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ON THE SPECTRUM OF HADAMARD MANIFOLDS

WERNER BALLMANN, MAYUKH MUKHERJEE, AND PANAGIOTIS POLYMERAKIS

Abstract. We show the absolute continuity of the spectrum and determine

the spectrum as a set for two classes of Hadamard manifolds and for specific
domains and quotients of one of the classes.

1. Introduction

The spectrum of the Laplacian is a classical invariant in Riemannian geometry.
If the underlying manifold is closed, then the spectrum of the Laplacian consists of
eigenvalues of finite multiplicity, and many studies are concerned with estimates of
the eigenvalues and their multiplicities. In this paper, we investigate the spectrum
of (the Laplacian of) non-compact Riemannian manifolds. Then the structure of
the spectrum is quite different in general. For example, the spectrum of Euclidean
spaces does not have eigenvalues, but is, what is called absolutely continuous.

For a complete and connected Riemannian manifold M , we view its Laplacian
∆ as an unbounded and symmetric operator with domain C∞c (M) ⊆ L2(M). The
closure of ∆, which we also denote by ∆, is a self-adjoint operator in L2(M).
Functional analysis of self-adjoint operators yields the orthogonal decomposition

L2(M) = Hpp(M)⊕Hac(M)⊕Hsc(M) (1.1)

of L2(M) into ∆-invariant subspaces such that

(1) Hpp(M) is spanned by eigenfunctions;
(2) Hac(M) consists of functions with absolutely continuous spectral measure;
(3) Hsc(M) consists of functions with singularly continuous spectral measure.

For the convenience of the reader, we explain these decompositions and notions in
some detail in Appendix A. The spectrum of M as a subset of R will be denoted
by σ(M).

In general, Hsc(M) eludes any meaningful interpretation, and therefore one seeks
conditions, which guarantee its vanishing, that is, that Hsc(M) = {0}; cf. for ex-
ample [9, Chapter XIII]. In this article, we will obtain conditions which imply the
vanishing of the point spectrum, Hpp(M) = {0}, respectively imply the absolute
continuity of the spectrum, Hac(M) = L2(M) or, in other words, the vanishing
of the point and the singular continuous spectrum. The underlying manifolds will
be Hadamard manifolds, that is, complete and simply connected Riemannian man-
ifolds of non-positive sectional curvature. Recall that a homogeneous Hadamard
manifold can be thought of as a simply connected solvable Lie group S with a left-
invariant Riemannian metric and given as a semi-direct product S = AnN , where
A is Abelian and N is nilpotent. Our main result is the following
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Theorem 1.2. If M is a homogeneous Hadamard manifold, then the spectrum of
M is absolutely continuous with σ(M) = [h2/4,∞), where h is the mean curvature
of N in S ∼= M .

An explicit formula for h is given in Theorem 5.2, where we also show that the
equality σ(M) = [h2/4,∞) holds in greater generality, namely for left-invariant
Riemannian metrics on Lie groups G, which are solvable or compact extensions of
solvable Lie groups, such that their derived subgroups are not cocompact in G.

Concerning the identification of homogeneous Hadamard manifolds with certain
simply connected solvable Lie groups with left-invariant Riemannian metrics, one
may ask, whether representation theory could be a tool to study the spectrum of
their Laplacians. However, in general, in our situation the underlying Lie groups
are not exponential solvable, see [1, p. 26 and p. 37] and [2, Remark (ii) on p. 16],
so that at least the extension of Kirillov theory by Auslander and Kostant does not
seem to apply.

For Euclidean and symmetric spaces of non-compact type, there is much more
precise information on their spectrum. For example, the Fourier transform yields
a unitary equivalence between the Laplacian in L2(Rm) and multiplication by |x|2
in L2(Rm), which implies that the spectrum of the Laplacian is absolutely contin-
uous with spectrum [0,∞). Similar, but more involved, characterizations of the
Laplacian are known in the case of symmetric spaces of non-compact type.

We say that a Hadamard manifold M is asymptotically harmonic about a point
ξ ∈ M∞ if there is a number h ≥ 0 such that each horosphere in M with center ξ
has constant mean curvature h. Hyperbolic spaces Hk

F , endowed with Fubini-Study
metrics, are asymptotically harmonic about any point in M∞, where h = λ20/4 > 0.
Asymptotically harmonic manifolds in the usual sense are asymptotically harmonic
about any point in M∞. Such manifolds arise, for example, in investigations on
the rigidity of geodesic flows. Furthermore, since horospheres are limits of spheres,
harmonic Hadamard manifolds are asymptotically harmonic about any point in
M∞. However, homogeneous Hadamard manifolds without Euclidean factor, which
are not hyperbolic spaces, are asymptotically harmonic about some, but not any
point M∞. A second main result of this article is

Theorem 1.3. If KM < 0 and M is asymptotically harmonic about a point ξ ∈
M∞, then the spectrum of ∆ on M is absolutely continuous with σ(M) ⊆ [h2/4,∞),
where h > 0 is the mean curvature of the horospheres with center ξ. Moreover, if
the sectional curvature of M is negatively pinched and the covariant derivative of
the curvature tensor of M is uniformly bounded, then σ(M) = [h2/4,∞).

Say that a group of isometries of a Hadamard manifold M is elementary if it is
discrete and without torsion, fixes a point ξ ∈ M∞, and such that it is of one of
the following two types:

a) Γ leaves a geodesic γ in M emanating from ξ invariant.
b) Γ leaves Busemann functions associated to ξ invariant.

In the first case, C = Γ\γ is a circle and the projection M → γ along horospheres
with center ξ descends to a Riemannian submersion π : N → C, where N = Γ\M .
In the second case, any Busemann function b associated to ξ is invariant under Γ
and hence pushes down to N and defines a Riemannian submersion π = b : N → R.

Theorem 1.4. For M as in Theorem 1.3, if Γ is an elementary group of isometries
of M fixing ξ, then the spectrum of the quotient N = Γ\M is absolutely continuous
with σ(N) ⊆ [h2/4,∞), where h > 0 denotes the mean curvature of the fibers of π.
Moreover,

(1) if N is of type b) and the fibers of π are of finite volume or
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(2) if N is of type b), the fibers of π are of infinite volume, the sectional cur-
vature of M is negatively pinched, and the covariant derivative of the cur-
vature tensor of M is uniformly bounded,

then σ(N) = [h2/4,∞).

Regarding the absolute continuity of the spectrum, we rely on the same integral
formulae as the ones used in [4, 5, 12], using, in particular, arguments from [12]. One
important difference to the latter is that we also use functions which are convex,
but not strictly convex. The determination of the spectra as sets is by different
arguments, where we rely on [8] in the case of homogeneous Hadamard manifolds.

2. Preliminaries

We use the absolute value sign to denote the appropriate volumes of sets under
discussion.

Observation 2.1. If a Hadamard manifold M is asymptotically harmonic about
a point ξ ∈ M∞ or if N = Γ\M is of type b), then the Cheeger constant of M
respectively N is at least h, where h is the mean curvature of the horospheres with
center ξ. In particular, the spectrum of M respectively N is contained in [h2/4,∞).

