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Critical points of modular forms

Jan-Willem van Ittersum*, Berend Ringeling!

June 20, 2023

We count the number of critical points of a modular form with real Fourier coef-
ficients in a y-translate of the standard fundamental domain F (with v € SLa(Z)).
Whereas by the valence formula the (weighted) number of zeros of this modular
form in v.F is a constant only depending on its weight, we give a closed formula for
this number of critical points in terms of those zeros of the modular form lying on
the boundary of F, the value of 7~ !(c0) and the weight. More generally, we indicate
what can be said about the number of zeros of a quasimodular form.

1. Introduction

A valence formula for quasimodular forms For a non-zero modular form g of weight k, the
(weighted) number of zeros in a fundamental domain is given by

vr(g)  k
2 e T h

TEYF

for all v € SLy(Z), where F denotes the standard fundamental domain for the action of SLa(Z)
on the extended complex upper half plane, v-(g) denotes the order of vanishing of g at 7 (see
Section 2 for the definitions) and e, = 2 for a SLy(Z)-translate of i, e; = 3 for a SLy(Z)-translate
of p= —% + @i and e, = 1 else, including at the cusp at infinity. Much less is known about
the (weighted) number of zeros of derivatives of modular forms, or, more generally, of zeros of
quasimodular forms. That is, in this paper we study the value

Ny(f) = Z vr(f) (’y = (‘C‘ Z) € SLy(Z) such that A = —4)

e c
renF T

for derivatives of modular forms or, more generally, for quasimodular forms f (the quan-
tity Na(f) is well-defined if f is quasimodular).
As an example, consider the critical points of the modular discriminant A. Note A’ = AFEy
(with f/ = ;54 f), where
Ey(r) = 1—-24 Z mq™" (7 € b, the complex upper half plane)

m,r>1
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is the quasimodular Eisenstein series of weight 2 transforming as

12 ¢ 12 1
E =F — =FE —_—
(E2})(7) 2(7) + 2micer +d 2(7) + 2riT — A(y)
for all v = (¢%) € SLy(Z) and with A(y) = —%l. For E3 the number of zeros in a fundamen-

tal domain depends on the choice of this domain. There are infinitely many non-equivalent
zeros of Ea; in fact, two zeros are only equivalent if one is a Z-translate of the other [EBS10].
Nevertheless, one can still count the number of zeros of Ey in v.F:

o e od
MiEa) = {1 A e b,

as follows from [IJT14, WY14]. Recently, Gun and Oesterlé counted the number of critical
points of the Eisenstein series Ej for k > 2 [GO22]

| B2 ] 4+ 161206) Al € (1, 00]
30k=2(6) Al € [0,1).

(1)

NA(E,) = { (2)

(Note Ej has a double zero at p = —% + % 3ifor K =2 mod 6. Hence, the factor dr= )
corresponds to the trivial zero of Ej, at a vy-translate of p = —% + %\/g)

Critical points of modular forms Modular forms admit infinitely many non-equivalent critical
points [SS12]. By counting the number of critical points within a fundamental domain ~F
(v € SLy(Z)), we provide a quantitative version of this statement. Notice that the only zero
of A in the fundamental domain F is at the cusp, whereas the Eisenstein series have all their
zeros in F on the unit circle [RS70]. Our main theorem expresses the number of critical points
of a modular form in terms of the number of zeros of this modular form on the boundary of F.

Write C(g) for the number of distinct zeros z of g satisfying |z| = 1 and —3 < Re(2) < 0,
where a zero z is counted with weight e;! (i.e., a zero at p = —% + % 3ior at iis counted with
weight % or % respectively). Write L(g) for the number of distinct zeros z of g at the cusp or
satisfying Re(z) = —3 and |z| > 1.

Theorem 1.1. Let g be a modular form of weight k with real Fourier coefficients. Then,

C(g) + %5g(p):0 |)“ S (1700}

M(d) = 5+ {-C A€ (5.1)
—C(9) + L(g) Al € [0, 3).
In particular, for any sequence of cuspidal Hecke eigenforms g of weight k& we have
N /
A(9k) —1 as k — oo,
Nx(gk)

as by the holomorphic quantum unique ergodicity theorem the zeros of g; are equidistributed
in F as k — oo [HS10]. This leads to the question whether the zeros of derivatives of Hecke
eigenforms are also equidistributed.

Moreover, if g is a modular form with all its zeros on the interior of F, we find

Na(g') = 1% = Ni(9)-
(In case all the zeros of g lie on the interior of F, then £ = 0 mod 12.) Observe that as A has a
unique zero at the cusp, we have C(A) = 0 and L(A) = 1, by which we recover (1). Moreover,
for modular Eisenstein series we have C'(Ey) = % - %(LEQ 6 and L(Ey) = 0, by which we
recover (2).



Further results We aim to generalize these formulae to all quasimodular forms, i.e., polyno-
mials in Fy with modular coefficients. First of all, we show that for any quasimodular form f
the number Ny(f) only takes finitely many different values if we vary A.

Theorem 1.2. Given a quasimodular form f, there exist finitely many disjoint intervals I such
that R = Ure #I, and for each I a constant Ni(f) € %Z such that

Nx(f) =Ni(f)  ifrel
For example, in Example 5.5 we will see that
1 |\€ (%, Ly U (v, 0]
Ni(E3) = o (3)
0 A €©)udy)

for some v € (5,6), which we compare to the results in [CL19].

Secondly, we study in more detail the case that f = fo + fiFo for some modular forms fy
and f; of weight k and k& — 2 respectively and with real Fourier coefficients. For example, the
first derivative of a modular form can be written in such a way. From now on, assume that fy
and f; admit no common zeros on the extended upper half plane h*. We give closed formulas
for Nx(f) depending on the behaviour of f; at p, its zeros on the boundary of F, and the
value of f at ico, p and these zeros of f;. That is, let z1,..., 2z, be the zeros of f; such that
Rez; = —% and Imz; > %\/g, counted with multiplicity and ordered by imaginary part, and
let zg = p. Also, let 61, ...
>0, >0, >

, 0, be the angles of those zeros of f; on the unit circle satisfying
. > 6y > 5 (counted with multiplicity). We introduce the following notation:

( ) 4@10 f( 10)
° r( f1) denotes the sign of the first non-zero Taylor coefficient in the natural Taylor expan-
sion of fi around p (see (11)); v,(f1) denotes the order of vanishing of f; at p.

e s(f) =sgnap(f) if f does not vanish at infinity, and s(f) = —sgnag(f1) else. Here, ag

denotes the constant term in the Fourier expansion, i.e., ap(f) = lim,_, i f(2).

o w(zg) =2 if 29 equals p,ior —% + ioco, and w(z) = 1 for all other z € F.

Theorem 1.3. Let f = fo+ fiE2 be a quasimodular form of weight k for which fo and fi are
modular forms without common zeros on h* and with real Fourier coefficients. Then, there exist
constants N(1,00](f), N1 1)(f): No 1)(f) € Z such that

’ 2 2

Ni1,o0)(f) Al € (1,00]
Ni(f) =3 Na () A€ (3,1)
N[o,é)(f) Al €[0,3)

Moreover, these

constants are uniquely determined by

Nasa(f) = 3 || = (1o <f1>2 s s F(0) ()
Noo) = || - Mool (5)
Nio,1y(f) LAY — 1 L (—pym

0,3) = 6 (1,oo] r(f1) Z; wl sgnf (2j) — 2( 1) r(f1) s(f). (6)



Remark 1.
(i) Observe that the conditions of the theorem guarantee that the sign functions is applied to

a non-zero real number, that is, f(6;), f(z;) € R*.

