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Abstract.

Let k(G] be the group algebra of a polycyclic-by-finite
group G over a field k . We show that, for any finitely
generated k([G]-module Vv , H*(G,V) = @ Hn(G,V) is a

nzo
Noetherian module over the cohomology algebra H*(G,k)

In particular, the power series P_.(V;t) = I dimk Hn(G,V)tn
G n2o

€z [[t]J is a rational function in t of the form
8

£(t) / TT (1-t*i) , where f£(t) € Z[t]. For G = D_ , the
i=1

infinite dihedral group, and char k = 2 we show that

P;(Vi=1) is defined and equals - 3 p(V) , where p(V)

denotes the Goldie rank of Vv .



Introduction.

A celebrated theorem due to Farkas, Snider [F-S] , and
Cliff [C] asserts that the group algebra k[G] of a torsion-
free polycyclic-by~-finite group G over a field k has no
zero divisors. The proof heavily uses the fact that, for G
torsion-free, k[G] has finite global dimension. In the pre-
sence of torsion in G , however, k[G] has .infinite global
dimension if char k divides the order of an element of
G~ {1} . The goal of this note is to establish a cohomolo-
gical finiteness result which holds for general polycyclic-
by-finite G and arbitrary coefficient fields. We also brief-
ly discuss the relations between the cohomology of a finitely
generated k[Gl-module and its so-called Goldie rank in the

case when k[G] 1is prime.

Specifically, let R be a commutative Noetherian ring
and let V be a finitely generated (left) module over the
group ring R[G] , where G is polycyclic-by-finite. Then
we will show in Section 1 that H*(G,V) =e H"(G,V) is a
Noetherian module over the cohomology ringzo

H*(G,R) = @ Hn(G,R) under the action given by the cup pro-
nzo

duct w: H (G,R) x H (G,V) ~+ H (G,V). As a standard con-
sequence, it follows that for ahy additive Z-valued func-
tion A on the class of all finitely generated R-modules,
the power series

P(V;t) = £ A(H"(G,Wt" € zlit 1)
n2o



s
is a rational function in t of the form f(t)frr(1-tki)
i=1

with f£(t)€ Zlt]. For finite groups, these results are due
to Evens [E]. Now each polycyclic-by-finite group G con-
tains a normal subgroup N of finite index which is poly-
(infinite cyclic), and hence of finite cohomological dimen-
sion. Thus our strategy is to use Evens's theorem and extend
it by means of the Lyndon-Hochschild-Serre (LHS) spectral
sequence for 1 + N + G + G/N + 1. The arguments here are

similar to the ones used by Evens.

In Section 2, we consider finitely generated modules V
over the group algebra k[G] of G over a field k , under
the assumption that k[G] is prime. (This holds if and only
if G has no finite normal subgroups # <1> [P, Theorem 4.2.10]1.)
We discuss the relations between the Poincaré series P(V;t)s=
L dim H'(G,V)t" and the Goldie rank o (V) of V . Here, by

definition, p(V) 4is the composition lenght of

Q(k(G]le [ ]V over Q(k[G)), the simple Artinian gquotient
klG

ring of k[Gl. 1In the special case where G=D_ is the infi-
nite dihedral group and char k=2 it is shown that, for any

finitely generated k([G]-mudule V, P(v;-1)=—% p(V)==p (V) /p(k[G]).

The crucial facts about polycyclic-by-finite groups that
will be used in this article are the following:

(1) group rings of polycyclic-by-finite groups over Noethe-
rian rings are Noetherian [P, 10.2.7)] , and

(2) polycyclic-by-finite groups are virtual Poincaré duality

groups [Br, Chap VIII Sec. 10 and 11] ,(B].



A good deal of the material in Section 1 holds for more
general classes of groups, provided one assumes the coefficient
modules V in H*(G,V) to be finitely generated over the
ground ring R (see Remark 3). Since we are interested in
applications to infinite-dimensional modules, we will concen-

trate on polycyclic-by-finite groups.

