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LARGE GAPS OF CUE AND GUE

RENJIE FENG AND DONGYI WEI

ABSTRACT. In this article, we will study the largest gaps of the classical ran-
dom matrices of CUE and GUE. The main result is that the rescaling largest
gaps will converge to a Poisson point process, and the limiting densities are
given by the Gumbel distributions.

1. INTRODUCTION

In random matrix theory, the typical spacings between eigenvalues of classical
random matrices have been well understood for a long time [1, 4]. But there are only
few results known for the extremal spacings. The rescaling limits of the smallest
gaps of CUE and GUE (where the point processes of eigenvalues are both deter-
minintal point processes) were proved by Vinson and he also suggest the decay
order of the largest gap [11]. Later on, Soshnikov studied the smallest gaps for the
general determinantal point processes with translation invariant kernels [9], and
proved that the point processes of the smallest gaps after rescaling are asymptotic
to the Poisson distributions. In [2], Ben Arous-Bourgade adapted Soshnikov’s tech-
nique and reproved the smallest gaps for CUE and GUE, and they further proved
the decay order of the largest gap for these two ensembles and confirmed Vinson’s
prediction. The proofs in [2, 9, 11] highly depend on the determinantal structures
of the point processes. For the point processes without determinantal structures,
in [5], we developed a new technique based on the Selberg integral to prove the
smallest gaps for the circular log-gas (-ensemble for any positive integer 3. As
special cases, our result implies the limiting distributions of the smallest gaps of
the classical random matrices of COE, CUE and CSE. The same technique can be
applied to GOE which has Pfaffian structures [6].

In this paper, we will study the rescaling limits of the largest gaps of CUE
and GUE. We will prove that the point processes of the rescaling largest gaps in
both cases are asymptotic to the Poisson point processes with some explicitly given
intensities. As a direct consequence, we can derive the laws of the rescaling limits
of the k-th largest gap, which are given by the Gumbel distributions. Our results
are further proved to be universal [8].

To state our results, let’s first consider CUE. Let u,, be a Haar-distributed uni-
tary matrix U(n) over C". Suppose u, has eigenvalues e¢%*’s with ordered eige-
nangles 0 < 61 < --- < 6, < 27. Let my > mg > --- be the largest gaps between
successive eigenangles of u,, i.e., myp (1 < k < n) is the decreasing rearrangement
of g1 — 0 (1 < k < n) with 0y, = 0 + 27. Ben Arous-Bourgade showed that
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2 FENG AND WEI

for any p > 0 and 1,, = n°), one has [2]

w1,
v32Inn

In this article, we will give the rescaling limit law for my, as follows.
Theorem 1. Let’s denote my as the k-th largest gap of CUE, and
7 = (2Inn)? (nmy, — (321nn)?)/4 — (3/8) In(21nn),

then {1} will converge to a Poisson point process as n — —+oo where for any
bounded interval I C R, the limiting density is given by the Gumbel distribution,

. ehler—z) ec1—®
HETOO P(r, € 1) = /1 m@ dx.
Here, ¢ = co+1n(m/2) where ¢y = 15 In2+43¢'(—1) is the constant in the expansion
(6) and ((x) is the Riemann zeta function. In particular, the limiting density for
the largest gap Ty 1is,

1T,

Let’s sketch the main ideas to prove Theorem 1. First, by the uniform asymptotic
expansion (6) of the gap probability for a given arc of the circle to be free of
eigenvalues, we can find the correct rescaling formula for the largest gap mj and
our crucial observation is the rescaling limit (11) in Lemma 2. Then the rest main
task is to prove that the point process of the rescaling largest gaps is asymptotic
to the Poisson point process as n — 400, and hence a Gumbel distribution will
be derived. In order to do this, we will first prove Lemma 1 as a criterion for a
sequence of (decreasing) point processes on the real line converging to the Poisson
point processes. Lemma 1 implies that Theorem 1 is proved by the upper bound
(17) and the lower bound (18). The upper bound can be proved by the negatively
associated property of the determinantal point processes. The lower bound is the
most essential part of the whole proof, which is based on the asymptotic splitting
formula (24) for the gap probabilities in Lemma 5. The proof of Lemma 5 is further
based on Lemma 6 and Lemma 7 for the eigenvalue estimates of some symmetric
operators.

For GUE, the joint density of the eigenvalues is

1 —n 322
(1) e = [T n=xP

Zn oy
1<i<j<n

with respect to the Lebesgue product measure on the simplex \; < .-+ < A,,. And
the empirical spectral distribution converges in probability to the semicircle law [1]

pse() = /(4 —a?) /(27),

where we denote fi := max(f,0).

For largest gaps of GUE, the result is completely different inside the bulk and on
the edge of the semicircle law. On the edge, the largest gap is of order n=2/% which
is indicated by the Tracy-Widom law [1]; while inside the bulk, the largest gap is
of order v/logn/n [2, 11]. To be more precise, given I = [a,b] which is a compact
subinterval of (—2,2), let mj > m3 > --- be the largest gaps of type A\iy1 — A;
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with A\j11,\; € I, then Ben Arous-Bourgade [2] showed that for any p > 0 and
I, = n°M),

(irIlf V4 — 22

Regarding the GUE case, we have

) nm;‘n g 1
v32Inn

Theorem 2. Given I = [a,b] which is a compact subinterval of (—2,2), let mj, be
the k-th largest gap of GUE falling in I, we denote S(I) = inf; v4 — 22 and

= (21nn)%(nS(I)mZ —(32Inn)?)/4 + (5/8) In(21nn),

then {1} will converge to a Poisson point process as n — +oo where for any
bounded interval Iy C R, the limiting density is given by the Gumbel distribution,

i P ek(czfa:) 7862_md
Gl P(r € 1) = /, ®—1n° v
Here, the constant ca = co+My(I) depending on I, where ¢y = 1—12 In2+3¢'(-1) and
Mo(I) = (3/2)In(4 — a®) — In(4|al) if a +b < 0, Mo(I) = (3/2) In(4 — b*) — In(4/b])
if a+b>0 and My(I) = (3/2)In(4 — a®) — In(2]a|) if a + b= 0. In particular, the
limiting density for the largest gap 75 is,
eczfmefeQ*“

Note that the constant M (I) depends on whether or not I is a symmetric subin-
terval about origin, this is because the semicircle law is symmetric about the origin.

The starting point to prove Theorem 2 is the observation (38) in Lemma 8, which
is another rescaling limit regarding the gap probability for CUE. Such rescaling limit
about CUE will play an important role in the proof of the largest gaps of GUE. We
still need to prove that the point process of the rescaling largest gaps tends to the
Poisson point process as in Theorem 1, where we need to prove the upper bound
(45) and lower bound (46). And another key ingredient to prove the GUE case
is the comparisons regarding the kernels and the Fredholm determinants between
CUE and GUE in the proofs of Lemma 12 and Lemma 14.

2. A CRITERION FOR THE POISSON CONVERGENCE

We first prove the following general criterion for a sequence of (decreasing) point
processes on the real line converging to Poisson point processes.

k’!l
Lemma 1. Let x(") = > (5T<n) be a sequence of point processes on R such that
k=1 'k

the sequence T,En) (1 <k <ky,) is decreasing for every fized n, f € C*(R) satisfies
f(z) >0, f'(z) <0, f"(x) >0 forz € R and ll)rf f'(x) = 0. Assume that for
x oo

every positive integer k and x1,--- ,xr € R, we have
: (n) i
. n B ‘
i1, i, all distinct j=1 j=1

Then for A = (x,400) or A = [x,+00), we have the convergence

(3) XM (A) 28 (4),
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where x(A) is a Poisson random variable with mean — f'(x). Furthermore, for any
bounded interval I C R, we have the limiting distribution,

" k—1
lim P(r" e I) / D ) el @) dg.

n—-+oo

(n) _

Here, we denote 7, ' = —oo for k > k.
Proof. For a < b, © € R, we simply have
(b—a)x(u>py < (@ —a)t — (2= b)+ < (b= a)X{z>a},

then for ay < a_1, we have

k k
(a L= al H X{T(n)>a 1} S (( 1(Jn) - al)Jr - (Ti(jn) - (1,,1)+)
Jj=1 Jj=1
k
k
= Z ng (”) — agj + < (lel — al) HX{T(”>>a1}
e, ,ep€{£1}j=1 j=1
We denote
(n,k) _
p n — Z 6Ti(n>,'“.,7'i(”)’
i1, i) all distinct ! k

then we have .
" X\ (A)!
(XM (A) - k)!
for every interval A C R. By taking summation over distinct points, we have

(a1 — a1)"p"M (a1, +00)k)

D S et o

i1, i all distinct eq,--+ ,ep€{£1} j=1
<(a-1— al)kp(”’k)((ala +00)").
Using (2), taking expectation and the limit, we have

(a1 — a1)* lim sup Ep(™®) ([a_y, +00)¥)

n—+oo
k
. (1)
< E nEIEOO E E H &j(m, " — ae;)+
€1, en€{£1} i1, 1% all distinct j=1

k
= > T Eife) = (fla) = fla1)*

€1, ,ep€{E1} j=1
<(a_y — a1)* liminf Ep™" ((ay, +00)¥).

n——+00
For every x € R and § > 0, taking (a1,a_1) = (z,x +90) and (a1,a_1) = (x — 9§, ),

we will have

((f(2) = f(a +8))/0)" < liminf Bpt™ ") ((x, +00)")

< limsup p"*) ([z, +00)*) < ((f(z = 6) — f(x))/6)".

n——+00
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Letting § — 0+ and using p(™*) ((z, 400)*) < p(™F)([2, 4-00)*), we have the follow-
ing convergence of the factorial moments,

(n)

where A = (z,+00) or A = [z, 4+00), which implies the convergence of (3).
Now for every k > 0, k € Z, we have

lim (") (4) = k) = P(((A) = k) = (= @))" /') /.
n——+0oo
Therefore, for A = (z,+00) or A = [z, 400), we have

(1) lim P(r” € A)= lim P("(A) 2 k) = B(x(4) 2 k) = pi (~f'(),

n n—-+4oo
where
k=1 |
N
Pk (>\) = - Z ﬁe A7
§=0
thus
k—1 k—1
PVt A Ae—1
0)=0, A =— e M+ Z e e A
and
A A gkl
— / — . s
wr(A\) = /o vy, (s)ds 7/0 = 1)!6 ds.
Changing variables s = —f’(z), we have
—f'(a) k-1 +oo f”(x)(ff’(aj))kfl ,
_f — —s e — f'(z)
6 era)= [ geeas [ R

for every a € R. Now for any bounded interval I C R, we can write I = (a,b) or
I=(a,blorI =[a,b)orI=la,b] where a < b, thus I = A;\ Ay with 4; = (a,+c0)
or A; = [a,+00) and Az = (b, +00) or Ay = [b,+00), and by (4) and (5) we have

lim P(r{" eI)= lim P(r\" € Ay) — lim P(r\™ € Ay)

n—+oo
bV (— f ()L,
=i (=f(a)) —or (=f'(b) = / F( )((k fl()‘)) el @) g

This completes the proof. O

3. THE CUE CASE

3.1. A rescaling limit. For CUE, the gap probability of having no eigenvalue in
an arc of size 2« is equal to the Toeplitz determinant

