{2} has the second type in Lemma 6.11. Thus, there are two (-1)-curves E_{1}, E_{2} such that $E_{1} \cdot B_{1}=B_{5} \cdot E_{2}=1$ and

$$
F_{2}=E_{1}+B_{1}+\cdots+B_{5}+E_{2} .
$$

Since $\rho(S)=1$ and since $D-\left(D_{2}+D_{3}+B_{6}\right)$ is contained in singular fibers of φ,

$$
F_{0}, F_{1}, F_{2}
$$

are all singular fibers of φ for otherwise the cross-section D_{2} would meet an irreducible component of D in a singular fiber $\left(\neq F_{0}, F_{1}, F_{2}\right)$ which contains only one (-1)-curve.

Let $\tau: \tilde{S} \rightarrow \Sigma_{3}$ be a smooth blowing-down of curves in singualr fibers such that $\tau\left(D_{2}\right)^{2}=-3$. Then $\tau\left(D_{3}\right) \sim \tau\left(D_{2}\right)+3 \tau\left(F_{0}\right), \tau\left(B_{6}\right) \sim 2 \tau\left(D_{2}\right)+6 \tau\left(F_{0}\right)$. Hence $\tau\left(D_{3}\right)^{2}=3$ and $\tau\left(B_{6}\right)^{2}=12$. Thus, $D_{2} \cdot E_{1}=D_{3} \cdot E_{2}=B_{6} \cdot E_{1}=1$.

Now all singular fibers of φ and $C+D$ are precisely described above.
This proves Claim(2).
Now we have only to consider the case $r \geq 2$. Indeed, if $(s, t)=(1, t)$ or $(s, 1)$ then $r \geq 2$ by Lemma 21 .

Claim(3). It is impossible that $(s, t)=(2,2)$ and $r \geq 2$.
We consider the case where $(s, t)=(2,2), r \geq 2$. Then $u=7-r \leq 5$. Let $F_{0}:=3 C+2 D_{1}+D_{1}^{\prime}+D_{2}$ and let $\psi: \widetilde{S} \rightarrow \mathbf{P}^{1}$ be the \mathbf{P}^{1}-fibration with F_{0} as a singular fiber. Since Γ is a cross-section of ψ with $\Gamma . D_{3}^{\prime}=\Gamma . B=1$, D_{3}^{\prime} and Δ_{4} are contained in two distinct singular fibers, say F_{1}, F_{2}. So, F_{1} consists of (-1) and (-2)-curves (cf. Lemma 1.1, (4)). Hence F_{1} has one of two types in Lemma 6.11. Since D_{2}^{\prime} is a cross-section, F_{1} has two (-1)curves E_{1}, E_{2} such that $F_{1}=E_{1}+D_{3}^{\prime}+E_{2}$ and $D_{2}^{\prime} \cdot E_{1}=1$. Since D_{3} is a 3 -section, one has $D_{3} \cdot E_{1}=D_{3} \cdot E_{2}=1$ or $D_{3} \cdot E_{i}=2$ for $i=1$ or 2 . This is a contradiction to the fact that $-E_{i} .\left(K_{\tilde{S}}+D^{*}\right)>0$. Indeed, note that $D^{*}=4 / 7 D_{3}+2 / 7 D_{3}^{\prime}+1 / 5 D_{2}^{\prime}+$ (other terms).

This proves Claim(3).
Next we consider the case where one of s, t is equal to 1 . In view of Lemma 6.21 , we have $r \geq 2$ and that only one of s, t is equal to 1 . By Lemma 6.20, Δ_{4} has a (-3) curve B. Let $F_{0}:=3 C+2 D_{1}+D_{1}^{\prime}+D_{2}$ and let $\varphi: \widetilde{S} \rightarrow \mathbf{P}^{1}$ be the \mathbf{P}^{1}-fibration with F_{0} as a singular fiber and F_{1} the singular fiber containing B. By the arguments in Theorem 6.14, we may assume that every (-1)-curve E_{i} in F_{1} fits Case (a) there. In particular, $E_{i} \cdot B=E_{i} \cdot D_{3}=E_{i} \cdot H=1$, where H is a (-2)-curve. Thus, D_{3} meets only E_{i}^{\prime} s in F_{1} because $D_{3} \cdot F_{1}=3$ (cf. [18, Lemma 1.6]).

