Max-Planck-Institut für Mathematik Bonn

On simple left-symmetric algebras

by

Alexandr Pozhidaev Ualbai Umirbaev Viktor Zhelyabin

Max-Planck-Institut für Mathematik Preprint Series 2022 (58)

Date of submission: August 30, 2022

On simple left-symmetric algebras

by

Alexandr Pozhidaev Ualbai Umirbaev Viktor Zhelyabin

Max-Planck-Institut für Mathematik Vivatsgasse 7 53111 Bonn Germany Sobolev Institute of Mathematics of SB RAS Novosibirsk 630090 Russia

Department of Mathematics Wayne State University Detroit, MI 48202 USA

Department of Mathematics Al-Farabi Kazakh National University Almaty 050040 Kazakhstan

Institute of Mathematics and Mathematical Modeling Almaty 050010 Kazakhstan

ON SIMPLE LEFT-SYMMETRIC ALGEBRAS

Alexandr Pozhidaev¹, Ualbai Umirbaev², and Viktor Zhelyabin³

ABSTRACT. We prove that the multiplication algebra M(A) of any simple finite-dimensional left-symmetric nonassociative algebra A over a field of characteristic zero coincides with the right multiplication algebra R(A). In particular, A does not contain any proper right ideal. These results immediately give a description of simple finite-dimensional Novikov algebras over an algebraically closed field of characteristic zero [29].

The structure of finite-dimensional simple left-symmetric nonassociative algebras from a very narrow class \mathcal{A} of algebras with the identities [[x, y], [z, t]] = [x, y]([z, t]u) = 0 is studied in detail. We prove that every such algebra \mathcal{A} admits a \mathbb{Z}_2 -grading $\mathcal{A} = \mathcal{A}_0 \oplus \mathcal{A}_1$ with an associative and commutative \mathcal{A}_0 . Simple algebras are described in the following cases: (1) \mathcal{A} is four dimensional over an algebraically closed field of characteristic not 2, (2) \mathcal{A}_0 is an algebra with the zero product, and (3) \mathcal{A}_0 is simple; in the last two cases, the description is given in terms of root systems. A necessary and sufficient condition for \mathcal{A} to be complete is given.

Mathematics Subject Classification (2020): 17D25, 17B05, 16D60.

Key words: left-symmetric algebra; pre-Lie algebra; Lie-solvable algebra; Novikov algebra; nilpotent algebra; simple algebra.

1. Introduction

An algebra A over a field F is called *left-symmetric* (or *pre-Lie*) if it satisfies the identity

$$(xy)z - x(yz) = (yx)z - y(xz).$$
(1.1)

This means that the associator (x, y, z) := (xy)z - x(yz) is symmetric with respect to two left arguments, i. e.,

$$(x, y, z) = (y, x, z).$$
 (1.2)

Left-symmetric algebras arise in many different areas of mathematics and physics (for example, see [7]).

The variety of left-symmetric algebras is Lie-admissible, i. e., each left-symmetric algebra A with the operation [x, y] := xy - yx is a Lie algebra. We denote this Lie algebra by $A^{(-)}$ and call it the *adjoint* Lie algebra of A.

¹Sobolev Institute of Mathematics of SB RAS, Novosibirsk, 630090, Russia, e-mail: *app@math.nsc.ru* ²Department of Mathematics, Wayne State University, Detroit, MI 48202, USA; Department of Math-

²Department of Mathematics, Wayne State University, Detroit, MI 48202, USA; Department of Mathematics, Al-Farabi Kazakh National University, Almaty, 050040, Kazakhstan; and Institute of Mathematics and Mathematical Modeling, Almaty, 050010, Kazakhstan, e-mail: *umirbaev@wayne.edu*

³Sobolev Institute of Mathematics of SB RAS, Novosibirsk, 630090, Russia, e-mail: vicnic@math.nsc.ru

¹

A linear basis for free left-symmetric algebras was given by D. Segal in 1994 [21]. The identities of left-symmetric algebras were studied by V. Filippov [10], and he proved that any left-nil left-symmetric algebra over a field of characteristic zero is left nilpotent. An analogue of the PBW basis Theorem for the universal (multiplicative) enveloping algebra of a right-symmetric algebra was given in [14]. The Freiheitssatz and the decidability of the word problem for one-relator right-symmetric algebras were proven in [15].

The left-symmetric Witt algebras \mathcal{L}_n [25] are one of the most important series of infinitedimensional simple left-symmetric algebras over fields of characteristic zero. These algebras are very convenient to describe some famous problems of affine algebraic geometry, including the Jacobian Conjecture, in purely ring theoretic terms [25]. Some results on the identities of the left-symmetric Witt algebras \mathcal{L}_n are proven in [16].

The class of left-symmetric algebras is a wide extension of the class of associative algebras, and it contains the class of assosymmetric algebras, Novikov algebras, and (-1, 0)-algebras. Recall that an *assosymmetric* algebra is a left-symmetric algebra, which is right-symmetric as well, i. e., it also satisfies the identity

$$(x, y, z) = (x, z, y).$$

In 1957 E. Kleinfeld [12] proved that if R is an assosymmetric ring of characteristic different from 2 and 3 and without zero-product ideals then R is associative. A Novikov algebra is a left-symmetric algebra with commuting right multiplications, i. e., the Novikov algebras satisfy the identity (xy)z = (xz)y in addition to the left-symmetric identity (1.1). In 1987 E. Zelmanov [29] proved that any finite-dimensional simple Novikov algebra over an algebraically closed field of characteristic zero is one-dimensional. V. Filippov constructed a wide class of simple Novikov algebras of characteristic $p \ge 0$ [9]. J. Osborn [17, 18, 19] and X. Xu [27, 28] continued the study of simple finite-dimensional Novikov algebras over fields of positive characteristic and simple infinite-dimensional Novikov algebras over fields of characteristic zero. A complete classification of finite-dimensional simple Novikov algebras over algebraically closed fields of characteristic p > 2 is given in [27]. Some interesting results on the structure of nilpotent, solvable, and Lie solvable Novikov algebras were recently obtained in [22, 24, 26, 31, 30].

The class of (-1, 0)-algebras is a part of the class of (γ, δ) -algebras introduced by A. Albert [1]. It is well known [13] that every simple finite-dimensional algebra of type (-1, 0) of characteristic not equal to 2 and 3 is associative.

In contrast to assosymmetric algebras, Novikov algebras, and (-1, 0)-algebras, the class of simple (finite-dimensional) non-associative left-symmetric algebras is immense. For example, as it was shown in [20], starting from an arbitrary (finite-dimensional) nontrivial left-symmetric algebra A, one can construct a simple (finite-dimensional) left-symmetric algebra, which contains A as a subalgebra.

There exist infinitely many non-isomorphic simple left-symmetric structures on the Lie algebra gl_n [5]; they are classified in [5] as deformations of the associative matrix algebra structure. A classification of 2 and 3-dimensional simple left-symmetric algebras over \mathbb{C} was obtained in [6]. Classification of 4-dimensional simple left-symmetric algebras are already quite complicated. However, it is feasible for complete left-symmetric algebras [6]. Recall that a left-symmetric algebra A is called *complete* if the operator Id + R(x) is bijective for all $x \in A$ (this condition arises naturally in the context of affine transformations).

It is well known that the adjoint Lie algebra of a left-symmetric algebra cannot be semisimple [4] and the adjoint Lie algebra of a simple left-symmetric algebra cannot be nilpotent [6]. There are many examples of simple left-symmetric algebras with solvable and reductive adjoint Lie algebras. The adjoint Lie algebra of a complete left-symmetric algebra is always solvable [3].

This paper is devoted to the study of simple finite-dimensional left-symmetric algebras over algebraically closed fields of characteristic zero. We prove that the multiplication algebra M(A) of any simple finite-dimensional left-symmetric nonassociative algebra Aover a field of characteristic zero coincides with the right multiplication algebra R(A)and A is an irreducible R(A)-module. In particular, A does not contain any proper right ideal. Recall that a similar result holds for (-1, 0) and (1, 1)-algebras (see [13]). Moreover, these results can be immediately applied to get the description of simple finite-dimensional Novikov algebras over an algebraically closed field of characteristic zero given in [29].

The remaining part of the paper is focused on the study of finite-dimensional simple left-symmetric nonassociative algebras from a very narrow variety \mathfrak{M} of algebras with the identities [[x, y], [z, t]] = [x, y]([z, t]u) = 0. We establish that in some sense \mathfrak{M} is the smallest reasonable variety of the left-symmetric algebras such that \mathfrak{M} contains nontrivial finite-dimensional simple algebras. We show that even this smallest class contains a huge number of simple algebras. We prove that every simple finite-dimensional algebra $A \in \mathfrak{M}$ admits a \mathbb{Z}_2 -grading $A = A_0 \oplus A_1$ with an associative and commutative A_0 . Simple algebras are described in the following cases: (1) A is four dimensional, (2) A_0 is an algebra with the zero product, and (3) A_0 is simple; in the last two cases the description is given in terms of root systems. A necessary and sufficient condition for A to be complete is given.

The paper is organized as follows. In the preliminary Section 2 we give some constructions of ideals of left-symmetric algebras. In Section 3 we prove that the multiplication algebra of any simple finite-dimensional left-symmetric nonassociative algebra coincides with the right multiplication algebra and show that such an algebra is right simple. In Section 4 we define a very small variety of algebras \mathfrak{M} such that \mathfrak{M} contains simple finitedimensional Lie-metabelian algebras, and we define the class of simple algebras \mathcal{A} in \mathfrak{M} . In particular, every algebra A in \mathcal{A} admits a \mathbb{Z}_2 -grading $A = A_0 \oplus A_1$. In Section 5 we give a necessary and sufficient condition for $A \in \mathcal{A}$ to be complete. In Section 6 we study root decompositions for algebras in \mathcal{A} . In Section 7, using the obtained results, we give a complete description of simple four-dimensional algebras in \mathcal{A} . Section 8 is devoted to the study of algebras $A \in \mathcal{A}$ when either A_0 is an algebra with the zero product or A_0 is simple.

2. Preliminaries

Let A be an arbitrary left-symmetric algebra over a field F. Given $a \in A$, we define the operators $L_a : x \mapsto ax$ and $R_a : x \mapsto xa$ of the *left* and *right multiplication*, respectively. By (1.1) we get

$$[L_x, L_y] = L_{[x,y]} (2.1)$$

and

$$[L_x, R_y] = R_{xy} - R_y R_x. (2.2)$$

Let End(A) be the algebra of linear mappings of the vector space A. The subalgebra M = M(A) of End(A) that is generated by the operators L_a and R_a , where $a \in A$, is called the *multiplication* algebra of A. The *left* multiplication algebra L = L(A) and the *right* multiplication algebra R = R(A) are some subalgebras of M(A) generated by the operators L_a and R_a , respectively, where a ranges over A.

Lemma 2.1. Let A be a left-symmetric algebra, and let $Ann_l(A) = \{x \in A : xA = 0\}$. Then $Ann_l(A)$ is an ideal of A.

Proof. It suffices to prove that $Ann_l(A)$ is a left ideal of A. Take $x \in Ann_l(A)$ and $a \in A$. Then for every $b \in A$ we have

$$(bx)a = (b, x, a) = (x, b, a) = (xb)a - x(ba) = 0$$

by (1.2). Therefore, $bx \in Ann_l(A)$. Consequently, $Ann_l(A)$ is an ideal of A.

Lemma 2.2. $RL \subseteq LR + R$ and LR + R is an ideal of M.