2T —a
Dy(a)= det S eU=Rbq9 ) .
1<5,k<n \ 27 J,

All the asymptotics we need are direct consequences of the precise analysis of D, («)
given by Deift et al. [3]. More precisely they proved that for some sufficiently large
so and any € > 0, uniformly in so/n < o < 7 — £, one has

o, gil . #
(6) InD,(a)=n 1ncos2 4ln (nsm2) +CO+O<7’LSiD(O¢/2)>’
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here ¢y = 15 In2 + 3¢’(—1) where ¢(z) is the Riemann zeta function.
We denote

(7) Fn(x) =

then we have

8z 4+ 3In(2Inn)  (32lnn)?
2n(2Inn)z n

)

my = Fy (1),
where my, and 7, are as defined in Theorem 1.
From the definition of F,(z), we have
(8) == (Fu(me) — Fu(2))(n/4)(2Inn)? = (my, — Fu(2))(n/4)(2Inn)?,
and for every fixed x, we have
F, . .
(9) lim (@) =1, lim nF,(r) =400, lim n"F,(z)=0, Vy<1.

n—+oo (32 In n)% n—-+oo n—-+oo

For every fixed a € (0, ), by (6) we have

(10) hm (n/4)(21nn)2D () = 0.

Another important consequence of (6) is the following rescaling limit
Lemma 2.

(11) lim n(2lnn)2 D, (F,(z)/2) = e® .

n—-+oo

Proof. Let o, = F,,()/2, then by (9) we have a,, — 0, na, — 00 as n — +00,
thus so/n < a,, < 7 — ¢ for n sufficiently large, and

, 1 2 /2
(12) lim ———— = lim im ———— =0.
n—+oo nsin(ay,/2)  n—+oo nay, n—+oo sin(ay, /2)
Thus, by (6) we have
- —n?lncos2n 4 1 (nsin @) ¢ ) =
(13) ngrfoo <lnDn(an) n* In cos 5 + 4ln nsin - co) =0.
By (9) we have
2Inn)? 2Inn)3 /2 21nn)3
lim 7( nn)E lim 7( nn) lim —o2 / = lim 7( nn)
n—+too nsin(ay,/2) n—o+oo nay/2 n—toosin(ay,/2)  n—too nay/2
(2lnn)= . (32Inn)z
nﬂnfoo nk,(z)/4 n%HJrrloo nk,(x) ’
and thus we have
1 1
(14) ngr}rloo (8 In(2lnn) — 1 In (n sin O;”)) = 0.
By (9) and the Taylor expansion Incosy = —y?/2 + O(y*) as y — 0, we have
2 92
nQIHCOS%—FnSa” =n?0(a}) = n*0O( O( (n/?F,(z )—>O,

and
n*aZ  n?F2(z)  32lnn N 8z +3In(2Inn) (321nn)2 n (8x +3In(21nn))?
8 32 32 (2lnn)? 32 32-4-(2lnn)
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In(21
—nn+ w +o(l)
as n — +oo, which implies
n In(21
(15) lim (n21ncosa+lnn+x—|—3n(nn)> =0.
n—s-+o0o 2 8

y (13)(14)(15), we have

In(21
lim (lnDn(an) +Inn+z+ M Co> =0,

n—-+oo 2
and thus we have

lim In (n(2lnn)%Dn(an)) =cy— 2.

n—-+4oo

As a, = F,,(z)/2, we finally have
lim n(2Inn)2 D, (F,(z)/2) = e,

n—-+oo

which completes the proof of (11). O

3.2. The strategy to prove Theorem 1. Now we take ¢; = ¢o+1In(7/2), f(z) =
et = (2m)e® % /4, then we have —f'(x) = f"(x) = e“*~®. Thanks to Lemma 1,
for every positive integer k, x1,--- ,x; € R, and 7; is as defined in Theorem 1, if
we can prove the following convergence

k k
(16) im E > H(Tij —z)4 H €05 /4)
i1, 1k all distinct j=1 Jj=1
then Theorem 1 will be proved.

We need to introduce some notations. For a set A C R, we denote A(mod 27) :=
{zx+27klz € A,k € Z} N0, 27). Then I(z,a) := [z, z+ a](mod 27) is an arc of size
a for a € (0,27). For 0 < 0y < --- < 6, < 2w and Op4p, = O + 27, denote Ji(a) :=
{z €10,2m)|I(z,a) C (O, 0k+1)(mod 27)} for a € (0,27), 1 < k < n, then we have
Ji(a) = (0g, O0k+1 — a)(mod 27) for Ox11 — 0 > a and Ji(a) = 0 for Ox1q — 0 < a,
thus Jx(a) is an arc of size (0x1 — 0 — a), moreover, Jx(a) C (0, Ox+1)(mod 27)
and Ji(a) N Jy(b) = 0 for k # I. Now let the set

Sp(ag, - ap) = U H 0,2m)",

i1, i all distinct j=1
then this is in fact a disjoint union and

k
Eg(ar, - an)| = > 116,41 —6i; —a))+

1, ,ik all distinct j=1

k
> [T 0mi, —a))+,

i1, 4k all distinct j=1

here, we denote |X| as the k-dimensional Lebesgue measure of a set X C R¥. By
(9), for every fixed x1,--- ,xp € R, there exists Ny > 0 such that 0 < 2sp/n <
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F,(z;) <1< 2w for n > Ny, 1 <j<k. Now we always assume n > Ny. By (8),
we have

k
Z H(Tij 7$j)+

i1, .1 all distinct =1

k
=(n/4)"(2lnn)* > [ (mi, — Fulzi))+

i1, ik all distinct j=1
=(n/49)* (21 n) 3 [Si(Fu (1), -+, Falar)]-
For fixed x1, -+, € R and y1,--- ,yr € [0,27), let’s denote
Srn(yrs- 5 yr) == (n/4)"(2Inn)* x
P((yr, - ye) € Sul(Fulen), - Fulan))).

then we can rewrite

k
E > [ =)+

i1, .1k all distinct j=1

=E(n/4)*(2Inn)? |Sk(Fa(21), -, Fo(ar))]
:/ ¢k1n(y17... 7yk)dy1dyk
[0,27)F

Hence, (16) will be the direct consequence of the following two inequalities and the
dominated convergence theorem: we will prove the upper bound

k
(17) lim sup sup Gy, yk) < H (ec0™%i/4);
n—=+00 y1,-,y, €[0,27) j=1

and if all y;’s are distinct, then we will prove the lower bound
k

(18) L@ig G (Y1, y) > 1—[1 (e~ /4).
J:

3.3. The proof of Theorem 1. Let’s prove Theorem 1.

3.3.1. An equivalent condition. We first need the following equivalent condition for
a point (y1,---,yx) in the set Xp(ay, - ,ax).

Lemma 3. (y1, - ,yx) € g(ay, - ,ar) is equivalent to the following conditions:
(i) Iy, ar) N I(yj,a5) = 0 for 1 <1 < j <k, and (i) 0; ¢ I(y;,a;), for 1 < j <
k7 1< l < n, and (Z”) {913"' 79n} N (ypayq) 7é (Z)u {917"' 7971} \ [y;myq] 7é (Z) fO’I"
every p,q € {1,--- ,k} such that y, < yq4.

Proof. If (y1,--- ,yx) € Zk(a1, - ,ax), then we can find i1, -+ ,ip € {1,--- ,n} all
distinct such that y; € J;, (a;), thus I(y;,a;) C (6;;,0;,+1)(mod 27), and I(y;, a;) N
I(yj,a;) € (0i,0;,41)(mod 2) N (6;,,0;,41)(mod 27) = @ for 1 <1 < j < k, since
iy # i;, which gives (i).

Since 0 < 61 < --- < 0, < 27, we have 0; & (0;,0;4+1)(mod 2) for 1 < 4,1 < n.
Thus for 1 < j <k, 1 <1 <n, wehave 6; & (0;,,0;,41)(mod 2r) and I(y;,a;) C
(0i;,0;,+1)(mod 27), which implies (ii) 0; ¢ 1(y;, a;).
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For every p,q € {1,---,k}, such that y, < y,, we have i, # i,. If i3, # n
then we have y, € I(yp,a,) C (0;,,0;,4+1)(mod 27) = (6;,,0;,41), and similarly
Yq € (0i,,0;,41). Therefore, 0; <y, <wyq <0;,41 and i, < i, + 1, since iy,i, € Z,
we have i, < iy, since iy, # iq, we have i, < iy and i, +1 < i, Thus 0 < 0;, <y, <
i, 41 < 0;, <yg and 0;, 11 € (Yp,q)s Ui, & [Yp,yq), which implies (iii).

If i, # iq = n, then we have y, € (0;,,0;,41) and y, € (6;,,0;,41)(mod 27) =
(0n,2m) U[0,01). Thus 01 < 0; <y, < yq, which implies y, ¢ [0,601) and y, €
(O, 2m). Now we have i, < n, 0 < 0; <y, <041 <0y and 0; 11 € (Yp,¥q),
0i, & [Yp,yq), which implies (iii).

If i, = n # iy, then we have y, € (0,,27) U [0,01) and y, € (0;,,0;,41), iqg < n.
Thus y, < yq < 0i,41 < 0, which implies y, & (0,,,27) and y, € [0,6;). Now we
have y, < 01 < 0;, <yq < 0;,41 <mand 01 € (yp,Yq)s Oi,+1 & [Up, Yq), which also
implies (iii). Now we finish the proof of the first part.

Conversely if (i)(ii)(iii) are true, by (ii) there exists a unique i; € {1,--- ,n} such
that I(y;,a;) C (6;;,0;;4+1)(mod 27), by (i) we know that all y’s are distinct.

If iy = i, for some p,q € {1,---,k} with p # ¢, we can assume y, < y,. If
ip = iq <n, then we have Yp € (Gip,ﬁiﬁl) and Yq € (qu,ﬂiﬁl) = (91p,0¢p+1), thus
i, <yp <Yq <0i,41,and {01,--- ,0,} N (yp,yq) = 0, which contradicts (iii).

