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Abstract

In [25] the first author started with the development of harmonic analy-
sis on infinite-dimensional groups. In this article, following these ideas, we
construct an analogue of quasi-regular representations, when the group G
acts on a G—space X equipped with a quasi-invariant measure. For the
group G we take the inductive limit of the general linear groups GLg(200, R)
= lign GL(2n—1,R), acting on the space X,,, of m rows, infinite in both di-
rections, with Gaussian measure. This measure is the infinite tensor product
of one-dimensional arbitrary Gaussian non-centered measures. We prove an
irreducibility criterion for m=3. In 2019, the first author [28] established a
criterion for m < 2. Our proof is in the same spirit, but the details are far
more involved.
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1. Representations of the inductive limit of the general linear groups
GLO(200, R)

1.1. Finite-dimensional case

Consider the space

Xm,n - {QZ’ = Z Z xkrEkm Ty € R}a

1<k<m —n<r<n

where Fy,, k,n € Z are infinite matrix unities, with the measure (see (1.5))

Lo () = @y ©F—_py Hibgyane) (Thr)-

Two groups act on the space X,,,, namely GL(m,R) from the left, and
GL(2n + 1,R) from the right, and their actions commute. Therefore, two
von Neumann algebras 24y, and 2y, in the Hilbert space L?(X,, ., ,u?g;l))
generated respectively by the left and the right actions of the corresponding
groups have the property that 21}, C Rly,, where 2’ is a commutant of
a von Neuman algebra 2. We study what happens as n — oo. In the
limit we obtain some unitary representation T%*™ (see (1.6)) of the group
G = GLy(200,R) = lim . GL(2n + 1,R) acting from the right on X,,. In
the generic case, the representation T%*™ is reducible. Indeed, if there
exists a non-trivial element s € GL(m,R) such the left action is admissible
for the measure pfy ), ie., (ugﬂ))Ls ~ iy the operator TEwm naturally

associated with the left action, is well defined and [T}%*™, TL#m] =0 for all
te @, s€ GL(m,R). We use notation p/(A) = p(f~H(A)) for f: X — X,
where A is some measurable set in X.

The main result of the article is the following. The representation Tf:+m
is irreducible, see Theorem 1.1 if and only if no left actions are admissi-
ble, i.e., when (u )" L ui ) for all s € GL(m,R)\{e}. This is again a
manifestation of the Ismagilov conjecture, see [27].

Here, as in the case of the regular [18, 19] and quasiregular [21, 22] rep-
resentations of the group By, which is an inductive limit of upper-triangular
real matrices, we obtain the remarkable result that the irreducible represen-
tations can be obtained as the inductive limit of reducible representations!



1.2. Infinite-dimensional case

Let us denote by Mat(200, R) the space of all real matrices that are infinite
in both directions:

Mat (200, R) = {x = Z TinFrn, Tin € R}. (1.1)
kneZ
The group GLg(200,R) =lim . GL(2n+1,R) is defined as the inductive

limit of the general linear groups G,, = GL(2n + 1,R) with respect to the
symmetric embedding 1°:

Gn DX iz+1 (fﬂ) =+ E—(n+1),—(n+1) + En+1,n+1 S Gn+1. (12)

For a fixed natural number m, consider a G-space X,, as the following sub-
space of the space Mat(200, R):

X, {x € Mat(200,R) | z = ZZxknEkn} (1.3)

k=1 neZ

The group GLg(200,R) acts from the right on the space X,,. Namely, the
right action of the group GLg(200,R) is correctly defined on the space X,,
by the formula Ri(z) = xt™!, t € G, = € X,,. We define a Gaussian non-
centered product measure y = p'™ = [,y OLL the space X,,

M?Z,a) (ZL’) = ®Zl:1 Knez M(bkn,akn)(xkn>7 (14>

/b n_— Thn—a
d#(bkn,akn)(ajkn) = %6 bkn( kn kn)dekn (15)

and b = (bgn)kms bkn > 0, @ = (Qkp)kms aen € R, 1 < k < m, n € Z. Define
the unitary representation T*™ of the group GLg(200,R) on the space
L*(Xn, 1 4) by the formula:

where

(I ) (@) = (A o @) by (2) P at), f € LK) (1)

Obviously, the centralizer Zaw(x,,)(R(G)) C Aut(X,,) contains the group
L(GL(m,R)), i.e., the image of the group GL(m,R) with respect to the left
action L : GL(m,R) — Aut(X,,), Ls(z) = sz, s € GL(m,R), x € X,,. We
prove the following theorem.



Theorem 1.1. The representation TT+™: GLy(200, R) — U(LQ(Xm7 M(Z,a))>

is irreducible, for m = 3, if and only if

() (ufpa)™ L uGay forall s € GL(m,R)\{e};

(#4)  the measure pfy,) is G-ergodic.

In [27, 28] this result was proved for m < 2 . Note that conditions (i)
and (ii) are necessary conditions for irreducibility.

Remark 1.1. Any Gaussian product-measure iy, on X, is GLo(200, R)-
right-ergodic [34, §3, Corollary 1], see Definition 2.1. For non-product-
measures this is not true in general.

In order to study the condition (uf )" L uff, for t € GL(m,R)\ {e} set

t = (tys)my € GL(m,R), B, = diag(bin, bon, .., bun), Xn(t) = BY*tB, V2.
(1.7)

Let M;ll;;;:(t) be the minors of the matrix ¢t with iq,4s,...,7, rows and

J15 2, -y Jr columns, 1 < r < m. Let d,; be the Kronecker symbols.

Lemma 1.2 ([27], Lemma 10.2.3; [28], Lemma 2.2). For the measures jify ),
with m a natural number, the relation

(ME’Z@))Lt L uipqy for all t € GL(m, R)\{e}

holds if and only if

m m

1T m det (1+ X3 ()X () +Y > brm (Z(trs— %)asn)z .

neL neZ r=1 s=1
where

det (1 + X;;(t)Xn(t)) 14y Y (M)
r=1 1<i1<ig<...<ip<m
1<71<d2<...<jr<m

For the convenience of the reader this lemma is proved in Section 8.1.

Remark 1.2. (The idea of the proof of irreducibility.) Let us denote by
2A™ the von Neumann algebra generated by the representation TT+™ i.e.,



A™ = (/"™ | t € G)". For a = (ay) € {0,1}™ define the von Neumann
algebra L°(X,,, ™) as follows:

"
L( X, ™) = (exp(z'tB;;n) 11<k<m, teR, ne Z) ,

where Bg‘n:{ Teny i =0 and Dy, = 0/0%kn — bkn(Trn — akn)-

i_len7 if a,=1

The proof of the irreducibility is based on four facts:

1) we can approximate by generators Ay, = A" = 770" . |i=0 the set
of operators (B}, )i, n€Z for some a€{0,1}" depending on the measure
p™ using the orthogonality condition (u™)F+ L u™ for all s € GL(m, R)\{e},

2) it is sufficient to verify the approximation only on the cyclic vector
1(z) =1, since the representation TH#™ is cyclic,

3) the subalgebra L°(X,,, ™) is a mazimal abelian subalgebra in A™,

4) the measure p™ is G-ergodic.

Here the generators Ay, are given by the formulas:

Aknzz Tk Dpny,  kyn € Z, where Dy, = 0/0%kn — bin(Tpn — agn)-

r=1

Remark 1.3. Scheme of the proof. We prove the irreducibility as follows
(" L p for all s € GL(3,R)\ {e}) & ( o ) & (1.8)

o
orthogonality

Lemma 8.15 some of A, A . G e1e
about => | the expressions A Ay | = 1rreduc1b1hty,
three vectors f,g,hgl> are divergent: A(3>, As

where  AD =AY Y ), A= ALY ), (1.9)
A(f,g,h) is defined by (8.15), and {i, j, k} is a cyclic permutation of {1, 2, 3},
see for details Lemmas 5.4-5.6, Lemmas 5.1-5.3 and Lemmas 5.14-5.15.

Remark 1.4. The fact that the conditions (u?)* L 13 for allt € GL(3,R)\{e}
imply the possibility of the approximation of xy, and Dy, by combinations
of generators is based on some completely independent statement about three
infinite vectors f, g, h & lo such that

Cif + Cog+ Csh € Iy for arbitrary (O, Cs, C3) € R?\ {0}, (1.10)

see Lemma 8.11 for m = 2 [28] and Lemma 8.15 for m = 3. A similar result
for general m is studied in [29]. These lemmas are the key ingredients of the
proof of the irreducibility of the representation.
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Remark 1.5. Note that in the case of the “nilpotent group” B and the
infinite product of arbitrary Gaussian measures on R™ (see [2]) the proof of
the irreducibility is also based on another completely independent statement
namely, the Hadamard — Fischer inequality, see Lemma 1.3.

Lemma 1.3 (Hadamard — Fischer inequality [11, 12]). For any positive def-
inite matrizv C € Mat(m,R), m € N and any two subsets a and [ with
0 Ca, fC{l,..,m} the following inequality holds:

M(a)  M@OB)|_| Al  A@UP)
M(aUB) M(p) ‘_’ A(@mﬁ) A(B) >0, (1.11)

where M (a) = M2(C), A(a) = A2(C) and & ={1,...,m} \ a.

For the details see [11, p.573] and [12, Chapter 2.5, problem 36]. In [2]
the conditions of orthogonality pu** L u with respect to the left action of
the group B(m,R) on X™ were expressed as the divergence of some series,
SE (1) = 00, 1 <k <n < m. Conditions on the measure j for the variables
Zrn to be approximated by combinations of generators A,, were expressed
in terms of the divergence of another series >j,. The proof of the fact that
conditions S¥ () = 0o, 1 <k <n< m imply the conditions ¥, = oo, 1 <
k < n < m was based on the Hadamard — Fischer inequality.

2. Some orthogonality problem in measure theory

2.1. General setting

Our aim now is to find the minimal generating set of conditions of the
orthogonality (ufﬁa))“ L Ul q for all t € GL(m,R)\{e}. To be more precise,
consider the following more general situation. Let o : G — Aut(X) be
a measurable action of a group G on a measurable space (X, ) with the
following property: pu® L p for all t € G\ {e}. Define a generating subset
G*(p) in the group G as follows:

if p* Ly forall t € GH(p), then p® Ly forall t€ G\ {e}. (2.1)
Problem 2.1. Find a minimal generating subset Gg (1) satisfying (2.1).

Definition 2.1. Recall that the probability measure p on some G-space X
is called ergodic if any function f € L'(X,u) with property f(ou(z)) =
f(x) mod p is constant.



2.2. Orthogonality criteria p* L u for t € GL(2,R) \ {e}

Remark 2.1. By Lemma 4.1 proved in [28] or Lemma 10.4.1 in [27] for m =
2 we conclude that the minimal generating set Gy (1) = GL(2,R)g (1) (see
Problem (2.1)) is reduced to the following subgroups, families and elements:

1 ¢t 10
exp(tEis) = I+75E12=( 01 ) , exp(tEq)=1+tEy = ( .1 ) , (2.2)

-1t 1 0
exp(tElg)Pl = ( 0 1 ) s eXp(tE21)P2 = ( + 1 ) R (23)

B cosd  s?sing \ cos¢ —sin¢ _
7-(,5) = ( s72sin¢p —coso ) = Da(s) ( sing  cos¢ ) Dy () P2
(2.4)

The families (2.2), (2.3) are one-parameter, the family (2.4) is two-parameter.
All elements are of order 2 except the elements in subgroups given in (2.2)!
It suffices to verify the conditions (2.2) only for some ¢t € R\ {0}. The
family 7_(¢, s), actually, coincides with Dy(s)O(2)D5*(s)P,, where Dy(s) =
diag(s,s™!). All points ¢ in (2.3) and all points (¢, s) in (2.4) are essential,
i.e., we can not remove any single point.

Remark 2.2. We note [16, Chapter V, §8 Problems, 2, p. 147] that every
element of SL(2,R) is conjugate to at least one matrix of the form

a 0 1t -1 t cos¢  sin¢
<0 a_l)’a#o’ (O 1)’ ( 0 —1)’ (—sind) cosgb)'

Remark 2.3. Some elements a = gP, in the set Gy (1) = GL(2,R); (u) are
of order 2 (see Remark 2.1):

a® = (gP)? = 1. (2.5)
This follows from the relation
PgP. =g (2.6)
To see this we note that if (2.6) holds, then we get (2.5):

a2 = (gPT)2 = gPrgPr = g.g_l =1



For example, for g = exp(tE12) we get PigP, = g, for g = exp(tEq) we
get PogPy = g71 and for g = 7(¢, 5) we get PogPs = g~'. See (2.3) and (2.4)
for details, where

USRI G gt L COE G gl |

cos ¢ sing  cos¢

We recall some useful lemmas from [28].

Lemma 2.2. Fort = ({1 /12) € GL(2,R) \ {e} we have, if dett > 0,

t21 t22

(M? ))Lt 1 M(

bin b n
3 [(1— L dett )2+ (11 — fa9)? tm / b1 +to1y b2 (2.7)
2n 1n

neL
If dett < 0 we have
(M( )) J—,Ubo

/ /b n
Z [(1— | det t |)2 <t11 + tzg t12 - t21 b? 28)

neL

Lemma 2.3. Fort € GL(2,R) \ {e} we have
(M%b,a))Lt 1 :u%b,a) if |dett| # 1.
If dett =1, we have
(M?b,a))Lt 1 :u%b,a) & XT(t) =N (t) + Ba(t) = oo
If dett = —1, we have

(:u%b,a))Lt 1 :u?b,a) Ang Ei(t) = E;@) + ZZ(t) = 00,

where
Zf(ﬂzz [(tn—tm 2+ t12\/b—+t21\/b— ;
ne”L
_ 2 bln b2n
X)) = Z [(tn +t92)” + t12 bor lo1
neZ
So(t7) = Z (bln [(t11— 1)a1n+tl2a2n}2+b2n [t21a1p+ (22— 1)G2n]2>- (2.9)

ne”
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Remark 2.4. By Lemma 2.3 we have
(:U’?b,a))Lt 1 :u%b,a) for te GL(27 R) \ {6}

if and only if this holds for two subsets of the group +SL(2,R) defined as
follows:
Gy = {teSL(2,R) |t = A1)}, (2.10)
Gy = {te —SL(2,R) |t = —Aj(t)}. (2.11)
The set G5 is reduced to two families of one-parameter subgroups (2.2). The

set G5 is reduced to the one-parameter family (2.3), the reflections of (2.2)
by P, and two parameter family (2.4) of elements from Dy(s)O(2)D5*(s)Ps.

Lemma 2.4. Ift € G5 we have

(M%b,a))Lt 1 :u%b,a) A Z+(t) = Ei‘—<t) + 22(75) = o0.
Ift € G5 we have
(M?b,a))Lt 1 :u%b,a) Ang E_(t) = Zl_<t> + ZQ(t) = 00,

where Yo (t71) is defined by (2.9) and

bln b?n 2
HOEDY <t12\/5;; +—t21\/515) : (2.12)

neL
b1 Do\ ?
i) =) <t12\/5i— —-t21\/5%—) . (2.13)
nez n n

The conditions of orthogonality with respect to elements defined by (2.2)—
(2.4) are transformed in the divergence of the following series:

b, (1 bon (1

nez nez

12 bim, biem
Sty = — 3 N 20y, + tagm)?, tER,  (2.15)

4 brm 2
meZ meZ

DI (T_(gb, s)) =sin? ¢ X (s) + 25 (T_(gb, 5)), ¢ €[0,2m), s>0, (2.16)

11



2
where ¥(s) ::Z <32\ / Zl—n—s_Q\ / 22—n> : (2.17)
ne’ 2n 1In

x5 (T,(gb, s)) = Z (4b1n sin? §—|—45_4b2n cos? ?) (aln sin ? —5%a9,, cos ?> 2.

2 2 2
neL
(2.18)
Recall Remark 4.3 from [28].
Remark 2.5. The following three conditions are equivalent:
(i) pkr—@o 1 ¢ €0,2m), s >0,
(i) E(7-(¢,5)) =sin® ¢ Ti(s)+ X5 (-(¢,5)) =00, ¢ € [0,27), s >0,
(ZZZ) 21(8) + Zg(cl, Cz) = 00, s>0, (Cl, CQ) €R2\{O},
where 31 (s) is defined by (2.17) and
Yo(Ch, Cy) = Z(Clzbm + C3ba) (Chary, + Caasy,)?. (2.19)

neL

2.3. FEquivalent series and equivalent sequences

There is an extensive theory of convergent and divergent series. In our
context we are only interested in when a series with positive coefficients is
divergent or convergent.

Definition 2.2. We say that two series ) _ya, and ) b, with positive
ay, b, are equivalent if they are divergent or convergent simultaneously. We
will write Yy @n ~ D>, cnbn. We say that two sequences (an)nen and
(bn)nen are equivalent if for some C7,Cy > 0 we have C1b, < a, < Cqb,, for
all n € N. We will use the same notation a,, ~ b,

Lemma 2.5. Let 1 +¢, > 0 for alln € Z. Then two series are equivalent:

2
Cn
Y= E o Yo = E 2. (2.20)
nez "

nel

PRrROOF. Fix some ¢ € (0,1) and a big N. We have three cases:
(a) 1+ ¢, € (e, N),

(b) for infinite subset Z; we have lim, ¢z, ¢, = 0o,

(c) for infinite subset Z; we have lim,¢z, (1 + ¢,) = 0.

12



In the case (a) we have

—Zc <Zl+cn 626721, (2.21)

nez ne’

In the case (b) and (c) both series are divergent. O

We will make systematic use of the following statement.

Remark 2.6 ([27]). Let a,,b, > 0 for all n € N. The following two series

are equivalent
Yoy 2

nEN neN

2.4. Orthogonality criteria p* L u for t € GL(3,R) \ {e}
For m =2 and dett > 0 we have, here H,,,(t) is defined by (8.8)

22\dett\(Hgﬁ(t)—l):[(l—\dett\)2+(t11—t22)2+<t12 22 +to1 227‘)2}:
[(MJ(X () - A (X)) + (ML (X ()~ AHX )" + (MF(X (1)~ 43X ()]

For m = 3 using (1.7) we have X (t) = BY2tB~/2 hence

by, 0 0 2 tin tiz i3 b, 0 0 e
X(t) = 0 bgn 0 t21 t22 t23 0 bgn 0 =
0 0 b3y t31 t32 133 0 0 b3y
t11 bl" b l12 Z;_:tli’)
Zf—”tm too Zi—:tm
b‘*” pirtan b‘g" a2 t33
Therefore, using (7.8) and the fact that X = X*(¢) X (¢) we obtain
3 -2 2 2 bln 2 bln 2 b2n
2° | dett | Hy(t) = (1+ | dett |* +t7; + 2 — 1ty + 2 — 75 + 2 =2
2n 3n in

b3n
bln

bgn bgn b2n
3y + 33 + Etgz + 855 + (M5(1)* + bs = (M5 (1) +

b 5+

13



bin 12 b3n 13 13 bln 13 2
PRI + OR3P + (MEOF + 72 (ME0)
QRO + ZOE0) + O3 0))

2
b, b
_ 2 7 o 7 Jn
— 14 | dett |* + Z [(tj bjn) (A bm>]
1<i<j<3
=1+ [dett [P+ > (IMIX ()] + |ALX (1))

1<i<5<3
Using the notation ¢} = t;; and the fact
dett =thAF b Ak b Ak k=123,

we get

2 | dett | (H;2(1) = 1) = (1= | dett )+ > (M(X (1)) - A;‘.(X(zs)))2

1<i,j<3

— (1| dett )’ + Y ( ﬂ—A’() Z—n>2 (2.23)

1<i<;j<3

Similar to [28, Lemmas 2.22] in the case m = 2, or [27, Lemma 10.4.30] we
get the following lemma, for m = 3.

Lemma 2.6. Fort € GL(3,R) \ {e} we have, if dett > 0,
(M?b,o))Lt 1 M?b,O) A

SOl dett )2+ (B Al >+Z (t 2 A %)2]:00.

nez 1<i<3 1<i<j<3 Jm

If dett < 0 we have
(N?b,o))Lt 1 M?b,o) A

>l dett )2+ (B Al >+Z (t m+AZ<) %)2]:00.

neZ 1<i<3 1<i<j<3
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By Lemma 8.6 and (8.9) the following lemma holds true.

Lemma 2.7. Fort € GL(3,R) \ {e} we have

(M?b,a))Lt 1 u?b,a) Zf | det ¢ |7A L.

If dett =1, we have

(o)™ L tlpay & (1) :=E{ (1) + Za(t) = oo
If dett = —1, we have
(o)™ L tlpay & (1) :=E1 (1) + a(t) = oo,
where
: k: bin i bjn 2
FO=3 [tk + Y (4 b A0 )] )
neZ k=1 1<i<j<3
3
b b2
_ k in i Yjn
=% [Z (b AL+ ( A bm) ] (2.27)
neZ k=1 1<i<j<3
So(t7) = Z |:b1n((t11 — 1a, + tizas, + t13CL3n)2 + (2.28)
ne”Z

2 2
bon (t21a15 4 (t22—1)a2n + t23a5n) " + ban (t3101n + t32a0, + (t33—1)as,) ] :

Remark 2.7. By Lemma 2.7, it suffices to verify, the condition of orthogo-
nality
(N?b,a))Lt 1 IU’?b,a) for te€ GL(37 R) \ {6}

for the following two subsets of the group £SL(3,R):

Gy = {t € SL(3,R) |t} = AF(t), 1 <k < 3}, (2.29)
Gy ={t € —=SL(3,R) |ty = —Af(t), 1 <k < 3}. (2.30)

15



Lemma 2.8. Ift € G, we have respectively

()™ L Moy & EE(t) = ZF(t) + Z2( ) = o0,

e

1<i<j<3 neZ

i 7, bn _
§ § <t \/ (t) b]_> = § Zz‘j<t>7 (2.32)
1<i<j<3 nezZ m 1<i<j<3
b b i
+ _ i in i in

nez

where Yo(t) is defined by (2.28).

Remark 2.8. We note that the Iwasawa decomposition holds for SL(3,R),
ie, SL(3,R) = KAN, where K = O(3),
) | z,y,2 € R} )

S1 0 0 1
A={Ds3(s)=| 0 s2 0 |, detD3(s)=1,,N= 0
0 0 s3 0

(2.34)

Next we will show that the set G5 can be reduced to the six family of one-
parameter subgroups exp(tEy,), 1 <k #r <3, see (2.36), or three families
of two-parameter subgroups, see (2.37). The set G5 can be reduced to the
three two-parameter family (2.38) reflections of (2.37) by P,.. The remaining
part is reduced to the sets D3(s)O(3)D5'(s)P, or five parameter family of
elements 7, (t,s)= D3(s)tD; ' (s) Py, see (2.42).

o = 8
— W

Lemma 2.9. In case m = 3 the minimal generating set GL(3,R); () is
defined as follows (compare with Remark 2.1) :

GL(3,R)y (1) = {e,(t,5),e.(t,8)P,,| 1 <r <3, (t5) € R*}

U{0A(3), 1 <r <3), where (2.35)
ekn(t) = exp(tEp,) = [ +tEp,, 1 <k#n<3, teR, (2.36)
er(t, s) = (égg) ealt,s) = (ggf) eslt,s) = (é?@ , (2.37)
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er(t, s)Pr = <_81é§>’62 :<%§1%),e;,(t,s)Pg:(ég_gl), (2.38)
r=(gdh). (Rl n=(i08). e

0%(3) := {D3(s)O(3) D5 (s) | Ds(s) € A}, (2.40)

024(3) := {D3(s)0(3) D3 ' (s)P, | Ds(s) € A}, 1 <r <3, (2.41)
7.(t,s) := Ds(s)tD3'(s)P,, t € O(3), Ds(s) = diag(si,ss,s3) € A, (2.42)

and A is defined by (2.34).

