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Affine groups acting properly discontinuously on

Rn, n ≤ 5.

H. Abels, G.A. Margulis and G.A. Soifer

September 30, 2022

Abstract. Let Γ be an affine group acting properly discontinuously on Rn, n ≤ 5. Then

Γ contains a free non-commutative group if and only if the semisimple part of the Zariski

closure of Γ contains SO(2, 1) as a normal subgroup.

1 Introduction

Let X be a topological space and let Γ be a subgroup of the group of homeomorphisms of

X. A subgroup Γ is said to act properly discontinuously on X if for every compact subset

K of X the set {g ∈ Γ : gK ∩K 6= ∅} is finite. A subgroup Γ is called crystallographic

if Γ acts properly discontinuously on X and the orbit space X/Γ is compact. Recall that

a torsion free affine group Γ acts properly discontinuously on Rn if and only if Γ is the

fundamental group of a complete locally flat affine manifold M . Obviously, M = Rn/Γ. In

1964 L. Auslander conjectured that if Γ is an affine group acting properly discontinuously

on Rn and Rn/Γ is compact then Γ is virtually solvable.

In 1977 J.Milnor asked if the fundamental group π(M) of a complete locally flat affine

manifold M contains a free non-commutative subgroup?
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The Tits’ alternative implies, that if the answer to Milnor’s question is negative then

the fundamental group π(M) is virtually solvable. Thus the answer to Milnor’s question

negatively means that the Auslander conjecture is true without the assumption that M

is compact. This is obviously true for n = 1 and is not difficult to prove for n = 2.

In 1983 Margulis showed that for n = 3 the answer to Milnor’s question is positive

by constructing a free (non-commutative) discrete subgroup of the affine group that acts

properly discontinuously on R3 and leaves a quadratic form of signature (2, 1) invariant.

Moreover, the linear part of Γ is Zariski dense in SO(2, 1). Actually, this example came

as a surprise and is sometimes called ”the Margulis phenomenon”.

The aim of this paper is to prove the following theorem.

Main Theorem Let Γ be an affine group acting properly discontinuously on Rn, n ≤ 5.

Then Γ contains a free subgroup if and only if the semisimple part of the Zariski closure

of Γ contains SO(2, 1) as a normal subgroup.

Let us give a short description of the proof. It easily follows from [M1], that if the

semisimple part of the Zariski closure of Γ contains SO(2, 1) as a normal subgroup then

Γ contains a free subgroup. The difficult part is to show that if the Zariski closure of the

linear part of Γ does not contain SO(2, 1) as a normal subgroup then Γ does not contains

a free subgroup. For the proof, we look at the semisimple parts S of the Zariski closure

of Γ, where Γ is an affine group acting properly discontinuously in dimension at most

5 and S does not contain SO(2, 1) as a normal subgroup. We give a complete list and

can exclude all cases except one, based on our earlier work [AMS3]. The remaining case,

SL2(R)× SO(3) is dealt with in section 3.

We remark that there exists a affine group Γ which acts properly discontinuously on R6

and contains a free subgroup such that the semisimple part of the Zariski closure of Γ

does not contain SO(2, 1) as a normal subgroup [DGK].

The authors would like to thank several institutions for their support during the prepara-
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tion of this paper: Bielefeld University, Bar-Ilan University, Yale University, Max Planck

Institute for Mathematics (Bonn). Without all these supports, the paper whose authors

live on three different continents could not have seen the light of day.

2 Linear parts of affine groups groups acting prop-

erly discontinuously

2.1. Notation and terminology. In this section we introduce the terminology we will

use throughout the paper. Let V = Rn, n > 1, and let GL(V ) be the group of all linear

transformations of the vector space V . Let Aff(Rn) be the group of affine transformations

of the affine space Rn. Since the group Aff(Rn) is the semidirect product GL(V ) n V

every element g ∈ Aff(Rn) is a pair g = (l(g), vg) where l(g) ∈ GL(V ), vg ∈ V. The linear

transformation l(g) is called the linear part of g and vg is called a translational vector.