If i, = iy = n, then we have y, € (0;,,0;,41)(mod 27) = (0,,27) U [0,6)
and y, € (6;,,0;,41)(mod 27) = (0,,27) U [0,61). Thus, if y, < 61, then gy, <
yg < 61 and {01, -+ ,0,} N (yp,yy) = 0; if y, > 6, then 0, < y, < y, and
{01, .0, N (yp,yq) = 0; if yp, < 0, yq > 01, then y, € [0,61),y4 € (0,,27), and
{01, ,0,}\ [Yp,yq) = 0. All the 3 cases contradict (iii).

Therefore, we must have i, # i, for every p,q € {1,---,k}, p # g, ie,
i1, i € {1,--- ,n} are all distinct, and I(y;,a;) C (0;,,0;,+1)(mod 27), y; €
Ji, (aj), which implies (y1,--- ,yx) € Xg(a1,--- ,ax). This completes the proof. [

3.3.2. Upper bound. The proof of the upper bound is based on the following nega-
tive correlation of the vacuum events for the determinantal point processes.

Lemma 4. Let £ be the point process associated to the eigenvalues of Haar-
distributed unitary matriz (resp., an element of the GUE). Let Iy and Iy be compact
disjoint subsets of [0,2m) (resp., R). Then

(19) P (11U L) = 0) < PE™ (1) = 0)P(E™ (I2) = 0).
By monotone convergence theorem, we have

P(E™(UL%J;) = 0) = lim P(EM (UL, J;) = 0),

k—+o00

thus (19) is also true if I; and I are disjoint F,, subsets (i.e. I = U+°°Ik’j and Iy,

j=1
are compact), especially the subsets in the form of (a,b)(mod 27) or [a, b](mod 27).
By induction, for disjoint F, subsets I1,--- , I, we also have
k
(20) P (U 1) = 0) < [T BE™ (1) = 0).
j=1

By definition of D, (), for a € (0,27), = € R, we have
(21) P(¢™(I(2,a)) = 0) = Dy(a/2).
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We consider the point process

e = Zn: 8o,
i=1

For fixed x1, -,z € R, n > Ny, let’s denote
Ay = {(yl, cyr) € 10,20)F [ I(ys, Fo(:)) 0 I(ys, Fu(,) =0, V1 <i < j < k}
If (y1, - ,yx) € An, then all yi’s are distinct, let
(22)  Ipp = Ui 1Y), Fu(2))), Jring = (2, 2j41)(mod 27), 1< j <k,
here, z;(1 < j < k) is the increasing rearrangement of y;(1 < j < k) and zx41 =
z1 + 2m. Then I ,, is a disjoint union and by Lemma 3 we have
(23) Srn(yrs - uk) = (n/4)*(2lnn) # x
P (Iug) =0, €™ (Juky) >0, V1< j<k).

By (20) and (21) we have

Prn(y1, - uk) < (n/4)*(2Inn)

k
2

B(E™ (I4) = 0)

k
< (n/4)*2Inn) s T PE™ Iy, Fulx))) = 0)

J
Lk
= (n/4)*(21nn)2 H n(x)/2).
For (y1,---,yx) € [0,2m)* \ A, by Lemma 3, we have

k
k(Y1 ur) =0 < (n/4)*(2Inn %H n(z)/2).
7j=1

Therefore, by (11) we always have

k

sup Gra(yr, k) < (0/4)F2Inn) % [ Da(F(a;)/2)

Y1, Yk €[0,2m) j=1

S

n(21nn)2 Dy (Fy(x)/2)/4) = [] (2077 /4) , n — +o0,

Jj=1

sz

which gives the upper bound (17).

3.3.3. Lower bound. Now we consider the lower bound.
If all yi’s are distinct, let z; be the increasing rearrangement of y; and 241 =

21427 as above. By (9), there further exists N7 > Ny (depending only on zq, - - - , zp
and y1,--- ,yk) such that 0 < 2so/n < Fp(x;) < min{z;11 — 2|1 <@ < k}/2 for
n > Ny, 1 <j < k. Then we have (y1, -+ ,yx) € A, for n > Ny, and we can still

use the notation (22) and formula (23) in this case. The proof of the lower bound
is based on the following asymptotic splitting property,
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Lemma 5.
k

(24) dim PE™ (Lk) = 0)/ [T PE™ (I (yj, Fal;))) = 0) =
j=1

For a nuclear operator 7" in the form of

7f(a) = [ Kz fw)d,
the Hilbert-Schmidt norm is given by

T2 = / / K (2, y) [Pdudy

T = /K(:c,x)dx.

and the trace is given by

For a bounded operator T on L?-space, the operator norm is given by

17 = sup {UTflzz] 1l =1}

Let’s recall that the probability that a determinantal point process & with kernel
K has no point in a measurable subset A is given by the Fredholm determinant [1]

P(£(A) = 0) = det(Id — K 4).

In the case of CUE, the point process of eigenvalues £(™) is a determinantal point
process with kernel [1],

1 sin(a(z — y)/2)
27 sin((z — y)/2)

—1
(b= (n=1)/2)i(z—y)_
0

k=

(25) K(z,y) : = KOUP0 (2,y) =

B i n
27

Therefore, the probability that £(™ has no point in a measurable subset I is

(£ (1) = 0) = det(Id — x1 Pax1),

where P, is the orthogonal projection from L?([0,27)) to the finite dimensional

space V;, 1= span{eF=("=1/2)2|0 < k < n,k € Z} with kernel K, (z,y) in (25),

and 7 is the characteristic function supported on I. Assume n > N; and denote

k

(26)  A=x1,,PoX1,.» B=Y_Bj, Bj = Xi(y,.F(a;)PaXi(y, ()
j=1

then we have
P(E™) (I, ) = 0) = det(Id — A);
since the support I(y;, Fy,(z;))’s are disjoint, we also have
k

k
T[] BE™ Iy, Fule;)) = 0) = [] det(1d - B;) = det(1d - B).

j=1
Now (24) is equivalent to
(27) lim det(Id — A)/det(Id — B) = 1.

n—-+o0o
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By (6) we have
k

k
det(Id — B) H M (I(y;, Fu(x5))) = 0) = [ [ Dn(Fu(x;)/2) >

= =1
and thus det(Id—A)/ det(Id—B) is well defined. Since P, is a finite rank orthogonal
projection operator, we know that A, B are both finite rank symmetric operators.

As <Af7 f> = <PnXIn,kfv XIn,kf> = ”PnXIn,ka%?a we have
0 <(Af, ) = |1Paxr, o flI72 <lIxr.. Fl72 < [1£1172,

here, we use the L? inner product

(f.9) = | f( )g(@)dz, |Ifl72 = (f, f)-

Similarly, we have 0 < (B; f, f) < IX1(y,,Fo(2;))f||22, and if n > Ny, then
I(yj, Fn(z;))’s are disjoint and

k
Z B f7 Bf7 < Z ||XI (y5,Fn(x5)) fHL2 < ”fHL2
j=1 Jj=1

Therefore, we can conclude that A, B, Id— A, Id— B are all semi-positive definite.
As det(Id—B) > 0, then Id— B is further positive definite, so is its inverse (Id—B) !
Such results are also true for the GUE case in §4.

We will need the following general comparison inequalities regarding the Fred-
holm determinants which will be used in both CUE and GUE cases.

Lemma 6. Assume A, B are finite rank symmetric operators on a Hilbert space,
Id — B is positive definite and Id — A is semi-positive definite, then we have

1—|A—BJ3||(Id— B)™||> < exp(Tr(A— B)(Id— B)~*) det(Id— A)/ det(Id— B) < 1
and
| Te((A = B)(Id— B)™")| < | Te(A = B)| + |A — Bla| Bl2||(1d — B) '

In the proof we need to use the following formulas [7]
e If A B are finite rank operators, then det(Id — A) det(Id — B) = det((Id —
A)(Id — B)) and | Tr AB| < |Al2|B|2.
e If A is a finite rank operator, B is a bounded operator, then Tr AB = Tr BA
and [ABl, < | Al B,
If B is a finite rank symmetric operator and Id — B is positive definite, let {ex}

be eigenfunctions forming a complete orthonormal basis with Bey = Ax(B)ey, then
Ai(B) € R, A\ (B) < 1. Now we have

det(ld — B) = [[(1 = Me(B)), TrB =) Ax(B)

We can also define (Id — B)? for every p € R as

(Id =B f =Y (1= (B)P(frex)er = f+ > (1= M(B))” = 1)(f, ex)ex.

Then (Id — B)? is also positive definite, (Id — B)?(Id — B)? = (Id — B)P*9 and
det(Id — B)? = (det(Id — B))?. Moreover, for p < 0, we have ||(Id — B)?|| =
(1 — A1(B))P where A1(B) is the largest eigenvalue of B.
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Proof. Since Id— B is positive definite, so is its inverse (Id—B)~! and (Id—B)~! has
a positive square root (Id — B)~/2. Moreover, |(Id — B)~Y?||> = ||(Id — B)~!|| =
(1 — A (B))~!, where A\;(B) is the largest eigenvalue of B and A\i(B) < 1. We
also have (det(Id — B)~1/2)? = det(Id — B)~! = (det(Id — B))~!. Since Id — A is
semi-positive definite, so is A; := (Id — B)~'/2(Id — A)(Id — B)~'/2, and det A; =
det(Id — A)/ det(Id — B). Let B; := (Id— B)~*/?(A— B)(Id — B)~'/?, then we have
Ay + By = 1d, By is a finite rank symmetric operator, Tr B; = Tr(A— B)(Id—B) ™!,
and its eigenvalues \;(B1) are real. Since A; = Id — Bj is semi-positive definite, we

have \;(B1) < 1 and det Ay = det(Id — By) = [[;(1 —A;(B1)). Now we can rewrite

(28) exp(Tr(A — B)(Id — B) ') det(Id — A)/ det(Id — B)
=exp(Tr By) det Ay
= exp(3 A (Ba) [T~ 4 (B0) = TTM P (1= 0y (B))

Since e*(1—A) < 1and 1+ X < e*, we have (1+\); < e and thus 1 > e*(1—)) >
(14 A)4(1—X)=(1—A?); for A < 1. Therefore, we have

(29) 1> [PV -X(B)) = [T = 2B = 1= N\(B)*

Moreover, we have

(30) D N(B1)?=|Bif5 = |(1d - B)"V*(A - B)(1d - B)"'?[3

<[l(1d = B)"2|?|A - BJ3||(1d — B)~/*||* = ||(1d - B)"!||*|A - B3
Therefore, the first inequality follows if we combine (28)(29)(30). We also have
| Tr((A - B)(Id - B)™")]
= Tr((A - B) + (A - B)B(ld - B)™)|
<|Te(A— B)| + | Tx((A - B)B(id — B)™)
<ITe(A - B)| + A - Bla|B(d - B)~];
<|Tr(A — B)| + |A — Bla| Blo||(Id — B) ™',
which is the second inequality. This completes the proof. O

Thanks to Lemma 6 and the fact that lirf (Inn)2e-(n m'? = 0, for every
n—-+0o0

positive integer k, x1,- -,z € R and distinet yq,- -+ ,yx € [0,27), if we can prove
the following bound for n > Ny,

(31) Tr((A—-B)Id - B)™) =0,

Inn
n2

3 1A-BE=0 ("), 10d = B) ! = Ol ke 2),

then (27) will be proved, and thus (24).
By (26), we can write

A-B= Z X1(ys,Fo () PnX1(y;, P () 7= Z XiPn X,
i#j i#j
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here, we denote X; = Xr(y,,F,(x,))- For i # j, we have Tr(x;P,x;(Id — B)™!) =
Tr(P,x;(Id — B)~tx;). Since I(y;, F,(x;))’s are disjoint, we have x;B = B; =
By; and thus (Id — B)y,;(Id — B)"'x; = x,;(Id = B)Id — B)"'x; = x;x; = 0.
Since (Id — B) is invertible, we further have x;(Id — B)™'x; = 0, which implies
Tr(x:Pox;(Id — B)™!) = 0. And thus (31) follows.