(ii) In case fy and f; do admit common zeros, there always exists a modular form g such
that fo/g and f1/g are (holomorphic) modular forms without common zeros.

(iii) For quasimodular forms of depth > 1 (i.e., if f is a polynomial in Es of degree > 1 with
modular coefficients), the first part of the statement is wrong. This has already been
illustrated with the example in (3); for more details, see Example 5.5. A

An extreme example To illustrate some of the characteristic properties of zeros of quasimod-
ular forms, consider the unique quasimodular form f = fy 4+ f1F> in the 7-dimensional vector
space M3§61 with g-expansion f = 14 O(q") (as the constant coefficient is 1, the quasimodular
form f cannot be the derivative of a modular form)!. Explicitly, f equals

1 + 212963830173619200¢" + 45122255555990230800¢° + 39202641996632255232004° + O(g'?).

Figure 1: Zeros of the unique quasimodular form of weight 36, depth 1 and of the form 1+ O(q").
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(a) The approximate location of 1000 zeros (b) The curves (7) associated to f.
of f and fundamental domains ~F for
A7) =0,£3,+1, 0.

The zeros of f, depicted in Fig. 1a, satisfy

2

Naeg =1, N,

Moreover, in Fig. 1b, we depicted the rational curves

{vz |7 €8SLa(Z), f(z) =0}NF = {z € F[h(z) € Q}, (7)
where the function h : h — C is given by
. 12 fl(T)
h(T) = T+% f(T) .

'Following [JP14] one could call this a gap quasimodular form. The theta series of an extremal lattice is a gap
modular form. Do gap quasimodular forms have a similar interpretation?



In fact, h is an equivariant function, i.e.,

1 1
hr+1) = h(r) +1, h(——):——, h=7) = —h(7).
(r+1) = h(r) + D=y hem=-h
For other quasimodular forms of depth 1 the corresponding function h is also equivariant, and
these transformation properties are the main ingredients for Theorem 1.3.

Extremal quasimodular forms Write M ,fp is the space of holomorphic quasimodular forms of

weight k£ and depth < p. Recall that ]\7;1 = My = CFE4 and E4 has a unique zero at p, so that
Ny (Ey) = % Excluding this modular form, we find the following upper bound.

Corollary 1.4. For all f € Mkél such that E% & MSI, we have

Ny(f) < dim MSE' + {0 e o)
sy 9 ).

Observe that in any vector subspace of C[g] of dimension m, there exist an element f with
Vioo(f) > m — 1. Hence, there exist a quasimodular form f such that (i) the inequality (1.4) is
sharp for A = oo and (ii) f admits no zeros in F outside infinity.

Corollary 1.5. There exists a quasimodular form f = fo+ fiFEs € ]\7,;1 such that
Noo(f) = vieo(f) = dim MS' —1
and all zeros of f1 in F are located on the unit circle.

The existence of a quasimodular form for which vjs (f) = dim M, kgl — 1 was proven by Kaneko
and Koiko, who called such a quasimodular form extremal [KKO06]. It is natural to generalize
their question whether vioo (f) < dim M, =P 1 forall fe M, =P (which has been confirmed for
p < 4 in [Pel20]) to the following one.

Question 1. Let k,p > 0. Do all f € ngp with Ei4 o4 ngp satisfy

-1 M€ (3,0q]

?
0 xel0,3)

NA(f) < dim MP + {

Contents We start by recalling some basic properties of quasimodular forms in Section 2. In
Section 4 we discuss equivariant functions i associated to quasimodular forms of depth 1 and of
higher depth, which results in the proof of Theorem 1.2 in Section 5. The proof of Theorem 1.3
is obtained in Section 3 (for A = 0o0) and in Section 5 (for A < 0o). We indicate how Theorem 1.1
and Corollary 1.4 then follow as corollaries of Theorem 1.2. Moreover, in all sections we give
many additional examples.
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2. Set-up: zeros of quasimodular forms

Set-up Fix a holomorphic quasimodular form f for SLs(Z), of weight k and depth p, and with
real Fourier coefficients, i.e., let f € R[FEs, E4, Eg] of homogenous weight k& and depth p. We
write

p .
f=>Y fiE
j=0

where f; is a modular form of weight £ — 25 and f, # 0.
Remark 2. For all v € SLy(Z) we have
at +b

n)(r) = (e (E00) = S CUO (L ey @
=0

where 0 is the derivation on quasimodular forms uniquely determined by 9(FE3) = 12 and the
fact that it annihilates modular forms (see [Zag08, Section 5.3]), i.e.,

T ey (D)aET s, A

In fact, one cannot understand the theory of quasimodular forms without recognizing the sls-

action on quasimodular forms by the derivation D = %% = qa%, the weight derivation W,

which multiplies a quasimodular form with its weight, and the derivation 0, satisfying
[W. D] = 2D, (W, 0] = —20, [0,D] =W.

Remark 3. Restricting to quasimodular forms with real Fourier coefficients isn’t that restrictive,
for the following two reasons:

(i) All Hecke eigenforms for SLo(Z) have real Fourier coefficients;

(ii) Suppose g is a quasimodular with complex, rather than real, Fourier coefficients. Then,

g(7) = g(—7) is a quasimodular form which vanishes at 7 if g vanishes at —7. Hence,
Nx(g) = N_x(g), Nx(g99) = Na(g) + N_x(g9) and gg is a quasimodular form with real
Fourier coefficients. A

The fundamental domain Let h = {z € C | Im(z) > 0} be the complex upper half plane,
b* = h UPH(Q) be the extended upper half plane and

F = {zef)]|z]>1,—%§Re(2)<%}U{z€h||z|:1,—%§Re(z)§0}U{ioo}

the standard (strict) fundamental domain for the action of SLa(Z) on h*, where ico is the point
[1,0] € PY(Q) at infinity. Recall that the SLo(Z)-translates of p = —3 + £1/31 and of i have a
non-trivial stabilizer, i.e., e, = 3,¢; = 2 and e, = 1 if z € h*\ (SL2(Z)p U SL2(Z)i).

Moreover, we write C, £ and R for the positively oriented circular part, left vertical half-line
and right vertical half-line of the boundary 0F of F, i.e., 0F = LUCUR U {ico} with

C={zeh|ls=1,-3 <Re(z) <}, )
L ={z€h]|z| >1Re(z) = —%}, (10)
R = {z€b||z] > 1,Re(z) = 3}.



Order of vanishing at the cusps Note that for a quasimodular form f around 7y = —% € P1(Q)
we have

a7+b)’

o0
d)* : (2
(et +d) Zan fy1,70) exp| 27win 1 d

n=1

where a,b € Z are such that (2%) € SLy(Z), and with

nlforim) = 30 2 (ZAT DY ¢ gy

2mi

where a, ; is the nth Fourier coefficient of o/ f. We define the order of vanishing as follows.

Definition 2.1. For a quasimodular form f and 79 € b, let v, (f) be the order of vanishing of
f at 7. If 79 € PY(Q), we let v, (f) be the minimal value of n for which a,(f,7,7) € C[7] is
not the zero polynomial.

Remark 4. Equivalently, for a cusp 79 which is not the cusp at infinity we have
Vro (f) = min(vico (fo), - -+ s Vico (fp))- A

The counting function

Definition 2.2. Given A € P}(Q), denote by Ny(f) the weighted number of zeros of f in 7.F,
where v = (24) € SLy(Z) and —% = A, i.e.,

NA(f) = Z I/Te(f)7

TEYVF i
where v;(f) is defined by Definition 2.1.

