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AUTOMORPHISMS OF AFFINE VERONESE SURFACES

Bakhyt Aitzhanova 1 and Ualbai Umirbaev2

Abstract. We prove that every derivation and every locally nilpotent derivation of
the subalgebra K[xn, xn−1y, . . . , xyn−1, yn], where n ≥ 2, of the polynomial algebra
K[x, y] in two variables over a field K of characteristic zero is induced by a derivation
and a locally nilpotent derivation K[x, y], respectively. Moreover, we prove that every
automorphism of K[xn, xn−1y, . . . , xyn−1, yn] over an algebraically closed field K of
characteristic zero is induced by an automorphism of K[x, y]. We also show that the
group of automorphisms of K[xn, xn−1y, . . . , xyn−1, yn] admits an amalgamated free
product structure.

Mathematics Subject Classification (2020): 14R10, 14J50, 13F20.
Key words: Automorphism, derivation, polynomial algebra, affine rational normal

surface, free product.

1. Introduction

Let K be an arbitrary field and let An and Pn be the affine and the projective n-space
over K, respectively. The Veronese map of degree d is the map

νd : Pn → Pm

that sends [x0 : . . . : xn] to all m+ 1 possible monomials of total degree d, where

m =

(
n+ 1

d

)
− 1 =

(
n+ d

d

)
− 1.

It is well known that the image of the Veronese map is a projective variety and is called
the Veronese variety [3].

The rational normal curve C ⊂ Pd is a particular case of the Veronese variety and is
defined to be the image of the map

νd : P1 → Pd

given by

νd : [xo : x1] 7→ [xd0 : xd−10 x1 : . . . : xd1] = [zo : . . . : zd].

It is well known that C is the common zero locus of the polynomials

Fi,j(z0, ..., zn) = zizj − zi−1zj+1 for 1 ≤ i ≤ j ≤ d− 1.(1)
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For d = 2 it is the plane conic z0z2 = z21 and for d = 3 it is the twisted cubic [3].
Denote by Vn ⊂ An+1 the common zero locus of the polynomials (1) in An+1. The

variety Vn will be called the affine Veronese surface. This paper is devoted to the study
of the automorphism group of the affine Veronese surface Vn for all n ≥ 2.

In 1990 L. Makar-Limanov described the generators of the automorpism groups of
algebraic surfaces defined by an equation of the form xy = P (z) over an algebraically
closed field [8]. This result gives the generators of the automorphism group of V2. The
amalgamated free product structure of this group can deduced from Lamy’s results [6, 7]
on the structure of the group AutQ [C3] of polynomial automorphisms of C3 preserving
the quadratic form Q = xz + y2.

It is not difficult to show that the algebra of polynomial functions on Vn is isomorphic
to the subalgebra K[zn0 , z

n−1
0 z1, . . . , z

n
1 ] of K[zo, z1]. Thus the group of automorphisms of

Vn is anti-isomorphic to the group of automorphisms of the algebra K[zn0 , z
n−1
0 z1, . . . , z

n
1 ].

It is well known [4, 5] that all automorphisms of the polynomial algebra K[x, y] in two
variables x, y over a field K are tame. Moreover, the automorphism group AutK[x, y] of
this algebra admits an amalgamated free product structure [5, 12], i.e.,

AutK[x, y] = Aff2 (K) ∗C Tr2 (K),(2)

where C = Aff2 (K) ∩ Tr2 (K).
The well-known Nagata automorphism (see [9])

σ = (x+ 2y(zx− y2) + z(zx− y2)2, y + z(zx− y2), z)

of the polynomial algebra K[x, y, z] over a field K of characteristic 0 is proven to be
non-tame [13].