By definition of Ny and zj, for « € I(y;, Fi.(x:)), y € I(y;, Fn(zy)), i # j, n >
N7, we have

min(|z — y|, 27 — |z — y|) > min(ly; — y;[, 27 — [y; — y;]) — max(F(2:), Fo(2;))

>min{z11 — 2|1 <i <k} —min{z; 11 — 2|1 <i < k}/2

=min{z;41 — 2|1 <i<k}/2:=qg € (0,27),
and

1 1—e¢n=—y)
% 1 — eilz—y)
using this and (9) we have

A-sE=Y |

dx/
izg Y Wi Fn () I(y;,Fn(z;))

:Z/ d:zc/ O(W)dy = 3 Fu(:) Fa,)0(1)
iz Y 1y (i) I(y;,Fn(z;)) %]
Inn Inn Inn

which is the first inequality in (32). It remains to estimate ||(Id — B)™!||, we need
the following eigenvalue esitmate.

1 1 1

< = ] =0(1),

1
Kn s = — . <S -
(2, y)l |l —e=v| =~ 7|1 —¢

<

|Kn(2,y)*dy

Lemma 7. Let B be a finite rank symmetric operator on a Hilbert space and
Id — B is positive definite, let A\1(B) be the largest eigenvalue of B, then we have
1— A (B) > det(Id— B)e™ 51,

Proof. Let A\i(B) be the eigenvalues of B, then we have A\;(B) < 1 and

det(Id — B)eTr P~ = H(1 — A(B))eZs Ak(B)-1,
k
Using the fact that 0 < (1 — A)e* < 1 for A < 1 again, we have

det(Id — B)e™ P71 = e T](1 = A(B))eM P
k

=(1 =M (B)MP ] = A(B))eMP)
k#1
<(1 = M(B)eMBt <1 - \(B).
This completes the proof. O

Recall the definitions of B and B; in (26), assume 0 # f € L?([0,27)) such that
Bf = M (B)f where A\ (B) is the largest eigenvalue of B, then we have

k
M(B)f =Bf =) Bjf.

j=1
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For n > Ny, i # j, by definition we have I(y;, F,,(z;)) N I(y;, Fn(xj)) = 0 and
then xr(y,.r,(2,))Bj = 0, thus we further have

(33) MB)X1(y:,Fo(zi)) f = X1(ys,Fu(zi)) BS
= XI(yi,Fu(z:)) Bif = Bif = BiX1(y;,Fo(2:)) [

i.e., Xr(y;,Fn(z:))f is an eigenfunction of B; and its largest eigenvalue A\;(B;) >
A1 (B).
If X1(ys, P (2:))f 7 0 for some 1 < i <k, then by Lemma 7 we have 1 — \{(B) >

1 — A1 (B;) > det(Id — B;)e™ Bi~1. Notice that

det(Id — B;) = P(€") (I (ys, Fu(2:))) = 0) = Du(Fn(:)/2),

Kn(z,x) = n/(2m),
and
TrB; = / K, (z,z)dx = nF,(x;)/(2m),
I(yi:Fn(wi))
thus we have
1= \(B) > Dy (Fy () /2)e" 20/ Gm=1,
By (9)(11) and 32 > 72, there exists a constant No > N; such that nF,(x;) >
7(Inn)z and n(41nn)2 D, (F,(x;)/2) > e® % for 1 < i < k. Thus, we further have
1
1—M\(B)>n"'(4 lnn)_%ec‘)_“e(ln")2/2_1.
If X1y, (zi))f = 0 for every 1 <4 <k, then we have B; f = 0, and thus \;(B)f =
0, \(B) =0, 1 =X\ (B) =1. In both cases for n > Ny we always have
1 —A1(B) > min(1, n_l(4lnn)_%ec"_max{x"|1Sj§k}e(ln")%/2_1),

therefore,
. 1
1(1d = B) M| = (1 — A(B)) ™" < 1+ n(4lnn)semex{z1iski—cpl=(nn)2/2

1 1 1 1
S 1 + O(n(lnn)ie_(lnn)Q/Q) = O(n(lnn)ie_(lnn)z /2)’

which finishes the second inequality in (32), and hence, we finish the proof of (24)
in Lemma 5.

Now we can use (24) to prove the lower bound (18). For n > Ny, by (23) we
have

(34) Bren (Y1, i) = (/4 (21nn) TP(E™ (1,1) = 0)

k
— (n/9*2Inn) % Y PEM (k) = € (o) = 0).

j=1
Now we claim that
(n/4)*(2Inn) s PE™ (L x) = €7 (S k) = 0) = 0, n — +o0.

Let o = min{z,;|1 < j <k}, then we have F(x;) > F(xzo), L, 5 2 Ulel(yj,Fn(:co))
= U?zll(zj, F,(z0)). Therefore, we have I,, s UJy i j 2 Jnk, ;U (Ui I (23, Frn(20)))
and the right hand side is a disjoint union for n > Ny. If k = 1, then J,, 1 ; = (0, 27)
and P(€™ (1, 1) = €M (J 1) = 0) = P(£M((0,27)) = 0) = 0. If k > 1, by (20)
and (21) we have

0 <PE™ (L) = €™ (Jnoy) = 0) = P (Lo U Jn ) = 0)
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<P(EM (ke U (Uigg (25, Fu(20)))) = 0)

<P (Tnkg) = 0) [[PE™ (1(z1, Fu(w0))) = 0)
i#j

=Dy ((2j+1 — %)) /2)(Dn(Fn(20)/2)"
Thus by (10) and (11), we have

0< limsup(n/4)k(2 lnn)gp(f(") (In) = E(")(Jn’;w‘) =0)

n—+oo

y L k—1
< lim (n/4)(2n) Da((z41 2 >/2>( lim_(n/4)(2Inn)* D, ( n<xo>/2>)

—0- (e ™ /4)* =0, VI<j<k,

which implies the claim. Therefore, combining the cases £ = 1 and k > 1, using
(11)(21)(24)(34), we have

liminf Ok (Y1, YE)

>liminf(n/4)*(2Inn) 2 P(™ (I, 1) = 0)

n—-+oo

P(E™ (I(y;, Fu(2;))) = 0)

(S
El -

=liminf(n/4)*(2Inn)2

n—-+4oo

j=1
k
= lim inf (n/4) (21nn)’5j];[1Dn(Fn(xj)/2)
k . k
:j:1ngr£oo(n(2lnn)5D n(Fn(z5)/2)/4) = ]_;[ e [4),

which is the lower bound (18). Therefore, we finish the proof of Theorem 1.

4. THE GUE CASE

In this section, let’s denote PCUE(™) (or PEUE(")) as the probability taken with
respect to the Haar measure of U(n) (or GUE), when we drop the superscript, the
expectation E and the probability PP are taken with respect to GUE.

4.1. Another rescaling limit. We first need another rescaling limit of D, ().
Let’s denote

8z —5In(2Inn)  (32Ilnn)2

(35) Cnlw) = 2n(2 lnn)% n

Given a compact subinterval I = [a,b] in (—2,2), let’s denote S(I) = inf; V4 — 22,
then we have

S(my = Gn(7y),

where mj and 7 are as defined in Theorem 2.
From the definition of G, (x) we have

(36) y— = (Gn(y) — Gn(x))(n/4)(2Inn)?,
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and for every fixed z,

G
(37) lim L(m)l =1, lim nG,(z) =400, lim n'G,(z)=0, Vvy<I1.
n—+o0o (32 In n)§ n—+o0o n—-+oo

Now we need the following rescaling limit which is similar to (11).
Lemma 8. For fized x,z € R, we have
(38) lim (21 n)"2 D ((14 2/ Inn)Gp(z)/2) = e # 2,
n—-—+0oQ
Proof. Let oy, = (14 z/Inn)G,(x)/2, then by (37) we have o, — 0, nay, — +00

as n — +00, thus so/n < @, < ® — ¢ for n sufficiently large. Therefore, (12) holds
for such «,,, and we still have

n o1 . Qg
(39) ngr-‘,r—loo <1n D, () — n? In cos % +2 In (n sin %) - Co) =0.
By (37) we have
(2Inn)z L (2lnn)z
n—+oo nsin(ay,/2)  n—too nay, /2
2Inn)z 2Inn)3
= lim (2Inn): = lim le,

notoon(l+z/Inn)Gp(z)/4  notoo nGy(w)

and thus we have

1 1
(40) nll}rfoo (8 In(2lnn) — 1 In (n sin O;”)) =0.
By (37) and Taylor expansion of Incosy as y — 0, we have

2.2
n? In cos % + 2 80‘n =n20(al) = n*0(Gi(z)) — 0,
and
n?G2(x)  32lnn | 8z —5In(2lnn) (32lnn)?  (8z —5In(2lnn))?
32 32 (2Inn)? 32 32-4-(2lnn)
—5In(21
=lnn+ W +o(1),

and

n?a? B n?G%(z)  n?*(1+z/Inn)?G,(z)? B n?G?(z)

8 32 32 32
(2/Inn)(2 + z/Inn)n?G,(z)?
32
=(z/Ilnn)(2+4 z/Inn)(Inn + o(lnn)) — 2z

as n — +oo, which implies

n 5In(21
(41) lim <n2lncosa2+lnn+x—n(nn)+2z>:0.

n—-+oo 8

By (39)(40)(41) we have

n—-+o0 2

In(21
lim (lnDn(an)—s—lnn—i-x—i—Qz—n(rlm—cO) =0,
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and thus we have
lim In (n(2 lnn)_%Dn(an)) =cy—x— 2z.

n—+oo

As ap, = (1+ 2/Inn)G,(z)/2, the above limit is equivalent to
lim n(2lnn)"2D,((1+ z/Inn)Gy(x)/2) = e %22,

n——+oo

this completes the proof of (38). O

4.2. One integral lemma. In this subsection, we will prove one integral Lemma
10 which will be used in the proof of Theorem 2. We first have the bound,

Lemma 9. For every firted x € R and A > 1, there exists a constant N3 > 0
depending only on x, A such that forn > N3, w € [1, A], we have so/n < Gn(x)/2 <
AG,(2)/2 < 7/2 and D, (wG,(2)/2) < ' ~(w=DInp (G, (2)/2).