Proof. Let D be a compact domain in M respectively N with smooth boundary.
Let b be a Busemann function associated to ξ and X = ∇b. Then |X| = 1 and
divX = h and hence

h|D| =
∫
D

divX =

∫
∂D

〈X, ν〉 ≤ |∂D|,

where ν is the outer normal field of D along ∂D. The last assertion is just the
Cheeger inequality. �

Observation 2.2. If a Hadamard manifold M is asymptotically harmonic about
a point ξ ∈M∞ and b is a Busemann function of M centered at ξ, then

0 ≤ ∇2b(v, v) ≤ h|v|2.

Proof. The claim follows immediately from h = tr∇2b and ∇2b ≥ 0. �

Suppose that a Lie group G acts properly, freely, and isometrically on a complete
Riemannian manifold M . Then the quotient Q = G\M is a smooth manifold.
Moreover, Q inherits a Riemannian metric such that the projection π : M → Q is
a Riemannian submersion. The mean curvature field H of the fibers is π-related to
a vector field on Q, which is then the push-forward π∗H of H. Following [8], we
define a Schrödinger operator on Q,

S = ∆ +
1

4
|π∗H|2 −

1

2
div π∗H. (2.3)

For the determination of the spectrum σ(M) of a homogeneous Hadamard manifold
M , we will then invoke [8, Theorem 1.3] in the following form.

Theorem 2.4. Suppose that G is amenable and that its component of the identity
is unimodular. Then

λ0(M) = λ0(S) =: λ0 and σ(S) ⊆ σ(M),

where λ0(M) and λ0(S) denote the bottom of the spectrum σ(M) of M and σ(S)
of S, respectively. In particular, σ(S) = [λ0,∞) implies that σ(M) = [λ0,∞).

For a boundary condition B of a domain D in a Riemannian manifold M , denote
by C∞c,B(D̄) the space of smooth functions on D̄ with compact support which satisfy
B along the boundary ∂D of D.
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Definition 2.5. We say that a boundary condition B for a smooth domain D is
non-positive if u ∈ C∞c,B(D̄) implies 2u∇u = ∇νu2 ≤ 0 along ∂D.

Examples 2.6. Dirichlet and Neumann boundary conditions are non-positive.
Robin boundary conditions αu + β∇νu = 0 are non-positive if αβ > 0. These
kinds of boundary conditions are also self-adjoint and elliptic in the usual sense.

3. Vanishing of point spectrum

For a C1 vector field X and a C2 function u on a Riemannian manifold M , we
have the following identity

2〈∇∇uX,∇u〉 = 2〈X,∇u〉∆u+ |∇u|2 divX + div{2X(u)∇u− |∇u|2X}. (3.1)

In the context of spectral theory, this identity was used by Donnelly-Garofalo, see
[4, Lemma 2.1],[5, Proposition 3.1], and Xavier, see [12, (1)], but it also occurs in
the earlier work of Kazdan-Warner [7, (8.1)]. Donnelly and Garofalo attribute (3.1)
to Rellich [10] in the case of Euclidean spaces; cf. (3) respectively II on page 62 of
[10]. For the convenience of the reader, we give a short proof of the identity.

Proof of (3.1). Since X(u) = 〈∇u,X〉 and |∇u|2 = 〈∇u,∇u〉 = ∇u(u), we have

2 div(X(u)∇u) = 2∇u(X(u)) + 2X(u) div∇u
= 2X(∇u(u)) + 2[∇u,X](u)− 2X(u)∆u

= 2X(|∇u|2) + 2(∇∇uX)(u)− 2(∇X∇u)(u)− 2X(u)∆u

= 2X(|∇u|2) + 2〈∇∇uX,∇u〉 − 2〈∇X∇u,∇u〉 − 2X(u)∆u

= X(|∇u|2) + 2〈∇∇uX,∇u〉 − 2X(u)∆u

= div(|∇u|2X)− |∇u|2 divX + 2〈∇∇uX,∇u〉 − 2X(u)∆u,

which is the assertion. �

Corollary 3.2. If ∆u = ϕu for a C1 function ϕ on M , then

2〈∇∇uX,∇u〉 = ϕX(u2) + |∇u|2 divX + div{2X(u)∇u− |∇u|2X} (3.3)

= (|∇u|2 − ϕu2) divX −X(ϕ)u2 (3.4)

+ div{2X(u)∇u+ (ϕu2 − |∇u|2)X}.

Proof. If ∆u = ϕu, then

2X(u)∆u = 2ϕX(u)u = ϕX(u2) = X(ϕu2)−X(ϕ)u2

= div(ϕu2X)− ϕu2 divX −X(ϕ)u2.
(3.5)

Together with (3.1), this gives (3.3) and (3.4). �

In [5], Donnelly and Garofalo consider eigenfunctions Lu = λu of Schrödinger
operators L = ∆ + V . This corresponds to ϕ = λ− V in (3.3) and (3.4).

To exhibit the strength of (3.1), we present immediate applications of the above
identities. With somewhat more elaborate techniques, we will obtain stronger re-
sults later. Our results are reminiscent of [10, Satz 2].

Theorem 3.6. Suppose that KM < 0 and that M is asymptotically harmonic
about a point ξ ∈M∞. Let D be the complement of a horoball in M with center ξ.
Then the point spectrum HB,pp = HB,pp(∆, D̄) vanishes for any self-adjoint elliptic
boundary condition B for D, which is non-positive.
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Proof. Let b be the Busemann function associated to ξ such that D = b−1((0,∞)).
By assumption, there is a number h, because of negative curvature strictly positive,
such that the mean curvature of the horospheres b−1(r) is constant, equal to h. In
other words, div∇b = h. Let

X = (1− e−hb)∇b. (3.7)

Then

divX = h and ∇X = he−hb∇b⊗∇b+ (1− e−hb)∇2b. (3.8)

Now ∇2b vanishes in the direction of ∇b and is positive definite perpendicular to
it. Since 1 − e−hb > 0 on D, we conclude that ∇X is positive definite on D. By
Observation 2.2, ∇2b is bounded on M , hence ∇X on D.

Let u be a square-integrable smooth function on D with ∆u = λu, satisfying the
boundary condition B. Since X vanishes on ∂D = b−1(0) and ∇X is bounded on
D, integration of (3.4), with ϕ = λ, is justified and implies that

2〈∇∇uX,∇u〉2 = h

∫
D

(|∇u|2 − λu2)

= h

∫
D

(u∆u− λu2) + h

∫
∂D

u∇νu

= h

∫
∂D

u∇νu ≤ 0,

(3.9)

where the inequality is implied by the boundary condition B. Now ∇X is positive
definite on D, therefore ∇u vanishes, and hence u is constant. On the other hand,
the volume of D is infinite and u is square-integrable, thus u vanishes. �

Restricting to Dirichlet or Neumann boundary conditions, we can allow for more
general kinds of domains. Let M be a Hadamard manifold. Say that a subset
D ⊆ M is a shadow if there is a horosphere H ⊆ M and a subset C ⊆ H such
that D is the set of all points x ∈ M such that the ray from x to the center ξ of
H passes through C. Then we also say that D is the shadow of C, thinking of ξ
as a source of light. The exterior of a horoball considered in Theorem 3.6 above
corresponds to C = H.