Proof. Notice that every element of L is a linear combination of elements of the form

$$u = L_{x_1} \dots L_{x_n}, n \ge 1,$$

and every element of R is a linear combination of elements of the form

$$v = R_{y_1} \dots R_{y_m}, m \ge 1$$

Using (2.2) we can represent the product vu as a linear combination of elements of the form

$$L_{a_1} \dots L_{a_k} R_{b_1} \dots R_{b_s}, s \ge 1.$$

Consequently, $RL \subseteq LR + R$ and LR + R is an ideal of M.

Lemma 2.3. Let I be an ideal of R such that $[L_x, I] \subseteq I$ for all $x \in A$. Then K = LI + I is an ideal of M.

Proof. By Lemma 2.2,

$$RK = R(LI + I) \subseteq RLI + RI \subseteq LRI + RI + I \subseteq K,$$

since I is an ideal of R. Clearly, $LK \subseteq K$. Hence, K is a left ideal of M.

Show that K is a right ideal of M. For any $x \in A$ we get

$$IL_x \subseteq L_xI + [L_x, I] \subseteq L_xI + I.$$

Therefore,

$$KL_x \subseteq LIL_x + IL_x \subseteq LL_xI + LI + L_xI + I \subseteq K.$$

Clearly, $KR \subseteq K$, since I is an ideal of R. Hence, K is a right ideal of M. This proves that K is an ideal of M.

Corollary 2.1. If e is a central idempotent of R then LRe + Re is an ideal of M and e is a central idempotent of M.

Proof. We have

$$[L_x, e] = [L_x, e^2] = e[L_x, e] + [L_x, e]e = 2[L_x, e]e$$

for all $x \in A$, since $[L_x, e] \in R$ by (2.2). Consequently,

$$[L_x, e]e = 2[L_x, e]e^2 = 2[L_x, e]e.$$

Hence, $[L_x, e]e = 0$ and $[L_x, e] = 0$. Thus, e is a central idempotent of M. Moreover, Re is an ideal of R and

$$[L_x, Re] \subseteq [L_x, R]e + R[L_x, e] \subseteq Re.$$

Hence, LRe + Re is an ideal of M.

3. The multiplication algebra of a simple left-symmetric algebra

We may assume that A is a left M-module regarding the action $w \cdot a = w(a)$, where $w \in M, a \in A$. Similarly, we can consider A as a left R-module. Obviously, A is a faithful M-module and A is a faithful R-module.

Recall that an arbitrary algebra A is *simple* if A does not contain nontrivial ideals and $A^2 \neq 0$.

Now, let A be a simple finite-dimensional left-symmetric algebra over a field F. Then its multiplication algebra M is a matrix algebra over a skew-field. Hence, M = LR + Rby Lemma 2.2. Let e be the identity element of M and let $B = (id - e) \cdot A$. Obviously, $w \cdot B = 0$ for all $w \in M$. Consequently, B is an ideal of A and either B = 0 or B = A, since A is simple. If B = A then we get $A^2 = 0$. Hence, B = 0, and A is a unitary M-module.

Let $C_M(R)$ be the *centralizer* of the subalgebra R in M, i.e.,

$$C_M(R) = \{ x \in M : [x, a] = 0 \ \forall a \in R \}.$$

Lemma 3.1. Let J be the Jacobson radical of R. Then the following assertions hold:

(1) if $[L_x, J] \subseteq J$ for all $x \in A$ then J = 0, R is a simple subalgebra of M, and R contains the identity element of M;

(2) if F is an algebraically closed field then $M \cong R \otimes C_M(R)$;

(3) if F is of characteristic zero then $[L_x, J] \subseteq J$ for every $x \in A$.

Proof. Assume that $J \neq 0$. Then LJ + J is a nonzero ideal of M by Lemma 2.3, since $[L_x, J] \subseteq J$ for all $x \in A$. Hence, M = LJ + J, since M is simple. The Jacobson radical J

5

of the finite-dimensional algebra R is nilpotent. Suppose that $J^n = 0$ and $J^{n-1} \neq 0$. Then $MJ^{n-1} \subseteq LJ^n + J^n = 0$. Consequently, $J^{n-1} = 0$. This contradiction implies J = 0. Therefore,

$$R = R_1 \oplus \ldots \oplus R_k$$

is the direct sum of some simple algebras.

Let e be the identity element of R_1 . Then e is a central idempotent of R. Set K = LRe + Re. By Corollary 2.1, K is an ideal of M and e is a central idempotent of M. Therefore, M = LRe + Re, since M is simple. Hence, e is the identity element of M, and $R = R_1$, i. e., R is simple.

Let F be an algebraically closed field. Then the center Z(R) of R coincides with F. Therefore, $M \cong R \otimes C_M(R)$ by the coordinatization theorem [11].

Let F be a field of characteristic zero. By (2.2), $[L_x, R] \subseteq R$ for all $x \in A$, and $\operatorname{ad}(L_x) : R \to R$, which maps r into $[L_x, r]$, is a derivation of R. It is well known that the Jacobson radical is closed under derivations in characteristic zero [2] (see also [23]). Hence, $[L_x, J] \subseteq J$ for all $x \in A$.

Notice that an arbitrary algebra satisfies the identity

$$a(b, c, d) - (ab, c, d) - (a, b, cd) + (a, bc, d) + (a, b, c)d = 0,$$
(3.1)

and every left-symmetric algebra satisfies the identity

$$(a, b, c) = [ab, c] - a[b, c] - [a, c]b.$$
(3.2)

Theorem 3.1. Let A be a finite-dimensional simple left-symmetric algebra over an algebraically closed field F of characteristic zero. Then either A is associative or $R = M = M_n(F)$, where $n = \dim_F A$, and A is a simple R-module.

Proof. By Lemma 3.1, A is a unitary R-module, and R is a simple finite-dimensional algebra. Therefore,

$$A = A_1 \oplus \ldots \oplus A_m$$

is the direct sum of some irreducible R-modules. Notice that A_i is a right ideal of A.

Assume that m > 1. If $i \neq j$ then

$$(A_i, A_j, A) = (A_j, A_i, A) \subseteq A_i \cap A_j = 0.$$

By (3.1),

$$A_{i}(A_{j}, A_{j}, A) \subseteq (A_{i}A_{j}, A_{j}, A) + (A_{i}, A_{j}A_{j}, A) + (A_{i}, A_{j}, A_{j}A) + (A_{i}, A_{j}, A_{j})A \subseteq (A_{i}, A_{j}, A) + (A_{i}, A_{j}, A)A = 0.$$

Therefore, $R_{(A_j,A_j,A)} \subseteq Ann_R(A_i)$. Since $Ann_R(A_i)$ is an ideal of R and R is simple by Lemma 3.1; therefore, either $Ann_R(A_i) = R$ or $Ann_R(A_i) = 0$. Clearly, $Ann_R(A_i) \neq R$. Hence, $Ann_R(A_i) = 0$ and $R_{(A_j,A_j,A)} = 0$, i.e., $A(A_j,A_j,A) = 0$ for all $j = 1, \ldots, m$. Consequently,

$$A(A, A, A) \subseteq \sum_{ij} A(A_i, A_j, A) = 0.$$

Applying (3.1) again, we get

$$(A, A, A)A \subseteq A(A, A, A) + (A, A, A) \subseteq (A, A, A).$$

Thus, (A, A, A) is an ideal of A. Therefore, either (A, A, A) = 0 or (A, A, A) = A.

If A = (A, A, A) then we get $A^2 = A(A, A, A) = 0$. Consequently, (A, A, A) = 0, i.e., A is an associative algebra.

Hence, if A is not associative then m = 1. Consequently, A is an irreducible R-module. Let c be a nonzero element in $C_M(R)$. Note that $c \cdot A$ is an R-submodule of the R-module A. Since A is a faithful and irreducible R-module; therefore, $c \cdot A = A$. Consequently, $C_M(R)$ is a skew-field. Taking into account that $C_M(R)$ is finite-dimensional and F is an algebraically closed field we get $C_M(R) = F$. By Lemma 3.1 we obtain R = M.

Corollary 3.1. Every finite-dimensional simple left-symmetric algebra over an algebraically closed field of characteristic zero does not contain any nontrivial right ideal.

Theorem 3.1 immediately implies Zel'manov's result [29] on finite-dimensional simple Novikov algebras of characteristic 0.

Corollary 3.2. [29] Let N be a finite-dimensional simple Novikov algebra over a field F of characteristic zero. Then N is a field.

Proof. By Lemma 3.1, the right multiplication algebra R = R(N) is simple. This implies that R is a field, since R is commutative in the case of Novikov algebras.

Let $x \in N$. Then the map $w \in R \mapsto [L_x, w] \in R$ is a derivation of R. Let $w \in R$. Let $f(t) \in F[t]$ be a polynomial of minimal degree such that f(w) = 0. Then $f'(t) = \frac{df}{dt} \neq 0$ and $f'(w) \neq 0$. On the other hand, $0 = [L_x, f(w)] = f'(w)[L_x, w]$. Consequently, $[L_x, w] = 0$ for all $w \in R$. Hence, $R_{xy} - R_y R_x = [L_x, R_y] = 0$ for all $x, y \in N$ by (2.2). Therefore, $(z, x, y) = (R_y R_x - R_{xy})(z) = 0$, i.e., N is a simple associative algebra. Then N possesses a unity. Since $R_x R_y = R_y R_x$ for all $x, y \in N$; therefore, xy = yx. Thus, Nis a field.

4. The class \mathcal{A} of simple Lie-metabelian algebras

Lemma 4.1. Let A be a left-symmetric algebra over a field F. Then I = [A, A] + [A, A]A is an ideal of A.

Proof. By (3.2), we have

 $IA \subseteq [A, A]A + ([A, A]A)A \subseteq [A, A]A + ([A, A], A, A) \subseteq$

 $[A, A]A + [[A, A]A, A] + [A, A][A, A] + [[A, A], A]A \subseteq [A, A] + [A, A]A \subseteq I.$

Consequently, I is a right ideal of A. Since $AI \subseteq [A, I] + IA$, I is a left ideal of A. \Box

In this section, we always assume that A is a finite-dimensional simple left-symmetric nonassociative algebra over an algebraically closed field F of characteristic 0. Denote by $\mathfrak{g} = A^{(-)}$ the adjoint Lie algebra of A by $\mathfrak{g} = A^{(-)}$. It is well known [6] that \mathfrak{g} cannot be

nilpotent. But there exist many examples of simple algebras with solvable \mathfrak{g} [6]. We also assume that \mathfrak{g} is a solvable Lie algebra.

For a subspace V of A, we set

$$L_V = \{L_x : x \in V\}.$$

Lemma 4.2. There exists a natural number n such that $L_{[A,A]}^n = 0$ and $L_{[A,A]}^{n-1} \neq 0$. Furthermore,

$$A = \sum_{i=0}^{n-1} L^{i}_{[A,A]}[A,A].$$

Proof. By (2.1), L_A is a Lie subalgebra of M = M(A) and the map $\mathfrak{g} \to L_A$ that is defined by $x \mapsto L_x$ is an epimorphism of Lie algebras. Consequently, L_A is solvable. By the Lie theorem [8], $[L_A, L_A] = L_{[A,A]}$ is nilpotent. Assume that $L^n_{[A,A]} = 0$ and $L^{n-1}_{[A,A]} \neq 0$ for some natural n.

We have $[A, A] \neq 0$, since A is nonassociative. By Lemma 4.1, we get

$$A = [A, A] + [A, A]A.$$

Therefore,

$$A \subseteq [A, A] + [A, A]([A, A] + [A, A]A) \subseteq [A, A] + L_{[A,A]}[A, A] + L_{[A,A]}L_{[A,A]}A.$$

Continuing this process we obtain

$$A = \sum_{i=0}^{n-1} L^{i}_{[A,A]}[A,A].$$

Corollary 4.1. The algebra A cannot contain an identity element.

