Max-Planck-Institut für Mathematik Bonn

On linked modules over the super-Yangian of the superalgebra $Q(1)$

by

Elena Poletaeva

Max-Planck-Institut für Mathematik Preprint Series 2022 (56)

On linked modules over the super-Yangian of the superalgebra $Q(1)$

by
Elena Poletaeva

Max-Planck-Institut für Mathematik
Vivatsgasse 7
53111 Bonn
Germany

School of Mathematical and
Statistical Sciences
University of Texas Rio Grande Valley
Edinburg, TX 78539
USA

ON LINKED MODULES OVER THE SUPER-YANGIAN OF THE SUPERALGEBRA $Q(1)$

ELENA POLETAEVA

School of Mathematical and Statistical Sciences, University of Texas Rio Grande Valley, Edinburg, TX 78539, USA.

E-Mail: elena.poletaeva@utrgv.edu

Abstract

Let $Q(n)$ be the queer Lie superalgebra. We determine conditions under which two 1-dimensional modules over the super-Yangian of $Q(1)$ can be extended nontrivially, and thus belong to the same block of the subcategory of finitedimensional $Y Q(1)$-modules admitting generalized central character $\chi=0$. We use these results to determine conditions under which two 1-dimensional modules over the finite W-algebra for $Q(n)$ can be extended nontrivially. We describe blocks in the category of finite-dimensional modules over the finite W-algebra for $Q(2)$. In certain cases we determine conditions under which two simple finite-dimensional $Y Q(1)$-modules admitting central character $\chi \neq 0$ can be extended nontrivially and propose a conjecture in the general case.

1. Introduction

The queer Lie superalgebra $Q(n)$ is a fixed point subalgebra of the general linear Lie superalgebra $\mathfrak{g l}(n \mid n)$ relative to certain involutive automorphism.

We started to study the representation theory of the finite W-algebra W^{n} for $Q(n)$ associated with the principal nilpotent coadjoint orbits in [8]. We have shown that all irreducible representations of W^{n} are finite-dimensional. In [10] we classified irreducible representations of W^{n} (Theorem 4.7). We used these results to classify irreducible finite-dimensional representations of the super-Yangian $Y Q(1)$ of $Q(1)$ (Theorem 5.13). A natural problem is to describe blocks in the subcategory of finite-dimensional $Y Q(1)$-modules and in the subcategory of finite-dimensional W^{n}-modules admitting a given generalized central character χ. We initiated the study of blocks in these subcategories in [11, 12]. If $\chi=0$, then the simple modules in these subcategories are 1-dimensional. In this paper we determine when two 1-dimensional $Y Q(1)$-modules can be extended nontrivially, and thus belong to the same block (Theorem 11.1). We use these results and results of [10] to determine when two 1-dimensional W^{n}-modules can be extended nontrivially (Theorem 14.1). Using Theorem 14.1, we describe blocks in the category of finite-dimensional modules over W^{2} (Theorem 15.2).

Every simple finite-dimensional module over $Y Q(1)$ is isomorphic (up to change of parity) to $V(\mathbf{s}) \otimes \Gamma_{f}$, where $V(\mathbf{s})$ is a simple $Y Q(1)$-module parameterized by an n-tuple of nonzero complex numbers $\mathbf{s}=\left(s_{1}, s_{2}, \ldots, s_{n}\right)$ such that $s_{i}+s_{j} \neq 0$ for all $i<j$, and Γ_{f} is a 1-dimensional $Y Q(1)$-module, which is defined by certain generating function $f(u) \in Y Q(1)\left[\left[u^{-2}\right]\right]$. If $n \geq 1$, then $V(\mathbf{s}) \otimes \Gamma_{f}$ admits a nontrivial central character. In the case when $\mathbf{s}=\left(s_{1}\right)$, we determine conditions under which two simple modules of type $V\left(s_{1}\right) \otimes \Gamma_{f}$ can be extended nontrivially (Proposition 12.1). We propose a conjecture in the general case when $\mathbf{s}=\left(s_{1}, s_{2}, \ldots, s_{n}\right)$ (Conjecture 12.3).

2. The Lie superalgebra $Q(n)$

Consider the general linear Lie superalgebra $\mathfrak{g l}(n \mid n)$ with the standard basis $E_{i j}$, where $i, j= \pm 1, \ldots, \pm n$. Define the parity of i by

$$
p(i)=0 \text { if } i>0 \text { and } p(i)=1 \text { if } i<0 .
$$

Let η be an involutive automorphism of $\mathfrak{g l}(n \mid n)$ defined by

$$
\eta\left(E_{i j}\right)=E_{-i,-j} .
$$

The queer Lie superalgebra $Q(n)$ is the fixed point subalgebra in $\mathfrak{g l}(n \mid n)$ relative to η. Recall that $Q(n)$ can also be defined as follows (see [3]). Equip $\mathbb{C}^{n \mid n}$ with the odd operator ζ such that $\zeta^{2}=-\mathrm{Id}$. Then $Q(n)$ is the centralizer of ζ in the Lie superalgebra $\mathfrak{g l}(n \mid n)$. Let $\zeta=\left(\begin{array}{cc}0 & I_{n} \\ -I_{n} & 0\end{array}\right)$. It is easy to see that $Q(n)$ consists of matrices of the form

$$
\left(\begin{array}{ll}
A & B \\
B & A
\end{array}\right)
$$

where A, B are $n \times n$-matrices. Let

$$
\left\{e_{i, j}, f_{i, j} \mid i, j=1, \ldots, n\right\}
$$

denote the basis in $Q(n)$ consisting of elementary even and odd matrices. Set

$$
\begin{equation*}
\xi_{i}:=(-1)^{i+1} f_{i, i}, x_{i}:=\xi_{i}^{2}=e_{i, i} \tag{2.1}
\end{equation*}
$$

3. The finite W-algebra for $Q(n)$

Let W^{n} be the finite W-algebra associated with a principal even nilpotent element φ in the coadjoint representation of $\mathfrak{g}=Q(n)$. Let us recall its definition (see [13]). We fix the Cartan subalgebra $\mathfrak{h} \subset \mathfrak{g}$ to be the set of matrices with diagonal A and B. By \mathfrak{n}^{+}(respectively, \mathfrak{n}^{-}) we denote the nilpotent subalgebras consisting of matrices with strictly upper triangular (respectively, low triangular) A and B.

The Lie superalgebra \mathfrak{g} has the triangular decomposition $\mathfrak{g}=\mathfrak{n}^{-} \oplus \mathfrak{h} \oplus \mathfrak{n}^{+}$, and we set $\mathfrak{b}=\mathfrak{n}^{+} \oplus \mathfrak{h}$. Choose $\varphi \in \mathfrak{g}^{*}$ such that

$$
\varphi\left(f_{i, j}\right)=0, \quad \varphi\left(e_{i, j}\right)=\delta_{i, j+1} .
$$

Let I_{φ} be the left ideal in $U(\mathfrak{g})$ generated by $x-\varphi(x)$ for all $x \in \mathfrak{n}^{-}$. Let $\pi: U(\mathfrak{g}) \rightarrow$ $U(\mathfrak{g}) / I_{\varphi}$ be the natural projection. Then

$$
W^{n}=\left\{\pi(y) \in U(\mathfrak{g}) / I_{\varphi} \mid \operatorname{ad}(x) y \in I_{\varphi} \text { for all } x \in \mathfrak{n}^{-}\right\}
$$

Using the identification of $U(\mathfrak{g}) / I_{\varphi}$ with the Whittaker module $U(\mathfrak{g}) \otimes_{U\left(\mathfrak{n}^{-}\right)} \mathbb{C}_{\varphi} \simeq$ $U(\mathfrak{b}) \otimes \mathbb{C}$, we can consider W^{n} as a subalgebra of $U(\mathfrak{b})$. The natural projection ϑ : $U(\mathfrak{b}) \rightarrow U(\mathfrak{h})$ with the kernel $\mathfrak{n}^{+} U(\mathfrak{b})$ is called the Harish-Chandra homomorphism. It is proven in [8] that the restriction of ϑ to W^{n} is injective. We will identify W^{n} with $\vartheta\left(W^{n}\right) \subset U(\mathfrak{h})$.

