Max-Planck-Institut für Mathematik Bonn

On linked modules over the super-Yangian of the superalgebra ${\cal Q}(1)$

by

Elena Poletaeva

Max-Planck-Institut für Mathematik Preprint Series 2022 (56)

Date of submission: August 20, 2022

On linked modules over the super-Yangian of the superalgebra ${\cal Q}(1)$

by

Elena Poletaeva

Max-Planck-Institut für Mathematik Vivatsgasse 7 53111 Bonn Germany School of Mathematical and Statistical Sciences University of Texas Rio Grande Valley Edinburg, TX 78539 USA

ON LINKED MODULES OVER THE SUPER-YANGIAN OF THE SUPERALGEBRA Q(1)

ELENA POLETAEVA

School of Mathematical and Statistical Sciences, University of Texas Rio Grande Valley, Edinburg, TX 78539, USA. E-Mail: elena.poletaeva@utrgv.edu

ABSTRACT. Let Q(n) be the queer Lie superalgebra. We determine conditions under which two 1-dimensional modules over the super-Yangian of Q(1) can be extended nontrivially, and thus belong to the same block of the subcategory of finitedimensional YQ(1)-modules admitting generalized central character $\chi = 0$. We use these results to determine conditions under which two 1-dimensional modules over the finite W-algebra for Q(n) can be extended nontrivially. We describe blocks in the category of finite-dimensional modules over the finite W-algebra for Q(2). In certain cases we determine conditions under which two simple finite-dimensional YQ(1)-modules admitting central character $\chi \neq 0$ can be extended nontrivially and propose a conjecture in the general case.

1. INTRODUCTION

The queer Lie superalgebra Q(n) is a fixed point subalgebra of the general linear Lie superalgebra $\mathfrak{gl}(n|n)$ relative to certain involutive automorphism.

We started to study the representation theory of the finite W-algebra W^n for Q(n) associated with the principal nilpotent coadjoint orbits in [8]. We have shown that all irreducible representations of W^n are finite-dimensional. In [10] we classified irreducible finite-dimensional representations of the super-Yangian YQ(1) of Q(1) (Theorem 5.13). A natural problem is to describe blocks in the subcategory of finite-dimensional YQ(1)-modules and in the subcategory of finite-dimensional W^n -modules admitting a given generalized central character χ . We initiated the study of blocks in these subcategories in [11, 12]. If $\chi = 0$, then the simple modules in these subcategories are 1-dimensional. In this paper we determine when two 1-dimensional W^n -modules can be extended nontrivially, and thus belong to the same block (Theorem 11.1). We use these results and results of [10] to determine when two 1-dimensional W^n -modules can be extended nontrivially (Theorem 14.1). Using Theorem 14.1, we describe blocks in the category of finite-dimensional modules over W^2 (Theorem 15.2).

Date: August 20, 2022.

Every simple finite-dimensional module over YQ(1) is isomorphic (up to change of parity) to $V(\mathbf{s}) \otimes \Gamma_f$, where $V(\mathbf{s})$ is a simple YQ(1)-module parameterized by an *n*-tuple of nonzero complex numbers $\mathbf{s} = (s_1, s_2, \ldots, s_n)$ such that $s_i + s_j \neq 0$ for all i < j, and Γ_f is a 1-dimensional YQ(1)-module, which is defined by certain generating function $f(u) \in YQ(1)[[u^{-2}]]$. If $n \geq 1$, then $V(\mathbf{s}) \otimes \Gamma_f$ admits a nontrivial central character. In the case when $\mathbf{s} = (s_1)$, we determine conditions under which two simple modules of type $V(s_1) \otimes \Gamma_f$ can be extended nontrivially (Proposition 12.1). We propose a conjecture in the general case when $\mathbf{s} = (s_1, s_2, \ldots, s_n)$ (Conjecture 12.3).

2. The Lie superalgebra Q(n)

Consider the general linear Lie superalgebra $\mathfrak{gl}(n|n)$ with the standard basis E_{ij} , where $i, j = \pm 1, \ldots, \pm n$. Define the parity of i by

$$p(i) = 0$$
 if $i > 0$ and $p(i) = 1$ if $i < 0$.

Let η be an involutive automorphism of $\mathfrak{gl}(n|n)$ defined by

$$\eta(E_{ij}) = E_{-i,-j}.$$

The queer Lie superalgebra Q(n) is the fixed point subalgebra in $\mathfrak{gl}(n|n)$ relative to η . Recall that Q(n) can also be defined as follows (see [3]). Equip $\mathbb{C}^{n|n}$ with the odd operator ζ such that $\zeta^2 = -\operatorname{Id}$. Then Q(n) is the centralizer of ζ in the Lie superalgebra $\mathfrak{gl}(n|n)$. Let $\zeta = \begin{pmatrix} 0 & I_n \\ -I_n & 0 \end{pmatrix}$. It is easy to see that Q(n) consists of matrices of the form

$$\begin{pmatrix} A & B \\ B & A \end{pmatrix}$$

where A, B are $n \times n$ -matrices. Let

$$\{e_{i,j}, f_{i,j} \mid i, j = 1, \dots, n\}$$

denote the basis in Q(n) consisting of elementary even and odd matrices. Set

(2.1)
$$\xi_i := (-1)^{i+1} f_{i,i}, \ x_i := \xi_i^2 = e_{i,i}.$$

3. The finite W-algebra for Q(n)

Let W^n be the *finite* W-algebra associated with a principal even nilpotent element φ in the coadjoint representation of $\mathfrak{g} = Q(n)$. Let us recall its definition (see [13]). We fix the Cartan subalgebra $\mathfrak{h} \subset \mathfrak{g}$ to be the set of matrices with diagonal A and B. By \mathfrak{n}^+ (respectively, \mathfrak{n}^-) we denote the nilpotent subalgebras consisting of matrices with strictly upper triangular (respectively, low triangular) A and B.

The Lie superalgebra \mathfrak{g} has the triangular decomposition $\mathfrak{g} = \mathfrak{n}^- \oplus \mathfrak{h} \oplus \mathfrak{n}^+$, and we set $\mathfrak{b} = \mathfrak{n}^+ \oplus \mathfrak{h}$. Choose $\varphi \in \mathfrak{g}^*$ such that

$$\varphi(f_{i,j}) = 0, \quad \varphi(e_{i,j}) = \delta_{i,j+1}.$$

Let I_{φ} be the left ideal in $U(\mathfrak{g})$ generated by $x - \varphi(x)$ for all $x \in \mathfrak{n}^-$. Let $\pi : U(\mathfrak{g}) \to U(\mathfrak{g})/I_{\varphi}$ be the natural projection. Then

$$W^n = \{ \pi(y) \in U(\mathfrak{g}) / I_{\varphi} \mid \operatorname{ad}(x)y \in I_{\varphi} \text{ for all } x \in \mathfrak{n}^- \}.$$

Using the identification of $U(\mathfrak{g})/I_{\varphi}$ with the Whittaker module $U(\mathfrak{g}) \otimes_{U(\mathfrak{n}^{-})} \mathbb{C}_{\varphi} \simeq U(\mathfrak{b}) \otimes \mathbb{C}$, we can consider W^n as a subalgebra of $U(\mathfrak{b})$. The natural projection ϑ : $U(\mathfrak{b}) \to U(\mathfrak{h})$ with the kernel $\mathfrak{n}^+U(\mathfrak{b})$ is called the *Harish-Chandra homomorphism*. It is proven in [8] that the restriction of ϑ to W^n is injective. We will identify W^n with $\vartheta(W^n) \subset U(\mathfrak{h})$.

Example 3.1. n = 2, $\mathfrak{h} = \operatorname{span}\{x_1, x_2 \mid \xi_1, \xi_2\}$. Then W^2 realized as a subalgebra of $U(\mathfrak{h})$ has the following generators:

$$z_0 = x_1 + x_2, \ z_1 = x_1 x_2 - \xi_1 \xi_2$$
 (even),
 $\phi_0 = \xi_1 + \xi_2, \ \phi_1 = x_2 \xi_1 - x_1 \xi_2$ (odd).

