Max-Planck-Institut für Mathematik Bonn

On simple left-symmetric algebras

by

Alexandr Pozhidaev
Ualbai Umirbaev
Viktor Zhelyabin

Max-Planck-Institut für Mathematik Preprint Series 2022 (58)

On simple left-symmetric algebras

by
Alexandr Pozhidaev
Ualbai Umirbaev
Viktor Zhelyabin

Max-Planck-Institut für Mathematik	Sobolev Institute of Mathematics of SB RAS
Vivatsgasse 7	Novosibirsk 630090
53111 Bonn	Russia
Germany	
	Department of Mathematics
	Wayne State University
	Detroit, MI 48202
	USA
	Department of Mathematics
	Al-Farabi Kazakh National University
	Almaty 050040
	Kazakhstan
	Institute of Mathematics and
	Mathematical Modeling
	Almaty 050010
	Kazakhstan

ON SIMPLE LEFT-SYMMETRIC ALGEBRAS

Alexandr Pozhidaev ${ }^{1}$, Ualbai Umirbaev ${ }^{2}$, and Viktor Zhelyabin ${ }^{3}$

Abstract. We prove that the multiplication algebra $M(A)$ of any simple finite-dimensional left-symmetric nonassociative algebra A over a field of characteristic zero coincides with the right multiplication algebra $R(A)$. In particular, A does not contain any proper right ideal. These results immediately give a description of simple finite-dimensional Novikov algebras over an algebraically closed field of characteristic zero [29].

The structure of finite-dimensional simple left-symmetric nonassociative algebras from a very narrow class \mathcal{A} of algebras with the identities $[[x, y],[z, t]]=[x, y]([z, t] u)=0$ is studied in detail. We prove that every such algebra A admits a \mathbb{Z}_{2}-grading $A=A_{0} \oplus A_{1}$ with an associative and commutative A_{0}. Simple algebras are described in the following cases: (1) A is four dimensional over an algebraically closed field of characteristic not 2 , (2) A_{0} is an algebra with the zero product, and (3) A_{0} is simple; in the last two cases, the description is given in terms of root systems. A necessary and sufficient condition for A to be complete is given.
Mathematics Subject Classification (2020): 17D25, 17B05, 16D60.
Key words: left-symmetric algebra; pre-Lie algebra; Lie-solvable algebra; Novikov algebra; nilpotent algebra; simple algebra.

1. Introduction

An algebra A over a field F is called left-symmetric (or pre-Lie) if it satisfies the identity

$$
\begin{equation*}
(x y) z-x(y z)=(y x) z-y(x z) . \tag{1.1}
\end{equation*}
$$

This means that the associator $(x, y, z):=(x y) z-x(y z)$ is symmetric with respect to two left arguments, i.e.,

$$
\begin{equation*}
(x, y, z)=(y, x, z) \tag{1.2}
\end{equation*}
$$

Left-symmetric algebras arise in many different areas of mathematics and physics (for example, see [7]).

The variety of left-symmetric algebras is Lie-admissible, i. e., each left-symmetric algebra A with the operation $[x, y]:=x y-y x$ is a Lie algebra. We denote this Lie algebra by $A^{(-)}$and call it the adjoint Lie algebra of A.

[^0]A linear basis for free left-symmetric algebras was given by D. Segal in 1994 [21]. The identities of left-symmetric algebras were studied by V. Filippov [10], and he proved that any left-nil left-symmetric algebra over a field of characteristic zero is left nilpotent. An analogue of the PBW basis Theorem for the universal (multiplicative) enveloping algebra of a right-symmetric algebra was given in [14]. The Freiheitssatz and the decidability of the word problem for one-relator right-symmetric algebras were proven in [15].

The left-symmetric Witt algebras $\mathcal{L}_{n}[25]$ are one of the most important series of infinitedimensional simple left-symmetric algebras over fields of characteristic zero. These algebras are very convenient to describe some famous problems of affine algebraic geometry, including the Jacobian Conjecture, in purely ring theoretic terms [25]. Some results on the identities of the left-symmetric Witt algebras \mathcal{L}_{n} are proven in [16].

The class of left-symmetric algebras is a wide extension of the class of associative algebras, and it contains the class of assosymmetric algebras, Novikov algebras, and ($-1,0$)algebras. Recall that an assosymmetric algebra is a left-symmetric algebra, which is right-symmetric as well, i.e., it also satisfies the identity

$$
(x, y, z)=(x, z, y)
$$

In 1957 E. Kleinfeld [12] proved that if R is an assosymmetric ring of characteristic different from 2 and 3 and without zero-product ideals then R is associative. A Novikov algebra is a left-symmetric algebra with commuting right multiplications, i. e., the Novikov algebras satisfy the identity $(x y) z=(x z) y$ in addition to the left-symmetric identity (1.1). In 1987 E. Zelmanov [29] proved that any finite-dimensional simple Novikov algebra over an algebraically closed field of characteristic zero is one-dimensional. V. Filippov constructed a wide class of simple Novikov algebras of characteristic $p \geq 0$ [9]. J. Osborn $[17,18,19]$ and $\mathrm{X} . \mathrm{Xu}[27,28]$ continued the study of simple finite-dimensional Novikov algebras over fields of positive characteristic and simple infinite-dimensional Novikov algebras over fields of characteristic zero. A complete classification of finite-dimensional simple Novikov algebras over algebraically closed fields of characteristic $p>2$ is given in [27]. Some interesting results on the structure of nilpotent, solvable, and Lie solvable Novikov algebras were recently obtained in [22, 24, 26, 31, 30].

The class of $(-1,0)$-algebras is a part of the class of (γ, δ)-algebras introduced by A. Albert [1]. It is well known [13] that every simple finite-dimensional algebra of type $(-1,0)$ of characteristic not equal to 2 and 3 is associative.

In contrast to assosymmetric algebras, Novikov algebras, and ($-1,0$)-algebras, the class of simple (finite-dimensional) non-associative left-symmetric algebras is immense. For example, as it was shown in [20], starting from an arbitrary (finite-dimensional) nontrivial left-symmetric algebra A, one can construct a simple (finite-dimensional) left-symmetric algebra, which contains A as a subalgebra.

There exist infinitely many non-isomorphic simple left-symmetric structures on the Lie algebra $g l_{n}[5]$; they are classified in [5] as deformations of the associative matrix algebra structure. A classification of 2 and 3 -dimensional simple left-symmetric algebras over \mathbb{C} was obtained in [6]. Classification of 4-dimensional simple left-symmetric algebras are already quite complicated. However, it is feasible for complete left-symmetric algebras
[6]. Recall that a left-symmetric algebra A is called complete if the operator $I d+R(x)$ is bijective for all $x \in A$ (this condition arises naturally in the context of affine transformations).

It is well known that the adjoint Lie algebra of a left-symmetric algebra cannot be semisimple [4] and the adjoint Lie algebra of a simple left-symmetric algebra cannot be nilpotent [6]. There are many examples of simple left-symmetric algebras with solvable and reductive adjoint Lie algebras. The adjoint Lie algebra of a complete left-symmetric algebra is always solvable [3].

This paper is devoted to the study of simple finite-dimensional left-symmetric algebras over algebraically closed fields of characteristic zero. We prove that the multiplication algebra $M(A)$ of any simple finite-dimensional left-symmetric nonassociative algebra A over a field of characteristic zero coincides with the right multiplication algebra $R(A)$ and A is an irreducible $R(A)$-module. In particular, A does not contain any proper right ideal. Recall that a similar result holds for $(-1,0)$ and $(1,1)$-algebras (see [13]). Moreover, these results can be immediately applied to get the description of simple finite-dimensional Novikov algebras over an algebraically closed field of characteristic zero given in [29].

The remaining part of the paper is focused on the study of finite-dimensional simple left-symmetric nonassociative algebras from a very narrow variety \mathfrak{M} of algebras with the identities $[[x, y],[z, t]]=[x, y]([z, t] u)=0$. We establish that in some sense \mathfrak{M} is the smallest reasonable variety of the left-symmetric algebras such that \mathfrak{M} contains nontrivial finite-dimensional simple algebras. We show that even this smallest class contains a huge number of simple algebras. We prove that every simple finite-dimensional algebra $A \in \mathfrak{M}$ admits a \mathbb{Z}_{2}-grading $A=A_{0} \oplus A_{1}$ with an associative and commutative A_{0}. Simple algebras are described in the following cases: (1) A is four dimensional, (2) A_{0} is an algebra with the zero product, and (3) A_{0} is simple; in the last two cases the description is given in terms of root systems. A necessary and sufficient condition for A to be complete is given.

The paper is organized as follows. In the preliminary Section 2 we give some constructions of ideals of left-symmetric algebras. In Section 3 we prove that the multiplication algebra of any simple finite-dimensional left-symmetric nonassociative algebra coincides with the right multiplication algebra and show that such an algebra is right simple. In Section 4 we define a very small variety of algebras \mathfrak{M} such that \mathfrak{M} contains simple finitedimensional Lie-metabelian algebras, and we define the class of simple algebras \mathcal{A} in \mathfrak{M}. In particular, every algebra A in \mathcal{A} admits a \mathbb{Z}_{2}-grading $A=A_{0} \oplus A_{1}$. In Section 5 we give a necessary and sufficient condition for $A \in \mathcal{A}$ to be complete. In Section 6 we study root decompositions for algebras in \mathcal{A}. In Section 7, using the obtained results, we give a complete description of simple four-dimensional algebras in \mathcal{A}. Section 8 is devoted to the study of algebras $A \in \mathcal{A}$ when either A_{0} is an algebra with the zero product or A_{0} is simple.

2. Preliminaries

Let A be an arbitrary left-symmetric algebra over a field F. Given $a \in A$, we define the operators $L_{a}: x \mapsto a x$ and $R_{a}: x \mapsto x a$ of the left and right multiplication, respectively. By (1.1) we get

$$
\begin{equation*}
\left[L_{x}, L_{y}\right]=L_{[x, y]} \tag{2.1}
\end{equation*}
$$

and

$$
\begin{equation*}
\left[L_{x}, R_{y}\right]=R_{x y}-R_{y} R_{x} \tag{2.2}
\end{equation*}
$$

Let $\operatorname{End}(A)$ be the algebra of linear mappings of the vector space A. The subalgebra $M=M(A)$ of $\operatorname{End}(A)$ that is generated by the operators L_{a} and R_{a}, where $a \in A$, is called the multiplication algebra of A. The left multiplication algebra $L=L(A)$ and the right multiplication algebra $R=R(A)$ are some subalgebras of $M(A)$ generated by the operators L_{a} and R_{a}, respectively, where a ranges over A.

Lemma 2.1. Let A be a left-symmetric algebra, and let $A n n_{l}(A)=\{x \in A: x A=0\}$. Then $A n n_{l}(A)$ is an ideal of A.

Proof. It suffices to prove that $A n n_{l}(A)$ is a left ideal of A. Take $x \in A n n_{l}(A)$ and $a \in A$. Then for every $b \in A$ we have

$$
(b x) a=(b, x, a)=(x, b, a)=(x b) a-x(b a)=0
$$

by (1.2). Therefore, $b x \in A n n_{l}(A)$. Consequently, $A n n_{l}(A)$ is an ideal of A.
Lemma 2.2. $R L \subseteq L R+R$ and $L R+R$ is an ideal of M.
Proof. Notice that every element of L is a linear combination of elements of the form

$$
u=L_{x_{1}} \ldots L_{x_{n}}, n \geq 1
$$

and every element of R is a linear combination of elements of the form

$$
v=R_{y_{1}} \ldots R_{y_{m}}, m \geq 1
$$

Using (2.2) we can represent the product $v u$ as a linear combination of elements of the form

$$
L_{a_{1}} \ldots L_{a_{k}} R_{b_{1}} \ldots R_{b_{s}}, s \geq 1
$$

Consequently, $R L \subseteq L R+R$ and $L R+R$ is an ideal of M.
Lemma 2.3. Let I be an ideal of R such that $\left[L_{x}, I\right] \subseteq I$ for all $x \in A$. Then $K=L I+I$ is an ideal of M.

Proof. By Lemma 2.2,

$$
R K=R(L I+I) \subseteq R L I+R I \subseteq L R I+R I+I \subseteq K
$$

since I is an ideal of R. Clearly, $L K \subseteq K$. Hence, K is a left ideal of M.
Show that K is a right ideal of M. For any $x \in A$ we get

$$
I L_{x} \subseteq L_{x} I+\left[L_{x}, I\right] \subseteq L_{x} I+I
$$

Therefore,

$$
K L_{x} \subseteq L I L_{x}+I L_{x} \subseteq L L_{x} I+L I+L_{x} I+I \subseteq K
$$

Clearly, $K R \subseteq K$, since I is an ideal of R. Hence, K is a right ideal of M. This proves that K is an ideal of M.

Corollary 2.1. If e is a central idempotent of R then $L R e+R e$ is an ideal of M and e is a central idempotent of M.