Observe that as f(7+1) = f(7), the weighted number of zeros in (} 1) F and F agree. Hence,
after fixing a rational number A = —% with ¢, d coprime integers, for all possible choices a,b € Z
such that ad — bc = 1 the weighted number of zeros in (‘CL b) F agree.

Without loss of generality, we often restrict to irreducible quasimodular forms:

Definition 2.3. A quasimodular form is irreducible if it cannot be written as the product of
two quasimodular form of strictly lower weights.

Remark 5. If f is a quasimodular form f = fy + f1E2 of depth 1, then f is irreducible if and
only if fy and f; have no common zeros. A

Remark 6. Suppose that f is quasimodular with algebraic Fourier coefficients. As noted by
Gun and Oesterlé, if a € b is a zero of f, there exists an irreducible factor g of f, unique up to
multiplication by a scalar, such that g has a single zero in a [GO22]. Hence, if f is irreducible,
it has only single zeros. Moreover, if f has a zero at i or p (or one of their SLa(Z)-translates),
then it has Fg or Ej respectively as one of its factors. In particular, if f is an irreducible
quasimodular form which is not a modular form, then

M(f) =D velf) € Zxo.

TeYF



Local behaviour of modular forms around p Recall p = —5 +3 1V/3i. Let g be a modular form
of weight k with real Fourier coefficients. Note that the mapplng w— 522 PY maps the unit disc
to h. Then, the natural Taylor expansion of g on b (see [Zag08, ProposMon 17]) around 7 = p

is given by

(1—w)*g(E=L) = > b (o] < 1),
n=v,(g)
for some v,(g) > 0 and coefficients by,(g) € C with b, (5) # 0. (This Taylor expansion is natural
as the image of w — Z=£= for |w| < 1 equals the full domain h on which g is holomorphic.)
Alternatively, g admits an ordinary Taylor expansion g(z) = ZZO:VP( g) nlg) 271)" (2 — p)™ (with

|z| sufficiently small, and for the same value of v,(g)) and for some coefficients ¢, (g) € C with

Cu,(g) (g9) #0. Let
7(g) = sgnby,g)(9)- (11)

In the sequel we need the following relation between r(g) and the limiting behaviour of g on
the boundary of F.

Lemma 2.4. Let g be a modular form of weight k with real Fourier coefficients. Then, for all
t € Rsg and 0 < 0 < 7 the values of g(p + it) and e¥19/%g(e®) are real. Moreover,

limsgn(g(p +it) = r(g) = (1)@ sgn(c,,(,) = (—1)" i, sen(e eki0/2g (%)),

where r(g) is defined by (11) and ¢, are the Taylor coefficients of g around p as above.

Proof. The fact that g(p + it) is real for real ¢, follows directly from the assumption that the
Fourier coefficients of g are real. Moreover, this assumption implies that

6k19/2g(619) _ —1k0/2‘g(eﬁ) _ 6—1k9/2€1k99(619)

Hence, Im e"19/2g(el?) = 0.
_ ot
Now, note g(p + it) = g(4=22) for w = 735 Hence,

. . . p— pw
lgigsgn(g(pﬂt)) = ggolsgng( T ) = sgn(b,,(g))-

Also, g(p +it) = fo:yp(g)(—%rt)", hence, sgn(b,, ) = (—1)v(9) sgn(cy,(g))- Finally, for the
last equality, we observe that by the valence formula, we know that ¢ has order v,(g) = 3¢+ 0
at p for some non-negative integer ¢. Here, 6 € {0,1,2} is the reduced value of & mod 3. In

particular, in all cases we find that
ekif?/?g(ei@) ~ (_Qﬂ)vp(g)(g _ %ﬂ)l’p(g)cyp(g)
as 6 1 27/3. O

3. Zeros in the standard fundamental domain (A = o)

Let f be a quasimodular form. In order to compute No(f), we compute the contour integral
of the logarithmic derivative of f over the boundary of F (suitably adapted with small circular
arcs, if f has zeros on this boundary). For simplicity of exposition, assume f has no zeros on
the circular part of the boundary C. Then, by a standard argument

f'(2) 1 (% d

1

(f(e)) ae. (12)



If g is quasimodular of weight k, we define g: [, ?’T] — C by

/g\(e) _ 6ki9/2g(ei6’)'
We express Noo(f) in terms of f, as follows

_ _i 3 d —kif/2 7 e fle
Nul) = g5 [ ggloste™ 2o d il o

Since Noo(f) is real-valued, we find

v = b L [F10.).

We have the following interpretation for the latter integral. Write f(&) = 7(0)e*™ ) where r
and « are real-valued continuous functions, i.e., r is the radius of f and « is called the continuous
argument of f. Recall that by assumption f has no zeros on C, so () > 0 for all . Then,

k 2m 7r
Nt = - (o) (2)) |
() = 15— (o(5) (3 (13)
In order to compute the variation of the argument a(%’r) — a(F), we first determine all 6 €

[7/3,27/3] for which «(f) € %Z, or equivalently, for which Im (f) = 0. By making use of the
assumption that our quasimodular form f has real Fourier coefficients, we obtain:

Lemma 3.1. We have

~ i 1 _
) =3 2 @ri)mm!° /

m>1

Proof. First, assume ¢ is a modular form (rather than a quasimodular form) of homogeneous
weight k. Then, using that g has real Fourier coefficients, have

— 1 —ik0/2 i i
@) =e k9/29<67> = omIkO/2,ik0 5 (10

Q)

Hence, Im g = 0. Similarly, for E, one has

- . -1 . . ~ 12
Ey(0) = e—leEQ(fe) = e (™ Ba(e”) + 55e") = Ba(0) + o~ (14)
el i i
Hence,
.7 .
ImEj = = (=) 2
mE Ty mZ:l <m> om/) 2

Applying this to the expansion f = Zj>0 fi E% and using the expansion as in Remark 2, we
find -

Z 2 < )(21731> BT = %Z (2m)1mm!°/m7' -

m>1]>m m=1



Depth 1 We now restrict to irreducible quasimodular forms of depth 1, i.e., f = fo + Eafi.
Then, by the previous lemma we have Im (f ) 3 f1. We write

2 T
— >0 60 —
3 1>...>0, > 3
for the zeros of 0 — f1(e'?) on (%, %], counted with multiplicity. Recall that v,(f) denotes the
order of vanishing of f; at p. Then, Equation (4) in Theorem 1.3 will follow from the following
lemma and proposition.

Lemma 3.2. The mapping v : 0 — 0,_;_, (r,)+1 defines an involution on {0;10; # %’r} such
that

(—1)7 sgn(f(6;)) = (=1)" U sgn(F (0,0, (11)41))-

Proof. Note that if §; is the angle of an element on the unit disk for which f1 has a zero, then
m — 0; also is such an angle. Leaving out the v,(f1) angles 6; = ... = 0u,(n) = 7> we see that
¢ is a well-defined involution.

As f1(€l%) = 0, we obtain

ry ik(m— 1 Lik(r—0, i6; i6; Y
Flbumjmp(gn) = e300 (=) = MO0 MO () = (1) i)

We finish the proof by showing that g =n —v,(f1) +1 mod 2. Namely, n — v,(f1) is odd
precisely if f; admits a zero of odd order at i, or, equivalently, if k —2 = 2,6 or 10 mod 12.
We can exclude the case where k = 4(6). Namely, then both fy and f; are divisible by Ej,
contradicting the irreducibility of f. Hence, n — v,(f1) is odd if £ = 0,8 mod 12 and even if
k=2,6 mod 12 as desired. O

Proposition 3.3. For an irreducible quasimodular form f of weight k and depth 1, we have

—_ Vp(fl)r ~
Nah) = 55| - EE I Sy s i)

Proof. The idea of the proof is to determine the value (%) — (%) in (13). Denote by A(6)

the argument of f, i.e., the unique value in (=3, 3] such that () = A(f) mod 1.