Let [l(g)] be the matrix of l(g) and let [vg] be the coordinates of vg in the same basis.

Then we obtain a group isomorphism

φ(g) =

 [l(g)] [vg]

0 1

 (∗)

between Aff(Rn) and a subgroup of GLn+1(R).

Denote by l the natural homomorphism l : Aff(Rn) → GL(V ). The set l(X) where X ⊆

Aff(Rn) is called the linear part of X.

Let Γ be an affine group and let G be the Zariski closure of Γ. Let S be a semisimple

part of G. Clearly, S is a semisimple part of the connected component of the linear part

l(G) of G. The goal of this section is to give a complete list of all possible non- trivial

3



semisimple subgroups S, S < GL(V ), which might be a semisimple part of an affine group

which acts properly discontinuously. The semisimple subgroups of l(G), which occur in

our list have to fulfill the following assumptions(P1), (P2) and (P3) below.

(P1) S < GL(V ), dimV ≤ 5.

(P2) S does not contain SO(2, 1) as a normal subgroup

(P3) Every element g ∈ l(G)0 has one as an eigenvalue.

The motivations for (P1) and (P2) are obvious. The justification for (P3) follows from

Proposition 2.2 [AMS1] that says: if Γ acts properly discontinuously then every element

of the connected component l(G)0 of l(G) has one as an eigenvalue.

2.2. Linear parts and decompositions. Let l(G) be a subgroup of GL(V )

dimV ≤ 5. Let V0 be the maximal subspace in V such that S acts trivially on V0. Let V1

be the unique S–invariant subspace such that V = V0 ⊕ V1.

Case 1 Assume that for every regular element s ∈ S the restriction s|V1 does not

have 1 as an eigenvalue. Thus V0 6= 0. Consider the inclusion is : S −→ GL(V1) as a

representation of the semisimple Lie group S.

Assume first that S is a simple group. It follows from [AMS4] that all possible semisimple

parts of G which have property (P2) are:

(1) S = SLl(R), V1 = Rl, 2 ≤ l < 5, 2 < n ≤ 5, l < n,

(2) S = Sp4(R), V1 = R4

(3) S = SL2(σ(C)), V1 = R4

where σ : C→M2(R) is the standard embedding.

Suppose that the group S is semisimple, but not simple. It follows from [AMS4] that all

possible semisimple parts in this case that have property (P3) are:
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(4) S = SL2(R)× SL2(R), V1 = R4, n = 5.

Case 2. Assume that for every regular element s ∈ S the restriction s|V1 has 1 as an

eigenvalue. It follows from [AMS4, 2.4, 2.5 ] that in this case

(1) S = SO(3, 2), dimV1 = 5

(2) S = SO(4, 1), dimV1 = 5.

(3) S = SO(3)× SL2(R), n = 5.

Case 1 and 2 give us a complete list of all possible semisimple parts of G that have

properties (P1),(P2) and (P3).

Our strategy is to show case by case that none of the semisimple groups listed in Case

1 and Case 2 is a semisimple part of G. Thus, S = 1 and Γ is virtually solvable.

3 The dynamics of the action of an affine group

We recall here some basic definitions and notions of the dynamics of the action of an affine

group (see. [AMS1]. [AMS2]). Let Γ be an affine group acting properly discontinuously

on Rn. Let G be the Zariski closure of Γ. Obviously, Γ acts properly discontinuously if

a subgroup of Γ of finite index acts properly discontinuously. Therefore from now on we

will assume that the linear part l(G) of G is a connected algebraic group.

Let g ∈ G. Let l(g) be a semisimple element of l(G). Then Rn is the direct sum of

A+(g), A−(g) and A0(g), where A+(g) (resp. A−(g), A0(g)) is the subspace of Rn such

that all eigenvalues of the restriction l(g) |A+(g) have modulus > 1 (resp. l(g) |A−(g) have

modulus < 1, and l(g) |A0(g) have modulus 1). Set D+(g) = A+(g)⊕ A0(g) and D−(g) =

A−(g) ⊕ A0(g). Clearly, D−(g) = D+(g−1) and D−(g) ∩D+(g) = A0(g). Let ‖ � ‖ and d
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denote the norm and metric on Rn corresponding to an inner product on Rn. Let ‖g‖− be

the norm of the restriction g|A−(g). Set ‖g‖+ = ‖g−1‖− and put s(g) = max{‖g‖+, ‖g‖−}.