Proof. By Lemma 4.2, we may assume that $L_{[A,A]}^n = 0$ and $L_{[A,A]}^{n-1} \neq 0$. Let *e* be the identity element of *A*. Then

$$L^{n-1}_{[A,A]}[A,A] \subseteq L^{n-1}_{[A,A]}L_{[A,A]}(e) = L^{n}_{[A,A]}(e) = 0.$$

Then, by Lemma 4.1, we get

$$L^{n-1}_{[A,A]}A = L^{n-1}_{[A,A]}[A,A] = 0.$$

Hence, $L_{[A,A]}^{n-1} = 0$, which is a contradiction.

Corollary 4.2. The space [A, A] is left nilpotent but not nilpotent.

Proof. By Lemma 4.2, [A, A] is left nilpotent. Suppose that $[A, A]^k = 0$ and $[A, A]^{k-1} \neq 0$. Lemma 4.1 implies that $[A, A]^{k-1}$ is contained in the left annihilator of A and Lemma 2.1 gives that $[A, A]^{k-1} = 0$.

Taking into account these results we define a reasonable minimal class of simple finitedimensional left-symmetric algebras with solvable adjoint Lie algebras such that it contains a nonassociative algebra. Let \mathcal{A} be the class of all simple finite-dimensional leftsymmetric nonassociative algebras over an algebraically closed field F of characteristic 0

satisfying the identities

$$[[x, y], [z, t]] = 0 \tag{4.1}$$

and

$$[x, y]([z, t]u) = 0. (4.2)$$

Thus, if $A \in \mathcal{A}$ then $\mathfrak{g} = A^{(-)}$ is a metabelian Lie algebra by (4.1). The metabelian Lie algebras form a minimal solvable variety of Lie algebras that is not nilpotent. Note that (4.2) is equivalent to [x, y]([z, t][u, v]) = 0 for $A \in \mathcal{A}$, and it can be rewritten also as $L^2_{[A,A]} = 0$.

Proposition 4.1. Let $A \in A$. Set $A_0 = [A, A]^2$, $A_1 = [A, A]$. Then the following assertions hold:

(i) $A = A_0 \oplus A_1$ is a \mathbb{Z}_2 -graded algebra;

(*ii*) $A_1A_0 = 0$, $[A_1, A_1] = 0$, $A_0 = A_1^2$, and $A_1 = A_0A_1$;

(iii) A_0 is an associative commutative algebra and A is an associative right A_0 -module; (iv)

$$a(xy) = (ax)y + x(ay) \tag{4.3}$$

for all $a \in A_0$ and $x, y \in A_1$.

Proof. We have $L^2_{[A,A]} = 0$ by (4.2). Then Lemma 4.2 implies that $A = A_0 + A_1$. We have $A_1^2 = [A, A][A, A] = A_0$. We get $A_1A_0 = 0$ by (4.2) and $[A_1, A_1] = 0$ by (4.1). Obviously,

$$A_0A_1 \subseteq [A_0, A_1] + A_1A_0 \subseteq [A_0, A_1] \subseteq [A, A] = A_1.$$

By (2.1), we obtain

$$A_0^2 \subseteq A_0(A_1A_1) \subseteq A_1(A_0A_1) + [A_0, A_1]A_1 \subseteq A_1A_1 = A_0.$$

Consequently, A_0 is a subalgebra of A.

Set $I = A_0 \cap A_1$. Then $IA_0 \subseteq A_0A_0 \subseteq A_0$, and $IA_0 \subseteq A_1A_0 \subseteq A_1$. Therefore, $IA_0 \subseteq I$. Similarly, $IA_1 \subseteq I$. Consequently, I is a right ideal of A. Analogously, I is a left ideal of A. Since A is simple, either A = I or I = 0.

If A = I then $A = A_0 = A_1$. Since $A_1A_0 = 0$, $A^2 = A_1A_0 = 0$. Therefore, $A_0 \cap A_1 = I = 0$. Thus, $A = A_0 \oplus A_1$ is a \mathbb{Z}_2 -graded algebra.

Since $A^2 = A$ and $A_1A_0 = 0$, we have $A = A_0^2 + A_1^2 + A_0A_1$. Consequently, $A_1 = A_0A_1$. Take arbitrary $a, b \in A_0$. Then $[a, b] \in A_0 \cap A_1 = 0$. Hence, A_0 is a commutative algebra, whence A_0 is associative by (3.2).

Since $A_1A_0 = 0$, we get

$$(A, A_0, A_0) = (A_0, A_0, A_0) + (A_1, A_0, A_0) = 0.$$

Thus, A is an associative A_0 -module.

Now, let $a \in A_0$ and $x, y \in A_1$. Then

$$a(xy) = x(ay) + (ax)y$$

9

by (1.2), since xa = 0.

5. A bilinear form and complete left-symmetric algebras

Let A be a finite-dimensional left-symmetric algebra. Consider the symmetric bilinear form

$$f(x,y) = \operatorname{tr}(R_x R_y)$$

on A. By (2.2), we have

$$\operatorname{tr}(R_{xy}) = \operatorname{tr}([L_x, R_y] + R_y R_x) = \operatorname{tr}(R_y R_x) = \operatorname{tr}(R_x R_y).$$

Therefore, $\operatorname{tr}(R_{xy}) = \operatorname{tr}(R_{yx})$. Consequently, $\operatorname{tr}(R_{[x,y]}) = 0$ for all $x, y \in A$.

Lemma 5.1. For all $a, b, c \in A$ we have

$$f([a,b],c) = f(a,bc) - f(b,ac)$$

Proof. By definition, $f(ab, c) = tr(R_{(ab)c})$. By (3.2),

$$f(ab,c) = \operatorname{tr}(R_{(ab)c}) = \operatorname{tr}(R_{a(bc)}) + \operatorname{tr}(R_{[ab,c]}) - \operatorname{tr}(R_{a[b,c]}) - \operatorname{tr}(R_{[a,c]b})$$

= $f(a,bc) - f(a,[b,c]) - f([a,c],b) = f(a,cb) - f([a,c],b).$

Consequently, f([a, c], b) = f(a, cb) - f(c, ab).

Let $T(A) = \{x \in A : tr(R_x) = 0\}$. The largest left ideal of A which is contained in T(A) is called the *radical* of A, and it is denoted by rad (A). A left-symmetric algebra A is called *complete* if A = rad(A).

Lemma 5.2. Let $A \in \mathcal{A}$ and let $A = A_0 \oplus A_1$ be its \mathbb{Z}_2 -grading from Proposition 4.1 (i). If A_0 is nilpotent then the form f is degenerate on A, i. e., f(A, A) = 0.

Proof. Let $a \in A_0$. We have $R_a^n(A) \subseteq R_{a^n}(A)$, since A is an associative right A_0 -module by Proposition 4.1 (*iii*). Consequently, R_a is nilpotent, since $a \in A_0$ is nilpotent. Hence, $tr(R_a) = 0$. Consequently, for all $a, b \in A_0$ we have $f(a, b) = tr(R_a R_b) = tr(R_{ab}) = 0$. Thus, $f(A_0, A_0) = 0$.

Let $a, b \in A_0$ and $x \in A_1$. By Lemma 5.1 and Proposition 4.1 (*ii*), we get

$$f(ax, b) = f([a, x], b) = f(a, xb) - f(x, ab) = -f(x, ab).$$

It means that

$$f(L_{A_0}^n A_1, A_0) \subseteq f(A_1, A_0^{n+1})$$

for all $n \ge 0$. Since $A_1 = L_{A_0}^n A_1$ by Proposition 4.1(*ii*) and A_0 is nilpotent; therefore, $f(A_1, A_0) = 0$.

If $x, y \in A_1$ then

$$f(x,y) = \operatorname{tr}(R_x R_y) = \operatorname{tr}(R_{xy}) = 0,$$

since $xy \in A_0$. Consequently, $f(A_1, A_1) = 0$. Thus, f is degenerate on A.

Theorem 5.1. Let $A \in \mathcal{A}$ and let $A = A_0 \oplus A_1$ be the \mathbb{Z}_2 -grading of A from Proposition 4.1(i). Then A is complete if and only if A_0 is nilpotent.

Proof. Assume that A is complete. Then by [6, Lemma 1.1], A is right nil, i.e., R_x is nilpotent for every $x \in A$. Therefore, A_0 is an associative and commutative finitedimensional nil algebra over a field of characteristic zero. Consequently, A_0 is nilpotent.

If A_0 is nilpotent then f(A, A) = 0 by Lemma 5.2. Hence, $tr(R_x R_y) = 0$ for all $x, y \in A$. Then

$$\operatorname{tr}(R_A) = \operatorname{tr}(R_{A^2}) = \operatorname{tr}(R_A R_A) = 0,$$

since $\operatorname{tr}(R_{xy}) = \operatorname{tr}(R_x R_y)$ and A is simple. Therefore, T(A) = A and A is complete. \Box

6. The root decomposition

Now, let F be an algebraically closed field, and let $A = A_0 + A_1$ be a simple \mathbb{Z}_2 -graded finite-dimensional left-symmetric algebra such that A_0 is an associative commutative algebra, $A_0 = A_1^2$, $A_1 = A_0A_1$, $[A_1, A_1] = 0$, and $A_1A_0 = 0$. Notice that by (1.2) we have

$$[L_x, L_y] = L_{[x,y]}$$

The algebra A_0 acts on the vector space A_i by the left multiplication operators, where i = 0, 1. Notice that for $a, b \in A_0$ the left multiplication operators L_a and L_b are commuting. Denote by A_0^* the dual space for A_0 . Take $a \in A_0$, $\alpha \in A_0^*$, and i = 0, 1. Then

$$A_i(\alpha) = \{ v \in A_i : (L_a - \alpha(a)id)^n(v) = 0, \ n \in \mathbb{N} \}$$

are the root subspaces and $\alpha \in A_0^*$ are the roots provided that $A_i(\alpha) \neq 0$. Let Φ_i be the system of roots of the algebra A_0 on the vector space A_i , where i = 0, 1, i.e., $\Phi_i = \{\alpha \in A_0^* : A_i(\alpha) \neq 0\}$. Since L_a and L_b are the commuting operators; therefore,

$$A_i = \bigoplus_{\alpha \in \Phi_i} A_i(\alpha)$$

is the root decomposition of A_i with respect to A_0 , where i = 0, 1. Clearly, $A_0A_1(\alpha) \subseteq A_1(\alpha)$ for all $\alpha \in \Phi_1$. Then we have the following

Lemma 6.1. Given $\alpha \in \Phi_0$, there exist $\beta, \gamma \in \Phi_1$ such that $\alpha = \beta + \gamma$. Moreover,

$$A_0(\alpha) = \sum_{\alpha=\beta+\gamma, \ \beta,\gamma\in\Phi_1} A_1(\beta)A_1(\gamma),$$

 $A_1(0)=0$, and $A_1(\beta)A_1(\gamma)$ is an ideal of A_0 . If $\alpha, \beta \in \Phi_0$ and $\alpha \neq \beta$ then $A_0(\alpha)A_0(\beta)=0$.

Proof. Take $a \in A_0$, $x, y \in A_1$, and $\beta, \gamma \in \Phi_1$. Then by (4.3) we get

$$(L_a - (\beta + \gamma)(a)id)^n(xy) = \sum_{i=0}^n C_i^n (L_a - \beta(a)id)^i (x) (L_a - \gamma(a)id)^{n-i}(y),$$

where C_i^n are the binomial coefficients. Consequently, $A_1(\beta)A_1(\gamma) \subseteq A_0(\beta + \gamma)$.