In this paper we show that over a field K of characteristic zero every derivation and
every locally nilpotent derivation of the algebra K[xn, xn−1y, ..., xyn−1, yn] is induced by
a derivation and a locally nilpotent derivation of K[x, y], respectively. Using the proof
of the Rentchler’s Theorem [10] on locally nilpotent derivations of K[x, y] given in [2,
Ch. 5], we prove that every automorphism of K[xn, xn−1y, ..., xyn−1, yn] is induced by an
automorphism of K[x, y] if K is an algebraically closed field of characteristic zero. We
also show that the amalgamated free product structure of the automorphism group of
K[x, y] induces an amalgamated free product structure on the automorphism group of
K[xn, xn−1y, ..., xyn−1, yn].

The paper is organized as follows. In Section 2 we recall some necessary results on the
structure of the automorphism group of K[x, y] from [1, 2]. Section 3 is devoted to lifting
of derivations of K[xn, xn−1y, ..., xyn−1, yn] to derivations of K[x, y]. In Section 4 we prove
that so called n-derivations of K[x, y] are triangulable. In Section 5 we prove that every
automorphism of K[xn, xn−1y, ..., xyn−1, yn] is induced by an automorphism of K[x, y].
The amalgamated free product of the automorphism group of K[xn, xn−1y, ..., xyn−1, yn]
is given in Section 6.

2. Automorphisms of K[x, y]
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Let K[x, y] be the polynomial algebra in the variables x, y over a field K and let
AutK[x, y] be the group of automorphisms of K[x, y]. Denote by φ = (f, g) the automor-
phism of K[x, y] such that φ(x) = f and φ(y) = g, where f, g ∈ K[x, y]. If φ = (f1, g1)
and ψ = (f2, g2) then the product in AutK[x, y] is defined by

φ ◦ ψ = (f2(f1, g1), g2(f1, g1)).

An automorphism φ ∈ AutK[x, y] is called elementary if it has the form

φ = (x, αy + f(x))

or
φ = (αx+ g(y), y),

where f(x) ∈ K[x], g(y) ∈ K[y], and 0 6= α ∈ K. The subgroup of AutK[x, y] generated
by all elementary automorphisms is called the tame subgroup. Elements of this subgroup
are called tame automorphisms of K[x, y].

An automorphism φ ∈ AutK[x, y] is called affine if it has the form

φ = (α1x+ β1y + γ1, α2x+ β2y + γ2)

where α1β2 6= β1α2 and α1, α2, β1, β2, γ1, γ2 ∈ K. The subgroup Aff2 (K) of AutK[x, y]
generated by all affine automorphisms is called the affine subgroup. If γ1, γ2 = 0 then the
affine automorphism φ is called linear. The subgroup GL2 (K) of Aff2 (K) generated by
all linear automorphisms is called the linear subgroup.

An automorphism φ ∈ AutK[x, y] is called triangular if it has the form

φ = (αx+ f(y), βy + γ),(3)

where 0 6= α, β ∈ K and f(y) ∈ K[y]. The subgroup Tr2 (K) of AutK[x, y] generated by
all triangular automorphisms is called the triangular subgroup.

The well known Jung-van der Kulk Theorem [4, 5] says that all automorphisms of the
polynomial algebra K[x, y] in two variables x, y over a field K are tame. Moreover, van
der Kulk and Shafarevich [5, 12] proved that the automorphism group AutK[x, y] of this
algebra admits an amalgamated free product structure, i.e.,

AutK[x, y] = Aff2 (K) ∗C Tr2 (K),

where C = Aff2 (K) ∩ Tr2 (K).
We fix a grading

K[x, y] = K[x, y]0 ⊕K[x, y]1 ⊕K[x, y]2 ⊕ . . .⊕K[x, y]n−1

of the polynomial algebra K[x, y], where K[x, y]i is the linear span of all homogeneous
monomials of degree i+ ns, i = 0, 1, . . . , n− 1, and s is an arbitrary nonnegative integer.
This is a Zn-grading of K[x, y], i.e.,

K[x, y]iK[x, y]j ⊆ K[x, y]i+j,

where i, j ∈ Zn = Z/nZ.
An automorphism φ ∈ AutK[x, y] will be called an n-automorphism if φ(x), φ(y) ∈

K[x, y]1. Obviosly every n-automorphism induces an automorphism of the algebra
K[xn, xn−1y, . . . , xyn−1, yn]. An n-automorphism will be called a tame n-automorphism if
it is a product of elementary n-automorphisms.
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Set K[x, y]1 ∩K[y] = K[y]1. An automorphism φ ∈ AutK[x, y] is called n-triangular
if it has the form

φ = (αx+ f(y), βy),

where 0 6= α, β ∈ K and f(y) ∈ K[y]1.