4. The super Yangian of Q(1)

The Yangians YQ(n) associated with the Lie superalgebras Q(n) were defined by M. L. Nazarov ([5, 6]). Recall that YQ(1) is the associative unital superalgebra over \mathbb{C} with the countable set of generators $T_{i,j}^{(m)}$, where $m = 1, 2, \ldots$ and $i, j = \pm 1$. The \mathbb{Z}_2 -grading of YQ(1) is defined as follows:

$$p(T_{i,j}^{(m)}) = p(i) + p(j)$$
, where $p(1) = 0$ and $p(-1) = 1$.

To write the defining relations for these generators, we employ the formal series in $YQ(1)[[u^{-1}]]$:

$$T_{i,j}(u) = \delta_{ij} \cdot 1 + T_{i,j}^{(1)} u^{-1} + T_{i,j}^{(2)} u^{-2} + \dots$$

Then for all possible indices i, j, k, l we have the relations

$$(u^{2} - v^{2})[T_{i,j}(u), T_{k,l}(v)] \cdot (-1)^{p(i)p(k) + p(i)p(l) + p(k)p(l)}$$

$$(4.1) = (u + v)(T_{k,j}(u)T_{i,l}(v) - T_{k,j}(v)T_{i,l}(u))$$

$$-(u - v)(T_{-k,j}(u)T_{-i,l}(v) - T_{k,-j}(v)T_{i,-l}(u)) \cdot (-1)^{p(k) + p(l)}.$$

Here v is a formal parameter independent of u, so that (4.1) is an equality in the algebra of formal Laurent series in u^{-1} , v^{-1} with coefficients in YQ(1). For all indices i, j we also have the relations

(4.2)
$$T_{i,j}(-u) = T_{-i,-j}(u).$$

The relations (4.1) and (4.2) are equivalent to the following defining relations:

$$([T_{i,j}^{(m+1)}, T_{k,l}^{(r-1)}] - [T_{i,j}^{(m-1)}, T_{k,l}^{(r+1)}]) \cdot (-1)^{p(i)p(k)+p(i)p(l)+p(k)p(l)} =$$

$$(4.3) \quad T_{k,j}^{(m)}T_{i,l}^{(r-1)} + T_{k,j}^{(m-1)}T_{i,l}^{(r)} - T_{k,j}^{(r-1)}T_{i,l}^{(m)} - T_{k,j}^{(r)}T_{i,l}^{(m-1)}$$

$$+ (-1)^{p(k)+p(l)}(-T_{-k,j}^{(m)}T_{-i,l}^{(r-1)} + T_{-k,j}^{(m-1)}T_{-i,l}^{(r)} + T_{k,-j}^{(r-1)}T_{i,-l}^{(m)} - T_{k,-j}^{(r)}T_{i,-l}^{(m-1)}),$$

$$(4.4) \quad T_{-i,-j}^{(m)} = (-1)^{m}T_{i,j}^{(m)},$$

where m, r = 1, ... and $T_{i,j}^{(0)} = \delta_{ij}$. Recall that YQ(1) is a Hopf superalgebra (see [6]) with comultiplication given by the formula

$$\Delta(T_{i,j}^{(r)}) = \sum_{s=0}^{r} \sum_{k} (-1)^{(p(i)+p(k))(p(j)+p(k))} T_{i,k}^{(s)} \otimes T_{k,j}^{(r-s)}$$

The evaluation homomorphism $ev: YQ(1) \to U(Q(1))$ is defined as follows:

$$T_{1,1}^{(1)} \mapsto -e_{1,1}, \quad T_{1,-1}^{(1)} \mapsto f_{1,1}, \quad T_{i,j}^{(0)} \mapsto \delta_{i,j}, \quad T_{i,j}^{(r)} \mapsto 0 \text{ for } r > 1, i, j = \pm 1.$$

5. W^n is a quotient of YQ(1)

Definition 5.1. (a) Define $\Delta_l: YQ(1) \longrightarrow YQ(1)^{\otimes l}$ by

 $\Delta_l := \Delta_{l-1,l} \circ \cdots \circ \Delta_{2,3} \circ \Delta.$

(b) Let $\varphi_n : YQ(1) \to U(Q(1))^{\otimes n} \simeq U(\mathfrak{h})$ be $\varphi_n := ev^{\otimes n} \circ \Delta_n$.

Note that $\varphi_n(T_{1,1}^{(r)}) = \varphi_n(T_{1,-1}^{(r)}) = 0$ if r > n.

Proposition 5.2. ([9], Corollary 5.16) The map φ_n is a surjective homomorphism from YQ(1) onto W^n , realized as a subalgebra of $U(\mathfrak{h})$:

$$\varphi_n(YQ(1)) = \vartheta(W^n) \simeq W^n.$$

Note that W^{m+n} is a subalgebra of $W^m \otimes W^n$ ([10], Lemma 3.3). The following diagram commutes:

6. SIMPLE MODULES OVER ASSOCIATIVE SUPERALGEBRAS

We work in the category of vector superspaces over \mathbb{C} . We denote the *parity* of a homogeneous vector v of a superspace by $p(v) \in \mathbb{Z}_2$. All tensor products are over \mathbb{C} .

Let \mathcal{A} be a superalgebra. By an \mathcal{A} -module M we mean a \mathbb{Z}_2 -graded left \mathcal{A} -module. A submodule of M is a \mathbb{Z}_2 -graded submodule. By Π we denote the parity functor $\Pi(M) = M \otimes \mathbb{C}^{0|1}$. For a module M over an associate superalgebra \mathcal{A} , $\Pi(M)$ has the same underlying vector space but with the opposite \mathbb{Z} -grading. The new action of $a \in \mathcal{A}$ on $m \in \Pi(M)$ is given in terms of the old action by $a \cdot m := (-1)^{p(a)} am$.

Recall that if M is a simple finite-dimensional \mathcal{A} -module over some associative superalgebra \mathcal{A} , then by Schur's Lemma $\operatorname{End}_{\mathcal{A}}(M)$ is either one-dimensional, or twodimensional and has basis $\{\operatorname{Id}_M, \epsilon_M\}$, where ϵ_M is a (unique up to a sign) odd involution on M: $\epsilon_M^2 = \operatorname{Id}_M$. Note that ϵ_M provides an \mathcal{A} isomorphism $M \longrightarrow \Pi(M)$. We say that M is an *irreducible of* M-*type* in the former case and an *irreducible of* Q-*type* in the latter (see [4, 1]).

Let \mathcal{A} and \mathcal{B} be two superalgebras. The tensor product $\mathcal{A} \otimes \mathcal{B}$ is again a superalgebra, where multiplication is given by

$$(a_1 \otimes b_1)(a_2 \otimes b_2) = (-1)^{p(b_1)p(a_2)}a_1a_2 \otimes b_1b_2$$

for $a_i \in \mathcal{A}, b_i \in \mathcal{B}$. Let M and N be two modules over associative superalgebras \mathcal{A} and \mathcal{B} . Then $M \otimes N$ is naturally a module over $\mathcal{A} \otimes \mathcal{B}$ where

$$(a \otimes b)(m \otimes n) = (-1)^{p(b)p(m)}am \otimes bn,$$

(1) ()

where $a \in A, b \in B$ and $m \in M, n \in N$. If M and N are two simple finite-dimensional modules over associative superalgebras A and B, then the module $M \otimes N$ might be not simple. In fact, if M and N are both of M-type, then $M \otimes N$ is simple of M-type. If one of these modules is of M-type, and the other is of Q-type, then $M \otimes N$ is simple of Q-type. However, if M and N are both of Q-type, then $M \otimes N$ is not simple. Let ϵ_M and ϵ_N be odd involutions of M and N, respectively. Then the map $\epsilon_M \otimes \epsilon_N$ defined by

$$(\epsilon_M \otimes \epsilon_N)(m \otimes n) = (-1)^{p(m)} \epsilon_M(m) \otimes \epsilon_N(n)$$

is an even $\mathcal{A} \otimes \mathcal{B}$ -automorphism of $M \otimes N$, and its square is $-\mathrm{Id}_{M \otimes N}$. In this case $M \otimes N$ decomposes into a direct sum of two $\mathcal{A} \otimes \mathcal{B}$ -submodules, which are formed by the $\pm \mathbf{i}$ -eigenspaces of $\epsilon_M \otimes \epsilon_N$. We can choose either submodule and denote it by $M \boxtimes N$. Then

$$M \otimes N \simeq M \boxtimes N \oplus \Pi(M \boxtimes N).$$

Both submodules are simple and of M-type.