Proof. We have

$$
\left[L_{x}, e\right]=\left[L_{x}, e^{2}\right]=e\left[L_{x}, e\right]+\left[L_{x}, e\right] e=2\left[L_{x}, e\right] e
$$

for all $x \in A$, since $\left[L_{x}, e\right] \in R$ by (2.2). Consequently,

$$
\left[L_{x}, e\right] e=2\left[L_{x}, e\right] e^{2}=2\left[L_{x}, e\right] e
$$

Hence, $\left[L_{x}, e\right] e=0$ and $\left[L_{x}, e\right]=0$. Thus, e is a central idempotent of M. Moreover, Re is an ideal of R and

$$
\left[L_{x}, R e\right] \subseteq\left[L_{x}, R\right] e+R\left[L_{x}, e\right] \subseteq R e
$$

Hence, $L R e+R e$ is an ideal of M.

3. The multiplication algebra of a simple left-symmetric algebra

We may assume that A is a left M-module regarding the action $w \cdot a=w(a)$, where $w \in M, a \in A$. Similarly, we can consider A as a left R-module. Obviously, A is a faithful M-module and A is a faithful R-module.

Recall that an arbitrary algebra A is simple if A does not contain nontrivial ideals and $A^{2} \neq 0$.

Now, let A be a simple finite-dimensional left-symmetric algebra over a field F. Then its multiplication algebra M is a matrix algebra over a skew-field. Hence, $M=L R+R$ by Lemma 2.2. Let e be the identity element of M and let $B=(i d-e) \cdot A$. Obviously, $w \cdot B=0$ for all $w \in M$. Consequently, B is an ideal of A and either $B=0$ or $B=A$, since A is simple. If $B=A$ then we get $A^{2}=0$. Hence, $B=0$, and A is a unitary M-module.

Let $C_{M}(R)$ be the centralizer of the subalgebra R in M, i.e.,

$$
C_{M}(R)=\{x \in M:[x, a]=0 \forall a \in R\} .
$$

Lemma 3.1. Let J be the Jacobson radical of R. Then the following assertions hold:
(1) if $\left[L_{x}, J\right] \subseteq J$ for all $x \in A$ then $J=0, R$ is a simple subalgebra of M, and R contains the identity element of M;
(2) if F is an algebraically closed field then $M \cong R \otimes C_{M}(R)$;
(3) if F is of characteristic zero then $\left[L_{x}, J\right] \subseteq J$ for every $x \in A$.

Proof. Assume that $J \neq 0$. Then $L J+J$ is a nonzero ideal of M by Lemma 2.3, since $\left[L_{x}, J\right] \subseteq J$ for all $x \in A$. Hence, $M=L J+J$, since M is simple. The Jacobson radical J
of the finite-dimensional algebra R is nilpotent. Suppose that $J^{n}=0$ and $J^{n-1} \neq 0$. Then $M J^{n-1} \subseteq L J^{n}+J^{n}=0$. Consequently, $J^{n-1}=0$. This contradiction implies $J=0$.

Therefore,

$$
R=R_{1} \oplus \ldots \oplus R_{k}
$$

is the direct sum of some simple algebras.
Let e be the identity element of R_{1}. Then e is a central idempotent of R. Set $K=$ $L R e+R e$. By Corollary 2.1, K is an ideal of M and e is a central idempotent of M. Therefore, $M=L R e+R e$, since M is simple. Hence, e is the identity element of M, and $R=R_{1}$, i. e., R is simple.

Let F be an algebraically closed field. Then the center $Z(R)$ of R coincides with F. Therefore, $M \cong R \otimes C_{M}(R)$ by the coordinatization theorem [11].

Let F be a field of characteristic zero. By (2.2), $\left[L_{x}, R\right] \subseteq R$ for all $x \in A$, and $\operatorname{ad}\left(L_{x}\right): R \rightarrow R$, which maps r into $\left[L_{x}, r\right]$, is a derivation of R. It is well known that the Jacobson radical is closed under derivations in characteristic zero [2] (see also [23]). Hence, $\left[L_{x}, J\right] \subseteq J$ for all $x \in A$.

Notice that an arbitrary algebra satisfies the identity

$$
\begin{equation*}
a(b, c, d)-(a b, c, d)-(a, b, c d)+(a, b c, d)+(a, b, c) d=0 \tag{3.1}
\end{equation*}
$$

and every left-symmetric algebra satisfies the identity

$$
\begin{equation*}
(a, b, c)=[a b, c]-a[b, c]-[a, c] b . \tag{3.2}
\end{equation*}
$$

Theorem 3.1. Let A be a finite-dimensional simple left-symmetric algebra over an algebraically closed field F of characteristic zero. Then either A is associative or $R=M=$ $M_{n}(F)$, where $n=\operatorname{dim}_{F} A$, and A is a simple R-module.

Proof. By Lemma 3.1, A is a unitary R-module, and R is a simple finite-dimensional algebra. Therefore,

$$
A=A_{1} \oplus \ldots \oplus A_{m}
$$

is the direct sum of some irreducible R-modules. Notice that A_{i} is a right ideal of A.
Assume that $m>1$. If $i \neq j$ then

$$
\left(A_{i}, A_{j}, A\right)=\left(A_{j}, A_{i}, A\right) \subseteq A_{i} \cap A_{j}=0
$$

By (3.1),

$$
\begin{gathered}
A_{i}\left(A_{j}, A_{j}, A\right) \subseteq\left(A_{i} A_{j}, A_{j}, A\right)+\left(A_{i}, A_{j} A_{j}, A\right)+\left(A_{i}, A_{j}, A_{j} A\right)+\left(A_{i}, A_{j}, A_{j}\right) A \subseteq \\
\left(A_{i}, A_{j}, A\right)+\left(A_{i}, A_{j}, A\right) A=0 .
\end{gathered}
$$

Therefore, $R_{\left(A_{j}, A_{j}, A\right)} \subseteq A n n_{R}\left(A_{i}\right)$. Since $A n n_{R}\left(A_{i}\right)$ is an ideal of R and R is simple by Lemma 3.1; therefore, either $A n n_{R}\left(A_{i}\right)=R$ or $A n n_{R}\left(A_{i}\right)=0$. Clearly, $A n n_{R}\left(A_{i}\right) \neq R$. Hence, $A n n_{R}\left(A_{i}\right)=0$ and $R_{\left(A_{j}, A_{j}, A\right)}=0$, i. e., $A\left(A_{j}, A_{j}, A\right)=0$ for all $j=1, \ldots, m$. Consequently,

$$
A(A, A, A) \subseteq \sum_{i j} A\left(A_{i}, A_{j}, A\right)=0
$$

Applying (3.1) again, we get

$$
(A, A, A) A \subseteq A(A, A, A)+(A, A, A) \subseteq(A, A, A)
$$

Thus, (A, A, A) is an ideal of A. Therefore, either $(A, A, A)=0$ or $(A, A, A)=A$.
If $A=(A, A, A)$ then we get $A^{2}=A(A, A, A)=0$. Consequently, $(A, A, A)=0$, i.e., A is an associative algebra.

Hence, if A is not associative then $m=1$. Consequently, A is an irreducible R-module. Let c be a nonzero element in $C_{M}(R)$. Note that $c \cdot A$ is an R-submodule of the R-module A. Since A is a faithful and irreducible R-module; therefore, $c \cdot A=A$. Consequently, $C_{M}(R)$ is a skew-field. Taking into account that $C_{M}(R)$ is finite-dimensional and F is an algebraically closed field we get $C_{M}(R)=F$. By Lemma 3.1 we obtain $R=M$.

Corollary 3.1. Every finite-dimensional simple left-symmetric algebra over an algebraically closed field of characteristic zero does not contain any nontrivial right ideal.

Theorem 3.1 immediately implies Zel'manov's result [29] on finite-dimensional simple Novikov algebras of characteristic 0 .

Corollary 3.2. [29] Let N be a finite-dimensional simple Novikov algebra over a field F of characteristic zero. Then N is a field.

Proof. By Lemma 3.1, the right multiplication algebra $R=R(N)$ is simple. This implies that R is a field, since R is commutative in the case of Novikov algebras.

Let $x \in N$. Then the map $w \in R \mapsto\left[L_{x}, w\right] \in R$ is a derivation of R. Let $w \in R$. Let $f(t) \in F[t]$ be a polynomial of minimal degree such that $f(w)=0$. Then $f^{\prime}(t)=$ $\frac{d f}{d t} \neq 0$ and $f^{\prime}(w) \neq 0$. On the other hand, $0=\left[L_{x}, f(w)\right]=f^{\prime}(w)\left[L_{x}, w\right]$. Consequently, $\left[L_{x}, w\right]=0$ for all $w \in R$. Hence, $R_{x y}-R_{y} R_{x}=\left[L_{x}, R_{y}\right]=0$ for all $x, y \in N$ by (2.2). Therefore, $(z, x, y)=\left(R_{y} R_{x}-R_{x y}\right)(z)=0$, i. e., N is a simple associative algebra. Then N possesses a unity. Since $R_{x} R_{y}=R_{y} R_{x}$ for all $x, y \in N$; therefore, $x y=y x$. Thus, N is a field.

4. The class \mathcal{A} of simple Lie-metabelian algebras

Lemma 4.1. Let A be a left-symmetric algebra over a field F. Then $I=[A, A]+[A, A] A$ is an ideal of A.

Proof. By (3.2), we have

$$
\begin{gathered}
I A \subseteq[A, A] A+([A, A] A) A \subseteq[A, A] A+([A, A], A, A) \subseteq \\
{[A, A] A+[[A, A] A, A]+[A, A][A, A]+[[A, A], A] A \subseteq[A, A]+[A, A] A \subseteq I .}
\end{gathered}
$$

Consequently, I is a right ideal of A. Since $A I \subseteq[A, I]+I A, I$ is a left ideal of A.
In this section, we always assume that A is a finite-dimensional simple left-symmetric nonassociative algebra over an algebraically closed field F of characteristic 0 . Denote by $\mathfrak{g}=A^{(-)}$the adjoint Lie algebra of A by $\mathfrak{g}=A^{(-)}$. It is well known [6] that \mathfrak{g} cannot be
nilpotent. But there exist many examples of simple algebras with solvable $\mathfrak{g}[6]$. We also assume that \mathfrak{g} is a solvable Lie algebra.

For a subspace V of A, we set

$$
L_{V}=\left\{L_{x}: x \in V\right\}
$$

Lemma 4.2. There exists a natural number n such that $L_{[A, A]}^{n}=0$ and $L_{[A, A]}^{n-1} \neq 0$. Furthermore,

$$
A=\sum_{i=0}^{n-1} L_{[A, A]}^{i}[A, A] .
$$

Proof. By (2.1), L_{A} is a Lie subalgebra of $M=M(A)$ and the map $\mathfrak{g} \rightarrow L_{A}$ that is defined by $x \mapsto L_{x}$ is an epimorphism of Lie algebras. Consequently, L_{A} is solvable. By the Lie theorem [8], $\left[L_{A}, L_{A}\right]=L_{[A, A]}$ is nilpotent. Assume that $L_{[A, A]}^{n}=0$ and $L_{[A, A]}^{n-1} \neq 0$ for some natural n.

We have $[A, A] \neq 0$, since A is nonassociative. By Lemma 4.1, we get

$$
A=[A, A]+[A, A] A
$$

Therefore,

$$
A \subseteq[A, A]+[A, A]([A, A]+[A, A] A) \subseteq[A, A]+L_{[A, A]}[A, A]+L_{[A, A]} L_{[A, A]} A
$$

Continuing this process we obtain

$$
A=\sum_{i=0}^{n-1} L_{[A, A]}^{i}[A, A] .
$$

Corollary 4.1. The algebra A cannot contain an identity element.
Proof. By Lemma 4.2, we may assume that $L_{[A, A]}^{n}=0$ and $L_{[A, A]}^{n-1} \neq 0$.
Let e be the identity element of A. Then

$$
L_{[A, A]}^{n-1}[A, A] \subseteq L_{[A, A]}^{n-1} L_{[A, A]}(e)=L_{[A, A]}^{n}(e)=0 .
$$

Then, by Lemma 4.1, we get

$$
L_{[A, A]}^{n-1} A=L_{[A, A]}^{n-1}[A, A]=0 .
$$

Hence, $L_{[A, A]}^{n-1}=0$, which is a contradiction.
Corollary 4.2. The space $[A, A]$ is left nilpotent but not nilpotent.
Proof. By Lemma 4.2, $[A, A]$ is left nilpotent. Suppose that $[A, A]^{k}=0$ and $[A, A]^{k-1} \neq$ 0 . Lemma 4.1 implies that $[A, A]^{k-1}$ is contained in the left annihilator of A and Lemma 2.1 gives that $[A, A]^{k-1}=0$.