Proof. Let a, = G, () /2, then by (37) we have a,, — 0, na,, — +00 as n — 400,
thus there exists a constant N3¢ > 0 such that so/n < o, < wa,, < Aa,, < 7/2
for n > N3 and

1
li —_— = —_— = — =0.
nr oo w?[ll}?A] nsin(wa, /2) n—rto0 nsin(ay, /2) n=roo nam
By (6) there exists a constant N3 1 > N3¢ such that
no 1 . n
In D, (war,) — n?In cos w;z + 1 In (nsm w;z ) —co| <1/2
for n > N3 1, z € [1, A], thus we have
In(D,,(way,) /Dy (ay)) = In Dy (waw,) — In Dy (av)
n 1 . n n 1 . n
<n?1ncos w;y —1 In (nsm w;z ) —n?lncos % + 1 In (nsm %) + 1.
Let’s denote F'(y) = Incos(y/2), since sin “§= > sin 5=, we further have
D, (way,)

In <n? lncos%—n2 lncos%—i—l = n*(F(way,) — F(ay)) + 1.

Dy (o)

Since F'(y) = —tan(y/2)/2 < —y/4 < —ay /4 forn > N3 1, y € [ayn, Aa,] C (0, ),
we have F(way,) — F(a,) < —(wa, — ap)ay, /4 and thus

D, (way, n2a%
Dn(@én)) < —nP(way, —ap)ay /4+1=—(w—1) 1 +1
for n > N3 1, w € [1, A]. By (37) we have

n?a?2  n’G3(x)

4lnn  16lnn

as n — 400, and there exists a constant N3 > N3 ; such that n%a? > 4Inn for
n > N3, which implies
In(D,,(way,)/Dyp(ay)) < —(w—1)lnn+ 1.
As a,, = G, (2)/2, for n > N3 > N3 and w € [1, A], we have
D, (wG,(x)/2) = Dy(way,) = exp(In(D, (way,)/Dy(an))) Dp(an)
<e~(w=1) mntlp (@) = pl—(w—1)In "Dy (G(2)/2),

this completes the proof. [

In
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Using (38) and Lemma 9, we have the limit of the integral,
Lemma 10. For I = [a,b] C (—2,2), let S(I) = inf; /4 — y?, then we have

lim n(21lnn) %/D (V4—y2/SUI x)/2)dy = M(I)e®~",

n—-4oo

where M(I) = (4 —a?)/|a| if a+b < 0, M(I) = (4 —b})/|b] if a+b > 0, and
M(I)=2(4—-a?)/|a] ifa+b=0.

Proof. Case 1: a + b < 0. In this case we have a < 0, S(I) = vV4—a?. Let
A =2/S(I), then we have 1 < /4 —y2/S(I) < 2/S(I) = A for y € I. Let N3 be
determined in Lemma 9 with w = /4 — y2/S(I) € [1, 4], for n > N3, we have

n(V/4—y2/S(I) (2)/2) < e~ (WA=v¥/SU=DInnp (@ (2)/2).

Let by = (a4 b)/2, then we have a < by < min(b,0) and we can write [ = I; U I,
such that Iy = [a, by, I2 = [bg, b]. Now we have for n large enough,

n(2lnn)? [ D,(/A—y2/S(I) )/2)dy
gn(ann)%/I el_(m/s(”_l)lnnDn(Gn(x)ﬂ)dy
2
gn(ann)%/I !~ (SR)/SI=DInnp (G (x)/2)dy
(@I (b bo)e - SUNSD VI (G (0 9)

where S(I2) = min(y/4 — b3, v4 —b2) > S(I) > 0. By (38), we have
lim n(2lnn)2e!~8ER/SO-Nnp (q (1)/2)

n—-4o0o
_ 1—(S(I2)/S(I) =) Inn 1 _1 _
ngr}rloo(an n)e ngrfoon(ﬂn n) 2D, (Gn(x)/2) =0,

which implies

(42) lim n(2lnn) )2 D (vVA—42/S(I) z)/2)dy = 0.
n—-—+0oQ
As to the integration in I7, we change variable y = —v/4 — 22 to obtain
by
D (V4—=9?/SU) - Gn(z)/2)dy = | Dn(z/S(I) - Gn(x)/2) _szz
(b1/a1—1)Inn 1 1
:S(I)(lnn)_l/ D,((1+z/Ilnn)G,(2)/2) ( +Z/ nnar ,
0 V4 —(1+z/Inn)2a
here a; = V4 —a? = S(I), by = \/4 — b3 > a;, thus we have
n(2lnn)? | D,(v/4—y2/S(I) 2)/2)dy = n(2Inn) "% Dy (Gyp(z)/2) %

<b1/a1 1>1“”Dn((1+z/1nn) Gn(2)/2) (1+z/Inn)ay
201 | DoGa@/D) At el
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Since by/a; = b1/S(I) < 2/S5(I) = A, by Lemma 9 the integrand above has the
uniform bound

. Dn((14+2/Inn)Gr(x)/2)  (1+z/Inn)ay

sup e
2€[0,(b1/a1—1) Inn] Dy (Grn(x)/2) V4A—(1+z/Inn)%a?
D 2
— sup e(w—l) Inn n(an(x)/ ) way
we[l,by/a1] D, (Gn(2)/2) /4 — w?a?
_ —(w— bl ebl
< sup 6(u) l)lnnel (w—1)1nn _
wel1,b1/a1] VA= 412

for n large enough. By (38) (with z = 0) we have

D,((1 +z/lnn)G (2)/2) (14 2/lnn)ay

n—+00 Dy (Gn(7)/2) V4 —(1+2/Inn)2a?
D, ((1+z/1nn)G (2)/2)
)

— 22 aq
_ e 1
e Dn(Gn(2)/2) Vi—a Ji_a
Therefore, we can apply the dominated convergence theorem to get
(b1/a1—1)Inn
lim QS(I)/ D"((1+Z/ln”) n(2)/2) (1+2/Inn)ay
0 Dy (Gr(z)/2) \/4*(1+Z/1nn)2a2
+oo —
—25(I) / 2@, SDa _ S(OVA-a?
0

n——+oo

Vi-a2  Ji-a? B |a| ’

and by (38) with z = 0 again, we have

lim n(2Inn)"2D,(Gn(z)/2) = e®*

)

n—-+oo
which implies
1 V4 — g2
(43)  lim n(2lnn)® D (V4 —y2/S(I 2)/2)dy = e S(I )|7|“7
n—-+oo a

which finishes the proof by the fact that S(I) LT;I“Q = (4—a?)/|al = M(I).

Case 2: a+b > 0. By symmetry, we can consider —I = [—b, —a] and the result
follows Case 1.

Case 3: a+b = 0. We can write I = I; U I such that I} = [a,0], I = [0,}],
then we have S(I) = S(I;) = S(I3), M(I) = M(I;)+ M(I2), and by the results of
Case 1, Case 2 we have

n(21nn) %/Dn (V4 —y2/S(I) x)/2)dy
:Zn(Zlnn%/ D, (v4—y%2/S(; x)/2)dy

—M(I)e® " + M(I3)e® " = M(I)e® ™", n— +oo,

this completes the proof. [
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4.3. The strategy to prove Theorem 2. The strategy to prove Theorem 2 is
similar to that of Theorem 1, but we will still give all the detailed definitions and
computations. Now we consider the point process of eigenvalues of GUE,

¢ = Xn: Sy,
i=1

By definition of My(I) in Theorem 2 and M (I) in Lemma 10, we have My(I) =
In(M(I)S(I)/4). Take ca = ¢o + Mo(I), f(x) = e2=% = M(I)S(I)e®°~*/4, then
we have —f/(z) = f”(z) = e®2~*. By Lemma 1, for every positive integer k£ and

x1, -,z € R, for 77 defined in Theorem 2, if we can prove the following conver-
gence
k k
@) am B Y [[67 e = amsa)t T (o),
i1, i all distinct j=1 j=1

then Theorem 2 will be proved.

For A\ < -+ < Ay, denote Ji(a) := {z € R|[z,z + a] C (Ap, Ap41)} for a >
0, 1 < k < n, then we have Ji(a) = (Mg, Agt1 — @) for g1 — Ap > a and
Jr(a) = 0 for Agr1 — Mg < a, thus Ji(a) is an interval of size (Ax+1 — Ay —a)4, and
Je(a) C (Mg, Ag+1) and Ji(a) N J(b) = 0 for k # 1. Now let A(I) = {i|\;, \it1 € I},

k
Yk(ar, - ax) = U H Ji, (a;) C (a,b)¥,

i1, i €A(I) all distinet j=1

then the right hand side is a disjoint union and

k
|Zk(a17”' 7azk)| = Z H(A1J+1_Al] —a])+
i1, ,ix €EA(T) all distinct j=1
k

Z H(m;k] - aj)+.
i1, ik €EA(T) all distinct j=1
Let A =2/S(I) > 1, thanks to Lemma 9, for every fixed x1, -+ ,z € R there exists
N3 > 0 such that 0 < 2s¢/n < Gp(z;) < AG,(z;) < mforn > N3, 1 < j <k. Now
we always assume n > N3. By (36) and the fact that S(I)m; = G, (7)), we have
7 —x = (Gu(77) — Gu(x))(n/4)(2Inn)z = (S(I)m} — Gn(z))(n/4)(2Inn)?, and

k
> 116 =)+
i1, ik €A(I) all distinct j=1
k
E *
=(nS(I)/4)"(2Inn)> > [I0mi, = Gula))/S(D)+

i1, i €A(I) all distinct j=1
=(nS(1)/HF(2Inn) 2 [k (Go(@1)/S(T), -+ , Gulax) /S(T))].