7. SIMPLE W^n -MODULES

We classified simple W^n -modules in [10] (Theorem 4.7). Here we recall their construction.

7.1. W^n -modules $V(\mathbf{s})$. Let $\mathbf{s} = (s_1, \ldots, s_n) \in \mathbb{C}^n$. We call \mathbf{s} regular if $s_i \neq 0$ for all $i \leq n$ and typical if $s_i + s_j \neq 0$ for all $1 \leq i < j \leq n$. Note that we have the natural embedding of the Lie superalgebras

(7.1)
$$Q(1) \oplus Q(1) \oplus \cdots \oplus Q(1) \hookrightarrow Q(n).$$

Let \mathfrak{h}_1 denote the Cartan subalgebra of Q(1). Then $\mathfrak{h}_1 = \operatorname{span}\{x_1 \mid \xi_1\}$ with $x_1 = \xi_1^2$, and $U(\mathfrak{h}_1) \simeq \mathbb{C}([\xi_1])$. Let $V(\mathbf{s}_i)$ be a (1|1)-dimensional $U(\mathfrak{h}_1)$ -module, where the action is given by

$$\xi \mapsto \begin{pmatrix} 0 & \sqrt{s_i} \\ \sqrt{s_i} & 0 \end{pmatrix}, \quad x \mapsto \begin{pmatrix} s_i & 0 \\ 0 & s_i \end{pmatrix} \quad \text{for } i = 1, 2.$$

The embedding (7.1) induces the isomorphism

$$U(\mathfrak{h}) \simeq U(\mathfrak{h}_1) \otimes U(\mathfrak{h}_1) \otimes \cdots \otimes U(\mathfrak{h}_1)$$

Then $V(\mathbf{s}) := V(s_1) \boxtimes V(s_2) \boxtimes \cdots \boxtimes V(s_n)$ is a simple $U(\mathfrak{h})$ -module. Consider the restriction of $U(\mathfrak{h})$ to W^n . Let $\mathbf{s} = (s_1, \ldots, s_n)$ be regular typical. Then $V(\mathbf{s})$ is a simple W^n -module, and if $\mathbf{s}' = \sigma(\mathbf{s})$ for some permutation of coordinates, then $V(\mathbf{s})$ is isomorphic to $V(\mathbf{s}')$ as a W^n -module, see [10].

7.2. Construction of simple W^n -modules. Let Γ_t be the simple W^2 -module of dimension (1|0) on which ϕ_0, ϕ_1 and z_0 act by zero and z_1 acts by the scalar t.

Let $r, p, q \in \mathbb{N}$ and r + 2p + q = n, $\mathbf{t} = (t_1, \ldots, t_p) \in \mathbb{C}^p$, and $\lambda = (\lambda_1, \ldots, \lambda_q) \in \mathbb{C}^q$, where \mathbf{t} is regular and λ is regular typical. Recall that there is an embedding $W^n \hookrightarrow W^r \otimes (W^2)^{\otimes p} \otimes W^q$ ([10], Corollary 3.4). Set

$$S(\mathbf{t},\lambda) := \mathbb{C} \boxtimes \Gamma_{t_1} \boxtimes \cdots \boxtimes \Gamma_{t_n} \boxtimes V(\lambda),$$

where the first term \mathbb{C} in the tensor product denotes the trivial W^r -module. For q = 0 we use the notation $S(\mathbf{t})$ and set $V(\lambda) = \mathbb{C}$.

Proposition 7.1. (see [10], Theorem 4.7) (a) Every simple W^n -module is isomorphic to $S(\mathbf{t}, \lambda)$ up to change of parity.

(b) Two simple W^n -modules $S(\mathbf{t}, \lambda)$ and $S(\mathbf{t}', \lambda')$ are isomorphic if and only if p' = p, q' = q, $\mathbf{t}' = \sigma(\mathbf{t})$ and $\lambda' = \tau(\lambda)$ for some $\sigma \in S_p$ and $\tau \in S_q$.

8. Central characters

The center of $U(\mathfrak{g})$ for $\mathfrak{g} = Q(n)$ is described in [7]. The center of $U(\mathfrak{h})$ coincides with $\mathbb{C}[x_1, \ldots, x_n]$ and the image of the center of $U(\mathfrak{g})$ under the Harish-Chandra homomorphism ϑ is generated by the polynomials $p_k = x_1^{2k+1} + \cdots + x_n^{2k+1}$ for all $k \in \mathbb{N}$. These polynomials are called Q-symmetric polynomials.

In [8] we proved that the center Z^n of W^n coincides with $W^n \cap \mathbb{C}[x_1, \ldots, x_n] = \vartheta(Z(U(\mathfrak{g})))$ and hence can be also identified with the ring of Q-symmetric polynomials.

Every **s** defines the central character $\chi_{\mathbf{s}} : \mathbb{Z}^n \to \mathbb{C}$. Furthermore, it follows from the description of simple W^n -modules in [10] (Theorem 4.6) that every simple W^n module admits central character $\chi_{\mathbf{s}}$ for some **s**. For every $\mathbf{s} = (s_1, \ldots, s_n)$ we define the core $c(\mathbf{s}) = (s_{i_1}, \ldots, s_{i_m})$ as a subsequence obtained from **s** by removing all $s_j = 0$ and all pairs (s_i, s_j) such that $s_i + s_j = 0$. Up to a permutation this result does not depend on the order of removing. Thus, the core is well defined up to permutation. We call *m* the length of the core.

Example 8.1. Let $\mathbf{s} = (1, 0, 3, -1, -1)$, then $c(\mathbf{s}) = (3, -1)$.

The following is a reformulation of the central character description in [7].

Lemma 8.2. Let $\mathbf{s}, \mathbf{s}' \in \mathbb{C}^n$. Then $\chi_{\mathbf{s}} = \chi_{\mathbf{s}'}$ if and only if \mathbf{s} and \mathbf{s}' have the same core (up to permutation).

It follows from Lemma 8.2 that the core depends only on the central character χ_s , we denote it $c(\chi)$.

9. SIMPLE FINITE-DIMENSIONAL YQ(1)-modules

We classified simple finite-dimensional YQ(1)-modules in [10]. First we recall the description of 1-dimensional YQ(1)-modules.

Remark 9.1. Note that $[T_{1,1}^{(k)}, T_{1,1}^{(m)}] = 0$ if k + m is even (see [8], Proposition 6.4).

Definition 9.2. Let **A** be the commutative subalgebra in YQ(1) generated by $T_{1,1}^{(2k)}$ for $k \ge 0$. Let

$$f(u) = 1 + \sum_{k>0} f_{2k} u^{-2k}$$

Let Γ_f be the corresponding 1-dimensional A-module, where the action of

$$T_{1,1}(u^{-2}) = \sum_{k \ge 0} T_{1,1}^{(2k)} u^{-2k}$$

is given by the generating function f(u).

Recall that for any Hopf superalgebra R, the ideal (R_1) generated by all odd elements is a Hopf ideal and the quotient $R/(R_1)$ is a Hopf algebra.

Proposition 9.3. ([10], Lemma 5.11) The quotient $YQ(1)/(YQ(1)_1)$ is isomorphic to $\mathbf{A} \simeq \mathbb{C}[T_{1,1}^{(2k)}]_{k>0}$, with comultiplication

$$\Delta T_{1,1}(u^{-2}) = T_{1,1}(u^{-2}) \otimes T_{1,1}(u^{-2}).$$

Thus we can lift an **A**-module Γ_f to a YQ(1)-module.

Proposition 9.4. ([10], Lemma 5.12) The isomorphism classes of 1-dimensional YQ(1)-modules are in bijection with the set $\{\Gamma_f\}$. Furthermore, we have the identity $\Gamma_f \otimes \Gamma_g \simeq \Gamma_{fg}$.

Let $\mathbf{s} \in \mathbb{C}^n$ be regular typical. Then we can lift the W^n -module $V(\mathbf{s})$ to a simple YQ(1)-module. Note that $T_{1,1}^{(r)}$ and $T_{1,-1}^{(r)}$ act on $V(\mathbf{s})$ by zero if r > n.