Obviously, s(g) = s(g−1). Let g ∈ GL(V ). Set V 0
g = {v ∈ V ; gv = v}. Let G be a subgroup

of GL(V ). A semisimple element g ∈ G is called regular in G if

dimV 0
g = min{dimV 0

t | t ∈ G, t semisimple }

Let us remark that the set of regular elements of an algebraic group is Zariski open.

Let g ∈ G be a semisimple element. such that

dim(A0(g)) = min{dimA0(t)|t ∈ G, t semisimple,}

then g is called R-regular in G. Let G be an affine group, G <AffRn. An affine trans-

formation g ∈ G is called regular (respectively R-regular) if l(g) is a regular (respectively

R-regular) element of l(G).

Our definition of R-regular element slightly differs from that of [P] were it was first

introduced. Note that the set of R-regular elements in an algebraic group G need not

be Zariski open in G. Nevertheless under some conditions a Zariski dense subgroup of an

algebraic group G contains an R-regular element [P],[AMS1],[AMS4]. For example this is

true if G = SO(B) where B is a non degenerate form of signature (p, q) and Γ is a Zariski

dense subgroup of G. Note that in case p = 2, q = 1 every hyperbolic element is regular

and R-regular.

The metric ‖ � ‖ on Rn induces the standard metric d̂ on the projective space P = P(Rn)

by the formula (see [T]).

d̂([v], [w]) =
‖v ∧ w‖
‖v‖‖w‖

= sin∠(v, w)

for any two points [v], [w] ∈ P where v, w are non-zero vectors in Rn. Let X, Y be two

closed subset of P. Set and d(X, Y ) = minx∈X,y∈Y d̂(x, y) and d(X, Y ) = max minx∈X,y∈Y d̂(x, y).

We can and will consider a linear subspace W 6= {0} of Rnas a closed subset of P.
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A hyperbolic element g is called ε –hyperbolic if d(A+(g), A−(g)) > ε. There exists a

positive constant s(ε) such that for every ε -hyperbolic element g and n ∈ Z, we have

s(gn) ≤ s(ε)s(g)|n|.

Two hyperbolic elements g and h are called transversal if D+(g) ∩ A−(h) = D−(g) ∩

A+(h) = D+(h) ∩ A−(g) = D−(h) ∩ A+(g) = {0}. Two transversal elements g and h are

called ε-transversal if d(D+(g), A−(h)) > ε, d(D−(g), A+(h)) > ε, d(D+(h), A−(g)) > ε,

d(D−(h), A+(g)) > ε. Obviously, g and h are transversal (resp. ε-transversal) if and only

if g−1 and h−1 are transversal (resp. ε-transversal). Two transversal elements g and h are

called very transversal if g and h−1 are transversal. Therefore if g and h are very

transversal then h and g−1 are transversal.

For any g ∈ G there exists an eigenvector vector v, v ∈ A0(g) such that l(g)v = v by

Proposition 2.2 [AMS3]. Hence for any semisimple element g of G there exists a g-

invariant line Lg. The restriction of g to Lg is the translation by a non- zero vector tg.

Let us note that for a given g ∈ G all such lines are parallel and the vector tg does not

depend on the choice of Lg. We take for g the g-invariant line Lg closest to the origin.

Let us define the following affine subspaces: E+
g = D+(g) + Lg, E−g = D−(g) + Lg,

E+
g ∩ E−g = Cg. Let p ∈ Lg be a point. Then tg = −−→p gp. Clearly tg = −tg−1 , Lg = Lg−1 .

Let s be an affine transformation such that ts = 0. Then Lh = l(s)Lg, th = l(s)tg for h =

sgs−1. We denote by o(g) the restriction of g to Cg.