Theorem 3.10. Suppose that KM < 0 and that M is asymptotically harmonic
about a point ξ ∈ M∞. Let D ⊆ M be the shadow of a smooth domain C in a
horosphere H in M with center ξ. Then the Dirichlet and Neumann point spectrum
of D vanish.

Proof. Let b be the Busemann function on M associated to ξ which vanishes on
H = b−1(0) and X be the vector field as in (3.7). As in the previous proof, we get
that ∇X is positive definite on b−1((0,∞)), and hence, in particular, on D \ C.

Let u be a square-integrable smooth function on D with ∆u = λu, satisfying the
Dirichlet or the Neumann boundary condition. Now the boundary of D consists of
the smooth domain C ⊆ H and the shadow of ∂C, where X is tangential to it. Since
C is smooth, ∂C is the singular part of ∂D. Now the codimension of ∂C in M is
two, and hence we can apply the divergence formula when integrating (3.3). Since
X vanishes on H, the contribution of C vanishes in the integrated version of (3.4).
As for the shadow part, the contribution of the first boundary term 2X(u)∇νu
vanishes since then X(u) = 0 in the case of the Dirichlet boundary condition and
∇νu = 0 in the case of the Neumann boundary condition. The contribution of the
second term, (λu2− |∇u|2)X, always vanishes since 〈X, ν〉 = 0 in the shadow part.



6 WERNER BALLMANN, MAYUKH MUKHERJEE, AND PANAGIOTIS POLYMERAKIS

Thus repeating the computation in (3.9), we get

〈∇∇uX,∇u〉2 = h

∫
∂D

u∇νu = 0.

Since ∇X is positive definite on D \ C, we conclude, as above, that u = 0. �

4. Absolutely continuous spectrum

Let S be a self-adjoint operator in a separable Hilbert space H, and denote by
R(z) = (S−z)−1 the resolvent of S. Say that a closed operator T in H is S-smooth
if, for each x ∈ H and ε 6= 0, R(λ+ iε)x ∈ DomT for almost all λ ∈ R and

sup
|x|=1,ε 6=0

∫ ∞
−∞

(
|TR(λ+ iε)x|2 + |TR(λ− iε)x|2

)
<∞, (4.1)

see [9, p. 142]. In our context, the point is that then the image

RanT ∗ ⊆ Hac(S), (4.2)

see [9, Theorem XIII.23]. For a Borel subset B ⊆ R, say that a closed operator T in
H is S-smooth on B if TEB is H-smooth, where EB denotes the spectral projection
of S associated to B. Then

RanEBT
∗ ⊆ Hac(S), (4.3)

by (4.2). By [9, Theorem XIII.30], T is S-smooth on the closure B̄ of B ⊆ R if

DomT ⊇ DomS and sup
|x|=1,λ∈B,
0<|ε|<1

|ε||TR(λ+ iε)x| <∞. (4.4)

Xavier [12, p. 581f] shows that the latter criterion is satisfied if B is bounded and
if there is a constant C such that

|Tx|2 ≤ C|(S − λ)x|(|Sx|+ |x|) (4.5)

for all x in a core of S in H and all λ ∈ B. In fact, he shows that the term in (4.4)
is then bounded by C(1 + |λ|+ |ε|), which explains why B has to be assumed to be
bounded; see [12, top of p. 582].

Guided by [12, Section 3], we return to the geometric situation in Section 3 and
let X be a C1 vector field and u be a C2 function on a Riemannian manifold M
such that suppX ∩ suppu is compact. Then (3.1) gives, for any smooth domain D
in M with outer normal ν along ∂D,∫

D

〈X,∇u〉∆u+
1

2

∫
D

|∇u|2 divX

=

∫
D

〈∇∇uX,∇u〉 −
∫
∂D

(
〈X,∇u〉〈∇u, ν〉 − 1

2
|∇u|2〈X, ν〉

)
.

As in [12, p. 583], we use

|∇u|2 = u∆u− 1

2
∆u2

and obtain∫
D

∆u
(
〈X,∇u〉+

u

2
divX

)
=

∫
D

(
〈∇∇uX,∇u〉+

1

4
divX∆u2

)
−
∫
∂D

(
〈X,∇u〉〈∇u, ν〉 − 1

2
|∇u|2〈X, ν〉

)
.

Since

PXu = 〈X,∇u〉+
u

2
divX
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satisfies

uPXu = div(
1

2
u2X),

we arrive at∫
D

(
∆u− λu

)
PXu =

∫
D

(
〈∇∇uX,∇u〉+

1

4
divX∆u2

)
(4.6)

−
∫
∂D

(
〈X,∇u〉〈∇u, ν〉 − 1

2
(|∇u|2 − λu2)〈X, ν〉

)
,

which corresponds to [12, (2)], but with boundary integral included. It will also be
useful to have the latter formula with one of the substitutions∫

D

divX∆u2 =

∫
D

〈∇ divX,∇u2〉 −
∫
∂D

divX∇νu2 (4.7)

=

∫
D

(∆ divX)u2 +

∫
∂D

(
(∇ν divX)u2 − divX∇νu2

)
, (4.8)

which is Green’s formula applied to the functions divX and u2. Clearly∫
D

(
∆u− λu

)
PXu ≤ ‖∆u− λu‖2‖PXu‖2

≤ C‖∆u− λu‖2(‖∆u‖2 + ‖u‖2)

(4.9)

if X and divX are bounded on D, and u satisfies a non-positive boundary condition.
This will be important in view of (4.5).

Theorem 4.10. Suppose that KM < 0 and that M is asymptotically harmonic
about a point ξ ∈ M∞. Let D be the complement of a horoball in M with center ξ
and B be a self-adjoint elliptic boundary condition B for D which is non-positive.
Then the spectrum of ∆ on D with respect to B is absolutely continuous.

Proof. We return to the setup in the proof of Theorem 3.6. Let b be the Busemann
function associated to ξ such that D = b−1((0,∞)) and

X = (1− e−hb)∇b.

Since |∇b| = 1, |X| < 1 on D. Recall that divX = h > 0 and that ∇X is positive
definite on D.

As in the proof of [12, Theorem 2], let Y be a smooth vector field on D with
compact support in D and T = TY be differentiation of functions in the direction
of Y . Then there are constants C1, C2 > 0 such that ∇X ≥ C1 on the support of
Y and such that |Y |2 ≤ C2.