Proposition 9.5. ([10], Theorem 5.13) Any simple finite-dimensional YQ(1)-module is isomorphic to $V(\mathbf{s}) \otimes \Gamma_f$ or $\Pi V(\mathbf{s}) \otimes \Gamma_f$ for some regular typical \mathbf{s} and $f(u) = 1 + \sum_{k>0} f_{2k} u^{-2k}$. Furthermore, $V(\mathbf{s}) \otimes \Gamma_f$ and $V(\mathbf{s}') \otimes \Gamma_g$ are isomorphic up to change of parity if and only if \mathbf{s}' is obtained from \mathbf{s} by permutation of coordinates and f(u) = g(u).

Proposition 9.6. ([10], Proposition 5.19) The simple YQ(1)-module $V(\mathbf{s}) \otimes \Gamma_f$ is lifted from some W^{m+n} -module if and only if $f \in \mathbb{C}[u^{-2}]$. Moreover, the smallest m is equal to the degree of the polynomial f.

Remark 9.7. Note that m = 2p is even. $S(t_1, \ldots, t_p, \lambda) \simeq V(\lambda) \otimes \Gamma_f$ where

$$f = \prod_{i=1}^{p} (1 + t_i u^{-2})$$

10. The category YQ(1)-mod

We described the center Z of YQ(1) in [10]. Let

(10.1)
$$\eta_i = (-\frac{1}{2})^i \operatorname{ad}^i T^{(2)}_{1,1}(T^{(1)}_{1,-1}), \quad Z_{2i} = \frac{1}{2}[\eta_0, \eta_{2i}],$$

where $\operatorname{ad}^{i} T_{1,1}^{(2)}$ is the *i*-power of the adjoint endomorphism $\operatorname{ad} T_{1,1}^{(2)}$. The elements $\{Z_{2i} \mid i \in \mathbb{N}\}$ are algebraically independent generators of Z.

Let YQ(1)-mod be the category of finite-dimensional YQ(1)-modules. A YQ(1)module M admits generalized central character χ if for any $z \in Z$ and $m \in M$, there exists $n \in \mathbb{Z}_{\geq 0}$ such that $(z - \chi(z))^n \cdot m = 0$. Let $(YQ(1))^{\chi}$ -mod be the full subcategory of modules admitting generalized central character χ . The category YQ(1)-mod is the direct sum of the subcategories $(YQ(1))^{\chi}$ -mod, as χ ranges over the central characters for which $(YQ(1))^{\chi}$ -mod is nonempty.

Lemma 10.1. Every simple YQ(1)-module in the subcategory $(YQ(1))^{\chi}$ -mod is isomorphic up to change of parity to $V(\mathbf{s}) \otimes \Gamma_f$, where $\mathbf{s} = (s_1, \ldots, s_n)$ is regular typical, which is unique up to permutation.

Proof. Let $\mathbf{C} \subset YQ(1)$ be the unital subalgebra generated by $\{\eta_i \mid i \in \mathbb{N}\}$. Then $V(\mathbf{s})$ and $V(\mathbf{s}) \otimes \Gamma_f$ are isomorphic **C**-modules. Indeed, $\eta_0 = T_{1,-1}^{(1)}$ and by (10.1)

(10.2)
$$\eta_{i+1} = (-\frac{1}{2})[T_{1,1}^{(2)}, \eta_i].$$

Z

Note that

$$\Delta(T_{1,-1}^{(1)}) = T_{1,-1}^{(1)} \otimes 1 + 1 \otimes T_{1,-1}^{(1)}$$

Hence η_0 acts on $V(\mathbf{s}) \otimes \Gamma_f$ as $\eta_0 \otimes 1$. Then it follows by induction from (10.2) that η_i acts on $V(\mathbf{s}) \otimes \Gamma_f$ as $\eta_i \otimes 1$ for all *i*. Then every $\zeta \in \mathbf{C}$ acts as $\zeta \otimes 1$. Hence $V(\mathbf{s})$

and $V(\mathbf{s}) \otimes \Gamma_f$ are isomorphic **C**-modules, and they admit the same central character χ .

On the other hand, YQ(1)-modules $V(\mathbf{s})$ and $V(\mathbf{s}')$, where $\mathbf{s} = (s_1, \ldots, s_n)$ and $\mathbf{s}' = (s'_1, \ldots, s'_m)$ are regular typical, have the same central character χ if and only if n = m and \mathbf{s}' is a permutation of \mathbf{s} .

Indeed, a YQ(1)-module $V(\mathbf{s})$ admits a central character χ . It can be presented using the generating function

$$\chi(u) = \sum_{i=0}^{\infty} \chi_{2i} u^{-2i-1},$$

where $\chi_{2i} = \chi(Z_{2i})$. Let σ_k denote the k-th elementary symmetric polynomial. We proved in [10] that

$$\chi(u) = \frac{\sum_{i=0}^{\infty} \sigma_{2i+1}(\mathbf{s}) u^{-2i-1}}{1 + \sum_{i=1}^{\infty} \sigma_{2i}(\mathbf{s}) u^{-2i}}.$$

Note that $V(s_1, \ldots, s_n)$ and $V(s_1, \ldots, s_n, 0)$ have the same central character. Suppose that $V(\mathbf{s})$ and $V(\mathbf{s}')$ have the same central character χ and \mathbf{s} , \mathbf{s}' are regular typical. Assume that $n \geq m$. Extend \mathbf{s}' to the *n*-tuple $\mathbf{s}'' = (s'_1, \ldots, s'_m, 0, 0, \ldots, 0)$. Then $V(\mathbf{s}'')$ and $V(\mathbf{s})$ have the same central character χ . Note that $\varphi_n(Z) = Z^n$ (see [10]). Thus $\chi = \chi_{\mathbf{s}} \circ \varphi_n = \chi_{\mathbf{s}''} \circ \varphi_n$. Then $\chi_{\mathbf{s}} = \chi_{\mathbf{s}''}$. Hence by Lemma 8.2, \mathbf{s} and \mathbf{s}'' have the same core (up to permutation). Hence m = n and \mathbf{s}' is a permutation of \mathbf{s} . Clearly, if \mathbf{s}' is a permutation of \mathbf{s} , then $\chi_{\mathbf{s}} = \chi_{\mathbf{s}'}$, and hence $V(\mathbf{s})$ and $V(\mathbf{s}')$ have the same central character χ .

Recall that simple modules are partitioned into *blocks*. If two simple modules M_1 and M_2 can be extended nontrivially, i.e., if there is a non-split short exact sequence $0 \longrightarrow M_i \longrightarrow M \longrightarrow M_j \longrightarrow 0$ with $\{i, j\} = \{1, 2\}$, then M_1 and M_2 belong to the same block, and we will say that they are *linked*. Here we agree that M_i is linked to itself. More generally, if there is a finite sequence of simple modules $M = M_1, M_2, \ldots, M_n = N$ such that adjacent pairs belong to the same block, then modules M and N belong to this block. A module M belongs to a block if all its composition factors do. Each block lies in a single $(YQ(1))^{\chi}$ -mod. However, different blocks can belong to the same $(YQ(1))^{\chi}$ -mod: see [2].

11. The subcategory $(YQ(1))^{\chi=0}$ -mod

It follows from Proposition 9.5 that simple modules in the subcategory $(YQ(1))^{\chi=0}$ mod are exactly the 1-dimensional modules Γ_f up to change of parity. Let Γ_f and Γ_g be two YQ(1)-modules, where

(11.1)
$$f(u) = \sum_{k \ge 0} a_{2k} u^{-2k}, \quad g(u) = \sum_{k \ge 0} b_{2k} u^{-2k}, \quad a_0 = b_0 = 1.$$

Recall that Γ_f is linked to itself. If $f \neq g$, then one can easily check that the short exact sequence

 $0 \longrightarrow \Gamma_f \longrightarrow M \longrightarrow \Gamma_g \longrightarrow 0$

splits. Indeed, we have the following relations in YQ(1):

(11.2)
$$[T_{1,1}^{(2k)}, T_{1,-1}^{(1)}] = 2T_{1,-1}^{(2k)}.$$

(11.3)
$$[T_{1,1}^{(2)}, T_{1,-1}^{(2k)}] = 2T_{1,-1}^{(2k+1)} + 2T_{1,-1}^{(2k)} - 2T_{1,1}^{(2k)}T_{1,-1}^{(1)}.$$

(11.4)
$$[T_{1,-1}^{(1)}, T_{1,-1}^{(2k+1)}] = -2T_{1,1}^{(2k+1)}.$$

All odd generators $T_{1,-1}^{(r)}$ act on M by zero, since M is a purely even module. Then $T_{1,1}^{(2k+1)}$ also acts on M by zero by (11.4). Note that $T_{1,1}^{(2k)}$ acts on M as $\begin{pmatrix} a_{2k} & c_{2k} \\ 0 & b_{2k} \end{pmatrix}$, and there exists m such that $a_{2m} \neq b_{2m}$, since $f \neq g$. We can choose a basis in M so that $c_{2m} = 0$. Then $c_{2k} = 0$ for all k, since $T_{1,1}^{(2k)}$ commute. Hence $M \simeq \Gamma_f \oplus \Gamma_g$.