Notations and Conventions. Throughout, R will be a comm-

tative Noetherian ring, k will denote a commutative field, and
G will be a polycyclic-by-finite group. All modules over
the group rings RfG] and k[G] will be left modules. In

general, our notation follows [P] and [C-E].

1. The Finiteness Theorem

The proof of the first lemma has been shown to us by R.Bieri.

Lemma 1. Let V be a finitely generated R[G]-module..
Then for all n20 , H®(G,V) and Hn(G,V) are Noetherian

as R-modules.

Proof. Since R[G] is Noetherian, we can choose a

projective resolution P = (P ) of V over R[G]) with each

n’ n2o
R[G]

n o (R,V) s

P~ finitely generated over R[G]. Now Hn(G,V)=Tor

=Hn(R0R[G]g), and Rﬁthlg is a complex of finitely generated

R-modules. Since R is Noetherian, each Hn(Rn g) is

R[G]
Noetherian over R, which proves the assertion for Hn(G,V).
Now let N be a torsion-free polycyclitnormal. subgroup of
G having finite index in G. Then, by [B, Satz 3.1.2 and
Bemerkung 1), there exist R-isomorphisms
H'(N,V) =

Hean-n  (N/R&V),



where :¢dAN denotes the cohomological dimension of N
an R is an R[N]-module such that RsR as R-modules but
each x€N acts as Id or -Id. Clearly, R QR V is finitely
generated over R[N]’, as V is, and so the foregoing implies
that Hn(N,V) is a Noetherian R-module. To prove the assertion

for Hn(G,V) consider the LHS-spectral sequence for

1—> N-—G—> G/N— 1. Its Exsterm Ezp'q(V) = uP(g/n, 89, v))

2
is finitely generated over R. Hence Eg’q (V) is Noetherian over
R, being a subquotient of Ezp’q(V) , and we conélude that

Hp+q(G,V) is Noetherian over R. o

Now consider H*(G,R) = @ Hn(G,R), with the trivial
nzo
action of G on R, and H*(G,V)==0 Hn(G,V)..The‘multipli—

n2o0
cation of R gives rise to a cup product u:Hp(G,R)x Hq(G,R) —

*

— Hp*q(G,R) which makes H (G,R) an R-algebra and, similarly,
the action of R on V yields an action of H*(G,R) on H*(G,V)
via cup products. The following result is the promised extension

of Evens's theorem [E, Theorem 6.1].

Theorem.2. Let V be a finitely generated R[G]-module.

* X
Then H (G,V) is a Noetherian module over H (G,R).

Proof. Let N be a torsion-free polycyclic normal sub-
group of G having finite index in G. Then N has finite cohom-

dogical dimension [G,§8.8, Lemma 8] and so Lemma 1 implies

* c
that H (N,V) =n§¥ H(N,V) 1is Noetherian over R. By Evens's

theorem, we conclude that H*(G/N,H*(N,V)) is Noetherian
over H*(G/N,R)-



Now consider the LHS-spectral sequence for 1—»N—>G—>G/N

~>1, with Ez—term Ezp'q(.)= HP(G/N,Hq(N,.)). For each

r 2 2, there is a canonical pairing

. P,4q s,t p+s,g+t
: Er (R) x Er' (V) —> E_ v)

induced by the action of R on V. If dr denotes the

differential of Er(.), then one has the following product

rule

e = +q P:q s,t
a_{a'b)= (d_a).b + (-15 a-(ab) (aeeP’I(r), peed t(v)).