Taking into account these results we define a reasonable minimal class of simple finitedimensional left-symmetric algebras with solvable adjoint Lie algebras such that it contains a nonassociative algebra. Let \mathcal{A} be the class of all simple finite-dimensional leftsymmetric nonassociative algebras over an algebraically closed field F of characteristic 0
satisfying the identities

$$
\begin{equation*}
[[x, y],[z, t]]=0 \tag{4.1}
\end{equation*}
$$

and

$$
\begin{equation*}
[x, y]([z, t] u)=0 . \tag{4.2}
\end{equation*}
$$

Thus, if $A \in \mathcal{A}$ then $\mathfrak{g}=A^{(-)}$is a metabelian Lie algebra by (4.1). The metabelian Lie algebras form a minimal solvable variety of Lie algebras that is not nilpotent. Note that (4.2) is equivalent to $[x, y]([z, t][u, v])=0$ for $A \in \mathcal{A}$, and it can be rewritten also as $L_{[A, A]}^{2}=0$.

Proposition 4.1. Let $A \in \mathcal{A}$. Set $A_{0}=[A, A]^{2}, A_{1}=[A, A]$. Then the following assertions hold:
(i) $A=A_{0} \oplus A_{1}$ is a \mathbb{Z}_{2}-graded algebra;
(ii) $A_{1} A_{0}=0,\left[A_{1}, A_{1}\right]=0, A_{0}=A_{1}^{2}$, and $A_{1}=A_{0} A_{1}$;
(iii) A_{0} is an associative commutative algebra and A is an associative right A_{0}-module; (iv)

$$
\begin{equation*}
a(x y)=(a x) y+x(a y) \tag{4.3}
\end{equation*}
$$

for all $a \in A_{0}$ and $x, y \in A_{1}$.
Proof. We have $L_{[A, A]}^{2}=0$ by (4.2). Then Lemma 4.2 implies that $A=A_{0}+A_{1}$. We have $A_{1}^{2}=[A, A][A, A]=A_{0}$. We get $A_{1} A_{0}=0$ by (4.2) and $\left[A_{1}, A_{1}\right]=0$ by (4.1). Obviously,

$$
A_{0} A_{1} \subseteq\left[A_{0}, A_{1}\right]+A_{1} A_{0} \subseteq\left[A_{0}, A_{1}\right] \subseteq[A, A]=A_{1} .
$$

By (2.1), we obtain

$$
A_{0}^{2} \subseteq A_{0}\left(A_{1} A_{1}\right) \subseteq A_{1}\left(A_{0} A_{1}\right)+\left[A_{0}, A_{1}\right] A_{1} \subseteq A_{1} A_{1}=A_{0}
$$

Consequently, A_{0} is a subalgebra of A.
Set $I=A_{0} \cap A_{1}$. Then $I A_{0} \subseteq A_{0} A_{0} \subseteq A_{0}$, and $I A_{0} \subseteq A_{1} A_{0} \subseteq A_{1}$. Therefore, $I A_{0} \subseteq I$. Similarly, $I A_{1} \subseteq I$. Consequently, I is a right ideal of A. Analogously, I is a left ideal of A. Since A is simple, either $A=I$ or $I=0$.
If $A=I$ then $A=A_{0}=A_{1}$. Since $A_{1} A_{0}=0, A^{2}=A_{1} A_{0}=0$. Therefore, $A_{0} \cap A_{1}=$ $I=0$. Thus, $A=A_{0} \oplus A_{1}$ is a \mathbb{Z}_{2}-graded algebra.

Since $A^{2}=A$ and $A_{1} A_{0}=0$, we have $A=A_{0}^{2}+A_{1}^{2}+A_{0} A_{1}$. Consequently, $A_{1}=A_{0} A_{1}$.
Take arbitrary $a, b \in A_{0}$. Then $[a, b] \in A_{0} \cap A_{1}=0$. Hence, A_{0} is a commutative algebra, whence A_{0} is associative by (3.2).

Since $A_{1} A_{0}=0$, we get

$$
\left(A, A_{0}, A_{0}\right)=\left(A_{0}, A_{0}, A_{0}\right)+\left(A_{1}, A_{0}, A_{0}\right)=0 .
$$

Thus, A is an associative A_{0}-module.
Now, let $a \in A_{0}$ and $x, y \in A_{1}$. Then

$$
a(x y)=x(a y)+(a x) y
$$

by (1.2), since $x a=0$.

5. A bilinear form and complete left-symmetric algebras

Let A be a finite-dimensional left-symmetric algebra. Consider the symmetric bilinear form

$$
f(x, y)=\operatorname{tr}\left(R_{x} R_{y}\right)
$$

on A. By (2.2), we have

$$
\operatorname{tr}\left(R_{x y}\right)=\operatorname{tr}\left(\left[L_{x}, R_{y}\right]+R_{y} R_{x}\right)=\operatorname{tr}\left(R_{y} R_{x}\right)=\operatorname{tr}\left(R_{x} R_{y}\right)
$$

Therefore, $\operatorname{tr}\left(R_{x y}\right)=\operatorname{tr}\left(R_{y x}\right)$. Consequently, $\operatorname{tr}\left(R_{[x, y]}\right)=0$ for all $x, y \in A$.
Lemma 5.1. For all $a, b, c \in A$ we have

$$
f([a, b], c)=f(a, b c)-f(b, a c) .
$$

Proof. By definition, $f(a b, c)=\operatorname{tr}\left(R_{(a b) c}\right)$. By (3.2),

$$
\begin{aligned}
f(a b, c) & =\operatorname{tr}\left(R_{(a b) c}\right)=\operatorname{tr}\left(R_{a(b c)}\right)+\operatorname{tr}\left(R_{[a b, c]}\right)-\operatorname{tr}\left(R_{a[b, c]}\right)-\operatorname{tr}\left(R_{[a, c] b}\right) \\
& =f(a, b c)-f(a,[b, c])-f([a, c], b)=f(a, c b)-f([a, c], b) .
\end{aligned}
$$

Consequently, $f([a, c], b)=f(a, c b)-f(c, a b)$.
Let $T(A)=\left\{x \in A: \operatorname{tr}\left(R_{x}\right)=0\right\}$. The largest left ideal of A which is contained in $T(A)$ is called the radical of A, and it is denoted by $\operatorname{rad}(A)$. A left-symmetric algebra A is called complete if $A=\operatorname{rad}(A)$.
Lemma 5.2. Let $A \in \mathcal{A}$ and let $A=A_{0} \oplus A_{1}$ be its \mathbb{Z}_{2}-grading from Proposition 4.1 (i). If A_{0} is nilpotent then the form f is degenerate on A, i. e., $f(A, A)=0$.

Proof. Let $a \in A_{0}$. We have $R_{a}^{n}(A) \subseteq R_{a^{n}}(A)$, since A is an associative right A_{0}-module by Proposition 4.1 (iii). Consequently, R_{a} is nilpotent, since $a \in A_{0}$ is nilpotent. Hence, $\operatorname{tr}\left(R_{a}\right)=0$. Consequently, for all $a, b \in A_{0}$ we have $f(a, b)=\operatorname{tr}\left(R_{a} R_{b}\right)=\operatorname{tr}\left(R_{a b}\right)=0$. Thus, $f\left(A_{0}, A_{0}\right)=0$.

Let $a, b \in A_{0}$ and $x \in A_{1}$. By Lemma 5.1 and Proposition 4.1 (ii), we get

$$
f(a x, b)=f([a, x], b)=f(a, x b)-f(x, a b)=-f(x, a b) .
$$

It means that

$$
f\left(L_{A_{0}}^{n} A_{1}, A_{0}\right) \subseteq f\left(A_{1}, A_{0}^{n+1}\right)
$$

for all $n \geq 0$. Since $A_{1}=L_{A_{0}}^{n} A_{1}$ by Proposition 4.1(ii) and A_{0} is nilpotent; therefore, $f\left(A_{1}, A_{0}\right)=0$.

If $x, y \in A_{1}$ then

$$
f(x, y)=\operatorname{tr}\left(R_{x} R_{y}\right)=\operatorname{tr}\left(R_{x y}\right)=0
$$

since $x y \in A_{0}$. Consequently, $f\left(A_{1}, A_{1}\right)=0$. Thus, f is degenerate on A.
Theorem 5.1. Let $A \in \mathcal{A}$ and let $A=A_{0} \oplus A_{1}$ be the \mathbb{Z}_{2}-grading of A from Proposition 4.1 (i). Then A is complete if and only if A_{0} is nilpotent.

Proof. Assume that A is complete. Then by [6, Lemma 1.1], A is right nil, i.e., R_{x} is nilpotent for every $x \in A$. Therefore, A_{0} is an associative and commutative finitedimensional nil algebra over a field of characteristic zero. Consequently, A_{0} is nilpotent.

If A_{0} is nilpotent then $f(A, A)=0$ by Lemma 5.2. Hence, $\operatorname{tr}\left(R_{x} R_{y}\right)=0$ for all $x, y \in A$. Then

$$
\operatorname{tr}\left(R_{A}\right)=\operatorname{tr}\left(R_{A^{2}}\right)=\operatorname{tr}\left(R_{A} R_{A}\right)=0
$$

since $\operatorname{tr}\left(R_{x y}\right)=\operatorname{tr}\left(R_{x} R_{y}\right)$ and A is simple. Therefore, $T(A)=A$ and A is complete.

6. The root decomposition

Now, let F be an algebraically closed field, and let $A=A_{0}+A_{1}$ be a simple \mathbb{Z}_{2}-graded finite-dimensional left-symmetric algebra such that A_{0} is an associative commutative algebra, $A_{0}=A_{1}^{2}, A_{1}=A_{0} A_{1},\left[A_{1}, A_{1}\right]=0$, and $A_{1} A_{0}=0$. Notice that by (1.2) we have

$$
\left[L_{x}, L_{y}\right]=L_{[x, y]}
$$

The algebra A_{0} acts on the vector space A_{i} by the left multiplication operators, where $i=0,1$. Notice that for $a, b \in A_{0}$ the left multiplication operators L_{a} and L_{b} are commuting. Denote by A_{0}^{*} the dual space for A_{0}. Take $a \in A_{0}, \alpha \in A_{0}^{*}$, and $i=0,1$. Then

$$
A_{i}(\alpha)=\left\{v \in A_{i}:\left(L_{a}-\alpha(a) i d\right)^{n}(v)=0, n \in \mathbb{N}\right\}
$$

are the root subspaces and $\alpha \in A_{0}^{*}$ are the roots provided that $A_{i}(\alpha) \neq 0$. Let Φ_{i} be the system of roots of the algebra A_{0} on the vector space A_{i}, where $i=0,1$, i. e., $\Phi_{i}=\{\alpha \in$ $\left.A_{0}^{*}: A_{i}(\alpha) \neq 0\right\}$. Since L_{a} and L_{b} are the commuting operators; therefore,

$$
A_{i}=\bigoplus_{\alpha \in \Phi_{i}} A_{i}(\alpha)
$$

is the root decomposition of A_{i} with respect to A_{0}, where $i=0,1$. Clearly, $A_{0} A_{1}(\alpha) \subseteq$ $A_{1}(\alpha)$ for all $\alpha \in \Phi_{1}$. Then we have the following
Lemma 6.1. Given $\alpha \in \Phi_{0}$, there exist $\beta, \gamma \in \Phi_{1}$ such that $\alpha=\beta+\gamma$. Moreover,

$$
A_{0}(\alpha)=\sum_{\alpha=\beta+\gamma, \beta, \gamma \in \Phi_{1}} A_{1}(\beta) A_{1}(\gamma)
$$

$A_{1}(0)=0$, and $A_{1}(\beta) A_{1}(\gamma)$ is an ideal of A_{0}. If $\alpha, \beta \in \Phi_{0}$ and $\alpha \neq \beta$ then $A_{0}(\alpha) A_{0}(\beta)=0$.
Proof. Take $a \in A_{0}, x, y \in A_{1}$, and $\beta, \gamma \in \Phi_{1}$. Then by (4.3) we get

$$
\left(L_{a}-(\beta+\gamma)(a) i d\right)^{n}(x y)=\sum_{i=0}^{n} C_{i}^{n}\left(L_{a}-\beta(a) i d\right)^{i}(x)\left(L_{a}-\gamma(a) i d\right)^{n-i}(y)
$$

where C_{i}^{n} are the binomial coefficients. Consequently, $A_{1}(\beta) A_{1}(\gamma) \subseteq A_{0}(\beta+\gamma)$.
Since $A_{0}=A_{1}^{2}$, we have

$$
A_{0}=\sum_{\beta, \gamma \in \Phi_{1}} A_{1}(\beta) A_{1}(\gamma) .
$$

Hence, there are $\beta, \gamma \in \Phi_{1}$ such that $A_{1}(\beta) A_{1}(\gamma) \neq 0$. Therefore, $\beta+\gamma \in \Phi_{0}$ and

$$
A_{0}=\bigoplus_{\alpha \in \Phi_{0}}\left(\sum_{\substack{\beta, \gamma \in \Phi_{1} \\ \beta+\gamma=\alpha}} A_{1}(\beta) A_{1}(\gamma)\right) .
$$

Since $A_{0}=\bigoplus_{\alpha \in \Phi_{0}} A_{0}(\alpha)$; therefore, for every $\alpha \in \Phi_{0}$ we have

$$
A_{0}(\alpha)=\sum_{\beta, \gamma \in \Phi_{1}, \beta+\gamma=\alpha} A_{1}(\beta) A_{1}(\gamma)
$$

By (4.3), we get $A_{0}\left(A_{1}(\beta) A_{1}(\gamma)\right) \subseteq\left(A_{0} A_{1}(\beta)\right) A_{1}(\gamma)+A_{1}(\beta)\left(A_{0} A_{1}(\gamma)\right) \subseteq A_{1}(\beta) A_{1}(\gamma)$. Consequently, $A_{1}(\beta) A_{1}(\gamma)$ is an ideal of A_{0}. Clearly, $A_{0}(\alpha) A_{0}(\beta)=0$ for distinct $\alpha, \beta \in$ Φ_{0}.