As « is real analytic, this value can uniquely be determined by knowing A(%), A(Z") and all
the values of 6 for Which A(0) € {0, 3}. For example, if 0 < A(%) < &, and A(Gl) g, whereas
A(62) = 0, then for 2F > 0 > 6, increases by 1 — A(2F). Observe that A(6) € {0, 1} precisely
if Im f(e ‘9) =0, or equwalently, fi(e?)y =o.

Now, in order to compute the value of a(2F) — a(%), first assume that all zeros of 6 — fi(e'?)
on (%,%ﬂ] are simple and satisfy 0 € {5, 5}. Whether f1(e) = 0 for such @ € {5, 5} (or,
equivalently, A(2F) € {0, 3}) is determined by the value of k modulo 12, see below. Note that
as f is irreducible, we have k # 4 (6).

k mod 12 A(%)e€{0,3} A(3)<{0,3}
0 v v
2 b ¢ X
6 v X
8 X v

Temporarily, denote by ¢; the elements of {27/3,7/2} for which 6 f1(e?) admits a zero,

and such that @1 > ¢2. As f is irreducible, we have f(p;) # 0, so that sgn(f(p;)) is well-

defined. The sign being positive (or negative) corresponds to a(p;) =0 mod 1 (or 3 mod 1

10



respectively). By Lemma 2.4 we have (—1)"()r(f)) = limgpor /3 sgn(ef9/2 f1 (€19)) with v,(f1)

the order of vanishing of fi at p. Hence, a case-by-case analysis using the symmetry Im f(@) =
(—1)%/>t1m f(r — 6) shows

A() -a(3) - EE S i) - |

J

0(6)
2

k
k=2(6).

ol O

Now, in the general case, note that the contribution to the variation of the argument on each
interval [0, 60;41] is

—1)¥e(f1) ~ ~
COIA) (1)t sgn(F(6,)) + (-9 sen(F032))

Adding these contributions with special care at the boundary cases as above leads to the result

o(2) —a(F) - C) S s fiay) = {

J

0(6)

k
k=2(6).

o= O

By Equation (13) the result follows. O

Remark 7. For a mixed modular form F = Z?:o fj with f; of weight k — 2j, we analogously
find

Z f;(0) sin(56).

7j>1

From this we similarly deduce that for a mixed modular form F' = fy + f; (with f; of weight
k — 2j) we have

_ Vp(fl)r . ~
Mol = 3 |5 - ELE Sy s P,

%

where, accordingly, the 6; are the zeros of 8 — f;(el). A

Examples in depth 1
Example 3.4. Consider f = F,. In this case, fy = 0 and f; = 1. As f1 has no zeros on the

arc, application of Proposition 3.3 gives

Noo(Es) = % m 0.

Hence, E5 has no zeros in the standard fundamental domain—a result which was discovered
and proven in [EBS10, Proposition 4.2] by different means.

Example 3.5. We now return to the example in the introduction, i.e., let f be the unique
quasimodular form f = fy + fiFE> in the 7-dimensional vector space M?%l with g-expansion
f=1+0(¢"). In order to apply Theorem 1.3, we compute fo and f; explicitly:

fo =

43976643 A3 (3 28903981960 .o n 9706007861928 n 396402626858112
108264772 14658381 7 14658881 7 14658881

11



and

o= 64288129 A2 (2 2225338584 L 373036607496

b7 os26arr2 O T T Tt YT ammir )

where j is the modular j-invariant, given by j = 1728%. We find that f; has zeros at i
4 6

and p, coming from the factors F4FEg. Moreover, the roots of the degree 2 polynomial in the j-
invariant are given by j(71) ~ 198.3495. .. and j(72) ~ 1082.4083.... Recall j(£) = (—o0,0] and
j(C) =10,1728], where £ and C are the left vertical and circular boundary of the fundamental
domain as in (9) and (10). Therefore, the zeros of f; in F are all located on C. Similarly, the zeros
of fo are 73,74, 75, where j(73) &~ —36.7451 ..., j(74) ~ 482.1402... and j(15) ~ 1526.3776. . .,
indicating that 74 and 75 lie on C (and 73 lies on £).

As A(p) < 0 and j(p) = 0, we have that

flp) = f(%ﬂ) = fo(%”) = folp) < 0.

From the location of the zeros of fy on C, we conclude (writing 7; = el for 5 <0, < 2% if 7
is located on C)

F61) = fol61) < 0,
F(62) = fo(62) > 0,

(5) = fo(3) <O

Further, fl(—% +io0) > 0 and f; does not change sign on £, as it has no zeros there. Therefore,
r(f1) =1 and (=1)*(/1) = —1. We now apply Proposition 3.3 (in the form of Equation (4)):

1|36 -1 1
Naoo(f) = 2{6J + (7-—1+1'—1+—1.1+§._1) = 1.

We come back to this example in Example 5.4.
Example 3.6. For k = 6n (n = 1,2,3,...), we consider the Kaneko—Zagier differential equation

k(k—1)

By 1) = 0.

k
7(r) = S0 () +
In [KKO06, Theorem 2.1], it was shown that a solution to this equation is given by an extremal
quasimodular form ¢ of depth 1 and weight &, i.e.

9(r) = g™+ 0(¢™),

where ¢ # 0 and m is the dimension of the space of weight k forms of depth 1 (i.e., m =n+1).
Clearly, ¢ has a zero at ico of order m — 1 = £. From Proposition 3.3 we learn that ¢ has no

6
other zeros in F (see also Corollary 1.5).

Examples in higher depth In depth 1 we have seen that the number of zeros of a quasimodular
forms f = fo + f1FE2 only depends on the sign of fy in the zeros of f; on the arc C. The next
example shows that this is not anymore the case for higher depth.

Example 3.7. Consider the following quasimodular form of weight 4 and depth 1 for a real
parameter ¢
fi=F, —tF3.

12



We are interested in the value of Noo(f:). By Lemma 3.1 we have

Im (f;) = —t% (Ez + %)

It can be seen that Im (ﬁ) only vanishes once, at p = 5. Hence,
- ~ 9
ft(60) = E4(6p) +t72-
T

Now, first assume ¢ < 0. As Ey < 0 on (%, ZF), we have f;(6y) < 0. Also fi(w/3) = re®™i/3

373
for some positive 7 and f;(27/3) = re*™/3. This means that f;(0) with 6 € (%, %) moves from

re2mi/3 47i/3

to re , crossing the (negative) real axis exactly once. Hence, the variation of the

argument (%F) — (%) = Z. Therefore,

4 1 27
N R —
) =5 =55 =0
for t < 0.
For ¢t > 0, we have two cases. Let
%~
t1 = —§E4(90) ~ 1.596...

Now assume 0 < ¢ < #;. Since t > 0, we have ft(w/?)) = se"™/3 for some positive s and
ft(27r/3) = se™/3. Since t < t1, we still have f;(6y) < 0. Hence the variation of the argument is

now —=*. Therefore,
4 1 —Ar

Noo(ft) = o 2. 3 ~ 1

For the case t > t;, we have that ft(eo) > (0. So the variation of the argument equals in that
case, and Nuo(fy) = 0.
We conclude that

0 ift<Oort>t
(ft) = .
1 ifo<t<ty.