Since $A_0 = A_1^2$, we have

$$A_0 = \sum_{\beta, \gamma \in \Phi_1} A_1(\beta) A_1(\gamma)$$

Hence, there are $\beta, \gamma \in \Phi_1$ such that $A_1(\beta)A_1(\gamma) \neq 0$. Therefore, $\beta + \gamma \in \Phi_0$ and

$$A_0 = \bigoplus_{\alpha \in \Phi_0} \Big(\sum_{\substack{\beta, \gamma \in \Phi_1 \\ \beta + \gamma = \alpha}} A_1(\beta) A_1(\gamma) \Big).$$

Since $A_0 = \bigoplus_{\alpha \in \Phi_0} A_0(\alpha)$; therefore, for every $\alpha \in \Phi_0$ we have

$$A_0(\alpha) = \sum_{\beta, \gamma \in \Phi_1, \beta + \gamma = \alpha} A_1(\beta) A_1(\gamma).$$

By (4.3), we get $A_0(A_1(\beta)A_1(\gamma)) \subseteq (A_0A_1(\beta))A_1(\gamma) + A_1(\beta)(A_0A_1(\gamma)) \subseteq A_1(\beta)A_1(\gamma)$. Consequently, $A_1(\beta)A_1(\gamma)$ is an ideal of A_0 . Clearly, $A_0(\alpha)A_0(\beta) = 0$ for distinct $\alpha, \beta \in \Phi_0$.

Prove that $A_1(0) = 0$. Notice that every operator of left multiplication L_a , where $a \in A_0$, acts nilpotently on $A_1(0)$. Since A_0 is finite-dimensional and L_a are pairwise commuting; therefore, there exists $n \in \mathbb{N}$ such that $L_{a_1} \dots L_{a_n} A_1(0) = 0$ for all $a_1, \dots, a_n \in A_0$. By Proposition 4.1, we have $A_1 = A_0 A_1$. Consequently, $A_1(0) = A_0 A_1(0)$. Therefore, $A_1(0) = \underbrace{A_0(\dots, (A_0 A_1(0) \dots) = 0}_{\square}$.

Lemma 6.2. Let A_0 be a nilpotent algebra. Then

$$A_0 = \sum_{\alpha \in \Phi_1} A_1(-\alpha) A_1(\alpha).$$

Moreover, $A_1(\alpha)A_1(\beta) = 0$ for all $\alpha, \beta \in \Phi_1$ such that $\beta \neq -\alpha$. Furthermore, $-\alpha \in \Phi_1$ for every $\alpha \in \Phi_1$.

Proof. Since A_0 is nilpotent, $\Phi_0 = 0$. Take $\alpha \in \Phi_0$. Then, by Lemma 6.1, there are $\beta, \gamma \in \Phi_1$ such that $\alpha = \beta + \gamma$. Therefore, $\beta + \gamma = 0$. Consequently,

$$A_0 = \bigoplus_{\alpha \in \Phi_1} A_1(-\alpha) A_1(\alpha).$$

Let $\alpha, \beta \in \Phi_1$ and $\beta \neq -\alpha$. Then $A_1(\alpha)A_1(\beta) \subseteq A_0(\alpha + \beta) = 0$. Assume that $-\alpha \notin \Phi_1$. Then $A_1(\alpha)A_1(\beta) = 0$ for all $\beta \in \Phi_1$. Since $A_0A_1(\alpha) \subseteq A_1(\alpha)$ and $A_1(\alpha)A_0 = 0$; therefore, $A_1(\alpha)$ is an ideal of A. Consequently, $A_1(\alpha) = 0$. Therefore, $-\alpha \in \Phi_1$ for all $\alpha \in \Phi_1$. \Box

7. The four-dimensional Lie-solvable left-symmetric algebras in \mathcal{A}

In this section, we describe the four-dimensional simple \mathbb{Z}_2 -graded left-symmetric algebras $A = A_0 + A_1$ over an algebraically closed field F of characteristic not 2 such that A_0 is an associative commutative algebra, $A_0 = A_1^2$, $A_1 = A_0A_1$, $[A_1, A_1] = 0$, and $A_1A_0 = 0$.

In what follows, $\langle \Upsilon \rangle_F$ is used for the linear span of a set Υ over a field F, where we omit F if the field is clear from the context.

Lemma 7.1. The algebra A_0 is not nilpotent.

Proof. Assume that A_0 is nilpotent. Then, $A_0 = \sum_{\alpha \in \Phi_1} A_1(-\alpha) A_1(\alpha)$ by Lemma 6.2, and $A_1 = \sum_{\alpha \in \Phi_1} A_1(\alpha)$. By Lemma 6.1, $\alpha \neq 0$ for all $\alpha \in \Phi_1$. Since dim A = 4; therefore, $\Phi_1 = \{\alpha, -\alpha\}$. By Lemma 6.2, dim $A_1 = 3$. Since A_0 is nilpotent, $A_0^2 = 0$.

Let e_2, e_3, e_4 be a basis for A_1 . We may suppose that $A_1(\alpha) = \langle e_2, e_3 \rangle$, $A_1(-\alpha) = \langle e_4 \rangle$. By Lemma 6.2, $A_1(\alpha)^2 = 0$. Then for all nonzero $x \in A_1(\alpha)$ we have $xe_4 \neq 0$, since otherwise xA = 0. Hence, $x \in Ann_l(A)$; a contradiction by Lemma 2.1. Consequently, $e_2e_4 \neq 0$ and $e_3e_4 \neq 0$. Then $e_3e_4 = \beta e_2e_4$ for some $\beta \in F$, and $(e_3 - \beta e_2)e_4 = 0$. It means that if $\Phi_1 = \{\alpha, -\alpha\}$ then A_0 is not nilpotent.

In what follows, we assume that A_0 is not nilpotent.

Lemma 7.2. Let $\Phi_1 = \{\alpha\}$. Then dim $A_0 = 1$.

Proof. Since $\Phi_1 = \{\alpha\}$, $\Phi_0 = \{2\alpha\}$. Assume that dim $A_1 = 2$. Let x, y be a basis for A_1 such that

$$ax = \alpha(a)x, ay = \alpha(a)y + \beta(a)x,$$

where $a \in A_0, \beta \in A_0^*$. Then dim $A_0 = 2$ and $A_0 = \langle x^2, xy, y^2 \rangle$. By (4.3), $ax^2 = 2\alpha(a)x^2$ for all $a \in A_0$. Hence, $\langle x^2 \rangle$ is an ideal of A_0 .

Assume that $x^2 = 0$. Then, by (4.3), for all $a \in A_0$ we get

$$a(xy) = (ax)y + x(ay) = 2\alpha(a)xy + \beta(a)x^2 = 2\alpha(a)xy.$$

Therefore, $\langle xy \rangle$ is an ideal of A_0 . Since

$$(xy)y^2 = 2\alpha(xy)y^2 + 2\beta(xy)xy;$$

therefore, $\alpha(xy)y^2 \in \langle xy \rangle$. Since dim $A_0 = 2$, $\alpha(xy) = 0$ and $(xy)^2 = 2\alpha(xy)xy = 0$. From here we conclude that $\langle xy, x \rangle$ is an ideal of A, since $(xy)y = \beta(xy)x$. Thus, $x^2 \neq 0$.

Now, let $x^2 \neq 0$. By (4.3),

$$a(xy) = 2\alpha(a)xy + \beta(a)x^2, ay^2 = 2\alpha(a)y^2 + 2\beta(a)xy$$

for all $a \in A_0$. Since $\langle x^2 \rangle$ is an ideal of A_0 ; therefore, $\alpha(x^2)xy \in \langle x^2 \rangle$ and $\alpha(x^2)^2y^2 \in \langle x^2 \rangle$. Consequently, $\alpha(x^2) = 0$, since otherwise dim $A_0 = 1$.

From here we get $x^2(xy) = \beta(x^2)x^2$. On the other hand, $x^2(xy) = 2\alpha(xy)x^2$. Then $\beta(x^2) = 2\alpha(xy)$. Similarly,

$$x^{2}y^{2} = 2\beta(x^{2})xy = 2\alpha(y^{2})x^{2}$$

If $\beta(x^2) = 0$ then $\alpha(xy) = 0$ and $\alpha(y^2) = 0$. Consequently, $\alpha(a) = 0$ for all $a \in A_0$. In this case A_0 is nilpotent. Hence, $\beta(x^2) \neq 0$, and $\alpha(xy) \neq 0$. Since $\beta(x^2)xy = \alpha(y^2)x^2$; therefore, $xy \in \langle x^2 \rangle$ and $\alpha(xy) = 0$, a contradiction.

Example 7.1. Let $\Phi_1 = \{\alpha\}$ and $A_0 = \langle e_1 \rangle$. Assume that L_{e_1} is a semisimple operator on A_1 . Then the vector space A_1 possesses a basis e_2, e_3, e_4 such that the algebra A has the following multiplication table

$$e_1^2 = 2e_1, e_1e_2 = e_2, e_1e_3 = e_3, e_1e_4 = e_4, e_2^2 = e_3^2 = e_4^2 = e_1,$$
 (7.1)

and all other products are zero.

Proof. Since L_{e_1} is semisimple; therefore, for some basis x, y, z of A_1 we have

$$e_1 x = \alpha x, e_1 y = \alpha y, e_1 z = \alpha z.$$

Since $\Phi_0 = \{2\alpha\}$ and A_0 is not nilpotent, $\alpha \neq 0$. Hence, we may assume that $\alpha = 1$. Since $e_1^2 = 2\alpha e_1$, $e_1^2 = 2e_1$.

Suppose that $x^2 \neq 0$. Then we may assume that $x^2 = e_1$ and $xy = \beta x^2$, where $\beta \in F$. Therefore, $x(y - \beta x) = 0$. Hence, we may assume that xy = 0. Similarly, xz = 0.

Let $y^2 \neq 0$. Then $yz = \beta y^2$, where $\beta \in F$. Hence, we may suppose that xy = xz = yz = 0. In this case, $z^2 \neq 0$, since otherwise $\langle z \rangle$ is an ideal of A. Since $y^2 \neq 0$; therefore, $y^2 = \beta x^2$, $\beta \in F$, and $\beta \neq 0$. Hence, we may assume that $y^2 = x^2$. Similarly, $z^2 = x^2$. Finally, in the case under consideration we arrive at the multiplication table (7.1).

Let $y^2 = z^2 = 0$. If yz = 0 then $\langle y \rangle$ is an ideal of A. Therefore, $yz \neq 0$ and $(\frac{y+z}{2})^2 = \frac{yz}{2} \neq 0$. Since $x \cdot \frac{y+z}{2} = 0$; therefore, replacing y by $\frac{y+z}{2}$ we arrive to the case considered above.

Let $x^2 = 0, y^2 = 0, z^2 = 0$. Then either $xy \neq 0$ or $xz \neq 0$, since otherwise $\langle x \rangle$ is an ideal of A. Repeating the previous argument, we get the required basis for A with the multiplication table (7.1).

In [6], the left-symmetric simple four-dimensional algebras $I_4^d(\alpha, \beta, \gamma)$ were introduced, where $\alpha, \beta, \gamma \in F$. The algebra of Example 7.1 is $I_4^d(0, 0, 0)$.

Lemma 7.3. Let $\Phi_1 = \{\alpha\}$ and $A_0 = \langle e_1 \rangle$. The case of non-semisimple L_{e_1} with a minimal polynomial of degree two is impossible.

