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Centralizers of differential operators of rank h

L. Makar-Limanov, E.Previato∗

Abstract

In the paper “Burchnall-Chaundy bundles” (Lecture Notes in Pure
and Appl. Math., 200, Dekker, New York, 1998, pages 377–383) the
second author conjectured that the centralizer of a differential operator
L = x−nδ(δ−m)(δ− 2m)...(δ−m(n− 1)) where δ = x d

dx is generated
by operators L and B = x−mδ(δ − n)(δ − 2n)...(δ − n(m − 1)) and
therefore has rank equal to the greatest common divisor h of m and
n. In this note we will show that this is indeed the case if the ground
field K has characteristic zero. Here we restrict ourselves to purely
algebraic considerations; the reader interested in geometric aspects
and historical background is advised to see the paper mentioned above
and the paper ”Centralizers of rank one in the first Weyl algebra” by
the first author (SIGMA, 17 (2021), Paper No. 052).

§1. Algebraic background: first Weyl algebra A1 and its skew
field of fractions D1

The first Weyl algebra A1 is an algebra over a field K generated by two
elements (denoted here by x and ∂) which satisfy a relation ∂x− x∂ = 1.

When characteristic of K is zero A1 has a natural representation over
the ring of polynomials K[x] by operators of multiplication by x and the
derivative ∂ relative to x. Hence the elements of the Weyl algebra can be
thought of as differential operators with polynomial coefficients. They can
be written as ordinary polynomials: a =

∑
ci,jx

i∂j, ci,j ∈ K with ordinary
addition but a more complicated multiplication.

∗Unfortunately during the preparation of this note Emma Previato passed away on
June 29, 2022. It is a sad duty of the first author to finish this project.
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Algebra A1 is rather small, its Gelfand-Kirillov dimension is 2, hence it
is a two-sided Ore ring. Because of that it can be embedded in a skew field
D1. A detailed discussion of skew fields related to Weyl algebras and their
skew fields of fraction, as well as a definition of Gelfand-Kirillov dimension
can be found in a paper [GK].

In this note we will be interested in the subalgebra B of D1 generated by
∂ and x−1. Both A1 and B are subalgebras of a larger algebra D of differ-
ential operators: the elements of D are

∑d
i=0 ai∂

i where ai are differentiable
functions of x.

If characteristic of K is zero then the centralizer C(a) of any element
a ∈ D \ K is a commutative subalgebra of D1 of the transcendence degree
one (therefore it is a maximal commutative subalgebra of D1). This was
established by Issai Schur who proved that this is the case in 1904 using
pseudo-differential operators (see [S]) and much later by Harley Flanders
(see [F]) and Shimshon Amitsur (see [A]) by purely algebraic means.

The research of commuting differential operators which was started by
Georg Wallenberg in 1903 (see [W]), became quite popular about fifty years
ago because of its connection to some important partial differential equations.

There is quite a few papers devoted to the centralizers of differential
operators in various algebras of differential operators. In characterization
of these centralizers an important role is played by a notion of rank. The
rank of a centralizer C(a) of a differential operator a is the greatest common
divisor of orders of all elements of this centralizer.

If an operator a is given it is often not clear how to compute the rank
of C(a). In this note we are concerned with the centralizer of an operator
L = x−nδ(δ−m)(δ−2m)...(δ−m(n−1)) where δ = x∂ is the Euler operator.
It is rather easy to check that B = x−mδ(δ − n)(δ − 2n)...(δ − n(m − 1))
commutes with L. Since the order of L is n and the order of B is m the rank
of C(L) must divide h = (m,n).

We prove in this note that the rank of C(L) is indeed (m,n), as it was
conjectured in [P], where a connection between commutative subalgebras of
rank h and vector bundles (or coherent sheaves) of rank h is explained.

§2 Proof of the Theorem

Our goal is to prove the following
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Theorem. The centralizer of the element

L = x−nδ(δ −m)(δ − 2m)...(δ −m(n− 1)) ∈ D

belongs to the algebra B = K[x−1, ∂] and is generated by L and

B = x−mδ(δ − n)(δ − 2n)...(δ − n(m− 1))

if characteristic of the ground field K is zero. 2

The proof is based on “computations”, so we start with an example to
illustrate these computations and then give a proof of the Theorem.

2.1 The first interesting example is when n = 6, m = 9 :
L = x−6δ(δ − 9)(δ − 18)...(δ − 45), B = x−9δ(δ − 6)(δ − 12)...(δ − 48).