3. Derivations of K[xn, xn−1y, ..., xyn−1, yn]

Let K be an arbitrary field of characteristic zero. Let A be any algebra over K. A
derivation D of A is called locally nilpotent if for every a ∈ A there exists a positive integer
n = n(a) such that Dn(a) = 0.

If D is a locally nilpotent derivation of A then

expD =
∑
p≥0

1

p!
Dp

is an automorpism of A and is called an exponential automorphism.
Moreover, if D is any derivation of A then

expTD =
∞∑
i=0

1

i!
DiT i

is an automorpism of the formal power series algebra A[[T ]]. If D is locally nilpotent then
expTD is an automorphism of A[T ]

A derivation D of K[x, y] will be called an n-derivation if D(x), D(y) ∈ K[x, y]1. Ob-
viously, every n-derivation of K[x, y] induces a derivation of K[xn, xn−1y, ..., xyn−1, yn].
The reverse is also true.

Lemma 1. Every derivation of K[xn, xn−1y, ..., xyn−1, yn] can be uniquely extended to an
n-derivation of K[x, y].

Proof. Let D be a derivation of K[xn, xn−1y, ..., xyn−1, yn]. Denote by T the unique ex-
tension of D [14, p. 120] to a derivation of the field of fractions K(xn, xn−1y, ..., xyn−1, yn)
of K[xn, xn−1y, ..., xyn−1, yn]. Obviously, the field extension

K(xn, xn−1y, ..., xyn−1, yn) ⊆ K(x, y)

is algebraic. This extension is separable since K is a field of characteristic zero. By Corol-
laries 2 and 2’ in [14, pages 124–125], every derivation of the fieldK(xn, xn−1y, ..., xyn−1, yn)
can be uniquely extended to a derivation of K(x, y). Let S be the unique extension of T
to a derivation of K(x, y). Suppose that

S(x) =
f1
g1
, S(y) =

f2
g2
,(4)

where f1, f2 ∈ K[x, y], 0 6= g1, g2 ∈ K[x, y], and the pairs f1, g1 and f2, g2 are relatively
prime. We have

D(xn−iyi) = S(xn−iyi) = (n− i)xn−i−1yif1
g1
y1 + ixn−iyi−1

f2
g2

for all 0 ≤ i ≤ n.
4



Since D(xn), D(xn−1y), . . . , D(xyn−1), D(yn) ∈ A it follows that

g1g2|(n− i)xn−(i+1)yif1g2 + ixn−iyi−1f2g1

for all 0 ≤ i ≤ n. Consequently,

g1|(n− i)xn−(i+1)yi

and

g2|ixn−iyi−1

for all 0 ≤ i ≤ n.
This means that g1|xn−1 and g1|yn−1 and, consequently, we may assume that g1 = 1.

Similarly, g2|yn−1 and g2|xn−1 give that g2 = 1. Obviously, f1, f2 ∈ K[x, y]1. 2

For any derivation D of K[xn, xn−1y, ..., xyn−1, yn] denote by D̃ its unique extension to

a derivation of K[x, y] determined by Lemma 1. Obviously D is locally nilpotent if D̃ is
locally nilpotent. The reverse statement is also true.

Lemma 2. If D is a locally nilpotent derivation of K[xn, xn−1y, ..., xyn−1, yn] then D̃ is
a locally nilpotent n-derivation of K[x, y].

Proof. Suppose that D is a locally nilpotent derivation of K[xn, xn−1y, ..., xyn−1, yn].