Let g be an ε-hyperbolic element of G. Assume that x ∈ E−g and y ∈ Lg such that

−→xy ∈ D−(g). Then there exists a constant c(ε) such that for n ∈ Z, n > 0, we have

d(gn(x), gn(y)) ≤ c(ε)s(g)nd(x, y).

Let {g0, h1, . . . , hm} ⊂ G be ε–hyperbolic elements, pairwise very ε– transversal. Set

s = max{s(g0), s(h1), . . . , s(hm)} and s0 = s1/2. Let g` = hn`
i`
· · · · · hn1

i1
· g0, 1 ≤ ik ≤ m,

ik 6= ik+1, nk ∈ Z, 1 ≤ k ≤ (l − 1), and M` = |n1| + · · · + |n`|. From Lemma 1.3 [AMS2]

7



follows then that there exists a constant s(ε) < 1 such that if s0 < s(ε),

s(g`) ≤ sM`+1
0 (1)

d(A+(g`−1), A+(g`)) ≤
ε

2
s
M`−1

0 (2)

d(A−(g0)A−(g`)) ≤
ε

2
s0 (3)

d(A+g`), A
+(hi`)) ≤

ε

2
si`0 (4)

d(A+(g`), A
+(hi) ∪ A−(hi)) ≥

ε

2
, i 6= i` (5)

d(A+(g`), A
−(g`)) ≥ ε/2 (6)

It is well known that there exists a positive constant s1(ε) such that for s0 ≤ s1(ε) the

group G1 generated by g0, h1, . . . , hm is free with free generators g0, h1, . . . , hm. There is

a choice of g0, h1, . . . , hm such that the group generated by g0, h1, . . . , hm is Zariski dense

in G. The proof is based on the so-called Ping-Pong Lemma. For details see [AMS1],

[AMS2].

Let q0 ∈ Rn be the origin. Let q` be the point of Cg` such that d(q0, q`) = d(q0, Cg`). Set

dg` = d(q`, g`q`). From Lemma 1.6 [AMS2] follows that there exist constants s2(ε), d1(ε)

and d2(ε) such that for s0 < min{s(ε), s2(ε)} we have

d(q0, Cg`) < d1(ε) (7)

and

dg` ≤ d2(ε)|Ml| (8)

The identification procedure. Let g and h be two hyperbolic, transversal elements

of G. Following [AMS2, chapter 3 ] we consider the following subspaces and projections.

Let Ch,g = E+
h ∩ E−g and Cg,h = E−h ∩ E+

g . Set π−h : Cg,h → Ch along A−(h) π+
h :

Ch → Ch,g along A+(h), π−g : Ch,g → Cg along A−(g) and π+
g : Cg → Cg,h Define
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the following transformation o(gh) of Cg,h as o(gh) = π+
g o(g)π−g π

+
h o(h)π−h . Obviously,

o(gnhm) = π+
g o(g)nπ−g π

+
h o(h)mπ−h for positive n,m ∈ Z.

The reasons for this definition are the following. The map o(gnhm) of Cg,h approximates

gnhm in the following sense. For positive integers n,m such that n → ∞,m → ∞ we

have E+
gnhm → E+

g and E−gnhm → E−h . Therefore Cgnhm → Cg,h. For a given q ∈ Cg,h and

q = o(gnhm)q for every positive numbers εk such that εk → 0, there exists δk, δk > 0,

δk → 0, positive numbers Nk, Nk → ∞ and qk ∈ U(q, δk) such that for nk,mk > Nk

we have d(o(gnkhmk)q, gnkhmkqk) < εk. We can thus approximate gnhm for certain points

near Cg,h by the orthogonal map o(gnhm) for sufficiently big n,m.

Let {g0, h1, . . . , hm} ⊂ G be ε–hyperbolic elements, pairwise very ε–transversal.

and let g` = hn`
i`
· · · · · hn1

i1
· g0, 1 ≤ ik ≤ m, ik 6= ik+1, nk ∈ Z, 1 ≤ k ≤ (l − 1),

and M` = |n1| + · · · + |n`|. Set o(g`) = π+
hil
o(hn`

i`
)π−hil

. . . π+
hi1
o(hn1

i1
)π−hi1

π+
g0
o(g0)π−g0 =

π+
hil
o(hi`)

n` . . . o(hi1)
n1π−hi1

π+
g0
o(g0)π−g0 and let π` = π+

hil
π−hil

. . . π+
hi1
π+
g0
π−g0 .