Proof. Assume that L_{e_1} is not semisimple and its minimal polynomial is of degree two. Then A_1 possesses a basis x, y, z such that

$$e_1x = \alpha x, e_1y = \alpha y, e_1z = \alpha z + y.$$

Let $y^2 \neq 0$. Then $yz = \beta y^2$, where $\beta \in F$. Therefore, $y(z - \beta y) = 0$. Moreover,

$$e_1(z - \beta y) = \alpha(z - \beta y) + y.$$

Hence, we may replace z by $z - \beta y$. Consequently, we may suppose that yz = 0. By Proposition 4.1,

$$0 = e_1(yz) = (e_1y)z + y(e_1z) = \alpha yz + y(\alpha z + y) = y^2,$$

which is a contradiction. Hence, $y^2 = 0$.

Let $y^2 = 0$. Then either $xy \neq 0$ or $yz \neq 0$, since otherwise $\langle y \rangle$ is an ideal of A.

Let $xy \neq 0$ and $xz = \beta xy$, where $\beta \in F$. Then $x(z - \beta y) = 0$. Put $u = z - \beta x$. Then xu = 0. Moreover,

$$e_1 u = e_1 (z - \beta x) = \alpha (z - \beta x) + y = \alpha u + y.$$

By Proposition 4.1,

$$0 = e_1(xu) = (e_1x)u + x(e_1u) = \alpha xu + x(\alpha u + y) = xy,$$

a contradiction. Therefore, xy = 0. Consequently, $yz \neq 0$.

Let $yz \neq 0$. Then $z^2 = \beta yz$, where $\beta \in F$. Therefore, $(z - \frac{\beta}{2}y)^2 = 0$. Put $u = z - \frac{\beta}{2}y$. Then $u^2 = 0$, yu = yz, and

$$e_1 u = e_1 \left(z - \frac{\beta}{2}y\right) = \alpha \left(z - \frac{\beta}{2}y\right) + y = \alpha u + y.$$

By Proposition 4.1,

$$0 = e_1 u^2 = 2(e_1 u)u = 2(\alpha u + y)u = yu = yz,$$

which is a contradiction.

Example 7.2. Let $\Phi_1 = \{\alpha\}$, $A_0 = \langle e_1 \rangle$, and let the minimal polynomial for L_{e_1} be of degree 3. Then A_1 possesses a basis e_2, e_3, e_4 such that A has the following multiplication table

$$e_1^2 = 2e_1, \ e_1e_2 = e_3 + e_2, \ e_1e_3 = e_4 + e_3, \ e_1e_4 = e_4,$$

$$e_2^2 = \beta e_1, \ e_3^2 = -e_1, \ e_2e_4 = e_4e_2 = e_1, \ \beta \in F,$$
(7.2)

and all other products are zero.

Proof. By the hypothesis, A_1 possesses a basis x, y, z such that

$$e_1x = \alpha x + y, e_1y = \alpha y + z, e_1z = \alpha z.$$

The root α is nonzero. Therefore, we may assume that $\alpha = 1$. Since $\Phi_0 = \{2\alpha\}, e_1^2 = 2e_1$. Let $z^2 \neq 0$. Then $e_1 z^2 = 2z^2$ and $yz = \beta z^2$, where $\beta \in F$. By Proposition 4.1,

$$e_1(yz) = (e_1y)z + y(e_1z) = (y+z)z + yz = 2yz + z^2 = 2\beta z^2 + z^2 = 2\beta z^2,$$

whence $z^2 = 0$.

Let $yz \neq 0$. Then $e_1(yz) = 2yz$ and $y^2 = \beta yz$, where $\beta \in F$. By Proposition 4.1,

$$e_1y^2 = 2(e_1y)y = 2(y+z)y = 2y^2 + 2yz = 2\beta yz$$

whence yz = 0. Thus, $z^2 = yz = 0$. Therefore, $xz \neq 0$, since otherwise $\langle z \rangle$ is an ideal of A. We may assume that $xz = e_1$.

Since $x^2 = \beta e_1$ with $\beta \in F$; therefore, by Proposition 4.1 we have

$$e_1 x^2 = 2(e_1 x)x = 2x^2 + 2xy = 2\beta e_1,$$

whence xy = 0. Then,

$$0 = e_1(xy) = (e_1x)y + x(e_1y) = 2xy + y^2 + xz = y^2 + e_1$$

by Proposition 4.1. Therefore, $y^2 = -e_1$. Consequently, we arrive at (7.2).

Let F be a field of characteristic not 2, and let $\alpha \in F$. Consider a new basis

$$\begin{pmatrix} f_1 \\ f_2 \\ f_3 \\ f_4 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & i & \alpha & -\frac{1+\alpha^2+\beta}{2}i \\ 0 & -1 & \alpha i & -\frac{1-\alpha^2-\beta}{2} \\ 0 & 0 & i & \alpha \end{pmatrix} \begin{pmatrix} e_1 \\ e_2 \\ e_3 \\ e_4 \end{pmatrix}$$

for A from Example 7.2. Then A has the product of the algebra $I_4^d(0, 1, i)$ with respect to the basis f_1, f_2, f_3, f_4 .

15

Lemma 7.4. The case $\Phi_1 = \{\alpha, \beta\}$ is impossible.

Proof. Let $\Phi_1 = \{\alpha, \beta\}$. Assume that dim $A_1 = 2$. Then A_1 has a basis x, y such that

$$ax = \alpha(a)x, ay = \beta(a)y$$

for all $a \in A_0$. Then $A_0 = \langle x^2, xy, y^2 \rangle$. Clearly, $x^2 \neq 0$ or $y^2 = 0$, since dim $A_0 = 2$. We may suppose that $x^2 \neq 0$. Let $y^2 \neq 0$. Then $\Phi_0 = \{2\alpha, 2\beta\}$ by Lemma 6.1. Therefore, $A_0(2\alpha) = \langle x^2 \rangle$, $A_0(2\beta) = \langle y^2 \rangle$, and $A_0(\alpha + \beta) = 0$, i.e., xy = 0. We also have $A_0(2\alpha)A_0(2\beta) = 0$ by Lemma 6.1. Moreover, $\alpha(y^2) = \beta(x^2) = 0$. Then $\langle x^2, x \rangle$ is an ideal of A. Consequently, $y^2 = 0$.

Let $y^2 = 0$. Then $xy \neq 0$. Hence, $\Phi_0 = \{2\alpha, \alpha + \beta\}, A_0(2\alpha)A_0(\alpha + \beta) = 0$, and $\alpha(xy) = 0$, since $xy \in A_0(\alpha + \beta)$. Therefore, $\langle xy, y \rangle$ is an ideal of A. Consequently, dim $A_1 \neq 2$.

Thus, dim $A_1 = 3$, and A_1 has a basis x, y, z. Let $A_1(\alpha) = \langle x \rangle$ and $A_1(\beta) = \langle y, z \rangle$. Assume that $x^2 \neq 0$. Then $\Phi_0 = \{2\alpha\}$. Therefore,

$$A_1(\beta)A_1 \subseteq A_1(\beta)(A_1(\beta) + A_1(\alpha)) \subseteq A_0(2\beta) + A_0(\alpha + \beta) = 0.$$

Consequently, $A_1(\beta)A = 0$, i.e., $A_1(\beta) \subseteq Ann_l(A)$. Since A is simple, $Ann_l(A) = 0$ by Lemma 2.1. Hence, $A_1(\alpha)^2 = 0$.

Let $A_1(\beta)^2 \neq 0$. Then $\Phi_0 = \{2\beta\}$. Therefore,

$$A_1(\alpha)A_1 \subseteq A_1(\alpha)(A_1(\beta) + A_1(\alpha)) \subseteq A_0(\alpha + \beta) + A_0(2\alpha) = 0$$

Consequently, $A_1(\alpha)A = 0$. Hence, $A_1(\beta)^2 = 0$.

Then $A_1(\alpha)A_1(\beta) \neq 0$. Therefore, $\Phi_0 = \{\alpha + \beta\}$. Let $xy \neq 0$. Then $xz = \gamma xy$, where $\gamma \in F$. From here we get $x(z - \gamma y) = 0$. Hence, $(z - \gamma y) \in Ann_l(A)$, a contradiction. \Box

Example 7.3. Let $\Phi_1 = \{\alpha, \beta, \gamma\}$, and let all the roots be different. Let $A_0 = \langle e_1 \rangle$. Then A_1 possesses a basis e_2, e_3, e_4 such that A has the following multiplication table

$$e_1^2 = 2e_1, e_1e_2 = e_2, e_1e_3 = \beta e_3, e_1e_4 = (2 - \beta)e_4,$$

$$e_2^2 = e_1, e_3e_4 = e_4e_3 = e_1,$$
(7.3)

where $\beta \in F$, $\beta \neq 0, 1, 2$, and all other products are zero.

Proof. Let $\Phi_1 = \{\alpha, \beta, \gamma\}$, and let all the roots be different. Then $A_0 = \langle e_1 \rangle$. Choose a basis x, y, z for A_1 such that

$$e_1 x = \alpha x, e_1 y = \beta y, e_1 z = \gamma z.$$

By Lemma 6.1 we have $\alpha, \beta, \gamma \neq 0$.

Let $x^2 = y^2 = z^2 = 0$. Then either $xy \neq 0$ or $xz \neq 0$, since otherwise xA = 0, which is a contradiction by Lemma 2.1. We may assume that $xy \neq 0$. Hence, $xz = \delta xy$, where $\delta \in F$. From here we get $x(z - \delta y) = 0$. If yz = 0 then $y(z - \delta y) = z(z - \delta y) = 0$. Therefore, $(z - \delta y)A = 0$; a contradiction by Lemma 2.1. Consequently, $yz \neq 0$. Similarly, $xz \neq 0$. Then $\Phi_0 = \{\alpha + \beta\} = \{\beta + \gamma\} = \{\alpha + \gamma\}$; a contradiction, since all the roots are different. Therefore, the case $x^2 = y^2 = z^2 = 0$ is impossible.

Let $x^2 \neq 0$. Then $\Phi_0 = \{2\alpha\}$ and $e_1^2 = 2\alpha e_1$. Therefore, $y^2 = xy = xz = z^2 = 0$, since all the roots are different. Moreover, we may assume that $x^2 = e_1$. In this case, $yz = \delta e_1$, where $\delta \in F$ and $\delta \neq 0$, since otherwise $\langle y \rangle$ is an ideal of A. Therefore, we may suppose that $yz = e_1$. Then $2\alpha = \beta + \gamma$, since $yz \in A_0(\beta + \gamma)$. Since $\alpha \neq 0$; therefore, we may assume that $\alpha = 1$. Hence, $2 = \beta + \gamma$. Put $e_2 = x, e_3 = y, e_4 = z$. Then we arrive at (7.3).

Let F be a field of characteristic not 2. Consider a new basis

$$\begin{pmatrix} f_1 \\ f_2 \\ f_3 \\ f_4 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & -i & \frac{i}{2} \\ 0 & 0 & 1 & \frac{1}{2} \end{pmatrix} \begin{pmatrix} e_1 \\ e_2 \\ e_3 \\ e_4 \end{pmatrix}$$

for A from Example 7.3. Then A has the product of $I_4^d(0, 0, i(1 - \beta))$ with respect to the basis f_1, f_2, f_3, f_4 .

Finally, we collect the results obtained in this section in the following

Theorem 7.1. Let A be a four-dimensional algebra in \mathcal{A} over an algebraically closed field of characteristic not 2. Then A is isomorphic to one of the algebras (7.1) - (7.3).

8. On algebras in \mathcal{A} , whose even part is either simple or zero-product

8.1. Simplicity conditions. Let $A = A_0 \oplus A_1$ be a Z_2 -graded algebra such that $A_1A_0 = 0$, A_0 and A_1 are commutative, and A_0 is associative. Denote the class of such algebras by \mathcal{B} . The following lemma is immediate.