The families (2.36) give us respectively the divergence of the following
series:

ben 7 1
SE) =Y B (5= +ak), 1<kr<s k#n (2.43)
nez rn

The families (2.37) give us, respectively, the divergence of the following series:

-t2 b1 82 bl b1 2
S1L,23(M,t,s) = Z Zﬁ + Zﬁ + 7”(—2a1n+ta2n+sa3n) , (2.44)

nez -
_t2 bg S bQ bg 2
5513(u,t, s) = Z Zﬁ + Zﬁ + Tn(taln 2a9n, + sagn) , (2.45)
nez -

-t2 b3 S bg b3 2
S3L712(:UJata 5) = Z Zﬁ + Zﬁ + %(taln + saon — 2a3n) . (2'46)
nez -

The families (2.42) give us the conditions (2.50), see Lemma 2.10 below.
PROOF. Consider the subset GL(3,R)g (1) of GL(3,R) described by (2.35).

The fact that this set is minimal generating will follow from Lemma 4.1, more
precisely, from the following implications:

<,uLt L p forall te GL(3,R)§(;¢)> = (irreducibility) (2.47)
= <uLt 1 p for all ¢t € GL(3,R) \ {e}).

The first implication is just Lemma 4.1. The second implication follows from
irreducibility. Indeed, suppose that GL(3, R)a (1) is not a minimal generating
set. Then we can find an s € GL(3,R) \ {e} having the property

(1) ™ ~ 1y

17



Hence the non-trivial operator TX#2 can be defined by

_ 12 ., _
(T2 1)) = (dpfy ) (57 ) [dpgy o () Prsla), fe L*(X3, iy ))-
(2.48)
This operator commutes with the representations 77#*3:

(T3 TLr3] =0 forall te G,

contradicting the irreducibility.
The relations (2.43)—(2.46) follows from (2.26)—(2.28). The relation (2.45),
for example, follows from (2.27) and (2.28). The relation (2.50) we obtain

from (2.26) for 7,.(¢,s), t€O(3), s€ (]R*)3 defined by
7.(t,8) = D3(s)tD3'(s)P,, where Ds(s) = diag(sy,ss, s3). (2.49)
[
Lemma 2.10. Set
7(s,t) := D3(s)tD3'(s), 7.(s,t) :=7(s,1)P,

for t€ £0(3), Ds(s)=diag(s, s2,53), s=(s1,52,53) € (R*)> and 1 <7 < 3.
Then

(:u?b,a))LTr(s’t) 1 M:(gb,a) g E1i (TT(87 t)) + E2 (7',«(8, t)) = 00, (250)

where X5 (t) are defined by (2.31), (2.32) and y(t) is defined by (2.28).
In particular, if we denote s;; = 313;1 we get

S (r(t,5)) = B () = thu(s15) + HSas(s157) + S (s25)- - (2:51)
ProOOF. For T := 7(s,t) and T(3) := 73(s,t) we have respectively:

t11 %tn %tls
T = Ds3(s)tD3'(s)= <2ft21 t2o z;t%) : (2.52)

5 31 5 ta2 a3

t11 %tm —%tm
2ot 2t | = Dy(s)tD3 ' (s)Ps =: T(3). (2.53)
Z%t31 z%t32 —133

By Lemma 2.11 we have for t € O(3)
ter = AF(t), 1 < k,r <3. (2.54)
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Therefore, for T" and T'(3) we have for 1 <k,r<3:

7)

MH(T) = Ty = tyy, ANT)=2450) "2 2ty MET(3)) (2.55)
Sr Sk Sk

—(—1)0se 2y AMT(3) = (1) 2R AR (1) = (=1)% gy, (256)

S Sk Sk

Finally, we get

SHI) =5 () = [ 30 (a7 - 4w )]

neZ  1<i<j<3

bin ban \ 2 bin 1 [b3n)?
=2 [t%(slzwi—sﬁl\/L) +t?3<513\/L—3131\/i> +
b2n bln b3n bln
neL
.2 ban 1 [b3n\?] o S (2 2y ()2 2 1 (Gl
23| 523 E‘sm E = 11,212(812") + 113513815 ) + 153203 (8257)-
£1(T(3)) = thTia(515") + h5Tua(515”) + 35T a(s25”) 0
Lemma 2.11. For an arbitrary orthogonal matriz t € £0(3) we have

(2.57)

ti1 tia ti:
T iAZ(t), 1<k n<3, where t= <t; t22 té;)
131 132 133
PROOF. Denote the three rows of the matrix t by, respectively, t1, to, t5 € R3.
Since t € £0(3) we get

It1]]? = |It2|> = [|ts]|* =1 and ¢, Lt,, 1 #7. (2.58)

Moreover, since t; is orthogonal to the hyperplane V53 generated by the
vectors to and t3 and t € £0(3) we get respectively ¢, = £[t,, 5], where [z, y]
is the vector product or cross product of two vectors x,y € R? and the triple
{l,r, s} denotes any cyclic permutations of {1,2,3}. For t € O(3) and [ = 1
we get

i j ok

to1 too ta3
t31 t32 t33

tlz[tQ,tS]: :Z'|t22t23’_j|t21t23‘_|_k,‘t21t22

t32 133 t31 133 t31 t32

. (2.59)

where i, 7, k is the standard orthonormal basis in R3, i.e.,

22(1,0,0), ]:<Oa170)7 k:(()?Oal)
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Define X formally as the matrix:

i J k
X:<x1x]2x3>.

Y1 Y2 Y3
Then
t = (tu, te, i) = (A1(X), A3(X), 43(X))
thus proving (2.57) for k = 1. For other rows the proof is similar. O

Remark 2.9. For t € £0(n) we can prove a similar statement.

3. Irreducibility, the cases m =1 and m = 2

For convenience of the reader, we recall the previous results (see details
in [28]).

3.1. Casem =1

Let us denote by (f,, | n € N) the closure of the linear space generated by
the set of vectors (fy)nen in a Hilbert space H. Consider the measure jigq)
on the space X; ~ R? = ®,czR, the infinite product of the real lines:

[ b1n
dﬂ(b,a)@j) = ®n€Z %eibln(mnialn)zdaﬁm

for b = (b1n)nez and a = (a1p)nez with by, > 0, a1, € R where © = (21,)nez-
In the case m = 1 the generators Ay, := AkRﬁl have the form

Akn = xllenv ka n e Zu
where Dy, = % — bgn(Trn — agy). The following lemmas are proved in [1]

Lemma 3.1. The following three conditions are equivalent:

(1) ()™ L ppa) for all t € GL(1,R) \ {e},
(1) ()"0 L fipa)
(ZZZ) SlLl (lu) = 4 ZnEZ blna%n = Q.

Lemma 3.2. For k,m € Z we have

T1aT1ml € <AknAmn1 = ZL’lk{L‘lmD%nl | n e Z)
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Lemma 3.3. For any k € Z we have
1l € (v1p71,1 | 0 € Z) & ST (1) = 0.

So, the operators xyx, k € Z are affiliated with the von Neumann alge-
bra 2A' generated by the representation, which completes the proof of the
irreducibility for m = 1.

Definition 3.1. Recall (see [8]) that, a not necessarily bounded self-adjoint
operator A in a Hilbert space H, is said to be affiliated with a von Neumann
algebra M of operators in this Hilbert space H if ¢4 € M for all t € R. One
writes A n M.

3.2. Case m = 2, approximation of xp, and Dy,

2
TRHLL7

LT |e=o have the form:
n

In this case the generators Ay, := Aka =
Apn = 213 D1 + 221 D3y, kyn € Z.

We will formulate several useful lemmas for approximation of the operators
of multiplication by the independent variables xj, and operators Dy, by
combinations of the generators Ag,. In what follows we use the following
notation for f, g € R™ (see Remark 2.6 for notations ~)

L) +T(f9)  I+T()+T(9) +T(f9) _ det( +7(f,9))

A(f,g) = T(g) + 1 I+T(g) — det(I +7(9))

, (3.1)

where I'(z1,...,z,) is the Gram determinant of vectors z1, xs, ..., x, € R™
defined by (6.5). To make the notations of the article [28] compatible with
the notations in the case m = 3 (see (4.5)), we denote

2 2

D2 o b2, (1) 2 12 bay,

P =P =) e I P =l 1P =)
YOI =17 = 3 e I = 1 =3

kez keZ
b2 b2
y @2 . G212 = 1k ’ y @2 . 12|12 = 2k :
2 2 ai, 2 2 azy,
Ya]|* = [IfI1" = Z I, 1 Y2 := [lg]” = Z 1, 1 (3.2)
kezZ 2bix 20k kez 2bix 20k

Lemma 3.4. For any k,t € Z one has

2ty € (A Al | n € Z) < AV, VD).

21



Lemma 3.5. For any k,t € Z we have
vty € (Al | n € Z) & AY?, YY) =o0.)

Lemma 3.6. Set X" =% Z:Z, 1<r s<2. Foranyk € Z we get

111 € (DAl | n€Z) < Y2 =co.

Lemma 3.7. For any k € Z we have
ol € (Do Ajpl | n€Z) < Y =c0.

Lemma 3.8. For any n € Z we have
D1 € (Al |keZ)y < A(Y,Y:) =

Lemma 3.9. For any n € Z we have
Doy, 1 € (Al |keZ)y < A(YY)) =00

3.2.1. Technical part of the proof of vrreducibility

Lemma 3.10. If u* 1 p for allt € GL(2,R) \ {e}, we can approzimate by
combinations of generators at least one of the following pairs of operators:
(Ilmlén); (xlmD2n)a (D1m$2n) or (DlmD2n)-

ProOOF. Recall the orthogonality conditions for the case m = 2

brn 1
s,frw)—zg(% S BT

neZ
brn b n
Sy (u.t Z £ Z b (D, + taym)?, 1<k #£r <2,
nEZ rn
212(7—(¢, ) = sin” ¢ ¥y (s _(¢,s)), where

bln b2n
Z ‘ [ = ‘ [ =
1 bZn bln

Xy (7‘_(¢, 8)) = Z <4b1n sin? §+4S_4b2n cos? g) <a1n sin % — $%ay,, cos g) 2_

neL

Let 2% be the von Neumann algebra generated by our representation. In
order to approximate operators xy, or Dy, by the corresponding generators,
by Lemmas 3.4-3.5, Lemmas 3.2- 3.2 and Lemmas 3.8- 3.9 we have:

IATHAT/! A & A(Yl(l), Yz(l)) =00, TopTo 7 A & A(YQ(Q), Y1(2)) = 00,
DlanLQ@A(YthvQ)Zooa D2nn2l2<:>A(Y727Y71):OO

where Y, and Y, for 1 < r,s < 2 are defined by (3.2). O
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3.2.2. Scheme of the proof for two lines
There are two different cases:

I. Approximation of z, .z, for 1 <7 <2 by Ag,Asm,
II. Approximation of D, for 1 <r < 2 by Ag,.
In the case m = 2 the analysis of the divergence
AV YY) =00 and  A(Y;Y, YY) = oo

is governed by the convergence or divergence of X2 and ¥, since

Y(l) 2 _
¥l Z « 7+ 2b1kb2k Z
Y 2 E — E
| H 62 + 2b1kb2k

212,
blkak
21

=X

1
2
1
blkak 2

Remark 3.1. To guess the right generalisation for the case m = 3 we note
that ¥!2 = §;(2) and ¥?! = S5(2), where we denote

by Z Z b1 y21 _ bar
blkak: by

bukbay kez keZ o kez, 1k

keZ
We also observe that
IV~ $12), 157 ~ $2(2) (3:3)
Hence, in the case m = 3 it is natural to replace '2 = S;(2) and $2! = 55(2)
by S,(3), which is defined as follows:
b2

(3) = rn . 1<r<3. 4
S <3> <7 blnb2n + blann + b2nb3n : s (3 )

3.2.8. I, Approximation of x1, and o,
Lemma 3.11. We have

51(2) + SQ(2) = 00,
1,12 ~ S (2) for all 1<r<2,

1
IO < 2512, VIR < 55,(2),

~~ I~ I/~
N O Ut
~— N N

e ||2+||Y N2 =00, i,je{l,2}.

&
o0
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PROOF. Since a® + b* > 2ab we get

Further, for 1 <r <2

1Y) = ZL ~ Zik — 15 (2)
" b2, + 2blkb2kz P 2b1kby, 27

kez Tk
IO =S < S b _Lg
b2, + 2byboy, +2b1kbgk £ 2b14boy T oPh\Eh

b3 1
vV <) = -6(2).
") Z b3, + 2b1kb2k kezz Doy, 222

In addition, we have

YOI+ 772
| H I ” Zb2 +lekb% ijk+2blkb2k:

cz ik
by, + b3,
> — =1 = 00. O
,CEZZ (b1k. + bax)?
Remark 3.2. In what follows if some expression < oo (resp. = c0)

we denote this case by 0 (respectively, by 1).

Set S = (51(2),52(2)), since S1(2) + S2(2) = co we have two cases:
I(1) S =(0,1), if S = (1,0) we interchange (b, a1y)n With (bayn, agp)n,
1(2) S =(1,1), i.e., S1(2) = 00, S5(2) = 0.

3.2.4. Case S = (0,1)
Lemma 3.12. In the case S = (0,1) the representation is irreducible, more-
over we can approrimate:

(1) xopxer by AgnAgn, since A(YQ(Q), YI(Q)) = 00,

(2) D1y, Doy by A, since A(Y71,Ys) = 00 and A(Ys,Y)) =

PROOF. (1) Set (compare with (4.12) in the case m = 3)

k k k
y® = " ) = (IR PP, 1<k <2, (3.9)
(1) [CORCY)
Yy Yy Yo
or Yy = = . 3.10
Y <?J(2)> <y§2) y§2)> (810
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In the case S = (0,1) we have by Lemma 3.11 (see Remark 3.2)

(1) 0 1
1) _ 2) _ Y _

Indeed, |V;V|2 ~ S1(2) < oo, hence ||Y3' ||2 = oo by (3.8). Further,
F(YQ(Q)) = ||Y2(2)||2 ~ 55(2) = oo, and T(V;?)) < oo, since $,(2) < oc.
Therefore,
2 2) /(2 2
M)+ T ) | T(v?)
1+T(v,?) 1+ ()

A v =

= 00,

and we conclude that z,, n A2
(2) Further, since

YVa[l* = [[Y2]l* = [[Y1 — sYa||* = o0 (3.12)

by Lemma 8.11, we conclude that A(Yy,Ys) = A(Ys,Y]) = 00, 80 Dy, Do, 1 A
by Lemmas 3.8 and 3.9. Finally, x5, D1,, D2, n 2. Now we get

Agn, — o Doy, = 14 D1y, kyn € Z,

and the proof is complete since we are in the case m = 1.
Relations (3.12) follows from 5(2) =¥ =37, , j1k hir < 50, Indeed, we
have

a? bypa?
IVill* =D = = 2 1 ~ 22 bl = Si) =
2boy

keZ 2biy 2boy, kezZ 2 kEZ

blka2 blk 1
Mol =30 5 ~ P buah ~ > (g5 ) = Sk = oo
€Z

b1k
keZ 2 +_2bm; kEZ

b1k (a1 —sa

9 k(@1 2%)

RED A m NE bi(arg—sas)* = § bi(—2a15+250a9;,)?
keZ +2b2k keZ keZ

(25)? b b 1 .-
[ Ll Z (e 2G1k+28a2k)2} = 5552’ (u,t) = oo,

b
2k keZ

for t = 2s. O
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3.2.5. Case S =(1,1)
In the case S = (1, 1) we have three possibilities (see Remark 3.2 )

I(2a)yz<} ?),I(Qb)y:((l) }),1(2(;);,:(1 }) (3.13)

ie., I(2a) yél) < oo and yf) = oo, 1(2b) yél) = oo and yEQ) < 00, 1(2¢)
vy = 91" = oo, since [V{[* ~ 51(2) = oo and [[V;”* ~ 5(2) = o0 and
ys? + 1Y = oo by (3.8).

In the first case I(2a) or in the second case I(2b), i.e., if ||Y2(1)H2 <
00 or HY1(2)||2 < 00, we conclude respectively that A(Yl(l),YQ(I)) = o0 or
A(Y'2(2),Y1(2)) = 00 hence, z1,71; 1 A% or wapwa n A% So, we will get re-

spectively xy, or xs,. We shall come back to these cases later.

It remains to consider the case I(2¢): ||Y2(1) 1> = ||Y1(2) | = co. In the case
S=(1,1) set ¢, = Z?—Z, n€Z. Then ), , Z;—::Zkez bf—::oo. We get
WOP =Y e~ S U= e e
! 1+ 2¢, Crn 2 1+ 2¢,’ '
nez nez nez
2
@2 _ 1 @2 _ n
1Yl —Zm7 Y27l _mezcw (3.15)
nez nez nez
3.2.6. 1I, Approximation of Dy, and D,
Set
yiz = (y1,92) = (M, [V2]), (3.16)
ai, az,
where [[Vi[? =) 2, |Vl => 4+ (3.17)
nez 2b1n 2bon, nez 2b1n 2bon,

The case II splits into four subcases

(1) (y1,92) =(1,0), (2) (y1,92)=(0,1), (3) (v1,92)=(1, 1), (4) (v1,92) :<(3071(;)>
We have 4 = 2% possibilities for y = (y1,v9) € {0,1}% .

(1) (2) (3a) (3b) (3¢) (4)

1 0 1 1 1 0
y2 0 1 1 1 1 0
« 1 0 Cl S (8799 S 02

26



. . Y, 2
where o = lim,, o0 O, With oy, = HY;EgHQ, and

m m 2

2 a%n 2 Aoy,
VimPP= Y =", Iam|’= > =+

n=—m 2bin 2ban, n=—m 2bin 2ban,

All the different cases are presented in the following table:

Table 11 ) ®) Ba) [ (3b) |30 @)
s 00 < 00 00 00 00 < 0
[ Ya|[? < o0 00 00 00 00 < 0
Oy = 11287”1; 2 — 00 -0 c; <
<Oy

Lemma 3.8 3.9 3.8 3.9 3.8,3.9

3.6 3.7 3.6 3.7 3.14, 8.11

D1n7 T1in D2n7 Tan Dlna T1in D2n7 Tan Dln; D2n

Remark 3.3. We show that if ||Y[|?> < oo and S (1) = oo, then > 2o =

n bay,

oo. Indeed, let us suppose that ) lb’;—z < 00, then

a2n bln 1
Vol = 3~ S b, ~ 0% (g ) = S = o

nez 2b1n 2b2n nez nez
(3.19)

We explain Table II in detail. The first two case (1) and (2) are indepen-
dent of the case 1(2), i.e., S = (1,1).

(1) If ||Y3]]? < oo and ||Y1]|? = oo, then Dy; n 2A* by Lemma 3.8. The con-
dition [|Y>]|* < oo implies Y, Z;—: = 00, by Remark 3.3 therefore, x1; n A,
by Lemma 3.6. Further, Ay, — x1xD1,, = 221 Do, k,n € Z and the proof is
complete since we are reduced to the case m = 1.

(2) If ||Y2]|? = oo and [|Y1]|? < oo, then Dy, n A* by Lemma 3.9. Rea-
soning as in Remark 3.3, we conclude that >, _, Zj—: = oo and therefore,
Tor n A% by Lemma 3.7 and Ay, — 291, Dap = 214 D1, k,n € Z, case m = 1.

(3) Consider now the case 1(2). Suppose that both series are divergent:
|Y2]|* =00 and ||Y;]|*=o00. We show that in the case (B) (see (3.25)) holds

Vi + sYs|?=0c forall seR

by Lemma 3.14 therefore, by Lemma 8.11, we can approximate Dy, and Ds,.
To be more precise consider three possibilities:
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(3a) Let HQE g“i — 00, then Dy, 7 A%, Since Y-, 2 = oo, case 1(2),

we have x1, n 2A? by Lemma 3.6 and finally, x1,,, D1, 1 Q( , n € Z. We are

reduced to the case m = 1.

(3b) let H?EmgH2 — 0, then Dy, n A*. Since ), ¢ b2" = o0, case 1(2),
we get x9, n A, by Lemma 3.7 and finally, x5,, Do, n Ql , n € Z. We are
reduced to the case m = 1.

(3¢) The case when ||V1]|2=||Y2||2=00 and C; < H?@Hj < Cy, meN.

(4) The case when [|Y1||* + || Y2]]* < .

To complete the proof of the lemma it remains to consider 1(2), i.e., S =
(1,1) and the last two cases in the table 11, i.e., II(3c) and I1(4), where:

> = bu => = bak _ (3.20)

= b bix
1 1 1 -1
1(3¢) a ( ) Y& ( + —) — 00, (321
Z 1k 2b1k 2ka kEZZ 2k 2b1k 26214: ( )
N2 B B
n@ > (@t +a3) (26 + o ) < (3.22)
kel 1k 2k

We come back to the condition p’t L u. By Remark 2.5 we have
pr=@ Lo ¢ e0,2n), s >0 Xi(s) 4+ Na(Ch,Cy) =00, s >0,

for (Cy,Cy) € R*\ {0}. To make the notation consistent for the case m = 3
we replace everywhere ¥ (s) (defined by (2.17)) with X15(s) and Xo(Cy, Cy)
defined by (2.18) with X15(Cy, Cy) for (Cy, Cy) € R\ {0}:

bin b n
Sia(s \/i— 2/22), seR\{0}, (3.23)
an bln

S12(Ch, 02) = Z(Cfbm + C209,)(Cragy + Chagy)?. (3.24)

nel

The condition 315(s) + X12(C4, Cy) =00, splits into two cases:

(A) 212(8) = 0Q,

(B) X12(s) < oo and Xi5(Cy,Cs) = o0 (3.25)

Finally, we need to consider the following 12 possibilities:
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A [1(3a) [1(3b) [ 1(3¢) B [1(3a) [1(3b) [ I(3c)
11(3¢) . [ 1(3c)

11(4) 11(4)
Briefly:

(A)&I(2). In this case independently of the conditions II(3c) and II(4) we

can approximate zy, and s, using Lemma 3.4 and 3.5.

(B)&II(3c) In this case we can approximate Dy, and Dy, using Lemmas 3.8

and 3.9 respectively. More precisely, to be able to use Lemma 8.11 we show

that conditions (8.17) are satisfied for the two vectors Y; and Y5 defined by

(3.2) (see Lemma 3.14).

(B)&II(4) Since ¥15(Ch, Cy) = oo, this case (see (3.22)) cannot be realized
More details:

Case (A)&I(2). Using Lemma 8.11 we conclude that

AV, V) =00 and AV, Y = oo, (3.26)

To use Lemma 8.11, it is sufficient to show that in the case (A) relations
(8.17) hold for ", ¥V and Y32, Y{?, i.e., for all s € R\ {0} we have (see
Lemma 3.13)

V2= (Y0 2= IV + sYaP)? = oo, (3.27)
1212 = V22 =1V + sV, 2|2 = 0.

Consider the following three possibilities in the case 1(2):

1(2a) If ||V || < oo, then [|[Y{V|| = 0o by (3.8) therefore, A(YV;V, v,)
= 00 80, T1, 7 A* by Lemma 8.10 (a). In the case (A) by Lemma 3.13 holds

V2212 = V{22 = ||V + s7,7 |12 = oo,

therefore, s, 1 A% by Lemma 8.11.

I(2b) If HY12)H < 00, then HYQ(Q)H = o0 by (3.8) therefore, A(Y2(2),Y1(2))
= 00 80, To, n A* by Lemma 8.10 (a). In the case (A) by Lemma 3.13 we
have

1271 = 02 = I 4+ 5932 = oo,
and therefore, 1, n A? by Lemma 8.11.

1(2¢) If [YV)] = [V = oo, then by Lemma 3.13 all relations (3.27)
hold in the case (A) and therefore, x1,, xa, n A*. To prove (3.27) we need
Lemma 4.8.
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Lemma 3.13. If ¥5(s) = oo for any s > 0, then
Y=oV IP =00 and ;Y ~CY?|P =co, forany CeR\{0}.

So, in the case (A)&I(2) we can approximate x1, and xg,.
Case (B)&II(3c).
Lemma 3.14. When 315(s) < 0o and X15(Ch, Cs) = 00, we get

Chay, + Coagy,)?
7(Cy, Cy) = Hamwﬁfgu?:z( L Qf” =00, (Cy,Cy) €R*\{0}.

nez 2b1'n 2b2n

(3.28)

Finally, we can approximate Dy, and D, in the case (B)&II(3c).
Case (B)&II(4). The last case (B)&II(4) (see (3.22)) can not be real-
ized. Indeed, in this case ¥15(s) < oo and 312(CY, Cy) = oo. Therefore, by

Lemma 4.8 we have s*lim,,_,~ Ig;—” = 1 and hence,

U(Ch C2) ~ 212(017 02) =00

(see also the proof of Lemma 3.14 in [25]). This contradicts (3.22):

1 1 \-1
1.1) = 2 4 g2 (— —) < 0.
o(1,1) é(alﬁa%) ur | 2o >

Thus the proof of Lemma 3.10 for m = 2 is completed.