Then expTD is an automorphism of K[xn, xn−1y, ..., xyn−1, yn][T ]. Recall that expTD̃ is
an automorphism of K[x, y][[T ]]. We have

expTD(xn) = expTD̃(xn) = expTD̃(x)n.

This implies that expTD̃(x) ∈ K[x, y][T ] since expTD(xn) ∈ K[x, y][T ]. Similarly,

expTD̃(y) ∈ K[x, y][T ]. This means that there exist natural numbers m and n such that

D̃m(x) = 0 and D̃n(y) = 0. Therefore D̃ is locally nilpotent. 2

4. Triangulation of locally nilpotent n-derivations

A derivation D of K[x, y] is called triangular if

D(x) = f(y) ∈ K[y], D(y) = α ∈ K.

A derivation D of K[x, y] is called triangulable if there exists an automorphism α ∈
AutK[x, y] such that α−1Dα is triangular.

Every triangular derivation, and hence every triangulable derivation, is locally nilpo-
tent. In 1968 R. Rentschler [10] proved that every locally nilpotent derivation of the
polynomial algebra K[x, y] over a field of characteristic zero is triangulable. In this sec-
tion we adopt the proof of this result given in [2, Ch. 5] to prove that every locally
nilpotent n-derivation of K[x, y] is triangulable by a tame n-automorphism.

First recall some necessary definitions from [2].
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Let 0 6= w = (w1, w2) ∈ Z2. Then w-degree of the monomial xa1ya2 is defined by
w(xa1ya2) = a1w1 + a2w2. This degree function leads to the w-grading

K[x, y] =
∑
d

Wd

of K[x, y], where Wd is the span of all monomials of w-degree d.
Let T := cxa1ya2∂i be a monomial derivation of K[x, y], where i = 1, 2. Set (s, t) =

(a1, a2)− ei, where ei is the i-th vector of the standard basis of K2. Then

T (xm1ym2) ∈ Kxm1+sym2+t

for all m1,m2. We call (s, t) the strength of T .
Every derivation D is a linear combination of monomial derivations. Set

suppD = {(s, t) ∈ Z2 |D contains a term of strength (s, t)}.

Let us denote by D(s, t) the sum of all terms in D of strength (s, t) and set

Dp =
∑

sw1+tw2=p

D(s, t).

Obviously,

D =
∑
p

Dp

and this decomposition is called the w-homogeneous decomposition of D. If p is maximal
with Dp 6= 0 then p is called the w-degree of D and is denoted by wdeg D. When w = (1, 1)
p is called the degree of D and is denoted by deg D.

It is easy to check [2] that DpWd ⊂ Wp+d for all p, d ∈ Z.

Proposition 1. Let D be a locally nilpotent n-derivation of K[x, y]. Then there exists a
tame n-automorphism α of K[x, y] and f(y) ∈ K[y]1 such that α−1Dα = f(y)∂x.

Proof. Let D be a locally nilpotent n-derivation of K[x, y]. According to Corollary
5.1.16 in [2, p. 91], the following three cases are possible:

(i) D = f(y)∂x, for some f(y) ∈ K[y];
(ii) D = f(x)∂y, for some f(x) ∈ K[x];
(iii) there exist s0, t0 ≥ 0 such that (s0,−1) and (−1, t0) belong to suppD and, fur-

thermore, suppD is contained in the triangle with vertices (s0,−1), (−1,−1), (−1, t0).
Case (i). If D = f(y)∂x with f(y) ∈ K[y]1 then set α = id. Obviously, the identity

automorphism is an n-automorphism.
Case (ii). If D = f(x)∂y with f(x) ∈ K[x]1 then set α = (y, x). Obviously α is a

n-automorphism of K[x, y] and α−1Dα = f(y)∂x with f(y) ∈ K[y]1.
Case (iii). Suppose that we have s0, t0 ≥ 0 such that (s0,−1), (−1, t0) ∈ suppD. This

implies that D contains differential monomials of the form xs0∂y and yt0∂x with nonzero
coefficients. Hence s0 = 1 + nk, t0 = 1 + nl, k, l ∈ Z since xs0 , yt0 ∈ K[x, y]1.