Now C∞c,B(D̄), the space of smooth functions on D̄ with compact support in D̄
satisfying one of the above boundary condition B, is a core for ∆ with boundary
condition B. Since divX = h > 0 is constant and X vanishes along ∂D, (4.6) and
(4.7) yield, for u ∈ C∞c,B(D̄),∫

D

(
∆u− λu

)
PXu =

∫
D

(
〈∇∇uX,∇u〉+

h

4
∆u2

)
=

∫
D

〈∇∇uX,∇u〉 −
h

2

∫
∂D

u∇νu

≥
∫
D

〈∇∇uX,∇u〉 ≥ C1

∫
suppY

|∇u|2

≥ C1

C2

∫
D

|Y u|2 =
C1

C2
‖TY u‖22.
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Now (4.9) applies and shows that TY is S-smooth on any given bounded Borel
subset A ⊆ R. Hence we get from (4.2) that RanEAT

∗
Y ⊆ Hac(∆, B), for any

bounded Borel subset A ⊆ R. Therefore RanT ∗Y ⊆ Hac(∆, B).
Now suppose that u ∈ L2(D) is perpendicular to Hac(∆, B). Then u is perpen-

dicular to RanT ∗Y , for all vector fields Y as above. But then TY u = 0 in the sense
of distributions, for all such vector fields Y . This implies that u is constant and,
therefore, that u vanishes, by square-integrability. �

Theorem 4.11. Suppose that KM < 0 and that M is asymptotically harmonic
about a point ξ ∈ M∞. Let D ⊆ M be the shadow of a smooth domain C in a
horosphere H in M with center ξ. Then the Dirichlet and Neumann spectrum of
∆ on D are absolutely continuous.

Proof. The proof is similar to the above one, changing the proof of Theorem 3.10,
instead of Theorem 3.6, analogously. �

Proof of first part of Theorem 1.3. Let b be a Busemann function associated to ξ
and X = ∇b. Then |X| = 1 and divX = h > 0. Furthermore, ∇X is positive defi-
nite on the orthogonal complement of X, that is, in the direction to the horospheres
in M with center ξ.

Let Y be a smooth vector field on M with compact support such that Y ⊥ X.
Then there are constants C1, C2 > 0 such that ∇X ≥ C1 on the support of Y and
perpendicularly to X and such that |Y |2 ≤ C2.

Now C∞c (M) is a core for ∆. Since divX = h > 0 is constant, (4.6) and (4.7)
yield, for u ∈ C∞c (M),∫

M

(
∆u− λu

)
PXu =

∫
M

〈∇∇uX,∇u〉 ≥ C1

∫
M

|∇⊥u|2

≥ C1

C2

∫
M

|Y u|2 =
C1

C2
‖TY u‖22,

where ∇⊥u denotes the component of ∇u perpendicular to X. Now (4.9) applies
and shows that TY is S-smooth on any given bounded Borel subset A ⊆ R. Hence
(4.2) implies that RanEAT

∗
Y ⊆ Hac(∆, B), for any bounded Borel subset A ⊆ R.

Therefore RanT ∗Y ⊆ Hac(∆, B).
Now suppose that u ∈ L2(D) is perpendicular to Hac(∆). Then u is perpendic-

ular to RanT ∗Y , for all vector fields Y as above. But then TY u = 0 in the sense
of distributions, for all such vector fields Y . This implies that u is constant along
horospheres, that is, levels of u are unions of horospheres. Now the preimage b−1(B)
of any Borel subset B ⊆ R of positive measure has infinite measure. Therefore u
vanishes, by square-integrability. �

Proof of part of Theorem 1.4. By the definition of elementary groups of isometries
of M , the gradient field X of Busemann functions, that is, the field of velocity
vectors of unit speed geodesics emanating from ξ, is invariant under Γ. Notice that
X spans the normal space to the fibers of the Riemannian submersion π. Now the
arguments of the previous proof apply and show that u ∈ L2(N) is perpendicular
to Hac(N) if and only if u is constant on the fibers of π. There are now two cases:
The fibers of π have infinite volume. This is always the case when Γ is of type a).
Then, as in the previous proof, the square-integrability of u implies that u = 0

In the second case, Γ is of type b). Then the flow (Ft)t∈R of X induces diffeo-
morphisms between the fibers of π = b, and the volume element of horospheres is
multiplied by exp(ht) under Ft. Hence, since the fibers of b have finite volume,
their volumes satisfy

exp(ht)|b−1(s)| = exp(hs)|b−1(t)|.
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Furthermore, the space L2
b(N) of functions on N , which are constant fiberwise, and

its orthogonal complement L2
0(N) are invariant under ∆. That is, the spectrum

of ∆ is the combination of the spectra of ∆ on L2
b(N) and of ∆ on L2

0(N). By
what we said above, if u ∈ L2

0(N) is perpendicular to Hac(N), then u = 0. Thus
L2
0(N) ⊆ Hac(N), and we are left with discussing ∆ on L2

b(N).
Note that u ∈ L2(N) is in L2

b(N) if and only if u is a pull-back b∗v for some
function v on R. We endow R with the measure µ = h0 exp(ht)dt, where h0 =
|b−1(0)| and get that

b∗ : L2(R, µ)→ L2
b(N) (4.12)

is a unitary transformation. With respect to b∗, the Laplacian on N corresponds
to a diffusion operator on R,

∆b∗v = b∗(−v′′ − hv′). (4.13)

Let ϕ be the square root of h0 exp(ht). Then

ϕ′ =
h

2
ϕ and ϕ′′ =

h2

4
ϕ. (4.14)

Therefore, under the unitary transformation

L2(R, µ)→ L2(R), v 7→ ϕv,

we obtain

(ϕv)′′ = ϕ′′v + 2ϕ′v′ + ϕv′′ = ϕ(
h2

4
v + hv′ + v′′). (4.15)

We conclude that the Schrödinger operator Sw = −w′′ + h2w/4 in L2(R) corre-
sponds to the above diffusion operator on L2(R, µ). Since h2/4 is a constant, the
spectrum of the latter is absolutely continuous and equal to [h2/4,∞). By unitary
equivalence, the same holds for ∆ on L2

b(N).
By Observation 2.1, σ(N) ⊆ [h2/4,∞), hence the above shows equality, σ(N) =

[h2/4,∞), in the case where the fibers of π are of finite volume. The case where
the fibers are of infinite volume will be discussed in Section 6. �

5. Homogeneous Hadamard manifolds

The aim of this section is the proof of Theorem 1.2. In contrast to Theorem 1.3,
we do not assume that the sectional curvature is negative. For that reason, we need
to investigate the underlying geometry of the manifolds more carefully and start
with the necessary background material. Our main source is [11], and we refer the
reader to it for more details and references. Another good reference is [6].

Let M be a homogeneous Hadamard manifold. Then there is a solvable Lie
group S of isometries of M which acts simply transitively on M . By choosing an
origin x0 of M , the orbit map S → M , g 7→ gx0, is a diffeomorphism, and the
pull-back of the Riemannian metric of M to S is a left-invariant metric on S. In
this way, we identify M with the simply connected solvable Lie group S, endowed
with the above left-invariant Riemannian metric.

Let s be the Lie algebra of S, Then n = [s, s] is nilpotent, the orthogonal com-
plement a = n⊥ of n in s is Abelian, and S = A nN , where A and N denote the
connected Lie subgroups of S tangent to a and n, respectively. Note that A and
N are simply connected and, therefore, non-compact. By Corollary A.23, we can
assume that M respectively S has no Euclidean factor. This is convenient since it
keeps the structure of S more accessible; cf. [11, Section 1].