The proof of the irreducibility for m = 2 follows from Remark 1.2. De-
pending on the measure, we can approximate four different families of com-
muting operators B* = (Bf.,, B, )nez for a € {0,1}%

B(O7O):(x1nax2n)na B(O7l):(x1naD2n)n> B(170):(D1n7$2n)n7 B(O’O):(Dlna DZn)n

The von Neumann algebra L°(Xy, u?) consists of all essentially bounded
functions f(B®) in the commuting family of operators B® (see, e.g., [5]) as,
in particular, L{§g (X, p?) = L®(Xa,4?). Since the von Neumann alge-
bras L (Xa, p?) are maximal abelian, the commutant (22)" of the von Neu-
mann algebra 2(% generated by the representation is contained in L (X5, 1?).
Hence, the bounded operator A € (2[2)/ will be some function A = a(B®) €
LP(Xy,12). The commutation relation [A,T}**?] = 0 gives us the fol-
lowing relations: a(B®)® = a(B?®) for all t € GLy(200,R). Set B =
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(B&)n, ©r = (pn)n, Dr = (Tyn)n, ¥ = 1,2, n € Z and set as before,

Epn(t) == [ +tEy,, t € R, k,n € Z, k # n. Then the action (B*)f is
defined as follows:

(Bféng)Rt = ((B?)Rt7 (Bg)Rt)’ (mT)Rt = 2y, (DT)Rt = D?“tT7
a(...,xrk,...,xm,...)REkn(” =ale . gy oy Ty gy ),
a(..., Dy, Dy VB0 ® c=a(... Dy +tDypy ..., Dy, ...), t ER.

In all the cases, by ergodicity of the measure u?, we conclude that a is
constant.

4. Irreducibility, the case m = 3

4.1. Technical part of the proof of irreducibility

Lemma 4.1. If p** L p for all t € GL(3,R) \ {e}, we can approzimate at
least one of the following eight triplets of operators:

($1n7x2n7x3n)7 (xlnaxZnaDi’m)a (wlnaDZnax?m)? (D1n7$2nax3n)7
(xlnaDQnyD?m)a(DlnafIQnaDSn)y (DlnaDQnaxSn)a (D1n7D2n7D3n)'

PrOOF. By Lemma 2.8, the condition of orthogonality (u:(”b’a))Lt s [L:()’bﬂ) for
t € £SL(3,R) \ {e} are,

YEE) = 27 (t) + Sa(t) = oo, (4.1)

where ¥5(t) is defined by (2.28) and X7 (¢), X, (¢) are defined by (2.31),
(2.32). Let 23 be the von Neumann algebra generated by the representation.
We write compactly:

Tpn n A = A® =00 Dy, n Ao A, = oo, (4.2)
where A(k) = A(Yk(k)a Y;(k)a Y(k))> Ak = A(Yka Y;, Y;>7 (43>

S

and {k,r, s} is a cyclic permutation of {1,2, 3}.

Case 1. Approximation of x, .z for 1 <r <3 by AppApn.
Set Bsp = bip + bop + b3x. To approximate the operators xy, by the corre-
sponding operators, by Lemmas 5.1-5.3 we get:

xlnxltnﬂg o AW = 00, TonTo 1 A & A® = 0, xgnxgtn%?’ o AB) = 0,
(4.4)
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where

b2
Y72 = ok . 1<rs<3. (4.5)
2 W T )

Case I1I. Approzimation of D, by Ag,.

By Lemmas 5.4-5.5 we have for 1 < r < 3 (see (4.3)):

2
a
Dy n A = A, =00, where ||Y,]|?= Z — rk . (4.6)
keZ 2big 2bog, 2b3y,

Case II1. Approximation of x.. by D, Agy.
DinAkn = 211D3,, 4+ 22k D15, Doy, + 23, D1, D3,
Dop Apn = 211 D10 Doy, + 20, D3,, + 31,Do D,
D3, Agn = 211, D10 D3, + 221, Don D3y, + 234D,

By Lemmas 5.7-5.9 we have
r1,1 € (D1, Al |k E€Z) & %
Tonl € (Do Apnl |k €Z) & 3o
23,1 € (D3, Al |k €Z) & Y

Nl
g 8 8

_ by
where 3, = Zkez b1k+b2:+b3k'
Case IV. Approximation of D,, by T, Ak,.

Tk Apn = 23, D1y + 212026 Doy + T1:236 D,
TokAkn = 13226 D1n + 3, Doy + To33: Dsn,
T3k An = 1536 D1n 4 Torwse Dan + 5, Dsn.
By Lemmas 5.10-5.12 we have
Dyl € (xy Al |k €Z) & A(Yi, Y1, Yis)
Doyl € (o Akl |k €Z) < A(Yae, Yas, Yo1)
D31 € (v Akl |k €Z) & A(Yss, Ya, Vi) =
where Yy, for 1 < k,r < 3 are defined by (5.13)—(5.20).
Case V. By Lemma 2.8 we have two conditions
(A) Xf(t) =00, dett=1 or X[(t)=o0, dett=—1,
(B) Yf(t)<oo or X[(t) <oo but ()= oo, (4.7)

where X7 (¢), L7(t), Xa(t) are defined respectively by (2.31), (2.32) and
(2.28). The rest of this section will be devoted to the proof of Lemma 4.1. [

Y

= 0
:OO7
ce

)
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4.1.1. Notations and the change of the variables
In what follows we will systematically use the following notations:

b2
S.(3) = rn . 1<r<3, 4.8
( ) <7 blnb2n _'_ blnb3n + b2nb3n ( )
b
PINEE ™ ., 1<r <3, 4.9
bln + b?n + b3n o ( )
€Z
brk 1 1 1
X = —, 1<r#s<3, Cy= + + , (4.10
kEZZ bsk 7 g 201 2by, 203 ( )
Y123 = (y17y27y3) where y, == ||YTH27 (4'11>
k k k k
y® =,y ) = IV 12 P12 1), 1< k<3, (4.12)
y® ﬁ)y% %?
y= yﬁ = o2 P 4P |, where y{” = | V7| (4.13)
3
y TR T

E123(5) = (212(512), Z23(323)7213(313)), S = (312,523, 813)- (4-14)

The expressions S,.(3) in the case m = 3 can be generalized for an arbitrary
m € N as follows:
S
Sk(m) = - , 1<kE<m. (4.15)
nez Zl§r<s§m brnbsn

Lemma 4.2. We have

1Y D)2 ~ S.(3) for all 1<7r <3, (4.17)
1

1,12 < 55}(3) for all 1<r+#s<3, (4.18)

2 Y202+ 1Y )? = 00, iryiz,ds € {1,2,3}. (4.19)

PROOF. Since 3(a? 4+ b* + ¢?) > 2(ab + ac + bc) we get

S1(3) + S5(3) + S5(3 }: 1 + U, £ 05, > 2/3=00
? 3 blnb2n + blnbi’m + anbBTL kcZ
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Further by (4.5)

b2
Yy 2 — rn ~ S,(3),
H " H % b%n + Q(blnb%’b + blnb3n + b2nb3n) ( )
YO =3 b o) ser
" nez bgn + 2(blnb2n + blann + b2nb3n) 2 ’

To prove (4.19) we get by (4.5)

A+ I+ ) =

3
b2 b2
Z Z . rn > E @ = 00
b; . + Q(blnb2n b1nb3n b2nb3n> n (Z br")2

r=1 nez wm

We make the following change of the variables:

b b,
Gln A2n A3n Ay, Aoy A3y aln\/m a2nV bln aznV bln ’

motivated by the following formulas:

b 1
Aty ()= \/;exp(—b(x—a)2)da:: \/;exp(—(x'—a/)z)dx’:dﬂ(blva/)(x/),

b_17

Remark 4.1. All the expressions, given in the list (2.26) (2.27), (2.28) and
(4.1) are invariant under the transformations (4.20)

by 1 1 1 1\
SL = = 2 }/;” = < T ( ) )
kr(M) ZZ 9 (Qbrn + arn> ) Qri 2b1r + 2bay, + 2bsy, kez’

ne

etc., and S,(3) that are defined by (3.4).
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4.2. Approximation scheme

Case 1. Approximation of xy by AgnAsn. Recall that we will write 1 if
some values = oo and 0 in the case < oo (see Remark 3.2). We use the
following notation S := (51(3), 52(3), S5(3)). By Lemma 4.2 we get

Therefore, without loss of generality, it suffices to consider the following three
cases:

(1) $=(0,0,1), (2)S=(0,1,1), (3)5=(1,1,1). (4.21)

By Lemma 2.8, the condition of orthogonality (u?bﬂ))Lt L lj’:(sb,a) for t €
+SL(3,R) \ {e}, i.e., BF(t) = 25 () + o(t) = oo, splits into two cases:

(A) Eiﬁ(t) = %% Ef(t) = Zl<i<j<3 Zz:‘tj(w’
(B) Xf(t)<oo but o (t) = oo, (4.22)

where YE(1), E;‘; (t) and 35(t) are defined by (2.31), (2.32) , (2.33) and (2.28).

4.8. Case S =(0,0,1)
Lemma 4.3. The case S = (0,0,1) is equivalent with

b2

EP 4+ 5% < S5(3) ~ » I = o0. 4.23

FE <o S8~ g hn = (4:29)

PROOF. To prove the first part of (4.23) we set ¢, = blfi’;m and note that

b2 + b (2.22)
00 > S1(3) 4 52(3) = 2 ~
1( ) 2( ) % blann + blnb3n + b2nb3n
b%n + bgn (bln + an)2

< (bip + bon + b3n)? — B, A= (b + bon + bn)? — 3,

1 1 bn+bn
Z(1+Cn)2_02:zl+20n 222)2 Z 1 2 — N34 »23

nez . nez neZ

To prove the second part of (4.23) we have by the first part of (4.23)

b3,
Z blnb2n+b1nb3n+b2nb3n Z binbon + bln + ban Z b

neZ b3, | ban | ban 1nban
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In the case S = (0,0, 1) we have
AV YY) ~ AW ~ Y = oo,

SO we can approximate xs3,rs; using Lemma 5.3 and after that we can ap-

proximate z3, by an analogue of Lemma 3.3. From now on we will say that

we can approximate T, using Lemma 5.3, without mentioning Lemma 3.3.
We can not approximate x1,, and x5, using Lemma 5.1-5.2, since we have

A ) + ARV 1) < oo

We can try to approximate some of D,,, for 1 <r < 3 using Lemmas 5.4-5.6,
see Section 4.4.4 for details. We have for 1 < k < 3 (see (4.3)):

Din A & Ay =00, where Ay =AY, Y,,Ys),

and {k,r, s} is a cyclic permutation of {1,2,3}. Recall that by 312+ < 0o
we get (see (4.6) for the expressions of |V,]|?, 1 <r < 3)

IYilP~ D bimad, 1Yall? ~ Y binds,,  1Yal ~ ) binad,.  (4.24)

ne’l neL ne”l

By (4.23) we have ©13 4+ ¥ < 0o. We distinguish two cases:
(1) X2 < oo,
(2) 212 = o0.

In the case (1), since $!2 + 313 < 0o we have

(2.44) t2 bln 82 bln bln 2
Shosit,s) = A D T (90, g, Sas,) | ~
V) HEZZ [4 bt T g (20t tsas)

bin .

> %(—2a1n+m2n+$a3n)2 RSl (A RN TR A A
nez

Finally, in the case (1) we can approximate all D,,, 1 < r < 3 using Lem-

mas 5.4-5.6 and Lemma 8.15 and the proof is finished.

The case (2) can be divided into three cases (if necessary, we can chose

an appropriate subsequence of Z;—z) ):

0
b>0 . (4.25)
00

(a)
bln

lim — =< (b)
" o (¢)

C

36



The case (c) is reduced to the case (a) by exchanging (bsy,, as,) with (by,, ai,).

This transfomation does not change the first condition in (4.23). In the
case (2.a-b), by (4.6) we obtain the following expressions for ||Y,[|?, 1 <r <
3:

2 2 ;
Y, 2 aty, o 2b1na1n »18<oo 2 2
[Y1]|* = 1 1 T = ~ 1nQ1p;
. 1.+.ﬁﬁ +,ﬁﬂ
nez 2bin 2ban, 2b3n, keZ ban bsn nez

Y2l ~ D 2binas,.  IValP =) bads,.

nez neL

Since

IY2l2 ~ ) binai, ~ Si(p) = oo,

neEL

we have four possibilities for ya3 := (y2,y3) € {0,1}* as in (4.54), see Sec-

tion 4.4.4:
(1.0) (1.1) (1.2) (1.3)

y 1 1 1 1

We just follow the instructions given in Remark 4.4. We note that the cases
(1.0) and (1.1) can not occur since the following conditions are contradictory:

(4.23)

: bin/ 1
St = D (g tadn) =00, VP ~ 3o bund, < 00, B8 < oo

nez neL

We have two cases (1.2.1) and (1.3.1) according to whether respectively the
expressions in (4.58) or (4.60) are divergent. We can approximate in these
cases respectively Dy, and Ds,, in (4.56) and all Dy,,, Ds,, D3, in (4.57). The
proof of irreducibilty is finished in both cases because we have zs,, Ds, n A3
and the problem is reduced to the case m = 2 [28], since Ay, = Zle Tyt Dy —
231 Dsn = 31— Ty Drn.

If the opposite holds, we have two different cases (1.2.0) and (1.3.0). We
try to approximate D3, using Lemma 5.15. If one of the expressions 3(D, s)
or XY(D, s) is divergent for some sequence s = (si)rez, We can approximate
D3y, and the proof is finished, since we have w3,, D3, n 2® and the problem
is reduced to the case m = 2. Let us suppose, as in Remark 4.6, that for
every sequence s = (Sg)rez We have

¥3(D, s) + X3 (D, s) < oc.
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2
Then, in particular, we have for s® = (s;)rez with ;—’; =1

0o > N3(D,s%) + 2Y(D, s®) ~ 83(D) + By (D) =

1 2 1 2
Z Shgr T Y3k (2:22) Z Shgr T Y3k _
2 2 2 1 2 1 2

— Cr + ayy + ay, + ag; o b T Ak T om,, Ao

big 2
bar + 2b1k(l3k

1+ 2b1kafk + Z;_: + lekagk

(4.23) 201,03, +
~ E =: 23 (D).
1 + 2b1kafk + 2b1ka%k 3 ( )

Remark 4.2. Finally, we have X3 (D)~ 1+2a2a3j2a2 , we take by, =1 by

(4 20). In the case (1.2.0) we have ||[Ya]* ~ >, b1na2n < 00, and therefore
Y3(D) ~ >, 1+(;3k2 , and hence X5 (D) = oo by Lemma 4.10. In the case
(1.3.0) we have a3 = +ay + ay + h or a3 — h = £ay £ ag, see the proof of

Lemma 4.11. Therefore,

a2 CL2
o> D)~y —F2 > 3k _
+(D) ;1+a§k+a§k _;1+a%k+2|a1kl|a2k|+a§k

2 2

a3y T Ay

S L oo >SHD)~ Y > (4.26)
k 1+ (|a1k|+|a2k|)2 A 1+a%k+a§k

2 ~ ~ 2 -
— 1+afy, + a5y, + (law| = laok])? 4= 1+ 2ai;, — 2|aw||as| + 203,

~3 it ~3 sy . (4.27)
k

1+ aiy, — 2[auk||as| + a3 7 1+ (Jawk] — as)

Hence, we have by (4.26) and (4.27)

2
0 > S (D) > — i — oo (4.28)
Z :]: alk :t a%)2 ; 1+ (a3k - hk>2

by Lemma 4.10, contradiction. Therefore, in both cases we can approximate
D3, and the proof is finished.

4.4. Case S =(0,1,1)
Lemma 4.4. In the case S = (0,1,1) we have

lim dy,, = lim d3,, = o0. (4.29)
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PROOF. Setting as before d,.,, = b’” , we obtain by (3.4) and (2.22)

1 1
3) = ~ <00, 4.30
) Z d2n+d3n+d2nd3n ; (1+d2n)(1+d3n> > ( )
Z (2. 22)2 d%n
d2n + d3n + dQndSn (]- + d2n) (dQn + d?m)
n (2:22) dz,
=o00. (4.32
Zd2n+d3n+d2nd3n Z 1+d3n d2n+d3n) > ( )

Suppose that dy, < C for all n € Z. Then by (4.30) and (4.31) we conclude

1
S1(3) ~ % o) (Lt o) Z 1+d3n nzd—?m<oo oo = S53(3)

=00, (4.31)

Z d%n Z d2n < Z 2.22) i <o,
nez (1+d2n)(d2n+d3n) ne’ d2n+d3n o ne’ C+d3n d3n

a contradiction. We use the fact that for any fixed D > 0 the functlon
2

T
xTr) =
Jol@) x+ D
is strictly increasing when z > 0. Similarly, if we suppose that ds, < C' for
all n € Z we will obtain a contradiction too. O]

Lemma 4.5. The case S = (0,1,1) is equivalent with

Zbg b, <00, 55(3 Zd = 00, S3(3 Zd =o00. (4.33)

PROOF. Recall that d,, = flz—”. Denote D,, := 1+ d,, + d3!. By Lemma 4.4
we have
1< D,=1+dy, +d; <C, forall neZ. (4.34)

Therefore, we get

1
3> :; d2n + d3n+d2nd3” Z D d2nd3n Z d2nd3n Z b2nb3n
ds, d3,
3) - Z d2n+d3n2+d2nd3n nZ: m Z d
Z d2n+d3n+d2nd3n Z D dQndgn HZEZ dy,. O

39




By Lemma 4.2, (4.18) we get [|V;"||2 < 00, 1 < r < 3 therefore, we get
Lemma 4.6. In the case S = (0,1,1) we have

1 1 1 2 2 2 2 2
AMY ") <oo AN YT V) ~ AT YY),
3 3 3 3 3
AV YY) ~ A YY), (4.35)

PROOF. Set (fi1, fo, f3) = (Y&, ¥{¥, V*)). Then

815) D(f1) +T(f1, f2) + T(f1, f3) + T(f1, f2, f5)
(fbf%fg) B L+ T(f2) + T(f3) + T (f2, f3) g
D) +TUnf) 69 T(f)+ T i)

1+ T(fa) +0(fs) + D(far f5) = (L+T(f)(A+T(fs)

since fo € l5(Z). Indeed, for f,g € [5(Z) and f € I5(Z),g & l2(Z) we have
respectively

I'(f,9) <T()T(g) < oo, I(f, 9) I'(f)I'(g), where T'(f,g), (4.36)
['(g) are defined by T(f,g):= F(f(n w) T(g) = limf(g(n)),

A(flaf3)7

and g = (g)7__, €R2L. Similarly, set (f1, fa, f3) = (Ya2, Yo? ¥\®), then

Ao fo fs) (8.15) L(f1) +T(f1, f2) + T(f1, f3) + T(f1, f2, f3)
b ds L+ T(f2) + T(f3) + T(f2, f3)

L(f1) +T(f1, f2) (4§6) U(f1) + T(f1, f2) N
L+T(fo) +T(f3) +T(f2, f3) — (L+T(f2) (1 +T(f3))

since f3 € l3(Z). Finally, we derive both equivalences in (4.35). To prove
that
A(Yl(l),YZ(U, YS(D) < oo we set (f1, fa, f3) = (Yl(l), Yg(l), Y})(l)), and note that

8.15) D'(f1) +T(f1, f2) + T(f1, f3) + T(f1, f2, f3)

Alfis o £3) = THT(f) 4T + D fa)

D(f2) (14 T(f2) + D) + L(f2: £o))
L+T(f2) +T(f3) +T(f2, f3)

In order to approximate xs, or xs,, it remains to study when

A(fla f2)7

AV Y =00, ANV YY) = o0, (4.37)
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where A(f1, f2) = f11)++(ffl)h) For 2 <r < 3, denote

pr(Ca, Cs) = [|CoY37 + CY" |2, (C, Cs) € R, (4.38)
V(Cl, CQ, 03) = ”01}/1 -+ 021/2 -+ CgYE),”Q, (Cl, 02, Cg) € Rg. (439)

Lemma 4.7. In the case S = (0,1,1) we have

(Co+Cid,)” (CotCidly )
p2(027 C3>NTLZZ _1 + 2dn 9 p3<027 CS)N; m (440)
C’l —i—C 9
_Z i+2l3 ; V(Clac2703 Zb1n<zcarn> . 441)

neL

PROOF. Set as before d,, dg: By (4.5) and (4.6) we get

d3 3 !
v@pz_ 2n = - T Z.Dd,
Y™ n% B2 +2(dap + dap+dandsy) n% d3,+2D,d2ndsn nze:z Dydy,

2
P=3 = -
1Y~ £ d3,,+2(don+dsy +dandsy) n%% d3,+2Dydondsy,

d d
n Y 2 =
ze; 1+2D,d,’ | ” % d2, + 2(doy+dspn+dondsy,)

n

D A D
el d%n—‘rQDndgndgn el d% 4+ 2D,d,

d d d
Y. 2 _ 3n — 3n ~ n ’
H 3 H T;Z dgn + 2(d2n+d3n+d2nd3n) 1% d§n+2Dnd2nd3n T;Z D,

2 2
a 2b1,,02 2b1,a
ij1||2 § : I in I § : nYlin I § : nnln7

neZ 2bin 2ban + 2b3n, keZ 1 + d2n + d3n nez

2b1,03,,
D, ’

neZ nel

Recall that d,, = Zg’l"—z By (4.34), we obtain

1 1 d?
Y(Q) 2 E ~ § Y(Q) 2 E n 4.43

b
13 = buntsy, (4.42)

Ya|? =
1Yz D,

nez nez nez
1 d?
PR~ ) IR~ >,
LEN &2+ 2d, LEl ;d%+2dn HZEZ ’
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IY2l2 ~ D bty V2P~ ) bunas,, [Vl ~ ) bindd,,

neZ nel nez
||CIY1 + 02)/2 + Cg}/?,HZ (439 Zbln Ola1n+02a2n+03a3n) . (444)
nez
By (4.43) and (4.44) the proof is finished. O

4.4.1. Approximation of Ta,, T3,
: _ g1
To approximate xg,, Ts,, we need several lemmas. Denote [,, = d, .

Lemma 4.8. The following five series are equivalent:

o E:«% S
L (Gazn—cs)Q 2
(17 — iv) nEEZ 1ol ~ nEEZ €ns (4.46)

0 =a=3 (i) =X () aa

=CoC5 1 4¢,), 1,=C5C (1+ey,), s*=CoC3' >0, l,=d;". (4.48)

n

where

PROOF. To prove (4.45) and (4.46) we get by Lemma 2.5 using (4.48)

(Co—Csdy)”* o3
2 1+ 2d, _§:1+ﬂbc 1+%,N§:"’

ne”Z nez
Coly—Cs)’ C2e?
I D ~Ta
= 1+ 21, 1+2C5C (1 +ep)
To finish the proof we make use of the following lemma O]

Lemma 4.9. Let (¢,)nez be a sequence of real numbers with 1+ ¢, >0 and
(1+cn)(1+e,) =1. Then the following three series are equivalent:

Z (L4 en)? = (1 + 1/2 Zc and Zei'

ne” neZ neZ
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PROOF. Set s* = C,C; !, replacing 1+ ¢, by (14 ¢,)”" in Lemma 8.2 gives

Xaa(s) = Z ((1+ ) P = (1+ Cn)1/2)2 = Z (1+ en)? — (1+ en)_1/2)2 .

neL ne’l

Therefore, ) ., 1ﬁ = nez % and hence, by Lemma 2.5, the two series

are equivalent: . 2~ el O

4.4.2. Two remaining possibilities
By Lemma 4.8 there are only two cases:
(1) when p2(02, 03) = p3<027 CB) = oo for all <C27 03) € R? \ {0}7
(2) when both pe(Cs, C5) and p3(Cy, Cs) are finite and hence, Ya3(s) < oo.
To illustrate this we start with the following example

Example 4.1. Set d,, = n® for n € N with a € R. We have

oo if a>0
limd, ={ 1 if a=0 . (4.49)
" 0 if a<0

For the general sequence (d,),cz we have four cases (if necessary, we can
chose an appropriate subsequence):

(

( >0 WlchC:OO
(
(

d
d>0 with > 2 <oo ’ (4.50)
d=

)i
lirrln d, = )
)

a
b
c
d
where d,, = d(1 + ¢,) and lim,, ¢, = 0.