Example 3.1. $n=2, \mathfrak{h}=\operatorname{span}\left\{x_{1}, x_{2} \mid \xi_{1}, \xi_{2}\right\}$. Then W^{2} realized as a subalgebra of $U(\mathfrak{h})$ has the following generators:

$$
\begin{aligned}
& z_{0}=x_{1}+x_{2}, z_{1}=x_{1} x_{2}-\xi_{1} \xi_{2}(\text { even }) \\
& \phi_{0}=\xi_{1}+\xi_{2}, \phi_{1}=x_{2} \xi_{1}-x_{1} \xi_{2}(\text { odd })
\end{aligned}
$$

4. The super Yangian of $Q(1)$

The Yangians $Y Q(n)$ associated with the Lie superalgebras $Q(n)$ were defined by M. L. Nazarov $([5,6])$. Recall that $Y Q(1)$ is the associative unital superalgebra over \mathbb{C} with the countable set of generators $T_{i, j}^{(m)}$, where $m=1,2, \ldots$ and $i, j= \pm 1$. The \mathbb{Z}_{2}-grading of $Y Q(1)$ is defined as follows:

$$
p\left(T_{i, j}^{(m)}\right)=p(i)+p(j), \text { where } p(1)=0 \text { and } p(-1)=1
$$

To write the defining relations for these generators, we employ the formal series in $Y Q(1)\left[\left[u^{-1}\right]\right]:$

$$
T_{i, j}(u)=\delta_{i j} \cdot 1+T_{i, j}^{(1)} u^{-1}+T_{i, j}^{(2)} u^{-2}+\ldots
$$

Then for all possible indices i, j, k, l we have the relations

$$
\begin{align*}
& \left(u^{2}-v^{2}\right)\left[T_{i, j}(u), T_{k, l}(v)\right] \cdot(-1)^{p(i) p(k)+p(i) p(l)+p(k) p(l)} \\
& =(u+v)\left(T_{k, j}(u) T_{i, l}(v)-T_{k, j}(v) T_{i, l}(u)\right) \tag{4.1}\\
& -(u-v)\left(T_{-k, j}(u) T_{-i, l}(v)-T_{k,-j}(v) T_{i,-l}(u)\right) \cdot(-1)^{p(k)+p(l)} .
\end{align*}
$$

Here v is a formal parameter independent of u, so that (4.1) is an equality in the algebra of formal Laurent series in u^{-1}, v^{-1} with coefficients in $Y Q(1)$. For all indices i, j we also have the relations

$$
\begin{equation*}
T_{i, j}(-u)=T_{-i,-j}(u) . \tag{4.2}
\end{equation*}
$$

The relations (4.1) and (4.2) are equivalent to the following defining relations:

$$
\begin{align*}
& \left(\left[T_{i, j}^{(m+1)}, T_{k, l}^{(r-1)}\right]-\left[T_{i, j}^{(m-1)}, T_{k, l}^{(r+1)}\right]\right) \cdot(-1)^{p(i) p(k)+p(i) p(l)+p(k) p(l)}= \\
& T_{k, j}^{(m)} T_{i, l}^{(r-1)}+T_{k, j}^{(m-1)} T_{i, l}^{(r)}-T_{k, j}^{(r-1)} T_{i, l}^{(m)}-T_{k, j}^{(r)} T_{i, l}^{(m-1)} \tag{4.3}\\
& +(-1)^{p(k)+p(l)}\left(-T_{-k, j}^{(m)} T_{-i, l}^{(r-1)}+T_{-k, j}^{(m-1)} T_{-i, l}^{(r)}+T_{k,-j}^{(r-1)} T_{i,-l}^{(m)}-T_{k,-j}^{(r)} T_{i,-l}^{(m-1)}\right) \\
& T_{-i,-j}^{(m)}=(-1)^{m} T_{i, j}^{(m)} \tag{4.4}
\end{align*}
$$

where $m, r=1, \ldots$ and $T_{i, j}^{(0)}=\delta_{i j}$. Recall that $Y Q(1)$ is a Hopf superalgebra (see [6]) with comultiplication given by the formula

$$
\Delta\left(T_{i, j}^{(r)}\right)=\sum_{s=0}^{r} \sum_{k}(-1)^{(p(i)+p(k))(p(j)+p(k))} T_{i, k}^{(s)} \otimes T_{k, j}^{(r-s)}
$$

The evaluation homomorphism ev : $Y Q(1) \rightarrow U(Q(1))$ is defined as follows:

$$
T_{1,1}^{(1)} \mapsto-e_{1,1}, \quad T_{1,-1}^{(1)} \mapsto f_{1,1}, \quad T_{i, j}^{(0)} \mapsto \delta_{i, j}, \quad T_{i, j}^{(r)} \mapsto 0 \text { for } r>1, i, j= \pm 1 .
$$

5. W^{n} IS A Quotient of $Y Q(1)$

Definition 5.1. (a) Define $\Delta_{l}: Y Q(1) \longrightarrow Y Q(1)^{\otimes l}$ by

$$
\Delta_{l}:=\Delta_{l-1, l} \circ \cdots \circ \Delta_{2,3} \circ \Delta .
$$

(b) Let $\varphi_{n}: Y Q(1) \rightarrow U(Q(1))^{\otimes n} \simeq U(\mathfrak{h})$ be $\varphi_{n}:=e v^{\otimes n} \circ \Delta_{n}$.

Note that $\varphi_{n}\left(T_{1,1}^{(r)}\right)=\varphi_{n}\left(T_{1,-1}^{(r)}\right)=0$ if $r>n$.
Proposition 5.2. ([9], Corollary 5.16) The map φ_{n} is a surjective homomorphism from $Y Q(1)$ onto W^{n}, realized as a subalgebra of $U(\mathfrak{h})$:

$$
\varphi_{n}(Y Q(1))=\vartheta\left(W^{n}\right) \simeq W^{n}
$$

Note that W^{m+n} is a subalgebra of $W^{m} \otimes W^{n}$ ([10], Lemma 3.3). The following diagram commutes:

$$
\begin{array}{ccc}
Y Q(1) \xrightarrow{\Delta} & Y Q(1) \otimes Y Q(1) \tag{5.1}\\
\varphi_{m+n} \downarrow & & \varphi_{m} \otimes \varphi_{n} \\
\downarrow \\
W^{m+n} & \longrightarrow & W^{m}
\end{array} W^{n}
$$

6. Simple modules over associative superalgebras

We work in the category of vector superspaces over \mathbb{C}. We denote the parity of a homogeneous vector v of a superspace by $p(v) \in \mathbb{Z}_{2}$. All tensor products are over \mathbb{C}.

Let \mathcal{A} be a superalgebra. By an \mathcal{A}-module M we mean a \mathbb{Z}_{2}-graded left \mathcal{A}-module. A submodule of M is a \mathbb{Z}_{2}-graded submodule. By Π we denote the parity functor $\Pi(M)=M \otimes \mathbb{C}^{0 \mid 1}$. For a module M over an associate superalgebra $\mathcal{A}, \Pi(M)$ has the same underlying vector space but with the opposite \mathbb{Z}-grading. The new action of $a \in \mathcal{A}$ on $m \in \Pi(M)$ is given in terms of the old action by $a \cdot m:=(-1)^{p(a)} a m$.

Recall that if M is a simple finite-dimensional \mathcal{A}-module over some associative superalgebra \mathcal{A}, then by Schur's Lemma $\operatorname{End}_{\mathcal{A}}(M)$ is either one-dimensional, or twodimensional and has basis $\left\{\operatorname{Id}_{M}, \epsilon_{M}\right\}$, where ϵ_{M} is a (unique up to a sign) odd involution on $M: \epsilon_{M}^{2}=\operatorname{Id}_{M}$. Note that ϵ_{M} provides an \mathcal{A} isomorphism $M \longrightarrow \Pi(M)$. We say that M is an irreducible of M-type in the former case and an irreducible of Q-type in the latter (see [4, 1]).

Let \mathcal{A} and \mathcal{B} be two superalgebras. The tensor product $\mathcal{A} \otimes \mathcal{B}$ is again a superalgebra, where multiplication is given by

$$
\left(a_{1} \otimes b_{1}\right)\left(a_{2} \otimes b_{2}\right)=(-1)^{p\left(b_{1}\right) p\left(a_{2}\right)} a_{1} a_{2} \otimes b_{1} b_{2}
$$

for $a_{i} \in \mathcal{A}, b_{i} \in \mathcal{B}$. Let M and N be two modules over associative superalgebras \mathcal{A} and \mathcal{B}. Then $M \otimes N$ is naturally a module over $\mathcal{A} \otimes \mathcal{B}$ where

$$
(a \otimes b)(m \otimes n)=(-1)^{p(b) p(m)} a m \otimes b n
$$

where $a \in \mathcal{A}, b \in \mathcal{B}$ and $m \in M, n \in N$. If M and N are two simple finite-dimensional modules over associative superalgebras \mathcal{A} and \mathcal{B}, then the module $M \otimes N$ might be not simple. In fact, if M and N are both of M-type, then $M \otimes N$ is simple of M-type. If one of these modules is of M-type, and the other is of Q-type, then $M \otimes N$ is simple of Q-type. However, if M and N are both of Q-type, then $M \otimes N$ is not simple. Let ϵ_{M} and ϵ_{N} be odd involutions of M and N, respectively. Then the map $\epsilon_{M} \otimes \epsilon_{N}$ defined by

$$
\left(\epsilon_{M} \otimes \epsilon_{N}\right)(m \otimes n)=(-1)^{p(m)} \epsilon_{M}(m) \otimes \epsilon_{N}(n)
$$

is an even $\mathcal{A} \otimes \mathcal{B}$-automorphism of $M \otimes N$, and its square is $-\mathrm{Id}_{M \otimes N}$. In this case $M \otimes N$ decomposes into a direct sum of two $\mathcal{A} \otimes \mathcal{B}$-submodules, which are formed by the $\pm \mathbf{i}$-eigenspaces of $\epsilon_{M} \otimes \epsilon_{N}$. We can choose either submodule and denote it by $M \boxtimes N$. Then

$$
M \otimes N \simeq M \boxtimes N \oplus \Pi(M \boxtimes N)
$$

Both submodules are simple and of M-type.