Prove that $A_{1}(0)=0$. Notice that every operator of left multiplication L_{a}, where $a \in A_{0}$, acts nilpotently on $A_{1}(0)$. Since A_{0} is finite-dimensional and L_{a} are pairwise commuting; therefore, there exists $n \in \mathbb{N}$ such that $L_{a_{1}} \ldots L_{a_{n}} A_{1}(0)=0$ for all $a_{1}, \ldots, a_{n} \in$ A_{0}. By Proposition 4.1, we have $A_{1}=A_{0} A_{1}$. Consequently, $A_{1}(0)=A_{0} A_{1}(0)$. Therefore, $A_{1}(0)=\underbrace{A_{0}\left(\ldots\left(A_{0}\right.\right.}_{n} A_{1}(0) \ldots)=0$.

Lemma 6.2. Let A_{0} be a nilpotent algebra. Then

$$
A_{0}=\sum_{\alpha \in \Phi_{1}} A_{1}(-\alpha) A_{1}(\alpha)
$$

Moreover, $A_{1}(\alpha) A_{1}(\beta)=0$ for all $\alpha, \beta \in \Phi_{1}$ such that $\beta \neq-\alpha$. Furthermore, $-\alpha \in \Phi_{1}$ for every $\alpha \in \Phi_{1}$.

Proof. Since A_{0} is nilpotent, $\Phi_{0}=0$. Take $\alpha \in \Phi_{0}$. Then, by Lemma 6.1, there are $\beta, \gamma \in \Phi_{1}$ such that $\alpha=\beta+\gamma$. Therefore, $\beta+\gamma=0$. Consequently,

$$
A_{0}=\bigoplus_{\alpha \in \Phi_{1}} A_{1}(-\alpha) A_{1}(\alpha) .
$$

Let $\alpha, \beta \in \Phi_{1}$ and $\beta \neq-\alpha$. Then $A_{1}(\alpha) A_{1}(\beta) \subseteq A_{0}(\alpha+\beta)=0$. Assume that $-\alpha \notin \Phi_{1}$. Then $A_{1}(\alpha) A_{1}(\beta)=0$ for all $\beta \in \Phi_{1}$. Since $A_{0} A_{1}(\alpha) \subseteq A_{1}(\alpha)$ and $A_{1}(\alpha) A_{0}=0$; therefore, $A_{1}(\alpha)$ is an ideal of A. Consequently, $A_{1}(\alpha)=0$. Therefore, $-\alpha \in \Phi_{1}$ for all $\alpha \in \Phi_{1}$.

7. The four-dimensional Lie-solvable left-symmetric algebras in \mathcal{A}

In this section, we describe the four-dimensional simple \mathbb{Z}_{2}-graded left-symmetric algebras $A=A_{0}+A_{1}$ over an algebraically closed field F of characteristic not 2 such that A_{0} is an associative commutative algebra, $A_{0}=A_{1}^{2}, A_{1}=A_{0} A_{1},\left[A_{1}, A_{1}\right]=0$, and $A_{1} A_{0}=0$.

In what follows, $\langle\Upsilon\rangle_{F}$ is used for the linear span of a set Υ over a field F, where we omit F if the field is clear from the context.

Lemma 7.1. The algebra A_{0} is not nilpotent.

Proof. Assume that A_{0} is nilpotent. Then, $A_{0}=\sum_{\alpha \in \Phi_{1}} A_{1}(-\alpha) A_{1}(\alpha)$ by Lemma 6.2, and $A_{1}=\sum_{\alpha \in \Phi_{1}} A_{1}(\alpha)$. By Lemma 6.1, $\alpha \neq 0$ for all $\alpha \in \Phi_{1}$. Since $\operatorname{dim} A=4$; therefore, $\Phi_{1}=\{\alpha,-\alpha\}$. By Lemma 6.2, $\operatorname{dim} A_{1}=3$. Since A_{0} is nilpotent, $A_{0}^{2}=0$.

Let e_{2}, e_{3}, e_{4} be a basis for A_{1}. We may suppose that $A_{1}(\alpha)=\left\langle e_{2}, e_{3}\right\rangle, A_{1}(-\alpha)=\left\langle e_{4}\right\rangle$. By Lemma 6.2, $A_{1}(\alpha)^{2}=0$. Then for all nonzero $x \in A_{1}(\alpha)$ we have $x e_{4} \neq 0$, since otherwise $x A=0$. Hence, $x \in A n n_{l}(A)$; a contradiction by Lemma 2.1. Consequently, $e_{2} e_{4} \neq 0$ and $e_{3} e_{4} \neq 0$. Then $e_{3} e_{4}=\beta e_{2} e_{4}$ for some $\beta \in F$, and $\left(e_{3}-\beta e_{2}\right) e_{4}=0$. It means that if $\Phi_{1}=\{\alpha,-\alpha\}$ then A_{0} is not nilpotent.

In what follows, we assume that A_{0} is not nilpotent.
Lemma 7.2. Let $\Phi_{1}=\{\alpha\}$. Then $\operatorname{dim} A_{0}=1$.
Proof. Since $\Phi_{1}=\{\alpha\}, \Phi_{0}=\{2 \alpha\}$. Assume that $\operatorname{dim} A_{1}=2$. Let x, y be a basis for A_{1} such that

$$
a x=\alpha(a) x, a y=\alpha(a) y+\beta(a) x
$$

where $a \in A_{0}, \beta \in A_{0}^{*}$. Then $\operatorname{dim} A_{0}=2$ and $A_{0}=\left\langle x^{2}, x y, y^{2}\right\rangle$. By (4.3), $a x^{2}=2 \alpha(a) x^{2}$ for all $a \in A_{0}$. Hence, $\left\langle x^{2}\right\rangle$ is an ideal of A_{0}.

Assume that $x^{2}=0$. Then, by (4.3), for all $a \in A_{0}$ we get

$$
a(x y)=(a x) y+x(a y)=2 \alpha(a) x y+\beta(a) x^{2}=2 \alpha(a) x y
$$

Therefore, $\langle x y\rangle$ is an ideal of A_{0}. Since

$$
(x y) y^{2}=2 \alpha(x y) y^{2}+2 \beta(x y) x y
$$

therefore, $\alpha(x y) y^{2} \in\langle x y\rangle$. Since $\operatorname{dim} A_{0}=2, \alpha(x y)=0$ and $(x y)^{2}=2 \alpha(x y) x y=0$. From here we conclude that $\langle x y, x\rangle$ is an ideal of A, since $(x y) y=\beta(x y) x$. Thus, $x^{2} \neq 0$.

Now, let $x^{2} \neq 0$. By (4.3),

$$
a(x y)=2 \alpha(a) x y+\beta(a) x^{2}, a y^{2}=2 \alpha(a) y^{2}+2 \beta(a) x y
$$

for all $a \in A_{0}$. Since $\left\langle x^{2}\right\rangle$ is an ideal of A_{0}; therefore, $\alpha\left(x^{2}\right) x y \in\left\langle x^{2}\right\rangle$ and $\alpha\left(x^{2}\right)^{2} y^{2} \in\left\langle x^{2}\right\rangle$. Consequently, $\alpha\left(x^{2}\right)=0$, since otherwise $\operatorname{dim} A_{0}=1$.

From here we get $x^{2}(x y)=\beta\left(x^{2}\right) x^{2}$. On the other hand, $x^{2}(x y)=2 \alpha(x y) x^{2}$. Then $\beta\left(x^{2}\right)=2 \alpha(x y)$. Similarly,

$$
x^{2} y^{2}=2 \beta\left(x^{2}\right) x y=2 \alpha\left(y^{2}\right) x^{2} .
$$

If $\beta\left(x^{2}\right)=0$ then $\alpha(x y)=0$ and $\alpha\left(y^{2}\right)=0$. Consequently, $\alpha(a)=0$ for all $a \in A_{0}$. In this case A_{0} is nilpotent. Hence, $\beta\left(x^{2}\right) \neq 0$, and $\alpha(x y) \neq 0$. Since $\beta\left(x^{2}\right) x y=\alpha\left(y^{2}\right) x^{2}$; therefore, $x y \in\left\langle x^{2}\right\rangle$ and $\alpha(x y)=0$, a contradiction.
Example 7.1. Let $\Phi_{1}=\{\alpha\}$ and $A_{0}=\left\langle e_{1}\right\rangle$. Assume that $L_{e_{1}}$ is a semisimple operator on A_{1}. Then the vector space A_{1} possesses a basis e_{2}, e_{3}, e_{4} such that the algebra A has the following multiplication table

$$
\begin{equation*}
e_{1}^{2}=2 e_{1}, e_{1} e_{2}=e_{2}, e_{1} e_{3}=e_{3}, e_{1} e_{4}=e_{4}, e_{2}^{2}=e_{3}^{2}=e_{4}^{2}=e_{1} \tag{7.1}
\end{equation*}
$$

and all other products are zero.

Proof. Since $L_{e_{1}}$ is semisimple; therefore, for some basis x, y, z of A_{1} we have

$$
e_{1} x=\alpha x, e_{1} y=\alpha y, e_{1} z=\alpha z
$$

Since $\Phi_{0}=\{2 \alpha\}$ and A_{0} is not nilpotent, $\alpha \neq 0$. Hence, we may assume that $\alpha=1$. Since $e_{1}^{2}=2 \alpha e_{1}, e_{1}^{2}=2 e_{1}$.

Suppose that $x^{2} \neq 0$. Then we may assume that $x^{2}=e_{1}$ and $x y=\beta x^{2}$, where $\beta \in F$. Therefore, $x(y-\beta x)=0$. Hence, we may assume that $x y=0$. Similarly, $x z=0$.

Let $y^{2} \neq 0$. Then $y z=\beta y^{2}$, where $\beta \in F$. Hence, we may suppose that $x y=x z=$ $y z=0$. In this case, $z^{2} \neq 0$, since otherwise $\langle z\rangle$ is an ideal of A. Since $y^{2} \neq 0$; therefore, $y^{2}=\beta x^{2}, \beta \in F$, and $\beta \neq 0$. Hence, we may assume that $y^{2}=x^{2}$. Similarly, $z^{2}=x^{2}$. Finally, in the case under consideration we arrive at the multiplication table (7.1).

Let $y^{2}=z^{2}=0$. If $y z=0$ then $\langle y\rangle$ is an ideal of A. Therefore, $y z \neq 0$ and $\left(\frac{y+z}{2}\right)^{2}=\frac{y z}{2} \neq 0$. Since $x \cdot \frac{y+z}{2}=0$; therefore, replacing y by $\frac{y+z}{2}$ we arrive to the case considered above.

Let $x^{2}=0, y^{2}=0, z^{2}=0$. Then either $x y \neq 0$ or $x z \neq 0$, since otherwise $\langle x\rangle$ is an ideal of A. Repeating the previous argument, we get the required basis for A with the multiplication table (7.1).

In [6], the left-symmetric simple four-dimensional algebras $I_{4}^{d}(\alpha, \beta, \gamma)$ were introduced, where $\alpha, \beta, \gamma \in F$. The algebra of Example 7.1 is $I_{4}^{d}(0,0,0)$.

Lemma 7.3. Let $\Phi_{1}=\{\alpha\}$ and $A_{0}=\left\langle e_{1}\right\rangle$. The case of non-semisimple $L_{e_{1}}$ with a minimal polynomial of degree two is impossible.

Proof. Assume that $L_{e_{1}}$ is not semisimple and its minimal polynomial is of degree two. Then A_{1} possesses a basis x, y, z such that

$$
e_{1} x=\alpha x, e_{1} y=\alpha y, e_{1} z=\alpha z+y
$$

Let $y^{2} \neq 0$. Then $y z=\beta y^{2}$, where $\beta \in F$. Therefore, $y(z-\beta y)=0$. Moreover,

$$
e_{1}(z-\beta y)=\alpha(z-\beta y)+y
$$

Hence, we may replace z by $z-\beta y$. Consequently, we may suppose that $y z=0$. By Proposition 4.1,

$$
0=e_{1}(y z)=\left(e_{1} y\right) z+y\left(e_{1} z\right)=\alpha y z+y(\alpha z+y)=y^{2}
$$

which is a contradiction. Hence, $y^{2}=0$.
Let $y^{2}=0$. Then either $x y \neq 0$ or $y z \neq 0$, since otherwise $\langle y\rangle$ is an ideal of A.
Let $x y \neq 0$ and $x z=\beta x y$, where $\beta \in F$. Then $x(z-\beta y)=0$. Put $u=z-\beta x$. Then $x u=0$. Moreover,

$$
e_{1} u=e_{1}(z-\beta x)=\alpha(z-\beta x)+y=\alpha u+y .
$$

By Proposition 4.1,

$$
0=e_{1}(x u)=\left(e_{1} x\right) u+x\left(e_{1} u\right)=\alpha x u+x(\alpha u+y)=x y
$$

a contradiction. Therefore, $x y=0$. Consequently, $y z \neq 0$.