For fixed x1, - ,zx € Rand y1,--- ,yx € I, let

Grnlyt, - yp) = nF(21nn)F x

P((y1,- - yx) € i (Gn(1)/SU), - -, Gn(ax)/S(1))),
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then

k
E Y [ -as

i1, 4 all distinct j=1

=E(nS(I)/4)"(2Inn) % [S4(Go(@1)/S(D), -+ , Gu(wy)/S(T)|

S/ [ unlone v

Now we prove the following upper bound and lower bound separately

k
(45) hmsup/ Gron (Y1, yk)dys -+ dye < (M) ] (e07*7),
n—4oo JJk ok
k
6)  timint [ g v d 2 (M) [T ).

in fact (45) and (46) imply (44), and thus Theorem 2 follows.

4.4. The proof of Theorem 2. We first need the following equivalent condition
for a point in X (a1, - ,ax), the proof is similar to that of Lemma 3 and we omit
it here.

Lemma 11. For (yy,--- ,yx) € (a,b)*, the condition (yy,--- ,yx) € Bx(a, - ,ax)
is equivalent to the following conditions: (i) [y, y1 + ai] N [y;,y; + a;] = 0 for
1<l<j<k and (it) \ € [y, + ], for 1 < j <k, 1<1<mn, and (ii)
s AN ypsyg] # 0, for every p,q € {0,k + 1}, such that y, < y,, here
we denote yo = a, Y1 = b.

4.4.1. Upper bound. Now for fixed =1, -,z € R, as n large enough, let

(47) ATL ::{(yh U ayk) € (a’b)kl[yi>yi + Gn(xz)/s(l)]
N[y, y; + Gn(2;)/SD] =0,V 1 <i < j <k},

then for (y1,--- ,yx) € (a,b)k \ A, by Lemma 11 we have ¢, (y1,- -+ ,yx) = 0. If
(y1, -+ ,yx) € Ap, then all yi’s are distinct, let yo = a, yx+1 = b, and

(48)  Ipn =Vl [y 5 + Gu(2;)/SU)], Jrmy = 2, 2i41], 0<j <k,

here z; (0 < j <k + 1) is the increasing rearrangement of y; (0 < j < k+ 1), then
I} is a disjoint union and by Lemma 11 we have

(49) Gy, Yk) :nk(ann)%x
PEM (L) =0, € (T j) >0, V0 < j<k).
By Lemma 4 and (20) we have,

Dron(yrs ) < 2Inn) SPE (L g) = 0)
k
<t @n)® JTPE™ (g, p5 + Gna)/S)]) = 0).

and this inequality is clearly true for (y1, - ,yx) &€ A,. Therefore, we have

/,c Gk (Y1, yk)dyr - - - dyg
I
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k
S/p« nk(ann)% H (f( (lyj,yj + Gn(z;)/S(I)]) = 0)dys - - - dyy,

=1

<.

1] [n@ )t [ PE 55,0+ Gl /S = 0y

j=1

Thus, (45) follows if we can prove the following inequality

(50)  limsupn(2lnn)? / PE™ ([y,y + Gn(x)/S(I)]) = 0)dy < M(I)e® ™",
n—-+oo I

and by Lemma 10, we only need to prove

(51) limsupn(2Inn)? sup (P(én) (ly,y + Gu(2)/S(1)]) = 0)

n—-+00 yel
~ Du(VA=?/S(1) - Gu(2)/2)) <0

Let {h,} be the Hermite polynomials, which are the successive monic orthogo-
nal polynomials with respect to the Gaussian weight e~ /2. Following [1], we
introduce the functions

e—w2 /4
Vr(z) = hi ()
V2mk!
Then the set of points {1, -+, A, } with respect to the joint density (1) is a deter-

minantal point process with the kernel given by [1]
(52) KGUE(n ( ) fwn(l‘\f)% 1(y\/>) Y 1($\f)1/)n(y\f)
T —y
The probability that £(™ has no point in a measurable subset J is
P(EM(J) = 0) := PEUEM(\; ¢ 1,1 < i < n) = det(Id — X1 Povem)X),

—na? /4

where PGy p(n) is the orthogonal projection from L?(R) to W, := span{z"e
0 <k < n,k e Z} with kernel KEUEM) (2, y).

We will need the following inequality regarding the difference of the gap proba-
bilities between CUE and GUE,

Lemma 12. Let g9 € (0,1), Cy > cx > 0 pse(x) = /(4 —2?) /27r Then
uniformly for x € (=2 +¢£9,2 — &9), c.(Inn)z/n < 6n < min(Cy(Inn)z /n,1/2),

PEUEO) (N, & [0,3+ 0u/ poc(@)], 1 < i < )
—PCUVEM(9, & [0,276,],1 < i < n)
< O((nlnn)™h).

Proof. Let A, B be integral operators with respective kernels

1 GUE(n) u v
Au,v) = ————K
(U, U) npsc(x) (0,ndn) T npsc(x) e npSC(x)

and

2T __CUE(@) (27 27
B(u,v) = _ZK(OW%) —u v
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From the proof of Lemma 3.5 in [2], we know that
(53) A= Bla=0((lnn)*?/n), |A]3 = O((lan)*?), | B3 = O((lnn)*/?),
(54) Tr A = —né, + O((Inn)*?/n), Tr B = —né, + O((Inn)*?/n).

We also have

(55) det(Id + A) = PCUEM (N, & [z, 2 4 6,/ pse(x)],1 < i < n)
and
(56) det(Id + B) = PCVEM (9, & [0,270,],1 < i < n) = D, (nd,,).

Since D,,(«) is a continuous function for o € [0, 7], D, (0) =1 and D, (7) = 0, for
n > 2 there exists ay, € (0,7) such that D, (ay,) = (nlnn)~!. Now we discuss the
case md,, < a, and the case wd, > «, separately.

If 76, < ay,, recall the general comparison inequalities in Lemma 6, we have

(57) exp(Tr(B — A)(Id + B) ') det(Id + A)/ det(Id + B) < 1,
and
(58) | Tx((B—A)Id+ B)™")| < |Te(A — B)| +|A — Bla|Bl2 || (1d + B) 7.
By Lemma 7 we have
(59) [(Id + B)™'|| = (1 = M\ (=B))~! <™ B(det(1d + B)) .
Since D, («) is decreasing and 78, < a;,, by (56) we have
(60) det(Id + B) = D,,(76,) > Dy () = (nlnn)™L.
By (53)(54)(58)(59) and the fact that c,(Inn)? /n < §,, we have
(61) | Tr((B — A)1d + B)™ )|
<0((Inn)3? /n) + O((Inn)3/2+1/3 /)T B (det(Id + B)) ™
and we also have
(62) det(Id+ B) < ™8 = e~ FO((In)*/?/m) _ (O()=e.(inm)!/? O((Inn)~3).
By (60)(61)(62), we have
(63) | Te((B — A)(Id + B) ™)
<O((Inn)*?/n) + O((Inn)3/>+/3=3 /n)(det(Id 4+ B))~*
<O((Inn)?/n) + O((Inn)~"¢/n)(nlnn) = O(1),
and thus we have
lexp(— Te(B — A)(1d + B)™) — 1] = O(| Te((B — A)(1d + B) ™)),
and we further have (using (57)(62)(63))
det(Id + A) — det(Id + B)
<exp(—Tr(B — A)1d + B) ') det(Id + B) — det(Id + B)
<O(| Tr(B — A)(Id + B)™!|) det(Id + B)
<O((Inn)3?/n) det(I1d + B) + O((Inn)3/>+1/3=3 /n)
<O((Inn)?/n)O((Inn)~3) + O((Inn)~'/n) = O((nlnn)™1).
Now the result follows from the identities (55) and (56).
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If w0y, > au,, then we have (taking 0], = o, /7 < d,,)
PEUEM (N, & [0, 2 + 0n/ psc(@)],1 < i < m)
<PEUEM(N; & [z, 2+ 6, /psc(2)],1 < i < n)
<PCUEM (9, & [0,270"],1 < i <n)+O((nlnn)"') = O((nlnn)Y),
and the result is also true, here we used the fact that
PCVEM) (9, ¢ [0,270!],1 < i <n) = Dy(nd,) = Dp(ay,) = (nlnn)~t,
This completes the proof. O

Now we prove (51). For yel, xeR, take d,, = \/4 y2/S(I)] - [Gn(x)/(27)],
then we have 0, /psc(y) = 26, //4 —y? = Gn(x)/S(I). By (37), there exists a
constant Ny > 0 dependmg only on x such that 4(ln n) /n < G ( ) < 8(Inn)z/n <

7S(I)/2 for n > Ny. Then we have (2/7)(Inn)z /n < Gy ( \/4 y2/S(I)
(G (2)/(2m)] = 0n < [2/S(D)] - [Gn(2)/(2m)] < (wS(I )) (111”) /n < 1/2 fOF

y € I, n > Ny, thus by Lemma 12 we deduce that
PE™ [y, y + Gul(x)/S(1) n(V4—y?/S) )/2)
=P [y, y + 6n/psc(y)]) = 0) — Dy (76n)
=PCUEM (N & [y, y + 0n/psc(y)], 1 < i < n)
—PCUEM(9, & [0,216,],1 < i <n) <O((nlnn)"}),
and the estimate is uniform for y € I, n > N4. Thus we have

n(2inn)E sup (B [y, y + Gu(w)/S(D]) = 0) = Du(VA=42/S(1) - Gu(a)/2)

<n(2Inn)20((nlnn)™") = O((Inn)~"2) = 0, n — 4o,
and thus (51) is true, so is (50) and hence the upper bound (45).

4.4.2. Lower bound. For the lower bound (46), we discuss the 3 cases separately.
Case 1: a+b < 0. Let by = (a+b)/2 < 0, I; = (a,by) C I, a. = V4 —a? = S(I),

b. = /4 — b3 > a,. We change variables y; = —, /4 — vjz, 0<v; =(1+wu;/Inn)a,

to obtain

/k Gl (Y1, - s yk)dyr - - dyg > /k Gk (Y1, yk)dyr - - - dyg
I* Ik

k
s
= Bkn (—\/4—v%,~--,—\/4—vz> ——L—dv; - duy,
/(a*,b*)" 311 V 4_’0%

:af(lnn)fk/ ¢k,n<\/4(1+u1/lnn)2a§,~~ ,
(0,(bsx/ax—1)Inn)k

k
1+ u;/Inn)as
—v4—(1+uk/Inn)? g duy - - - dug.
v v/ )H\/él (1+wu;/Inn)%a? ' g

Denote I, = (bx/a, — 1) Inn and

(64)  yu(u) = =4 — (1 +u/lnn)2S(1)%, Bu(u) =

(I14+u/Inn)S(I)
VA4A—(1+u/Inn)2S5(1)2

)
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then ~,, maps (0,1,) to I; C (a,b) and

(65) /k Gk (Y1, yk)dyr - - - dyg
I

B (uj)duy - - - duy.