4.4.3. Cases (a), (b), (d)
Remark 4.3. In the cases (a) we see by (4.40) that

02(02, 03) = ,03(02, 03) =0 for all (CQ, Cd) € RQ \ {0}

The case (d) is reduced to the case (a) by exchanging (bay,, as,) with (bs,, as,).
In the cases (b) by Lemma 4.8 and (4.50) we conclude that

pQ(CQ, —Cg) = pg(sz7 —Cg> = o0 for 020371 >0

hence, po(Cy, C3) = p3(Cy, C3) = oo for all (Cy, C3) € R?\ {0}. Therefore,
in cases (a), (b) and (d) we get zo,, 3, n A>.
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To finish the proof in these cases, it is sufficient to approximate one
of operators D,,, 1 <r <3 by opertors (Ag,)rez using Lemmas 5.4-5.6,
see Section 4.4.4. Alternatively we can try to approximate Ds,, D, using
Lemma 5.13 and its analogue, see Section 4.4.5, or to approximate Ds,, Do,
using Lemma 5.14 and its analogue, see Section 4.4.6.

Note that by Lemma 4.4 we have lim,, by, = lim,, b3,, = co. In the cases (a)
and (b) the conditions (4.33) are expressed by (4.50) as follows:

1 1 :
b= (1, b, dpbsy), Z . < 00, Zd— =0, limd, = oo, (4.51)
b= (1 ban, dban ( 1+cn Zb7<oo Zc = 0. (4.52)
Indeed, to get (4.51) we observe that (4.33) are expressed as follows:
[N PP SN Z
— bapby,  — b3,dy dy,

Condition S3(3) ~ >, d, = oo holds by lim,, d,, = oo
In order to get (4.52), we express the conditions (4.33) as follows:

Zanden (1+e¢,) Z b2 oo
Zd Zl—|—c = %, S3(3)den:Z(1+Cn):OO.

n n

The conditions S3(3) = oo holds by lim, ¢, = 0.

4.4.4. Approximation of D,,, 1 <r <3, 1
By Lemmas 5.4-5.6 we have for 1 < k < 3 (see (4.3)):

Din n A & Ay =00, where Ay =AY}, Y,,Ys),

and {k,r, s} is a cyclic permutation of {1, 2, 3}.
Recall that by (4.42) we have

IYilP ~ ) biad,, 1Yell? ~ Y binds,,  I1Yal ~ ) binad,.  (4.53)

ne” neZ nez

44



Since [|Y1]|? ~ 3,czbmai, ~ Sti(n) = oo, we have four possibilities for
Yoz = (y2,93) € {0, 1}*
(1.0) (1.1) (1.2) (1.3)
w11 1 1

(4.54)

In the case (1.0) we have A(Y7,Ys, Y3) ~ ||[Y1||* = oo, so we can approximate
Dy, using Lemma 5.10 and the proof is finished. We should consider the
three following cases:

(1.1) (1.2) (1.3)

In the cases (1.1), (1.2) and (1.3) we have respectively (see the proof of
Lemma 4.6)
A(Y1,Ys,Y3) ~ A(Y1,Y2),  A(Ye, Y3, Y1) ~ A(Yz, Y1), (4.55)
AV, Y, V) ~ A(YLYs), A(Yy, Vi Ys) ~ A(Ya, V1), (4.56)
A(}/h}/?7}/3)a A(B)%)H)a A(}/E%}/l)}/é) (457)
By (4.42) and Lemma 4.4 we have respectively in the cases (1.1)—(1.3):
) 2
v12(C1, C) = [|[C1Y) + CoYsa|” ~ me <C1a1n + 02a2n> , (4.58)

neL

) 2
113(Ch, C3) = [|C1Y1 + C3Y5]|° ~ Z b1y, <C1G1n + C3a3n) , (4.59)

ne”

v(C1, Cy, C3)=||C1Y] +CyYa+CsYs|* ~
2
Z b1y, <Cla1n+c2a2n+c3a3n> . (4.60)

ne’l

Remark 4.4. We have three cases (1.1.1), (1.2.1) and (1.3.1) according to
whether respectively the expressions in (4.58), (4.59) or (4.60) are divergent.
We can approximate in these cases respectively Dy, and Ds, in (4.55), Dy,
and Ds, in (4.56) all Dy,, Ds,, D3, in (4.57). The proof of irreducibilty is
finished in these cases because we have D,,, Ta,, 23, 1 A3 for some 1 < r < 3.
If the opposite holds, we have three different cases:
(1.1.0) ||C Y1 + CuYs|| < oo for some  (C4,Cy) € R\ {0},
(1.2.0) [|C1Y] + C3Ys|| < 0o for some (Cy,C3) € R*\ {0},
(1.3.0) v(C1,C5,C3) < oo for some (Cp,Cy, C3) € R*\ {0}.

45



Recall that by (2.44) we have

by, $2biy, b,
S{:23<u7 t 8) - Z |:_L + —=t + L( 2a1n+ta2n+3a3n)2:| .

ne”

Remark 4.5. In the case (1.1.0) we have ¥2 =3~ 2;2 = 00, since

81L,23(Mat70) =00, but v2(Ch,Cs) < o0,

and ¥ = oo, since Sh(p) = Y, ., %2 <2b3 + a3n> = oo, but [|V3]?* ~

> ez binad, < 00, see (2.43) for definition of S (u).

In the case (1.2.0) we conclude that $'* = oo, since S{y3(s, 0, ) = oo, but
113(C1, C3) < 00, and B2 = oo, since Siy(1) = >,z 1”7"(2;2" + a§n> = 00,
but [[Ya[* ~ 37, 7 bina3, < oo,

In the case (1.3.0) we have ¥'* = X% = oo, since S{y5(p, t,5) = oo, but

2
v(Cy, Cy, Cy) Nznez bin (Cla1n+02a2n+c3asn> < 0.

So, it remains to consider only the three following cases, when %12 =13 = co:
(1.1.0) (1.2.0) (1.3.0)

4.4.5. Approximation of D, and Ds,, 2
Recall that by Lemma 5.13 we have D3, n 2% < 33(u) = oo where YX3(ju)
is defined by (5.21)

_1

1 1 1

Similarly, by analogue of Lemma 5.13 we can prove that Do, n 2® < Yo(u) =
0o, where Y5 (p) is defined as follows

_1

_ 2bay,
) %chk+a%k+a§k+a§k'
If one of ¥o(u) or X3(p) is infinite, we can approximate Dy, or Ds, and the

proof is finished. If 35(p) + X3(p) < oo, we conclude that

1

+ -_—
) 2"% st < 0. 4.61
! Z Cr + aiy, + a3, + a3 o0
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4.4.6. Approximation of Dy, and Ds,, 3
By Lemmas 5.11-5.12 we have

Dyl € <-T2kAkl]- ‘ ke Z> = A<}/227YV237}/21) = 00,
Dgl]_ € <x3kAkl]- | k e Z> = A<Y337}/317Y32) = 00,

where vectors Y, for 2 <r <3, 1 < s < 3 are defined by (5.17)—(5.20). We
can not prove that A(Yas, Ya3,Y21) = 00 or A(Yas, Y1, Yss) = co. We can
try to approximate Dj, using Lemma 5.14 or to approximate D,, using an
analogue of Lemma 5.14, but it does not work. Therefore, to approximate
Ds,, we are forced to prove Lemma 5.15 the refinement of Lemma 5.14 and
its analogue for Ds,, see Remark 4.6 below.

4.4.7. Two technical lemmas
Lemma 4.10. Let ay,as & l5(Z) and Cyay + Ceag € ly for some (C,Cs) €
R2\ {0}, Cy # 0, where a, = (app)pez, 1 <1 < 2. Then we have

3 M (4.62)

1+ a?
kez T ag

PrOOF. We set Y, = a,, in the case (1.1.0) when C1Y; + CoYs = h € 11(Z)
with C1Cy > 0 (we have C1Cy # 0) we should take a = —ay + h, in the
case when C,Cy < 0 we take ay = a1 + h. The series Zkez % will remain
equivalent with the initial one, if we replace (C},Cy) with (£1,1) in the
expression for h. Fix a small ¢ >0 and a large N € N. Since |+a+b| < |a|+]b],
we get

2 2 2
alk alk alk (2.22)
—_— Z Y
2Ty a3 Zkez 1+ (% an + )’ Zkez 1+ a3y + 2lax|[he] + b

ke
2 2
aip *) ajp (2.20) 2
> ~ ay, = 00,
kezz 1+ 2|ag||he| + 2 ke%% 1 4 2|aix|e + €2 keZZN L

where Zy = {n € Z | In| > N}. The inequality (*) holds, since h € [5(Z)
and we have Y, ., hi <& for sufficiently large N € N. O

Lemma 4.11. Let ay, as,a3 & lo(Z) and Cra; +Caas+Csag € I5(Z) for some
(C1,Cy,C3) € R3\ {0}, Cs # 0, where a, = (a)rez for 1 < r < 3. Then
we have

2 2
ST o (4.63)
ez Tk
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PrROOF. We set Y, = a,, in the case (1.3.0), we have Cya; + Cyas + Csaz =
h € l5(Z) for some (C},Cs, C3) € R3, see Remark 4.4. We can take C3 = 1,
then a3 = —Cia; — Cyas + h. When C; = 0 or Cy = 0 lemma is reduced
to Lemma 4.10. Suppose C1Cy # 0. The series ), , 1’f22’“ will remain
equivalent with the initial one, if we replace (Cy, Cy, Cs) w1th (£1,£1,1) in
the expression for h. Fix a small ¢ > 0 and a large N € N. Suppose the

opposite, i.e.,
2 2 2
oo>z G ¥ Gy 5, then oo>z (ask| + |azk]) 5
kezl+(ia1kia2k+hk) kezl—l-(:l:alkia%‘i‘hk)

> Z (Jawk] + |azk|)? (2:22)
1+ a3y, + a3y, + 2|aw||aok| + 2|a1k||hi| + 2|age||hi] + hE

3 (las] + laze|)* < 3 (las| + |aze])* (2.20)
142

< 1+ 2|ayg||hg| + 2|agk||he| + hE =, (Jawk| + |ask])e + €2

> (ar] + laai])* = oo,

=
where Zy := {n € Z | |n| > N}, contradiction. The inequality (*) holds,
since h € 15(Z) and we have ), _, hj < &* for sufficiently large N € N. [

Remark 4.6. It is possible to prove an analogue of Lemma 5.15 to approxi-
mate Dy, with corresponding expressions ¥s(D, s), X3 (D, s) and 33(D), 3Y (D).
If one of the expressions ¥o(D, s), X3 (D, s), 33(D, s) or £3(D,s) is diver-
gent for some sequence s = (Sg)rez, We can approximate Doy or D and the
proof is finished when S = (0.1.1) in the cases (a) and (b). Suppose that for
all sequence s = (Si)rez we have

Y9(D, s) + Xy (D, s) + 33(D, s) + ¥ (D, s) < cc.

2
r

Then, in particularly, we have for s = (s, )rez, 2 <7 < 3 with o 1
00 > No(D, ) + Y (D, sP) + 83(D, s) + 2Y(D, s®) ~
Yo(D) + 35 (D) + 33(D) + X3 (D) = (4.64)
Zﬁ—l—a%k%—ﬁ%—agk (232)2 sh T o), + g a3, (D)
Cy + a2, + a2, + a2, - o i 2
b
N Z o1k —|— lekCLQk + big —|— 2b1k(l3k 434)2 Cl%k + Z%k _. 233(D>
1+2()1ka1,€ A 1+a1k
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Remark 4.7. In the case (1.1.0) (resp. the case (1.2.0)) we have ||Y3||* ~
> ez @3, < 00 (vesp. ||Ya|[? ~ 37, o5 a3, < co) and therefore,

a 5 a a?
X33(D) ~ Z rzl;%k =00, resp. Xg(D) ~ Z TZ’*Z%k = 00,
k k

by Lemma 4.10, contradicting (4.64). In the case (1.3.0) we have four cases:
(0) when C1CyC4 7& 0, Cia; + Coag + Csas = h € lg(Z),
(1) when C; =0 hence, CyCh4 7’é 0, Chas + Csa3 = h € lQ(Z),
(2) when Cy = 0 hence, C1C5 # 0, Cia; + Csaz = h € 15(Z),
(3) when 03 =0 hence, C1Cq 7é 0 Cia; + Cyas = h € lQ(Z)

In the case (0) we have 3%,(D) = oo by Lemma 4.11, contradicting (4.64).
In the cases (2) and (3) we get X44(D) = oo by Lemma 4.10, contradicting
(4.64). Therefore, one of the expressions Yo(D,s), Xy (D,s), X3(D,s) or
Y (D, s) is convergent hence, we can approximate Dy, or Ds, and the proof
is finished. To study the case (1) we need the following statement.

Lemma 4.12. Let C5Ys 4+ C3Y3 = hog € Iy for some (Cy,C3) € (R \ {0})2
and C1Y1+CyYs & 1y or C1Y1+C5Y5 & 1y for all (C,C,) € (]R \ {O})Q, then

A(Y:. Yo, ) = oo. (465)
PROOF. To prove (4.65) we have by (8.15)

L(Y) +T(¥,Ya) + DV, Y3) + T(V1, Yo, Y3) ©)
14+ T(Ys) +T(Y3) + [(Ya, Ya)
P(Y1,Y2)+T(V1,Y3)  T(¥1,Ys) +T(¥1,Y3) @en
1+ (1 + )l (Ya) + D(Y3) I(Yz) +T'(Ys)
I(Y1,Y5) +T'(Y1,Y3) @aen (Y1, V) n I'(y1,¥s) 50, (4.66)
2I(Y2) ['(Y3) ['(Y3)
[(Y2)~T(Y3), since CoYs+ C3Y3 =h € ls. (4.67)

A(Y1,Y3,Y3) =

The relation (*) holds by the inequality I'(Ys,Y3) < coI'(Y2), since CoYs+
C5Y; € Iy for some (C1,C3) € (R\ {O})Z, the relation (4.66) holds by
Lemma 8.11. To prove (4.67) we get since Y5 € Iy and h € I,

AC | PE T g TR AR
N T A R D R S |
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If C1Y14CyYs & 1y for all (Cy,Cy) € (R\ {0})?, or C1Yi+C5Ys ¢ Iy for all
(Cy,C3) € (R\{O})Q, by Lemma 4.12 we get A(Y7, Ys, Y3) = oo hence, we can
approximate Dy, using Lemma 5.10 and the proof is finished. If C;Y+C5Y, =
hys € I for some for (C, Cy) € (]R\{O})2 or C1Y1+C5Y3 = hys € I, for some
(Cy,C3) € (]R \ {0})2, then we have his + ahog = C1Y1+C5Y5 +C3Y5 € [y or
hia + Bhiz = C1Y1 +ChY, +C5Y3 € Iy with C1C3C5 # 0 for an appropriate
af # 0, and we are in the case (0). O

4.4.8. Case (c)

In this case both pa(Cs, —C3) and p3(Cy, —C5) are finite, i.e., we are in the
case (2) therefore, we can not approximate xs, s, 3,23 by Lemmas 5.2-5.3.
By Lemma 4.8 Y¥o3(s) < oo and hence, ¥93(Cy, C3) = oo. Indeed, reasoning
as in Remark 2.5 we see that

prrses) 1o ¢ €10,21), s> 0 < Yo3(s)+Da3(Cy, C3) =00, s >0, (4.68)

for (Cy, C3) € R%\ {0}. where To3(¢h, 5), Sa3(s) and Xo3(Cy, C3) are defined
as follows:

1 0 0
Toz(p,8) =1 0 cos ¢ s’sing |, (4.69)
0 s ?sing —cos¢

Z( Zf) seR\ {0},  (4.70)

%i5(Cy, Cy) = Z(C%m + C2b;,) (Ciain + Cjajn)®. (4.71)

nez

In this case there are four possibilities for the pair (312, 313):
1) (312,213) = (0,0), i.e., X? < 0o and X1 < oo,
, 213 =(0,1), ie., 22 < 0o, but B = o,
Y2 Y1) = (1,0), ie., X2 = 0o, but B < oo,
)= (1,1),i

,212 = oo and 213—00.

Lemma 4.13. In the case (2.1), i.e., when (3%, 313) = (0,0), we can ap-
proximate D,., for 1 <r < 3, hence the representation is irreducible.
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PROOF. Let ¥'? < co and X < oo we have by (4.41)

v(Cy, Cy, C3) ~ Z bir(Cran + Coagy, + Caazy)?

keZ

(2.1) by $*by b 44
~ Z —£+—£+ﬂ(—2alk+tazk+3a3k> : Sleg(/%ta §) =00
[ Aby dby 2

Hence, D1, Doy, Ds, n 23 and the proof is finished. O
Remark 4.8. The cases (2.2) and (2.3) do not occur.

Indeed, by Lemma 4.8 the three series Yo3(s) (defined by (4.70)), >° _, 2

nezZ - n
and Y, ;€2 are equivalent where szgﬂ = (14 ¢,), see Lemma 4.9. In the
case (c) we have Y . 2 < oo, therefore, lim,, ¢, = 0 and hence, lim,, d;;' =
lim,, 22" = 5% > 0. Recall that d,, = d§” = Zi” But this contradicts

(%12 213) (0,1), or (X2, 213) = (1, O) since the two series
=> dy and ¥¥ =) dy!
should be equivalent by lim,, fé—: =s51>0.
In the case (2.4) we have
Yas3(s) <00, Yp3(Cy,C3) =00, X? =3 =00 (4.72)
To approximate D,,, we need to estimate v(C, Cy, C3) defined by (4.39). By

(4.41) we have
01702,03 Zbln(zc Grn) .

nez

Since ||Yi[[* = >°,cz binai, ~ Sti(n) = oo, in the case (2.4) we have four
possibilities for ya3 := (y2,y3) € {0, 1}*

(24.1) (24.2) (24.3) (2.4.4)
y 1 1 1 1

51



Remark 4.9. The cases (2.4.1)—(2.4.3) are not compatible with the condi-
tion 223(02, 03) = oo for all (Cg, 03) € R2 \ {O}

So it suffices to consider only the case (2.4.4) when yi93 = (1,1,1).

The case (2.4.4) splits into two subcases:
(2.4.4.1) when ¥15(s12) <oo (resp. Xi3(s13) <o0o) for some $12, s13 > 0,
(2.4.4.2) when both 15(s12) =%13(s13) = 0o for all s19, s13 > 0.

The case (2.4.4.1) does not occur. Indeed, we have in this case X13(s128923) <
00 (resp. 1o(s13553 ) <00) since

Ei12(812) < 00 fi(st,0,,0) ~ H(bs,0),  223(S23) < 00 S it b, 0) ™~ H(bs,0)
where fu4, 0) = ®neztip,,,0) for 1<r < 3. Therefore,
H((s12823)%1,0) ~ H(bs,0) & 213(812523) <00
Similarly, if ¥13(s13) <o0o and Ya3(s93) < oo we have

Ho(stib1,0) ™ H(bs,0)5 (s bo,0) ™ H(b3,0) = u(( ~ Li(by.0)

513553 )4b1 0)

hence, Y15(s13553 ) < 0o. But condition ¥13(s12523) + Y1a(513553 ) < 00 con-
tradicts the first condition of (4.33). Indeed, we have by Lemma 4.9

bin, ban, 2 2 bin
5 20— » ) <00 e
12 neZ ( b2 bl”) o e b2n e

nez
bln -2 b3n 2 2 bln o
mn ( Vbs, N bln) V2 i Vb, + I
nez ne”L

and lim,, ¢, = lim,, f,, = 0. This contradicts S1(3) ~ >_ LTSN Indeed,

n b2n b3n

b2
lim —2— = s lim (1 +¢,)%(1 + f,)> = s > 0.

Finally, to finish the case S = (0,1,1), we need to consider only the case
(2442) when 212(812):213(813) = oo for all S12, S13 > 0.
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By (4.33) and all the previous considerations we have the conditions:

ban, bsn
Z anbSn =% 52 Z bin - S3 Z bin %

bin brr
Sn(Ca,Cs) =00, B =3 =00, TP=3 F=co  (473)
2n 3n

Y1a(s12) =213(s13) =00 for all s19, $13 > 0, Yo3(s93) < oo for some so3 > 0.

Remark 4.10. By (4.20) without loss of generality we can suppose that
(b1n, bon, bsy,) is replaced with (1, dap, ds,,). Since Ya3(s) < 00, using notations
(4.47) and (4.48) of Lemma 4.8

2V, A n
22?’(8):%(57—”‘5—?)2%(52\/3:;_5 2\/%>2

and taking into consideration (4.73), we can chose dy, and d3, as follows:

dsn 1 1
dn:é:s‘l(ljtcn)7 zﬂ:ci<oo, ;E<O®, zn:d—n:zn:dn:oo
(4.74)

Since Y ¢ < oo we have ) ~> - and the measures fi(ge< o) and

fh(ds,0) are equlvalent, where

n b2nb3n

H(ds®,0) = Onhl(stdan(14¢n),0)r  H(d5,0) = Onbl(stdan,0);

hence, we can choose ¢, = 0 and s = 1. So, to finish the case S = (0,1, 1) we
should prove the irreducibility for b = (1, day,, day, )nez Wwith the only condition:

> dy? <oo. Since d,=1, we have Zdl Zd . (4.75)

As usual, a = (a1y, Gon, a3n)nez should satisfy the orthogonality condition:
(/fz’b’a))Lt 1 M?b,a) for all t e GL(3,R)\ {e}.
Example 4.2. The pairwise conditions
3
|CY, + CY|[? =00 for 1 <7 <s5<3 donotimply | ZCrYer =
r=1
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Let a,p, = a,_p forn € Nand a9 =1, aso = 2, agp = 3. We define a,, for
n € N as follows

(2 n=2+1 (1 n=2+1 B
A1y — { 1 n=2k ,  Qop = { 2 n = 9%k s a3n:3. (476)
Then we have clearly for arbitrary (Cy, Cy, C3) € R3\ {0}

HClel—FCQClQHQ:OO, Hclal—i‘c;v,(lg”Q:OO, HCQGQ"‘C:}(I:}HQ:OO, (477)
but a; +ay;—a3=0 hence, |a;+ay—as)|*=0. (4.78)

Example 4.3. Let us consider the measure /uc?bja) with a = (am)m from
Example 4.2 and b = (byy, bap, b3,) defined as follows:

bin =1, do,=ds, =1n| for neZ\{0}, dy=dz=1. (4.79)
Lemma 4.14. In Example 4.2 we have (we consider only n € N)
A(ay,az,a3) =2, Aag,as,a1) =2, Alas,ay,az) =2, (4.80)
where a, = (Arp)nen, 1 <1 < 3.
PROOF. Seta,(n) = (ay)j, for1 <r <3andn € N, thenforl <k <r <3

n(n —1)
2

We observe that I'(ag, ar, + a,) = I'(ag, a,) for k # r. Since ag = a; + as we
get

[(ak(n))~T(ay(n)+az(n))~n, T(ar(n),a.(n))~ , T'(ay,as,a3)=0.