Case(1) There are three (-1) curves E_{1}, E_{2}, E_{3} in F_{1}.
Then $F_{1}=B+\Sigma E_{i}$. There are at most 2 more horizontal irreducible components of D viz. D_{2}^{\prime} and R_{r-2} and they are sections of φ. Hence for at least one E_{i}, E_{i} meets no (-2)-curve, a contradiction.

Case(2) There are two (-1) curves E_{1}, E_{2} in F_{1}.
Then $F_{1}=E_{1}-B-E_{2}-G$, where G is a (-2) curve lying in Δ_{1} or Δ_{2}.

If $G<\Delta_{1}$, then the section R_{r-2} does not meet either of E_{1}, E_{2}. Since E_{1} meets a (-2)-curve, D_{2}^{\prime} exists and $D_{2}^{\prime} \cdot E_{1}=1$. Taking E_{1} as a minimal curve we have a situation treated in the proof of Theorem 6.14. Hence Theorem 6.1 is true because in the present case D has no connected component of two (-2)-curves.

Suppose now that $G<\Delta_{2}$. Then the section D_{2}^{\prime} does not meet either of E_{1}, E_{2}. By the same reasoning as in the case $G<\Delta_{1}$, but with E_{1} replaced by E_{2}, Theorem 6.1 is true.

Case(3) There is a unique (-1) curve E in F_{1}.
Since E fits Case (a) in Theorem 6.14, F_{1} has the configuration : $B-$ $E-G_{1}-G_{2}$, where G_{1}, G_{2} are (-2) curves.

Now if $G_{1}+G_{2}<\Delta_{2}$, then Theorem 6.1 is true as above.
So assume $G_{1}+G_{2}<\Delta_{1}$. Now D_{2}^{\prime} cannot exist as it cannot meet any curve in F_{1}. Hence $\cdot s=1, r=5, u=1, t=4$ by Lemma 6.20.

Since $\rho(S)=1$, the number of horizontal irreducible components of D is one more than the difference between the number of (-1)-curves in singular fibers and the number of singular fibers of φ (cf. Lemma 1.5 of [18]).

Now Γ is a section of φ and $\Delta_{3}-D_{3}$ is contained in a singular fiber, say F_{2}, which consists of only (-1) and (-2) curves. So, F_{2} has the second type in Lemma 6.11 because $R_{3} \cdot F_{2}=1$.

Then every singular fiber other than F_{2} has exactly one (-1)-curve for $\rho(S)=1$. We can write $F_{2}=E_{1}+T_{1}+T_{2}+T_{3}+E_{2}$ with two (-1)-curves E_{1}, E_{2} such that $E_{1} \cdot T_{1}=T_{3} \cdot E_{2}=1$. Now $D^{*}=1 / 3 D_{2}+\sum_{i=1}^{4} 2 i / 13 T_{i}+1 / 3 B$. Since $D_{3} \cdot F_{2}=3,\left(D_{3} \cdot E_{1}, D_{3} \cdot E_{2}\right)=(1,1),(0,2)$ or $(2,0)$. This contradicts $-E_{i} \cdot\left(K+D^{*}\right)>0$.

This completes the proof of Lemma 6.22.
Lemma 6.23. Suppose that $D_{3}^{2}=-3$. Then Theorem 6.1 is true.
Proof. We use the notations in Lemmas 6.16 and 6.20. We also let $D_{1}^{\prime}=R_{\tau-1}, D_{2}^{\prime}=S_{s-1}, D_{3}^{\prime}=T_{t-1}$. One may assume that $s \leq t$. By Lemma 6.21 , it is impossible that $(s, t)=(1,1)$. So, $t \geq 2$.

Consider first the case where Δ_{4} is a fork or a linear chain but B is not a tip. Then $\alpha \geq 1 / 2$. So,

$$
1 / 2 \leq \alpha<1 /(2 s+1)+1 /(2 t+1)
$$

by Lemma 6.20 and hence $(s, t)=(1,2)$. By Lemma 6.21 have $r>1$.

We use arguments after Claim (3) in Lemma 6.22. In that proof we have used $D_{3}^{2}=-4$ only in the last part.

In the present situation, by Lemma $6.20(3), r+s+t+u=7-(-3)=$ 10. The arguments in the above Lemma reduced to considering the case $r=5, s=1, u=1$. But then in the present situation $t=3$, contradicting the assumption $t=2$ above.