We will determine when Γ_f is linked with $\Pi(\Gamma_g)$. Let $x_k = \frac{1}{2}(a_{2k} - b_{2k})$.

Theorem 11.1. $Ext^1(\Pi(\Gamma_g), \Gamma_f) \neq 0$ if and only if x_1 is an arbitrary complex number and x_k for k > 1 satisfies the recurrence relation

(11.5)
$$x_{k+1} = (x_1 x_k - x_k + a_{2k}) x_1.$$

Proof. Note that the short exact sequence

$$0 \longrightarrow \Gamma_f \longrightarrow M \longrightarrow \Pi(\Gamma_g) \longrightarrow 0$$

is non-split if and only if $T_{1,-1}^{(1)}$ does not act by zero. Indeed, if $T_{1,-1}^{(1)}$ acts by zero, then $T_{1,-1}^{(2k)}$ and $T_{1,-1}^{(2k+1)}$ also act by zero for all k by (11.2) and (11.3), but then $M \simeq \Gamma_f \oplus \Pi(\Gamma_g)$. Clearly, if $M \simeq \Gamma_f \oplus \Pi(\Gamma_g)$, then all odd generators act by zero.

Hence $\operatorname{Ext}^1(\Pi(\Gamma_g), \Gamma_f) \neq 0$ if and only if one can define a representation ρ : $YQ(1) \longrightarrow \operatorname{End}(\mathbb{C}^{1|1})$ such that (up to equivalence)

(11.6)
$$\rho(T_{1,1}^{(2k)}) = \begin{pmatrix} a_{2k} & 0\\ 0 & b_{2k} \end{pmatrix}, \quad \rho(T_{1,-1}^{(1)}) = \begin{pmatrix} 0 & 1\\ 0 & 0 \end{pmatrix}.$$

Then

(11.7)
$$\rho(T_{1,-1}^{(2k)}) = \begin{pmatrix} 0 & \frac{1}{2}(a_{2k} - b_{2k}) \\ 0 & 0 \end{pmatrix},$$

(11.8)
$$\rho(T_{1,-1}^{(2k+1)}) = \begin{pmatrix} 0 & \frac{1}{4}(a_2 - b_2)(a_{2k} - b_{2k}) + \frac{1}{2}(a_{2k} + b_{2k}) \\ 0 & 0 \end{pmatrix},$$

(11.9)
$$\rho(T_{1,1}^{(2k+1)}) = 0.$$

Here (11.7) follows from (11.6) and the relation (11.2), (11.8) follows from (11.6), (11.7), and (11.3), and (11.9) follows from (11.8) and (11.4).

Let $x_k = \frac{1}{2}(a_{2k} - b_{2k})$. Then from (11.7)

(11.10)
$$\rho(T_{1,-1}^{(2k)}) = \begin{pmatrix} 0 & x_k \\ 0 & 0 \end{pmatrix},$$

and from (11.8)

(11.11)
$$\rho(T_{1,-1}^{(2k+1)}) = \begin{pmatrix} 0 & x_1 x_k - x_k + a_{2k} \\ 0 & 0 \end{pmatrix},$$

The recurrence relation (4.3) with m = 2k - 1 and r = 2p + 2 gives the relation

$$([T_{1,1}^{(2k)}, T_{1,-1}^{(2p+1)}] - [T_{1,1}^{(2k-2)}, T_{1,-1}^{(2p+3)}]) =$$

$$(11.12) \quad T_{1,1}^{(2k-1)}T_{1,-1}^{(2p+1)} + T_{1,1}^{(2k-2)}T_{1,-1}^{(2p+2)} - T_{1,1}^{(2p+1)}T_{1,-1}^{(2k-1)} - T_{1,1}^{(2p+2)}T_{1,-1}^{(2k-2)} + T_{-1,1}^{(2k-1)}T_{-1,-1}^{(2p+1)} - T_{-1,1}^{(2k-2)}T_{-1,-1}^{(2p+2)} - T_{1,-1}^{(2p+1)}T_{1,1}^{(2k-1)} + T_{1,-1}^{(2p+2)}T_{1,1}^{(2k-2)}.$$

From (11.12) and (11.6), (11.10), (11.11), (11.9) we obtain the relation

$$x_1 x_p x_k + (a_{2p} - x_p) x_k - x_1 x_{p+1} x_{k-1} = x_{p+1} (a_{2k-2} - x_{k-1})$$

If p = 0 (and $a_0 = 1, x_0 = 0$) we have

$$x_k - x_1^2 x_{k-1} = x_1 (a_{2k-2} - x_{k-1}),$$

which is equivalent to (11.5). On the other hand, one can check that ρ defined by (11.6), (11.9), (11.10) and (11.11), with x_k satisfying (11.5), preserves the relations (4.3).

Corollary 11.2. Let $x_k = \frac{1}{2}(b_{2k} - a_{2k})$. Then $\text{Ext}^1(\Gamma_f, \Pi(\Gamma_g)) \neq 0$ if and only if x_1 is an arbitrary complex number and x_k for k > 1 satisfies the recurrence relation

(11.13)
$$x_{k+1} = (x_1 x_k + x_k + a_{2k}) x_1.$$

12. Towards the general case: the subcategory $(YQ(1))^{\chi}$ -mod

Making use of Lemma 10.1, we would like to determine conditions under which two YQ(1)-modules $V(\mathbf{s}) \otimes \Gamma_f$ and $V(\mathbf{s}) \otimes \Gamma_g$ can be extended nontrivially.

We will consider the case, when $\mathbf{s} = (s)$. We denote $V(\mathbf{s})$ by V(s).

Proposition 12.1. Let $V(s) \otimes \Gamma_f$ and $V(s) \otimes \Gamma_g$ be YQ(1)-modules, where $s \neq 0$, let f(u) and g(u) be given by (11.1), and let $x_k = \frac{1}{2}(a_{2k} - b_{2k})$. Then $Ext^1(V(s) \otimes \Pi(\Gamma_g), V(s) \otimes \Gamma_f) \neq 0$ if and only if x_k satisfies the recurrence relation (11.5).

Proof. First, show that if

(12.1)
$$0 \longrightarrow \Gamma_f \longrightarrow \mathbb{C}^{1|1} \longrightarrow \Pi(\Gamma_g) \longrightarrow 0$$

is a non-split short exact sequence of YQ(1)-modules, then the short exact sequence of YQ(1)-modules

(12.2)
$$0 \longrightarrow V(s) \otimes \Gamma_f \longrightarrow V(s) \otimes \mathbb{C}^{1|1} \longrightarrow V(s) \otimes \Pi(\Gamma_g) \longrightarrow 0$$

is non-split if and only if $x_1 \neq s$.

Let $\mathbb{C}^{1|1} = \langle \mathbf{1} | \mathbf{\bar{1}} \rangle$ and $V(s) = \langle v | w \rangle$, where $\mathbf{1}$ and v are even and $\mathbf{\bar{1}}$ and w are odd. Note that $T_{1,1}^{(1)}$ and $T_{1,-1}^{(1)}$ act on V(s) as $\begin{pmatrix} -s & 0 \\ 0 & -s \end{pmatrix}$ and $\begin{pmatrix} 0 & \sqrt{s} \\ \sqrt{s} & 0 \end{pmatrix}$, respectively, and $T_{1,1}^{(r)}$ and $T_{1,-1}^{(r)}$ act by zero if $r \geq 2$. Let $\Gamma_f = \langle \mathbf{1} \rangle$. Suppose that $V(s) \otimes \mathbb{C}^{1|1} = V(s) \otimes \Gamma_f \oplus M$ is a direct sum of YQ(1)-modules. Then $M = \langle X | Y \rangle$, where

(12.3)
$$X = a(v \otimes \mathbf{i}) + (w \otimes \overline{\mathbf{i}}), \quad a \in \mathbb{C},$$

$$Y := T_{1,-1}^{(1)}(X) = (a\sqrt{s} - 1)(w \otimes 1) + \sqrt{s}(v \otimes \bar{1}).$$

Obviously, $T_{1,1}^{(n)}(X) = \lambda_n X$ for some $\lambda_n \in \mathbb{C}$. If *n* is even this implies that $2x_1 a = \sqrt{s}$, and if *n* is odd, then $2a\sqrt{s} = 1$. Hence $x_1 = s$. One can easily check that if $x_1 = s$, then *M* defined by (12.3), where $a = \frac{1}{2\sqrt{s}}$, is a YQ(1)-submodule of $V(s) \otimes \mathbb{C}^{1|1}$.