Let $y z \neq 0$. Then $z^{2}=\beta y z$, where $\beta \in F$. Therefore, $\left(z-\frac{\beta}{2} y\right)^{2}=0$. Put $u=z-\frac{\beta}{2} y$. Then $u^{2}=0, y u=y z$, and

$$
e_{1} u=e_{1}\left(z-\frac{\beta}{2} y\right)=\alpha\left(z-\frac{\beta}{2} y\right)+y=\alpha u+y .
$$

By Proposition 4.1,

$$
0=e_{1} u^{2}=2\left(e_{1} u\right) u=2(\alpha u+y) u=y u=y z,
$$

which is a contradiction.
Example 7.2. Let $\Phi_{1}=\{\alpha\}, A_{0}=\left\langle e_{1}\right\rangle$, and let the minimal polynomial for $L_{e_{1}}$ be of degree 3. Then A_{1} possesses a basis e_{2}, e_{3}, e_{4} such that A has the following multiplication table

$$
\begin{align*}
& e_{1}^{2}=2 e_{1}, e_{1} e_{2}=e_{3}+e_{2}, e_{1} e_{3}=e_{4}+e_{3}, e_{1} e_{4}=e_{4}, \tag{7.2}\\
& e_{2}^{2}=\beta e_{1}, e_{3}^{2}=-e_{1}, e_{2} e_{4}=e_{4} e_{2}=e_{1}, \beta \in F,
\end{align*}
$$

and all other products are zero.
Proof. By the hypothesis, A_{1} possesses a basis x, y, z such that

$$
e_{1} x=\alpha x+y, e_{1} y=\alpha y+z, e_{1} z=\alpha z .
$$

The root α is nonzero. Therefore, we may assume that $\alpha=1$. Since $\Phi_{0}=\{2 \alpha\}, e_{1}^{2}=2 e_{1}$.
Let $z^{2} \neq 0$. Then $e_{1} z^{2}=2 z^{2}$ and $y z=\beta z^{2}$, where $\beta \in F$. By Proposition 4.1,

$$
e_{1}(y z)=\left(e_{1} y\right) z+y\left(e_{1} z\right)=(y+z) z+y z=2 y z+z^{2}=2 \beta z^{2}+z^{2}=2 \beta z^{2},
$$

whence $z^{2}=0$.
Let $y z \neq 0$. Then $e_{1}(y z)=2 y z$ and $y^{2}=\beta y z$, where $\beta \in F$. By Proposition 4.1,

$$
e_{1} y^{2}=2\left(e_{1} y\right) y=2(y+z) y=2 y^{2}+2 y z=2 \beta y z,
$$

whence $y z=0$. Thus, $z^{2}=y z=0$. Therefore, $x z \neq 0$, since otherwise $\langle z\rangle$ is an ideal of A. We may assume that $x z=e_{1}$.

Since $x^{2}=\beta e_{1}$ with $\beta \in F$; therefore, by Proposition 4.1 we have

$$
e_{1} x^{2}=2\left(e_{1} x\right) x=2 x^{2}+2 x y=2 \beta e_{1},
$$

whence $x y=0$. Then,

$$
0=e_{1}(x y)=\left(e_{1} x\right) y+x\left(e_{1} y\right)=2 x y+y^{2}+x z=y^{2}+e_{1}
$$

by Proposition 4.1. Therefore, $y^{2}=-e_{1}$. Consequently, we arrive at (7.2).
Let F be a field of characteristic not 2 , and let $\alpha \in F$. Consider a new basis

$$
\left(\begin{array}{c}
f_{1} \\
f_{2} \\
f_{3} \\
f_{4}
\end{array}\right)=\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & i & \alpha & -\frac{1+\alpha^{2}+\beta}{2} i \\
0 & -1 & \alpha i & -\frac{1-\alpha^{2}-\beta}{2} \\
0 & 0 & i & \alpha
\end{array}\right)\left(\begin{array}{l}
e_{1} \\
e_{2} \\
e_{3} \\
e_{4}
\end{array}\right)
$$

for A from Example 7.2. Then A has the product of the algebra $I_{4}^{d}(0,1, i)$ with respect to the basis $f_{1}, f_{2}, f_{3}, f_{4}$.

Lemma 7.4. The case $\Phi_{1}=\{\alpha, \beta\}$ is impossible.
Proof. Let $\Phi_{1}=\{\alpha, \beta\}$. Assume that $\operatorname{dim} A_{1}=2$. Then A_{1} has a basis x, y such that

$$
a x=\alpha(a) x, a y=\beta(a) y
$$

for all $a \in A_{0}$. Then $A_{0}=\left\langle x^{2}, x y, y^{2}\right\rangle$. Clearly, $x^{2} \neq 0$ or $y^{2}=0$, since $\operatorname{dim} A_{0}=2$.
We may suppose that $x^{2} \neq 0$. Let $y^{2} \neq 0$. Then $\Phi_{0}=\{2 \alpha, 2 \beta\}$ by Lemma 6.1. Therefore, $A_{0}(2 \alpha)=\left\langle x^{2}\right\rangle, A_{0}(2 \beta)=\left\langle y^{2}\right\rangle$, and $A_{0}(\alpha+\beta)=0$, i. e., $x y=0$. We also have $A_{0}(2 \alpha) A_{0}(2 \beta)=0$ by Lemma 6.1. Moreover, $\alpha\left(y^{2}\right)=\beta\left(x^{2}\right)=0$. Then $\left\langle x^{2}, x\right\rangle$ is an ideal of A. Consequently, $y^{2}=0$.

Let $y^{2}=0$. Then $x y \neq 0$. Hence, $\Phi_{0}=\{2 \alpha, \alpha+\beta\}, A_{0}(2 \alpha) A_{0}(\alpha+\beta)=0$, and $\alpha(x y)=0$, since $x y \in A_{0}(\alpha+\beta)$. Therefore, $\langle x y, y\rangle$ is an ideal of A. Consequently, $\operatorname{dim} A_{1} \neq 2$.

Thus, $\operatorname{dim} A_{1}=3$, and A_{1} has a basis x, y, z. Let $A_{1}(\alpha)=\langle x\rangle$ and $A_{1}(\beta)=\langle y, z\rangle$.
Assume that $x^{2} \neq 0$. Then $\Phi_{0}=\{2 \alpha\}$. Therefore,

$$
A_{1}(\beta) A_{1} \subseteq A_{1}(\beta)\left(A_{1}(\beta)+A_{1}(\alpha)\right) \subseteq A_{0}(2 \beta)+A_{0}(\alpha+\beta)=0
$$

Consequently, $A_{1}(\beta) A=0$, i. e., $A_{1}(\beta) \subseteq A n n_{l}(A)$. Since A is simple, $A n n_{l}(A)=0$ by Lemma 2.1. Hence, $A_{1}(\alpha)^{2}=0$.

Let $A_{1}(\beta)^{2} \neq 0$. Then $\Phi_{0}=\{2 \beta\}$. Therefore,

$$
A_{1}(\alpha) A_{1} \subseteq A_{1}(\alpha)\left(A_{1}(\beta)+A_{1}(\alpha)\right) \subseteq A_{0}(\alpha+\beta)+A_{0}(2 \alpha)=0
$$

Consequently, $A_{1}(\alpha) A=0$. Hence, $A_{1}(\beta)^{2}=0$.
Then $A_{1}(\alpha) A_{1}(\beta) \neq 0$. Therefore, $\Phi_{0}=\{\alpha+\beta\}$. Let $x y \neq 0$. Then $x z=\gamma x y$, where $\gamma \in F$. From here we get $x(z-\gamma y)=0$. Hence, $(z-\gamma y) \in A n n_{l}(A)$, a contradiction.
Example 7.3. Let $\Phi_{1}=\{\alpha, \beta, \gamma\}$, and let all the roots be different. Let $A_{0}=\left\langle e_{1}\right\rangle$. Then A_{1} possesses a basis e_{2}, e_{3}, e_{4} such that A has the following multiplication table

$$
\begin{align*}
& e_{1}^{2}=2 e_{1}, e_{1} e_{2}=e_{2}, e_{1} e_{3}=\beta e_{3}, e_{1} e_{4}=(2-\beta) e_{4} \tag{7.3}\\
& e_{2}^{2}=e_{1}, e_{3} e_{4}=e_{4} e_{3}=e_{1}
\end{align*}
$$

where $\beta \in F, \beta \neq 0,1,2$, and all other products are zero.
Proof. Let $\Phi_{1}=\{\alpha, \beta, \gamma\}$, and let all the roots be different. Then $A_{0}=\left\langle e_{1}\right\rangle$. Choose a basis x, y, z for A_{1} such that

$$
e_{1} x=\alpha x, e_{1} y=\beta y, e_{1} z=\gamma z
$$

By Lemma 6.1 we have $\alpha, \beta, \gamma \neq 0$.
Let $x^{2}=y^{2}=z^{2}=0$. Then either $x y \neq 0$ or $x z \neq 0$, since otherwise $x A=0$, which is a contradiction by Lemma 2.1. We may assume that $x y \neq 0$. Hence, $x z=\delta x y$, where $\delta \in F$. From here we get $x(z-\delta y)=0$. If $y z=0$ then $y(z-\delta y)=z(z-\delta y)=0$. Therefore, $(z-\delta y) A=0$; a contradiction by Lemma 2.1. Consequently, $y z \neq 0$. Similarly, $x z \neq 0$. Then $\Phi_{0}=\{\alpha+\beta\}=\{\beta+\gamma\}=\{\alpha+\gamma\}$; a contradiction, since all the roots are different. Therefore, the case $x^{2}=y^{2}=z^{2}=0$ is impossible.

Let $x^{2} \neq 0$. Then $\Phi_{0}=\{2 \alpha\}$ and $e_{1}^{2}=2 \alpha e_{1}$. Therefore, $y^{2}=x y=x z=z^{2}=0$, since all the roots are different. Moreover, we may assume that $x^{2}=e_{1}$. In this case, $y z=\delta e_{1}$, where $\delta \in F$ and $\delta \neq 0$, since otherwise $\langle y\rangle$ is an ideal of A. Therefore, we may suppose that $y z=e_{1}$. Then $2 \alpha=\beta+\gamma$, since $y z \in A_{0}(\beta+\gamma)$. Since $\alpha \neq 0$; therefore, we may assume that $\alpha=1$. Hence, $2=\beta+\gamma$. Put $e_{2}=x, e_{3}=y, e_{4}=z$. Then we arrive at (7.3).

Let F be a field of characteristic not 2. Consider a new basis

$$
\left(\begin{array}{c}
f_{1} \\
f_{2} \\
f_{3} \\
f_{4}
\end{array}\right)=\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & -i & \frac{i}{2} \\
0 & 0 & 1 & \frac{1}{2}
\end{array}\right)\left(\begin{array}{l}
e_{1} \\
e_{2} \\
e_{3} \\
e_{4}
\end{array}\right)
$$

for A from Example 7.3. Then A has the product of $I_{4}^{d}(0,0, i(1-\beta))$ with respect to the basis $f_{1}, f_{2}, f_{3}, f_{4}$.

Finally, we collect the results obtained in this section in the following
Theorem 7.1. Let A be a four-dimensional algebra in \mathcal{A} over an algebraically closed field of characteristic not 2. Then A is isomorphic to one of the algebras (7.1) - (7.3).
8. On algebras in \mathcal{A}, whose even part is either simple or zero-product
8.1. Simplicity conditions. Let $A=A_{0} \oplus A_{1}$ be a Z_{2}-graded algebra such that $A_{1} A_{0}=$ $0, A_{0}$ and A_{1} are commutative, and A_{0} is associative. Denote the class of such algebras by \mathcal{B}. The following lemma is immediate.
Lemma 8.1. Let $A=A_{0} \oplus A_{1} \in \mathcal{B}$. Then A is left-symmetric if and only if

$$
a(x y)=(a x) y+x(a y), a(b x)=b(a x)
$$

hold for all $a, b \in A_{0}$ and $x, y \in A_{1}$.
Lemma 8.2. Let $A=A_{0} \oplus A_{1} \in \mathcal{B}$ be left-symmetric. Then A is simple if and only if $A_{0}=A_{1}^{2}, A_{1}=A_{0} A_{1}, A_{0}$ lacks proper ideals I such that $\left(I A_{1}\right) A_{1} \subseteq I$, and A_{1} lacks proper ideals of A.