Lemma 8.1. Let $A = A_0 \oplus A_1 \in \mathcal{B}$. Then A is left-symmetric if and only if

$$a(xy) = (ax)y + x(ay), \ a(bx) = b(ax)$$

hold for all $a, b \in A_0$ and $x, y \in A_1$.

Lemma 8.2. Let $A = A_0 \oplus A_1 \in \mathcal{B}$ be left-symmetric. Then A is simple if and only if $A_0 = A_1^2$, $A_1 = A_0A_1$, A_0 lacks proper ideals I such that $(IA_1)A_1 \subseteq I$, and A_1 lacks proper ideals of A.

Proof. Let A be simple. Since $A^2 \leq A$ and $A^2 = A_0^2 + A_0A_1 + A_1^2$, we have $A_1 = A_0A_1$. If $A_1^2 \neq A_0$ then $A_1^2 + A_1$ is a proper right ideal of A, which is impossible. Let I be an ideal of A_0 such that $(IA_1)A_1 \subseteq I$. It is easy to see that $I + IA_1$ is a right ideal of A. Therefore, A_0 lacks proper ideals I such that $(IA_1)A_1 \subseteq I$. Obviously, A_1 lacks proper ideals of A.

Conversely, assume that I is an ideal of A. Let I_k be the projection of I on A_k , k = 1, 2. Then $I \subseteq I_0 + I_1$, and $I_0A_0 \subseteq I_0$, whence I_0 is an ideal of A_0 . Since $(I_0A_1)A_1 \subseteq I_0$; therefore, either $I_0 = 0$ or $I_0 = A_0$. If $I_0 = 0$ then I_1 is an ideal of A, whence $I_1 = 0$. If $I_0 = A_0$ then $A_1 = A_0A_1 \subseteq I_1$, whence $I_1 = A_1$. Now, since $A_1A_1 = A_0$ and $A_1(I_0 + I_1) \subseteq I$, we have $A_0 \subseteq I$, whence I = A.

Put $A_0(\alpha) := A_1(\alpha)A_1(-\alpha)$ for every $\alpha \in \Phi_1$. We say that $A_1(\alpha)$ is nondegenerate if for every $x_\alpha \in A_1(\alpha)$ there is $x_{-\alpha} \in A_1(-\alpha)$ such that $x_\alpha^0 := x_\alpha x_{-\alpha} \neq 0$. Put $A_0(\alpha_1, \ldots, \alpha_s) := \sum_{i=1}^s A_0(\alpha_i)$. We say that Φ_1 is nondegenerate if $A_1(\alpha)$ is nondegenerate for every $\alpha \in \Phi_1$, and Φ_1 possesses a chain property provided that it is nondegenerate and for every $\alpha_1 \in \Phi_1$ there is a chain of roots $\alpha_2, \ldots, \alpha_k \in \Phi_1$ such that $\alpha_{s+1}(A_0(\alpha_1, \ldots, \alpha_s)) \neq 0$ for all $s = 1, \ldots, k-1$ and $A_0(\alpha_1, \ldots, \alpha_k) = A_0$. The number nof linearly independent roots of Φ_1 is the rank of Φ_1 . The chain $\alpha_1, \ldots, \alpha_s$ is a *CP*-system or an α_1 -system, and s is its length. Denote by \mathcal{C} the class of left-symmetric algebras in \mathcal{B} such that $A_0 = A_1^2$ and $A_1 = A_0A_1$.

Proposition 8.1. Let $A = A_0 \oplus A_1$ be a left-symmetric algebra in C with a nilpotent subalgebra A_0 of dimension n such that the action of A_0 on A_1 is diagonalizable. Then A is simple if and only if Φ_1 is a root system of rank n with the chain property.

Proof. Let A be simple. If there are no n linearly independent roots in Φ_1 then $I := \cap Ker \alpha_i \neq 0$. Since $a(x_{\alpha} \cdot x_{-\alpha}) = 0$ for every $a \in I$ by (4.3) and $A_0 = \sum_{\alpha \in \Phi_1} A_0(\alpha)$; therefore, $aA_0 = 0$ and $I \leq A$. Take $\alpha_1 \in \Phi_1$. Then $A_1(\alpha_1)$ is nondegenerate, since otherwise if $xA_1(-\alpha_1) = 0$ for some $x \in A_1(\alpha_1)$ then $\langle x \rangle$ is a right ideal of A, which is impossible.

Take $x \in A_0(\alpha_1)$. Then for every $\alpha \in \Phi_1$ we have $(x \cdot x_\alpha)x_{-\alpha} = \alpha(x)x_\alpha^0$. If $\alpha(x) = 0$ for all $\alpha \in \Phi_1 \setminus \{\alpha_1\}$ then we may apply Lemma 8.2 to $I_0 = A_0(\alpha_1)$. Thus, either $A_0(\alpha_1) = A_0$ or there is $\alpha_2 \in \Phi_1 \setminus \{\alpha_1\}$ such that $\alpha_2(x) \neq 0$ and $\alpha_2(A_0(\alpha_1)) \neq 0$. Continuing this process we arrive at the assertion of the lemma.

Conversely, assume that Φ_1 is a root system of rank n with a chain property. Consider a nonzero ideal I of A. If $y = a + \sum_{\gamma \in \Phi_1} x_{\gamma} \in I$ with some $x_{\alpha} \neq 0$ then there is $h \in A_0$ such that $\alpha(h) \neq 0$, whence $hy = ha + \sum_{\gamma \in \Phi_1} \gamma(h)x_{\gamma} \in I$, $yh = ah = ha \in I$. Therefore, we may assume that $x_{\alpha}^0 \in I$. If $y = a \in I$ then $\alpha(a) \neq 0$ for some $\alpha \in \Phi_1$, whence $x_{\alpha} \in I$ and $x_{\alpha}^0 \in I$. Thus, we may suppose that $x_{\alpha_1}^0 \in I$ for some $\alpha_1 \in \Phi_1$. Take α_2 such that $\alpha_2(x_{\alpha_1}^0) \neq 0$. Then $x_{\alpha_1}^0 x_{\alpha_2} = \alpha_2(x_{\alpha_1}^0)x_{\alpha_2} \in I$, whence $A_0(\alpha_2) \subseteq I$. From here we may assume initially that $A_0(\alpha_1) \subseteq I$. Continuing this process we arrive at the assertion of the lemma. \Box

In the case of an arbitrary even part, we can prove an analogous statement, modifying the definition of $A_0(\alpha)$ by

$$A_0(\alpha,\beta) = A_1(\alpha)A_1(\beta).$$

We say that $A_1(\alpha)$ is nondegenerate provided that for every $x_{\alpha} \in A_1(\alpha)$ there is $x_{\beta} \in A_1(\beta)$ such that $x_{\alpha}x_{\beta} \neq 0$ (β is a companion for α). Put $A_0(\alpha_1, \beta_1, \ldots, \alpha_s, \beta_s) := \sum_{i=1}^s A_0(\alpha_i, \beta_i)$. We say that Φ_1 possesses a chain property provided that it is nondegenerate and for every pair $\alpha_1, \beta_1 \in \Phi_1$ there is a chain of roots $\alpha_2, \beta_2, \ldots, \alpha_k, \beta_k \in \Phi_1$ such that $\alpha_{s+1}(A_0(\alpha_1, \beta_1, \ldots, \alpha_s, \beta_s)) \neq 0$ for all $s = 1, \ldots, k - 1$ and $A_0(\alpha_1, \beta_1, \ldots, \alpha_k, \beta_k) = A_0$, where β_i is a companion for α_i .

Lemma 8.3. Let $A = A_0 \oplus A_1$ be a left-symmetric algebra in C with A_0 of dimension n such that the action of A_0 on A_1 is diagonalizable. Then A is simple if and only if Φ_1 is a root system of rank n with the chain property.

Proof repeats one of Proposition 8.1.

The following lemma and the examples below show the immensity of the class of algebras, satisfying the hypothesis of Proposition 8.1.

Lemma 8.4. Let $A = A_0 \oplus A_1 \in \mathcal{A}$, and let A_0 be zero-product. Assume that A_0 acts diagonally on A_1 , dim $A_0 = n$, and $\Phi_1 = \pm \{\alpha_1, \ldots, \alpha_n\}$ consists of 2n roots, where $\alpha_1, \ldots, \alpha_n$ are linearly independent. Let dim $A_0(\alpha) := 1$ for all $\alpha \in \Phi_1$. Then dim $A_1(\alpha_i) = \dim A_1(-\alpha_i) = k_i \in \mathbb{N}$, $A_1(\alpha_i) := \langle x_{\alpha_i}^{(j)} : j = 1, \ldots, k_i \rangle$ for every $i = 1, \ldots, n$, and

$$A = A_0 \oplus \sum_{\alpha_i \in \Phi_1} A_1(\alpha_i)$$

with the following nonzero products

$$x_{\alpha_i}^{(j)} x_{-\alpha_i}^{(j)} = x_{-\alpha_i}^{(j)} x_{\alpha_i}^{(j)} = a_i \in A_0, \ a x_{\alpha_i}^{(j)} = \alpha_i(a) x_{\alpha_i}^{(j)}$$

for all $a \in A_0$, $\alpha_i \in \Phi_1$, $j = 1, \ldots, k_i$. In particular, dim $A = n + 2\sum_{i=1}^n k_i \ge 3n$.

Proof. By Proposition 8.1, the rank of Φ_1 is n, and $A_1(\alpha_i)$ is nondegenerate for every $i = 1, \ldots, n$. Consider $A_1(\alpha_1)$. Assume that $\dim A_1(\alpha_1) \neq \dim A_1(-\alpha_1)$. Without loss of generality, we may suppose that $\dim A_1(\alpha_1) = k + 1$, $\dim A_1(-\alpha_1) = k$. Let $A_1(\alpha_1) = \langle x_1, \ldots, x_{k+1} \rangle$, $A_1(-\alpha_1) = \langle y_1, \ldots, y_k \rangle$. Changing a base if needed, it is easy to see that we may assume $x_i \cdot y_j = \delta_{ij}a_1$ for all $i, j = 1, \ldots, k$, where δ_{ij} is Kronecker's delta. Let $x_{k+1} \cdot y_i = \gamma_i a_1$ for some $\gamma_i \in F$ and for all $i = 1, \ldots, k$. Then $x := x_{k+1} - \sum_{i=1}^k \gamma_i x_i$ satisfies $x \cdot A_1(-\alpha_1) = 0$, whence $\langle x \rangle$ is a right ideal of A. Therefore, $\dim A_1(\alpha_1) = k_1 = \dim A_1(-\alpha_1)$, and the product between $A_1(\alpha_1)$ and $A_1(-\alpha_1)$ satisfies the mentioned relations.

8.2. Examples of CP-systems. Note that the union of some systems with the chain property is a system with the chain property. A CP-system $\alpha := \{\alpha_1, \ldots, \alpha_m\}$ is minimal if $\{\alpha_1, \ldots, \alpha_m\} \setminus \{\alpha_i\}$ is not a CP-system for every $i = 1, \ldots, m, \alpha$ is invariant if $\pm \alpha$ is a system with the chain property, and α is a base if it is minimal and invariant. Clearly, every system with the chain property contains a base. Obviously, if a nondegenerate system of roots Γ contains a base then Γ is a system with the chain property.

In what follows, $\{\delta_i\}$ is a dual basis for $\{e_i\}$.