Let L be the line passing through the points (1+nk,−1) and (−1, 1+nl). The defining
equation of L is

(nl + 2)x+ (nk + 2)y = n2kl + nk + nl = nM.
6



Set w = (nl + 2, nk + 2) and p = n2kl + nk + nl. Obviously wdegD = p and Dp is the
highest homogeneous part of D with respect to the w-degree. It is well known that the
highest homogeneous part of a locally nilpotent derivation is locally nilpotent (see, for
example [2, p. 90]). Consequently, Dp is a locally nilpotent n-derivation.

We can write Dp = gD1, where D1 = a∂x + b∂y with gcd(a, b) = 1. By Corollary 1.3.34
in [2, p. 29], D1 is locally nilpotent and D1(g) = 0. By Proposition 1.3.46 in [2, p. 31],
D1 has a slice in K[x, y], i.e., there exists s ∈ K[x, y] such that D1(s) = 1. This implies
that a(0, 0) 6= 0 or b(0, 0) 6= 0. Assume that a(0, 0) 6= 0. This means that D1 has a term
of the form c∂x, where c ∈ K∗. Since (1 + nk,−1) ∈ suppDp and Dp = gD1 it follows
that D1 also has a term of the form dxr∂y with r ≥ 0 and d ∈ K∗. Moreover, g and D1

are w-homogeneous since Dp is w-homogeneous. Therefore suppD1 is on the line passing
through the points (−1, 0) and (r,−1). Notice that this line does not contain any other
points with integer coordinates. Hence D1 = c∂x + dxr∂y. Since Dp is an n-derivation it
follows that g ∈ K[x, y]1 and n|r.

We have g ∈ KerD1 = K[y − d
(r+1)c

xr+1] since D1(g) = 0. Consequently, g = a(y −
d

(r+1)c
xr+1)N for some a ∈ K∗ and N ∈ N since g is w-homogeneous. So

Dp = a(y − d

(r + 1)c
xr+1)N(c∂x + dxr∂y),

where a, c, d ∈ K∗, r ≥ 0, and N ∈ N. Obviously, t0 = N and s0 = (r + 1)N + r.
Let α be the automorphism given by

α(x) = x, α(y) = y − d

(r + 1)c
xr+1.

This is an elementary n-automorphism since n|r. Direct calculations give that

α−1D1α = c∂x

and

α−1Dpα = acyt0∂x.

Since α is w-homogeneous, α−1Dpα is the highest w-homogeneous part of α−1Dα. Thus
α turns all points of suppDp to one point (−1, t0). Consequently, s0(D) < s0(α

−1Dα).
Leading an induction on s0(D) + t0(D) we can conclude that the statement of the propo-
sition is true. 2

5. Automorphisms of K[xn, xn−1y, ..., xyn−1, yn]

As we noticed above, every n-automorphism of K[x, y] induces an automorphism of
K[xn, xn−1y, ..., xyn−1, yn]. In this section we prove the reverse of this statement.

Theorem 1. Every automorphism of K[xn, xn−1y, ..., xyn−1, yn] over an algebraically closed
field K of characteristic zero is induced by an n-automorphism of K[x, y].

Proof. Consider the derivation D = y∂x of K[x, y]. Let D be the derivation of
K[xn, xn−1y, ..., xyn−1, yn] induced by D.

7



Let α be an arbitrary automorphism of K[xn, xn−1y, ..., xyn−1, yn]. Set T = αDα−1.

This derivation is locally nilpotent since D is locally nilpotent. Let T̃ be the extension of

T to a derivation of K[x, y] that uniquely defined by Lemma 1. By Lemma 2, T̃ is a locally
nilpotent n-derivation of K[x, y]. By Proposition 1, there exists an n-tame automorphism

β of K[x, y] such that S = β−1T̃ β is a triangular n-derivation of K[x, y]. Let

S = β−1T̃ β = g(y)∂x,

where g(y) ∈ K[y]1. We get

S(f) = g(y)
∂f

∂x
, f ∈ K[x, y].