7. Simple W^{n}-MODULES

We classified simple W^{n}-modules in [10] (Theorem 4.7). Here we recall their construction.
7.1. W^{n}-modules $V(\mathbf{s})$. Let $\mathbf{s}=\left(s_{1}, \ldots, s_{n}\right) \in \mathbb{C}^{n}$. We call \mathbf{s} regular if $s_{i} \neq 0$ for all $i \leq n$ and typical if $s_{i}+s_{j} \neq 0$ for all $1 \leq i<j \leq n$. Note that we have the natural embedding of the Lie superalgebras

$$
\begin{equation*}
Q(1) \oplus Q(1) \oplus \cdots \oplus Q(1) \hookrightarrow Q(n) \tag{7.1}
\end{equation*}
$$

Let \mathfrak{h}_{1} denote the Cartan subalgebra of $Q(1)$. Then $\mathfrak{h}_{1}=\operatorname{span}\left\{x_{1} \mid \xi_{1}\right\}$ with $x_{1}=\xi_{1}^{2}$, and $U\left(\mathfrak{h}_{1}\right) \simeq \mathbb{C}\left(\left[\xi_{1}\right]\right)$. Let $V\left(\mathbf{s}_{i}\right)$ be a (1|1)-dimensional $U\left(\mathfrak{h}_{1}\right)$-module, where the action is given by

$$
\xi \mapsto\left(\begin{array}{cc}
0 & \sqrt{s_{i}} \\
\sqrt{s_{i}} & 0
\end{array}\right), \quad x \mapsto\left(\begin{array}{cc}
s_{i} & 0 \\
0 & s_{i}
\end{array}\right) \quad \text { for } i=1,2 .
$$

The embedding (7.1) induces the isomorphism

$$
U(\mathfrak{h}) \simeq U\left(\mathfrak{h}_{1}\right) \otimes U\left(\mathfrak{h}_{1}\right) \otimes \cdots \otimes U\left(\mathfrak{h}_{1}\right) .
$$

Then $V(\mathbf{s}):=V\left(s_{1}\right) \boxtimes V\left(s_{2}\right) \boxtimes \cdots \boxtimes V\left(s_{n}\right)$ is a simple $U(\mathfrak{h})$-module. Consider the restriction of $U(\mathfrak{h})$ to W^{n}. Let $\mathbf{s}=\left(s_{1}, \ldots, s_{n}\right)$ be regular typical. Then $V(\mathbf{s})$ is a simple W^{n}-module, and if $\mathbf{s}^{\prime}=\sigma(\mathbf{s})$ for some permutation of coordinates, then $V(\mathbf{s})$ is isomorphic to $V\left(\mathbf{s}^{\prime}\right)$ as a W^{n}-module, see [10].
7.2. Construction of simple W^{n}-modules. Let Γ_{t} be the simple W^{2}-module of dimension ($1 \mid 0$) on which ϕ_{0}, ϕ_{1} and z_{0} act by zero and z_{1} acts by the scalar t.

Let $r, p, q \in \mathbb{N}$ and $r+2 p+q=n, \mathbf{t}=\left(t_{1}, \ldots, t_{p}\right) \in \mathbb{C}^{p}$, and $\lambda=\left(\lambda_{1}, \ldots, \lambda_{q}\right) \in \mathbb{C}^{q}$, where \mathbf{t} is regular and λ is regular typical. Recall that there is an embedding $W^{n} \hookrightarrow$ $W^{r} \otimes\left(W^{2}\right)^{\otimes p} \otimes W^{q}([10]$, Corollary 3.4). Set

$$
S(\mathbf{t}, \lambda):=\mathbb{C} \boxtimes \Gamma_{t_{1}} \boxtimes \cdots \boxtimes \Gamma_{t_{p}} \boxtimes V(\lambda),
$$

where the first term \mathbb{C} in the tensor product denotes the trivial W^{r}-module. For $q=0$ we use the notation $S(\mathbf{t})$ and set $V(\lambda)=\mathbb{C}$.

Proposition 7.1. (see [10], Theorem 4.7) (a) Every simple W^{n}-module is isomorphic to $S(\mathbf{t}, \lambda)$ up to change of parity.
(b) Two simple W^{n}-modules $S(\mathbf{t}, \lambda)$ and $S\left(\mathbf{t}^{\prime}, \lambda^{\prime}\right)$ are isomorphic if and only if $p^{\prime}=p$, $q^{\prime}=q, \mathbf{t}^{\prime}=\sigma(\mathbf{t})$ and $\lambda^{\prime}=\tau(\lambda)$ for some $\sigma \in S_{p}$ and $\tau \in S_{q}$.

8. Central characters

The center of $U(\mathfrak{g})$ for $\mathfrak{g}=Q(n)$ is described in [7]. The center of $U(\mathfrak{h})$ coincides with $\mathbb{C}\left[x_{1}, \ldots, x_{n}\right]$ and the image of the center of $U(\mathfrak{g})$ under the Harish-Chandra homomorphism ϑ is generated by the polynomials $p_{k}=x_{1}^{2 k+1}+\cdots+x_{n}^{2 k+1}$ for all $k \in \mathbb{N}$. These polynomials are called Q-symmetric polynomials.

In [8] we proved that the center Z^{n} of W^{n} coincides with $W^{n} \bigcap \mathbb{C}\left[x_{1}, \ldots, x_{n}\right]=$ $\vartheta(Z(U(\mathfrak{g})))$ and hence can be also identified with the ring of Q-symmetric polynomials.

Every s defines the central character $\chi_{\mathrm{s}}: Z^{n} \rightarrow \mathbb{C}$. Furthermore, it follows from the description of simple W^{n}-modules in [10] (Theorem 4.6) that every simple W^{n} module admits central character $\chi_{\mathbf{s}}$ for some \mathbf{s}. For every $\mathbf{s}=\left(s_{1}, \ldots, s_{n}\right)$ we define the core $c(\mathbf{s})=\left(s_{i_{1}}, \ldots, s_{i_{m}}\right)$ as a subsequence obtained from \mathbf{s} by removing all $s_{j}=0$ and all pairs $\left(s_{i}, s_{j}\right)$ such that $s_{i}+s_{j}=0$. Up to a permutation this result does not depend on the order of removing. Thus, the core is well defined up to permutation. We call m the length of the core.
Example 8.1. Let $\mathbf{s}=(1,0,3,-1,-1)$, then $c(\mathbf{s})=(3,-1)$.
The following is a reformulation of the central character description in [7].
Lemma 8.2. Let $\mathbf{s}, \mathbf{s}^{\prime} \in \mathbb{C}^{n}$. Then $\chi_{\mathbf{s}}=\chi_{\mathbf{s}^{\prime}}$ if and only if \mathbf{s} and \mathbf{s}^{\prime} have the same core (up to permutation).

It follows from Lemma 8.2 that the core depends only on the central character $\chi_{\mathbf{s}}$, we denote it $c(\chi)$.