['(a1) 4+ I'(a1, az) + (a1, as) +T(ay, az,a3)
1+ (az) + (as) + I'(az, as) N
['(a1) +I'(a1,az) +I'(ay, a1 + az) +T(ay, az, a1 +a)
1+ T(ag) + T(ay + az) + T'(az, a; + as) N
[(ay) + 2I'(ay, as)
14+ (az) +I'(ar + a2) + I'(a1, a2)
Ay, a3, a1) ['(as) —I—II‘(ag, as) + ['(ag, a1) + ['(ag, as, ay) _
+ (az) + T'(ar) + ['(as, a1)
[(az) +T(ag, a1 + az) +T'(az, ar) +T(az, a1 + ag,a1)
1+ T(ay + az) + I'(ay) + T'(ay + az, a;) B
I'(ag) + 2T (ag, ay)
14+ T(ay +a2) + '(ar) +I'(ag, a1)

A(aly as, a3) =

=2,

=2

Y
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I'(az) + I'(as, a1) + I'(as, az) + [(ag, a1, a2)
1+ T'(a1) + I'(az) + (a1, az) B
['(a1 + az) + (a1 + az,a1) + (a1 + az, a2) + (a1 + az, a1, as)
14+ T(a1) + T(az) + T'(ay, az) B
['(ay + a2) + 2I'(aq, az)
1+ T(ay) +T'(ag) + T'(a, az)

A(ag, ai, ag) =

= 2.

We use two facts for 1 < r < 2:

r
(1?(1’(;2) oo and I'(a; +a) <T'(a1) +I'(az) +2m
a’f’

The first relation follows from Lemma 8.11 since [|Cia; + C’ga2||2 = o00. We
get
I'(ai(n), az(n))

Mo, 00) _ im = 00
Ma) b T(a(n) |

Recall that I'(a) = ||a||?. The inequality follows from ||a;+as|| < [Ja1 ||+ az]|,
ie., v/I(a1 +a2) < /T(ar) + /T(as). O

By Lemma‘2.7 we have
(M?b,a))Lt 1 H’?b,a) A Zi(t) = Zit(t) + EQ(t) = 00,

where

= > (x ﬂ—A;‘-(t) 2

neZ 1<i<j<3

= 3 (/i eamyi)

nez 1<i<j<3

So(t™h) = Z |:b1n((t11 — 1)ai, + ti2ag, + t13a3n)2 +

neL

2 2
bon (ta1a1n + (t22—1)ann + tasasn)” + bsn (t31015 + 3202, + (ts3—1)as,) ] -
In Example 4.3 we can not approximate xs,, 3, since in this case we have

AV vy =1, AYY ) =1. (4.81)
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Indeed, by (4.37) we have

T Y%m T y%% y%m
A2, V) = (Y27)+ (2(2), 3 )7 AYD, YOy =
1+ T(Y5™)

DY)+ (Y, YY)
1+ ()

(4.82)
In Example 4.3 we have d,, = filz—: = 1 and hence, by (4.43) we have
1 1 > 1
Y2 ~ N2 iy N
127 ZHan 23, 157 ZHan 23,
nez nez nez nez
R S DE M Al N P ) B
2 a2 + 2d,, 3’ 3 d2 + 2d, 3
nez nez nez nez
Therefore, (Y2, Vi) = 7(v?, v{*) = 0, and
(2) (3)
A vy F02) gy ey o T
1+ DY) 1+ DY)

Since by, = 1, by (4.44) we get

YilP~ ) at, IVl ~ ) a3, IYslP~ ) di,,

neL nez nez

so by (4.41) we have

U(C,Ca, Cy) ~ Y bl"<i@a’”n)2 ¥ (i Crarn>2.

nez nezZ r=1

But in Example 4.2 there does not exist ¢ € £SL(3,R) \ {e} such that
v(Cy, Cy, C3) =00 for all (Cy,Cy, C3) €R?\ {0} to approximate some D,.,,.

4.4.9. Approzimations of TopTo, + T3xrs, in the case (c)

Since we can not approximate xs, o, T3,T3 using Lemmas 5.2-5.3 in the
case (c), we shall try to approximate worxs, + s*zspzs, by an appropriate
combinations of Az, A,, for n € Z. Let s = 1, the general case is similar.

Lemma 4.15. For any k,r € Z one has
(2onTor +Tap3)1 € (ApnAml | n €Z) & AP YW)=00, (4.83)

b?”n
where Y = (\/T) 2 1<7 <2, A\y=(bin + bop + b3,)* — b3,
n’/ NE
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PrOOF. The proof of Lemma 4.15 is based on Lemma 7.2. We study when
(Torwor + w3p23)1 € (Apn Al | n € Z). Since

AknArn = (xllen + kaDZn + kaDBn)(werln + xQTDQTL + 'T37”D3TL)
= 21471, D3, + Topo, Diy, + Taxw3, D3, + (T1872 + Tox1,) Din Doy

+(x ks + X3x210) D1n D3y + (TopZsr + 2322 ) Doy Da,

and MD? 1= —22 for 2 <r <3 we take t = (t,)7_,, as follows:

n

(t b2) (t bg) 1, where t:(tn)znzfm, bgz—(bgn/2);n:7m, 63:—<bgn/2>;n:7m.

We have

[ Z tnAknArn — (Zokor + Tarrse) | 1]* =

b2n
2

b3n

=) +asprs, (D5, + — 5

| Z (2131, DY)+ Top o, (D3, + — ) + (z1pzar +

Top@1r) DinDon+ (21523, + Ta1015) Din Dan+ (Tor s, + x3kx2r)D2nD3n:| 1||2
- Z (f’m fl)tntl = (A2m+1t7 t)u

—m<n,l<m

where A2m+1 = (fna fl)ml:—m and

3
=S+ Y g, with (4.84)
=1

1<i<j<3
fvlm = TikTir <Dz2n -+ 7(1 — (511)> ]., flj (l’zkl’]r + ijkl’“«)DlnD]nl
for1 <1 <3, 1<i<j <3 Since fi’ Lofa. fa L ff:j' for different

(ij), (i'5"), writing cg, = ||961Lm||2 = 2bk + a,m, we get

(for fa) = ZHF”z Z “f;]HQZ

1<i<j<3

bn 2 bon\ 2 b3n\ 2
clkc”?)(%) +Cgk62r2(%) +Cgk6372<%) +
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bln an
(Clk:ch + CoCryr + 20J1ka2ra2ka1r) - 5 T (C1k03r + C3kCir + 2a1ka3ra3ka1r>

2 2
bln bSn b?n b3n

X > + (C2k03r + C3kCor + 2a2ka3ra3ka27’) 9 9 ~ (bin + ban + b3n) )
bln bll

(fnafl) = ( rlwfll) = Clkﬁr?? ~ b1,y

Finally, we get

(fna fn) ~ (bln + b2n + b3n)27 (fn, fl) ~ blnbll; n 7é l. (485>
Set
>\n - (bln + b2n + b3n>2 - b%nv gn = (bln>7 (486>
then
(fna fn) ~ )‘n + (gny gn)v (fn7 fl) ~ (gna gl)' (487)

For Agyi1 = ((fn,fl)):?l:_m and by = by = —(bo,/2)™ _,, € R*! we

have

m
A2m+1 = Z AnEnn—i_V(gfﬂ%agOa?ng)

n=—m

To finish the proof, it suffices to use Lemma 7.2. O]

Remark 4.11. In the case (¢) we can approximate oo, + T3xT3, since
A(Y® | YD) =00,

Indeed, by (4.83) we have

F(y(2))+p(y(2)7y(l)) - F(y(2)) B
1+ DY ™) L+ I(Y®)

A(Y(2), y(l)) —

b2 dz,

D onez o 2 ez (1+2d2n)2 1 Z d%n
2

L+ e ;— T+ D oner | 1+2d2n) = dy

since by (4.74) we have > = < oo. Therefore,

ry®) = Z (1 + 2d2 Z d, + d
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Lemma 4.16. We have for all k € Z
2

a n
Torl € ((TopTon + T3pT3n)l | n € Z) & o09(u) = Z 2 = 00
net Toar T 355y T G
(4.88)

ProoOF. Recall the notation ¢,,, = 2b1m +a?,. Since Mwzy,1 = ay, we take
t = (t,)r _,. as follows: (t,ay) =1, where as = (ag,)" _,,. We have

| [ Z tn($2kﬂﬂ2n + $3k$3n) — 9021#271} 1* =

I Z to (T (Ton — Gon) + T3pw3n) |17 = |22 1]|?| Z (220 — az)1]?

+aar |17 H_th w3 1]|* = oo n_zmtn% + Ca _Zm ( -+ a3n)

3 (g )
2b2n 2b3n s

By (6.3) we get (4.88). O

Similarly, we prove the following lemma.
Lemma 4.17. We have for all k € Z

2

a

3kl € ((Topron + T3p23,)1 | R EZ) & o03(n) = E : ?1" 5~ = 00
€7 2b2n + 26371, _'_ anTL

(4.89)

Remark 4.12. Suppose that oo(p)+03(1) < 0o, this contradicts Yoz(Cy, C3) =
oo for (Cy, C3) € R?\ {0}, where Y93(Cy, C3) is defined by (4.71):

Yo3(Cy, C3) = Z(Cgb% + C3b3,) (Caagy, + Csaz,)?.

nez

PrRoOOF. Indeed, we have

a2n a2n
0> o) tosp) =y 22—ty ~

I/ 2bon 2b3 + 3” €7 2ban 2b3 +a2n

2 2
Ao + A3y a2n + a3, (4.74) b
+—+(l +CL ~ +_ - 1+S_4 2ﬂa2n+a3n)
cZ 2b2n 2b3n, 2n 3n c7Z 2b2n 2b3n, nez
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This contradicts Yg3(Cy, C3) =00. Indeed, by bs, = s*by, (see (4.74)) we have

223(02, 03) = Z (022 + 03384)[)2” (Cgagn + Cgagn)2 < Q. ]

ne”L

Finally, we have oo(11) +03(i) = 0o, and therefore we have x,,, n A3 for some
2 < r < 3. Let z3,n 23, then we can approximate xj, by combinations of
TonTok, k € 7Z using an analogue of Lemma 3.3. To approximate D,,, 1 <
r < 3 we again follows Section 4.4.4. As in (4.53) we get

YilP~ Y at, IVl ~ ) a3, IYalP~ ) dl,.

neL nez nez

Indeed, for example, by (4.6) we get

2 2
a a (4.75)
VP =3 =) e Y D dh
=y don

nez 2b1n 2b2n 2b3n nez

N |

Again, as in (4.54) we have four possibilities: (1.0), (1.1), (1.2) and (1.3).
The corresponding expressions in (4.58), (4.59), (4.60) becomes as follows:

2
v12(Cy, Cy) = ||C1 Y1 + C’2Y2||2 ~ Z <Cla1n + C2a2n) )

ne’

2
v13(Ch, Cy) = [[C1Ys + CaYs|* ~ > (Claln + C3a3n) :

nez

v(Ch, Cy, Cs) = Z (Cla1n+02a2n+c3a3n> 2-

nel

To study the cases (1.1.1)—(1.3.1) we should use Remark 4.4. We can
approximate in these cases respectively Dy, and Dy, in (4.55), Dy, and Ds,
in (4.56) all Dy, Doy, D, in (4.57). The proof of irreducibilty is finished in
these cases because we have D,.,,, Ta,, T3, n A for some 1 < r < 3. Following
Remark 4.6 we can use Lemma 5.15 and its analogue to approximate D,,, and
Ds,, with corresponding expressions 3a(D, s), 33(D, s) and X3(D), Xy (D).
If one of the expressions ¥5(D, s), X5(D, s), X3(D, s) or Xy (D, s) is divergent
for some sequence s = (sg)ez, We can approximate Dy or Dsy and the proof
is finished. Suppose that for all sequence s = (si)rez we have

Yo(D, s) + X5 (D, s) + X3(D, s) + 23 (D, s) < .
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Then, by (4.64) we have

1 2 1 2 1 2 2
Vv 2boy + Aok, + 203, + a3, days + Aok, + 3k (4.75)
> B Lt q? B 14+a
k 2014, 1k k 2 1k

2 2

Aop + A3 g

E —1+a2 =:35.(D).
B 1k

To study the cases (1.1.0)—(1.3.0) we should follow Remark 4.7.

4.5. Case S = (1,1,1)
Denote by
Z123(5) = (212(51), E23(52), 213(53))7 (4'90>

where s = (s1, S2, 53) and X;;(s) are defined by (4.70) for 1 <i < j < 3. In
terms of Remark 3.2, we have 2% possibilities for ¥93(s) € {0,1}:

0) 1) (2) B) @) ) ©) ()
212(81) 0 0 0 0 1 1 1 1
223(82) 0 0 1 1 0 0 1 1
Y3 0 1 0 1 0 1 0 1

The cases (1), (2) and (4) and respectively the cases (3), (5) and (6) result
from cyclic permutations of three measures ), @, 1® defined as follows:

ﬂ(r) = ®n€ZN(b,«n,arn)7 1<r< 37 Mér) = ®n€Z/’L(brn,0)7 1<r<3. (491>

The case (1), (2) and (4) can not be realized. We prove this only in the case

(1). By Lemma 8.1 we have ¥5(s1) < 0o < u(()l) ~ u((f) and Yo3(s2) <

00 & /LéZ) ~ u(()g) hence, u(()l) ~ u(()g), that contradicts ¥q3(s2) = 00 < ,u(()l) 1
1. Finally, we are left with the three cases (0), (3) and (7):

the case (0), i.e., X123(s) = (0,0,0),

the case (3), i.e., X123(s) = (0,1,1),

the case (7), i.e., X1a3(s) = (1,1,1).

451 Case 2123(8) = (0,0,0)
In the case (0), we have for some s = (s1, 59, S3) € (R+)3

212(81) < 00, 223(82) < 00, 213(83) < Q0.
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In this case we get ,uél) ~ ,ué2) ~ ,ué?’). By (4.20) we can make the following

change of the variables:
by, by bl 1 bon b3n
(bln bZn b3n) — }"74 %’” if" — bin bin .
@n @2n G3n @1n G2 O3n aln\/bln a2n\/b1n a3nvb1n

Remark 4.13. By Lemma 8.2, we can suppose that

b= (bin, b2, bn)nez = (1, 1+, Lt en)nez, D c2 <00, Y €2 < oo. (4.92)

But the two measures 11,4 and fiiq) are equivalent, where b is defined by
(4.92) and
I[:=(1,1,1)pez. (4.93)

Finally, it is sufficient to consider the measure i1 q).

Example 4.4. Let by, = by, = b3, =1, n € Z.
(a) Take a,, = (a1, @2n, as,), n € Z as it was defined in Example 4.2:

{2 n=2k+1 {1 n=2k+1 o
A1p = y  Qon = az, = 3.

1 n=2k 2 n=2k ’

Then ay + ay — ag = 0, where a, = (@) nez-
(b) Take any a, = (G )nez such that aq, as, a3 € ly, but Cra; 4+ Cras+Csaz €
I5(Z) for some (C1,Cy, C5) € R\ {0}.

Example 4.5. Let by, = by, = b3, = 1, n € Z and a = (a1, a2n, G3n)nez
such that ai,as,a3 € ly, but the measure u‘?b a) satisfies the orthogonality
conditions. The case 193(s) = (0,0, 0) is reduced to this example.

Remark 4.14. Since the measure ,ui(”b 0) 18 standard in Example 4.4 and 4.5,
i.e., it is invariant under rotations +£0(3), we have

(/L?b70))Lt = /L?b70) for all ¢t € £0(3). (4.94)

By Lemma 2.8, the orthogonality condition (u?b’a))Li 1 M?b,a) for t € £0(3)\
{e}, is equivalent to
SE(t) + Ea(t) = oo,
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where X7 (t), X7 () are defined by (2.31), (2.32) and ¥,(t) is defined by
(2.28). By (4.94) we get ¥7°(t) < oo in Example 4.4 and 4.5 hence the
orthogonality condition (4, ,)** L pf, ) for t € £0(3)\ {e} is equivalent to
Y9(t) = oco. Further, to prove the irreducibility in Example 4.4 and 4.5 we
should show that ¥5(¢) = oo for all t € £0(3) \ {e} implies

HClyi +C2Y'2+O‘5Y:5H2 = o0 for all (C]_702,C3) ERS\{O}

Lemma 4.18. (1) The representations corresponding to the measures in Ez-
ample 4.4 (a) and (b) are reducible.

(2) The representations corresponding to the measures in Example 4.5 are
irreducible.

PROOF. To prove the part (1) of theorem, by Remark 4.14 and (4.94), we
should find for the measure in Example 4.4 an element t€ +0(3) \ {e} such
that Ya(t) <oo. This will imply (ff, ,))"* ~ i, ., hence, the reducibility.
Finally, it is sufficient to find t€ £0(3) \ {e} such that
MC1 MiCo MCy
t—1= ()\201 A2C2 )\203) s (495)
A3C1 A3C2 A\3C3
where (C,Cy,C3) = (1,1,—1), in part (a), or for an arbitrary (Cy, Co, C3) €
R3\ {0} in the part (b). Such an element exists by Lemma 4.19 below. For

such an element ¢ we get respectively in the cases (a), (b) and Example 4.5
(see (2.28)):

ZQ(t_l) = Z(bln)\% + bgn)\g + bgn)\?),) (aln + agp — a3n)2 =0,

neZ

So(th) = Z(bm/\% + bon A + b3 A3) (Claln + Caag, + C3a3n)2 < 00,

nel

()= Z(blnﬁ—%bzn}\g-{-b%)\g) (Crain+Coasn+Ciaz,) — 0. (4.96)

neL

Note that the measure in Example 4./ does not satisfy the orthogonality con-
ditions.

(2) Irreducibility. In Example 4.5 we can not approximate x,,, by Lem-
mas 5.1-5.3, since all the expressions

AL YO YD) AD YO vy ATE, v, v)
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are bounded. To approximate D,,, using Lemmas 5.4-5.6, we should estimate
the following expressions:

A(V1,Ys,Y3), A(Y2, Y3, Y1), A(Y;,Y1,Y3).

By Lemma 8.15, all these expressions are infinite, if for all (C}, Cy, C3) €
R3\ {0} holds

2
, (Ola1n+02a2n+c3a3n>
p(C1,Cy, Cs) = |C1Yr + CoYa + CoY3 =D~

ne”L 2b1p

= OQ.

1 1
+ 2b2n 2b3n
In Examples 4.5 we have

v(Cy, Cy, C3)=||C1Y1 + CoYs + C3YéHQNZ bin(Crarg + Caagy, + Cga3k)2

keZ

~ 3 (01023 + b2 A3 + b3, A3) (Cran + Cang + Caa3,) =Sn(t™!) = 00. O

neL

Lemma 4.19. For an arbitrary (C1,Cy,Cs) € R*\ {0}, and an arbitrary
Ds(s) = diag(sy, s, 53) with (s1,s2,53) € (R})3, there exists a unique ele-
ment t€£0(3) \ {e} and (A1, Xo, A3) € R3\ {0} such that

- A1C1 A1C2 M1 Cs A 00 111 Ci 0 0
D3(S)tD31(3)—I = ()\201 2205 /\203> :< 0 X 0 > <1 1 1> < 0 C2 0 ) . (4.97)
A3C1 A3C2 A3C3 0 0 X3 111 0 0 Cs

PROOF. By (4.97) we get
PR . Ciai+1 Z%Cg)q Z%Cg)q
el 11 t12 t13 s s
<52> =t = (tzl 22 t23> = éCIAQ Carz+1 £CS>\2 , (498)
ta1 ta2 t33 %Cl)\g %CQ)\;; C3A3+1

where |lex||? =1 and e, Le,, 1<k<r<3. (4.99)
By (4.98) and the first relations in (4.99) we get

QSzCk
s2C% + 303 4 s3C2°

Ae = 1<k<3. (4.100)
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Then the matrix elements t = (t4)},_, are defined by (4.98). To verify
er L e, we need to show that

(5%012 + 53022 + S%Cg))q)\g 4 S%Cl)\Q + SECgAl

(617 62) = = 07
51859 5152

(61763) _ (8%012 + 83022 + 83032))\1/\3 1 S%Cl)\?, + 8?503/\1 _ 0’
5153 5153

(62763) _ (5%012 + 53022 + S%Cg))\2>\3 i S%CQ)\?, + S%CQ)\S —0.
S$283 5283

Indeed, for example, for (e, e3) we have
(8%012 + S%CQQ —+ 5%0%))\1)\2 i S%Cl)\Q + 8%02)\1
5159 5152

(45%3% — (28752 + 23%53)) C1Cy = 0.

(e1,62) =
1
$182(s3CF + s3C% + s3C3)

The proofs of e; L e3 and ey L e3 are similar. O

Similarly, for any m > 2 we can prove the following lemma:

Lemma 4.20. For an arbitrary (Cy)i, € R™\{0}, and D,,(s) = diag(sx)j",
with s, € Ry, 1 <k <m there exists a unique element t€£0(m) \ {e} and
(M), € R™\ {0} such that

AC1 MCo .. \MCy
Dy (s)tD;(s) — 1= (/\201 A2C2 o AaCim > (4.101)
AmC1 AmC2 . AmCnm
The formulas for the corresponding A\ are as follows:
2820k
M= ——Ft ™ 1< k<m. 4.102
CUsmecr fERET (10

Lemma 4.21. For an arbitrary (Cy,Cy) € R*\ {0} and arbitrary Dy(s) =
diag(sy, s2) with s1,s9 # 0 there ezists a unique element t € £0(2) \ {e} and
(A1, A2) € R?\ {0} such that

Dy(s)tDy'(s) =T = (& 21&2) . (4.103)
The formulas for the corresponding Ay are as follows:
252C 2s55C
A\ = __ohin Ny = __ G4kt (4.104)

- 3
s2C% + s3C2 s20% + s2C2
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In particular, we have

s3c3—s2c? 25201 Cy

S1 _
tin Stz _ (Cl)\l-i-l Co)y ) _ 53C2+52C3 s2C7+s2C3 —r (¢ s s )
%1‘21 tao Cidz Cala+1 253010y s303-s303 123%) 215 22/~

202,202 202 202
slcl+s202 Slcl+3202

We can verify that
7-12(¢7 S, 871) =T- (¢7 8)
where T_(¢, s) is defined by (2.4). We just set

s72C% — s2C? . 20,0y

coSp = ——"——+- and sn¢p=-————-——.
Yo TG TG N e

In addition dett = —1.

4.5.2. Case ¥123(s) = (0,1,1)
We have for some s; € R, and all (sq,s3) € (R+)2

, Yog(se) =00, i3(s3) = 0.

Remark 4.15. Since ¥12(s1) <oo, by (4.20) and Lemma 8.2, we can suppose
that

b= (bin; ban, bsn)nez= (1, 51 (1+¢n), bsn)nez, Zci < o0,

n

therefore, we can take b= (1,1,b3,)nez, s =1, ¢, =0.

2
Since X13(s) = Y ,cz (\/% - b?m) = 00, we have as in (4.50) three cases:
(a) oo
limbs, =4 (b)) b>0 with 3 b2 = oo, (4.105)
' (c) 0

where b3, = b(1 + b,) with lim,, b,, = 0 in the case (b). Note that condition
S5(3) = oo, implies > b3, = co. Indeed, by (4.8) we have for 1 <r <3

1
Z blnb2n + blann + anan Sl (3) Z 1 + 2b3n -

nez

1 n_ (220)
52(3)_Z1+253 =00, 00283(3):21+2b3n Zb (4.106)

neZ
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By (4.5) we have

¥ =3 ik ,
" b2 + 2(blrLbZn + blann + b?nb?m)

cZ rk
(s)]|2 bZk
Y S T .
H || kZZ bgk + 2 blann + blnb3n + b2nb3n) B 7& "
Let us denote

Y(1) Y(l) Y(l) 1 1 _ban

1n 2n 3n vV 3‘|‘14b3n vV 3+14b3n vV 3+4b3n
Yﬁ) }/2(3) YE’,(Z) = V/3+4b3,, V3+4b3, \/3+4b3n
Y(3) Y(3) Y(3) 1 1

i Ton Lsn Vb3, +4bsn+2  \/b%, +4bsa+2 /B3, +4b3n+2

(4.107
We have A(Yl(l)ayz(l)ay;z(l)) = A(}Q(2),§/},(2),§ﬂ(2)) < 00, indeed, since Y1(2) =
YZ(Q) we get for example

<1< o0.