For v ∈ a, let Dv and Sv be the symmetric and skew-symmetric parts of adv |n.
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Proposition 5.1. There are an ad a–invariant orthogonal decomposition

n = n1 ⊕ · · · ⊕ nk

of n into subalgebras nj, roots µj ∈ a∗, and positive definite symmetric operators
Dj on nj, for 1 ≤ j ≤ k, such that

(1) for all v ∈ a, the restriction of the symmetric part Dv of adv to nj is given
by µj(v)Dj;

(2) the µj are pairwise not collinear and span a∗;
(3) W = {v ∈ a | µj(v) > 0 for all 1 ≤ j ≤ k} 6= ∅.

Let v ∈ W and γ be the geodesic through the neutral element of S with initial
velocity v. By [11, Proposition 3.3], S fixes ξ = γ(∞). Hence, since all left-
translations are isometries of S, we conclude that S is asymptotically harmonic
about ξ.

View elements of s now as left-invariant vector fields on S, where we use V
to denote the one corresponding to v. Since S fixes ξ, the gradient of Busemann
functions on S centered at ξ equals −V . Hence the second derivative of Busemann
functions on S centered at ξ equals −∇V .

By (1) and the choice of v, there exists a constant c > 0 such that

〈[v, z], z〉 = 〈adv z, z〉 = 〈Dvz, z〉 ≥ c|z|2

for all z ∈ n. Hence we obtain

−〈∇ZV,Z〉 = 〈[V,Z], Z〉 ≥ c|Z|2

for any left-invariant vector field Z coming from n. Since a is Abelian,

−〈∇Y V, Y 〉 = 〈[V, Y ], Y 〉 = 0

for any left-invariant vector field Y coming from a. Finally, for Z coming from n
and Y from a, we compute

〈∇ZV, Y 〉+ 〈∇Y V,Z〉 = 〈∇V Z, Y 〉+ 〈∇Y V,Z〉 = 〈Z, [Y, V ]〉 = 0,

where we use that n is an ideal and that a is Abelian.

Proof of first part of Theorem 1.2. Now we adapt the arguments from the proof of
Theorem 1.3 to the present situation and set X = −V . Recall that V is a gradient
field so that ∇X is symmetric. On the left-invariant distribution Sa coming from
a, we have ∇X = 0. With C1 = c, where c is as above, we have ∇X ≥ C1 on the
left-invariant distribution Sn coming from n. Furthermore, 〈∇SaX,Sn〉 = 0.

Let Y be a smooth vector field on S with compact support which is perpendicular
to Sa. Choose a constant C2 > 0 such that |Y |2 ≤ C2.

Now C∞c (M) is a core for ∆. Since divX = h > 0 is constant, (4.6) and (4.7)
yields, for u ∈ C∞c (M),∫

M

(
∆u− λu

)
PXu =

∫
M

〈∇∇uX,∇u〉 ≥ C1

∫
M

|∇⊥u|2

≥ C1

C2

∫
M

|Y u|2 =
C1

C2
‖TY u‖22,

where ∇⊥u denotes the component of ∇u perpendicular to Sa. Now (4.9) applies
and shows that TY is S-smooth on any given bounded Borel subset B ⊆ R. Hence
(4.2) implies that RanEBT

∗
Y ⊆ Hac(M), for any bounded Borel subset B ⊆ R.

Therefore RanT ∗Y ⊆ Hac(M).
Now suppose that u ∈ L2(M) is perpendicular to Hac(M). Then u is perpendic-

ular to RanT ∗Y , for all vector fields Y as above. But then TY u = 0 in the sense of
distributions, for all such vector fields Y . This implies that u is constant along the
orbits of N , since the orbits of N meet the distribution Sa orthogonally. Since N
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is non-compact, the N -orbits have infinite (dimN -dimensional) volume. Hence the
union of orbits meeting a Borel subset of an A-orbit of positive (dimA-dimensional)
volume has infinite volume in S. Since u is square-integrable, we conclude that u
is identically zero. This concludes the proof that the spectrum of M is absolutely
continuous. �

The second part of Theorem 1.2 holds under much more general assumptions.
Therefore we state it as an extra result here.

Theorem 5.2. Let G be a connected Lie group, endowed with a left-invariant
Riemannian metric. Assume that G is solvable or is a compact extension of a
solvable Lie group, Let N be the derived subgroup of G, and assume that Q = N\G
is non-compact. Then σ(G) = [h2/4,∞), where h is the mean curvature of N as a
submanifold of G, given by

h2 =
∑
j

(tr adXj
|n)2 =

∑
j

(tr adXj
)2.

Here (Xj) is an orthonormal basis of the orthogonal complement of n in s.

Proof. We invoke Theorem 2.4. The Riemannian manifold M there corresponds to
the Lie group G here, the Lie group G acting on M there corresponds to N here,
acting freely on G by left-translations. Since N is a closed subgroup of G and the
Riemannian metric on G is left-invariant, the action is proper and isometric.

Since N is the derived subgroup of G, it is a closed and normal subgroup of G
such that the quotient Q = N\G is an Abelian Lie group. As the derived subgroup
of a connected Lie group, N is connected.

Since N is normal in G, the fibration π : G → Q is G-invariant. Therefore the
left-invariant Riemannian metric on G induces a left-invariant Riemannian metric
on Q, such that π is a Riemannian submersion. Since Q is connected and Abelian,
the left-invariant metric on M is flat and Q is a Euclidean space E times a torus
T . Since Q is non-compact, dimE > 0. From Corollary A.21 and Example A.22,
we conclude that the Laplace spectrum σ(Q) = [0,∞).

Since π is invariant under left-translation by G, the field H of mean curvature
of the fibers is left-invariant and is π-related to a left-invariant vector field on Q,
the push-forward π∗H of H. Since G is amenable, being a compact extension of a
solvable Lie group, we derive that so is the closed subgroup N . Furthermore, as the
derived subgroup of a Lie group, N is unimodular. Thus we may apply Theorem 2.4
to obtain that σ(M) = [λ0,∞), where λ0 is equal to the bottom of the spectrum
of the Schrödinger operator S on Q defined in (2.3).

Since Q is flat, π∗H is parallel, hence of constant norm with vanishing divergence.
Therefore the potential of the Schrödinger operator S in (2.3) is constant and equal
to h2 = |π∗H|2 = |H|2. Since the bottom of the spectrum of the Laplacian on Q is
equal to 0, we get λ0 = h2/4 as claimed.