Proof. Let A be simple. Since $A^{2} \unlhd A$ and $A^{2}=A_{0}^{2}+A_{0} A_{1}+A_{1}^{2}$, we have $A_{1}=A_{0} A_{1}$. If $A_{1}^{2} \neq A_{0}$ then $A_{1}^{2}+A_{1}$ is a proper right ideal of A, which is impossible. Let I be an ideal of A_{0} such that $\left(I A_{1}\right) A_{1} \subseteq I$. It is easy to see that $I+I A_{1}$ is a right ideal of A. Therefore, A_{0} lacks proper ideals I such that $\left(I A_{1}\right) A_{1} \subseteq I$. Obviously, A_{1} lacks proper ideals of A.

Conversely, assume that I is an ideal of A. Let I_{k} be the projection of I on A_{k}, $k=1,2$. Then $I \subseteq I_{0}+I_{1}$, and $I_{0} A_{0} \subseteq I_{0}$, whence I_{0} is an ideal of A_{0}. Since $\left(I_{0} A_{1}\right) A_{1} \subseteq$ I_{0}; therefore, either $I_{0}=0$ or $I_{0}=A_{0}$. If $I_{0}=0$ then I_{1} is an ideal of A, whence $I_{1}=0$. If $I_{0}=A_{0}$ then $A_{1}=A_{0} A_{1} \subseteq I_{1}$, whence $I_{1}=A_{1}$. Now, since $A_{1} A_{1}=A_{0}$ and $A_{1}\left(I_{0}+I_{1}\right) \subseteq I$, we have $A_{0} \subseteq I$, whence $I=A$.

Put $A_{0}(\alpha):=A_{1}(\alpha) A_{1}(-\alpha)$ for every $\alpha \in \Phi_{1}$. We say that $A_{1}(\alpha)$ is nondegenerate if for every $x_{\alpha} \in A_{1}(\alpha)$ there is $x_{-\alpha} \in A_{1}(-\alpha)$ such that $x_{\alpha}^{0}:=x_{\alpha} x_{-\alpha} \neq 0$. Put $A_{0}\left(\alpha_{1}, \ldots, \alpha_{s}\right):=\sum_{i=1}^{s} A_{0}\left(\alpha_{i}\right)$. We say that Φ_{1} is nondegenerate if $A_{1}(\alpha)$ is nondegenerate for every $\alpha \in \Phi_{1}$, and Φ_{1} possesses a chain property provided that it is nondegenerate and for every $\alpha_{1} \in \Phi_{1}$ there is a chain of roots $\alpha_{2}, \ldots, \alpha_{k} \in \Phi_{1}$ such that $\alpha_{s+1}\left(A_{0}\left(\alpha_{1}, \ldots, \alpha_{s}\right)\right) \neq 0$ for all $s=1, \ldots, k-1$ and $A_{0}\left(\alpha_{1}, \ldots, \alpha_{k}\right)=A_{0}$. The number n of linearly independent roots of Φ_{1} is the rank of Φ_{1}. The chain $\alpha_{1}, \ldots, \alpha_{s}$ is a CP-system or an α_{1}-system, and s is its length. Denote by \mathcal{C} the class of left-symmetric algebras in \mathcal{B} such that $A_{0}=A_{1}^{2}$ and $A_{1}=A_{0} A_{1}$.
Proposition 8.1. Let $A=A_{0} \oplus A_{1}$ be a left-symmetric algebra in \mathcal{C} with a nilpotent subalgebra A_{0} of dimension n such that the action of A_{0} on A_{1} is diagonalizable. Then A is simple if and only if Φ_{1} is a root system of rank n with the chain property.
Proof. Let A be simple. If there are no n linearly independent roots in Φ_{1} then $I:=\cap$ Ker $\alpha_{i} \neq 0$. Since $a\left(x_{\alpha} \cdot x_{-\alpha}\right)=0$ for every $a \in I$ by (4.3) and $A_{0}=\sum_{\alpha \in \Phi_{1}} A_{0}(\alpha)$; therefore, $a A_{0}=0$ and $I \unlhd A$. Take $\alpha_{1} \in \Phi_{1}$. Then $A_{1}\left(\alpha_{1}\right)$ is nondegenerate, since otherwise if $x A_{1}\left(-\alpha_{1}\right)=0$ for some $x \in A_{1}\left(\alpha_{1}\right)$ then $\langle x\rangle$ is a right ideal of A, which is impossible.

Take $x \in A_{0}\left(\alpha_{1}\right)$. Then for every $\alpha \in \Phi_{1}$ we have $\left(x \cdot x_{\alpha}\right) x_{-\alpha}=\alpha(x) x_{\alpha}^{0}$. If $\alpha(x)=0$ for all $\alpha \in \Phi_{1} \backslash\left\{\alpha_{1}\right\}$ then we may apply Lemma 8.2 to $I_{0}=A_{0}\left(\alpha_{1}\right)$. Thus, either $A_{0}\left(\alpha_{1}\right)=A_{0}$ or there is $\alpha_{2} \in \Phi_{1} \backslash\left\{\alpha_{1}\right\}$ such that $\alpha_{2}(x) \neq 0$ and $\alpha_{2}\left(A_{0}\left(\alpha_{1}\right)\right) \neq 0$. Continuing this process we arrive at the assertion of the lemma.

Conversely, assume that Φ_{1} is a root system of rank n with a chain property. Consider a nonzero ideal I of A. If $y=a+\sum_{\gamma \in \Phi_{1}} x_{\gamma} \in I$ with some $x_{\alpha} \neq 0$ then there is $h \in A_{0}$ such that $\alpha(h) \neq 0$, whence $h y=h a+\sum_{\gamma \in \Phi_{1}} \gamma(h) x_{\gamma} \in I, y h=a h=h a \in I$. Therefore, we may assume that $x_{\alpha}^{0} \in I$. If $y=a \in I$ then $\alpha(a) \neq 0$ for some $\alpha \in \Phi_{1}$, whence $x_{\alpha} \in I$ and $x_{\alpha}^{0} \in I$. Thus, we may suppose that $x_{\alpha_{1}}^{0} \in I$ for some $\alpha_{1} \in \Phi_{1}$. Take α_{2} such that $\alpha_{2}\left(x_{\alpha_{1}}^{0}\right) \neq 0$. Then $x_{\alpha_{1}}^{0} x_{\alpha_{2}}=\alpha_{2}\left(x_{\alpha_{1}}^{0}\right) x_{\alpha_{2}} \in I$, whence $A_{0}\left(\alpha_{2}\right) \subseteq I$. From here we may assume initially that $A_{0}\left(\alpha_{1}\right) \subseteq I$. Continuing this process we arrive at the assertion of the lemma.

In the case of an arbitrary even part, we can prove an analogous statement, modifying the definition of $A_{0}(\alpha)$ by

$$
A_{0}(\alpha, \beta)=A_{1}(\alpha) A_{1}(\beta) .
$$

We say that $A_{1}(\alpha)$ is nondegenerate provided that for every $x_{\alpha} \in A_{1}(\alpha)$ there is $x_{\beta} \in$ $A_{1}(\beta)$ such that $x_{\alpha} x_{\beta} \neq 0(\beta$ is a companion for $\alpha)$. Put $A_{0}\left(\alpha_{1}, \beta_{1}, \ldots, \alpha_{s}, \beta_{s}\right):=$ $\sum_{i=1}^{s} A_{0}\left(\alpha_{i}, \beta_{i}\right)$. We say that Φ_{1} possesses a chain property provided that it is nondegenerate and for every pair $\alpha_{1}, \beta_{1} \in \Phi_{1}$ there is a chain of roots $\alpha_{2}, \beta_{2}, \ldots, \alpha_{k}, \beta_{k} \in \Phi_{1}$ such that $\alpha_{s+1}\left(A_{0}\left(\alpha_{1}, \beta_{1}, \ldots, \alpha_{s}, \beta_{s}\right)\right) \neq 0$ for all $s=1, \ldots, k-1$ and $A_{0}\left(\alpha_{1}, \beta_{1}, \ldots, \alpha_{k}, \beta_{k}\right)=A_{0}$, where β_{i} is a companion for α_{i}.
Lemma 8.3. Let $A=A_{0} \oplus A_{1}$ be a left-symmetric algebra in \mathcal{C} with A_{0} of dimension n such that the action of A_{0} on A_{1} is diagonalizable. Then A is simple if and only if Φ_{1} is a root system of rank n with the chain property.

Proof repeats one of Proposition 8.1.
The following lemma and the examples below show the immensity of the class of algebras, satisfying the hypothesis of Proposition 8.1.

Lemma 8.4. Let $A=A_{0} \oplus A_{1} \in \mathcal{A}$, and let A_{0} be zero-product. Assume that A_{0} acts diagonally on $A_{1}, \operatorname{dim} A_{0}=n$, and $\Phi_{1}= \pm\left\{\alpha_{1}, \ldots, \alpha_{n}\right\}$ consists of $2 n$ roots, where $\alpha_{1}, \ldots, \alpha_{n}$ are linearly independent. Let $\operatorname{dim} A_{0}(\alpha):=1$ for all $\alpha \in \Phi_{1}$. Then $\operatorname{dim} A_{1}\left(\alpha_{i}\right)=$ $\operatorname{dim} A_{1}\left(-\alpha_{i}\right)=k_{i} \in \mathbb{N}, A_{1}\left(\alpha_{i}\right):=\left\langle x_{\alpha_{i}}^{(j)}: j=1, \ldots, k_{i}\right\rangle$ for every $i=1, \ldots, n$, and

$$
A=A_{0} \oplus \sum_{\alpha_{i} \in \Phi_{1}} A_{1}\left(\alpha_{i}\right)
$$

with the following nonzero products

$$
x_{\alpha_{i}}^{(j)} x_{-\alpha_{i}}^{(j)}=x_{-\alpha_{i}}^{(j)} x_{\alpha_{i}}^{(j)}=a_{i} \in A_{0}, \quad a x_{\alpha_{i}}^{(j)}=\alpha_{i}(a) x_{\alpha_{i}}^{(j)}
$$

for all $a \in A_{0}, \alpha_{i} \in \Phi_{1}, j=1, \ldots, k_{i}$. In particular, $\operatorname{dim} A=n+2 \sum_{i=1}^{n} k_{i} \geq 3 n$.
Proof. By Proposition 8.1, the rank of Φ_{1} is n, and $A_{1}\left(\alpha_{i}\right)$ is nondegenerate for every $i=1, \ldots, n$. Consider $A_{1}\left(\alpha_{1}\right)$. Assume that $\operatorname{dim} A_{1}\left(\alpha_{1}\right) \neq \operatorname{dim} A_{1}\left(-\alpha_{1}\right)$. Without loss of generality, we may suppose that $\operatorname{dim} A_{1}\left(\alpha_{1}\right)=k+1, \operatorname{dim} A_{1}\left(-\alpha_{1}\right)=k$. Let $A_{1}\left(\alpha_{1}\right)=\left\langle x_{1}, \ldots, x_{k+1}\right\rangle, A_{1}\left(-\alpha_{1}\right)=\left\langle y_{1}, \ldots, y_{k}\right\rangle$. Changing a base if needed, it is easy to see that we may assume $x_{i} \cdot y_{j}=\delta_{i j} a_{1}$ for all $i, j=1, \ldots, k$, where $\delta_{i j}$ is Kronecker's delta. Let $x_{k+1} \cdot y_{i}=\gamma_{i} a_{1}$ for some $\gamma_{i} \in F$ and for all $i=1, \ldots, k$. Then $x:=x_{k+1}-\sum_{i=1}^{k} \gamma_{i} x_{i}$ satisfies $x \cdot A_{1}\left(-\alpha_{1}\right)=0$, whence $\langle x\rangle$ is a right ideal of A. Therefore, $\operatorname{dim} A_{1}\left(\alpha_{1}\right)=$ $k_{1}=\operatorname{dim} A_{1}\left(-\alpha_{1}\right)$, and the product between $A_{1}\left(\alpha_{1}\right)$ and $A_{1}\left(-\alpha_{1}\right)$ satisfies the mentioned relations.
8.2. Examples of CP-systems. Note that the union of some systems with the chain property is a system with the chain property. A CP-system $\alpha:=\left\{\alpha_{1}, \ldots, \alpha_{m}\right\}$ is minimal if $\left\{\alpha_{1}, \ldots, \alpha_{m}\right\} \backslash\left\{\alpha_{i}\right\}$ is not a CP-system for every $i=1, \ldots, m, \alpha$ is invariant if $\pm \alpha$ is a system with the chain property, and α is a base if it is minimal and invariant. Clearly, every system with the chain property contains a base. Obviously, if a nondegenerate system of roots Γ contains a base then Γ is a system with the chain property.

In what follows, $\left\{\delta_{i}\right\}$ is a dual basis for $\left\{e_{i}\right\}$.
Example 8.1. Consider a cyclic system: $\alpha_{i}\left(A_{0}\left(\alpha_{i-1}\right)\right) \neq 0, \alpha_{1}\left(A_{0}\left(\alpha_{m}\right)\right) \neq 0, i=$ $2, \ldots, m$. Write explicitly a minimal invariant $C P$-system of rank n, which is cyclic:

$A_{0}\left(\delta_{i}\right)$	e_{1}	e_{2}	e_{3}	\ldots	e_{n}
δ_{i}	δ_{n}	δ_{1}	δ_{2}	\ldots	δ_{n-1}

The importance of cyclic systems is obvious. Every nondegenerate root system, which contains a cyclic subsystem of rank n, is a system with the chain property. It is easy to show, for example, that every system with the chain property of rank 2 contains a cyclic subsystem of rank 2. Notice that it is easy to construct CP-systems with the root spaces
$A_{1}(\alpha)$ and $A_{1}(-\alpha)$ of distinct dimensions. Also, one may construct a base of rank n and length greater than n.