Next, suppose that there is a non-split short exact sequence of YQ(1)-modules

(12.4)
$$0 \longrightarrow V(s) \otimes \Gamma_f \longrightarrow M \longrightarrow V(s) \otimes \Pi(\Gamma_g) \longrightarrow 0.$$

Describe the action of YQ(1) on $V(s) \otimes \Gamma_f$. Recall that YQ(1) is generated by $T_{1,1}^{(2k)}$ and $T_{1,-1}^{(1)}$ (see [10], Lemma 5.1). Let $\{v, w\}$ be a basis of V(s), and $\Gamma_f = \langle 1 \rangle$. Then $V(s) \otimes \Gamma_f = \langle v_1 | w_1 \rangle$, where $v_1 = v \otimes 1$ and $w_1 = w \otimes 1$. The action of $T_{1,1}^{(2k)}$ and $T_{1,-1}^{(1)}$ with respect to this basis is given by the matrices $\begin{pmatrix} a_{2k} & 0 \\ 0 & a_{2k} \end{pmatrix}$ and $\begin{pmatrix} 0 & \sqrt{s} \\ \sqrt{s} & 0 \end{pmatrix}$, respectively.

Let f and g be given by (11.1), and let $x_k = \frac{1}{2}(a_{2k}-b_{2k})$. Assume that $f \neq g$. Then there exists m such that $a_{2m} \neq b_{2m}$. We can choose a basis in M: $\{v_1, w_1, v_2, w_2\}$, where v_1 and v_2 are even and w_1 and w_2 are odd, with respect to which the action of $T_{1,1}^{(2m)}$ is given by a diagonal matrix, and since all $T_{1,1}^{(2k)}$ commute, they also act by diagonal matrices:

(12.5)
$$\begin{pmatrix} a_{2k} & 0 & 0 & 0 \\ 0 & a_{2k} & 0 & 0 \\ 0 & 0 & b_{2k} & 0 \\ 0 & 0 & 0 & b_{2k} \end{pmatrix}$$

We choose a basis so that in addition $T_{1,-1}^{(1)}$ acts by

(12.6)
$$\begin{pmatrix} 0 & \sqrt{s} & 0 & 1\\ \sqrt{s} & 0 & -1 & 0\\ 0 & 0 & 0 & \sqrt{s}\\ 0 & 0 & \sqrt{s} & 0 \end{pmatrix}$$

Using (11.2)-(11.4) we obtain that the action of $T_{1,-1}^{(2k)}$ and $T_{1,-1}^{(2k+1)}$ on M is given by the following matrices, respectively:

$$\begin{pmatrix} (12.7) \\ 0 & 0 & 0 & x_k \\ 0 & 0 & -x_k & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & a_{2k}\sqrt{s} & 0 & x_1x_k - x_k + a_{2k} \\ a_{2k}\sqrt{s} & 0 & -(x_1x_k - x_k + a_{2k}) & 0 \\ 0 & 0 & 0 & b_{2k}\sqrt{s} \\ 0 & 0 & b_{2k}\sqrt{s} & 0 \end{pmatrix},$$

and $T_{1,1}^{\left(2k+1\right)}$ acts by

(12.8)
$$\begin{pmatrix} -a_{2k}s & 0 & 0 & x_k\sqrt{s} \\ 0 & -a_{2k}s & -x_k\sqrt{s} & 0 \\ 0 & 0 & -b_{2k}s & 0 \\ 0 & 0 & 0 & -b_{2k}s \end{pmatrix}.$$

Then using the relation (11.12), we can show that x_k are determined exactly by the recurrence relation (11.5). If f = g, then all x_k are zero. Clearly, they satisfy (11.5). On the other hand, one can define the action of YQ(1) on M by (12.5), (12.7) and (12.8), where x_k satisfy the recurrence relation (11.5), and show that this actions respects (4.3).

Remark 12.2. Note that if $x_1 \neq 0, s$, then M is isomorphic to the YQ(1)-module $V(s) \otimes \mathbb{C}^{1|1}$ defined by (12.2). Indeed, let $V(s) = \langle v | w \rangle$ and $\mathbb{C}^{1|1} = \langle \mathbf{1} | \bar{\mathbf{1}} \rangle$. Then $V(s) \otimes \mathbb{C}^{1|1} = \langle v \otimes \mathbf{1}, w \otimes \mathbf{1} | w \otimes \bar{\mathbf{1}}, v \otimes \bar{\mathbf{1}} \rangle$. Note that in this basis $T_{1,1}^{(2)}$ acts by

(12.9)
$$\begin{pmatrix} a_2 & 0 & -\sqrt{s} & 0 \\ 0 & a_2 & 0 & \sqrt{s} \\ 0 & 0 & b_2 & 0 \\ 0 & 0 & 0 & b_2 \end{pmatrix}.$$

If $x_1 \neq 0$, one can choose a basis so that the matrix of $T_{1,1}^{(2)}$ is diagonal, and correspondingly, the matrices for all $T_{1,1}^{(2k)}$ are given by (12.5). Also, if $x_1 \neq s$, then multiplying $v \otimes i$ and $w \otimes i$ by $1 - \frac{s}{x_1}$, we obtain that $T_{1,-1}^{(1)}$ acts in this basis by the matrix (12.6). Then $M \simeq V(s) \otimes \mathbb{C}^{1|1}$, since YQ(1) is generated by $T_{1,1}^{(2k)}$ and $T_{1,-1}^{(1)}$.

Conjecture 12.3. Let S be a simple finite-dimensional YQ(1)-module. Let $n \ge 2$, $\mathbf{s} = (s_1, s_2, \ldots, s_n)$ be regular typical, and let f(u) and g(u) be given by (11.1). Let $x_k = \frac{1}{2}(a_{2k} - b_{2k})$. Then

$$Ext^1(S, V(\mathbf{s}) \otimes \Gamma_f) \neq 0$$

if and only if $S \simeq V(\mathbf{s}) \otimes \Pi(\Gamma_g)$, where x_1 is an arbitrary complex number and x_k for k > 1 satisfies the recurrence relation (11.5). The short exact sequence (12.2) is non-split.

13. The category W^n -mod

Let W^n -mod be the category of finite-dimensional W^n -modules. Let $(W^n)^{\chi}$ -mod be the full subcategory of modules admitting generalized central character χ . The category W^n -mod is the direct sum of subcategories $(W^n)^{\chi}$ -mod, as χ ranges over the central characters χ for which $(W^n)^{\chi}$ -mod is nonempty. We proved in [10] (Lemma 4.12) that a simple W^n -module S belongs to $(W^n)^{\chi}$ - mod if and only if it is isomorphic (up to change of parity) to $S(\mathbf{t}, \lambda)$ with $\lambda = c(\chi)$.

14. The subcategory $(W^n)^{\chi=0}$ -mod

Note that simple modules in the subcategory $(W^n)^{\chi=0}$ -mod are exactly the 1dimensional modules $S(\mathbf{t})$ up to change of parity (see [10]).

Theorem 14.1. Fix $\mathbf{t} = (t_1, \ldots, t_p)$ and $\mathbf{t}' = (t'_1, \ldots, t'_q)$, where p and q are less than or equal to $\frac{n}{2}$. Consider the W^n -modules $S(\mathbf{t})$ and $S(\mathbf{t}')$. Define $a_{2k} = \sigma_k(t_1, \ldots, t_p)$ for $k = 1, \ldots, p$, $a_{2k} = 0$ for k > p. Similarly, define $b_{2k} = \sigma_k(t'_1, \ldots, t'_q)$ for $k = 1, \ldots, q$, $b_{2k} = 0$ for k > q. Let $x_k = \frac{1}{2}(a_{2k} - b_{2k})$.