From ∂x− x∂ = 1 we can see that
(δ + i)x = (x∂ + i)x = x(x∂ + 1) + ix = x(δ + i+ 1),
(δ + i)x−1 = x−1(δ + i− 1), (δ + i)xj = xj(δ + i+ j) and
(δ + i)−1xj = xj(δ + i+ j)−1.

Operators L, B ∈ D1. Hence
D1 3 BL−1 = [x−9δ(δ−6)(δ−12)...(δ−48)][x−6δ(δ−9)(δ−18)...(δ−45)]−1 =
x−9δ(δ − 6)(δ − 12)...(δ − 48)δ−1(δ − 9)−1(δ − 18)−1...(δ − 45)−1x6 =
x−3(δ + 6)δ(δ − 6)...(δ − 42)(δ + 6)−1(δ − 3)−1(δ − 12)−1...(δ − 39)−1 =

x−3 δ(δ−6)
δ−3

(δ−18)(δ−24)
δ−21

(δ−36)(δ−42)
δ−39 .

Denote this element ofD1 byM . It is easy to check that L = M2, B = L3.
Say, M2 = x−3 δ(δ−6)

δ−3
(δ−18)(δ−24)

δ−21
(δ−36)(δ−42)

δ−39 x−3 δ(δ−6)
δ−3

(δ−18)(δ−24)
δ−21

(δ−36)(δ−42)
δ−39 =

x−6 (δ−3)(δ−9)
δ−6

(δ−21)(δ−27)
δ−24

(δ−39)(δ−45)
δ−42

δ(δ−6)
δ−3

(δ−18)(δ−24)
δ−21

(δ−36)(δ−42)
δ−39 =

x−6δ(δ − 9)(δ − 18)(δ − 27)(δ − 36)(δ − 45).
Though M is not a differential operator, its square and cube are. Of

course because of that M i is a differential operator if i > 1.
If the centralizer C(L) 6= K[L,B] then C(L) 3 N =

∑d
j=0 νj(x)∂d−j, a

differential operator of order d not divisible by 3.
Consider an automorphism α of D1 given by ∂ → λ∂, x → λ−1x. Since

α(L) = λ6L we can conclude that L =
∑6

i=0 λix
−i∂6−i (where λ0 = 1 and

λi ∈ Z because ∂xi = xi∂ + ixi−1).
Since LN = NL we have an equality

∂6ν0∂
d+(∂6ν1∂

d−1+λ1x
−1∂5ν0∂

d)+· · · = ν0∂
d∂6+(ν1∂

d−1∂6+ν0∂
dλ1x

−1∂5)+
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. . . .

Since ∂if(x) =
∑i

j=0

(
i
j

)
f (j)∂i−j (can be easily checked by induction or

recall the Leibniz law) we get the following restrictions on νi:
6ν ′0∂

d+5 = 0, ν ′0 = 0 and we can put ν0 = 1;
(6ν ′1+λ1dx

−2)∂d+4 = 0, ν ′1 = −λ1d
6
x−2 and ν1 = µ1,1+ λ1d

6
x−1 where µ1,1 ∈ K.

The first two coefficients of N are polynomials in x−1. We can use induc-
tion to prove that all coefficients of N are polynomials in x−1. Assume that
coefficients νj of N are polynomials in x−1 if j < k. Recall that the commu-
tator [a, b] denotes ab− ba. Since [L,N ] =

∑
i,j[λix

−i∂6−i, νj(x)∂d−j] the co-

efficient with ∂d+5−k in [L,N ] is 6ν ′k+
∑6

s=2

(
6
s

)
ν
(s)
k−s+1+pk where pk is a linear

combination of coefficients with ∂d+5−k in commutators [λix
−i∂6−i, νj(x)∂d−j]

where i > 0 and j < k.
Because [a, bc] = [a, b]c + b[a, c] a commutator [x−i∂6−i, νj(x)∂d−j] =

νj(x)[x−i, ∂d−j]∂6−i + x−i[∂6−i, νj(x)]∂d−j and the corresponding coefficients
are linear combinations of x−l where l > 1. Thus ν ′k = x−2f(x−1) where f is
a polynomial in x−1 and an antiderivative of x−2f(x−1) is also a polynomial
in x−1. Therefore N ∈ K[x−1, ∂] ⊂ D1.

We can assume without loss of generality that N =
∑d

i=0 ξjx
−j∂d−j, ξj ∈

K : N can be presented as a sum of a semi-invariants of the automorphism α
each of which commutes with L. Hence N = x−dq(δ) where q is a polynomial.