Hence the case when Δ_{4} is a fork or a linear chain but B is not a tip can not to occur.

Next we consider the case where Δ_{4} is a linear chain with B as a tip. Write $\Delta_{4}=\sum_{i=1}^{u} B_{i}$ such that $B_{u}=B$. Then

$$
D^{*}=\sum_{i} i /(2 u+1) B_{i}+(\text { other terms }) .
$$

By Lemma 6.20, one has

$$
u /(2 u+1)<1 /(2 s+1)+1 /(2 t+1) .
$$

Therefore, by virtue of Lemma 6.20,(3),

$$
(r, s, t, u)=(r, 1, t, 9-r-t),(5,2,2,1),(4,2,3,1)
$$

because $s \leq t$ by the additional assumption. If $r=1$ or $t=1$ then $(r, s, t, u)=(r, 1, t, u)$, a contradiction to Lemma 6.21. So, $r \geq 2, t \geq 2$.

Once $r>1$, we obtained $r=5, s=1, u=1$ and hence $t=3$ by the arguments after Claim (3) in Lemma 6.22.

Let $F_{0}:=3 C+2 D_{0}+D_{0}^{\prime}+D_{2}$, and $\varphi: \widetilde{S} \rightarrow \mathbf{P}^{1}$ the \mathbf{P}^{1}-fibration with F_{0} as a singular fiber. Then D_{3} is a 3 -section. Let F_{1} be the singular fiber containing Δ_{4}. By the same reasoning as in Lemma 6.22 , we deduce that $F_{1}=3 E+B+2 R_{1}+R_{2}$, where E is a minimal (-1) curve and $E \cdot B=$ $E \cdot R_{1}=E \cdot D_{3}=1$. We also see easily that φ has precisely one more singular fiber $F_{2}=E_{1}+T_{1}+T_{2}+E_{2}$, where E_{1}, E_{2} are (-1) curves (cf. [18, Lemma 1.5 and Lemma 1.1 (4)).

Now $D^{*}=1 / 3 D_{2}+\sum_{i=1}^{3} i / 7 T_{i}+1 / 3 B$. Since $-E_{i} \cdot\left(K_{\tilde{S}}+D^{*}\right)>0, D_{3} \cdot E_{i}=$ 1 for $i=1$ and 2 because $D_{3} \cdot F_{2}=3$. We see also that $E_{1} \cdot R_{3}=1$.

Let $S_{0}^{\prime}:=3 C+2 D_{1}+D_{1}^{\prime}+D_{3}$ and let $\psi: \tilde{S} \rightarrow \mathbf{P}^{1}$ be the \mathbf{P}^{1}-fibration with S_{1}^{\prime} as a singular fiber. Then $D_{2}, D_{3}^{\prime}, R_{3}$ are 3 -section, cross-section, crosssection, respectively. Since $\rho(S)=1$ and since D_{3}^{\prime} is a cross-section, one can
find (-1)-curves L_{1}, \cdots, L_{4} such that $S_{0}^{\prime}, S_{1}^{\prime}:=2 L_{1}+T_{1}+B+L_{2}, S_{2}^{\prime}:=L_{3}+$ $R_{1}+R_{2}+L_{4}$ are all singular fibers of ψ. Moreover, $L_{1} \cdot T_{1}=L_{1} \cdot B=L_{2} \cdot B=$ $L_{2} \cdot R_{3}=L_{3} \cdot R_{1}=L_{4} \cdot R_{2}=\left(L_{3}+L_{4}\right) \cdot D_{3}^{\prime}=1$ and $\left(D_{2} \cdot L_{1}, D_{2} \cdot L_{2}\right)=(1,1)$ or $(0,3)$.

If $\left(D_{2} \cdot L_{1}, D_{2} \cdot L_{2}\right)=(1,1)$, then $-C .\left(K_{\tilde{S}}+D^{*}\right)=1-C .\left(1 / 3 D_{2}+3 / 7 D_{3}\right)=$ $1-(1 / 3+3 / 7)>1-(1 / 3+1 / 3+1 / 7)=1-L_{1} \cdot\left(1 / 3 D_{2}+1 / 3 B+1 / 7 T_{1}\right)=$ $-L_{1} \cdot\left(K_{\tilde{S}}+D^{*}\right)$, a contradiction to the choice of C. If $\left(D_{2} . L_{1}, D_{2} \cdot L_{2}\right)=(0,3)$, then $0<-L_{2} \cdot\left(K_{\tilde{S}}+D^{*}\right)=1-L_{2} \cdot\left(1 / 3 D_{2}+1 / 3 B\right)=1-(1 / 3) \times 3-1 / 3<0$, a contradiction.