From now on we will assume that Γ is an affine group such that the linear part l(Γ)

is Zariski dense in SL2(R) × SO(3). Hence l(G) = SL2(R) × SO(3). In this case for a

R–regular element g ∈ G we have dimA+(g) = dimA−(g) = 1, dimA0(g) = 3 and the

restriction l(g) |A0(g)∈ SO(3). Let V1 and V2 be two l(G)–invariant subspaces of R5 such

that R5 = V1⊕ V2 and l(G)|V1 = SL2(R) and l(G)|V2 = SO(3). Denote by πi the map πi :

l(Γ))→ l(G)|Vi , i = 1, 2. Let g ∈ SO(3) be an element of infinite order. Then there exists

an eigenvector v0(g) ∈ R3 with eigenvalue 1. Let V0(g) be the one- dimensional subspace

of R3 spanned by v0(g). Let pg be the set V0(g)∩S2. Let g, h ∈ SO(3) be two elements of

infinite order which do not commute. Let P be the subspace of R3 spanned by v0(g) and

v0(h). Obviously, dimP = 2.

Lemma 3.1 Let g, h ∈ SO(3) be two non-commuting elements of infinite order. Let

g(t) and h(s) be the one parameter subgroups, such that g(1) = g and h(1) = h. Let P

be the subspace of R3 spanned by v0(g) and v0(h). Then for every vector v ∈ R3\P there
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exist t, s ∈ R, t, s > 0 such that g(t)h(s)v = v.

Proof Let σ be the reflection in P. Then there exist two rotations g(t) and h(s) such

that h(s)v = σv and g(t)σv = v. Thus, g(t)h(s)v = v.

Let γa, γb ∈ Γ be two R-regular elements. Denote by V0(π2(l(γma γ
n
b ))) the space

spanned by v0(π2(l(γma γ
n
b ))) and put p(n,m) = V0(π2(l(γma γ

n
b ))) ∩ S2

Proposition 3.2. There exist two very transversal hyperbolic elements γa, γb ∈ Γ such

that the set {p(n,m), n,m ∈ Z, n > 0,m > 0}, is dense in S2.

Proof. Let γa and γb be two very transversal elements. Then the group Γ1 generated

by l(γa) and l(γb) contains the free group generated by l(γna ) and lγnb ) for some enough

big n. Let us show that the group generated by π2(l(γa)) and π2(l(γb)) is dense in SO(3).

Indeed, if the subgroup generated by π2(l(γa)) and π2(l(γb)) is not dense in SO(3) then

it is virtually abelian. Therefore there exists G1 a subgroup of finite index in G and

nonzero vector v, v ∈ V2 such that π2(l(g))v = v for every g ∈ G1. Assume that V1 is

l(G)–invariant. Then Lga and Lgb are parallel. Hence by the same arguments we use in

the proof of Proposition 2.9, [AMS3] we conclude that Γ does not act properly discontinu-

ously. Assume that V2 is l(G)–invariant. Since the restriction l(G)|V2 is virtually abelian,

the infinite group [G1, G1] acts trivially on V2. Hence [G1, G1] has a fixed point fixed point

in R5 that is impossible because an infinite subgroup Γ ∩ G1 acts properly discontinu-

ously. Thus we will assume that elements π2(l(γa)) and π2(l(γb)) fulfill the requirements

of Lemma 3.1. Let γa = π2(γa) and γb = π2(γb) and γa(t) and γb(t) be one parameter

subgroups such that γa(1) = γa and γb(1) = γb. The semigroup generated by γa ( resp.

γb) is dense in γa(t) (resp. γb(t)). Therefore by lemma 3.1 the set p(n,m) is dense in S2.