Let β be the automorphism of K[xn, xn−1y, ..., xyn−1, yn] induced by β. Then S induces

the derivation S = β
−1
Tβ = β

−1
αDα−1β of K[xn, xn−1y, ..., xyn−1, yn].

Let φ = β
−1
α. Assume that φ(xn−iyi) = fi, where 0 ≤ i ≤ n. Applying the equation

φD = Sφ to xn−iyi for all i, we get

(n− i)fi+1 = g(y)
∂fi
∂x

,

i.e.,

0 = g(y)
∂fn
∂x

, fn = g(y)
∂fn−1
∂x

, . . . , (n− 1)f2 = g(y)
∂f1
∂x

, nf1 = g(y)
∂f0
∂x

.

These equalities immediately give that

degx fn = 0, degx fn−1 = 1, . . . , degx fn−i = i, . . . , degx f0 = n.

In particular, fn ∈ K[y].
We have

f0
f1

=
f1
f2

= . . . =
fn−1
fn

(5)

since the generators xn, xn−1y, ..., xyn−1, yn of K[xn, xn−1y, ..., xyn−1, yn] satisfy the rela-
tions

xn

xn−1y
=

xn−1y

xn−2y2
= . . . =

xyn−1

yn
=
x

y
.

Let f0
f1

= p
q
, where p, q ∈ K[x, y] are relatively prime. Then f0

fn
= pn

qn
by (5). Since pn

and qn are relatively prime it follows that f0 = pnu and fn = qnu for some u ∈ K[x, y].
Moreover, (5) implies that fi = pn−iqiu for all i. From this we get

K[xn, xn−1y, ..., xyn−1, yn] ⊆ K + (u),

where (u) is the ideal of K[x, y] generated by u. This is possible if the leading word
of u divides all of the words xn, xn−1y, ..., xyn−1, yn. Consequently, u ∈ K∗. Over an
algebraically closed field we can write u = vn for some v ∈ K∗. Replacing vp with vp and
vq with q, we may assume that u = 1 and fi = pn−iqi for all i.

We have q ∈ K[y] since fn = qn ∈ K[y]. We also have degx(p) = 1 since pn = f0 and
degx(f0) = n. Set p = xa(y) + b(y). We get

K[xn, xn−1y, ..., xyn−1, yn] ⊆ K[fn] + (p) ⊆ K[y] + (p),
8



where (p) is the ideal of K[x, y] generated by p. Consequently,

xn = (xa(y) + b(y))h+ f(y).

Introducing a monomial order with prioritized x, we get that it is possible only if a(y) =
a ∈ K∗. Consequently, p = ax+b(y). Now it is easy to check that pn ∈ K[xn, xn−1y, ..., xyn−1, yn]
implies that p ∈ K[x, y]1. Set γ = (ax+b(y), y). Then γ is an elementary n-automorphism
of K[x, y]. Set ψ = γ−1φ. Then ψ(xn−iyi) = xn−iqi for all i. We have

K[xn, xn−1y, ..., xyn−1, yn] ⊆ K[qn] + (x),

where (x) is the ideal of K[x, y] generated by x. It is possible only if qn = cyn for some
c ∈ K∗. Consequently, q = ey for some e ∈ K∗ since K is algebraically closed.

Let δ = (x, ey). Then δ
−1
ψ = id, i.e., δ

−1
γ−1β

−1
α = id. Consequently, α = βγδ = βγδ

is induced by a tame n-automorphism of K[x, y]. 2

6. Amalgamated free product srtucture of AutA

Let Gn be the group of all n-automorphisms of the polynomial algebra K[x, y].

Lemma 3. The subgroup Gn of AutK[x, y] is generated by all linear automorphisms and
all automorphisms of the type (x − αym, y), where m = 1 + ns is a positive integer and
α ∈ K.

Proof. For any f ∈ K[x, y] denote by f̄ its highest homogeneous part with respect the
standard degree function deg. Let φ = (f, g) be a n-automorphism of the algebra K[x, y]
and suppose that deg f = k and deg g = l. If k + l = 2 then φ is a linear automorphism.