So this Case is impossible.
This completes the proof of Lemma 6.23.
Lemma 6.24 In the situation of Lemma 6.22, $\pi_{1}\left(S^{0}\right)$ is finite.
Proof. Recall that in this' case the curve E_{2} meets only the irreducible components D_{3} and B_{5} of D, tranversally in one point and Δ_{4} is linear with the (-3) curve B_{6} as a tip. Hence, $A:=E_{2}+\Delta_{4}$ supports a divisor with positive self-intersection. We will now apply Lemma 1.10.

Let U be a nice tubular neighborhood of A. Since $E_{2}-D$ is isomorphic to C^{*}, we see easily that $U-D$ deforms to a tubular neighborhood of Δ_{4}. In particular, $\pi_{1}(U-D)$ is a finite cyclic group. By Lemma 1.10 we have a surjection of this group onto $\pi_{1}\left(S^{0}\right)$. Hence the latter group is finite.

This completes the proof of Lemma 6.24.
In view of the results in this part I of the paper, the proof of the Main Theorem will be complete once we have shown the finiteness of $\pi_{1}\left(S^{0}\right)$ in the "2-component" case i.e., Case (II-4). This will be accomplished in part II of the paper.

References

[1] V.A. Alekseev and V.V. Nikulin, Classification of del Pezzo surfaces with log- terminal singularities of index ≤ 2 and involutions on K3 surfaces, Soviet Math. Doklady, 39 (1989), 507-511.
[2] E. Brieskorn, Rationale singularitäten komplexer Flächen, Invent.Math. 4 (1966), 336-358.
[3] T.C. Chau, A note concerning Fox's paper on Fenchel's conjecture, Proc. Amer. Math. Soc. 88 (1983), 584-586.
[4] M. Demazure, Surfaces de del Pezzo, Lecture Notes in Mathematics 777, Berlin-Heidelberg-New York, Springer, 1980.
[5] R.H. Fox, On Fenchel's conjecture about F-groups, Math. Tidsskr. B (1952), 61-65.
[6] T. Fujita, On the topology of non- complete algebraic surfaces, J. Fac. Sci. Univ. Tokyo, 29 (1982), 503-566
[7] R. V. Gurjar and M. Miyanishi, Affine lines on logarithmic Q-homology planes, Math. Ann., 294 (1992), 463-482.
[8] S. Iitaka, Algebraic Geometry, Graduate Texts in Math. 76, SpringerVerlag, 1981.
[9] Y. Kawamata, The cone of curves of algebraic varieties, Ann. Math., 119 (1984), 603-633.
[10] Y. Kawamata, K. Matsuda, K.Matsuki, Algebraic Geometry, Sendai (1985), Advanced Studies in Pure Math., no. 10, Kinokuniya, North-holland.
[11] M. Miyanishi, Non-complete algebraic surfaces, Lecture Notes in Mathematics 857, Berlin-Heidelberg-New York, Springer, 1981.
[12] M. Miyanishi and D.-Q. Zhang, Gorenstein \log del Pezzo surfaces of rank one, J. of Algebra, 118 (1988), 63-84.
[13] M. Miyanishi and D.-Q. Zhang, Gorenstein log del Pezzo surfaces, II, to appear in J. of Algebra.
[14] D. Mumford, The topology of normal singularities of an algebraic surface, Publ. Math. I.H.E.S., no. 9 (1961), 5-22.
[15] V. V. Nikulin, Del Pezzo surfaces with log-terminal singularities II, Math. USSR. Izvestija, 33 (1989), 355-372.
[16] M. Nori, Zariski conjecture and related problems, Ann. Sci. École Norm. Sup., 16 (1983), 305-344.
[17] P. Wagreich, Singularities of complex surfaces with solvable local fundamental group, Topology, (1972), 51-72.
[18] D.-Q. Zhang, Logarithmic del Pezzo surfaces of rank one with contractible boundaries, Osaka J. Math. 25 (1988), 461-497.
[19] D.-Q. Zhang, Logarithmic del Pezzo surfaces with rational double and triple singular points, Tohoku Math. J. 41 (1989), 399-452.