9. Simple finite-dimensional $Y Q(1)$-modules

We classified simple finite-dimensional $Y Q(1)$-modules in [10]. First we recall the description of 1-dimensional $Y Q(1)$-modules.
Remark 9.1. Note that $\left[T_{1,1}^{(k)}, T_{1,1}^{(m)}\right]=0$ if $k+m$ is even (see [8], Proposition 6.4).
Definition 9.2. Let \mathbf{A} be the commutative subalgebra in $Y Q(1)$ generated by $T_{1,1}^{(2 k)}$ for $k \geq 0$. Let

$$
f(u)=1+\sum_{k>0} f_{2 k} u^{-2 k} .
$$

Let Γ_{f} be the corresponding 1-dimensional A-module, where the action of

$$
T_{1,1}\left(u^{-2}\right)=\sum_{k \geq 0} T_{1,1}^{(2 k)} u^{-2 k}
$$

is given by the generating function $f(u)$.
Recall that for any Hopf superalgebra R, the ideal $\left(R_{1}\right)$ generated by all odd elements is a Hopf ideal and the quotient $R /\left(R_{1}\right)$ is a Hopf algebra.
Proposition 9.3. ([10], Lemma 5.11) The quotient $Y Q(1) /\left(Y Q(1)_{1}\right)$ is isomorphic to $\mathbf{A} \simeq \mathbb{C}\left[T_{1,1}^{(2 k)}\right]_{k>0}$, with comultiplication

$$
\Delta T_{1,1}\left(u^{-2}\right)=T_{1,1}\left(u^{-2}\right) \otimes T_{1,1}\left(u^{-2}\right) .
$$

Thus we can lift an A-module Γ_{f} to a $Y Q(1)$-module.
Proposition 9.4. ([10], Lemma 5.12) The isomorphism classes of 1-dimensional $Y Q(1)$-modules are in bijection with the set $\left\{\Gamma_{f}\right\}$. Furthermore, we have the identity $\Gamma_{f} \otimes \Gamma_{g} \simeq \Gamma_{f g}$.

Let $\mathbf{s} \in \mathbb{C}^{n}$ be regular typical. Then we can lift the W^{n}-module $V(\mathbf{s})$ to a simple $Y Q(1)$-module. Note that $T_{1,1}^{(r)}$ and $T_{1,-1}^{(r)}$ act on $V(\mathbf{s})$ by zero if $r>n$.
Proposition 9.5. ([10], Theorem 5.13) Any simple finite-dimensional $Y Q(1)$-module is isomorphic to $V(\mathbf{s}) \otimes \Gamma_{f}$ or $\Pi V(\mathbf{s}) \otimes \Gamma_{f}$ for some regular typical \mathbf{s} and $f(u)=$ $1+\sum_{k>0} f_{2 k} u^{-2 k}$. Furthermore, $V(\mathbf{s}) \otimes \Gamma_{f}$ and $V\left(\mathbf{s}^{\prime}\right) \otimes \Gamma_{g}$ are isomorphic up to change of parity if and only if \mathbf{s}^{\prime} is obtained from \mathbf{s} by permutation of coordinates and $f(u)=g(u)$.
Proposition 9.6. ([10], Proposition 5.19) The simple $Y Q(1)$-module $V(\mathbf{s}) \otimes \Gamma_{f}$ is lifted from some W^{m+n}-module if and only if $f \in \mathbb{C}\left[u^{-2}\right]$. Moreover, the smallest m is equal to the degree of the polynomial f.
Remark 9.7. Note that $m=2 p$ is even. $S\left(t_{1}, \ldots, t_{p}, \lambda\right) \simeq V(\lambda) \otimes \Gamma_{f}$ where

$$
f=\prod_{i=1}^{p}\left(1+t_{i} u^{-2}\right)
$$

10. The category $Y Q(1)-\bmod$

We described the center Z of $Y Q(1)$ in [10]. Let

$$
\begin{equation*}
\eta_{i}=\left(-\frac{1}{2}\right)^{i} \operatorname{ad}^{i} T_{1,1}^{(2)}\left(T_{1,-1}^{(1)}\right), \quad Z_{2 i}=\frac{1}{2}\left[\eta_{0}, \eta_{2 i}\right], \tag{10.1}
\end{equation*}
$$

where $\operatorname{ad}^{i} T_{1,1}^{(2)}$ is the i-power of the adjoint endomorphism $\operatorname{ad} T_{1,1}^{(2)}$. The elements $\left\{Z_{2 i} \mid i \in \mathbb{N}\right\}$ are algebraically independent generators of Z.

Let $Y Q(1)-\bmod$ be the category of finite-dimensional $Y Q(1)$-modules. A $Y Q(1)-$ module M admits generalized central character χ if for any $z \in Z$ and $m \in M$, there exists $n \in \mathbb{Z}_{\geq 0}$ such that $(z-\chi(z))^{n} \cdot m=0$. Let $(Y Q(1))^{\chi}-\bmod$ be the full subcategory of modules admitting generalized central character χ. The category $Y Q(1)-\bmod$ is the direct sum of the subcategories $(Y Q(1))^{\chi}-$ mod, as χ ranges over the central characters for which $(Y Q(1))^{\chi}-\bmod$ is nonempty.
Lemma 10.1. Every simple $Y Q(1)$-module in the subcategory $(Y Q(1))^{\chi}-\bmod$ is isomorphic up to change of parity to $V(\mathbf{s}) \otimes \Gamma_{f}$, where $\mathbf{s}=\left(s_{1}, \ldots, s_{n}\right)$ is regular typical, which is unique up to permutation.
Proof. Let $\mathbf{C} \subset Y Q(1)$ be the unital subalgebra generated by $\left\{\eta_{i} \mid i \in \mathbb{N}\right\}$. Then $V(\mathbf{s})$ and $V(\mathbf{s}) \otimes \Gamma_{f}$ are isomorphic C-modules. Indeed, $\eta_{0}=T_{1,-1}^{(1)}$ and by (10.1)

$$
\begin{equation*}
\eta_{i+1}=\left(-\frac{1}{2}\right)\left[T_{1,1}^{(2)}, \eta_{i}\right] . \tag{10.2}
\end{equation*}
$$

Note that

$$
\Delta\left(T_{1,-1}^{(1)}\right)=T_{1,-1}^{(1)} \otimes 1+1 \otimes T_{1,-1}^{(1)} .
$$

Hence η_{0} acts on $V(\mathbf{s}) \otimes \Gamma_{f}$ as $\eta_{0} \otimes 1$. Then it follows by induction from (10.2) that η_{i} acts on $V(\mathbf{s}) \otimes \Gamma_{f}$ as $\eta_{i} \otimes 1$ for all i. Then every $\zeta \in \mathbf{C}$ acts as $\zeta \otimes 1$. Hence $V(\mathbf{s})$
and $V(\mathbf{s}) \otimes \Gamma_{f}$ are isomorphic \mathbf{C}-modules, and they admit the same central character χ.

On the other hand, $Y Q(1)$-modules $V(\mathbf{s})$ and $V\left(\mathbf{s}^{\prime}\right)$, where $\mathbf{s}=\left(s_{1}, \ldots, s_{n}\right)$ and $\mathbf{s}^{\prime}=\left(s_{1}^{\prime}, \ldots, s_{m}^{\prime}\right)$ are regular typical, have the same central character χ if and only if $n=m$ and \mathbf{s}^{\prime} is a permutation of \mathbf{s}.

Indeed, a $Y Q(1)$-module $V(\mathbf{s})$ admits a central character χ. It can be presented using the generating function

$$
\chi(u)=\sum_{i=0}^{\infty} \chi_{2 i} u^{-2 i-1}
$$

where $\chi_{2 i}=\chi\left(Z_{2 i}\right)$. Let σ_{k} denote the k-th elementary symmetric polynomial. We proved in [10] that

$$
\chi(u)=\frac{\sum_{i=0}^{\infty} \sigma_{2 i+1}(\mathbf{s}) u^{-2 i-1}}{1+\sum_{i=1}^{\infty} \sigma_{2 i}(\mathbf{s}) u^{-2 i}}
$$

Note that $V\left(s_{1}, \ldots, s_{n}\right)$ and $V\left(s_{1}, \ldots, s_{n}, 0\right)$ have the same central character. Suppose that $V(\mathbf{s})$ and $V\left(\mathbf{s}^{\prime}\right)$ have the same central character χ and $\mathbf{s}, \mathbf{s}^{\prime}$ are regular typical. Assume that $n \geq m$. Extend \mathbf{s}^{\prime} to the n-tuple $\mathbf{s}^{\prime \prime}=\left(s_{1}^{\prime}, \ldots, s_{m}^{\prime}, 0,0, \ldots, 0\right)$. Then $V\left(\mathbf{s}^{\prime \prime}\right)$ and $V(\mathbf{s})$ have the same central character χ. Note that $\varphi_{n}(Z)=Z^{n}$ (see [10]). Thus $\chi=\chi_{\mathrm{s}} \circ \varphi_{n}=\chi_{\mathrm{s}^{\prime \prime}} \circ \varphi_{n}$. Then $\chi_{\mathrm{s}}=\chi_{\mathrm{s}^{\prime \prime}}$. Hence by Lemma 8.2, \mathbf{s} and $\mathbf{s}^{\prime \prime}$ have the same core (up to permutation). Hence $m=n$ and \mathbf{s}^{\prime} is a permutation of \mathbf{s}. Clearly, if \mathbf{s}^{\prime} is a permutation of \mathbf{s}, then $\chi_{\mathbf{s}}=\chi_{\mathbf{s}^{\prime}}$, and hence $V(\mathbf{s})$ and $V\left(\mathbf{s}^{\prime}\right)$ have the same central character χ.