Let (Yi) be an orthonormal basis of n. Then the mean curvature field H of the
fibers of π is the left-invariant vector field which, at the neutral element, is equal
to the component of

∑
i∇YiYi perpendicular to n. If (Xj) is an orthonormal basis

of the orthogonal complement of n in s, then we get that

H =
∑
i,j

〈∇YiYi, Xj〉Xj =
∑
i,j

〈[Xj , Yi], Yi〉Xj =
∑
j

(tr adXj |n)Xj , (5.3)

which implies the first asserted equality. The second follows since the orthogonal
complement of n in s does not contribute to tr adXj . �
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6. Determination of the spectrum

In this section we aim at the determination of the spectrum σ(M). We start
with the case where M is a Hadamard manifold with sectional curvature KM < 0
which is asymptotically harmonic about a point ξ ∈ M∞ with mean curvature of
horospheres equal to h > 0. Recall from the first part of the proof of Theorem 1.4
that the case left is N = Γ\M , where the fibers of the associated Riemannian
submersion π = b : N → R are of infinite volume, where b is the push-down to N
of some Busemann function associated to ξ. We subsume the case N = M here by
including Γ = {id}. From Observation 2.1, we know that σ(N) ⊆ [h2/4,∞).

For any smooth function v on R, we have

∆b∗v = b∗(−v′′ − hv′).

Now ϕ = ϕ(t) = exp(ht/2) satisfies ϕ′ = hϕ/2 and ϕ′′ = h2ϕ/4. With µ = ϕ2dt,
the unitary transformation

Φ: L2(R, µ)→ L2(R), Φ(v) = ϕv,

yields

(Φ(v))′′ = (ϕv)′′ = ϕ(
h2

4
v + hv′ + v′′),

and hence Φ intertwines the diffusion operator Lv = −(v′′ + hv′) in L2(R, µ) with
the Schrödinger operator Sw = −w′′ + h2w/4 in L2(R). Therefore the spectra of
L and S coincide, where we recall that Hac(S) = L2(R) with σ(S) = [h2/4,∞).

We want to show that σ(S) ⊆ σ(N). In contrast to the case where the volume
of the fibers of b are of finite volume, we cannot simply use pull backs b∗v since
we would lose square-integrability that way. What we will do is to carefully cut off
pull-backs.

Lemma 6.1. Suppose that −1 ≤ KM ≤ −a2 < 0 and that ‖∇RM‖∞ < ∞. Let
χ0 : b−1(0)→ R be a non-zero C2 function with compact support. Extend χ0 to N
by letting χ = χt be equal to F ∗−tχ0 on b−1(t), where (Ft)t∈R denotes the flow of
X = ∇b. Then χ is C2 and ∇χ and ∆χ tend to zero uniformly as t→∞.

Proof. Since χ is constant along the flow lines of X, the gradient of χ is tangential
to the fibers of b−1(t) of b. By the upper curvature bound −a2, unstable Jacobi
field J grow at least exponentially,

|J(t)| ≥ eat|J(0)| for all t > 0.

Therefore

|∇χt| ≤ e−at|∇χ0| for all t > 0, (6.2)

which implies the first assertion.
For the estimate of the Laplacian, we refer to [3, Section 6]. The situation there

is that of a Hadamard manifold X with pinched negative sectional curvature and
uniformly bounded covariant derivative of its curvature tensor, a convex domain
C in X, and a function obtained by extending a given function on ∂C to X \ C
constantly along minimizing geodesics to C. In our situation, X corresponds to
M , C to the horoball b−1((−∞, 0]), and the given function to χ0. A short look
at the arguments in [3, Section 6] shows that they also apply in the corresponding
situation in N . The estimate obtained in [3] is that

|∆χ| ≤ c0e−at over b−1(t), for all t > 0,

where c0 is a constant, which depends on bounds for KM , ∇RM , ∇χ0, and ∇2χ0;
compare with [3, (6.4) and end of Section 6]. �
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End of proof of Theorem 1.4. Let λ ∈ σ(S) and ε > 0. Choose a non-vanishing
w ∈ L2(R) such that ‖(S − λ)w‖2 ≤ ε‖w‖2. By shifting w along R if necessary, we
can assume that suppw ⊆ [t,∞), where t > 0 is such that c0 exp(−at) < ε. Note
that shifting w is legitimate since Sw is only shifted accordingly. Then v = w/ϕ
also has support in [t,∞) and satisfies ‖(L−λ)v‖2 ≤ ε‖v‖2, where now the L2-norm
is taken with respect to µ = ϕ2dt. Then

∆(χb∗v) = (∆χ)b∗v − 2〈∇χ,∇b∗v〉+ χ∆b∗v = (∆χ)b∗v + χb∗Lv

since∇χ is perpendicular to X and∇b∗v is collinear with X and since b∗ intertwines
∆ with L.

Since b is a Riemannian submersion and the flow maps Fs of X induces a dif-
feomorphism of b−1(0) with b−1(s), for all s ∈ R and with respective Jacobian
ϕ2(s) = ehs. Thus we identify x ∈ N with (y, s) ∈ b−1(0)× R, where b(x) = s and
Fs(y) = x, and get

‖χb∗v‖22 =

∫
χ2(x)(b∗v(x))2dx

=

∫∫
b−1(0)×R

χ2
0(y)v2(s)ϕ2(s)dyds

= ‖χ0‖22
∫
R
v2(s)ϕ2(s)ds = ‖χ0‖22‖v‖22,

(6.3)

where ‖χ0‖2 denotes the L2-norm of χ0 in L2(b−1(0)). Likewise, by the choice of t,

‖(∆χ)b∗v‖22 ≤ ε2| suppχ0|‖v‖22. (6.4)

and hence

‖(∆χ)b∗v‖22 ≤ ε2
| suppχ0|
‖χ0‖22

‖χb∗v‖22 = ε2c21‖χb∗v‖22, (6.5)

where c1 depends on the choice of χ0. Hence we obtain

‖(∆− λ)(χb∗v)‖22 ≤ 2‖χb∗(L− λ)v‖22 + 2ε2c21‖χb∗v‖22
= 2‖χ0‖22‖(L− λ)v‖22 + 2ε2c21‖χb∗v‖22
= ε2c22‖χb∗v‖22,

(6.6)

where c2 depends on the choice of χ0. This implies that λ ∈ σ(N). �

Appendix A. Some spectral theory

A.1. Convolution of measures. Recall that a finite Borel measure ν on R is
uniquely a sum of two finite Borel measures νac and νs on R, where νac is absolutely
continuous and νs is singular with respect to Lebesgue measure λ. Then R is the
disjoint, but not unique, union of a Lebesgue measurable set Yac and a Lebesgue
nullset Ys such that νs is concentrated on Ys, that is, νs(R \Ys) = 0. The countable
set Ypp = {y ∈ R | ν(y) > 0} is a subset of Ys and νs = νpp + νsc, where νpp is
concentrated on Ypp and νsc on Ysc = Ys \ Ypp.

The convolution ν1 ∗ ν2 of finite Borel measures ν1 and ν2 on R is defined to be
the push-forward of the finite Borel measure ν1 ⊗ ν2 on R2 under the map

R2 → R, (x1, x2) 7→ x1 + x2.

In other words, for any Borel set B ⊆ R,

(ν1 ∗ ν2)(B) = (ν1 ⊗ ν2)({(x1, x2) | x1 + x2 ∈ B})

=

∫∫
χB(x1 + x2)dν1(x1)dν2(x2).