Since d is not divisible by 3 we can find t1, t2, t3 ∈ Z for which 6t1 +
9t2 + dt3 = 1. Then P = Lt1Bt2N t3 = x−1r(δ) ∈ D1, r ∈ K(δ).

Now, MP−3 ∈ K(δ) and commutes with L. ThereforeMP−3 is a constant
which is equal to 1 since the leading coefficients of M and P are equal to 1.

We will prove that the rank of C(L) is three and that C(L) = K(L,B) if
we show that equality M = P 3 is impossible.

If M = P 3 then x−3 δ(δ−6)
δ−3

(δ−18)(δ−24)
δ−21

(δ−36)(δ−42)
δ−39 = x−3r(δ)r(δ− 1)r(δ− 2)

and δ(δ−6)
δ−3

(δ−18)(δ−24)
δ−21

(δ−36)(δ−42)
δ−39 = r(δ)r(δ − 1)r(δ − 2).

Assume that the ground filed K is algebraically closed and present r(δ) =
r0(δ)r1(δ) where all roots and poles of r0 are integers and all roots and
poles of r1 are not integers. Then r1(δ)r1(δ − 1)r1(δ − 2) = c ∈ K, hence
r1(δ − 1)r1(δ − 2)r1(δ − 3) = c and r1(δ) = r1(δ − 3). Since r1 is a rational
function this is possible only if r1 is a constant.

Present now r0 = r00r01r02 where all roots and poles of r00 are divisible
by 3, all roots and poles of r01 are ≡ 1 (mod 3), all roots and poles of r02
are are ≡ 2 (mod 3).
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Then δ(δ−6)
δ−3

(δ−18)(δ−24)
δ−21

(δ−36)(δ−42)
δ−39 =

r00(δ)r01(δ)r02(δ)r00(δ − 1)r01(δ − 1)r02(δ − 1)r00(δ − 2)r01(δ − 2)r02(δ − 2)

and δ(δ−6)
δ−3

(δ−18)(δ−24)
δ−21

(δ−36)(δ−42)
δ−39 = c0r00(δ)r01(δ − 2)r02(δ − 1), c0 ∈ K.

r00(δ − 1)r01(δ)r02(δ − 2) = c1 ∈ K, r00(δ − 2)r01(δ − 1)r02(δ) = c2 ∈
K, c0c1c2 = 1.

But this is impossible since
3 = degδ(r00(δ)r01(δ − 2)r02(δ − 1)) = degδ(r00(δ − 1)r01(δ)r02(δ − 1)) = 0.
Hence C(L) ⊂ K[M ] and has rank 3.

2.2 We are ready to consider the general case

L = x−n
n−1∏
i=0

(δ − im), B = x−m
m−1∏
j=0

(δ − jn);

n = n1h, m = m1h, (n1,m1) = 1.

For the reader’s convenience the proof is split into seven Lemmas (some
of which are certainly not new).

Lemma 1. Lm = Bn.
Proof. Lm = x−mn

∏m−1
j=0 (

∏n−1
i=0 (δ−im−jn)) andBn = x−mn

∏n−1
i=0 (

∏m−1
j=0 (δ−

jn− im)) since (δ + k)xl = xl(δ + k + l). 2

Remark. Hence [L,B] = 0. Indeed Lm commutes with L and B and by
Schur’s theorem [L,B] = 0. 2

Lemma 2. L =
∑n

i=0 λix
−i∂n−i where λ0 = 1.

Proof. Since α(L) = λnL where α is an automorphism of D1[t, t
−1] given by

α(∂) = t∂, α(x) = t−1x, α(t) = t (t is a central variable), we can conclude
that L =

∑n
i=0 λix

−i∂n−i where λ0 = 1 and λi ∈ Z because ∂xi = xi∂+ ixi−1.
2

Lemma 3 (Leibniz law). [∂i, f ] =
∑i

j=1

(
i
j

)
f (j)∂i−j.

Proof. Base of induction: [∂, f ] = f ′. Induction step: [∂i+1, f ] = [∂, f ]∂i +
∂[∂i, f ] = f ′∂i+∂

∑i
j=1

(
i
j

)
f (j)∂i−j =

(
i
0

)
f ′∂i+

∑i
j=1

(
i
j

)
(f (j)∂+f (j+1))∂i−j =∑i+1

j=1

(
i+1
j

)
f (j)∂i+1−j. 2

Remark. If f ∈ K[x−1] and i > 0 then [∂i, f ] ∈ x−2B. 2
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Lemma 4. If E ∈ B and is a monic differential operator of positive order
then C(E) ⊂ B.
Proof. E = ∂e +