ES(I)k(lnn)_k/ ¢k,n(7n(u1)"" 77"(1““))

(0,1n)*

<.
Il =
—

Case 2: a+b > 0. Let bg = (a+b)/2 > 0, I; = (bo,b) C I, a. = V4 —b%> = S(I),
b = /4 —b3 > ax, l,, = (by/a, — 1) Inn and

(66)  yn(w) = V4~ (1—u/Inn)2S(I)?, Ba(u) =

(1 —u/Inn)S(I)
VA= (1 —u/Inn)2S(1)?

Similar to Case 1 we have v, : (—I,,0) = I; C (a,b) and

(67) /k Gren (Y1, ye)dyr - - - dyk > /k Oy, yk)dyr - - - dyg
I Ih

k
:S(I)k(ln")_k/( ’ G (P (1), -+ Y lug)) H B (uj)duy - - - duy,
—1,,0 i<
Case 3: a+b=0.Let ag = a/2 <0, by =b/2 = —ag >0, I; = (a,a9) U
(bo,b) C I, ax = Vd—a2 = VA—b2 = S(I), b, = \/4—ad = \/A-B > a.,
ln = (bs/asx — 1)Inn and functions 7y, (u), B, (u) be defined as (64) for u > 0 and as
(66) for w < 0. Similar to Case 1 we have v, : (=lp,1,) \ {0} = I C (a,b) and

/k P (Y1, Yk)dyL - - - dy > /k (Y1, yk)dys - - - dyg,
o

k
:S(I)k(lnn)k/( g n('}’n(ul e 7’)/n uk H u] dul dug,.

_lnyln)
Now the lower bound (46) is the consequence of the followmg

Lemma 13. For fized I = [a,b] C (—2,2), k€ Z, k>0, z1,- -,z € R, let yn(u)
be defined as (64) for v > 0 and as (66) for u < 0. Assume that (i) a +b < 0,
Uy, - up € (0,400) all distinct, or (it) a+b > 0, uy, -+ ,uy € (—00,0) all distinct,
or (iii) a+b=0, uy,--- ,ur € R\ {0} and |u;|’s are all distinct, then we have
k Y
liminf (1) g1 (). -+ (1)) > 28T -2,
Lemma 13 will imply the lower bound (46) as follows.
For the case a + b < 0, denote Iy = (O +oo) then we have [ 2e2Muldy, =

1, S(I) =+v4—a2 and S(I)%/\/4 — S(I1)2 = (4 — a®)/|a| = M(I).
Since l,, = 400, Bn(u;) = S(I /«/4 S as n — 400, by (65), Lemma 13
and Fatou’s Lemma, we have

lim inf /k G (Y15 s yk)dyr - - - dyi

n—-+oo I

k Nn——+00
0 j=1

k
ES(I)’“/I lim inf [(lnn)kqshn (v (1), v (ur)) H B ()| dus - - - dug



LARGE GAPS 27

>S(1) / im0 =2l (5 /W) dus --
1
:(S(I)Q/\/m) ﬁ co=;) /IkH 26*2%') duy - - - duy,

0 j=1
k

= (sup/va—sap) H(C" ””f)=<M<I>>’ff[(eC°"”)

For the cases when a +b > 0 and a + b = 0, the proof follows similarly. This
completes the proof of the lower bound (46), and hence Theorem 2.
All of the rest effort is to prove Lemma 13. We first need a lower bound of
P(¢(")(J) = 0) when J is a finite union of intervals.

Lemma 14. Let g € (0,1), Cop >0, k€ Z", I = [a,b] = [yo, yx+1] C (—2,2). As-
sume yi, -+ Yk € 1, a1, ar € (Gu(=Co)/S(I), Gn(Co)/S(I))N(0,e0(2Inn) 1),

lyi—y;| > eo(lnn) =t for every 0 <i < j < k+1, \/4—y2/S(I) < 1+Co(Inn)~! for
every 1 < i < k. Then there exists a constant N5 > 0 depending only on g, Co, k, I
such that for n > N5 we have

k
PED Ol + ) = 0) 2 (= ey D [T o (ay/2-03/2).

Proof. We use f = O(g) to denote |f| < Cg for a constant C' depending only
on o, Co, k,I. As |y; — y;| > eo(lnn)™t > eo(2lnn)~t for i # j, if 1 < j <k,
then yo < y; < yj +a; < y;j +e0(2nn)™" < y;j + [Yer1 — Y| = Yey1, and thus
i,y + a;] C [Yo,yr+1] = I. If 1 < @ < j < k, then by assumption a;,a; €
(0,e0(2Inn)~1) C (0, |y; — y;]), and thus [y, v; + a;] N [y;,y; + aj] = 0. Therefore,
we have J := U¥_, [y;,y; + a;] is a disjoint union and J C I. Let’s denote

A =x1PauemXs Aij = Xyiyi+a) PaUEM) Xy, y;+a,]5

then we have

and
(69)  PE™(Uolys vy + as]) = 0) = PE™ () = 0) = det(ld - A).
Let B; be the integral operator with kernel

CUE
Bj (uv U) = 27rpsc(yj)K(yj,yj(z¢)lj) (QWPsc(yj)Ua QWpsc(yj)v) 9

where KCUP™) (2, 4) is the kernel defined in (25). Let’s denote
k
B=> B,
j=1

As 0 < ajy/4—y3/2 <aj <eo(2Inn)~' < 1, we have
(70) det(Id — B;) = PCVEM (9, & [0, 27mpsc(yj)a;],1 < i < n)

= Dy (mpsc(y;)a;) = Dy (aﬂ' 4- yf/?) ’
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and

E k

(71) det(Id — B) = [ det(1d - B;) = [[ D (aj 4—y§/2).
j=1 j=1

Now we need to compare the Fredholm determinants, the key point is to estimate

|A—Bla, Tr(A-— B) |(Id — B)~!||. Comparing the support of the kernels, we have

(72) |A- B|2*Z|AJJ B\2+Z|A”|2, Tr(A - B) ZTT g
Jj=1 i#£]

Forz € [ys,yi +a;) C I, y € ly;,y; +a;] C I, i#j, (1<4,j g k), we have

|z —y| > |yi — y;| — max(a;,a;) > eo(lnn) ™" —eg(2lnn) ™' = go(2Inn)~*.
From the Plancherel-Rotach asymptotics for the Hermite polynomials (Theorem
8.22.9 in [10]) for any nonnegative integer j, 1,,_;(v/nz) is O(n~'/*), uniformly in
x € I. Consequently, if |z —y| > eo(2Ilnn)~t, z,y € I, from (52), we have

O(n=YHO(n=1/ o(1 o(1

|z —y| [z —y| = €o(2Inn)~
Using this and (37), for ¢ # j we have (recall that 0 < a; < G,(Cy)/S(I))

(73) |3 = / dz / [KCUE®) (2, 4)2dy
lyi,yi+a;] [y;,y;5+a;]

:/ dm/ O((Inn)?)dy = a;a;0((Inn)?)
[yuy?“"av] [y77y_7+a.7]

- =O(Inn).

nn nn)?
<(GalCol/s(P0lmn?) = 0 (23 ) ofmm?) =0 (H55).
Since a; = O(go(2Inn)~') = o(1), 0 < S(I) < /4 =y = 2mpsc(y;) < 2, and the

kernel of A; ; is A, j(u,v) = Kg?i(fzzj)(u,v), by Lemma 3.4 in [2] we have

1 cuE®m) o) — sin(nmpse(z)(x — y)) _ 1 . 2
npsc(x)K ( ,y) nﬂpsc(x)(xfy) O(”) +O( J)—I_O( J)’

2 sin(nmpse(y;) (= — y)) aj
KOV (2 (), 27 pse()y) — el -0 (%),
n ’ ’ 717'rpsc(yj)(1j - y) n
uniformly for z,y € [y;,y; + a;]. Thus the difference between the two kernels A; ;
and B; is O(1 + n2a§), integrating on a domain [y;,y; + a;]* of area a?, we have

|45 — Bjl3 = O((1 + n*a%)?)aj = O(a] + n'af);

and integrating on the diagonal {z =y € [y;,y; + a;]} yields
| Tr(A,5 — By)| = O((1 + n*a3))a; = O((aF +n*a§)'/?).
Using 0 < a; < G»(Cy)/S(I) and (37), we have

() & < (GulCosP =0 (22

thus

(75)  |4;; — B2 = O(a2 + n*a) = o(m+(ln”)3>=o<<ln”)3),

j n2 n2 n2
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and
nn)3/2
(76) | T(Ay; — By)| = O((a? + n'a$)"/?) = O (ﬂn>> _
Using (72)(73)(75)(76), we conclude that
nn)3 nn)3/2
(77) |A—B|§=o<(1n2)>, |Tr(A_B)|:o<(1n>>

Recall the formula (25), we have KCUVE®) (g z) = 23 and
T

KOUE®) So) L — —yl <2
| @l =0 (15fyy) o<

Therefore, by definition of B;, we have

n
Bj(u,u) = 2mpsc(y;) 5= = npsc(y;), w € (y5,y; + a;)

2T

and
Yjta;
(78) TrB; = / Bj(u, u)du = na;psc(y;) = naiy/4 — y?/(2m);
Yi
since 0 < 2mpsc(yj)a; = (J4—yja; < 2a; < 2 and 0 < S(I) < (/4—yF =
2mpse(y;) < 2, thus we have the off-diagonal estimate

Byl =0 (

Therefore, we have

yita; ry;jta;
|B;|3 :/ / | B (u, v)|*dudv
Yi

J

Yyjta; yjta; n2
/ / <1+n|u—v|> )d“d“
yjta; n2
[ o)

J

_ /yﬁai 0 (n) dv = O(na;) = O ((n)*/2),

Yj

n

- 1 9 3 e 4’ j i)
1+n|u—v|) v € (Y5, + aj)

here we used (74). Therefore, we have

k
(79) BB =183 =0 ((lnn)/?).
j=1

Now we estimate ||(Id— B)~!||. We have ||(Id—B)~!|| = (1—X;(B))~! where A\, (B)
is the largest eigenvalue of B. Similar to the CUE case as in (33), we know that
A (B) < A\i(B;) for some 1 < i <k or A\;(B) =0. For every 1 < i <k, by Lemma
7, (70) and (78), we have

1— M\ (B;) > det(Id — By)e™Bi~t = D, (a 4— y§/2> eneiVA-yi/(2m) -1
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By (37)(38) and 32 > 72, there exists a constant N5 > 0 such that
7(Inn)? < nGp(—Co),
and
n(Inn) "2 Dy ((1 4 Co/Inn)Gp(Cp)/2) > 030
and G, (Cy) < 1, Cy < Inn for n > N5 . By assumption, a; < G, (Cp)/S(I) and
VA—y2/S(I) < 1+ Co(lnn)~", we have a;1/4 — y2 < (1+ Cp/Inn)G,(Cp). Since
a; > Gp( Co )/S(I), /4 —y2/S(I) > 1fory; € I, we have a;\/4 — y? > G, (—Cp).