Example 8.1. Consider a cyclic system: $\alpha_i(A_0(\alpha_{i-1})) \neq 0$, $\alpha_1(A_0(\alpha_m)) \neq 0$, $i = 2, \ldots, m$. Write explicitly a minimal invariant CP-system of rank n, which is cyclic:

$A_0(\delta_i)$	e_1	e_2	e_3	 e_n
δ_i	δ_n	δ_1	δ_2	 δ_{n-1}

The importance of cyclic systems is obvious. Every nondegenerate root system, which contains a cyclic subsystem of rank n, is a system with the chain property. It is easy to show, for example, that every system with the chain property of rank 2 contains a cyclic subsystem of rank 2. Notice that it is easy to construct CP-systems with the root spaces

 $A_1(\alpha)$ and $A_1(-\alpha)$ of distinct dimensions. Also, one may construct a base of rank n and length greater than n.

Example 8.2. Give an example of a minimal invariant CP-system of rank n and length n + 1 with n linearly independent roots α_i , i = 1, ..., n:

$A_0(\alpha_i)$	e_1	e_1	e_2	 e_{n-1}	e_n
$lpha_i$	α_1	α_2	α_3	 α_n	$2\alpha_n$

 $\alpha_i = \delta_1 + \ldots + \delta_i$. Note that this system is embedded into a cyclic system or it may be rewritten as a cyclic system: $2\alpha_n, \alpha_n, \ldots, \alpha_1$.

The following lemma is obvious.

Lemma 8.5. Let A be a left-symmetric algebra in C with a nilpotent subalgebra A_0 of dimension n and a nondegenerate root system Φ_1 . Fix a set Γ of n linearly independent roots in Φ_1 . Then Φ_1 is a system with the chain property if and only if for every $\gamma \in \Gamma$ there is a γ -system in Φ_1 .

Note that the condition of diagonality of the action of A_0 is essential for existence of a system of rank n if $\dim A_0 = n$. Show, for example, existence of algebras in \mathcal{A} with a zero-product even part A_0 of an arbitrary dimension and of rank 1 (in this case the action of A_0 is not diagonal).

Let $A_{\alpha} = \langle u_1, \ldots, u_k \rangle$, $A_{-\alpha} = \langle v_1, \ldots, v_s \rangle$. Let $A := A_0 \oplus A_{\alpha} \oplus A_{-\alpha}$ and the action of A_0 be the following

$$au_i = \alpha(a)u_i + u_{i+1}, \ au_k = \alpha(a)u_k, \ av_i = -\alpha(a)v_i + v_{i+1}, \ av_s = -\alpha(a)v_s.$$

It is easy to see that b(av) = a(bv) for all $a, b \in A_0$, $v \in A_1$. Then from $0 = a(u_i v_s) = (\alpha(a)u_i + u_{i+1})v_s - \alpha(a)u_iv_s$ we get $u_{i+1}v_s = 0$ for all $i \neq k$. Analogously, $v_{i+1}u_k = 0$ for all $i \neq s$. From

$$0 = a(u_i v_j) = (\alpha(a)u_i + u_{i+1})v_j + u_i(-\alpha(a)v_j + v_{j+1})$$

we obtain $u_{i+1}v_j + u_iv_{j+1} = 0$ for all $i \neq k, j \neq s$. Thus, $u_kv_1 \equiv_2 u_{k-s+1}v_s = 0$ if k > s, and A is not simple. Further, assume that k = s. From the obtained equalities we also see that $A_0 \neq A_{\alpha}A_{-\alpha}$ if k < n. Thus, we assume that $k = n, A_0 = A_{\alpha}A_{-\alpha} = \langle v_1u_i : i = 1, \ldots, n \rangle$. Finally, we have to require $\alpha(v_1u_n) \neq 0$ for the simplicity. Now, we may apply Lemma 8.2 to A in order to prove the simplicity of A. Thus, we have proved the following

Lemma 8.6. Let $A = A_0 \oplus A_\alpha \oplus A_{-\alpha}$ be as above with dim $A_\alpha = \dim A_{-\alpha} = \dim A_0 = n$, and $\alpha(v_1u_n) \neq 0$. Then $A \in \mathcal{A}$.

8.3. On algebras in \mathcal{A} with a simple even part. In this subsection we assume A_0 to be simple, whence $\dim A_0 = 1$ and A_0 coincides with the main field F. In what follows, for simplicity we assume F to be algebraically closed. First, we suppose that A_0 acts diagonally on A_1 . We say that $A_1(\alpha)$ and $A_1(1 - \alpha)$ are *dual* provided that $A_1(\alpha) := \left\langle x_{\alpha}^{(1)}, \ldots, x_{\alpha}^{(k)} \right\rangle$, $A_1(1-\alpha) := \left\langle x_{1-\alpha}^{(1)}, \ldots, x_{1-\alpha}^{(k)} \right\rangle$, and only the following products $x_{\alpha}^{(i)} \cdot x_{1-\alpha}^{(i)} = 1 = x_{1-\alpha}^{(i)} \cdot x_{\alpha}^{(i)}$ are nonzero for all $i = 1, \ldots, k$.

Lemma 8.7. Let $A = A_0 \oplus A_1 \in A$, let A_0 be simple, and let A_0 act diagonally on A_1 . Then one of the following cases holds

$$A = F \oplus \sum_{\alpha \neq \frac{1}{2}} (A_1(\alpha) \oplus A_1(1-\alpha)),$$

$$A = F \oplus A_1(\frac{1}{2}) \oplus \sum_{\alpha \neq \frac{1}{2}} (A_1(\alpha) \oplus A_1(1-\alpha))$$

where dim $A_1(\alpha) = \dim A_1(1-\alpha)$ for every $\alpha \in \Phi_1$, and $A_1(\alpha)$ and $A_1(1-\alpha)$ are dual. Conversely, every such algebra belongs to \mathcal{A} .

Proof. Notice that the left-symmetry of A follows from Lemma 8.1 and the fact that the action of A_0 is diagonal. Under hypothesis of the lemma, A_0 possesses the unique root **1**. For every root α on A_1 there is a unique root β on A_1 such that $\alpha + \beta = \mathbf{1}$ and $A_1(\alpha)A_1(\beta) = F$. Thus, in this case we arrive at the algebra structure from the assertion of the lemma. In this case $\dim A_1(\alpha) = \dim A_1(1 - \alpha)$ and the dual bases for $A_1(\alpha)$ and $A_1(1 - \alpha)$ may be chosen as in Lemma 8.4. The converse statement follows immediately from Lemmas 8.1 and 8.2.

Let $A = A_0 \oplus A_1 := A_{1,n}^{\alpha} \in \mathcal{A}$, let $A_0 = \langle e \rangle$ be simple, and let A_0 act on $A_1 = \langle x_1, \ldots, x_n \rangle$ as follows:

$$e \cdot x_i = \alpha x_i + x_{i+1}, \ i = 1, \dots, n-1, \ e \cdot x_n = \alpha x_n.$$

We say that x_n is a minimal vector and x_1 is a maximal vector for $A_{1,n}^{\alpha}$. Denote $A_{1,n}^{\frac{1}{2}}$ by $A_{1,n}$. In what follows, we say that an algebra $A \in \mathcal{C}$ is degenerate if its odd part A_1 contains a degenerate root subspace.

Lemma 8.8. The algebra $A_{1,n}$ has the following product:

$$\begin{cases} x_{i} \cdot x_{j} = 0 & \text{if } i+j > n+1, \\ x_{i} \cdot x_{j} = 0 & \text{if } i-j \equiv 1 \pmod{2}, \\ x_{i} \cdot x_{j} = (-1)^{\frac{(i-j)}{2}} x_{\frac{(i+j)}{2}}^{2} & \text{otherwise.} \end{cases}$$

In the case n = 2k, the algebra $A_{1,2k}$ is degenerate. In the case n = 2k + 1, the algebra $A_{1,2k+1}$ is nondegenerate if and only if $x_{k+1}^2 \neq 0$.

Proof. Since ea = a for every $a \in A_0$; therefore, by (4.3) for all $i, j \neq n$ we have

$$x_{i} \cdot x_{j} = e \cdot (x_{i} \cdot x_{j}) = (\frac{1}{2}x_{i} + x_{i+1})x_{j} + x_{i}(\frac{1}{2}x_{j} + x_{j+1}),$$

$$x_{i} \cdot x_{j+1} + x_{i+1} \cdot x_{j} = 0,$$

$$x_{i} \cdot x_{n} = e \cdot (x_{i} \cdot x_{n}) = (\frac{1}{2}x_{i} + x_{i+1})x_{n} + \frac{1}{2}x_{i}x_{n}),$$

$$x_{i+1} \cdot x_{n} = 0,$$
(8.2)

whence $x_i x_{i+1} = 0$ for all $i \neq n$ and $x_i \cdot x_j = 0$ if i + j > n + 1. Now, applying (8.1) we see that $x_i \cdot x_j = 0$ if $i - j \equiv 1 \pmod{2}$, and $x_i \cdot x_j = (-1)^{\frac{(i-j)}{2}} x_{\frac{(i+j)}{2}}^2$ otherwise.

In the case n = 2k the algebra $A_{1,2k}$ is degenerate, since $x_i \cdot x_n = 0$ for all *i*. Show that in the case n = 2k+1 the algebra $A_{1,2k+1}$ is nondegenerate if and only if $x_{k+1}^2 \neq 0$. Indeed, if $A_{1,2k+1}$ is nondegenerate then $x_1x_n \equiv_2 x_{k+1}^2 \neq 0$. Conversely, if $(\sum_{i=1}^n \alpha_i x_i)x = 0$ for all x then we obtain $\alpha_1, \ldots, \alpha_n = 0$ putting consequentially $x = x_n, x_{n-1}, \ldots, x_1$.

Thus, to define the product in $A_{1,n}$ we have to put $x_i^2 = \beta_i e$ for some $\beta_i \in F$ and for all $i = 1, \ldots, \lfloor \frac{n+1}{2} \rfloor$.

Assume that $A_{1,n}^{\alpha}$ and $A_{1,m}^{\beta}$ possess a common even part $A_0 = \langle e \rangle$, $A_{1,n}^{\alpha} = \langle e, x_1, \ldots, x_n \rangle$, and $A_{1,m}^{\beta} = \langle e, y_1, \ldots, y_m \rangle$.

Lemma 8.9. Let $\alpha, \beta \neq \frac{1}{2}$. The algebra $A_{1,n}^{\alpha} + A_{1,m}^{\beta}$ has nonzero product of odd elements only in the case $\alpha + \beta = 1$. The product in $A_{1,n}^{\alpha} + A_{1,m}^{\beta}$ is such that

$$y_{j+1} \cdot x_i + y_j \cdot x_{i+1} = 0, \tag{8.3}$$

$$y_{j+1} \cdot x_n = 0, \ y_m \cdot x_{i+1} = 0 \tag{8.4}$$

for all $j \neq m, i \neq n$. In particular, $A_{1,n}^{\alpha} + A_{1,m}^{\beta}$ is nondegenerate if and only if n = m and $x_n y_1 \neq 0$.

Proof. Obviously, $\alpha + \beta = 1$. Since ea = a for every $a \in A_0$; therefore, by (4.3) for all $i \neq n, j \neq m$ we have

$$\begin{aligned} x_i \cdot y_j &= e \cdot (x_i \cdot y_j) = (\alpha x_i + x_{i+1})y_j + x_i(\beta y_j + y_{j+1}), \\ x_i \cdot y_{j+1} + x_{i+1} \cdot y_j &= 0, \\ x_i \cdot y_m &= e \cdot (x_i \cdot y_m) = (\alpha x_i + x_{i+1})y_m + \beta x_i y_m, \\ x_n \cdot y_j &= e \cdot (x_n \cdot y_j) = \alpha x_n y_j + x_n(\beta y_j + y_{j+1}), \\ x_{i+1} \cdot y_m &= 0, \ x_n \cdot y_{j+1} = 0. \end{aligned}$$

Prove the non-degeneracy assertion. If n > m then

$$y_1 x_n \equiv_2 \ldots \equiv_2 y_m x_{n-m+1} = 0,$$

whence $x_n A_{1,m}^{\beta} = 0$. Thus, m = n and $x_n y_1 \neq 0$.