(2) yv.® v
A2 YO y®y (Y )+, Y5™)
L+ T() + ) + 157, )
Lemma 4.22. In the cases (a), (b) and (c) given by (4.105) we have
AV Y1) = oo, (4.108)

PROOF. In all these cases we have Y(g) YQ(B) hence, F(Y},(?’), Yl(g), YQ(S)) =0
and T(Y\?) V¥ = 0. Therefore, by (8.15)

P+ 12 vy + (v, v

A Y(g),Y(3),Y(3) _
RERROREER 1+ T(V) + (V)

1+ 20 (v,

We have two cases:

(a.1) when [|V;¥)|| < oo, and (a.2) when [|[¥;¥|| = 0o

In the case (a.1) we have A(Y;g),Yl(g)) ~ F(Yg(?’)) = oo. Therefore, (4.108)
holds. In the case (a.2) we should verify that

CYY + Y|P =00 forall (C,Cs) € R\ {0}. (4.110)
1 3
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Then this will imply (4.108). We have

(3) 32 (Cl C3b3n
Y + CLY. E - E n-
||O1 1 Cs 3 || b;%m Abs, + 2 nezg

If C1 =0 or 5 =0 the later expression is divergent since Yl(g) = Yg(g) = 00.
Let C1C3 # 0. In this case lim, g, = C3 > 0 since lim,, b3, = oo case (a).
Therefore, ) _, g, = co. By Lemma 8.11 this implies A( Y(?’)) 00
therefore, (4.108). In the case (b) we have by (4.109)

AW V) = A, 1),
To prove that A(Y(3), Y1(3)) = oo using Lemma 8.11 we should verify (4.110).
We have ||Y3?||2 = oo since S = (0, 1,1). By (4.107)

1
Y 2 -
¥ Zb2 +4b3n+2 Zb2+4b+2

The expression ||C’1 Dy C3Y5 ||2 can be finite only for (C1, C3) = A(b, —1).
Take A = 1, we get in the case (b)

b20?

—-b
2 3n
”CI +C3 H ZbQ + 4bs,, + 2 Zb21+b 24+4b(1+b,) + 2

(2.22) b? (2.20) 9
Y n ~Y b p— .
%(4b+2b2)bn+b2+4b+2 % n=

In the case (c), we have by (4.109)
AYY YY) ~ A1),

To prove that A(Y3(3), V{®) = 0o using Lemma 8.11 we should verify (4.110).

Again, we have ||Y3(3)||2

have by (4.107)

= oo since S = (0,1,1). Because of lim,, b3, = 0, we

Z Z 1
H ” b + 4b3n +2 = 2 ’

Let CC3 # 0, then since lim,, b3, = 0 we get

e+ OV |12 = Z(01+03b3n)2_2C§(b3n+01031)2

— 0. O
— 1 A 12 B2t dbg,t2
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By Lemma 4.22 we can approximate xs,. By (4.6) we have

by, 2n
IY1]]? = Z 1 aln - Z 1 + Z 12—i 2a513n

nez 2bln 2b2n 2bSn keZ 2b3 keZ
2 2
||Y2||2:§ : _§ : 2b3na2n ||YE))||2:§ : asy, :§ : 2b3na’3n
14 2bs,’ - 1+ 2bs,,
nez _'_ 2bs + nez 1+ 2030 keZ + 203n

Therefore, in the case (a) and (b) we have
Wl ~Sad, I~ Y, I~ Y,
keZ keZ keZ
In the case (c) we get
I~ S b, I~ S bgnde, V302 ~ 3 b,
keZ keZ keZ

Since in the case (a), (b)

‘Y'l”2 Zaln Z blna%n ~ SlLl(:u) =

neL nez
H}/2||2 ~ ZGQn ZbQTLGQn S2LZ ) 0,
neL neL

we have two possibilities for ya3 := (y2,33) € {0,1}?, see Section 4.4.4:

(1L1) (1.3)

11
g; L (4.111)
ys 0 1

In the case (c) we have

V5] ~ Zbgnain ~ Sk (1) = o0.

neL

Therefore, we have four possibilities for yi5 := (y1,92) € {0,1}?, see (4.54),

(1.0) (1.1) (1.2) (1.3)
ys 1 1 1 1

(4.112)
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Further, in the case (a), (b) we have four possibilities: (1.1.1), (1.3.1) and
(1.1.0), (1.3.0), see Remark 4.4. In the case (1.1.1) we can approximate
D1y, Doy, in the case (1.3.1) we can approximate all D,.,, 1 < r < 3. In
these cases the proof is finished, since we get respectively Di,,, Doy, T3, 17 2A3.
The cases (a),(b) subcases (1.1.0), (1.3.0) we consider below.

In the case (c) subcase (1.0) we can approximate Ds, using Lemma 5.6,
since A(Y3,Ys,Y)) ~ ||¥3]|? = oo, so we have Ds,, x3, 723, and the proof is
finished.

Further, in the case (c¢) we have six cases (1.1.1), (1.2.1), (1.3.1) and
(1.1.0), (1.2.0), (1.3.0), according to whether corresponding expressions are
divergent (see analogue in Remark 4.4). We can approximate in the three
first cases by respectively D;,, and Ds, in the case (1.1.1), Dy, and Ds, in
the case (1.1.2) and all Dy, Da,, D3, in (1.1.3). The proof of irreducibilty
is finished in these cases because we have respectively Dy, Ds,, o3, 73,
Dgn, Dgn, x3n772l3, or Dl'm Dgn, Dgn, ZL’3nT]§2(3.

If the opposite holds, in the cases (a), (b) or (c), i.e., we are in the cases
(1.1.0), (1.2.0) and (1.3.0) respectively, we try to approximate Ds, using
Lemma 5.15. If one of the expressions ¥3(D, s) or Xy (D, s) is divergent, we
can approximate Ds;, and the proof is finished, since we have xs,, Ds, 1 3.
Let us suppose, as in Remark 4.2, that for every sequence s = (sy)gez holds

Y3(D, s) + X35 (D, s) < co.

2
Then, in particularly, we have for s = (s;)rez with I;—’; =1

1 2
o T a
2b- 3k
00> 33(D, s%)+5§ (D, s) ~ B3(D) + X5 (D Z Ck—FCL%Z‘i‘CL%k‘i‘a%k
k

(2.22) ﬁ + agk 2b3k +a 3k v+
~> =Y e = oy (D). (4.113)
% 2b1k +afy + 5 -+ ag, - 1 +aj) + a3,

In the case (a), (b) and (c) we have respectively

2a2 i + a3,
SYH(D) ~ (D) = § 3k sWtp)y =3V s R
3" (D) 3 (D) - 14 2a3, + 243, ° (D) Zl+a%k+a§k

In particular, in the case (¢) we have by (4.113)

+ a3 2
2631c 3k A3k +
oo > E > ——— ~ 25 (D). 4.114
L+afy +ajy, ~ S 1+ai), + a3, () ( )
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The cases (a), subcase (1.1.0), where ||Y3]|* < oo can not occur, because
conditions ¥5(s1) < oo and v15(Cy, Cy) < oo defined by (4.58), contradict
the orthogonality condition for the matrix 715(o, s):

cos¢p  s’sing 0
Ti2(¢,s) = | s7?sing —cosé 0 |, (4.115)
0 0 1

Indeed, recall Remark 2.5 (instead of ,u%bﬂ) we can write uf’bja))

LT S
:U’?b,a)) 120 | N?b,a) & Yia(s) + X12(CY, Cy) = o0,
>

where 212 (

S) = 1(8) is defined by (217) and 212(01702) = 22(01702) is
defined by (2

19)

Y12(Ch, Cy) = Z(C%bln + 0225271)(01@171 + C2G2n)2 ~ v15(Cy, Cs).

ne’

We get contradiction:
00 > Xia(s) + 112(Ch, C2) ~ Xia(s) + X12(Ch, Cy) = o0.

In the case (a), (b), subcase (1.3.0) we get X3 (D) = oo by Lemma 4.11,
contradiction with (4.113) hence, D3, n2A3.
In the case (c), subcases (1.1.0) and (1.2.0) we have respectively || Yz <

oo and ||Y1]]? < oo hence,
E+(D)~Za—‘g”“:oo z+(D)~Zi=oo
’ . 1+ ai, 7 ’ " 1+ a3,

by Lemma 4.10, contradiction with (4.113) hence, D, n2A3. In the case (c),
subcase (1.3.0) we get

sy =Y

2 2
— 1+ay, +ay,

by Lemma 4.11, contradiction with (4.113) hence, Ds,, n213.
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453 Case 2123(8) = (]_, 1, 1)
We have for all s = (s12, 523, s13) € R\ {0}

Yi2(s12) = 00,  Yaz(sa3) =00, Xyz(si3) = oo, (4.116)

4.20
b= (blna b2n> b3n)n€Z ( = ) (1) d2n7 dSn)nGZ'

Recall (4.34), that we denote D,, := d, + ds, + 1 and d,, = fli—z. Set

1 d?n dS'n
Yl(i) Y2%) Ys(rlb) v H2Dndandsn v 1+2D;Ld2nd3n ¢1+2ng2nd3n
Yi(j) )/2(3) 3/3(3) = \/d§n+2Dnd2nd3n \/d%n+2Dnd2nd3n \/d%n+2Dnd2nd3n
Y(3) Y(3) Y. 3) 1 dan d3n
In 2n 3n /@B, +2Dndandsn,  /d3,+2Dpdands,  /d3,+2Dndandsn
(4.117)

Remark 4.16. For (r,s) such that 1 < r < s < 3 the following equivalence
hold

Yrs(Srs) <00 & Zcfs7n<oo & chm<oo, where (4.118)

nez nez
brn —4 bsn 4 . brn
o =i (14 ¢rsn), b—:srs(l—i—csr,n), hinb— € (0,00).(4.119)
ProoFr. By Lemma 8.2 we have
[b Dan \ 2 c?
o 2 rn -2 sn o rS,n 2
ZTS(STS) - Z (Srs E_Srs a) o Tcrsn ~ Z Crs,n>
ne”Z nez ’ nez
b byn\ 2 c2
—1\ __ _9 sn 2 rn . sryn 2
237‘(87"5 ) - Z (57’5 ;_Srs ;) - 1+ con ~ chr,n’
nez nez ’ nez
brn bSn
note also that 1= ——" = (1+¢ps,)(1+Csrn)- (4.120)
H
By Remark 4.16, the condition ¥,4(s,s) = oo means the following;:
(@) o0
. be (b) st >0 with Y ez Conn = 0.
lgp = hzn ) (O 0 (4.121)
(d) lim does not exist



Remark 4.17. In the case (d) we can use the fact that some subsequence of
<bs—"> has property (a), (b) or (c). We can avoid the case (c). Namely,
€z

brn

if I, = 0 for some pair (r,s) with 1 <r < s < 3, we can exchange the two
lines (bsp, asn) and (b, am) to obtain Iy, = oo.

Formally, we have 3% = #(A)#(®) possibilities where A = {(21),(32), (31)}
and B = {(a), (b), (d)}. Since l32la; = l31 we get only the following cases:

e\ (rs) (21) (32) (31)
1 b b b

(2) a a a
(3) a b a
(4) b a b

To be able to approximate x,, for 1 < r < 3 we should study when the
following expressions are infinite:

pr(Cla Cg, 03) = HCI r) + CQY(T + Cg H2 (4122)
By (4.117) we have

Z |Cy + Caday, + Csds,|?
C’I‘n ’

where C},, = 1+2Dnd2nd3n, Cop = d3, +2D, d2nds,, Cs, = d3,+2D,d2yds,.

Consider the case (1)=(bbb). We prove the analogue of Lemma 3.13 for
the case m = 3.

Lemma 4.23. Let for all s = (s12, S23, S13) € (R+)3 holds (4.116). Then
AV YY) = A Y ) = A0 g 1Y) = co. (4124)

PrROOF. For 1 <r < s <3 set

pT(C’l,Cg,Cg (4123)

bS?’L 4 . 2
azsrs(l_'_csr,n) with Z Csr,n = 00, nh_>m Cormn = 0.
ne’l
For by,, = 1 we have
ban = s15(1+ a1n), bsn = si5(1 4 ca10),
1+ 31, 513

4
b3n . S13 1 + C31,n 4 1 . .
b T4 1 - 823( + C3Q,TL)7 C32.n = 1 — — 1, S93 = —,
on S1a L+ Coin + Co1n 812

1+ecsin >2_ (Csl,n—czl,n)2 2_
chn Z (1—|—021 —; 1+ co1n Z(CZI,n C31,n) =00.

n
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Finally, we get

chl,n = 00, chl,n = 00, Z(CQI,n - C31,n)2 = O0. (4125)

n

By (4.122) and (4.123) we get

|C1 + Codyy, + Cdsy, |
Crn

pr(C1, Cs, C3) = OV + 0¥y + oY 2=
_ Z |C1 + Cas1y(1 + ca1,) + Casis(14 cs10)
N Crn '

The latter expression is divergent if C;+Cys],+C3s15 # 0 since lim,, o, Co1m =
lim,, 00 C31,n = 0 and Al < Crn < AQ-
In the case when C + Cysiy + C3siy = 0 we get

C 4 n C 4 n 2
pr(Cr, Co, C) = Lemire ; soiscatal _, pr(C2,Cs). (4126
ne”L rmn
The latter expression is divergent by the first two relations in (4.125) when
1) 0203>O, 2) ngOandC’g#O, 3) CQ#O&HngZO.
If C2C5 < 0 we have by the last relation in (4.125)

|Castoco1n — Cs815¢31.0|°
12621,n 3°213L31,n 4 4 2
E C ~ E 102812021,71 - 03513031,n = 0o,
™

neZ nez
since (s12, 513) = 3-(s2, 53) € (R*)? are arbitrary.

Consider the case (2)=(aaa). Now, see (4.121), we have

ban . b . bsp
Iy =lim —2 = 00, Il3p=Ilim bi =00, therefore, l3; =lim bi =o00. (4.127)
n Oin n 0O2n n O1n

Since by, = 1 we conclude that
loy=limdy, = o0 and I3 =limds, = cc. (4.128)

Therefore, we get for some C' > 0 and all n € Z

1 1
1<D,=1+-—+—<C. (4.129)
d2n d3n
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By (4.122) and (4.123) we obtain

Cy + Cadsy, + Csdsy,
—|—CY ”2 Z’l 202 3d3n|?

pr(Cy, Gy, Cs) = || C1Y," + LY, 5

C+Cdn+0dn ,
Z’l oo+ Gt _ 0 0404,

Where C;n =1+ ngndgn, C;"n d%n + 2d2nd3n, O;,n = dgn -+ 2d2nd3n.

We should study when p(C}, Cy, C3) = oo for some 1 < r < 3:

Z |Ch+Caday+Cadsy)? Z |Cy+Caday+ Cdsy|? Z |Cy+Caday+ Cidsy|?
1 + 2d2nd3n d%n + 2d2nd3n dgn + 2d2nd3n .
Denoting as before d,, = 32—2 =: -1 we get

-+ Co+Cidy |?
é + 2d,

5 |C1+Cadon+Cadsnl® _ 5
1+ 2d3ndsy,

pll(Cla 027 03) =

2 2
3 G Ol pg(ol,cz,cg)zz'Cl+02d2"+03d3”| _

d%n + 2d2n dSn

)

Z\di—;+02+03dn! Z|02+03d|
- 1+ 2d, 142d,

/ B |Cl+02d2n+c3d3"|
p3(C1, Cy, CS) - ; dgn + 2dy,dsy,

3 | -+ Cy+Cady | Z |Cy+Cydy|? Z Col,y+Cs 2
. 42 + 2d,, a2 + 2d,, 1+ 21,

By Lemma 4.8 we get when CoC3 ' > 0

C: —C d, Cy—Csd,
(017027 03 Z’ 2 E ’ Z| i+23d ‘ ZCiNZQi’)(S%

Csd,
p5(C1, Cy, —Cs) Z’ 1+23d " Zc ~ Yas(s (4.130)

]C’Ql —Cs?
(Cl,oz, 03 Z 1+2L, Ze NZ23
where d,, = CoCy (1 +cn)y lp = C’gC "M+e,), s*=0C05">0.
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But Ya3(s) = oo for all s > 0 therefore, for C,C5* > 0 we have
pr(C’l, Cg, —03) ~ 223(8) = OQ. (4131)
If C,C; ' > 0, by (4.130) we get

|G+ Cydl |2 |G~ Cyd,|?
| >

; 1+2d, >; 1+ 2d, ZC 2

|Gt Cadn |2 < |Co—Cid,|? ,
Z 1+ 2d, Z 1+ 2d, NZC"NEQ?’(S):

|Col+Cyf? |Col—Ci?

~¥

Z 1+ 20, Z 1+ 20, Ze 2

Therefore, p,(C4,Cy, C3) =00 for every (Cy, Cy, C3) €R?\{0}.
Consider the case (3)=(aba). In this case, see (4.121), we have

ban . bs, ban
lgl_hmbi—oo l32:hmbi<oo, therefore, lgl_hmi:oo

n Oin n O2p n bln

So, we have again, see (4.128)

l21 =lim dQn = 0Q, and l31 =lim dgn = Q.

We are reduced to the case (2).
Consider the case (4)=(baa). Now, see (4.121), we have

lo1 =lim dy, < Q, and 131 =lim dgn = Q0.

Hence (4.129) holds too and we can use all estimations of the case (1). [

Remark 4.18. In the cases (1)-(4) by Lemma 4.23 and Lemmas 5.1 5.3
we can approximate x,, for all 1 <r < 3 and n € Z and the irreducibility is
proved.

5. Approximation of Dy, and x,

5.1. Approximation of xg, by AnrAw
For m = 3, consider three rows as follows

bin bz ... biy
bar baa ... by
b3y bz ... bsy
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Set
(r) _ 2 2 2 2 2 _
>\k’ — (blk + ka + b3k> - (blk‘ + ka. + bSk - bT‘k)’ r = 17 27 3, k G Z (51)

Denote by V) the following vectors:

= b /AN, ke Z, Y = (@) (5.2)
Lemma 5.1. For any n,t € Z one has
T1nT1:l € <AnkAtk:1 | k e Z> = A( (1) Y( ) Y( )) = 00

Similarly, using the cyclic permutation of vectors, and changing )\,(:) we
arrive at the following lemma.

Lemma 5.2. For any n,t € Z one has
ol € (Audul [k €Z) & A, Y, 1)) = oo,
Lemma 5.3. For any n,t € Z one has
Tzl € (ApAyl | ke Z) & AYY, VP V) = 0.
Proor. The proof of Lemma 5.1 is also based on Lemma 7.3. We study
when z1,21,1 € (A Al | k € Z). Since
Ank Ak = (210 D1y + 220 Doy + 13, D3y, ) (01, D1g + 94 Doy, + 23 D)

2 2 2
= T1,21: D7y, + Tan®a D3y + T3n,03: D35 + (X129t + T2nZ1e) D1 Doy, +

(123t + T3nT11) D1k D + (XonZar + T3nT2) Dok Dy,

and MD? 1 = —" we take t = (t;,) as follows: —> 7" %k = (t,0') =
where t = (tx)7_,, and b = (Tk)k— m~ b= (bix)i_,,. We have

[ Z teApk A — xlniﬂlt] 1) =

k=—m

“ bis
H Z tk [l’lnlﬂ'lt( 1k+ 9 >+x2nx2tD2k+x3nm3tD3k+(l'an?Qt + xan1t> X
k=—m
D1 Doy, 4 (210231 4+ T30 1¢) D1x Dag + (0p T3y + T3,29;) Dog Dag | 1|2
Z (fk’fr>tkt7” = (A2m+1t7t)7

—m<k,r<m
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where Ay,q = ((fky fr));:r:—m and fi = Zi:l fe + Zl§i<]’§3 f]ij7

b, i
Ir = T (ka + 7k61r> 1, f! = (@wnzj + i) DiDjrl (5.3)
for1<r <3, 1<i<j<3. Since
LR Ly

for different (i5), ('5"), writing cp, = ||2m||* = 2b11m + a2, we get

3
(s f) =D INE+ > I1P =

1<i<j<3
b 2 b 2 b 2
C1nC1¢2 (%) + ConCo3 (%) + 3,33 (%) +

bir b
(Crncat + CruCon + 201,001,025, %k%k + (C1nCst + C31C1n + 2a10030030015) X
bir b bor b
%k%k + (62n63t + C3tCop + 2a2na3ta3ta2n> %k%k ~ (blk + boy, + b3k)2,

oy b, b b
(frs fr) = (F )+ (fE 1) = ConCot—2 =5 4 CanCar—t 2L~ bogbay + bagbsy.
2 2 2 2
Finally, we have

(frr fe) ~ (big + bag 4+ b3)*, (fa, fr) ~ bagboy + baxbs,, k#r.  (5.4)

Set
M = (bag + bog + bax)® — (b +b34), gk = (Dag, ba), (5.5)
then
(fir fr) ~ A+ (gro91)s (fis o) ~ (9> 7). (5.6)
For Aspi1 = ((fr, fr))Zr:—m’ and b= —(by;/2)7_ € R*™ ! we have
A2m+1 - Z )\k;Ekk’ + V(g—ma <90, - 7gm)
k=—m
To finish the proof, it suffices to invoke Lemma 7.3. O
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5.2. Approzimation of D,, by Agp

We will formulate several lemmas, which will be useful for approximation
of the independent variables z, and operators Dy, by combinations of the
generators Ay,. The generators Ay, have the following form:

Akn = 215 D1y, + 20k, Doy, + 31, D3y, k,n € Z.

For m = 3, consider three rows as follows

ay;p @12 ... Qip
Q21 Q22 ... Q2p
a3z; 32 ... Qa2p
Set 1 1 )
A = . 5.7
T Db | 20ar | 2bar (5.7)
Denote by Y7, Ys and Y3 the three following vectors:
T = k€L, Y= (n)ken (5.8)

vV Ak
The proofs of Lemmas 5.4-5.6 and 5.1-5.3 are based on Lemma 7.3.

Lemma 5.4. For any | € Z we have
Dyl e <Akll | k e Z> = A(m,}é,}@) = 0.

Similarly, by cyclic permutation of the vectors, we obtain the following
two lemmas.

Lemma 5.5. For any | € Z we have

Dyl e (Al | keZ) < A(Y,Ys3Y))=oc.
Lemma 5.6. For any | € Z we have

Dyle (Al keZ) < A(Y; YY) = 0.
Proor. We determine when the inclusion

D11 € (Apnl = (211 D1y, + 225 Doy + 231, D3 )1 | k € Z)

79



holds. Fix m € N, since Mz, = ay, we put » .- tray, = (t,0) = 1,
where t = ()7, and b = (ayx)7=_,,. We have

m

I Z tr(x1 D + o Dan + w36 D3,) — D1y ] 12

k=—m

= | Z trl(w1k — a1k) D1n + T2k Dan + 31 Dsp] 1]

k=—m
= Z (fka f’/‘)tktr = (AZm-i—ltyt)a where A2m+1 = ((fk‘a fr)):r:—m’
—m<k,r<m

and  fi, = [(x1x — a1) Din + Tox Doy + 236 D3, ] 1.
We get
(fi, f&) = | [(z1r. — a1x) D1y + o Doy + 231 D3y 1|2
o 1 bln 1 2 an 1 2 >b3n
“ %2 ¢ <2b2k * “%) 5 * <2bgk )
LS S
~ a a
2k 2boy | 20y, W
(fe, fr) = ([(xlk — a1) Din + 2o Do + 231D, | 1,
[(:Elr - alr)Dln + $27’D2n + 3737“D3n] 1)

= (wox 1, 22,1) (D2, 1, Doy 1) + (2341, 23,1) (D3, 1, D3, 1)
b

2n 3n
= a2ka2r7 + a3ka3r7 ~ QoK Qor + 3503

Finally, we have

1 1 1

(fk7 fk)N 2b1k + 2b2k + 2b3k + agk + agk) (fka f?“) ~ A2k A2y + asrasr, k 7é T.

(5.9)
If we denote
1 1 1
N - 5.10
" by + T + T g = (agy, asy), (5.10)
then we have
(fios i) ~ Mo + (98, gr)s (fies fr) ~ (9k, 9r)- (5.11)
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For A1 = ((f, f,,));nrz_m, and b = (ay;,)™ = € R*""! we have

A2m+1 = Z )\kEkk_F’y(gfmaagO?agm)

k=—m

To finish the proof, it suffices to apply Lemma 7.3.

The proofs of Lemmas 5.5 and 5.6 are exactly the same.