Remark 2 It is obvious that for very transversal elements γa and γb we haveA+(γnaγ
m
b )→

A+(γa), A
+(γ−na γ−mb )→ A−(γb) A

−(γnaγ
m
b )→ A−(γb), A

−(γ−na γ−mb )→ A+(γa),
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E+
γna γ

m
b
→ E+

γa and E−γna γmb → E−γb , E
+

γ−n
a γ−m

b

→ E−γab and E−
γ−n
a γ−m

b

→ E+
γa when m,n→∞.

There exist ε and a set of ε–hyperbolic, pairwise very ε–transversal elements {γ0, γ1, . . . , γm} ⊂

Γ, such that the group generated by the set {l(γ0), l(γ1), l(γ2) . . . , l(γm)} is a free Zariski

dense subgroup of l(G) freely generated by{l(γ0), l(γ1), . . . , l(γm)} ( see [AMS1, Propo-

sition 3.7] ). Denote by Γ0 the group generated by the set {γ1, . . . , γm} and put Γn =

Γ0γ
n
0 , n ∈ Z, n > 0. Recall that any element γ ∈ Γn, n ≥ 1, is ε/2–hyperbolic.

Let q0 be the point of origin. By (8) that there exists a constant d∗ = d(ε) such that

dΓ = max
n∈Z,n>0

{d(q0, Cγ), γ ∈ Γn, n ≥ 1} ≤ d∗. (11)

By our definition above, dγ = d(qγ, γqγ), where qγ ∈ Cγ such that d(q0, Cγ) = d(q0, qγ).

Obviously {γn0 , n ∈ Z} ∩ Γ1 = ∅. Thus we have Γn ∩ Γm = ∅ for n 6= m. Since Γ acts

properly discontinuously, from (11) follows that for every Γn there exists an element γn ∈

Γn such that dγn = min{dγ, , γ ∈ Γn}. Set dn = dγn .

Set IM = {m,m > 0,m ∈ Z | dm < M}

Lemma 3.3 . For every M ∈ Z,M > 0 the set IM = {m,m > 0,m ∈ Z|dm < M} is

finite.

Proof. Suppose that there exists a positive number M such that the set IM = {m,m >

0,m ∈ Z|dm < M} is infinite. It is obvious that d(q0, γmqγm) ≤ dΓ + M Hence for all

γm,m ∈ IM we have B(q0, dΓ +M) ∩ γmB(q0, dΓ +M) 6= ∅. This is a contradiction since

Γ acts properly discontinuously.

From Lemma 3.3 follows that there exists an infinite sequence {γm, γm ∈ Γm} such

that dm = dγm →∞ when m→∞.

Remark 3 Recall that A−(γm) → A−(γ0) and E−γm → E−γ0 when m → ∞. Since the

projective space is compact we can and will assume that there are two subspaces A+ and
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E+ such that A+(γm)→ A+ and E+
γm → E+ when m→∞.

Proposition 3.4. If l(Γ) is Zariski dense in SL2(R) × SO(3) then Γ does not act

properly discontinuously.

Proof. Our proof follows the same strategy that we used in the proof of [Lemma 5.1

AMS2.] Namely, we will show that there exists a constant C = C(ε) such that if dm >

C there exist an element γ of the group generated by γa, γb ∈ Γ0 and positive number t

such that dγtγm < dγm = dm. Since, γt ∈ Γ0 we will have γtγm ∈ Γm. This will contradict

the definition dγm = min{dγ, γ ∈ Γm}.

Using the notations from Remark 3 we set E+
s = Cγs ⊕ A+, Cs(n,m) = E+

s ∩ E−g(n,m)
,

where γ(n,m) = γnaγ
m
b and Cs,n,m = (A−(γ0) ⊕ C−γs) ∩ E

+
γ(n,m)

, Cγ(n,m)
= E−γ(n,m)

∩ (Cγm ⊕

A+.) Let us set the following projections π−s : Cs,n,m → Cγs along A−(γs), π
+
s : Cγs →