Example 8.2. Give an example of a minimal invariant CP-system of rank n and length $n+1$ with n linearly independent roots $\alpha_{i}, i=1, \ldots, n$:

$A_{0}\left(\alpha_{i}\right)$	e_{1}	e_{1}	e_{2}	\ldots	e_{n-1}	e_{n}
α_{i}	α_{1}	α_{2}	α_{3}	\ldots	α_{n}	$2 \alpha_{n}$

$\alpha_{i}=\delta_{1}+\ldots+\delta_{i}$. Note that this system is embedded into a cyclic system or it may be rewritten as a cyclic system: $2 \alpha_{n}, \alpha_{n}, \ldots, \alpha_{1}$.

The following lemma is obvious.
Lemma 8.5. Let A be a left-symmetric algebra in \mathcal{C} with a nilpotent subalgebra A_{0} of dimension n and a nondegenerate root system Φ_{1}. Fix a set Γ of n linearly independent roots in Φ_{1}. Then Φ_{1} is a system with the chain property if and only if for every $\gamma \in \Gamma$ there is a γ-system in Φ_{1}.

Note that the condition of diagonality of the action of A_{0} is essential for existence of a system of rank n if $\operatorname{dim} A_{0}=n$. Show, for example, existence of algebras in \mathcal{A} with a zero-product even part A_{0} of an arbitrary dimension and of rank 1 (in this case the action of A_{0} is not diagonal).

Let $A_{\alpha}=\left\langle u_{1}, \ldots, u_{k}\right\rangle, A_{-\alpha}=\left\langle v_{1}, \ldots, v_{s}\right\rangle$. Let $A:=A_{0} \oplus A_{\alpha} \oplus A_{-\alpha}$ and the action of A_{0} be the following

$$
a u_{i}=\alpha(a) u_{i}+u_{i+1}, a u_{k}=\alpha(a) u_{k}, a v_{i}=-\alpha(a) v_{i}+v_{i+1}, a v_{s}=-\alpha(a) v_{s} .
$$

It is easy to see that $b(a v)=a(b v)$ for all $a, b \in A_{0}, v \in A_{1}$. Then from $0=a\left(u_{i} v_{s}\right)=$ $\left(\alpha(a) u_{i}+u_{i+1}\right) v_{s}-\alpha(a) u_{i} v_{s}$ we get $u_{i+1} v_{s}=0$ for all $i \neq k$. Analogously, $v_{i+1} u_{k}=0$ for all $i \neq s$. From

$$
0=a\left(u_{i} v_{j}\right)=\left(\alpha(a) u_{i}+u_{i+1}\right) v_{j}+u_{i}\left(-\alpha(a) v_{j}+v_{j+1}\right)
$$

we obtain $u_{i+1} v_{j}+u_{i} v_{j+1}=0$ for all $i \neq k, j \neq s$. Thus, $u_{k} v_{1} \equiv_{2} u_{k-s+1} v_{s}=0$ if $k>s$, and A is not simple. Further, assume that $k=s$. From the obtained equalities we also see that $A_{0} \neq A_{\alpha} A_{-\alpha}$ if $k<n$. Thus, we assume that $k=n, A_{0}=A_{\alpha} A_{-\alpha}=\left\langle v_{1} u_{i}: i=1, \ldots, n\right\rangle$. Finally, we have to require $\alpha\left(v_{1} u_{n}\right) \neq 0$ for the simplicity. Now, we may apply Lemma 8.2 to A in order to prove the simplicity of A. Thus, we have proved the following

Lemma 8.6. Let $A=A_{0} \oplus A_{\alpha} \oplus A_{-\alpha}$ be as above with $\operatorname{dim} A_{\alpha}=\operatorname{dim} A_{-\alpha}=\operatorname{dim} A_{0}=n$, and $\alpha\left(v_{1} u_{n}\right) \neq 0$. Then $A \in \mathcal{A}$.
8.3. On algebras in \mathcal{A} with a simple even part. In this subsection we assume A_{0} to be simple, whence $\operatorname{dim} A_{0}=1$ and A_{0} coincides with the main field F. In what follows, for simplicity we assume F to be algebraically closed. First, we suppose that A_{0} acts diagonally on A_{1}. We say that $A_{1}(\alpha)$ and $A_{1}(1-\alpha)$ are dual provided that $A_{1}(\alpha):=\left\langle x_{\alpha}^{(1)}, \ldots, x_{\alpha}^{(k)}\right\rangle, A_{1}(1-\alpha):=\left\langle x_{1-\alpha}^{(1)}, \ldots, x_{1-\alpha}^{(k)}\right\rangle$, and only the following products $x_{\alpha}^{(i)} \cdot x_{1-\alpha}^{(i)}=1=x_{1-\alpha}^{(i)} \cdot x_{\alpha}^{(i)}$ are nonzero for all $i=1, \ldots, k$.

Lemma 8.7. Let $A=A_{0} \oplus A_{1} \in \mathcal{A}$, let A_{0} be simple, and let A_{0} act diagonally on A_{1}. Then one of the following cases holds

$$
\begin{aligned}
& A=F \oplus \sum_{\alpha \neq \frac{1}{2}}\left(A_{1}(\alpha) \oplus A_{1}(1-\alpha)\right) \\
& A=F \oplus A_{1}\left(\frac{1}{2}\right) \oplus \sum_{\alpha \neq \frac{1}{2}}\left(A_{1}(\alpha) \oplus A_{1}(1-\alpha)\right),
\end{aligned}
$$

where $\operatorname{dim} A_{1}(\alpha)=\operatorname{dim} A_{1}(1-\alpha)$ for every $\alpha \in \Phi_{1}$, and $A_{1}(\alpha)$ and $A_{1}(1-\alpha)$ are dual. Conversely, every such algebra belongs to \mathcal{A}.
Proof. Notice that the left-symmetry of A follows from Lemma 8.1 and the fact that the action of A_{0} is diagonal. Under hypothesis of the lemma, A_{0} possesses the unique root 1. For every root α on A_{1} there is a unique root β on A_{1} such that $\alpha+\beta=\mathbf{1}$ and $A_{1}(\alpha) A_{1}(\beta)=F$. Thus, in this case we arrive at the algebra structure from the assertion of the lemma. In this case $\operatorname{dim} A_{1}(\alpha)=\operatorname{dim} A_{1}(1-\alpha)$ and the dual bases for $A_{1}(\alpha)$ and $A_{1}(1-\alpha)$ may be chosen as in Lemma 8.4. The converse statement follows immediately from Lemmas 8.1 and 8.2.

Let $A=A_{0} \oplus A_{1}:=A_{1, n}^{\alpha} \in \mathcal{A}$, let $A_{0}=\langle e\rangle$ be simple, and let A_{0} act on $A_{1}=\left\langle x_{1}, \ldots, x_{n}\right\rangle$ as follows:

$$
e \cdot x_{i}=\alpha x_{i}+x_{i+1}, i=1, \ldots, n-1, e \cdot x_{n}=\alpha x_{n} .
$$

We say that x_{n} is a minimal vector and x_{1} is a maximal vector for $A_{1, n}^{\alpha}$. Denote $A_{1, n}^{\frac{1}{2}}$ by $A_{1, n}$. In what follows, we say that an algebra $A \in \mathcal{C}$ is degenerate if its odd part A_{1} contains a degenerate root subspace.

Lemma 8.8. The algebra $A_{1, n}$ has the following product:

$$
\begin{cases}x_{i} \cdot x_{j}=0 & \text { if } i+j>n+1 \\ x_{i} \cdot x_{j}=0 & \text { if } i-j \equiv 1(\bmod 2) \\ x_{i} \cdot x_{j}=(-1)^{\frac{(i-j)}{2}} x_{\frac{(i+j)}{2}}^{2} & \text { otherwise }\end{cases}
$$

In the case $n=2 k$, the algebra $A_{1,2 k}$ is degenerate. In the case $n=2 k+1$, the algebra $A_{1,2 k+1}$ is nondegenerate if and only if $x_{k+1}^{2} \neq 0$.

Proof. Since $e a=a$ for every $a \in A_{0}$; therefore, by (4.3) for all $i, j \neq n$ we have

$$
\begin{align*}
& x_{i} \cdot x_{j}=e \cdot\left(x_{i} \cdot x_{j}\right)=\left(\frac{1}{2} x_{i}+x_{i+1}\right) x_{j}+x_{i}\left(\frac{1}{2} x_{j}+x_{j+1}\right) \\
& x_{i} \cdot x_{j+1}+x_{i+1} \cdot x_{j}=0 \tag{8.1}\\
& \left.x_{i} \cdot x_{n}=e \cdot\left(x_{i} \cdot x_{n}\right)=\left(\frac{1}{2} x_{i}+x_{i+1}\right) x_{n}+\frac{1}{2} x_{i} x_{n}\right) \\
& x_{i+1} \cdot x_{n}=0 \tag{8.2}
\end{align*}
$$

whence $x_{i} x_{i+1}=0$ for all $i \neq n$ and $x_{i} \cdot x_{j}=0$ if $i+j>n+1$. Now, applying (8.1) we see that $x_{i} \cdot x_{j}=0$ if $i-j \equiv 1(\bmod 2)$, and $x_{i} \cdot x_{j}=(-1)^{\frac{(i-j)}{2}} x_{\frac{i+i j)}{2}}$ otherwise.

In the case $n=2 k$ the algebra $A_{1,2 k}$ is degenerate, since $x_{i} \cdot x_{n}=0$ for all i. Show that in the case $n=2 k+1$ the algebra $A_{1,2 k+1}$ is nondegenerate if and only if $x_{k+1}^{2} \neq 0$. Indeed, if $A_{1,2 k+1}$ is nondegenerate then $x_{1} x_{n} \equiv_{2} x_{k+1}^{2} \neq 0$. Conversely, if $\left(\sum_{i=1}^{n} \alpha_{i} x_{i}\right) x=0$ for all x then we obtain $\alpha_{1}, \ldots, \alpha_{n}=0$ putting consequentially $x=x_{n}, x_{n-1}, \ldots, x_{1}$.

Thus, to define the product in $A_{1, n}$ we have to put $x_{i}^{2}=\beta_{i} e$ for some $\beta_{i} \in F$ and for all $i=1, \ldots,\left[\frac{n+1}{2}\right]$.

Assume that $A_{1, n}^{\alpha}$ and $A_{1, m}^{\beta}$ possess a common even part $A_{0}=\langle e\rangle, A_{1, n}^{\alpha}=\left\langle e, x_{1}, \ldots, x_{n}\right\rangle$, and $A_{1, m}^{\beta}=\left\langle e, y_{1}, \ldots, y_{m}\right\rangle$.

Lemma 8.9. Let $\alpha, \beta \neq \frac{1}{2}$. The algebra $A_{1, n}^{\alpha}+A_{1, m}^{\beta}$ has nonzero product of odd elements only in the case $\alpha+\beta=1$. The product in $A_{1, n}^{\alpha}+A_{1, m}^{\beta}$ is such that

$$
\begin{align*}
& y_{j+1} \cdot x_{i}+y_{j} \cdot x_{i+1}=0 \tag{8.3}\\
& y_{j+1} \cdot x_{n}=0, y_{m} \cdot x_{i+1}=0 \tag{8.4}
\end{align*}
$$

for all $j \neq m, i \neq n$. In particular, $A_{1, n}^{\alpha}+A_{1, m}^{\beta}$ is nondegenerate if and only if $n=m$ and $x_{n} y_{1} \neq 0$.