Moreover, since ES'q(.) = Ez'q(.) for r > max {p,g+1} ,we.get

an analogous pairing for the E_-terms. For r=2, the above

pairing coincides with the cup product pairing
8P (G/N, 89 (N,R)) x H®(G/N,HE(N,V)) — EP'E(G/N,HT'E(N,V)),
except for a + sign [H-S, Section II.5]. Specifically ,

* *
letting o, denote the isomorphism EZ(VLJ—> H (G/N,H (N,V))

and similarly for R, we have

. = - pt [ p'q s,t
¢V(a b) = (-1) 0R(a) \a¢v(b) (aeE2 (R) , bEE2 v)).
In particular, E;'O(R) becomes a graded ring, isomorphic to

C *
the cohomology ring H*(G/N,R), and EZ(V) =t§§ E 't(V)

*
14

o
2 (R).

is a direct sum of graded modules over E



Altering the action by a #+sign as above doesn't
affect the lattice of graded submodules and so we conclude
from the first paragraph of the proof that E (V) hasithe
ascending chain condition for graded E ° {R) -submodules.
Hence, by [N-VO, Chap. A, Theorem II. 3.5], EZ(V) is

* O
Noetherian over Ez' (R) .

Let hr : ker dr —_— Er+1 (.) be the canonical

epimorphism and set

E,,«(V) = {BEE,(V) | h _,*...*h,(b) € kerd for all ra2},

* O

and similarly for E (R). Note that E_,’' (R) < E (R),
2!n 2 2,“

since the spectral sequence lies in the first quadrant. The

product rule for the differentials dr implies that
o(R) E V) < E «(V). 1In particular, E2 « (V) is an
1

(R)—submodule of E2(V) and as such is Noetherian.

Under the projection maps
*/O(R).—>> E ' (R)
E, o(V) —>> E_(V) and E, ~3%> E_ '

the action of E ' (R) on E2 «{V) dinduces the pairing
14
. 3 E“'O(RJ-x E, (V)= E_(V) mentioned above. Thus E_(V)

is Noetherian as a module over E:'O(R)‘and,fa fortiori, over E_ (R)

Finally, E.(.) is the associated graded module of
* *
H (G,.) with respect to a suitable filtration of H (G,.)

which makes H*(G,R) a filtered ring and H*(G,V) a



*
filtered module over H (G,R) [H-S, Section IIXI.1].
* *
Therefore, H (G,V) is Noetherian over H (G,R) [N-VO,

Chap. D, Corollary IV.4] , and the theorem is proved. o

Remark 3. If V in the above theorem is assumed to be
finitely generated over R, then the same conclusion holds
for much wider classes of groups G. Namely, it certainly
suffices to assume that G has a subgroup N of finite
index such that the trivial R([N]-module R has a finite
resolution by finitely generated projectives over RI[N]
(so, in the terminology of [Br, Chap. VIII), G is of

type VFP over R). Indeed, the above proof can be copied
literally, with Lemma 1hecoming superfluous, as

H*(N,V) is clearly Noetherian over R. Therefore, part(i)
of the following corollary holds more generally and so does
part(ii), provided the coefficient module V is finitely

generated over R.

*
Corollary 4. i. B (G,R) is a Noetherian ring and a

finitely generated R-algebra (Quillen [Q, Propositioni4.5]).
ii. Let V be a finitely generated RI[G]-module.

Then for any additive ZZO-valued function on the class

of all finitely generated ' R-modules, the power serles

(cf. Lemma 1)

P (Vrt) =n§° A(EY (G, V)t € Zlt]

. ;

is a rational function in t of the form f(t)/?T'(1-tki)
i=1

with f(t) € Z(t}].



Moreover, if ch(V) denotes the order of the pole
of PG(V;t) at t=1 , then

1

ch(V) = inf {r€R| l(Hn(G,V)) s c.n¥” for some <> 0O

and all n > o).

Furthermore, ch(V) s ch(R) where R is the trivial

R[G]-module.

*
Proof. (1). Theorem 2 implies that H (G,R) is a Noetherian
ring. In particular, the ideal H+(G,R) = @ Hn(G,R) is

n>o
finitely generated as a left ideal, say by the elements

xiEHki(G,R) {(i=1,2,...,8). It is then easy to see that

*
XqrXyreoorXg together with 1 generate H (G,R) as an

R-algebra (cf. [A-M, Proposition 10.71]).