Thus if n > N5, 1 g i < k, we have
L —X\i(B;) > Dy (ai 4 - ZUZ'Q/Q) enaV/Amvi/(2m -1

> D, ((1+ Co/Inn)G,,(Cy)/2) enCn(=Co)/(2m—1
> n_l(lnn)%eCO_?’COe(l“")%/2_1.
Now we always assume n > N5 o, then similar to the CUE case, we have

(0) ad=B) = (1= A(B) < max (1 - M (B) 41

gn(lnn)_%e3C°_C°_(ln")%/2+1 +1=0 (n(lnn)_%e_(ln”)%ﬂ) .

By Lemma 6 and (77)(79)(80), we conclude that
ba i< Te((A — B)(1d — B)™")| < | Tx(A — B)| + |A — Bla|Blal|(1d — B)|

3/2 3/241/4 L 1
(ln” >+0< (nn) >O<n(1nn)_26_(1n")2/2)
) +o (o

( (Inn) (lnn)5/4 —<1nn)2/2) =0 ((Inn)7?),

lnn)?3 s
b =18 — AR = )7 <0 (L5 ) 0 (w2 uny et

+0

that

=0 ((lnn)Qe_(lnn)2> =0 ((Inn)~?).
Therefore, by Lemma 6 again, we have
1—by=1—|B—AJ3|(1d - B)~'|
<exp(Tr(A — B)(I1d — B) ') det(Id — A)/ det(Id — B)
<eb2 det(Id — A)/ det(Id — B).

Thus there exists a constant N5 > N5 such that by < 2Inn)~t < 1, b3 <
(2lnn)~! <1 for N > N5 and

(81)  det(Id — A)/det(Id — B) > e %2(1 — bg) > (1 — by)(1 — b3)
>(1—2mnn) 2 >1-(Inn)"!, Vn > Ns.
Now the result follows from (69)(71) and (81). O

Now we prove Lemma 13.
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Proof. Let up =0 and

— . : = 1 S| — . = 2
(32) Co= max (ol + ful). &1 = | min_ [ful = Jus]|, 20 = 21S(D/(2 +4e0).

Using I, = (b./ax —1)Inn — +oo and (37), there exists a constant Ng o > 2 such
that I, > Cp and 0 < 4(Inn)2 /n < G, (—Co) < Gn(Co) < 8(Inn)z /n for n > Ng..
Let’s denote

(83) Yi = n(uy), aj = Gu(z;)/S(I), ¥V n> Neo.

Then we have y; € (a,b) for 1 < j <k, n > Ngo (See the range of v, in Case
1-Case 3). Now we need to check all assumptions in Lemma 14.

(a) Since u; # 0, we have Cy > 0. Since |uq], - - - , |ug| are nonzero and all distinct
in all the 3 cases, we have £; > 0. Using this and 0 < S(I) < 2, we have

0<eg= 815(1)2/(2+451) < 481/(2+4€1) < 1.

(b) By (64)(66), we have (v, (u))? =4 — (1 + |u|/Inn)2S(I). Thus by (83), we
have y5 = (yn(uj))* =4 — (1 + |u;|/Inn)>S(I)* and

(84) VA—vyr =1+ |uj|/Inn)S(I), \/4—yia; = (1 + |u;|/Inn)Gn(z;).

For 1 <i<j <k, n> Ngp, we have y;,y; € (a,b) C (—2,2), |y; +y;| <4 and
Ay —yi| > |y + sl - lwi — il = |07 — v3 | = | (v (ui)? = (v (u;))?|
= |(1 + |uj\/1nn)2 -1+ |ui|/1nn)2| S(I)2
=|ujl = luil|/nn - (2 + |ugl/Inn + u] / Inn) S(1)?
Z‘|uj| — |u1||/lnn . 25([)2 >e/lnn- 2,5'(1)27
thus we have

ly; —yj| > e1S(1)?/(2Inn) = go(1 + 2¢1)(Inn) "' > go(Inn) L.

Actually, the similar arguments apply to the end points yg and yx4+1 and we finally
have |y; — y;| > eo(lnn)™! for 0 <i < j <k+ 1.
(c) For every 1 < i < k and n > Ng o, we have |u;| < Cp, and by (84), we have

4—y?/S(I) = (1 + |ui|/Inn)S(I)/S(I) =1+ |u;|/Inn <1+ Cy/Inn.

(d) For every 1 < j < kand n > Ng g, since a; = G, (z;)/S(I), S(I) >0, |z;| <
|z;| + |uj] < Cy and G, is increasing, we have 0 < 4(lnn)2 /n < Gu(—Cp) <
Gn(z;) = a;S(I) < Gp(Ch) < 8(Inn)2 /n and thus a; € (G, (—=Cy)/S(I),Gn(Cy)/
S(I)) N (0,8(Inn)z /(nS(I))). Since g9 > 0, S(I) > 0, there exists a constant
Ng.1 > Ng o such that 16(Inn)? /n < £0S(I) for n > Ng1. Thus 8(Inn)2 /(nS(I)) <
g0(2Inn)~! and we have a; € (0,£9(2lnn)~!) for 1 < j <k and n > Ng 1.

From the statements (a)-(d), we know that g, Cy defined in (82) and (83) satisfy
all the assumptions in Lemma 14 for n > Ng 1. Thus [y;, y; +Gn(x:)/S(D)]Ny;, y;+
Gn(z;)/SU)] = yisyi +ai] N [y;,y; + aj] = 0 for every 1 < j < k and n > Ng 1,
then (y1, - ,yn) € A, (recall (47)) for n > Ng 1 and we can use the notation (48)
and formula (49) in this case. For n > Ng 1, by (49) we have

(85) (nn) F ey, ye) > (20)*(2Inn) " TPE™ (1,4) = 0)
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k
~(2n 21nn*%ZP£<" k) = € (Jnpy) = 0).

j=
As in the CUE case, we claim that

(2n)*(2Inn) "2 P(E™ (I, 1) = €7 (Jpk,) = 0) = 0.

Since a; = Gn(z;)/S(I), by (48) we have I, = Ui [y;,y; + a;]. Let do :=
Gn(—Cy)/S(I), then we have 0 < dy < a; < €o(2lnn)~! for 1 < j < k and
n > Ne 1. Let 25 = (2 + zj41)/2 for 0 < j < k where z; (0 < j < k+1) is the
increasing rearrangement of y; (0 < j <k +1). Sincey; € I (0<j <k+1), we
have z; € I (0<j<k+1), 25 €1 (0<j<k)and

OinrlgilIcl+l |2j = zil = zjp1 — 25 = 25 — 25 = (2j41 — %) /2

> i R > -1
Z i lyi — wil/2 > eo(2Inn) ™" > dy

for 0 < j <k and n > Ng1. Thus [2}, 2} + do] N [2i, 2 + do] = 0 and [2}, 2} + do] C
(2j,2j41] = Jng,j for 0 < j <k, 0 <4 < kandn > Ng;. Since dy < a;, we

have I, 2 Ule[yj,yj +dp] = U?:1[Zja zj + dp], and Ly Udpg, 2 [Z], ;T dp] U

(Ule[zi,zi + do]) , and the right hand side is a disjoint union for n > Ng;. By
(20) we have

0 <PE™ (Ing) = £ (Jng ) = 0) = P (T U Jng ) = 0)
<P([2], 2} + do] U (Ui [26, 2 + do])) = 0)

k
<P(E"([2, 2 + do]) = 0) [T P(E™ ([2i, 2 + do]) = 0) < i},
=1

where

Prk = i‘élfp(f(n)([z’ z+dg]) =0) = SZléI;IP’(ﬁ‘")([% 2+ Gn(—Co)/SI)]) = 0).

By (38) and (51), there exists a constant Ng o > Ng 1 such that

n(21nn)% sup (]P’(f(")([z7 z+ Gn(=Co)/S(I)]) = 0)

z€l
Do(VA=22/S(I) - Gu(=C0)2)) < 1
and
n(2Inn) "% Dy, (Gn(—Cp)/2) < e0TCot1,
Then we further have

P = sup P(E" ([2, 2 + Gu(=Co) /S(I)]) = 0)

< suwp (P<f<"><[z,z+c< Co)/S(I)) = 0) = Du(v/4 = 22/S(D) - Gu(~C0)/2)
—|—81£D V4 —22/5() (—=Cv)/2)

<n N2Inn)"2 + D, (Gn(—Co)/2) < n~'(2Inn)? 4+ n~ " (2Inn)2 0t Cotl,
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where we used the fact that D, («) is decreasing. Thus, for every 0 < j < k, we
have,

lim sup(2n)*(21n n)_gﬂl’(f(") (Ink) = €™ (Jnkj) = 0)
n—-+o00o
<limsup(2n)*(21nn)~ 2pk+1
n—-4o0o
. ) . k+1
<limsup(2n)*(2Inn)" % (n*1(2 Inn)z —|—n71(21nn)fec°+c(’+1>

n—-+o0o

<limsup2*n~'(2Inn)? (1+ eC°+CO+1)k+1 =0,

n—-+oo

which completes the claim.
Now using (38)(84)(85) and Lemma 14, we have

lim inf(In n)_k@cm(ﬁyh S Uk)

n—-+o0o

>liminf(2n)*(21n n)fgp(f(n) (Ink) =0)

n—+o0o
=liminf(2n)*(2Inn)~ QP(E( (Jh i—1lYs,v5 + aj]) = 0)

n—-+4oo

k
> liminf(2n)*(2Inn) "% (1 — (Inn)~ H (aj 4_yJ2'/2)

n—-+oo

E

. _k
=liminf(2n)*(2Inn) 2_1_[1 (1 + [u;]/ Inn)Gn(z;)/2))
j=

=" H <nll>moon (2Inn)~ %Dn((l + |uj/lnn)Gn(xj)/2)>

—9ok H <6607r]‘*2|uj|) — 2k62§=1(co—$1—2|“j|)_

j=1

Now Lemma 13 follows from the definition of y; in (83). O

(1
2]
(3]
[4]

(5]

a4=

(8]
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