5.8. Approximation of x,; by DAk,

Lemma 5.7. For any k € Z we get

bin B
bon + ban

Tkl € (DAl | n€eZ) & Z T— 00.
nez 1n

PROOF. Since

Dy, Agy, = xlkD%n + 29, D1y Doy, + 35 D1, D3y,

and MD?1 = —Yk we take t = (t;)}" as follows: (¢,0') = 1, where

9 k=—m
t= () _, and b/ = — (%)~ b= —(by)f_,,. We have
H [ Z tnDlnAkn - xlk} 1H2
m b N
= | Z 12 |:x1k (D%n + %) + 2o D1y Doy, +953k:D1nD3n] 1|2
= Z (fna fr)tktr = (A2m+1t7 t)a
—m<n,r<m
where Ay, = ((fn, fr)):q":7m and
bin
fo = [l'm (D%n + %) + 2o D1y Doy + x3kD1nD3n1 1.

We have

(fna fn) ~ blk(bln + b?n + b3n) and (fna fk) =0 for n 7é k.
Therefore, by (6.3)

1
m m b
] 2 j : 1k
tE{RanlJrl H [ E tnDlnAkn - xlk] 1” - ( = bln + an + b3n> '

n=—m
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Lemma 5.8. For any k € Z we have

b2n
Topl € (Do, Ayl | n€Z) & g = 0.
2" < ? g | > nez bln + b2n + b3n
Lemma 5.9. For any k € Z we have
ban
3kl € (D3 Akl | n €Z) & 3 0.

; bln + b2n + bSn B

5.4. Approximation of Dy, by T 1 Agn
Set

1 1 1 1
)\g) = <—+a%k) ( + + +agy, + a%k) —ajy (ag, +azh.12)

2byy, 201, 209 203
1 2
5o
}/11 - 2D -+ J }/12 - kG2 ) }/13 = kG (513)
)\(1) )\(1) /)\(1)
k k k
kEZ kEZ kEZ

Lemma 5.10. For any n € Z we have
D1 € (xy Akl | k€ Z) < A(Yi, Yig, Yi3) = oc.
Proor. We determine when the inclusion
D11 € (21, Ak,1 = (x%len + x1p o Dop + T1x23xD3n)1 | k € Z)

holds. Fix m € N, since Ma?, = ﬁ + a3, we put

1
thk(m +afy) = (t,0) = 1,

where t = (t;)7~_,, and b = (ﬁ + a2 ) _,,. We have

m

I Z tr(@3yDin + 213221 Do + 215736 D3n) — D1 | 1|

k=—m

1

= |l Z Uk [(ﬁk - <W + a?;g))Dm + T1xZox Dan + xlkakD3ni| 1]?
fa 1k

= Z (fka fr)tktr = (A2m+1t7t)a where A2m+1 = ((fka fr));rfr:_ma

—m<k,r<m

1
and f = [(37%;@ — (W + a%k))Dln + 21Tk Doy + l‘1k373kD3n] 1.
1k
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Since M|y — M||? = My? — | My|* we have

2 1 ’

Ty — <26 " + @1k>
3 1 2 1 2

ot g ) = (g 1)
COME + 2b1ka1k +ay, ST +ay Sb1r \ 20, + 4da7jy,

we get

(fr, fe) = || [(ﬁk - (2b " + alk))Dln + 21522k Doy + l’lkxskD:sn] 1H2 =

1 < 2 g2 >bln+( 1 . )( 1 . >b2n+< 1 . )bgn
— | — a a a a
2011 \2b1x 1k 2 F)\20y, 2 ) 2
><<1+2> (1+)(1+1+1++)
-_— a ~ a a a
Qs K 21 K\ 209p | 2by, 2K T TR

(fu, [r) = ([(ﬁk - <2b1k + a1k>>D1n + 215025 Doy + -lex?)k:D?m} 1,

1 2
M = Muy, — <251 +alk)

1
[(l’%r - (2b + a1r>)D1n + xlrx2rD2n + xlrx3rD3n:| 1) =
1r
(z151, 21, 1) (w2r 1, 2,1)(Day 1, Dop1)+ (2151, 21,1) (z311, 23,1) (D3, 1, D3, 1)

b2n b3n
= alkalra2ka2r_2 + alkalra3ka3r—2 &~ 01, (Aokao, + A3,03,).
Finally, we have
(ff)( +)(1+1+1+2+2) (5.14)
a a a )
ks Jk 1k 2b1k 2b2k 263k 2k 3k |

(f, fr) ~ alkalr(a%aQr + aspas,), k # .

Set

)‘I(cl) = (Wllk ‘Hﬁk) <2bllk + le% + 2blgk + gy + agk) — aiy(a3), + a3y),
gk = a1k<a2k7a3k)7 (5-15>

then
(feo ) = M)+ (ge96) (s o) ~ (s 9, K # (5.16)

For Agpy1 = ((fk, fr));nrz_m, and b = (ap)_, € R*™*! we have

A2m+1 = Z )\kEkk_F’y(gfmaagO?agm)

k=—m

To finish the proof, it suffices to apply Lemma 7.3. O
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Similarly, by cyclic permutation of the indices, we obtain the following
lemmas.

Lemma 5.11. For any | € Z we have

Dyl € (xop Al |k €Z) & A(Ya,Yas, Ya) = 0.
Lemma 5.12. For any | € Z we have

Dyl € (w3 Al |k €Z) <& A(Yag, Y, Ys) = 0.

Here we set

1 1 1 1
N = (5463 (5= 45—+ 5 + htad) —dulad+ady), (5.17)

2b2k 2b1k 262k 2b3k
1 2
- T a
Yy = A1k A2k Y= 2bor; 2k Y= Q23 7 (5.18)
)\(2) )\(2) /)\(2)
k7 kez k kez k /7 kez
)\(3):<L+a2 )( ! + ! + ! +aj,+a3 >—a2 (a2, +a3,), (5.19)
k 2b3]<; 3k 2b1k 2b2k 2b3k; 1k 2k 3k\"1k 2k /> .
1 2
—_— + a
Vi = A1(A3k Vi — A2k A3k Y = 2b35, 3k (5..2())

s 132
/\(3) (3) (3)
A keZ A keZ i keZ

5.5. Approzimation of D, by (x3 — asg)Akn and exp(isgT,k) Agn
Lemma 5.13. For any n € Z we have

D3, 1 € <(l’3k — a3k)Akn1 ’ ke Z) =4

1 1 1 1
Sy (p) = ( 2 + a2 +al ) =0 (5.21
3(:“) kEZZ 2b3k 2b1k + 2b2k + 2b3k + a1k + Aoy, + agy, o0 ( )

ProoOF. We determine when the following inclusion holds

D31 € (23 — ask)Arnl
= (z11(@3k — ask) D1y + ok (T — aze) Don + z3i(@3k — ask)D3n)1 | k € Z).

Set &3 = wak(war — ask). Fix m € N. We have

1 m
Méspl = M (23 — ase)’1 = T chose (tx) as k_z_:mtk

1

— =(t,b) =1
2b3y, (t:9) ’

84



where we denote t = (t)j_,,

and b = (5— —)ie—m- We have

m

| [ Z 7% ($1k(373k — ag) Din + 2o (23e — ask) Doy + kaD:sn) — DSn} 1)
k=—m
= | Z tk [$1k($3k — ask) D1y + Zop(2sk — az)Dan + (Esk — M§3k)D3n] 12
k=—m
= Z (fos fr)tat, = Z (frs fu)ti, since fi L f., where (5.22)
—m<k,r<m —m<k<m

k= [mlk($3k — asy) D1 + o (w3 — ask) Dan + (&30 — Mfsk)D:an] 1.
To calculate M€z, — M&sp]? set
b 2 b 2
dpvp,a) () = ;exp(—b(x —a)*)dr and dupe(r) = ;exp(—bx )dx,

(5.23)
then we get M&2, = @ k)2 + QB’“ . Indeed,

Ma(e = o = [ 4% = @Pdg(a) = [ 4@+ @) dgo ()

3 a’
= /(IA —+ QCLZL‘S —+ a2x2)d,u(b70)(x) = W + 2_b

Since M| — MIE||? = ME* — |MEJ? we get

3 a? 1 1 2
ME2 — Mléal? = 3k _ ( 2 )
£3k’ ’£3k’ (2b3k)2 + 2b3k (2b3k>2 2b3k + a3k‘

Set for = Tsp(var—azk)D1nl, 1 < s <2and f3 = (§3k—M§3k)D3n1, then
(fe, fu) = |:x1k(373k_a3k)D1n+x2k<x3k_a3k)D2n+ (£3k_M£3k)D3n] 1H2

<2blm * “%’J 2191% b;n * (2191% + ag’“) 2613k b;n + (%k + “§k> ngkbs?n

~ (2[)11k + 21)1% + 2613k + a3, + a3, + a3k>E, since fi L for, | # s,

(fe, fr)= ( [xlk(xSk —agg) Din+wop (T3 —agk) Don + (fSk_M€3k)D3n:| 1,

|:x1r<x3r - aS'r)Dln + x2r(£3r - a3r>D2n + (531“ - M£3T)D3ni| 1) = 0.
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The previous equality holds since f;, 1L fo for 1 < [;s < 3 and r # k.
For | # s this follows from (Dy,1, Dy,1) =0. For [ =s it follows from the
equalities:

(xsk17xsr]-> = Qg Qgr, 1 S S S 27 ((f?)k - M£3k>]-7 (537’ - Mf?)r)]-) = O

and ((xgk —asg)1, (3. — Clgr)l) = 0. Finally, we have

1 1
(fi fi)~ (2b1k t S T 2

Set ar = (fk, fr) and by = ME, then by Lemma 6.1, (6.3) and (5.22) the

proof is completed since

SE oy L i) 0
— = a a a .
A Qg heZ 2b3k 2b1k 2b2k 2b3k 1k 2k 3k

1
+ajy +aj, + a§k>_7 (fi: [r) =0, E#r.
2bsy,

Now we would like to approximate Ds,, by combinations of exp (z’sk(wgk —agk)iA;m.
Set s = (Sg)kez

3 1 1 1 s2 52
A (sp) = bt — +ad — (W +ad) exp (- o). (524)
3k

201, 2bgr 203 2b3y

Yai(s) = ’“) , Y32<s>(“2’“> . (5.25)
( )‘23)(3/?) keZ V)\S))(sk) keZ

(= 5 +iagy) exp (- i)
YE}Q(S) _ 3k 3k )
kEZ

A (s1)

In particular for s = \/2bsg we get

1 1 1 1
A (s) = 2)@-2). 2
b ) = e T gy T <2b3k - “3’f)( ) (5.26)

e

Lemma 5.14. For any n € Z we have
D1 € (exp (isg(wsr—ask)idrl | k € Z) < A(Yas(s), Yai(s), Yaa(s)) = oc.
PrROOF. We determine when the inclusion

Ds,1 € (exp (isp(ws, — asy) iA1= <z’x1k exp (isk(z3k — as)) Din

+izop exp (isy (w3 — azk)) Doy + ix3p exp (isg (w3 — CL3k))D3n> 1|kez)
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holds. Set &,x(sk) = iz €xp (isk(xgk — agk)> for 1 <r <3 and
fils) = (€(50) Din+ Ean(56) Do + [€n(50) — Mean(50)] Din ) 1(5.27)
= <z’x1k exp (isk(x3x — ask) Din + 1o exp (isp(z3r — ask) Day,
+  [izgp exp (isp(w3e — aze) — MEsp(sy)] Dgn) 1.

We show that

S S
Mfgk(s) = < - % + Zagk) exXp ( — M)’ (528)
(Fi fi) ~ N (58) + (91 90), (5.29)
(fk7 fr) ~ Q1EA1r + AopG2r = (le gr); (530>

where g = (a1, az) € R% Indeed, set Fy(s) = [, exp (is(z — a))dp.q)(z),

then
2

Fy(s) = / exp (isz)dpg,o0)(x) = exp (— Z_b)’ (5.31)

where dpup,q) () and dpp,o)(x) are defined by (5.23). Therefore,

) = [ iwexp (is(o = ) du o) = | ile +a) explise)duolio2)

dﬁ:;()Jr F():(_%Ha)exp(_%). (5.33)

This implies (5.28). Further, to obtain (5.29) and (5.30) we write
(fkaf?‘) = Z (xtkaxlr)(Dtn]-aDln]-) = Z (xtkaxtr)(Dtn]-aDtn]-)

1<t,1<2 1<t<2

1n 2n
= Q101 —— + Qoo —— ~ Q11 + Qo2 = (9K, Gr),

2 2
(fr> fr) = Z 4[| Den 1| + <M|53k<3k)‘2_ ’MSSk(Sk)|2>HD3n1H2
1<tL2
1 bin 1 bgn bsn
= (g +ed) 5+ (%2 + ady) 5+ (Mlae(s)2 = | MEan(se)l?) 5
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Set for brevity £(s) = iz exp (is(z — a)), then

2

(s) = MIEE) — e = (o +a?) = (2 +a)exp (- 2.

. Lo (o) 2 e ] 9pa? > 0
= { P e
2b?

Indeed, consider the function g,;(x) = (g—z + a2> exp(—2z?) and set 2y =
V1 —2ba?. We have

exp(—(1—2ba?))

Gap(o) = LD g 9pg2 > 0,
maxgab( )= { 9ap(0) = a?, if 1 —2ba® < 0. (5.35)

To calculate A,(Cg)(sk), we get finally

1
Az(gg)(sk) % +a1k+2b +a§k+<M|§3k(8kz)\2—|M§3k(3k)|2> —(9ks 9x)
1k
1 1 1 2 2 2 < 32 > 3%
= 2 + b + T + ajy, + a3y, + a, 2, + a3, ) exp ( 2b3k)
I T 2.
—(9k, ) = ST + Sbor + T +as, — (4b§k + a3k) exp ( - 2b3k) =

1 N 1 N ( 1 a2 ) (L=, 57 )
a —e or —— =1.
2b1,  2boy 2bsy, B ’ 2b3y,

Therefore, we get (5.24) and (5.26)

1 1 1 ) 1
1—-).
2b1k 2bgk + <2b3k + a3k>( 6)

For Apmir = ((fi(sk), fr(50))) o a0 b = (Méa(si))i € RO we
have

A (si) =

A2m+1 - Z AkEkk_’_’Y(g—ma'"7907"'7gm)-

k=—m

The proof is now finished on invoking Lemma 7.3. [
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Lemma 5.15. We have

D31 € (sin (Sk(ng — agk))Aknl |k e€eZ) & Y3(D,s) =00, (5.36)
D31 € <COS (Sk<I3k — agk))A;ml | ke Z> =4 EV(D 8) = 00, (537)

M 2 M
where Sy(D, 5)= 3 56 o Z‘ el S’“2 . (5.38)
— lgr(si)l g (se)l
1

moreover, Ys3(D,s®) ~ 20t . (5.39
3l ch+alk+a2k+ 3k ( )

d 2Y(D,s®) ~ DY (D) := G 5.40
and 33 (D,s™) ~ 23(D) ch+a§k+a§k+a§k’ (5.40)

where &) = (s33,);, with bi =1, keZ.

Proor. We shall try to obtain separately the real part and imaginary part
of M&si(s), where &3x(sx) = ixa,exp (isk(xgk — agk)). Using Lemma 5.14
formulas (5.28) and (5.33) we get

Hoals) = [ twesp (isto — )diou(e) = [ ite + ) explis)duoa o)

D = (g i s (- ) =

Recall the Euler formulas

e =cost+isint, e " =cost—isint, (5.41)
eit 1 et it _ it
cost = ———, sint=———.
2 ’ 2

More precisely, we denote for 1 <r <3

Nek(S) = Ty COS (sk(x% — agk)), n%(8) = Xy cos (Sk(l’gk — a3k)). (5.42)

We determine when the inclusion holds:
D31 € (sin (Sk(l'?,k — agk))Aknl = (mlk sin (Sk(ﬂ'}gk — agk))Dln
+xok sin (sg(z3k — ask)) Do + @ap, sin (sk (s, — agk))D3n> 1|keZ),
D31 € (cos (sp(wsr — age)) Apn1 = (xlk cos (sy(zsr — asy)) D1y,

+$2k COS (Sk(l’gk — agk))Dgn + T3k COS (Sk(l’;;k — agk))Dgn) 1 | /{3 - Z>
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Set
gr(Sk) = (mk(sk)Dln + Mok (Sg) Dan+ [ngk(sk) —Mngk(sk)] D3n> 1, (5.43)
9x (sK) = (Ulvk(sk)Dln+nzvk(5k)D2n+ (731 (s) — Mg, (si)] DSn) 1, (5.44)
We show that (compare with (5.28))

1 —_ s 52
M??gk(S) = _§<Ha,b(5> + Ha,b(5>) = ng exp ( — %>, (545)
2

Mny(s) = %(Ha,b(s) - m> = agy exp ( - %51{;) (5.46)

Recall the definition of the function Fj(s) defined by (5.31):

Fy(s) = /Rexp (is(z — a))dpgp.a) () = /Rexp (isz)dpp0)(z) = exp ( — ASL_Z>
(5.47)
We have

Mn(s) = /Rxsin (s(z — a))dpgpa(z) = /R(x + a) sin(sz)dp o) (r) =

eisx _ e—is:c 1 - ion e
[+ 0= o) = =5 [ i+ a) (e = =)o (z) =
R R

2

2 (Hosls) 4 Flonl) = S exp (= 52).

this implies (5.45). Similarly we get

Mn"(s) :/xcos( (z — a))dpp.a / x4 a) cos(sx)dpp,0)(x) =
R R
. zsx ST _ l
% Rz(:v—i—a)( +e” )du(bo) =5 (Hab s))
2
()

this implies (5.45). Fix m € N, we put > " txMnsi(sy) = (t,0) = 1,
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where t = (t;)72_,, and b = (Mns(sk))i-_,,. We have

m Z tysin (sp(zsx — ask)) Agn — Dsn ] 1|

k=—m
= |32 () Din + mai(58) Dan + [l = Migse(1)] Dn ) 11
k=—m
= 3" Zllgnl(se)l. since (Dml,Dln1>:0, 1<r<1<3, (548)
k=—m

where the gi(sz) are defined by (5.43). To calculate ||gr(sz)||* we have

gk (si)1? = (gr(sk), gr(sk)) =

<(7]1k(3k¢>D1n + 0ok (5k) Dan + [m31(s%) — Mnsi(si)] Dsn) 1,
(M1 (8%) D1n + 11 (8%) Dan + [n3(sk) — Mnsi(sk)] Dsn) 1)

s 2 sin (se(es, — ase)) 2 Du > +
Jeau 2] sin (e — ase)) 112 Dar > +

1 by,
(Mba(sil? = M (50 ) 1 DI = (5 + b ) Is5" +
! 5 ban 2 2\ D3n
(5 + 3 1ot + (Mima(s)? = [Mnen(s)) 52 (5.49)

We need to calculate I3 = || sin (sk(xgk—agk))le, M|nin(sk)]? and [ Mg, (s1) |2
If we set a := agg, b:= bsi, we get

ST —isx ,—1ST ST

€ — € € — €

3 = || sin (Sk(w% a3k)) 1 /R % —9; H(b,0) (z)
1 €2isx + 6721‘5:1: (5.47) 1— 6_%
= 1-— —)d = — 5.50
24< 5 16,0 (%) 5 (5.50)
2 st 5t
M (s2)]? = —k ex (——) 5.51
M (s0)F = 7o (= 5t (5.51)
eisx _ efisx efisx _ eisx
Mina(s)? = [ (@ + 200 +0) () =
R 1 —2
1 eQis:ﬂ + €—2is:c
5 /]R($2 + 2xa + a2)<1 — #)dﬂ(b’o)(l‘) =
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62231 + 6—2zsr

1
5[/@2 + a®)dpp)(2) — /R(9C2 +a2)fdﬂ(b,o)($)] =
171 , d*Fy(2s) (a7) 171 1 25\2 2
LB ap] w0 L o LY
3l e e @R 2l T T @izl\%) T
52 52 1 1 52 82 S2
e b — aze_T} =3 K% + a2> (1—e"7)+ b—26_7} (5.52)
Finally, we get
171 _s2 5?2 2 5?2 2
2 2 _ 2 _s? 2
M) = (M ()P = 5| (55 + @) (1 = %) 4+ 2577 | = 55,
(5.53)
By (5.58),(5.49), (5.50), (5.53) and (6.3) we prove (5.36), where
=y s | Mngn (k)|
= llgr(se)l?
si e 2§’§k
2 -
e (o +ah) bl + (5 + a%)fgbgn (Ml () = 1M (50) ) 23
st *2?
keZ bSi _ ok >k > _ %k a
1_82 Sk (Clk: + 02k> + % [CSk(l —e Pu)+ ﬁe bSk} - @6 o
22 %
_ke_ 2
> O )
kez L i <clk -+ Cgk) —f-% |:03k<1—€_$k) —+ ﬁe_xk] — 4b§k 2
(5.54)
where 77 = g—i and ¢ = »o t a?,. For 2 = (z;,) with 7, = 1 we get
1 -1
(3 — by, © _
23(Dax ) Z _ 1 1 6_%

1—e1 1 — —
keZ — <C1k+02k)+5[63k(1—e 1)+Ee 1 T

1 -1

Z dbg © (2:6)
1—e—!
2

1 - 1,1
keZ <C1k+C2k+C3k> +m<€ L—3e 2)
1

2b3k 2b3k
_ — (D). (5.55)
gclk‘i‘c%‘i‘ci’,k ,gezzm‘f‘@*“%k*'%k"‘%k"‘%k
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So, we have proved (5.39) for z = (xy ), with xx = 1. To approximate Ds, in
terms of functions involving the cosine, fix m € N, and put Y ;" t,Mn3, (si) =
(t,b) =1, where t = (t;)}_,, and b = (Mny,(sk))i_,,- We have

k=—m

[ Z t cos (Sk([l?gk — agk))Alm — Dgn] 1|2

k=—m

= 1Y ta (o) Drn + 5 (500 Do+ [a() — Mo (51)] D ) 1)1

k=—m
— 3" gy (sx)|”, since (Dml,Dln1>:0, 1<r<1<3, (556)
k=—m
where the g (s;) are defined by (5.43). To calculate ||gy (s;)||* we have
gk (si)lI* = (g (sx), i (s)) =
\Y \Y \Y% Y
(51 Do+ 15,51 Do + [l (51) = Mg (51)] Do) 1,

(% (5k) Din + 135 (58) Dan + [n3(s8) — M3y (sx)] D) 1) =
15 L[[*[| cos (s (zar — aae)) L[| Du1]|* +
[ 22, L[| cos (s — aap)) L[| Dar L[>+

1 b
(M () = (M ()] )HnglH — (5 +ab) B +
1 % 2 b3n
<Qb ok ) + <M|771m Sk |M77kn(3k)| )7 (557)
We need to calculate Iy = || cos (isg(zsr—ask)) 1|, My, (sk)|* and |[Mny, (si)|*.

Finally, we get (we set b := bs;) To approximate Ds, in terms of functions
involving cos, fix m € N, and put > ;" t,Mny.(si) = (t,b) = 1, where
t=(tp)_,, and b= (Mny,(sk))_,,- We have

[ Z ty cos (Sk([l?gk — agk))Alm — Dgn] 1|2

k=—m
= 1Y (W0 D+ ms(50) Dan + (o) = Maga(s2)] D )12
k=—m
= 3" 219y (sx)|”, since (Dml,Dln1>:0, 1<r<1<3, (558)
k=—m
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where the g (s;) are defined by (5.43). To calculate ||gy (s1)||* we have
lgi (si)lI* = (gx (sx), i (s%)) =
(58 D + 3 (5) D + [ (5k) = Mg (54)] D) 1,
(M (38) D1 + 135 (8) Do + [155(5%) — Mng/k(sk)}Di%n)l) =

21 L[[*[| cos (s (zar — aze)) LI*|| Du2]|* +
72 L[[*[| cos (s (s — aze)) L[| Dar 1 ]|* +

1 bin
(Ml (sl = 1M (50) P ) 1D = (5 + ) B 5 +
1 Vb \Y 2 \Vi 2 b3n
(g5 + 31555+ (M) = Mg (s0)P) 5 (5.59)
We need to calculate Iy = || cos (sp(zsp—azi)) 1|2, M|ny, (sk)|* and [Mny, (sk)]*.