Proposition 8.2. Let $A = A_0 \oplus A_1$ be a nondegenerate finite-dimensional left-symmetric algebra in C with the simple even part A_0 acting non-diagonally on A_1 . Then

$$A = \sum_{i \in I} A_{1,m_i}^{\alpha_i},$$

where the product is coordinated by the equalities (8.1) – (8.4). Let e_1, \ldots, e_n be some linearly independent set of minimal vectors of all $A_{1,k}^{\alpha}$ for every fixed $\alpha \in \Phi_1$ and $k \in \mathbb{N}$, and let f_1, \ldots, f_n be the corresponding set of maximal vectors in $A_{1,k}^{1-\alpha}$. Let $e_i \cdot f_j = \gamma_{ij}e$. The algebra A is simple if and only if the matrix $\Gamma_k(\alpha) := (\gamma_{ij})$ is nondegenerate for all such k and α . **Proof.** We need to prove only the simplicity condition, which is equivalent to the non-degeneracy condition. Note that xA = 0 implies (ex)A = 0 by Lemma 2.1. Thus, if $x = \sum x_p \in Ann_l(A)$ then we may assume that every x_p is a minimal vector for some fixed root α . Furthermore, we may assume that x_p has a fixed length k, since only the minimal vectors of length k may give nonzero products with the corresponding maximal vectors of length k. Thus, $\sum_{i=1}^{n} \alpha_i e_i \in Ann_l(A)$, i.e., $(\sum_{i=1}^{n} \alpha_i e_i)f_j = 0$ for all j. Considering these equalities as a linear system with respect to α_i , we see that this system possesses a nontrivial solution if and only if $\Gamma_k(\alpha) = (\gamma_{ij})$ is degenerate.

Remark 8.1. A similar assertion may be stated and proved for the algebras in \mathcal{A} with a zero-product even part A_0 acting non-diagonally on A_1 . In this case we have to modify the condition on $\Gamma_k(\alpha) = (e_i \cdot f_j) \in M_k(A_0)$, considering $\Gamma_k(\alpha)$ as a linear operator from F_k to A_0 with the usual right action. Thus, we have to require the non-degeneracy of this operator. Also, some non-degeneracy conditions for the set of roots should be required.

8.4. On algebras in \mathcal{A} with an arbitrary even part. In this subsection we firstly give an easy example of a simple left-symmetric algebra A in \mathcal{A} such that its even part A_0 is the direct sum of a simple subalgebra S and a zero-product ideal N, i.e., $A_0 = S \oplus N$, and the action of N on A_1 is not diagonal. To this end we put

$$S = \langle e \rangle, \ N = \langle a \rangle, \ A_1 = V_{\alpha_1} \oplus V_{\alpha_2}, \ V_{\alpha_1} = \{v_1, v_2\}, \ V_{\alpha_2} = \{u_1, u_2\},$$

and define nonzero product on $A = A_0 \oplus A_1$ by the table

$ev_i = \alpha v_i$	$eu_i = (1 - \alpha)u_i$	$v_1 u_1 = \beta e + \gamma a$
$av_1 = pv_1 + v_2$	$au_1 = -pu_1 + u_2$	$v_1 u_2 = \delta a$
$av_2 = pv_2$	$au_2 = -pu_2$	$v_2 u_1 = (\beta - \delta)a$

where $\alpha, \beta, \gamma, \delta, p \in F$, $\alpha \neq \frac{1}{2}$, $p, \beta, \delta \neq 0$, $\beta \neq \delta$. We see that

$\alpha_1(e) = \alpha$	$\alpha_2(e) = 1 - \alpha$
$\alpha_1(a) = p$	$\alpha_2(a) = -p$

Applying Lemmas 8.1 and 8.2, we infer that A is a simple left-symmetric algebra.

Proposition 8.3. Let k be the maximal order of Jordan blocks for L_a on A_1 , where a ranges over A_0 . Assume that A_0 is nilpotent. Then $L_a^{2k-1} = 0$ on A_0 for every $a \in A_0$, A_0 is a nil-algebra of index $\leq 2k$, and A_0 is nilpotent of index $\leq 4k^2$. In particular, if A_0 acts on A_1 diagonally then A_0 is zero-product. If $A_0 = S \oplus N$, where S is a semisimple subalgebra and N is a nilpotent ideal, then the nilpotency index of N is bounded by $4k^2$.

Proof. Take $a \in A_0$, $\alpha \in \Phi_1$. Without loss of generality, we may assume that $A_{\alpha} = \langle u_1, \ldots, u_k \rangle$ and $A_{-\alpha} = \langle v_1, \ldots, v_s \rangle$ are some Jordan blocks with respect to L_a , $s \leq k$. Then from

$$a(u_{i}v_{j}) = (\alpha(a)u_{i} + u_{i+1})v_{j} + u_{i}(-\alpha(a)v_{j} + v_{j+1}), \ i \neq k, \ j \neq s,$$

$$a(u_{k}v_{s}) = (\alpha(a)u_{k})v_{s} - \alpha(a)u_{k}v_{s} = 0$$

we have $u_1v_1 \xrightarrow{L_a} u_2v_1 + u_1v_2 \xrightarrow{L_a} u_3v_1 + 2u_2v_2 + u_1v_3 \xrightarrow{L_a} \dots 0$, and $L_a^{2k-1} = 0$ on A_0 . In particular, if A_0 acts diagonally then k = 1 and $L_a = 0$ on A_0 , i.e., A_0 is zero-product. By Razmyslov's theorem, A_0 is nilpotent of index $\leq 4k^2$.

In the case when $A_0 = S \oplus N$, where S is a semisimple subalgebra and N is a nilpotent ideal, we proceed analogously. Take some Jordan blocks $U = \langle u_1, \ldots, u_k \rangle \subseteq A_{\alpha}$ and $V = \langle v_1, \ldots, v_s \rangle \subseteq A_{\beta}$ of A_1 . Then from

$$\begin{aligned} a(u_i v_j) &= (\alpha(a)u_i + u_{i+1})v_j + u_i(\beta(a)v_j + v_{j+1}), \ i \neq k, \ j \neq s, \\ a(u_k v_s) &= (\alpha + \beta)(a)u_k v_s \end{aligned}$$

for every $a \in N$ we have $(\alpha + \beta)(a) = 0$, since N is nilpotent. Proceeding by analogy with the previous case, we arrive at the required assertion.

Acknowledgments

The project is supported by the Russian Science Foundation (project 21-11-00286). The second author is grateful to Max-Planck Institute für Mathematik for hospitality and excellent working conditions, where part of this work has been done.

References

- [1] A.A. Albert, Almost alternative algebras, Portugal. Math. 8 (1949) 23-36.
- [2] T. Anderson, Hereditary radicals and derivations of algebras, Can J. Math. 21 (1969) 372–377.
- [3] L. Auslander, Simply transitive groups of affine motions, Amer. Math. J. 99 (1) (1977) 215–222.
- [4] D. Burde, Left-symmetric structures on simple modular Lie algebras, J. of Algebra 169 (1994) 112– 138.
- [5] D. Burde, Left-invariant affine structures on reductive Lie groups, J. of Algebra 181 (1996) 884–902.
- [6] D. Burde, Simple left-symmetric algebras with solvable Lie algebra, Manuscripta math. 95 (1998) 397–411.
- [7] D. Burde, Left-symmetric algebras, or pre-Lie algebras in geometry and physics, Cent. Eur. J. Math. 4 (3) (2006) 323–357.
- [8] K. Erdmann, M.J. Wildon, Introduction to Lie algebras, Springer Undergraduate Mathematics Series, Springer-Verlag London, (2006).
- [9] V.T. Filippov, A class of simple nonassociative algebras, Math. Notes 45 (1989) 68–71.
- [10] V.T. Filippov, On right-symmetric and Novikov nil algebras of bounded index, Math. Notes 70 (2001) 258–263.
- [11] I.N. Herstein, Noncommutative rings, Carus Mathematical Monographs 15, Mathematical Association of America, Washington (1994).
- [12] E. Kleinfeld, Assosymmetric rings, Proc. Amer. Math. Soc. 8 (1957) 983–986.
- [13] E. Kleinfeld, Simple algebras of type (1,1) are associative, Can. J. of Math. 13 (1961) 129–148.
- [14] D.Kh. Kozybaev, U.U. Umirbaev, The Magnus embedding for right-symmetric algebras, Siberian Math. J. 45 (3) (2004) 488–494.
- [15] D. Kozybaev, L. Makar-Limanov, U. Umirbaev, The Freiheitssatz and the automorphisms of free right-symmetric algebras, Asian-European Journal of Mathematics 1 (2) (2008) 243–254.
- [16] D. Kozybaev, U.U. Umirbaev, Identities of the left-symmetric Witt algebras, Int. J. of Algebra and Computation 26 (2) (2016) 435–450.
- [17] J.M. Osborn, Novikov algebras, Nova J. Algebra Geom. 1 (1) (1992) 1–13.
- [18] J.M. Osborn, Simple Novikov algebras with an idempotent, Comm. Algebra 20 (9) (1992) 2729–2753.

- [19] J.M. Osborn, Infinite-dimensional Novikov algebras of characteristic 0, J. Algebra 167 (1) (1994) 146–167.
- [20] A.P. Pozhidaev, I.P. Shestakov, On the Right-Symmetric Algebras with a Unital Matrix Subalgebra, Sib. Math. J. 62 (1) (2021) 138–147.
- [21] D. Segal, Free left-symmetric algebras and an analogue of the Poincare-Birkhoff-Witt Theorem, J. Algebra 164 (1994) 750–752.
- [22] I. Shestakov, Z. Zhang, Solvability and nilpotency of Novikov algebras, Comm. Algebra 48 (12) (2020) 5412–5420.
- [23] A.M. Slin'ko, A remark on radicals and derivations of rings, Siberian Math. J. 13 (6) (1972) 984–986.
- [24] K. Tulenbaev, U.U. Umirbaev, V. Zhelyabin, On the Lie-solvability of Novikov algebras, Journal of Algebra and Its Applications (2022).
- [25] U.U. Umirbaev, Associative, Lie, and left-symmetric algebras of derivations, Transformation Groups 21 (2) (2016) 851–869.
- [26] U.U. Umirbaev, V. Zhelyabin, On the solvability of graded Novikov algebras, Int. J. of Algebra and Computation 31 (7) (2021) 1405–1418.
- [27] X. Xu, On simple Novikov algebras and their irreducible modules. J. Algebra 185 (3) (1996) 905–934.
- [28] X. Xu, Classification of simple Novikov algebras and their irreducible modules of characteristic 0. J. Algebra 246 (2) (2001) 673–707.
- [29] E.I. Zel'manov, A class of local translation-invariant Lie algebras. Dokl. Akad. Nauk SSSR 292 (6) (1987) 1294–1297.
- [30] Z. Zhang, T.G. Nam, Lie nilpotent Novikov algebras and Lie solvable Leavitt path algebras, arXiv:2012.11191 (2020).
- [31] V. Zhelyabin, U. Umirbaev, On the solvability of Z₃-graded Novikov algebras, Symmetry 312 (2021) 1−13.