Suppose that k+ l ≥ 3. It is well known that k|l or l|k (see, for example [1, 2]). Assume
that l|k. In this case we have f̄ = αḡm for some α ∈ K∗ and m ∈ N. Since f̄ , ḡ ∈ K[x, y]1
it follows that m = 1+ns for some s ≥ 0. In fact, let deg(f̄) = 1+np and deg(ḡ) = 1+nq.
Then

1 + np = m(1 + nq).

Consequently, m− 1 = np−mnq = ns.
Therefore (x− αym, y) is an elementary n-automorphism of K[x, y]. We have

(f, g) ◦ (x− αym, y) = (f − αgm, g) = (f ′, g),

where deg(f ′) < deg(f). Leading an induction on k+l we may assume that (f ′, g) satisfies
the statement of the lemma. Then (f, g) also satisfies the statement of the lemma. 2

Let Tn be the group of all n-triangular automorphisms of the polynomial algebraK[x, y].

Corollary 1. Gn = GL2 (K) ∗B Tn, where B = GL2 (K) ∩ Tn.

Proof. Lemma 3 says that Gn is generated by GL2 and Tn. Consider (2). We have
GL2 ⊆ Aff2, Tn ⊆ Tr2 (K), and B ⊆ C. This means that every decomposition of an
element of Gn in the form

g1g2 . . . gk,
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where gi ∈ GL2 ∪ Tn for all i and gi and gi+1 do not belong together to GL2 or Tn for all
i < k, determined by the amalgated free product structure (2). Consequently,

Gn = GL2 (K) ∗B Tn ⊆ Aff2 (K) ∗C Tr2 (K). 2

Corollary 2. Let E = {εid|εn = 1, ε ∈ K}. Then

AutK[xn, xn−1y, ..., xyn−1, yn] ∼= Gn/E.

Proof. Consider the homomorphism

ψ : Gn → AutK[xn, xn−1y, ..., xyn−1, yn](6)

defined by ψ(α) = α, where α is the automorphism of K[xn, xn−1y, ..., xyn−1, yn] induced
by the n-automorphism α of K[x, y].

By Theorem 1, ψ is an epimorphism. Let α ∈ Kerψ. Then

α(x)n−iα(y)i = xn−iyi

for all 0 ≤ i ≤ n. This implies that α(x) = εx, α(y) = εy for some nth root of unity
ε ∈ K. Consequently, α ∈ E. Obviously, E ⊆ Kerψ. 2

Let

GL2 (K) = GL2 (K)/E, Tn = Tn/E,B = B/E.

Theorem 2. AutK[xn, xn−1y, ..., xyn−1, yn] ∼= GL2 (K) ∗B Tn.

Proof. By Corollaries 1 and 2, the group AutK[xn, xn−1y, ..., xyn−1, yn] is generated by

GL2 (K) and Tn.

Let G be any group and ψ1 : GL2 (K) → G and ψ2 : Tn → G be any homomorphisms
with ψ1|B = ψ1|B.

Let α : GL2 (K) → GL2 (K) and β : Tn → Tn be natural homomorphisms. Set
φ1 = ψ1α : GL2 (K) → G and φ2 = ψ2β : Trn → G. Obviously, φ1|B = φ2|B. By the
universal property of the amalgamated free products of groups [11, Ch. 1], there exists
a unique homomorphism φ : GL2 (K) ∗B Tn → G such that φ|GL2 (K) = φ1, φ|Tn = φ2.

Since E ⊆ Ker(φ), φ induces the homomorphism φ : (GL2 (K)∗B Tn)/E → G. Obviously,
φ|GL2 (K) = ψ1 and φ|Tn

= ψ2. By the definition of the amalgamated free product [11], we
get

GL2 (K) ∗B Tn)/E ∼= GL2 (K) ∗Cn
Trn.

Corollary 1 finishes the proof of the theorem. 2
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