(A.1)



14 WERNER BALLMANN, MAYUKH MUKHERJEE, AND PANAGIOTIS POLYMERAKIS

Clearly ν1 ∗ ν2 = ν2 ∗ ν1. Furthermore, if ν1 = g1λ with a λ-integrable g1 on R,
then

ν1 ∗ ν2 = gλ with λ-integrable function g(y) =

∫
g1(y − z)dν2(z). (A.2)

In particular, if in addition ν2 = g2λ with a λ-integrable g2 on R, then

ν1 ∗ ν2 = gλ with λ-integrable function g(y) =

∫
g1(y − z)g2(z)dλ(z). (A.3)

Notice that the latter g = g1 ∗ g2, the usual convolution of g1 and g2.
The support of a measure ν on R is the closed set of points y ∈ R such that

ν(U) > 0 for any neighborhood U of y.

Proposition A.4. The convolution ν = ν1 ∗ ν2 has support

supp ν = supp ν1 + supp ν2.

If supp ν1 and supp ν2 are bounded from below, then supp ν = supp ν1 + supp ν2.

Proof. Let y1 ∈ supp ν1 and y2 ∈ supp ν2. Since the balls

B(y1, ε) +B(y2, ε) ⊆ B(y1 + y2, 2ε)

for any ε > 0 and supp ν is closed, we conclude that the closure of supp ν1 +supp ν2
is contained in supp ν.

To show the converse inclusion, let y ∈ R be a point outside of the closure of
supp ν1 + supp ν2. Then there is an ε > 0 such that B(y, 4ε) does not intersect
supp ν1 + supp ν2. Now choose a dense sequence of y1n in R. Then the sequence of
y2n = y − y1n is also dense in R. Furthermore, for any n,

ν1(B(y1n, 2ε))ν2(B(y2n, 2ε)) = 0

since otherwise B(y1n, 2ε)∩ supp ν1 6= ∅ and B(y2n, 2ε)∩ supp ν2 6= ∅, contradicting
the choice of ε. But, by the density of the sequence (y1n, y2n) in the set S of (y1, y2)
with y1 + y2 = y, we conclude that the ε-neighborhood of the set S is contained in
the union of B(y1n, 2ε)×B(y2n, 2ε). Hence ν(B(y, ε)) = 0.

As for the last assertion, an analogous statement is true for any pair of closed
subsets of R which are bounded from below. To prove the assertion, assume without
loss of generality that the supports of ν1 and ν2 are contained in [0,∞). By the
above, it suffices to show that y /∈ supp ν1 + supp ν2 if, for all 0 ≤ y1 ≤ y, y1 /∈
supp ν1 or y2 /∈ supp ν2. The proof of this latter assertion is similar to the one of
the converse inclusion above. �

For Borel measures µ, ν on R, we write µ ≺ ν to indicate that µ is absolutely
continuous with respect to ν.

Proposition A.5. The components of the convolution ν = ν1 ∗ ν2 satisfy

νpp = ν1pp ∗ ν2pp with Ypp = Y1pp + Y2pp;

νac � ν1ac ∗ ν2ac + ν1ac ∗ ν2s + ν1s ∗ ν2ac.
In particular, if ν1 or ν2 is absolutely continuous with respect to λ, then also ν.

In general, we cannot exclude that the absolutely continuous component of the
convolution of λ-singular measures vanishes. Thus ν1s ∗ ν2s may contribute to νac.

Proof of Proposition A.5. The assertion about νpp is clear from

(ν1 ∗ ν2)(y) =
∑

y1+y2=y

ν1(y1)ν2(y2).

The assertion about νac follows immediately from (A.2) and (A.3). �
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A.2. Decomposition of spectra. Let A be a self-adjoint operator on a (real or
complex, separable) Hilbert space H. A second such operator A′ on a Hilbert
space H ′ is viewed as equivalent to A if there is an orthogonal respectively unitary
transformation T : H → H ′ such that T DomA = DomA′ and TA = A′T on
DomA. We say that such an operator T intertwines A and A′. The spectral
theorem in its multiplicative version says that there is a measure space X with a
finite measure µ and a measurable real function f on X such that A is equivalent
to the multiplication operator Af on L2(X,µ), Afϕ = fϕ, with domain DomAf =
{ϕ ∈ L2(X) | fϕ ∈ L2(X)}. Note that neither X nor µ, given X, are unique.

Suppose that T intertwines A with such a multiplication operator Af . Consider
the push-forward ν = f∗µ, a Borel measure on R. By the definition of f∗µ,

supp ν = essran f, (A.6)

the essential range of f . Whereas ν is not unique, not even the total mass of ν, the
spectrum σ(A), the spectral projections πB , and the spectral measures νu, u ∈ H,
associated to A are invariant respectively equivariant under T . For that reason, it
will be instructive to identify them in the case of Af .

Recall that the resolvent set ρ(A) of A consists of all y ∈ R or y ∈ C, respectively,
such that

A− y : DomA→ H

is bijective. By definition, the spectrum σ(A) is the complement of ρ(A) in R or C,
respectively, where we actually have σ(A) ⊆ R, by the self-adjointness of A. The
point spectrum σpp(A) ⊆ σ(A) is the set of eigenvalues of A.

Proposition A.7. In the notation further up,

σ(A) = σ(Af ) = essran f and σpp(A) = σpp(Af ) = {y ∈ R | ν(y) > 0}.

Proof. If λ does not belong to essran f , then multiplication with (f − λ)−1 is a
bounded operator and is inverse to multiplication with f − λ. Hence λ /∈ σ(Af ).
Conversely, if λ is in the essential range, then we distinguish two cases.
Case I: E = f−1(λ) has positive measure. Then the characteristic function χE is a
λ-eigenfunction of A, and then λ ∈ σp(A) ⊆ σ(A).
Case II: f−1(λ) has measure zero. Let then Sn = {x ∈ X : |f(x) − λ| < 2−n}, for
any n ∈ N. Since λ ∈ essran f , µ(Sn) > 0. Clearly, one has

‖(f − λ)χSn
‖22 =

∫
Sn

|f(x)− λ|2|χSn
|2 ≤ 2−2n‖χSn

‖22,

which shows that multiplication with (f − λ)−1 is not bounded, and therefore,
multiplication with f − λ is not surjective. �

Proposition A.8. The spectral projection of Af associated to a Borel set B ⊆ R
is given by multiplication in L2(X) with f∗χB = χB ◦ f , where χB denotes the
characteristic function of B.

For any u ∈ H, the spectral measure νu on R associated to u (and A) is given by

νu(B) = 〈u, πBu〉2 (A.9)

for any Borel set B ⊆ R, where πB : H → H denotes the spectral projection
associated to A. Since T intertwines the spectral measures associated to A and Af ,

νu(B) = νϕ(B) = 〈ϕ, (f∗χB)ϕ〉2 =

∫
X

(f∗χB)ϕ̄ϕdµ (A.10)

for ϕ = Tu ∈ L2(X) and any Borel set B ⊆ R.
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Let now again ν = f∗µ, decompose ν = νac + νpp + νsc, and write R = Yac ∪ Ys
and Ys = Ypp ∪Ysc as disjoint unions as further up. Then we have, respectively set,

σ(A) = σ(Af ) = essran f,

σac(A) = σac(Af ) = Yac ∩ essran f,

σs(A) = σs(Af ) = Ys ∩ essran f,

σpp(A) = σpp(Af ) = Ypp ∩ essran f = Ypp,

σsc(A) = σsc(Af ) = Ysc ∩ essran f.