Recall that simple modules are partitioned into blocks. If two simple modules M_{1} and M_{2} can be extended nontrivially, i.e., if there is a non-split short exact sequence $0 \longrightarrow M_{i} \longrightarrow M \longrightarrow M_{j} \longrightarrow 0$ with $\{i, j\}=\{1,2\}$, then M_{1} and M_{2} belong to the same block, and we will say that they are linked. Here we agree that M_{i} is linked to itself. More generally, if there is a finite sequence of simple modules $M=M_{1}, M_{2}, \ldots, M_{n}=N$ such that adjacent pairs belong to the same block, then modules M and N belong to this block. A module M belongs to a block if all its composition factors do. Each block lies in a single $(Y Q(1))^{\chi}$-mod. However, different blocks can belong to the same $(Y Q(1))^{\chi}-$ mod: see [2].

11. The subcategory $(Y Q(1))^{\chi=0}-\bmod$

It follows from Proposition 9.5 that simple modules in the subcategory $(Y Q(1))^{\chi=0}-$ mod are exactly the 1-dimensional modules Γ_{f} up to change of parity. Let Γ_{f} and Γ_{g} be two $Y Q(1)$-modules, where

$$
\begin{equation*}
f(u)=\sum_{k \geq 0} a_{2 k} u^{-2 k}, \quad g(u)=\sum_{k \geq 0} b_{2 k} u^{-2 k}, \quad a_{0}=b_{0}=1 . \tag{11.1}
\end{equation*}
$$

Recall that Γ_{f} is linked to itself. If $f \neq g$, then one can easily check that the short exact sequence

$$
0 \longrightarrow \Gamma_{f} \longrightarrow M \longrightarrow \Gamma_{g} \longrightarrow 0
$$

splits. Indeed, we have the following relations in $Y Q(1)$:

$$
\begin{gather*}
{\left[T_{1,1}^{(2 k)}, T_{1,-1}^{(1)}\right]=2 T_{1,-1}^{(2 k)}} \tag{11.2}\\
{\left[T_{1,1}^{(2)}, T_{1,-1}^{(2 k)}\right]=2 T_{1,-1}^{(2 k+1)}+2 T_{1,-1}^{(2 k)}-2 T_{1,1}^{(2 k)} T_{1,-1}^{(1)} .} \tag{11.3}\\
{\left[T_{1,-1}^{(1)}, T_{1,-1}^{(2 k+1)}\right]=-2 T_{1,1}^{(2 k+1)} .} \tag{11.4}
\end{gather*}
$$

All odd generators $T_{1,-1}^{(r)}$ act on M by zero, since M is a purely even module. Then $T_{1,1}^{(2 k+1)}$ also acts on M by zero by (11.4). Note that $T_{1,1}^{(2 k)}$ acts on M as $\left(\begin{array}{cc}a_{2 k} & c_{2 k} \\ 0 & b_{2 k}\end{array}\right)$, and there exists m such that $a_{2 m} \neq b_{2 m}$, since $f \neq g$. We can choose a basis in M so that $c_{2 m}=0$. Then $c_{2 k}=0$ for all k, since $T_{1,1}^{(2 k)}$ commute. Hence $M \simeq \Gamma_{f} \oplus \Gamma_{g}$.

We will determine when Γ_{f} is linked with $\Pi\left(\Gamma_{g}\right)$. Let $x_{k}=\frac{1}{2}\left(a_{2 k}-b_{2 k}\right)$.
Theorem 11.1. $\operatorname{Ext}^{1}\left(\Pi\left(\Gamma_{g}\right), \Gamma_{f}\right) \neq 0$ if and only if x_{1} is an arbitrary complex number and x_{k} for $k>1$ satisfies the recurrence relation

$$
\begin{equation*}
x_{k+1}=\left(x_{1} x_{k}-x_{k}+a_{2 k}\right) x_{1} . \tag{11.5}
\end{equation*}
$$

Proof. Note that the short exact sequence

$$
0 \longrightarrow \Gamma_{f} \longrightarrow M \longrightarrow \Pi\left(\Gamma_{g}\right) \longrightarrow 0
$$

is non-split if and only if $T_{1,-1}^{(1)}$ does not act by zero. Indeed, if $T_{1,-1}^{(1)}$ acts by zero, then $T_{1,-1}^{(2 k)}$ and $T_{1,-1}^{(2 k+1)}$ also act by zero for all k by (11.2) and (11.3), but then $M \simeq \Gamma_{f} \oplus \Pi\left(\Gamma_{g}\right)$. Clearly, if $M \simeq \Gamma_{f} \oplus \Pi\left(\Gamma_{g}\right)$, then all odd generators act by zero.

Hence $\operatorname{Ext}^{1}\left(\Pi\left(\Gamma_{g}\right), \Gamma_{f}\right) \neq 0$ if and only if one can define a representation ρ : $Y Q(1) \longrightarrow \operatorname{End}\left(\mathbb{C}^{1 \mid 1}\right)$ such that (up to equivalence)

$$
\rho\left(T_{1,1}^{(2 k)}\right)=\left(\begin{array}{cc}
a_{2 k} & 0 \tag{11.6}\\
0 & b_{2 k}
\end{array}\right), \quad \rho\left(T_{1,-1}^{(1)}\right)=\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right)
$$

Then

$$
\begin{gather*}
\rho\left(T_{1,-1}^{(2 k)}\right)=\left(\begin{array}{cc}
0 & \frac{1}{2}\left(a_{2 k}-b_{2 k}\right) \\
0 & 0
\end{array}\right) \tag{11.7}\\
\rho\left(T_{1,-1}^{(2 k+1)}\right)=\left(\begin{array}{cc}
0 & \frac{1}{4}\left(a_{2}-b_{2}\right)\left(a_{2 k}-b_{2 k}\right)+\frac{1}{2}\left(a_{2 k}+b_{2 k}\right) \\
0 & 0
\end{array}\right), \tag{11.8}
\end{gather*}
$$

$$
\begin{equation*}
\rho\left(T_{1,1}^{(2 k+1)}\right)=0 \tag{11.9}
\end{equation*}
$$

Here (11.7) follows from (11.6) and the relation (11.2), (11.8) follows from (11.6), (11.7), and (11.3), and (11.9) follows from (11.8) and (11.4).

Let $x_{k}=\frac{1}{2}\left(a_{2 k}-b_{2 k}\right)$. Then from (11.7)

$$
\rho\left(T_{1,-1}^{(2 k)}\right)=\left(\begin{array}{cc}
0 & x_{k} \tag{11.10}\\
0 & 0
\end{array}\right)
$$

and from (11.8)

$$
\rho\left(T_{1,-1}^{(2 k+1)}\right)=\left(\begin{array}{cc}
0 & x_{1} x_{k}-x_{k}+a_{2 k} \tag{11.11}\\
0 & 0
\end{array}\right)
$$

The recurrence relation (4.3) with $m=2 k-1$ and $r=2 p+2$ gives the relation

$$
\begin{align*}
& \left(\left[T_{1,1}^{(2 k)}, T_{1,-1}^{(2 p+1)}\right]-\left[T_{1,1}^{(2 k-2)}, T_{1,-1}^{(2 p+3)}\right]\right)= \\
& T_{1,1}^{(2 k-1)} T_{1,-1}^{(2 p+1)}+T_{1,1}^{(2 k-2)} T_{1,-1}^{(2 p+2)}-T_{1,1}^{(2 p+1)} T_{1,-1}^{(2 k-1)}-T_{1,1}^{(2 p+2)} T_{1,-1}^{(2 k-2)} \tag{11.12}\\
& +T_{-1,1}^{(2 k-1)} T_{-1,-1}^{(2 p+1)}-T_{-1,1}^{(2 k-2)} T_{-1,-1}^{(2 p+2)}-T_{1,-1}^{(2 p+1)} T_{1,1}^{(2 k-1)}+T_{1,-1}^{(2 p+2)} T_{1,1}^{(2 k-2)}
\end{align*}
$$

From (11.12) and (11.6), (11.10), (11.11), (11.9) we obtain the relation

$$
x_{1} x_{p} x_{k}+\left(a_{2 p}-x_{p}\right) x_{k}-x_{1} x_{p+1} x_{k-1}=x_{p+1}\left(a_{2 k-2}-x_{k-1}\right) .
$$

If $p=0$ (and $a_{0}=1, x_{0}=0$) we have

$$
x_{k}-x_{1}^{2} x_{k-1}=x_{1}\left(a_{2 k-2}-x_{k-1}\right),
$$

which is equivalent to (11.5). On the other hand, one can check that ρ defined by (11.6), (11.9), (11.10) and (11.11), with x_{k} satisfying (11.5), preserves the relations (4.3).