(ii). In view of part (i) and Theorem 2, the assertion
concerning the rationality of BG(V;t) follows from the
Hilbert-Serre theorem [ A-M, Theorem 11.1}. Indeed, s

and the exponents k in f£(t)/ fﬁ'(1-tkf) can be chosen
i t=1

as in part(i). (The proof given in [A-M] works for

* *
H (G,R), since H (G,R) satisfies xy = (—1)nmyx for
x€H™ (G,R) , YEH"(G,R).)

As a consequence of the specific form of the rational
function PG(V:t) it follows that, for large enough n,

the n~-th coefficient dn = A(HD(G,V)) can be written as

r

. *321 Pj(n)a; .
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S

k
Here, the a; s are roots of Jj;. (1-t71) and each

Pj(n) is a polynomial in n with rational coefficients

[H, Section 3.1]. Set k= l.c.m.{ki|i=1,2,...,s} and

p = inf {rer| »(H*(G,V)) s c-n¥"]

n>>o0}. Then a? = 1 for all j and there are functions

for some c¢>»>o0 and all

Cy, : Z/kKE —> @ (2=0,1,...,h) with ch+0 and

h

L
d cz(n+kx)n

n =l=o
for all n>>o0. Clearly, p-1=h. Now consider

- , ) = L n
Q(t) = PG(V,t)/(1 t) *nso Dnt with
h+1

Pn =mZn dp = zzo C, (n+kZ) n*  (n>>0)

‘for suitable functions sz Z/XZ —» @. Since Dn+ 3 Dn 2 0

1
for all n , it follows that Ch+1 is constant >0.
Write Q(t) = Q1(t) + Qz(t) ; where Q1(t) has coefficients

of absolute value <« Donh for a suitable constant D > o

and Qz(t) = Ch+1'n§o nh+1tn . Then, for o<x<1 , we

have

lo, )] (1=x)1*1 < po( L aBy®) . (1o P

no
h
d 1 h+1
s Do g;ﬁ T:x) « (1-x) = De+hl
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Therefore, Qt(t) has a pole of order at most h+1
at t=1, Similarly, Qz(t) has a pole of order exactly
h+2 at t=1 and so the same holds for Q(t). This shows
that PG(V;t) has a pole of order h+1 at t=1 , whence

ch(v) = h+l = p , as we have claimed.

Finally, if p(R) is defined in analogy with p=p (V)
above, then Theorem 2 and the foregoing together imply that

ch(V) = p(V) £ p(R) = ch(R). This completes the proof. o

Example 5 Suppose G does not contain any sub-
group isomorphic to Z/pE xZ/pE and let the coefficient
ring R be of characteristic p . Then, by ([Br, Chap X.

Sec. 6], there exists a positive integer d such that

5" (G,v) s B"*9(G,V) holds for any R[G]-module V and
all n>h(G) , the Hirsch number of G. In particular, if
V 1is finitely generated over R[(G} and Po(Vit) 1is as

in the above corollary, then

ey L _ELE)
Ps(Vit) _ST

1-t

for some polynomial £f(t)eZ(t] of degree s h(G)+d . For
concrete computations in the case when G=D_ is the infinite

dihedral group and R 1is a field of characteristic 2 see

Example 10.
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We conclude this section with a brief discussion of
the case where R=k is a commutative field. There are
several notions of dimension for H*(G,k) at our disposal.
Namely, (i) the Gelfand-Kirillov dimension over k (see
[B-K], (ii) the prime length or classical Krull dimension
of H*(G,k), and (iii) the Gabriel-Rentschler Krull
dimension [R-G]. However, using the fact that H*(G,k) is
a finitely generated module over the central subalgebra

® Hzn(G,k) which in turn is a finitely generated
nzo

k~algebra, by Corollary 4(i) and the Artin-Tate lemma, it is
easy to show that (i), (ii), and (iii) all coincide with
ch(k). The following result of Quillen's (again valid

for G of type VFP over k) determines this number

[Q, Theorem 14.1].

Proposition 6 (Quillen). if char k=p then crg,(k)
equals the p-rank of G , i.e. the largest integer r
such that G contains an elementary abelian subgroup of

order «pr.