Example 3.8. Write f = fy + EY, where fy is a modular form of weight 2p > 0. In this case,

Using Proposition A.1 below, the function f crosses the 1mag1nary axis exactly p — 1 — 2L§j

times. This means that the variation of the argument of f along C is at most 7r( L J)
Therefore,
12p) 1 p p+1
o) = 5% talp—235]) = =3

4. Vector-valued equivariant forms

By the quasimodular transformation equation (8)

13



where A = —4 for y = (2 1) € SLy(Z). We study the solutions h : h — C of

L @if)(r) /1 1 \J
0= —~ ! <7 (T)>‘ (15)

4 2niT —h
J

The main property of the solutions A is that f has a zero at y7 with 7 € F if and only if there
is a solution satisfying h(7) = A. Another property is that if hy(7), ..., hy(7) different solutions
(for a fixed T € h), we have

L)~ 3 = (- - A)p”';f(?)(”, (16)

%

where as always v = (‘é S) € SLy(Z) with A = —%.
We now study the invariance of the solutions h under SLy(Z).

Proposition 4.1. If h: F — C is a solution of (15) for T = 19, then

. ah+b _ _
(i) vh = htd : F — C is a solution of (15) for T = y79.
(ii) —h: F — C is a solution of (15) for T = —7g.

Proof. 1t suffices to show the first part for the two generators (§§) and (% §) of SLy(Z). For
the first, the result is almost immediate, so we only prove it for the inversion in the unit disk.
This follows from the following computation:

P @if) (=Y 1 1 j
Z 5! (271 —r1 +h(7)—1)

Jj=0

P PTI pitm gy (s . m
ey O Y ()

2miT

0
WAH(T) 1 =1+ 72h(1) L4 7\¢
' Z 14 (% (=7 + 72h(1)~1) )

NGNS S S
=T (Tm—h(T)JrT) =0

The second statement follows from the fact that for quasimodular forms g with real Fourier
coefficients one has g(—7) = g(7). O

~
Il
o

Extend the action of SLy(Z) on h to an action of GLy(Z) by

at+b
= if dety=—1
T cT +d ety

for v = (‘;g) € PGLy(Z) and 7 € . Then, we find that the vector h = (hy,...,hp) is a
meromorphic vector-valued equivariant form for GLy(Z):

Corollary 4.2. Let U be a simply connected open subset of by for which the p solutions of (15)
are distinct. Then, one can choose solutions hi,...,h, : U = C of (15) such that

(i) for all T € U and v € GLa(Z) the solutions h;j(yT) : YU — C are meromorphic;

14



(ii) of I' < GL2(Z) such that T'U C U, then there exists a homomorphism o : I' = &, such
that for all T € U and v € I' one has

hj (77-) =7 hO’(’)/)j (7-);

(iii) f has a zero at y7 if and only if hi(T) = A(v) for some j.

Proof. By the implicit function theorem, there exist p meromorphic solutions h; on U, which,
by construction, satisfy the third property. By the previous proposition for all v € GL2(Z) we
have h;(y7) = v hg(4);(7) for some o(7) € &, possibly depending on 7. However, by continuity
of hj on U, we find o(y) does not depend on 7 for v € I'. In particular, h; : 7U — C is
meromorphic and o is easily seen to be a homomorphism. O

We often make use of the fact that h; is a vector-valued equivariant function in the following
way. Write

c=(31), s=07), T=G1)
for complex Conjugation, Spiegeln (reflecting) in the unit disc and Translation. Then,
PGLy(Z) = (C,S,T | C? =1,(CT)* =1,(CS)* = 1,5 =1,(ST)> = 1).
Given v € PGLy(Z), let C" be the set of 7 € C such that y7 = 7. Then, for all 7 € U we have
hi (1) = hi(Y7) = Yh(4);(T)-
Hence, if o(7y) = e, then hj(7) € C7. For example, we have proven the following lemma.

Lemma 4.3. Given the solutions h; and o : I' = &, as in Corollary 4.2, write I'; = {y € I |
o(1)j = j}. Then,

(i) hj(% +Ri) € ¥ +Ri if n € Z is such that CT*" € T;,

(ii) |hj(2)| =1 for|z| =14 CS €Ty,

(iii) hj(p) € {£p} if ST €T .

Depth 1 For a quasimodular form f = fy+ Fs f1 of depth 1, we have h : h — C is a holomorphic
equivariant function, i.e.,

h(y7) = ~h(T)
for all 7 € h and v € GLy(Z). In fact, we can write h as
_ 12 A0 _fIS()
MO =T i g T TR

where S = (% §).
Remark 8. There are several additional interesting properties of equivariant functions h of which
we do not make use in this work. Among those are:

(i) The Schwarzian derivative {h(7),7} is a meromorphic modular form of weight 4. This
follows directly from the properties of the Schwarzian derivative, see, e.g., [EBS12].

(ii) The derivative b’ equals F' f~2 for some (holomorphic) modular form F of weight 2k (where
k is the weight of f). Explicitly,

F = f§ + 12 fo0(f1) — 129(f0) f1 + 7 Ea

where 9 denotes the Serre derivative. This was observed and proven in [GO22, Section 5.3]
in the case f is the derivative of a modular form. A
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Example in depth 1

Example 4.4. If f = ¢ = @ with ¢ a modular form of weight k, then h(r) = 7 + k:gg/((?)
(to the study of which [EBS12] is devoted). In particular, for f = 7=A’ = AE, we find

h(T) =7+ 2131 bl , which is also the equivariant function associated to Es.
Examples in higher depth

Example 4.5. Consider f = F; + E2. Then the hj for j = 1,2 are solutions of the equation
0 = (271)2(Ey(7) + Ea(7)*) (1 — h(1))? + 48miEy(7) (T — h(T)) + 144.

From this '

12 Ep(1) + (=1)7\/—Ea(7)

211 (Ea(1) + Eo(7)2) 7

which (for an appropriate choice of the square root) is meromorphic on every simply connected
domain U not containing a SLa(Z)-translate of p. For example, for

hj(T):T+

U=it(FUSF) = {z€h| -3 <Re(2) <3, |z—1>1and |z +1|>1}

we have that I' = (C, S) satisfies 'U = U and 0 : I' — G&3 is given by o(C) = (12),0(S) = (12).
In particular, C'S € kero. Hence, by Lemma 4.3 we have |h;(z)| = 1 if |2| = 1. However, it is
not the case that, e.g., h;(—4 + Ri) € —3 + Ri.

5. Zeros in other fundamental domains (\ < c0)

By definition of the functions h; we have

1 h.(7)
NA(f) — - Ldr = =31 ) g
M) QmZ afh T s () -2 T

where the second equality holds as the number of zeros of a function is a real number. Hence,
the value of Ny)(f) — Noo(f) is determined by the variation of the argument of the h; — A.

Proof of Theorem 1.2. Given A € R, we consider the variation of the argument of h;(7) — A for
all j. Note that, when moving along 7 € 0F, by Corollary 4.2 the functions h; are continuous
and piecewise meromorphic. We change the contour O.F to a family of contours %, such that for
€ > 0 sufficiently small there are no poles on the contour of integration, and that the functions
h; only take finitely many real values. (For example, we could define %, to be the shift of the
contour OF by (|Re(z)| + v/3Re (2)i)e + 3€2. Note that for e — 0 the value of the integral over
the shifted contour converges to the des1red value Nj.)