Corollary 11.2. Let $x_{k}=\frac{1}{2}\left(b_{2 k}-a_{2 k}\right)$. Then $\operatorname{Ext}^{1}\left(\Gamma_{f}, \Pi\left(\Gamma_{g}\right)\right) \neq 0$ if and only if x_{1} is an arbitrary complex number and x_{k} for $k>1$ satisfies the recurrence relation

$$
\begin{equation*}
x_{k+1}=\left(x_{1} x_{k}+x_{k}+a_{2 k}\right) x_{1} . \tag{11.13}
\end{equation*}
$$

12. Towards the general case: the subcategory $(Y Q(1))^{\chi}-\bmod$

Making use of Lemma 10.1, we would like to determine conditions under which two $Y Q(1)$-modules $V(\mathbf{s}) \otimes \Gamma_{f}$ and $V(\mathbf{s}) \otimes \Gamma_{g}$ can be extended nontrivially.

We will consider the case, when $\mathbf{s}=(s)$. We denote $V(\mathbf{s})$ by $V(s)$.
Proposition 12.1. Let $V(s) \otimes \Gamma_{f}$ and $V(s) \otimes \Gamma_{g}$ be $Y Q(1)$-modules, where $s \neq 0$, let $f(u)$ and $g(u)$ be given by (11.1), and let $x_{k}=\frac{1}{2}\left(a_{2 k}-b_{2 k}\right)$. Then
$\operatorname{Ext}^{1}\left(V(s) \otimes \Pi\left(\Gamma_{g}\right), V(s) \otimes \Gamma_{f}\right) \neq 0$ if and only if x_{k} satisfies the recurrence relation (11.5).

Proof. First, show that if

$$
\begin{equation*}
0 \longrightarrow \Gamma_{f} \longrightarrow \mathbb{C}^{1 \mid 1} \longrightarrow \Pi\left(\Gamma_{g}\right) \longrightarrow 0 \tag{12.1}
\end{equation*}
$$

is a non-split short exact sequence of $Y Q(1)$-modules, then the short exact sequence of $Y Q(1)$-modules

$$
\begin{equation*}
0 \longrightarrow V(s) \otimes \Gamma_{f} \longrightarrow V(s) \otimes \mathbb{C}^{1 \mid 1} \longrightarrow V(s) \otimes \Pi\left(\Gamma_{g}\right) \longrightarrow 0 \tag{12.2}
\end{equation*}
$$

is non-split if and only if $x_{1} \neq s$.
Let $\mathbb{C}^{1 \mid 1}=<1 \mid \overline{1}>$ and $V(s)=<v \mid w>$, where 1 and v are even and $\overline{1}$ and w are odd. Note that $T_{1,1}^{(1)}$ and $T_{1,-1}^{(1)}$ act on $V(s)$ as $\left(\begin{array}{cc}-s & 0 \\ 0 & -s\end{array}\right)$ and $\left(\begin{array}{cc}0 & \sqrt{s} \\ \sqrt{s} & 0\end{array}\right)$, respectively, and $T_{1,1}^{(r)}$ and $T_{1,-1}^{(r)}$ act by zero if $r \geq 2$. Let $\Gamma_{f}=<1>$. Suppose that $V(s) \otimes \mathbb{C}^{1 \mid 1}=V(s) \otimes \Gamma_{f} \oplus M$ is a direct sum of $Y Q(1)$-modules. Then $M=\langle X \mid Y\rangle$, where

$$
\begin{align*}
& X=a(v \otimes 1)+(w \otimes \overline{\mathbf{1}}), \quad a \in \mathbb{C} \\
& Y:=T_{1,-1}^{(1)}(X)=(a \sqrt{s}-1)(w \otimes 1)+\sqrt{s}(v \otimes \overline{\mathbf{1}}) . \tag{12.3}
\end{align*}
$$

Obviously, $T_{1,1}^{(n)}(X)=\lambda_{n} X$ for some $\lambda_{n} \in \mathbb{C}$. If n is even this implies that $2 x_{1} a=\sqrt{s}$, and if n is odd, then $2 a \sqrt{s}=1$. Hence $x_{1}=s$. One can easily check that if $x_{1}=s$, then M defined by (12.3), where $a=\frac{1}{2 \sqrt{s}}$, is a $Y Q(1)$-submodule of $V(s) \otimes \mathbb{C}^{1 \mid 1}$.

Next, suppose that there is a non-split short exact sequence of $Y Q(1)$-modules

$$
\begin{equation*}
0 \longrightarrow V(s) \otimes \Gamma_{f} \longrightarrow M \longrightarrow V(s) \otimes \Pi\left(\Gamma_{g}\right) \longrightarrow 0 \tag{12.4}
\end{equation*}
$$

Describe the action of $Y Q(1)$ on $V(s) \otimes \Gamma_{f}$. Recall that $Y Q(1)$ is generated by $T_{1,1}^{(2 k)}$ and $T_{1,-1}^{(1)}$ (see [10], Lemma 5.1). Let $\{v, w\}$ be a basis of $V(s)$, and $\Gamma_{f}=<1>$. Then $V(s) \otimes \Gamma_{f}=<v_{1} \mid w_{1}>$, where $v_{1}=v \otimes 1$ and $w_{1}=w \otimes 1$. The action of $T_{1,1}^{(2 k)}$ and $T_{1,-1}^{(1)}$ with respect to this basis is given by the matrices $\left(\begin{array}{cc}a_{2 k} & 0 \\ 0 & a_{2 k}\end{array}\right)$ and $\left(\begin{array}{cc}0 & \sqrt{s} \\ \sqrt{s} & 0\end{array}\right)$, respectively.

Let f and g be given by (11.1), and let $x_{k}=\frac{1}{2}\left(a_{2 k}-b_{2 k}\right)$. Assume that $f \neq g$. Then there exists m such that $a_{2 m} \neq b_{2 m}$. We can choose a basis in $M:\left\{v_{1}, w_{1}, v_{2}, w_{2}\right\}$, where v_{1} and v_{2} are even and w_{1} and w_{2} are odd, with respect to which the action of $T_{1,1}^{(2 m)}$ is given by a diagonal matrix, and since all $T_{1,1}^{(2 k)}$ commute, they also act by diagonal matrices:

$$
\left(\begin{array}{cccc}
a_{2 k} & 0 & 0 & 0 \tag{12.5}\\
0 & a_{2 k} & 0 & 0 \\
0 & 0 & b_{2 k} & 0 \\
0 & 0 & 0 & b_{2 k}
\end{array}\right)
$$

We choose a basis so that in addition $T_{1,-1}^{(1)}$ acts by

$$
\left(\begin{array}{cccc}
0 & \sqrt{s} & 0 & 1 \tag{12.6}\\
\sqrt{s} & 0 & -1 & 0 \\
0 & 0 & 0 & \sqrt{s} \\
0 & 0 & \sqrt{s} & 0
\end{array}\right)
$$

Using (11.2)-(11.4) we obtain that the action of $T_{1,-1}^{(2 k)}$ and $T_{1,-1}^{(2 k+1)}$ on M is given by the following matrices, respectively:
(12.7)

$$
\left(\begin{array}{cccc}
0 & 0 & 0 & x_{k} \\
0 & 0 & -x_{k} & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right),\left(\begin{array}{cccc}
0 & a_{2 k} \sqrt{s} & 0 & x_{1} x_{k}-x_{k}+a_{2 k} \\
a_{2 k} \sqrt{s} & 0 & -\left(x_{1} x_{k}-x_{k}+a_{2 k}\right) & 0 \\
0 & 0 & 0 & b_{2 k} \sqrt{s} \\
0 & 0 & b_{2 k} \sqrt{s} & 0
\end{array}\right)
$$

and $T_{1,1}^{(2 k+1)}$ acts by

$$
\left(\begin{array}{cccc}
-a_{2 k} s & 0 & 0 & x_{k} \sqrt{s} \tag{12.8}\\
0 & -a_{2 k} s & -x_{k} \sqrt{s} & 0 \\
0 & 0 & -b_{2 k} s & 0 \\
0 & 0 & 0 & -b_{2 k} s
\end{array}\right)
$$

Then using the relation (11.12), we can show that x_{k} are determined exactly by the recurrence relation (11.5). If $f=g$, then all x_{k} are zero. Clearly, they satisfy (11.5). On the other hand, one can define the action of $Y Q(1)$ on M by (12.5), (12.7) and (12.8), where x_{k} satisfy the recurrence relation (11.5), and show that this actions respects (4.3).