2. Relations with Goldie Ranks

Throughout this section, G will be a polycyclic-by-

finite group without finite normal subgroups % <1>. Thus,

for any field k, the group algebra k[G] is prime
[P, Theorem 4.2.10]. If V is a finitely generated

k{G]-module, then we let. p (V) denote its Goldie rank,

i.e.
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p (V) (V) = composition length of Q(k[G]) @ V,

k[G]
where Q(k[G)) is the classical simple Artinian ring of

quotients of k[G]. Rurthermore, we define the normalized

Goldie rank x(V) of V to be

x(V) = xg(V) = o (V) /o (kl[G]).

‘since Q(kx[G)) is flat over k([Gl, p is additive on short
exact sequences and hence x is also additive. The following
lemma describes some further properties of x . Part (ii)

is due to Rosset [R, Proposition 4] and will not be needed

in the sequel.
Lemma 7.
i. Let V be a finitely generated k[G]-module and

let HsG be a subgroup of finite index. Then

xg (V) = [G=H1-1xH(V)-

ii. Let HsG be a subgroup of G and let W be a

finitely generated k{H]-module. Then

xG(k[G] QK[H]W) = XH(W).

Proof of (1). Note that H has no finite normal sub-

groups. Choose a tersion-free normal subgroup N of G with
NsH and ([G:N] finite. We can clearly assume that H=N

gso that H 4is normal in G and torsion-free.
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Let C denote the set of nonzero elements of k[H]. Since
k[H] is a Noetherian ..domain [F-S,C], C is an Ore set
of regular elements in k[H] , and in k[G] [P, proof

el 2 ¢ 'kin)

of Lemma 13.3.5 (ii)]. Moreover, Q(k[G]) = €~
= Q(k[(H]) , and Q = Q(k[G]) is simple Artinian and has

(right and left) demension [G:H] over the division

subring D = Q(k[H]). If VvV is a finitely generated
k[G]-module, then Q Qk[G]V is finitely generated over Q
and hence of the form QQk[G]V = B(r) r where B 1is a

simple left ideal. of Q and r = p(V). In particular,

s)

Q = B( with s p (k[G]) and so we have

1 - .
s 4imQ = [G:H]/s.

dlmDB

1

r/s = [G:H]™ dim, (0@ ;- 1V). To complete

]

Therefore, xG(V)
the proof, note that Qak[G]V = Dak[H]v as D-modules, since

Q = ¢ 'k{G] = pa k[G] , and so dim (08 (o V) =

k[H]

oy (V) = xg (V) . o

We remark that if V is finitely generated projective
over k[G}] and char k=0 , then xG(V) is the EBEuler
characteristic of V as discussed in [P, Chap. 13, Sec. 4].
The following lemma gives a cohomological discription of

xG(V).
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Lemma 8. Let V be a finitely generated k[G]-module.

Let HsSG be a poly-(infinite cyclic) subgroup of finite
index in G and let h = cdH denote the Hirsch number of
Then

h

te:u)™1. I (-1t aim_ H, (H,V)
i=o

xG(V)

i

h
v e L -0t am wlav.

(Recall that, by Lemma 1, each H, (H,V) and Hi(H,V) is

i
finite-dimensional over k.)
Proof. We first consider homology. (This part is

also contained in [R, Proposition 2].) Let P = (Pi)2=°

be a projective resolution of V over k[H] such that

each P, is finitely generated over kk[H]. Then

Hi(H,V) = Hy (kﬂk[H]g),. and hence we get

i i

(=1)

h
di ) = -
] m, H, (H,V) 120 (-1)

K =2

. dimk kﬂk[H]Pi'

By ([P, Theorem 13.4.9), each Pi is stably free. Thus,

as in [P, Lemma 13.4.10), we have dimkknk[H]Pi = pH(Pi)

and the above equality becomes

b i
I 10" aim H, (H,V) vy,

= P
i=0 H

using the additivity of Since pH(V) = XH(V)’ the

pH .

assertion for homology now follows from Lemma 7(i).