The functions 7+ h;(7) intersect the real axis only a finite number of times as 7 goes over
the (shifted) contour. Write A1(€) < ... < Ay (€) for the intersection points for all functions
hi,...,hy (here n(e) may also depend on €). Moreover, write Ay, ..., A, for the limiting values
of \i(e) as € = 0. As hj — X is just a horizontal shift of h;, given A\, \" € R, the functions h; — A
and h; — X' admit the same variation of the argument if there is no ¢ such that A < Ay < X’ or
N < My < . Hence, in that case Ny — Ny = Ny — N4. Moreover, for A > \,, the variation of
the argument is 0. Hence, Ny — Ny, = 0 for A > \,. We conclude that if we define the elements
of .7 to be

(—OO, )\1)7 {)\1}, ()\17 )\2), ceey {)\n}, ()\n, OO)

the statement follows. (In case A; = 00 simply leave out the corresponding sets.) O
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Depth 1 For quasimodular forms of depth 1, by Lemma 4.3 we have
o h(3+it) €L +iR fort eR;
o |h(z)|=11if |z| =1.

Hence, the only possible values of A; in the above proof are :tl +1 and 4oo. Therefore, we
obtain the following corollary of Theorem 1.2.

Corollary 5.1. For a quasimodular form of depth 1 with real Fourier coefficients, there exist
constants N[Oj%)(f),N(%,l)(f),N(Loo)(f) such that
N[o,%)(f Al € (0, 3)
M) = Nay() N € G
N1,00)(f) Al € (1,00).

Next, by relating Nx(f) to N_1(f) and by using the above properties of h, we prove the
A

—_ —

following statement, which finishes the proof of Theorem 1.3. Recall z1,..., 2, are the zeros
of fi such that Re z; = —% and Im z; > %\/g, counted with multiplicity and ordered by imaginary
part, and zp = p. Moreover, recall 7(f;) denotes the sign of the first non-zero Taylor coefficient
of f1 (see (11)), and s(f) = sgnag(f) if f does not vanish at infinity, and s(f) = —sgnag(f1)
else. Also, w(z0) = 2 if 29 equals p,i or —3 +ico, and w(z) = 1 for all other z € F.

Theorem 5.2. Let f = fo+ Eaf1 be an irreducible quasimodular form of depth 1. If A € R
with 3 < || < 2, then

M+ N = |5
Moreover, if |A| < 3 or |A| > 2 we have
W)+ = [5] = 3 S s st G st
Proof. As before, we have -
NA(f) + N_1(f) = 2Nool(f) = %Im . h(f;’)(T_ ~+ h(f:)(i)i dr (17)

We split this integral in several pieces, and compute .
the contribution of each piece separately. This argument >
resembles the one of Proposition 3.3, as well as the proof = *ort1
found in [GO22, Section 5.6].

Setup.

Let zi,...,2m, be the zeros of fi on L\{p} and let 8 g
v1,...,0, be the zeros of f on L, all ordered by imaginary 2 v2 1
part. We assume r > 1, and at the end of the argument
verify the proof goes through if r = 0. Moreover, without
loss of generality, we assume |\| > 1. G QUES!

The finite poles of h are exactly the finite zeros of f.
We fix € > 0 sufficiently small. Let L. be the punctured

left half line /»/':\)\

p 1
[p,v1 — i€} U [v1 +i€,v3 —i€] U ... U [, +ie, —3 +ioc], P

Figure 2: Contour of integration

17



and define the punctured right half line by R. = L + 1. The line segment [p, v; — i€] (as well as
its shift on R.) is referred to as the lower vertical segment, whereas [v, + i, —% + ioo] a called
an upper vertical segment.

Recall that by definition of Ny, we include all zeros/poles of h(r) — A and h(r) + 3 on L
in the integral (17), but not those on R. Hence, for each zero v; we introduce a semicircle C;
around v; of radius € on the left of £, as well as the semicircle C; + 1. The boundary of F then
consists of C, L, R, and the semicircles C; and C; + 1 for all i.

Circular segment C.  Recall |h(7)| = 1 if |7| = 1. Hence, h has no poles on C. Using the
expression (16) above, we write

W(r) ()
27rI / A+h(7)+§d7

Im/ log((h(t) = A)(h(1) + 1)) dr
ko Ly F ) F(ST)
27rI / or <(T_)\)1 (T+X)1 f(7)? ) dr,
= (%) € SLy(Z) is such that A = —2, and S = (% §). Note that S = (~} %) and

T =d
irst, we compute (recall |\| > 1 by assumption)

1 a 1—k 1 1—k
27TIm/C o log((r -+ X) ) dr

_ k— lRe/Zﬂ'/i‘]_ %eiﬂ N 1
2m /3 1— leie 1+ le—ie

2m/3 1
Re/ (1 -2 Z /\2 7 cos((2n + 1)0) + 2i Z 2 sin(2m9)) dé

n>1 m>1

wher
_1
)
F

k-1
2
k-1

6

Next, we show that the following expression is actually independent of ~:

1 fyr)f(yST)

DTl M og ()2 ) dr
_i . L fl(yr) L fOsn) L f()
“ o /c (cr+ 2 fOor) " (Cdr+ o f(3T) CF() i

Applying the coordinate transformation 7 +— —% to the second term in the integrand, and
using (12) for the last term, this equals

Y N S Gl WU S 1o N o S
27TI /C (cT +d)2 f(yr) (CT+d)2 f(y7) 2 f(r) d 2Noo(f)

Hence, the contribution of C equals

18
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Table 1: The three possibilities for the graph of h(7) for 7 in a small neighborhood of p
(resp. p + 1) along the left (resp. right) vertical line segment of OF, given
(senImh(p), sgnlime o (Imh(p + €i) — p)) € {£}*.

(+v+) (+77) (777)
I
1<[A\<2]| ¢ : —3

Table 2: Variation of the argument of the lower vertical segments in several cases (see Table 1).

Lower wvertical segments.  Now, first assume that f; admits no zeros on the lower vertical
segment [p,v; — ie]. By Lemma 4.3(i) we know that h(3 +it) € 3 + iR for all t € R. Also,
by Lemma 4.3(iii) we have h(p) € {£p}. Hence, as 7 moves on [p,v; — ie] the function h(7)
moves from p or p? to ico or —ico. We have three possibilities for the combined sign of Im h(p)
and Im (h(p + €i) — p), depicted in Table 1. (Note that if the first is negative, the second is
necessarily negative as well. As in this segment there are no zeros of f; or f, we know that in
the case (—,—) eventually h tends to —iocc.).

Hence, the variation of the argument of h — X\ along [p,v; — ie] and [p,v; — ie] + 1 equals
the (oriented) angle between h(p + 1), A and h(p), as shown in the same table. In particular,
it is an exercise in Euclidean geometry that the sum of the oriented angles for A and —% only
depends on whether |\| < 2 or not (recall |A\| > 1 by assumption). In Table 2 we displayed the
contribution of each of the cases in Table 1. Correspondingly, the contribution to the variation
of the argument equals

1 1 1
G sen Im (p) + 0jxj>2 (—5 sgnIm h(p) + 5 sgn limejo(Im h(p + €i) — p))
Observe that

sgnlime o(Imh(p + €i) — p) = —sgnlim.josgn(fi(p+ €i))sgn(f(p))
as h(r) = 7+ %J}l((:)). Hence, under the assumption f; has no zeros on the lower vertical

segment and by Lemma 2.4, its contribution equals

ésgnlmh(p) + 5|A\>2<f%sgn1mh(p) - T(Qfl)sgnf(p))-

Now, suppose f1 admits p zeros on the lower vertical segment. Then, as f admits no zeros
on this segment, h(7) crosses the line 7 precisely p times. If p is even, this does not alter the
variation of the argument, but if p is odd, then hA(7) changes sign if 7 tends to the pole v;.
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Note that this does not affect the variation of the argument of h(7) — p if |u| > 1. Suppose
I is a line segment of £ for which h(7) — p tends to +ioo or to 0 on the two boundary points
of I. In that case the variation of the argument on I equals v, whereas the variation of the
argument on the corresponding line segment on R is —v. We conclude that if |u| > 1, the only
contribution for the variation of the argument is displayed in Table 2

Hence, the contribution of the lower vertical segment equals

1 1 f .
Ssantmh(o) + dppsa(— sentmn(e) — "W s () — r(5) 317 s ().
J
where the sum is over all j such that z; lies in the lower vertical segment. Note that by the

factor 7(f1)(—1)7 we keep track of the sign of fi at z;.