If we set b := bsy, we get

eisx + 671‘3:1: efisx + eisz
I = | cos (su (o — o)) 1 = [ Aoy () =

R 2 2
1 e2ise 4 g—2isw (5.47) 1+ %
5 [ 1 —)d = —, 5.60
2 /R( T 5 Hib.0) () 5 (5.60)
82
Mo (s0)]? = adexp (= ), (5.61)
b3
eisax + e—is:c e—ism + eisac
Ml = [ @+ 220 +0) () =
R

621&% + 67213‘%

1
3 /R(x2 + 27a + a?) (1 + #)dﬂ(b,o) () =

1 €2is:c+€—2is:c
5[ [+ oo + [ @+ ) 5 duo @) -
R R
171 ,  d*Fy(2s) (5ary 171 5 1 25\2 2
o+ 250 ] o [ e el () -
[Qb+a T T hs) ol T T\ %
Jr 2_2}_1“1 _s? _f_ﬁ}
b 4ae v | = 2b—|—a>(1—|—e v) 2¢ | (5.62)

Finally, we get

lrol L2y 882 2
Min (s~ (M () =5 | (55+a° ) (ko™ %)= 5e77 | —a’e™5. (5.63)



By (5.56), (5.57), (5.60), (5.63) and (6.3) we prove (5.37), where

Z |Mnkn Sk

2 i (s ||2
<,»2
2 °k

+(

(g + ) e+ (b + ad) 1Y+ (Mlng, (sl = Mg (s)2) e

i
~2 _ 52 , 2 2
b — Kk — —_k
keZ 1—i—e2 3k <Clk +62k) —{—%[Cgk(l te bak) _ bsg_kke bgk] _ a?),ke 2b3,
2
a%kef%k
Z 22 ) 2 ) 2% :EE}(D,CL'),
keZ 1_62 u <Clk+02k> +% [C3k(1 +e ) — ﬁe‘xk] —agke_T
(5.64)
2
where 77 = li,_i and ¢ = »o t a?,. For 2 = (z;,) with 7, = 1 we get
2,eh

20,4 = ¥ e -

Ite! ENEEE

kEZ <Clk + C2k> +3 [CSk( ) bar © ] azp€ 2
9 _1
Z ag,e 2 (2.6)
_ 1
kezZ 1+§ - (Clk + cop, + Cgk> — (ﬁe‘l + a%ke_z)
2 2
azy, azy, v

= =23(D). 5.65

éclk+czk+03k ZC’k+a1k+a2k+a3k 3(D) (5.65)
So, we have proved (5.40) for z = (z)x with 2 = 1. O

6. How far is a vector from a hyperplane?

6.1. Some estimates
We recall some material from [27], Section 1.4.1, pp. 24-25.

Lemma 6.1 ([24]). For a strictly positive operator A (i.e., (Af, f) > 0 for
f #0) acting in R"™ and a vector b € R"\{0}, we have

min ((Az,2) | (2.5) = 1) = (Ale,b)' (6.1)

z€R™
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.. . - A*lb
The minimum s assumed for x = a0

Lemma 6.1 is a direct generalization of the well known result (see, for
example, [4], Chap. I, §52), stating that for a; > 0, 1 < k < n we have

n n

;IelliRI}l(Zakxi |§xk:1> = (Zi)_l (6.2)

a
k=1 =1k

We will also use the same result in a slightly different form:

51611'1[{1% (iakaji ] imkbk = 1) = (Z ﬁ> _1, (6.3)
k=1 k=1

a
=1k

-1
: . . b2
with the minimum being assumed for z;, = Z—z ( Py i) :

6.2. The distance of a vector from a hyperplane

We follow closely the exposition [30]. We start with a classical result,
see, e.g. [9]. Consider the hyperplane V,, generated by n arbitrary vectors
fi,--., fn in some Hilbert space H.

Lemma 6.2. The square of the distance d(fo,V,) of a vector fo from the
hyperplane V,, is given by the ratio of two Gram determinants:

(fO?flafZ:"'afn)
F(f17f27"'afn) ‘

6.3. Gram determinants and Gram matrices

P (fo, Vi) = - (6.4)

Definition 6.1. Let us recall the definition of the Gram determinant and
the Gram matrix (see [9], Chap IX, §5). Given the vectors xy, zs, ..., Z,, in
some Hilbert space H the Gram matriz v(x1,xs, ..., T,,) is defined by the

formula
m

7('I17 T2, ..., Im) = ((l’k, xn))k,nzl'

The determinant of this matrix is called the Gram determinant for the vectors
X1, 22, ..., T, and is denoted by T'(z1, xe, ..., 2,,). Thus,

[(x1, 29, ... o) = det (a1, 22, ..., 2. (6.5)
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6.4. The generalized characteristic polynomial and its properties

Notations. For a matrix C' € Mat(n,R) and 1 < i; < iy < ...7. < n,
1< <j2<...75 <n, r <n denote by

M@'lig...z} (O) and Az"lig...ir (C)

J1J2--Jr J1J2.--Jr

the corresponding minors and cofactors of the matrix C.

Definition 6.2. (|27, Ch.1.4.3]) For the matrix C' € Mat(m,C) and A =
(A1, .-, Am) € C™ define the generalization of the characteristic polynomial,
po(t) =det (tI — C), t € C as follows:

Po(X\) =det C(N), where C(\) =diag(A1,..., \p) + C. (6.6)

Lemma 6.3. ([27, Ch.1.4.3]) For the generalized characteristic polynomial
Po(N) of CeMat(m,C) and A = (A1, A, ..., A) € C™ we have

Po(A) =detC+ ) > Xy iy o iy AL (1), (6.7)

r=1 1<i1<i2<...<i,<m

Remark 6.1. If weset A, = \jy A, \i,., where @ = (i1, i, ..., i) and AG(C) =
ApEr(C), ME(C) = Mz+7(C), Ag = 1, AJ(C) = det C' we may write

(6.7) as follows:

Pe(\)=detC(A) = > XA%C), (6.8)

PCaC{1,2,....,m}

Po(A) = det C(A) = (ﬁ )\k> 3 Mi(c), (6.9)

k=1 0CaC{1,2,....,m}
Let
T11 12 ... Tin
X =X . T21 Too ... Ton (6 10)
— Amn — . .
Tm1i Tm2 - Tmn
Setting
Tp = (xlknyka >xmk) € Rma Yr = (xrla Ty, eny xrn) € Rna (611>
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(x1,21) (T1,22) ... (71,79)

xox = | ) (@w2) o (@m) 0 (612)
(Tn, 1) (Tp,x2) oo (Tp, )
(yi,01)  (Wiy2) 0 (Y1, Ym)

XX* — (y2,91) (Y2, 92) - (Y2,Ym) = (Y1, Y25 s Ym),  (6.13)
Wmsy1) Yms¥2) o (Yo Ym)

therefore, we obtain

D(xy, x9, ooy @) = det(X*X) = det(X X)) = T'(y1, y2, s YUm)- (6.14)

7. Explicit expressions for C7*(A) and (C~*(\)a,a)

In this section we follow [30]. Fix C' € Mat(n,R), a € R® and A\ € C".
Our aim is to find the explicit formulas for C~'()\) and (C~'()\)a,a), where
O()\) is defined by (66) Set M(leg .. ZT)(O> = M?112.~~lr(0> and Qi 0 —

1192...0
(@i, @iy, ...y a;.). Let also Cj;, ;. be the corresponding submatriz of the
matrix C. The elements of this matrix are on the intersection of iy, o, ..., %,

rows and column of the matrix C. Denote by A(Cj,4,..;,) the matrix of the
cofactors of the first order of the matrix C4,. ;,, i.€.

A(Chyiy..i,) = (A§<Ci1i2...i,«))1§i,j§r (7.1)

Let n = 3, then A(Cla3) = A(C) is the following matrix:

AL AL AL\ (oM M
A(C)=A(Cis) = | Al A3 AS | = | —Mys My —Mj |,
A7 A3 A M3 —Mi3 M3
(7.2)
where we write M7 instead of MJ(C) and A’ instead of A%(C).
Remark 7.1. Let AT be the transposed matrix of A. Then
AT(CiliQ---ir> - det OZ:’LIQZT <C7,_11127,T>’ (7?))
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In what follows we will consider the submatrix C},;, ;. of the matrix C €
Mat(n,R) as an appropriate element of Mat(n,R).

Theorem 7.1. For the matriz C(\) defined by (6.6) a € R™ and A\ € C™* we

have - |
=(Iv)y ¥ §hee (r)
r=11<i1 <ig<--<ip<n =~ 17"2 ir
- L - - A(Ciyiy..ir)
e = A VSV (7.5)
Y <’£Il k) ; 1§i1<;<n.irﬁn Air iy - - Ay
B i Y (A(Clyig...in) Vi ig...iy » Finiy...iv)
(C 1()\) A 122 112 142 '
" <’€1:[1 k) ; 1<i1<§<:...ir<n AigAig - Ay

(7.6)

7.1. The case where C' is the Gram matrix
Fix the matrix X,,, defined by (6.10). Denote by C' the Gram matrix

Y(x1, Tay ..., Ty), 1€,

C =~(1,29, ..., Ty), (7.7)

where (x1, 2, ..., x,) are defined by (6.11) and y(xy, z, ..., z,) by (6.12). In
what follows we consider the operator C'(\) defined by (6.6).

Remark 7.2. In this case we have

Po(\) = det(ZAkEkk+7(a:1,x2,...,xn)) (7.8)
k=1

n

o | YIRS S S (T
k=1

= r=1 1<i1 <i2<...<tr,<m

(Y Y () (),

k=1 r=1 1<i1<ig<...<ip<n;
1551 <2 <. <jr<n

3

where we have used the following formula (see [9], Chap IX, §5 formula (25)):
1192...0p 2
T(2i,, Tig, ooy T4, = > (M- (X))

1<51<g2<...<jr<m

(7.9)
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7.2. Case m =2

Fix two natural numbers n,m € N with m < n, two matrices A,,, and
Xy, vectors g, € R™™1 1 <k <nand a € R" as follows

apy a2 ... Qip a2k

ag1 A22 ... Q2p a3 m—1 n n
Amn: y Gk = eR y = (a1k>k:1 € R".

am1 Am2 ... (mn Amk

(7.10)
Set C' = v(91,92,---,9n). We calculate A,(\,C) and (C~'(\)a,a) for an
arbitrary n. Consider the matrix (6.10)

T11  Ti12 ... Tip
To1 T2 ... Top A1k
X = ,  where 1z, =—, vy,=(r%)1_, € R"
b= Y (@rk) =1
Tmi Tm2 -+ Tmn
(7.11)
Lemma 7.2 ([30], Lemma 2.2). For m = 2 we have
_ r + (1,
(C7'(Na,a) = Alyi,y2) = ) + o1, p2) (7.12)

1+ T(y2)

where Y1 and yo are defined as follows

aik " A2k "
' (\/)\k)kzl ’ <\//\k>k:1 (7.13)
7.3. Casem =3

By (7.8) we get

C(y1) + Ty, y2) + Ty, y3) + Ty, 2, v3)
1+T(y2) +T(ys) + T(y2, y3)

Lemma 7.3. For m = 3 we have

(Cr*(Na,a) = Alyr, y2,y3), (7.14)

where the y, are defined as follows:

A(yl) Y2, 93) -

Arg "
Y = | —— eR", 1<r<3. (7.15)
<\//\k>k:1
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8. Appendix

8.1. Comparison of two Gaussian measures

For two centered Gaussian measures fi0) and i o) on the real line R
defined by (1.5) it is well known that

4y \ M
H(p,0), e ,0) = <m) : (8.1)

By Kakutani’s criterion for product measures on RN [13], and (8.1) we see
that the following lemma holds true.

Lemma 8.1. Two Gaussian measures jip,0) = Onezfi(v,0) Ond fiy 0) = Qnezb®!0)
are equivalent if and only if the product

Ab,b,

Dl (8.2)
nez (bn + bn)2

does not converge to 0. The equivalent condition is

; (\/% — \/%> < 0. (8.3)

Consider two measures: fir0) = Onezfh(1,0) aNd fi(14c,0) = @nezil(14cn,0)
on the space X;, where the measure fi(;q) on the real line R is defined by
(1.5).

Lemma 8.2. Two measures oy and piico) are equivalent if and only if

Zci < 0 (8.4)

nez

PROOF. By Lemma 8.1 and (8.3), the measures ji(10y and fi(i4c0) are equiv-
alent if and only if

1 2 2
Z(\/1+cn_\/m> :nzl+cn<oo'

neZ

. 2 .
By Lemma 2.5, two series Y, 172~ and ), ¢; are equivalent. O
n
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The next lemma is also a consequence of Kakutani’s criterion [13].

Lemma 8.3. Two Gaussian measures .0 and iy o) are equivalent if and

only if the product
4b,, b,
NI (55)

rleZ

does not converge to 0. The equivalent condition s

T” b;'n i
b’_ — b_ < Q. (8.6)
r= l neZ rn rn

Lemma 1.2 follows from Lemmas 8.4 — &.7.

Lemma 8.4. For t € GL(m,R)\{e} we have (u;, )) "Ly if and only if

(o)™ L His) 0T 1 Lay) L M- (8.7)
Let us define the following measures on the spaces R™ and X,,:

(Bn,0) _

gl (Broan) —

= @R 1Mty ,0)> Mo = @t Wb aen)

where a, = (aipn, ..., 4mn) € R™ and B,, = diag(bin, ..., bmn) € Mat(m,R).

Since

(Bn,an) (Bn,0),

M&L,a) = ®nezfl, ) H(b 0) = Onezly,

(M?Z,@)Lt = QOnez (Mg"’a"))h ) (MZZ,O))Lt = Onez (uﬁf’?"’ ))Lt )

and

1o Lia) = Oneztiyy ),

by the Kakutani criterion [13], we derive the following two lemmas:

Lemma 8.5. For the measures p, o, m € N and t € GL(m,R)\{e}, we

obtain
(M@’O))Lt 7220 o H H ( Bn,O) M%Bn,m) —0
nez
Lemma 8.6. For the measures “7(71:0): m € N and t € GL(m,R)\{e}, we get
My L 1y & L H (b, o)) = 0.

nez
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To prove Lemma 1.2 it is sufficient to show, by Lemma 8.4, that

Hop ()= H ( (12 0>> (50 (—1 det (T+X:(£) X (1)) )_1/2
m,n = " " = € n )
(8.8)
to prove the equivalence
m 2
H H Bn Lean) 7/17(5" san) =0« Z Z brn( 7‘8 - 5Ts)asn> = 00,
nez nezZ r=1 s=1
(8.9)
and to apply the following lemma.
Lemma 8.7. For X € Mat(m,R) we have
det (I +X"X) =1+ > (M- (X))
r=1 1<i1 <i2<...<ip <m;1<71 <jo <...<jr<m
(8.10)

The proof of the equivalence (8.9) is based on the following theorem that
one can find, e.g., in [35, Ch.III, §16, Theorem 2].

Theorem 8.8. Two Gaussian measures [ipq and gy n o Hilbert space H
are equivalent if and only of B~Y/?(a —b) € H.

Indeed, we have

”C 1/2 ta—a HH Z ||C 1/2 t_ an”H _222 D (i 5rs)asn)2dkn'

nez neZ r=1 kn

To explain the latter equality let us describe H and C. To find an operator C
we present the measure ug a) in the canonical form pc, defined by its Fourier
transform:

[ ity )dncate >—exp(< ) <0y,y>), y e, (8.11)
H

where C is a positive nuclear operator (called the covariance operator) on the
Hilbert space H, and a € H is the mathematical expectation or mean.

Recall the Kolmogorov zero-one law. Let us consider in the space R>* =
R x R x --- the infinite tensor product p, = ®penitp, of one-dimensional
Gaussian measures p;, on R defined as follows:

dup(x) = \/gexp(—bﬁ)dx. (8.12)
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Consider a Hilbert space ls(a) defined by
={z eR* : |lz]} = Zwiak < oo},
keN

where a = (ag)ren is an infinite sequence of positive numbers.

Theorem 8.9 (Kolmogorov’s zero-one law, [34]). We have

to(l2(a)) = { 0, #f ZkEN B = 00;

1, otherwzse.

8.2. Properties of two vectors f,g & lo

In what follows we will use systematically the following notation. For k
vectors fi, fa,..., fr € R" with k£ < n we set

det(f +~(f1, f2i-- - fa) 1.

A(f1, fay ooy fu) = det(T -1 for o 1)) (8.13)
For £ = 2 and k = 3 we get respectively:
det(I +(f1, f2)) I HT(f1) +T(f2) + T(f1, fo)
A(fr, fo) = ) 1= T . (8.14)
(f1>f2>f3> det(] +7(f17f27f3)) 1= (815)

det(I +(f2, f3))
L(f1) +T(f1, f2) + T(fr, f3) + T(f1, f2, f3)
L+ T(f2) + T(f3) + T(f2, f3) '

Lemma 8.10 ([28], and [27], Ch.10). Let f = (fi)ken and g = (gk)ren be
two real vectors such that || f||* = oo, where ||f||* = >, f2. Denote by fu,
9y € R™ their projections to the subspace R", i.e., fiy = (fu)ie1, 9m) =
(k). Then

A(f,9) = lim A(fe), gim)) = 00, (8.16)
where A fn), 9m)) is defined by (8.14), in the following cases:

(a) lgll* < oo,

lgen) !

() IfI* =gl = IIf + sgll* = 00,  forall s €R\{0}.

(b) gl = o0, and  limy,

104



PROOF. Obviously lim, o A(fm), 9m)) = oo if conditions (a) or (b) hold.
The implication (¢) = (8.16) is based on the following lemma. O

Lemma 8.11. Let f = (fi)ken and g = (gi)ren be two real vectors such that
/117 = Nlgll> = [|C1f + Cag|* = 00 for all (C1,Cy) € R\ {0}, (8.17)

F n)s n . F n)s n
then  lim Ll 90m) =00 and lim Ll 9m) = 0. (8.18)

Lemma 8.12. Let fi, fo &€ lo and A(f1, f2) < oo, then for some (C1,Cy) €
R2\ {0} we have Cyfi + Cofy € lo.

PROOF. Let assume the opposite, i.e., C1fi + Cofs & Iy for all (C1,Cs) €
R?\ {0}. Then by Lemma 8.11

(f1) + T(f1, f2) - Ufi, fo) T fe)
1+ T'(f2) L+ T(f2) ['(f2)

Lemma 8.13. Let fi, fo, f3 & lo and A(f1, fa, f3) < o0, then for some
(Cl, Cg, Cg) & \ {0} we have lel + Cgfz + Cgfg € ly.

O

NI

PROOF. Let assume the opposite, i.e., that C1f; + Cyfs + C3f3 & l5 for all
(C1,Cy,C3) € R\ {0}. Then by Lemmas 8.15-8.11 and (8.15) we get

U'(f1) + D(f1, f2) + DAL fs) + T(f1 o, f5)
L+T(fe) +T(f3) + T(f2, f3)
U(f1, f2, f3) U forfs)
L+ T (f2) +T(f3) + T(f2 f3) L(f2, f3)
8.3. Properties of three vectors f,g,h & Iy

Lemma 8.14. Let f = (fi)ken, 9 = (gk)ren and h = (hy)gen be three real
vectors such that || f||* = oo where || f||* = >°, fZ. Denote by fn), Gy, hn) €
R™ their projections to the subspace R™, i.e., fo) = (fi)iz1, 9m) = (9k)5=1,
h(n) = (hk>Z:1' Then

A(f,g,h) = 7}13)10 A(fn), 9n)> Pny) = 00, (8.19)

where A(f, g, h) is defined by (8.15), in the following cases:

A(f17f27f3) =

(@) |lgl> <oo and ||| < oo,
(b) |lgll> <oo and |h|]> =00, orl|lg]* =00 and || < oo,
(c) ||Cif 4+ Cog + C3h||2 =00, forall (C1,C,C3) € R3 \ {0}.
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PROOF. (a) In this case ||gum[|* < C, ||hm|I? < C and (g, hey) < C and
therefore,

' Ml
> —_—_—
Jim A(fw)s g, hw) 2 lim 1770 5 = 00

(b) Let ||g||* < oo, ||h||*> = co. In this case we have
L(geys hmy) < g 1l |I? sin(an) < CIT (A ),
where «, is the angle betwen two vectors g,y and h(y,). Therefore,
L+ T(gm)) + L(hay) +T(gm), b)) < (1 +C)(1+T(hay),

I'(f) + T(f)s hiw)
(14+ )1 +T(hwy)
So, this case is reduced to the case m = 2, see Lemma 8.11.

The implication (¢) = (8.19) is based on the following lemma (the proof
of which will appear in [29]. Compare with Lemma 8.10. ]

A(fin)s Gn)s hmy) = ~ A(fnys hiny)-

Lemma 8.15 (see [29]). Let fo, f1, fo be three infinite real vectors
fr = (fri)ren, 0 < v <2 such that for all (Co, Cy,Cy) € R\ {0} holds

2
Z Chfr €la, e, Z |Cofor + Ci fir + Cofor]* = oo (8.20)
r=0

keN

Denote by f.(n) = (frx)i_; € R"™ the projections of the vectors f, on the
subspace R™. Then

P(f07f17f2) — 1 F(f0<n)7f1(n>7f2(n)> = 0. (821)

T(fi,fa)  nom T(fi(n), fo(n))

The idea of the proof (for details see [29]). We assume there exists a
real number C' such that

L(fo(n), f1(n), f2(n))
L'(fi(n), fa(n)) <C, (8.22)

for every integer n and will show that this leads to a contradiction.
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For t € R? and fy, f1, f» € H we define the function

2
Fu(t) = > tefe— foll* = Ztkt (frr fr) — Z k(fi fo) + (fo, fo)
k=1

k,or=1 k=1

= (At,t)—Z(t,b) (anfO)

where b = (fx, fo)i_; € R? and A is the Gram matrix

A=v(fi, f2) = (e £))y 1

Suppose that Aty = b, then we have

(48, = 200.8) + (o o) = (Alt = o), (¢ = )+ -5 22
and therefore
Falt) = (A(t = t0). (¢ = 1) + "0,
Falto) =, min. . ||Ztkfk T
Consider the matrix
fuu fiz o fin
Xan=| fa fo2o - fou (8.24)
for foo oo fon
and its minors
flk flr fls f f
MPZE =\ fax for fos |, MPZ= flk fh" .
jbk jbr jbs 2k 2

Then by [9] we have

C(fi(n), fo(m)) = Y IMEP,

1<r<s<n

C(fo(n), fin), fa(n)) = D IME2

1<k<r<s<n
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Therefore, the inequality (8.22) will have the following form
F(fO(n)a fl(n)7 f2(n)) _ Zl§k<7“<s<n ’ 13353’2

DA L) S e =C 82
for all n € N. Set now
(fl(m,fz(”) fo(n))7
A% Y(f1(n), f2(n)),  Agut” = by, (8.26)
bon = (fu(n), fo(n))is, € R, 0" = (t5))2,. (8.27)

More explicitly

(n)) |, (8.28)

A2n:<(f1(n)vfl(n)) fl n af2 (829)

(f2(n), fi(n))  (fa(n), f2(n)

If we replace the vectors fo, fi1, fo with fo(n), fi(n), f2 n), the equality (8.23)
then becomes

)||2 (fO(n)vfl(n)>f2(n))
I'(fi(n), f2(n))

For t € R? and fy(n), fi(n), f2(n) € R" and 0 < s < 2, define the functions

B2 =1 > tfiln) = L) (8.31)

0<r<2,r#s

APy = min ||Ztkfk

tl tQ ER2

. (8.30)

The minimum of the corresponding expressions F2 ( ) for 0 < s < 2is
attained respectively at té n) t(") ( ") The proof of the fact that one of the
sequences t(() ), t(n), t( ") s bounded, is based on the positive definiteness of
the matrices v(f1(n), fa(n), fo(n)), for the details see [29]. Let for example,
the sequence t(()") € R? is bounded. Therefore, there exists a subsequence

(t™ ) ken that converges to some t € R2. This contradics (8.22). Indeed

lim FQ)(t) =00, F @™ < C, lim £ = ¢, (8.32)

n—o0
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