Cs(n,m) along A+, π−γ(n,m) : Cs(n,m) → Cγ(n,m)
along A−(γ(n,m)) and π+

(n,m) : Cγ(n,m)
→

Cs,n,m. Since elements γ(n,m), γs are ε–transversal and ε–hyperbolic all these projections

are L(ε)– Lipschitz. From Proposition 3.2 follows that for every positive θ there exist a

finite subset S∗ ⊆ {γnaγmb , n,m ∈ Z} such that Π = {p(n,m), γ
n
aγ

m
b ∈ S∗} is a θ–net of the

sphere S2 ⊂ R3. Namely, for every vector of norm one in V2 there exists an element γ ∈

S∗ such that | sin∠(v, τγ)| < θ. We choose θ such that

θL(ε) < 1/4 (12)

Let qs,n,m be a point in Cs,n,m such that π−γs(qs,n,m) = qs. Then

qs,n,m(k) = π+
γ(n,m)o(γ(n.m))

kπ−γ(n,m)π
+
s o(γs)π

−
s (qs,n,m) ∈ Cs,n,m

and

π−γ(n,m)π
+
s o(γs)(qs)− π−γ(n,m)π

+
s (qs) = π−γ(n,m)π

+
s γsqs− π−γ(n,m)π

+
s (qs) = π−γ(n,m)π

+
s (γsqs− qs).

Set πk : Cs,n,m → Cγk
(n,m)

γs along A+(γk(n,m)γs)⊕ A−(γk(n,m)γs). Let q1 = πk(qs,n,m),

q2 = πk(γ
k
(n,m)γsq1). Then q2 = γk(n,m)γsq1 It is easy to see that if the scalar product

12



(τγ(m,n)
, πs,n,m(τγs)) > 0 then the scalar product (τγ(−m,−n)

, πs,−n,−m(τγs)) < 0. Thus we

can and will assume that we take an element γ(m,n) ∈ S∗ such that the scalar product

is negative. Using the same argument we used in the proof of Lemma 5.7 [AMS2] we

conclude from (12) that there exists an element γ(n,m) ∈ S∗, a positive number k = k(γs),

and constants c(ε) and c(S∗) such that we have

dγk
(n,m)

γs ≤
1

4
dγs + c(ε) + c(S∗)

Therefore if dγs > 2[c(ε) + c(S∗)] then dγk
(n,m)

γs < dγs . Since γ(n,m) ∈ Γ0 this contradicts

the definition of dγs and proves the proposition.

4 The main theorem.

Main theorem. Let Γ be an affine group acting properly discontinuously on the affine

space Rn, n ≤ 5. Then Γ does not contain a free non- abelian subgroup if and only if the

Zariski closure G of Γ does not contain SO(2, 1) as a normal subgroup.

Proof. . Let G be the Zariski closure of Γ. Assume that Γ acts properly discontinuously

and the semisimple part of G is not trivial. Then the possible cases for the linear realiza-

tion of l(G) are listed in Case 1, (1) -(4) and Case 2, (1)-(3). By the same arguments we

used in [AMS 3, Proposition 3.6] we conclude that Case 1, (1) -(4) are impossible. Let

l(G) be as in Case 2. If l(G) = SO(3, 2) then by [AMS1] Γ does not act properly dis-

continuously. Assume that l(G) = SO(4, 1). Then G leaves invariant a form of signature

p = 4, q = 1. Then Γ does not act properly discontinuously by [AMS2] since p − q > 2.

In case 2 (3) Γ does not act properly discontinuously by Proposition 3.4. This proves the

statement.

Corollary. Let Γ be a crystallographic group, Γ < AffRn, n ≤ 5. Then Γ is virtually

13



solvable.

Proof. Let G be the Zariski closure of Γ. Assume that l(G) does not contain SO(2, 1)

as a normal subgroup,. Then Γ does not contain a free subgroup by our Main Theorem.

Thus by the Tits alternative, Γ is virtually solvable. Assume that l(G) contains SO(2, 1)

as a normal subgroup. Then the space R5 is the direct sum of two l(G)–invariant subspace

R5 = V1 ⊕ V2, dimV1 = 3, dimV2 = 2. Then the real rank of every simple subgroup of

l(G) is ≤ 1. Hence Γ is virtually solvable [S],[To].
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