H.
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To deal with cohomology, we use Poincaré duality as in
the proof of Lemma 1. By [B], there @exists a one-dimensional
k[H]-module & such that each x€H<§ts as Id or -1d
and such that there are k-isomorphisms

wt,v) = H (#,Xe,V) (0 sish).

h-i
By the foregoing, we conclude that

i
(-1)” dim_ H
° k "1

I~

(-1t aim,_ ulm,v) = (-1)D

(4,%e, V)
o i k

I o~y

i

-nP o, (Re V).

Finally, pH(Eka) = py(V). For, if NsH denotes the kernel
of the action of H on k¥, then N has index at most 2 in
H and the restrictions of V and Eakv to k[N] are

isomorphic. Lemma 7(i) now implies that pH(E@kV) = pH(V)

which completes the proof. o

Presumably Lemma 8 is true for any torsion-free
subgroup HsSG of finite index in G. This is certainly so
for k=R , because finitely generated projective
D [H] -modules are stably free for arbitrary torsion-free
polycyclic-by-finite groups H [F-H]. For general coeffi-

cient fields, however, this seems to be unknown at present.
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) n n
. Using the notation PG(V,t)--nao dimk H (G,V)t
introduced in Corollary 4, the second equality in Lemma 7
can be expressed as

= (=11 1G:u17!
xg(V) = (-1) -[G:H]

‘PH(V;"1) ’
where PH(V;—1) denotes the evaluation of the polynomial

PH(V;t) at t=-1.

Lemma 9. Let V be a finitely generated k[G]-module
which has a finite resolution by finitely generated stably
free projectives over k[G]. Then PG(V:t) is a polynomial’.
in t of degree at most h=h(G), the Hirsch number of

G , and
1 - h. . amm

Proof. Choose a poly-(infinite cyclic) normal
subgroﬁp HSG of finite index in G. By [B, Satz 3.1.2]}
‘and [Br, Chap. VIII Theorem 10.1] , H"“(H,k[H]) = O
for nsh and so H"(G,k[G]) = O for n+h , by the
Shapiro lemma. Therefore, for any finitely generated
k{G]-module W which is stably free , n#h implies
Hn(G,W) = 0 . An application of the long cohomology sequence
now implies that if V has a resolution
0O-~P =P

n=1 e R?* V-0, where all P; are finitely

generated stably free projectives over k[(G] ,
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then, PG(V;t) is a polynomial of degree at most

h
h .in.t . It also follows that PG(V;-1) =¥ (-1)i PG(Pi;-1) .
i=0
Since Xg is additive on short exact sequences, we further
n .
have x (V) = Y (-1);XG(Pi). Therefore, we can assume

i=o
that V 1is stably free, and even free over k[G]. The

Shapiro lemma now implies that, for all n20 , di Hn(H,V) =
"

n —
= [G:H] dim H (G,V). Thus P_(V;t) = (G:H] 1-PH(V;t) and

lemma 8 yields xG(V) = (-1)h-PG(V;—1). o

We now consider the infinite dihedral group

(yx)2 = 1>

@
]

o
"
A
b
<
<
"

and assume the ground field k to be of characteristic 2
Then k [G] has infinite global dimension. Nevertheless,
it turns out that, in this case, the equality

h(G)

xG(V)'= (-1) . PG(V;—1) holds for arbitrary finitely

generated k[G]-modules V.

Exanmple 10. Let G

D_ be the infinite dihedral

group and let char k=2 . Then, for any finitely generated

k[G]-module V, PG(V;t) has the form PG(V;t) = £(t)/1-t

with f(t) €Z[t] of degree s2 , and PG(V;-1) = -xG(V).
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Proof. Since G = C, * C, with c, = <y> and

C, = < yx > cyclic of order 2, we get H(G,V) = H“(c1,V) ®
® Hn(cz,V) for all n22 (G, § 8.6 Theorem 3). Also, for
all nz1, H"(C,,V) = H1(C1,V) = Fix,(y)/(y-1)V and

similarly for CZ' Therefore,

H*(G,V) = H2(G,V) = Fix  (y)/ (y-1)V @ Fix,(yx)/(yx-1)V

for all n22 , and setting hn=dimk Hn(G,V) it follows that

P.(Vit) = h,+h, teh,t? (1eeet?