Vertical segments between two poles. Similar as in the previous case (now there are no boundary
terms), we find
— On>27(f1) Z(—l)j sgn f(z;)
J
where the sum is over all j such that z; lies between two poles of f.

Semicircles centered at the poles. Note that for sufficiently small ¢, we have that the value h— A
on these semicircles is arbitrary large (say, bigger than |A| + 1 in absolute value). Moreover,
the contours of A — X on such a semicircle C; and C; + 1 differ only by 1. Hence, as € — 0, the
contributions of the corresponding semicircles C; and C; 4+ 1 of OF (which admit an opposite
orientation) cancel in pairs.

>

Upper vertical segments. As before, the variation of the argument vanishes, except for h(7)+
if [A\| > 2. Again, in this case, we have the contribution

— o2 7(f1) Z(—l)] sgn f(2),
J
where the sum is over all j such that z; lies in the upper vertical segment. This is also the only
contribution, except in the following exceptional case. It may be that h(7) is smaller than 7 in
imaginary value for 7 = % + it with t tending to infinity, but still converging to ico. If this is the
case, we have to add a contribution of +1. By considering the Fourier expansion of h(7) — 7, we
see this can only happen if f has no zero at infinity (else, h goes to +ico at exponential rate).

Moreover, the first non-zero Fourier coefficient of fi/f should be positive if (1) —7 < 0 for
T= —% +it. In case f does not vanish at infinity, we have

Jim sguTm (h(~5 +it) — (= +i6)) = — lim sgn(fi(~} +it) f(~3 +ir),
Note that limy o0 sgn(fi(—3+it) = (—1)™r(f1). We found that this special contribution equals
T+ 1(=D)™r(f1) limyoosgn f(—3 +it)  if f (=3 +1ic0) #0
0 if f(—3% +ioo) =0,

As limy oo sgn f(—3 + it) = sgnag(f) if f does not vanish at the cusp, and (—1)™r(f;) =
sgn ap(f1), by definition of s(f), we find that the total contribution of the upper vertical segment
for |A| > 2 equals

F) D01 s () + 5 — 5 (1)) s()

Jj=1
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P> p?+1 ,OQI po—i-l

Table 3: The four possibilities for the graph of h(7) for 7 along the left (resp. right) vertical line
segment of OF, given (sgnIm h(p),tlim Im sgnh(—3% +it)) € {+12.
—00

(+7+) (+7_) (_7+) (_7_)
A
1<[A\<2]| ¢ i —1 -1

Table 4: Variation of the argument along the left (resp. right) vertical line segment of OF in
several cases (see Table 3).

Total contribution. Adding all contributions for 1 < |A\| < 2, we obtain

% + %sgnlm h(p).
Note that f1(p) =0 if £k =0(6) and fo(p) =0 if kK = 2(6). Hence,
0 k=0(6)
h(p) =p+ {%E;(p) k=2(6)
Therefore,
oo - {1, 1230

We conclude that for 1 < |A| < 2, the variation of the argument equals {%J
Adding all contributions for |\| > 2, we obtain

6 2

] = T s ) = () Y1 s ) — 5 ) ()

7=1
f has no zeros on L. In this case h has no poles on £ and R. Therefore, the variation of
the argument along £ and R only depends on the values h(p) and h(—% + i00). The image of
h on £ and R is summarized in Table 3. The contributions to the variation of the argument
is given in the following Table 4. Note that the contributions in this table yield the same final
formula for Ny(f) 4+ N_1(f). O

X
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Proof of Theorem 1.1. The result follows from Theorem 1.3, as we explain now. First, let ¢ be
the unique modular form such that f := ¢’/ is irreducible (if g has only simple zeros, and no
zeros at the cusp, then ¢ = 1).

Recall that the sign of the derivative of a real-valued differentiable function in two consecutive
zeros of this function is opposite. Hence, for two consecutive zeros of g, the function

~

Q

r=2
¥

changes sign, i.e., (—1)7sgn f(z;) and (—1)7 sgn f( 6;) are independent of j. Comparing with
the behaviour of f; around p one obtains

(=1)7 sgn f(z)) = —r(f1) = (=1)7 sgn (6;)

for all 7 > 0.
Moreover, we have

sgn — r(f1) E(f) =2 mod 6
1) {T(fl) k(f)=0 mod 6,

where k(f) denotes the weight of f. Namely, in case k(f) =2 mod 6 we have fy(p) = 0 and
f(p) = sgn fi(p), which is non-zero by definition of ¢. Moreover, in case k(f) =0 mod 6, we

have /

sgn f(p) = Sgn(‘i(p)) = Sgn((ff)/> = sgn(f{(p)+f1(p)%

(n))-
Note that ¢(p) # 0 if k(f) =0 mod 6, and fi(p) = 0. Hence, we find
sgn f(p) = sgn fi(p) = —r(f1).

Note that ag(f) = 0 if and only if ap(g) # 0. In case g has n > 1 roots of the cusps, observe
that f and n%Eg have the same (non-zero) constant term. Also, observe that fi equals % up
to a constant (being the weight of g, divided by 12). Hence, in that case we have

s(f) = sgn(ao(f)) = sgn(ao(g/¥)) = sgn(ao(f1)) = (=1)"r(f1),
where the last equality holds as f; does not vanish at infinity. Hence,
3 ao(g) #0
ao(g) = 0.

Finally, write ¢’ and € for the order of E4 and Fg in ¢’. Note that k(f) =k + 2 mod 6 if g
does not have repeated zeros at p and i (here k is the weight of g, or k + 2 is the weight of &’).
More generally,

= S ()s(f) = {

N[ — |

k+2 = k(f)+48 +6¢ mod 6.
Observe the following identity

k+2 1 k
{6 - 5’J + 55’ Tha 5g(p)

2

where d4,)—o is 1 precisely if g(p) = 0 (if not, then £ =0 mod 6).
We conclude that

1| k+2—48 —6¢€ 20" + 3¢ 1
Nao(g) = 2{ 5 J t—% 7 C(9) + Z0g(p)=0

6 g
k 1
= 13 T € + 394)=0
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k+2—45’—66’J+2(5’—|—36’ k

Ni,o0)(9 )+N(% n(g) = { 6

and N1 o) (9") + N[o,%)(gl) equals

kt+2- 45’ 67 | 26 +3¢ 1 1 1
[ w + g+ 5%k(n=46) ~ FOk(n=0(6) + L9 =5

2
= = 5+ L
= 3J+3 + Lig)
k

Proof of Corollary 1.4. First of all, for f as in Theorem 1.3 we have

1|k 1
Nl (f) < Z{GJ +”/+§5k50(6)7

where n’ counts the weighted number of zeros of fi; on the part of the unit circle with angle 6
such that § < 6 < 2{ Now n/ < % — %(5;@50 (6)> as f1 has precisely % zeros (of which at
least one in p if kK =0 mod 6). Hence,

1]k k—2 1 k .~
N(l,oo](f) < B {GJ + — 19 + 65k50(6) = {6J = dlka* —
where we used that £k = 0,2 mod 6. Now, as f is not divisible by E4 by assumption, this upper
bound also holds true if f is reducible. Similarly, we obtain the upper bound for N( 1 1)( f)-
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Next, for f as in Theorem 1.3 we have

k

Nl + Moy (1) < |

6} +m + dp=0 (6)-

Here, the term ;= () comes from the fact that —r(f1) (721)0 sgn f(p) equals —3 if k = 2(6), as