∑e
i=1 εi∂

e−i, e > 0 where εi ∈ K[x−1]. If [E,N ] = 0

and N =
∑d

j=0 νj(x)∂d−j where νj are differentiable functions of x then

ν ′0 = 0 and we can assume that ν0 = 1. Assume further that νj ∈ K[x−1]

for j < k. Since [E,
∑k−1

j=0 νj(x)∂d−j] =
∑i=e,j=k−1

i=0,j=0 [εi∂
e−i, νj(x)∂d−j] =∑i=e,j=k−1

i=0,j=0 νj(x)[εi, ∂
d−j]∂e−i +

∑i=e,j=k−1
i=0,j=0 εi[∂

e−i, νj(x)]∂d−j ∈ x−2B and the

coefficient with ∂e+d−k−1 of [E,N ] is eν ′k plus the coefficient with ∂e+d−k−1 of

[E,
∑k−1

j=0 νj(x)∂d−j] we can conclude that νk ∈ K[x−1]. 2

Remark. N can be represented as a sum of semi-invariants of the automor-
phism α. Hence C(L) has a linear basis consisting of operators x−iq(δ) where
q(δ) ∈ K[δ], deg(q) = i, q is a monic polynomial. 2

Lemma 5. Skew fieldD1 contains such an elementM that L = Mn1 , B =
Mm1 .
Proof. We can find integers t1, t2 such that t1n1+t2m1 = 1 since (n1,m1) = 1.
Therefore M = Lt1Bt2 ∈ D1. Since M = x−hs(δ), s(δ) ∈ K(δ) elements
LM−n1 , BM−m1 ∈ K(δ) and commute with L. Hence LM−n1 , BM−m1 ∈ K.
Even more, LM−n1 = BM−m1 = 1 since L and B are monic operators. 2

Remark. All roots and poles of s(δ) are integers divisible by h and deg(s) = h.
2.

Lemma 6. If C(L) 3 N , a differential operator of order d then D1 con-

tains an element P = x−(h,d)r(δ), r(δ) ∈ K(δ), such that M = P
h

(h,d) .
Proof. We can present N as a sum of semi-invariants of α all of which com-
mute with L and replace it by a semi-invariant of order d. Thus we may
assume that N = x−dq(δ) where q is a monic polynomial of degree d. We
can find integers t3, t4 such that t3h+ t4d = (h, d). Then P = M t3N t4 is the
element of D1 we are looking for. 2

Lemma 7. If C(L) 3 N , a differential operator of order d then (h, d) = h.
Proof. If (h, d) 6= h then M = P k, k > 1 and h = kh1. Therefore s(δ) =∏k−1

i=0 r(δ−ih1). Assume that the ground filed K is algebraically closed. Then
we can write r(δ) = r0(δ)r1(δ) where all roots and poles of r0 are integers
divisible by h1 and all roots and poles of r1 are not integers divisible by h1.
By Remark to Lemma 5 all roots and poles of s(δ) are divisible by h and
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hence by h1. Because of that
∏k−1

i=0 r1(δ − ih1) = c ∈ K,
∏k

i=1 r(δ − ih1) = c
and r1(δ) = r1(δ − h). Since r1 is a rational function this is possible only if
r1 is a constant and s(δ) = c−1

∏k−1
i=0 r0(δ − ih1)

On the other hand r0 =
∏k−1

j=0 r0j where all roots and poles of r0j are

≡ −jh1 (mod h). Hence s(δ) = c0
∏k−1

j=0 r0j(δ − jh1) and, say, r00(δ + h1 −
h)
∏k−1

j=1 r0j(δ − jh1 + h1) = c1 ∈ K. But then deg(s) = 0, i.e. h = 0 which
is absurd (see Remark to Lemma 5). 2

A proof of the Theorem is done. Lemma 4 establishes that C(L) ∈ B and
Lemma 7 shows that the order d of an operator N ∈ C(L) must be divisible
by h. Therefore the rank of C(L) is h.

Acknowledgments.
The first author is grateful to the Max-Planck-Institut für Mathemtik in

Bonn where he is presently a visitor. He was also supported by a FAPESP
grant awarded by the State of Sao Paulo, Brazil.

References.

[A] Amitsur, S. Commutative linear differential operators, Pacific J. Math.
8 (1958), 1–10.

[F] Flanders, H. Commutative linear differential operators, Technical Re-
port No. 1, Department of Mathematics, University of California, Berkeley
(1955), 1–39.

[GK] Gelfand, I. M.; Kirillov, A. A. Sur les corps liés aux algèbres envelop-
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