Remark 12.2. Note that if $x_{1} \neq 0, s$, then M is isomorphic to the $Y Q(1)$-module $V(s) \otimes \mathbb{C}^{1 \mid 1}$ defined by (12.2). Indeed, let $V(s)=\langle v \mid w\rangle$ and $\mathbb{C}^{1 \mid 1}=\langle 1 \mid \overline{1}\rangle$. Then $V(s) \otimes \mathbb{C}^{1 \mid 1}=<v \otimes_{1}, w \otimes_{1} \mid w \otimes \overline{\mathbf{1}}, v \otimes \overline{\mathbf{1}}>$. Note that in this basis $T_{1,1}^{(2)}$ acts by

$$
\left(\begin{array}{cccc}
a_{2} & 0 & -\sqrt{s} & 0 \tag{12.9}\\
0 & a_{2} & 0 & \sqrt{s} \\
0 & 0 & b_{2} & 0 \\
0 & 0 & 0 & b_{2}
\end{array}\right)
$$

If $x_{1} \neq 0$, one can choose a basis so that the matrix of $T_{1,1}^{(2)}$ is diagonal, and correspondingly, the matrices for all $T_{1,1}^{(2 k)}$ are given by (12.5). Also, if $x_{1} \neq s$, then multiplying $v \otimes_{1}$ and $w \otimes_{1}$ by $1-\frac{s}{x_{1}}$, we obtain that $T_{1,-1}^{(1)}$ acts in this basis by the matrix (12.6). Then $M \simeq V(s) \otimes \mathbb{C}^{1 \mid 1}$, since $Y Q(1)$ is generated by $T_{1,1}^{(2 k)}$ and $T_{1,-1}^{(1)}$.

Conjecture 12.3. Let S be a simple finite-dimensional $Y Q(1)$-module. Let $n \geq 2$, $\mathbf{s}=\left(s_{1}, s_{2}, \ldots, s_{n}\right)$ be regular typical, and let $f(u)$ and $g(u)$ be given by (11.1). Let $x_{k}=\frac{1}{2}\left(a_{2 k}-b_{2 k}\right)$. Then

$$
\operatorname{Ext}^{1}\left(S, V(\mathbf{s}) \otimes \Gamma_{f}\right) \neq 0
$$

if and only if $S \simeq V(\mathbf{s}) \otimes \Pi\left(\Gamma_{g}\right)$, where x_{1} is an arbitrary complex number and x_{k} for $k>1$ satisfies the recurrence relation (11.5). The short exact sequence (12.2) is non-split.

13. The category $W^{n}-\bmod$

Let $W^{n}-\bmod$ be the category of finite-dimensional $W^{n}-\operatorname{modules}$. Let $\left(W^{n}\right)^{\chi}-\bmod$ be the full subcategory of modules admitting generalized central character χ. The category $W^{n}-\bmod$ is the direct sum of subcategories $\left(W^{n}\right)^{\chi}-\bmod$, as χ ranges over the central characters χ for which $\left(W^{n}\right)^{\chi}$-mod is nonempty. We proved in [10] (Lemma 4.12) that a simple W^{n}-module S belongs to $\left(W^{n}\right)^{\chi}$ - mod if and only if it is isomorphic (up to change of parity) to $S(\mathbf{t}, \lambda)$ with $\lambda=c(\chi)$.

14. The subcategory $\left(W^{n}\right)^{\chi=0}-\bmod$

Note that simple modules in the subcategory $\left(W^{n}\right)^{\chi=0}-\bmod$ are exactly the 1 dimensional modules $S(\mathbf{t})$ up to change of parity (see [10]).

Theorem 14.1. Fix $\mathbf{t}=\left(t_{1}, \ldots, t_{p}\right)$ and $\mathbf{t}^{\prime}=\left(t_{1}^{\prime}, \ldots, t_{q}^{\prime}\right)$, where p and q are less than or equal to $\frac{n}{2}$. Consider the W^{n}-modules $S(\mathbf{t})$ and $S\left(\mathbf{t}^{\prime}\right)$. Define $a_{2 k}=\sigma_{k}\left(t_{1}, \ldots, t_{p}\right)$ for $k=1, \ldots, p, a_{2 k}=0$ for $k>p$. Similarly, define $b_{2 k}=\sigma_{k}\left(t_{1}^{\prime}, \ldots, t_{q}^{\prime}\right)$ for $k=$ $1, \ldots, q, b_{2 k}=0$ for $k>q$. Let $x_{k}=\frac{1}{2}\left(a_{2 k}-b_{2 k}\right)$.
(a) If $S(\mathbf{t})$ is a nontrivial W^{n}-module, then $\operatorname{Ext}^{1}\left(\Pi\left(S\left(\mathbf{t}^{\prime}\right)\right), S(\mathbf{t})\right) \neq 0$ if and only if $x_{1} \neq 0$ and x_{k} for $k>1$ satisfies the recurrence relation (11.5) or $S\left(\mathbf{t}^{\prime}\right)$ is isomorphic to $S(\mathbf{t})$ and $n>2 p$.
(b) If $S(\mathbf{t})=\mathbb{C}^{1 \mid 0}$ is the trivial W^{n}-module, then $\operatorname{Ext}{ }^{1}\left(\Pi\left(S\left(\mathbf{t}^{\prime}\right)\right), S(\mathbf{t})\right) \neq 0$ if and only if $S\left(\mathbf{t}^{\prime}\right)=\mathbb{C}^{100}$ or $\mathbf{t}^{\prime}=\left(t_{1}^{\prime}\right)$ with $t_{1}^{\prime}=-2$.

Proof. Suppose that $\operatorname{Ext}^{1}\left(\Pi\left(S\left(\mathbf{t}^{\prime}\right)\right), S(\mathbf{t})\right) \neq 0$. Lift $S(\mathbf{t})$ and $S\left(\mathbf{t}^{\prime}\right)$ to $Y Q(1)$-modules Γ_{f} and Γ_{g}, respectively, where f and g are given by (11.1). Then $\left.\operatorname{Ext}^{1}\left(\Pi\left(\Gamma_{g}\right), \Gamma_{f}\right)\right) \neq$ 0 . Hence by Theorem 11.1, x_{k} satisfy (11.5). Note that if $x_{1}=0$, then all $x_{k}=0$ and hence $S\left(\mathbf{t}^{\prime}\right)$ is isomorphic to $S(\mathbf{t})$. One can show that if $S(\mathbf{t})$ is a nontrivial W^{n} module, which is linked with $\Pi(S(\mathbf{t}))$, then $n>2 p$. Indeed, suppose that $n=2 p$. Then there exists a non-split short exact sequence

$$
\begin{equation*}
0 \longrightarrow S(\mathbf{t}) \longrightarrow M \longrightarrow \Pi(S(\mathbf{t})) \longrightarrow 0 \tag{14.1}
\end{equation*}
$$

We lift the W^{n}-module M to a $Y Q(1)$-module. Then the action of $Y Q(1)$ on M is given by (11.6)-(11.9) (up to equivalence), where $a_{2 k}=b_{2 k}$ for all k. Then

$$
\rho\left(T_{1,-1}^{(2 p+1)}\right)=\left(\begin{array}{cc}
0 & a_{2 p} \tag{14.2}\\
0 & 0
\end{array}\right) .
$$

Note that $\rho\left(T_{1,-1}^{(2 p+1)}\right)=0$, since $2 p+1>n$. Hence $a_{2 p}=0$, but

$$
a_{2 p}=\sigma_{p}\left(t_{1}, \ldots, t_{p}\right)=t_{1} \cdot \ldots \cdot t_{p}
$$

Hence $t_{i}=0$ for some i. A contradiction, since all t_{i} are nonzero.
Conversely, show that if x_{k} satisfy (11.5), then the lifted modules Γ_{f} and $\Pi\left(\Gamma_{g}\right)$ are linked (see (12.1)). Assume that $x_{1} \neq 0$. Then (11.5) implies that

$$
x_{1} x_{k}-x_{k}+a_{2 k}=0
$$

for $2 k \geq n$, if n is even, and for $2 k \geq n-1$, if n is odd. Hence $\rho\left(T_{1,-1}^{(r)}\right)=0$ if $r>n$ by (11.10) and (11.11), and $\rho\left(T_{1,1}^{(r)}\right)=0$ if $r>n$ by (11.6) and (11.9). Recall that the kernel of the surjective homomorphism $\varphi_{n}: Y Q(1) \longrightarrow W^{n}$ is generated by $T_{1,1}^{(r)}$ and $T_{1,-1}^{(r)}$, where $r>n$. This allows one to define a representation $\mu: W^{n} \longrightarrow \operatorname{End}\left(\mathbb{C}^{1 \mid 1}\right)$ such that $\rho=\mu \circ \varphi_{n}$. Thus $S(\mathbf{t})$ is linked with $\Pi\left(S\left(\mathbf{t}^{\prime}\right)\right)$.