Proof. Obviously, $\alpha+\beta=1$. Since $e a=a$ for every $a \in A_{0}$; therefore, by (4.3) for all $i \neq n, j \neq m$ we have

$$
\begin{aligned}
& x_{i} \cdot y_{j}=e \cdot\left(x_{i} \cdot y_{j}\right)=\left(\alpha x_{i}+x_{i+1}\right) y_{j}+x_{i}\left(\beta y_{j}+y_{j+1}\right), \\
& x_{i} \cdot y_{j+1}+x_{i+1} \cdot y_{j}=0, \\
& x_{i} \cdot y_{m}=e \cdot\left(x_{i} \cdot y_{m}\right)=\left(\alpha x_{i}+x_{i+1}\right) y_{m}+\beta x_{i} y_{m}, \\
& x_{n} \cdot y_{j}=e \cdot\left(x_{n} \cdot y_{j}\right)=\alpha x_{n} y_{j}+x_{n}\left(\beta y_{j}+y_{j+1}\right), \\
& x_{i+1} \cdot y_{m}=0, x_{n} \cdot y_{j+1}=0 .
\end{aligned}
$$

Prove the non-degeneracy assertion. If $n>m$ then

$$
y_{1} x_{n} \equiv_{2} \ldots \equiv_{2} y_{m} x_{n-m+1}=0,
$$

whence $x_{n} A_{1, m}^{\beta}=0$. Thus, $m=n$ and $x_{n} y_{1} \neq 0$.
Proposition 8.2. Let $A=A_{0} \oplus A_{1}$ be a nondegenerate finite-dimensional left-symmetric algebra in \mathcal{C} with the simple even part A_{0} acting non-diagonally on A_{1}. Then

$$
A=\sum_{i \in I} A_{1, m_{i}}^{\alpha_{i}},
$$

where the product is coordinated by the equalities (8.1) - (8.4). Let e_{1}, \ldots, e_{n} be some linearly independent set of minimal vectors of all $A_{1, k}^{\alpha}$ for every fixed $\alpha \in \Phi_{1}$ and $k \in \mathbb{N}$, and let f_{1}, \ldots, f_{n} be the corresponding set of maximal vectors in $A_{1, k}^{1-\alpha}$. Let $e_{i} \cdot f_{j}=\gamma_{i j} e$. The algebra A is simple if and only if the matrix $\Gamma_{k}(\alpha):=\left(\gamma_{i j}\right)$ is nondegenerate for all such k and α.

Proof. We need to prove only the simplicity condition, which is equivalent to the non-degeneracy condition. Note that $x A=0$ implies ($e x$) $A=0$ by Lemma 2.1. Thus, if $x=\sum x_{p} \in A n n_{l}(A)$ then we may assume that every x_{p} is a minimal vector for some fixed root α. Furthermore, we may assume that x_{p} has a fixed length k, since only the minimal vectors of length k may give nonzero products with the corresponding maximal vectors of length k. Thus, $\sum_{i=1}^{n} \alpha_{i} e_{i} \in A n n_{l}(A)$, i. e., $\left(\sum_{i=1}^{n} \alpha_{i} e_{i}\right) f_{j}=0$ for all j. Considering these equalities as a linear system with respect to α_{i}, we see that this system possesses a nontrivial solution if and only if $\Gamma_{k}(\alpha)=\left(\gamma_{i j}\right)$ is degenerate.

Remark 8.1. A similar assertion may be stated and proved for the algebras in \mathcal{A} with a zero-product even part A_{0} acting non-diagonally on A_{1}. In this case we have to modify the condition on $\Gamma_{k}(\alpha)=\left(e_{i} \cdot f_{j}\right) \in M_{k}\left(A_{0}\right)$, considering $\Gamma_{k}(\alpha)$ as a linear operator from F_{k} to A_{0} with the usual right action. Thus, we have to require the non-degeneracy of this operator. Also, some non-degeneracy conditions for the set of roots should be required.
8.4. On algebras in \mathcal{A} with an arbitrary even part. In this subsection we firstly give an easy example of a simple left-symmetric algebra A in \mathcal{A} such that its even part A_{0} is the direct sum of a simple subalgebra S and a zero-product ideal N, i. e., $A_{0}=S \oplus N$, and the action of N on A_{1} is not diagonal. To this end we put

$$
S=\langle e\rangle, N=\langle a\rangle, A_{1}=V_{\alpha_{1}} \oplus V_{\alpha_{2}}, V_{\alpha_{1}}=\left\{v_{1}, v_{2}\right\}, V_{\alpha_{2}}=\left\{u_{1}, u_{2}\right\},
$$

and define nonzero product on $A=A_{0} \oplus A_{1}$ by the table

$$
\begin{array}{|l|l|l|}
\hline e v_{i}=\alpha v_{i} & e u_{i}=(1-\alpha) u_{i} & v_{1} u_{1}=\beta e+\gamma a \\
\hline a v_{1}=p v_{1}+v_{2} & a u_{1}=-p u_{1}+u_{2} & v_{1} u_{2}=\delta a \\
\hline a v_{2}=p v_{2} & a u_{2}=-p u_{2} & v_{2} u_{1}=(\beta-\delta) a \\
\hline
\end{array}
$$

where $\alpha, \beta, \gamma, \delta, p \in F, \alpha \neq \frac{1}{2}, p, \beta, \delta \neq 0, \beta \neq \delta$. We see that

$$
\begin{array}{|l|l|}
\hline \alpha_{1}(e)=\alpha & \alpha_{2}(e)=1-\alpha \\
\hline \alpha_{1}(a)=p & \alpha_{2}(a)=-p \\
\hline
\end{array}
$$

Applying Lemmas 8.1 and 8.2 , we infer that A is a simple left-symmetric algebra.
Proposition 8.3. Let k be the maximal order of Jordan blocks for L_{a} on A_{1}, where a ranges over A_{0}. Assume that A_{0} is nilpotent. Then $L_{a}^{2 k-1}=0$ on A_{0} for every $a \in A_{0}$, A_{0} is a nil-algebra of index $\leq 2 k$, and A_{0} is nilpotent of index $\leq 4 k^{2}$. In particular, if A_{0} acts on A_{1} diagonally then A_{0} is zero-product. If $A_{0}=S \oplus N$, where S is a semisimple subalgebra and N is a nilpotent ideal, then the nilpotency index of N is bounded by $4 k^{2}$.

Proof. Take $a \in A_{0}, \alpha \in \Phi_{1}$. Without loss of generality, we may assume that $A_{\alpha}=$ $\left\langle u_{1}, \ldots, u_{k}\right\rangle$ and $A_{-\alpha}=\left\langle v_{1}, \ldots, v_{s}\right\rangle$ are some Jordan blocks with respect to $L_{a}, s \leq k$. Then from

$$
\begin{aligned}
a\left(u_{i} v_{j}\right) & =\left(\alpha(a) u_{i}+u_{i+1}\right) v_{j}+u_{i}\left(-\alpha(a) v_{j}+v_{j+1}\right), i \neq k, j \neq s, \\
a\left(u_{k} v_{s}\right) & =\left(\alpha(a) u_{k}\right) v_{s}-\alpha(a) u_{k} v_{s}=0
\end{aligned}
$$

we have $u_{1} v_{1} \stackrel{L_{0}}{\mapsto} u_{2} v_{1}+u_{1} v_{2} \stackrel{L_{0}}{\mapsto} u_{3} v_{1}+2 u_{2} v_{2}+u_{1} v_{3} \stackrel{L_{0}}{\mapsto} \ldots 0$, and $L_{a}^{2 k-1}=0$ on A_{0}. In particular, if A_{0} acts diagonally then $k=1$ and $L_{a}=0$ on A_{0}, i. e., A_{0} is zero-product. By Razmyslov's theorem, A_{0} is nilpotent of index $\leq 4 k^{2}$.

In the case when $A_{0}=S \oplus N$, where S is a semisimple subalgebra and N is a nilpotent ideal, we proceed analogously. Take some Jordan blocks $U=\left\langle u_{1}, \ldots, u_{k}\right\rangle \subseteq A_{\alpha}$ and $V=\left\langle v_{1}, \ldots, v_{s}\right\rangle \subseteq A_{\beta}$ of A_{1}. Then from

$$
\begin{aligned}
a\left(u_{i} v_{j}\right) & =\left(\alpha(a) u_{i}+u_{i+1}\right) v_{j}+u_{i}\left(\beta(a) v_{j}+v_{j+1}\right), i \neq k, j \neq s, \\
a\left(u_{k} v_{s}\right) & =(\alpha+\beta)(a) u_{k} v_{s}
\end{aligned}
$$

for every $a \in N$ we have $(\alpha+\beta)(a)=0$, since N is nilpotent. Proceeding by analogy with the previous case, we arrive at the required assertion.

Acknowledgments

The project is supported by the Russian Science Foundation (project 21-11-00286). The second author is grateful to Max-Planck Institute für Mathematik for hospitality and excellent working conditions, where part of this work has been done.

References

[1] A.A. Albert, Almost alternative algebras, Portugal. Math. 8 (1949) 23-36.
[2] T. Anderson, Hereditary radicals and derivations of algebras, Can J. Math. 21 (1969) 372-377.
[3] L. Auslander, Simply transitive groups of affine motions, Amer. Math. J. 99 (1) (1977) 215-222.
[4] D. Burde, Left-symmetric structures on simple modular Lie algebras, J. of Algebra 169 (1994) 112138.
[5] D. Burde, Left-invariant affine structures on reductive Lie groups, J. of Algebra 181 (1996) 884-902.
[6] D. Burde, Simple left-symmetric algebras with solvable Lie algebra, Manuscripta math. 95 (1998) 397-411.
[7] D. Burde, Left-symmetric algebras, or pre-Lie algebras in geometry and physics, Cent. Eur. J. Math. 4 (3) (2006) 323-357.
[8] K. Erdmann, M.J. Wildon, Introduction to Lie algebras, Springer Undergraduate Mathematics Series, Springer-Verlag London, (2006).
[9] V.T. Filippov, A class of simple nonassociative algebras, Math. Notes 45 (1989) 68-71.
[10] V.T. Filippov, On right-symmetric and Novikov nil algebras of bounded index, Math. Notes 70 (2001) 258-263.
[11] I.N. Herstein, Noncommutative rings, Carus Mathematical Monographs 15, Mathematical Association of America, Washington (1994).
[12] E. Kleinfeld, Assosymmetric rings, Proc. Amer. Math. Soc. 8 (1957) 983-986.
[13] E. Kleinfeld, Simple algebras of type (1,1) are associative, Can. J. of Math. 13 (1961) 129-148.
[14] D.Kh. Kozybaev, U.U. Umirbaev, The Magnus embedding for right-symmetric algebras, Siberian Math. J. 45 (3) (2004) 488-494.
[15] D. Kozybaev, L. Makar-Limanov, U. Umirbaev, The Freiheitssatz and the automorphisms of free right-symmetric algebras, Asian-European Journal of Mathematics 1 (2) (2008) 243-254.
[16] D. Kozybaev, U.U. Umirbaev, Identities of the left-symmetric Witt algebras, Int. J. of Algebra and Computation 26 (2) (2016) 435-450.
[17] J.M. Osborn, Novikov algebras, Nova J. Algebra Geom. 1 (1) (1992) 1-13.
[18] J.M. Osborn, Simple Novikov algebras with an idempotent, Comm. Algebra 20 (9) (1992) 2729-2753.
[19] J.M. Osborn, Infinite-dimensional Novikov algebras of characteristic 0, J. Algebra 167 (1) (1994) 146-167.
[20] A.P. Pozhidaev, I.P. Shestakov, On the Right-Symmetric Algebras with a Unital Matrix Subalgebra, Sib. Math. J. 62 (1) (2021) 138-147.
[21] D. Segal, Free left-symmetric algebras and an analogue of the Poincare-Birkhoff-Witt Theorem, J. Algebra 164 (1994) 750-752.
[22] I. Shestakov, Z. Zhang, Solvability and nilpotency of Novikov algebras, Comm. Algebra 48 (12) (2020) 5412-5420.
[23] A.M. Slin'ko, A remark on radicals and derivations of rings, Siberian Math. J. 13 (6) (1972) 984-986.
[24] K. Tulenbaev, U.U. Umirbaev, V. Zhelyabin, On the Lie-solvability of Novikov algebras, Journal of Algebra and Its Applications (2022).
[25] U.U. Umirbaev, Associative, Lie, and left-symmetric algebras of derivations, Transformation Groups 21 (2) (2016) 851-869.
[26] U.U. Umirbaev, V. Zhelyabin, On the solvability of graded Novikov algebras, Int. J. of Algebra and Computation 31 (7) (2021) 1405-1418.
[27] X. Xu, On simple Novikov algebras and their irreducible modules. J. Algebra 185 (3) (1996) 905-934.
[28] X. Xu, Classification of simple Novikov algebras and their irreducible modules of characteristic 0. J. Algebra 246 (2) (2001) 673-707.
[29] E.I. Zel'manov, A class of local translation-invariant Lie algebras. Dokl. Akad. Nauk SSSR 292 (6) (1987) 1294-1297.
[30] Z. Zhang, T.G. Nam, Lie nilpotent Novikov algebras and Lie solvable Leavitt path algebras, arXiv:2012.11191 (2020).
[31] V. Zhelyabin, U. Umirbaev, On the solvability of \mathbb{Z}_{3}-graded Novikov algebras, Symmetry 312 (2021) 1-13.

[^0]: ${ }^{1}$ Sobolev Institute of Mathematics of SB RAS, Novosibirsk, 630090, Russia, e-mail: app@math.nsc.ru
 ${ }^{2}$ Department of Mathematics, Wayne State University, Detroit, MI 48202, USA; Department of Mathematics, Al-Farabi Kazakh National University, Almaty, 050040, Kazakhstan; and Institute of Mathematics and Mathematical Modeling, Almaty, 050010, Kazakhstan, e-mail: umirbaev@wayne.edu
 ${ }^{3}$ Sobolev Institute of Mathematics of SB RAS, Novosibirsk, 630090, Russia, e-mail: vicnic@math.nsc.ru