- — = = _ (=1)° 1
in that case r(f1) = sgn fi(p) = sgn f(p). For k = 0(6) we have —r(f1)—5—sgn f(p) < 5. Now,
similar as before, N(j oo (f) > %L%J —n' — %5150 (6)- Hence,

k 1]k 3
N[o,%)(f) < {6-‘ 3 {GJ +n' +m+ iékzo(ﬁ)
Now, similarly, n’ +m < % — %5150 (6); SO that
k 1|k k-2 7 k . o~
as k =0,2 mod 6. This implies the corollary. O

Examples

Example 5.3. Let f be as in Theorem 1.3 and assume f; has only zeros on the interior of F
and at infinity. Write ag(f) for the constant term at infinity of f, and a(f1) for the first non-zero
Fourier coefficient of fi. Then, in case ag(f) = 0 (as is the case when f is the derivative of a
modular form), or if sgn(ag(f)) = —sgn(a(f1)), a direct evaluation of the result implies that

NA(f) = Na(fr)-
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The situation alters slightly if sgn(ag(f)) = sgn(a(f1)) (as is the case if f = FE3); in that case
we find

Na(f) A€ (5,00)

NA(f)+1 € (0,D).

Example 5.4. We return again to the example in the introduction. Applying Equations (5)
and (6) in Theorem 1.3 and using the computations in Example 3.5, we find

NA(f) = {

N(%,l)(f) = -1+ \‘366J = 5.

Moreover, as r(f1) =1, m =0, f(p) <0 and s(f) = 1, we obtain

36 1 -1
g = 4] -4 5 -

Example in higher depth
Example 5.5. Let f = E2 — E,. Its zeros are the critical points of Ey. We have

_ 12 By(1) + (—1)7\/E4(7)
hi(t) =7+ 5 Q(EQ(T)Q — E4(7’)4) ,

and for U = {z € h | Imz > 1/3} we find 0(C) = o(T') = e (see Corollary 4.2 for the definition
of o). In particular, h(—% +it) € —3 + iR for all ¢ € R. Using the same ideas as in the proof
of Theorem 5.2, we find that the contribution of C equals k%p — 2Noo(f) (with k = 4,p = 2).
For the other contributions, we check that the proof goes through for both Fs ++/E, (which is
not a holomorphic quasimodular form). That is, take h for fo = +v/E4 and f; = 1. Then, the
function h for Fy + /Ey = 2+ O(q) behaves as (—,+) in Table 4, whereas the function h for
Ey — VEi = —144q + O(q?) behaves as (—, —) in the same table. Hence,

NA(f)+N_1(f) =

A

2205 L1 N <ior|A>2
12211 =0 I<|\N<2

Observe that, in contrast to the case where the depth is 1, we do not longer have that
|hj(z)] = 1 for |z| = 1. In particular, hi(z) and ha(z) intersect the real line for z € C in the
value v and % respectively, given by

1
- =0.180008.. ., v = 5.555295. ..
v

As the value of N, for positive A only changes at A = %, %, v, and Noo(f) > 1 (because ico is a
zero of f), we conclude

1 <N <dor[A>v
0 N<lord<)<o

Ni(f) = {

Another result on the critical points of F» Again, let f = E3 — Ey. Let
Fo(2) == {z€h|0<Rez<1land|z— 1| > 3} U {icc}

be (the closure of) a fundamental domain for I'g(2). In [CL19] it is shown that

> ow(h=1 (18)

TEYFo(2)
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for all v € T'g(2). In particular, the number of critical points of Fy is constant in every ~-
translate of Fy(2), but depends on A(7) in every 7-translate of F (see the previous example).
Why are the zeros of a quasimodular form for SLy(Z) ‘better’ distributed with respect to I'g(2)?

To get some more insight, we sketch how the proof of Theorem 5.2 can be adapted in order
to give an alternative proof of (18). Let

NI = Y )

(&
revFo(2) T2

where A(y) = X and e, = 2 if 7 is a 7-translate of % + %i for v € T'g(2), and e, 2 = 1 else.
Then, we claim

NP+ ND () =2

22—1

for all A. Observe that z 2'3;11 has the circle centered around % with radius % as its fixset.
Now, the integral over this the corresponding circular segment in the upper half plane yields a

contribution of L
- _an@()

with & = 4,p = 2 (namely, we integrate a function containing a (k — p)fold pole at A and 2/\)\;_11

over % of the circle). Moreover, the functions h corresponding to Eo &+ v/Ey4 tend to 0 and 1 as

z tends to 0 and 1, and tend to +ico for 7 — ico and 7 — 1 + ico. As exactly one of A and

2’\)\:11 lies between 0 and 1, we find in both cases that the contribution to the variation of the

argument is %, which yields the claim.

Next, let U = intFo(2)\[p, 3 + i00). This is an open subset of b invariant under 7C' and
TST?S (corresponding to z +» Z=L). Moreover, o(CT) = (12) and o(TST?S) = (12). As
both leave the circle % + %eie invariant, we conclude

Il + %) - 31 = 4

Hence, find that N §2)( f) as a function of A can only change value at A\ = 0, 1. Showing by other
means that No(g)( f) =1, one could conclude that

NP(f) =1 for all A.

A. The zeros of Re (E}) and Im (EY)
We are interested in counting the number of zeros of Re (Eg) and Im (Eg) on (%, 28) for n > 0.

Proposition A.1. The functions Re (Eg) and Im (EQ) admit

1
n—QLg—FiJ, Tesp. n—l—QL%J

zeros on (3, %ﬂ) forn > 0.
The proof almost immediately follows from the following result.

Lemma A.2. For n >0, write

(x+1)" = Ry(z) +1Qn(x),
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where Ry (), Qn(x) € Z[z]. Then all roots of R,, and Qy, are real, of which

1
n72lg+§J, TESP. nflfQLgJ

lie in (_ﬁ’ %)
Proof. For z > 0, we may write
(.%' + i)n _ <$2 + 1)n/2einarctan(1/x)'
Therefore, for all x, we recognize
Ry(x) = (22 + 1)"/2 T, (cos(arctan(1/x)))

2 n/2 &
=(z"+1 1 (7),
( ) "\Va?+1
where T), is the n-th Chebyshev polynomial of the first kind, admitting the n distinct real

1
roots COS(@) for k=0,...,n—11in (—1,1). Hence, R, has n distinct real roots, of which
n—2|% + 1| are contained in (—%, %)

Write U, for the n-th Chebyshev polynomial of the second kind. Then, for n > 1,

Qun(z) = (1 + 22" V/2 0, (cos(arctan(1/z)))

— 2\(n—1)/2 _r
(1+ %) Un_l(m),

from which one deduces that all roots of @, are real and n — 1 — 2 L%J lie in (—%, %) Note
that @, admits a zero at i% for n =0 mod 3. O

Proof of Proposition A.1. We apply the previous lemma to x = Re (Eg) Note that by (14),
we have Im (E») = 2. Hence,

T Re (B3) = Re ((ZRe (B2) +1)") = Ru(TRe (B))

3n 3 3
and
sk ~ T ~
T (B) = Qu(TRe (B))
Observe that Re (Eg) is a strictly decreasing function on (%, 2¥) with a unique zero at 6 = 3.
As on the boundary we have
T ~ (T T ~ (2T 1
et (3) - -Seis (%) - 5
ghe(2)(3 she(B)(3) = 5
the proposition follows from the lemma above. O
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