(a) If $S(\mathbf{t})$ is a nontrivial W^n -module, then $\operatorname{Ext}^1(\Pi(S(\mathbf{t}')), S(\mathbf{t})) \neq 0$ if and only if $x_1 \neq 0$ and x_k for k > 1 satisfies the recurrence relation (11.5) or $S(\mathbf{t}')$ is isomorphic to $S(\mathbf{t})$ and n > 2p.

(b) If $S(\mathbf{t}) = \mathbb{C}^{1|0}$ is the trivial W^n -module, then $\operatorname{Ext}^1(\Pi(S(\mathbf{t}')), S(\mathbf{t})) \neq 0$ if and only if $S(\mathbf{t}') = \mathbb{C}^{1|0}$ or $\mathbf{t}' = (t'_1)$ with $t'_1 = -2$.

Proof. Suppose that $\operatorname{Ext}^1(\Pi(S(\mathbf{t}')), S(\mathbf{t})) \neq 0$. Lift $S(\mathbf{t})$ and $S(\mathbf{t}')$ to YQ(1)-modules Γ_f and Γ_g , respectively, where f and g are given by (11.1). Then $\operatorname{Ext}^1(\Pi(\Gamma_g), \Gamma_f)) \neq 0$. Hence by Theorem 11.1, x_k satisfy (11.5). Note that if $x_1 = 0$, then all $x_k = 0$ and hence $S(\mathbf{t}')$ is isomorphic to $S(\mathbf{t})$. One can show that if $S(\mathbf{t})$ is a nontrivial W^n -module, which is linked with $\Pi(S(\mathbf{t}))$, then n > 2p. Indeed, suppose that n = 2p. Then there exists a non-split short exact sequence

(14.1)
$$0 \longrightarrow S(\mathbf{t}) \longrightarrow M \longrightarrow \Pi(S(\mathbf{t})) \longrightarrow 0.$$

We lift the W^n -module M to a YQ(1)-module. Then the action of YQ(1) on M is given by (11.6)-(11.9) (up to equivalence), where $a_{2k} = b_{2k}$ for all k. Then

(14.2)
$$\rho(T_{1,-1}^{(2p+1)}) = \begin{pmatrix} 0 & a_{2p} \\ 0 & 0 \end{pmatrix}.$$

Note that $\rho(T_{1,-1}^{(2p+1)}) = 0$, since 2p + 1 > n. Hence $a_{2p} = 0$, but

$$a_{2p} = \sigma_p(t_1, \dots, t_p) = t_1 \cdot \dots \cdot t_p$$

Hence $t_i = 0$ for some *i*. A contradiction, since all t_i are nonzero.

Conversely, show that if x_k satisfy (11.5), then the lifted modules Γ_f and $\Pi(\Gamma_g)$ are linked (see (12.1)). Assume that $x_1 \neq 0$. Then (11.5) implies that

$$x_1 x_k - x_k + a_{2k} = 0$$

for $2k \ge n$, if *n* is even, and for $2k \ge n-1$, if *n* is odd. Hence $\rho(T_{1,-1}^{(r)}) = 0$ if r > nby (11.10) and (11.11), and $\rho(T_{1,1}^{(r)}) = 0$ if r > n by (11.6) and (11.9). Recall that the kernel of the surjective homomorphism $\varphi_n : YQ(1) \longrightarrow W^n$ is generated by $T_{1,1}^{(r)}$ and $T_{1,-1}^{(r)}$, where r > n. This allows one to define a representation $\mu : W^n \longrightarrow \operatorname{End}(\mathbb{C}^{1|1})$ such that $\rho = \mu \circ \varphi_n$. Thus $S(\mathbf{t})$ is linked with $\Pi(S(\mathbf{t}'))$.

If $S(\mathbf{t}) = \mathbb{C}^{1|0}$, then $a_{2k} = 0$ for $k \ge 1$. From (11.5), $x_1 = 0$ or $x_1 = 1$. In the first case $x_k = 0$ and $b_{2k} = 0$ for $k \ge 1$. Hence $S(\mathbf{t}')$ is the trivial module. In the second case, $x_1 = 1$ and $x_k = 0$ for $k \ge 2$, $b_2 = -2$, and $b_{2k} = 0$ for $k \ge 2$. Hence $\mathbf{t}' = (t'_1)$ with $t'_1 = -2$.

Finally, assume that $S(\mathbf{t})$ is a nontrivial W^n -module and n > 2p. Let r = n - 2p. Recall that there is an embedding $W^n \hookrightarrow W^r \otimes (W^2)^{\otimes p}$, and

$$S(\mathbf{t}) = \mathbb{C} \boxtimes \Gamma_{t_1} \boxtimes \cdots \boxtimes \Gamma_{t_p},$$

where the first term \mathbb{C} in the tensor product denotes the trivial W^r -module. By (b), there exists a non-split short exact sequence of W^r -modules

$$(14.3) 0 \longrightarrow \mathbb{C}^{1|0} \longrightarrow \mathbb{C}^{1|1} \longrightarrow \mathbb{C}^{0|1} \longrightarrow 0.$$

Consider the W^n -module $M = \mathbb{C}^{1|1} \boxtimes \Gamma_{t_1} \boxtimes \cdots \boxtimes \Gamma_{t_p}$. Then we obtain an exact sequence (14.1), which is non-split. Indeed, let ξ_i for $i = 1, \ldots, r$ be odd elementary matrices in Q(r), and ξ_j^1, ξ_j^2 be odd elementary matrices in Q(2) for $j = 1, \ldots, p$, see (2.1). Recall that there is a surjective homomorphism $\varphi_n : YQ(1) \longrightarrow W^n$ for every n, see Proposition 5.2. Note that $\varphi_r(T_{1,-1}^{(1)}) = \xi_1 + \ldots + \xi_r$ by (2.6) in [10]. Because the exact sequence (14.3) is non-split, the action of $\varphi_r(T_{1,-1}^{(1)})$ on $\mathbb{C}^{1|1}$ is nonzero. Also,

$$\varphi_{r+2p}(T_{1,-1}^{(1)}) = \sum_{i=1}^{r} \xi_i \otimes 1^{\otimes p} + \sum_{j=1}^{p} 1 \otimes 1^{\otimes (j-1)} \otimes (\xi_j^1 + \xi_j^2) \otimes 1^{\otimes (p-j)}$$

by (2.6) and (3.10) in [10]. Note that ξ_j^1 and ξ_j^2 act on Γ_{t_j} by zero for $j = 1, \ldots, p$. Hence $\varphi_{r+2p}(T_{1,-1}^{(1)})$ acts on M as $(\xi_1 + \ldots + \xi_r) \otimes 1^{\otimes p}$, and this action is nonzero. Thus $\operatorname{Ext}^1(\Pi(S(\mathbf{t})), S(\mathbf{t})) \neq 0$.

Remark 14.2. Suppose that Γ_f is lifted from a nontrivial module $S(\mathbf{t})$, and assume that $\operatorname{Ext}^1(\Pi(\Gamma_g), \Gamma_f) \neq 0$. Note that Γ_g is lifted from some W^n -module $S(\mathbf{t}')$ which is not isomorphic to $S(\mathbf{t})$, if and only if $x_{\frac{n+2}{2}} = 0$ if n is even and $x_{\frac{n+1}{2}} = 0$ if n is odd, see (11.5). This means that x_1 is a (nonzero) root of the polynomial of degree n(respectively, n-1) defined by the recurrence relation (11.5) if n is even (respectively, odd). Then we set $b_{2k} = a_{2k} - 2x_k$ for all k and find $\mathbf{t}' = (t'_1, \ldots, t'_q)$ such that $b_{2k} = \sigma_k(\mathbf{t}')$. Here \mathbf{t}' is defined up to permutation of t'_1, \ldots, t'_q , and we delete all zero entries. Then $\operatorname{Ext}^1(\Pi(S(\mathbf{t}')), S(\mathbf{t})) \neq 0$. Also, if n > 2p, then $\operatorname{Ext}^1(\Pi(S(\mathbf{t})), S(\mathbf{t})) \neq$ 0. Moreover, all modules $S(\mathbf{t}')$ satisfying the above formula are obtained in this way.