(A.11)

We call the latter four the absolutely continuous, singular, point and singular con-
tinuous parts of the spectrum of A or Af .

Proposition A.12. Let L2(X)ac, L
2(X)s, L

2(X)pp, L
2(X)sc be the subspaces of

ϕ ∈ L2(X) vanishing outside f−1(Yac), f
−1(Ys), f

−1(Ypp), f
−1(Ysc), respectively.

Then we have orthogonal decompositions

L2(X) = L2(X)ac ⊕ L2(X)s and L2(X)s = L2(X)pp ⊕ L2(X)sc.

Moreover, besides zero, these subspaces consist precisely of those ϕ ∈ L2(X) such
that the associated spectral measures νϕ are absolutely continuous and singular
with respect to the Lebesgue measure respectively are concentrated on σpp(Af ) and
σsc(Af ).

Proof. The only non-trivial part is the absolute continuity of νϕ with respect to
the Lebesgue measure λ for ϕ ∈ L2(X) vanishing outside f−1(Yac). To that end,
let B ⊂ R be a Lebesgue nullset. Since ϕ vanishes outside f−1(Yac), we readily see
that

νϕ(B) =

∫
f−1(B)

ϕ̄ϕdµ =

∫
f−1(B∩Yac)

ϕ̄ϕdµ.

From the fact that µ(f−1(B∩Yac)) = ν(B∩Yac) = νac(B∩Yac) = 0 and the square-
integrability of ϕ, we conclude that νϕ(B) = 0, which shows that νϕ is absolutely
continuous with respect to λ. �

The characterization of the various subspaces in terms of the corresponding
spectral measures leads under intertwining to a corresponding decomposition of H.

Proposition A.13. With respect to A, we have orthogonal decompositions

H = Hac ⊕Hs and Hs = Hpp ⊕Hsc,

where the associated spectral measures νϕ are absolutely continuous and singular
with respect to the Lebesgue measure respectively are concentrated on σpp(A) and
σsc(A).

For k = 1, 2, let Xk be measure spaces with finite measures µk, Let fk be
measurable functions on Xk and Ak be the self-adjoint operator in L2(Xk) given
by multiplication with fk. Denote by νk = fk ∗ µk the associated Borel measures
on R. Consider the product X = X1 ×X2 with the product measure µ = µ1 ⊗ µ2

and the measurable function f on X defined by

f(x1, x2) = f1(x1) + f2(x2). (A.14)

Let A be the self-adjoint operator on L2(X), given by multiplication with f , and
denote by ν = f∗µ the associated Borel measure on R. By the definition of f and
of the convolution of measures,

ν = ν1 ∗ ν2 (A.15)

since ν(B) = µ({(x1, x2) | f1(x1) + f2(x2) ∈ B}), for any Borel set B ⊆ R.
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Recall that L2(X) is equal to the Hilbert tensor product L2(X1)⊗̂L2(X2). Ac-
cordingly, for k = 1, 2, let Ak be a self-adjoint operator on a Hilbert space Hk and
define a self-adjoint operator A on the Hilbert tensor product H = H1⊗̂H2 via

A(u1 ⊗ u2) = (A1u1)⊗ u2 + u1 ⊗ (A2u2). (A.16)

Then Propositions A.4, A.5, A.7 and Equation A.15 yield the following results.

Proposition A.17. In H = H1⊗̂H2, we have

σ(A) = σ(A1) + σ(A2).

If σ(A1) and σ(A2) are bounded from below, then σ(A) = σ(A1) + σ(A2).

Proposition A.18. In H = H1⊗̂H2, we have

Hpp(A) = Hpp(A1)⊗̂Hpp(A2) with σpp(A) = σpp(A1) + σpp(A2);

Hac(A) ⊇ Hac(A1)⊗̂Hac(A2)⊕Hac(A1)⊗̂Hs(A2)⊕Hs(A1)⊗̂Hac(A2).

Corollary A.19. (1) If Hpp of A1 or A2 vanishes, then Hpp(A) = {0}.
(2) If Hs of A1 or A2 vanishes, then Hs(A) = {0}.
(3) If Hsc of A1 and A2 vanishes, then Hsc(A) = {0}.

A.3. Spectra of Riemannian manifolds. In the present paper, we study Lapla-
cians ∆ of complete and connected Riemannian manifolds M or domains D as
self-adjoint operators in their respective spaces of square-integrable functions.

In the case of Riemannian products, M = M1 ×M2,

∆(u1 ⊗ u2) = (∆u1)⊗ u2 + u1 ⊗ (∆u2). (A.20)

Since the Laplacian is bounded from below, Proposition A.17 yields

Corollary A.21. We have σ(M) = σ(M1) + σ(M2).

The following example is well-known.

Example A.22. Via the Fourier transform, the Laplacian ∆ of Rm corresponds
to multiplication with |x|2 on L2(Rm). Therefore the spectrum of Rm is absolutely
continuous with σ(Rm) = [0,∞).

Together with this example, Corollary A.19(2) yields

Corollary A.23. For any connected Riemannian manifold M , the spectrum of
M × Rk is absolutely continuous, for any k ≥ 1.



18 WERNER BALLMANN, MAYUKH MUKHERJEE, AND PANAGIOTIS POLYMERAKIS

References

1. Robert Azencott and Edward N. Wilson, Homogeneous manifolds with negative curvature. I,

Trans. Amer. Math. Soc. 215 (1976), 323–362.

2. , Homogeneous manifolds with negative curvature. II, Mem. Amer. Math. Soc. 8
(1976), no. 178, iii+102.

3. Werner Ballmann and Panagiotis Polymerakis, On the essential spectrum of differential op-

erators over geometrically finite orbifolds, J. Differential Geometry, accepted for publication;
arXiv:2103.13704.

4. Harold Donnelly and Nicola Garofalo, Riemannian manifolds whose Laplacians have purely

continuous spectrum, Math. Ann. 293 (1992), no. 1, 143–161.
5. , Schrödinger operators on manifolds, essential self-adjointness, and absence of eigen-

values, J. Geom. Anal. 7 (1997), no. 2, 241–257.

6. Jens Heber, On the geometric rank of homogeneous spaces of nonpositive curvature, Invent.
Math. 112 (1993), no. 1, 151–170.

7. Jerry L. Kazdan and F. W. Warner, Curvature functions for compact 2-manifolds, Ann. of
Math. (2) 99 (1974), 14–47. MR 343205

8. Panagiotis Polymerakis, Spectral estimates for Riemannian submersions with fibers of basic

mean curvature, J. Geom. Anal. 31 (2021), no. 10, 9951–9980.
9. Michael Reed and Barry Simon, Methods of modern mathematical physics. IV. Analysis of

operators, Academic Press, New York-London, 1978.
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