1E+h, t...) = h_ +h

2
1t + h2t /(1=t).

]
1%z hye

Thus PG(V;t) has the desired form, and PG(V;-1)=h°-h
Next, we show that PG(. ,~1) 1is additive on short

exact sequences

0-Uv->viIiwa-so0,

where U,V,W are finitely generated . k(G]-modules. The

n+1

connecting homomorphism w3 Hn(G,W) —> H (G,U) for

n22 sends [(w1,w2)] € Fixw(y)OFixw(yx)/(y-1)we(yx—1)w sH" (G, W)

to [((y-1)v1)(yx~1)v2)] € FixU(y) e FixU(yx)/(y-1)U ® (yx-1)Us

n+1

s H (G,U), where v1and v, € V are chosen so that

'(vi) = wi . Thus we see that dimkImmn is constant for

all n22 .



- 20 -

In particular, Q(t) = § dimk(Imuh)tn €xf[t] 4is rational
n2o
and defined for t=-1. By the long cohomology sequence, we
have

0= dim, (Ima__.) - diman(G,U) + diman(G,V) - diman(G,W)

n-1
+ dlmk(Immn)

for all nzo. Thus P,(Vit) = Py(Ust) + Po(W:t) - Q(t):(t+1) and

evaluating at t=~1 , we obtain PG(V;-1)= PG(U;-1)+PG(W;-1).

To compute xG(V), let H=<x> s G so that H is

infinite cyclic and normal of index 2 in G. By Iemma 6(i),

= 1 =1
where F = Q(k{H]) = k(x) is the field of rational functions
in x. Set V_ = {veV|av = 0 for some a#0} . Then v, is a

k[G]-submodule of V and is finitely generated over kI[G],
and over k[H]. Hence V, 1is finite-dimensional over k
and, moreover, xG(Vo) = 0., Thus xG(V) = xG(W) where

W=V/V_ is finitely generated free over k[H]. Therefore,
dimF(Fnk[H]W) = dimkw/(x-1)w. In view of the additivity of

P -1) it remains to show that

ole

-1 dim, V/(x-1)V 1if V is free over kl[H]

PG(V7—1) 2

and

PG(V;—1) 0 for V finite~dimensional over k.



- 21 -

Pirst assume that V is finite-dimensional over k.

Then, using the specific form of Hz(G,V), we have
h2 = dimk Fixv(y)- dimk(y—1)v + dimk Fixv(yx)—dimk(yx—1)v.

Similarly, using the isomorphism H1(G,V) = Fixv(y)OFixvlyx)/U
where U = {((y-1)v, (yx-1)v)|veEV} & V/HO(G,V), we get

h1 = ho + dimk Fixv(y) + dimk Fixv(yx) —dimkV.

Thus

- -1 -1
PG(V,—1) = dimkv 5 d(y) 5 d(yx),

where we have set d(y) = dimk Fixviy) + dimk (y=-1)vV and
similarly for d(yx). But Vlk<y> & k <y>T @ x® for

suitable r and s and so dly) = (r+s) + r = dimkV.

Similarly, d(yx) = dimkV, whence PG(V:-1) = 0.

Finally, assume that V is free over k([H]. Then
Hn(H,V) = 0 for n#1 and 81(H,V) s V/(x-1)V = V .
Therefore, H°(G,V)=0 and H™(G,V) & H™ '(G/H,¥) (nz1).

Since V 1is finite-dimensional over k , we can write

v ;Jk<y>r e x° , as above, and we see that H1(G,V) ]
s 1O (<y>,V) s Fixg ly) has dimension r+s , and

HZ(G,V) E H1

(<y>, V) & Fix_(y)/(y-1)V has dimension s.
v
1 -
Thereforea, pG(V;-1) =z - (xr+sg) + iS = -% dimkV , as it

was to be shown.. o
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