Corollary 14.3. (a) If $S(\mathbf{t})$ is a nontrivial W^n -module, then $\operatorname{Ext}^1(S(\mathbf{t}), \Pi(S(\mathbf{t}'))) \neq 0$ if and only if $x_k := \frac{1}{2}(b_{2k} - a_{2k})$ satisfies the recurrence relation (11.13) for k > 0 and $x_1 \neq 0$ or $S(\mathbf{t}')$ is isomorphic to $S(\mathbf{t})$ and n > 2p.

(b) If $S(\mathbf{t})$ is a trivial W^n -module, then $\operatorname{Ext}^1(S(\mathbf{t}), \Pi(S(\mathbf{t}'))) \neq 0$ if and only if $S(\mathbf{t}') = \mathbb{C}^{1|0}$ or $\mathbf{t}' = (t'_1)$ with $t'_1 = -2$.

15. BLOCKS IN THE CATEGORY W^2 -mod

Lemma 15.1. Let n = 2. A simple W^2 -module S belongs to $(W^2)^{\chi}$ – mod if and only if one of the following three cases takes place:

- (1) $S \simeq V(s_1, s_2)$ for $s_1 \neq -s_2, s_1, s_2 \neq 0$ and $c(\chi) = (s_1, s_2)$, (2) $S \simeq V(s, 0)$ for $s \neq 0$ and $c(\chi) = (s)$,
- (3) $S \simeq \Gamma_t$ or $\Pi(\Gamma_t)$ and $\chi = 0$.

Proof. Follows from Lemma 4.12 in [10].

Theorem 15.2. (1) Each simple W^2 -module $V(s_1, s_2)$ for $s_1 \neq -s_2, s_1, s_2 \neq 0$ forms a block in $(W^2)^{\chi}$ -mod, where $c(\chi) = (s_1, s_2)$.

(2) Each simple W^2 -module V(s,0) for $s \neq 0$ forms a block in $(W^2)^{\chi}$ -mod, where $c(\chi) = (s)$.

(3) The blocks in the subcategory $(W^2)^{\chi=0}$ -mod are described as follows. Let $a \in \mathbb{C}$. Define

(15.1)
$$a_n = a - n^2 + n\sqrt{1 - 4a} \text{ for } n = 0, \pm 1, \pm 2, \dots$$

Then Γ_a lies in the block formed by Γ_{a_n} if n is even and $\Pi\Gamma_{a_n}$, if n is odd. $\Pi\Gamma_a$ lies in the block formed by $\Pi\Gamma_{a_n}$ if n is even and Γ_{a_n} , if n is odd.

Proof. Statements (1) and (2) follow from Lemma 8.2 and Lemma 15.1. To prove (3), first we will show that Γ_a is linked with $\Pi\Gamma_b$ if and only if

(15.2)
$$b = a - 1 \pm \sqrt{1 - 4a}.$$

Let $S(\mathbf{t}) = \Gamma_a$ and $S(\mathbf{t}') = \Gamma_b$. Set $a_0 = b_0 = 1$, $a_2 = a$, $b_2 = b$ and $a_{2k} = b_{2k} = 0$ for k > 1, $x_k = \frac{1}{2}(a_{2k} - b_{2k})$ for $k \ge 0$. Suppose $a \ne 0$, then by Theorem 14.1 (a)

$$x_2 = (x_1^2 - x_1 + a_2)x_1,$$

and x_1 must satisfy $x_1^2 - x_1 + a_2 = 0$. Hence $x_1 = \frac{1}{2}(1 \pm \sqrt{1-4a})$. Thus $b = a - 1 \pm \sqrt{1-4a}$. Note that Corollary 14.3 (a) gives the same result.

If a = 0, then by Theorem 14.1 (b) we have that b = 0 or b = -2. Hence (15.2) holds.

Note that b is a root of the equation

(15.3)
$$b^2 + (2-2a)b + (a^2+2a) = 0$$

The sum of the roots of equation (15.3) is 2a - 2. This gives the relation

(15.4)
$$a_{n-1} + a_{n+1} = 2a_n - 2 \quad (a_n = a).$$

Then (15.2) and (15.4) imply (15.1).

Example 15.3. (1) a = 0, then $a_n = n(1 - n)$ and Γ_0 lies in the block

$$\dots, \Gamma_{-30}, \Pi\Gamma_{-20}, \Gamma_{-12}, \Pi\Gamma_{-6}, \Gamma_{-2}, , \Pi\Gamma_0, \Gamma_0, \Pi\Gamma_{-2}, \Gamma_{-6}, \Pi\Gamma_{-12}, \Gamma_{-20}, \Pi\Gamma_{-30}, \dots$$

(2) $a = \frac{1}{4}$, then $a_n = \frac{1}{4} - n^2$ and $\Gamma_{\frac{1}{4}}$ lies in the block

$$\Gamma_{\frac{1}{4}},\Pi\Gamma_{-\frac{3}{4}},\Gamma_{-\frac{15}{4}},\ldots$$

(3)
$$a = 1$$
, then $a_n = 1 - n^2 + n\sqrt{-3}$ and Γ_1 lies in the block

$$\dots, \Pi\Gamma_{-3\sqrt{-3}-8}, \Gamma_{-2\sqrt{-3}-3}, \Pi\Gamma_{-\sqrt{-3}}, \Gamma_1, \Pi\Gamma_{\sqrt{-3}}, \Gamma_{2\sqrt{-3}-3}, \Pi\Gamma_{3\sqrt{-3}-8}, \dots$$

Acknowledgement . This research was supported by Simons Foundation Collaboration Grant 354874. This work has been partly done at the Max-Planck-Institut für Mathematik in Bonn in the summer of 2022. I wish to thank the MPIM for the hospitality and support. I am grateful to V. Serganova for very helpful discussions.

References

- S.-J. Cheng and W. Wang, Dualities and representations of Lie superalgeras, Graduate Studies in Mathematics 144 (Providence, RI: American Mathematical Society, 2012), pp. 94-95.
- J. Humphreys, Representations of semisimple Lie algebras in the BGG category O, Graduate Studies in Mathematics 94 (Providence, RI: American Mathematical Society, 2008), pp. 30–32.
- 3. V. G. Kac, Lie superalgebras, Adv. Math. 26 (1977) 8-96.
- V. G. Kac, Representations of classical Lie superalgebras, Differential geometrical methods in mathematical physics, II (Proc. Conf., Univ. Bonn, Bonn, 1977), pp. 597-626. Lecture Notes in Math. vol 676, Springer, Berlin, 1978.
- M. Nazarov, Yangians of the "strange" Lie superalgebras, in: P.P. Kulish (Ed.), Quantum Groups, Lecture Notes in Mathematics, vol. 1510, 1992, Springer, Berlin-Heidelberg, pp. 90– 97.
- 6. M. Nazarov, Yangian of the queer Lie superalgebra, Comm. Math. Phys. 208 (1999) 195–223.
- 7. A. Sergeev, The centre of enveloping algebra for Lie superalgebra $Q(n, \mathbb{C})$, Lett. Math. Phys. 7 (1983) 177–179.

- 8. E. Poletaeva, V. Serganova, On Kostant's theorem for the Lie superalgebra Q(n), Adv. Math. **3**00 (2016) 320–359. arXiv:1403.3866v1 [Math RT].
- 9. E. Poletaeva, V. Serganova, On the finite W-algebra for the Lie superalgebra Q(n) in the non-regular case, J. Math. Phys. **5**8(11) (2017) 111701. arXiv:1705.10200v1 [Math RT].
- 10. E. Poletaeva, V. Serganova, Representations of principal W-algebra for the superalgebra Q(n) and the super Yangian YQ(1), J. Algebra 570 (2021) 140–163. arXiv:1903.05272v3 [math RT].
- 11. E. Poletaeva, Blocks in the category of finite-dimensional representations of principal W-algebra for Q(2), Journal of Physics: Conference Series 1416 (2019) 012028.
- 12. E. Poletaeva, On 1-dimensional modules over the super-Yangian of the superalgebra Q(1), in: Proceedings of the XIV International Workshop "Lie Theory and Its Applications in Physics", (Sofia, Bulgaria, June 2021, on-line), ed. V. Dobrev, Springer Proceedings in Mathematics and Statistics, Vol. **3**96, (Springer, Heidelberg-Tokyo, 2022). To appear.
- 13. A. Premet, Special transverse slices and their enveloping algebras, Adv. Math. 170 (2002) 1–55.