If $S(\mathbf{t})=\mathbb{C}^{1 \mid 0}$, then $a_{2 k}=0$ for $k \geq 1$. From (11.5), $x_{1}=0$ or $x_{1}=1$. In the first case $x_{k}=0$ and $b_{2 k}=0$ for $k \geq 1$. Hence $S\left(\mathbf{t}^{\prime}\right)$ is the trivial module. In the second case, $x_{1}=1$ and $x_{k}=0$ for $k \geq 2, b_{2}=-2$, and $b_{2 k}=0$ for $k \geq 2$. Hence $\mathbf{t}^{\prime}=\left(t_{1}^{\prime}\right)$ with $t_{1}^{\prime}=-2$.

Finally, assume that $S(\mathbf{t})$ is a nontrivial W^{n}-module and $n>2 p$. Let $r=n-2 p$. Recall that there is an embedding $W^{n} \hookrightarrow W^{r} \otimes\left(W^{2}\right)^{\otimes p}$, and

$$
S(\mathbf{t})=\mathbb{C} \boxtimes \Gamma_{t_{1}} \boxtimes \cdots \boxtimes \Gamma_{t_{p}},
$$

where the first term \mathbb{C} in the tensor product denotes the trivial W^{r}-module. By (b), there exists a non-split short exact sequence of W^{r}-modules

$$
\begin{equation*}
0 \longrightarrow \mathbb{C}^{1 \mid 0} \longrightarrow \mathbb{C}^{1 \mid 1} \longrightarrow \mathbb{C}^{0 \mid 1} \longrightarrow 0 \tag{14.3}
\end{equation*}
$$

Consider the W^{n}-module $M=\mathbb{C}^{1 \mid 1} \boxtimes \Gamma_{t_{1}} \boxtimes \cdots \boxtimes \Gamma_{t_{p}}$. Then we obtain an exact sequence (14.1), which is non-split. Indeed, let ξ_{i} for $i=1, \ldots, r$ be odd elementary matrices in $Q(r)$, and ξ_{j}^{1}, ξ_{j}^{2} be odd elementary matrices in $Q(2)$ for $j=1, \ldots, p$, see (2.1). Recall that there is a surjective homomorphism $\varphi_{n}: Y Q(1) \longrightarrow W^{n}$ for every n, see Proposition 5.2. Note that $\varphi_{r}\left(T_{1,-1}^{(1)}\right)=\xi_{1}+\ldots+\xi_{r}$ by (2.6) in [10]. Because the exact sequence (14.3) is non-split, the action of $\varphi_{r}\left(T_{1,-1}^{(1)}\right)$ on $\mathbb{C}^{1 \mid 1}$ is nonzero. Also,

$$
\varphi_{r+2 p}\left(T_{1,-1}^{(1)}\right)=\sum_{i=1}^{r} \xi_{i} \otimes 1^{\otimes p}+\sum_{j=1}^{p} 1 \otimes 1^{\otimes(j-1)} \otimes\left(\xi_{j}^{1}+\xi_{j}^{2}\right) \otimes 1^{\otimes(p-j)}
$$

by (2.6) and (3.10) in [10]. Note that ξ_{j}^{1} and ξ_{j}^{2} act on $\Gamma_{t_{j}}$ by zero for $j=1, \ldots, p$. Hence $\varphi_{r+2 p}\left(T_{1,-1}^{(1)}\right)$ acts on M as $\left(\xi_{1}+\ldots+\xi_{r}\right) \otimes 1^{\otimes p}$, and this action is nonzero. Thus $\operatorname{Ext}^{1}(\Pi(S(\mathbf{t})), S(\mathbf{t})) \neq 0$.
Remark 14.2. Suppose that Γ_{f} is lifted from a nontrivial module $S(\mathbf{t})$, and assume that $\operatorname{Ext}^{1}\left(\Pi\left(\Gamma_{g}\right), \Gamma_{f}\right) \neq 0$. Note that Γ_{g} is lifted from some W^{n}-module $S\left(\mathbf{t}^{\prime}\right)$ which is not isomorphic to $S(\mathbf{t})$, if and only if $x_{\frac{n+2}{2}}=0$ if n is even and $x_{\frac{n+1}{2}}=0$ if n is odd, see (11.5). This means that x_{1} is a (nonzero) root of the polynomial of degree n (respectively, $n-1$) defined by the recurrence relation (11.5) if n is even (respectively, odd). Then we set $b_{2 k}=a_{2 k}-2 x_{k}$ for all k and find $\mathbf{t}^{\prime}=\left(t_{1}^{\prime}, \ldots, t_{q}^{\prime}\right)$ such that $b_{2 k}=\sigma_{k}\left(\mathbf{t}^{\prime}\right)$. Here \mathbf{t}^{\prime} is defined up to permutation of $t_{1}^{\prime}, \ldots, t_{q}^{\prime}$, and we delete all zero entries. Then $\operatorname{Ext}^{1}\left(\Pi\left(S\left(\mathbf{t}^{\prime}\right)\right), S(\mathbf{t})\right) \neq 0$. Also, if $n>2 p$, then $\operatorname{Ext}^{1}(\Pi(S(\mathbf{t})), S(\mathbf{t})) \neq$ 0 . Moreover, all modules $S\left(\mathbf{t}^{\prime}\right)$ satisfying the above formula are obtained in this way.
Corollary 14.3. (a) If $S(\mathbf{t})$ is a nontrivial W^{n}-module, then $\operatorname{Ext}^{1}\left(S(\mathbf{t}), \Pi\left(S\left(\mathbf{t}^{\prime}\right)\right)\right) \neq 0$ if and only if $x_{k}:=\frac{1}{2}\left(b_{2 k}-a_{2 k}\right)$ satisfies the recurrence relation (11.13) for $k>0$ and $x_{1} \neq 0$ or $S\left(\mathbf{t}^{\prime}\right)$ is isomorphic to $S(\mathbf{t})$ and $n>2 p$.
(b) If $S(\mathbf{t})$ is a trivial W^{n}-module, then $\operatorname{Ext}^{1}\left(S(\mathbf{t}), \Pi\left(S\left(\mathbf{t}^{\prime}\right)\right)\right) \neq 0$ if and only if $S\left(\mathbf{t}^{\prime}\right)=\mathbb{C}^{1 \mid 0}$ or $\mathbf{t}^{\prime}=\left(t_{1}^{\prime}\right)$ with $t_{1}^{\prime}=-2$.

15. Blocks in the category $W^{2}-\bmod$

Lemma 15.1. Let $n=2$. A simple W^{2}-module S belongs to $\left(W^{2}\right)^{\chi}-\bmod$ if and only if one of the following three cases takes place:
(1) $S \simeq V\left(s_{1}, s_{2}\right)$ for $s_{1} \neq-s_{2}, s_{1}, s_{2} \neq 0$ and $c(\chi)=\left(s_{1}, s_{2}\right)$,
(2) $S \simeq V(s, 0)$ for $s \neq 0$ and $c(\chi)=(s)$,
(3) $S \simeq \Gamma_{t}$ or $\Pi\left(\Gamma_{t}\right)$ and $\chi=0$.

Proof. Follows from Lemma 4.12 in [10].
Theorem 15.2. (1) Each simple W^{2}-module $V\left(s_{1}, s_{2}\right)$ for $s_{1} \neq-s_{2}, s_{1}, s_{2} \neq 0$ forms a block in $\left(W^{2}\right)^{\chi}$-mod, where $c(\chi)=\left(s_{1}, s_{2}\right)$.
(2) Each simple W^{2}-module $V(s, 0)$ for $s \neq 0$ forms a block in $\left(W^{2}\right)^{\chi}$-mod, where $c(\chi)=(s)$.
(3) The blocks in the subcategory $\left(W^{2}\right)^{\chi=0}$-mod are described as follows. Let $a \in \mathbb{C}$. Define

$$
\begin{equation*}
a_{n}=a-n^{2}+n \sqrt{1-4 a} \text { for } n=0, \pm 1, \pm 2, \ldots \tag{15.1}
\end{equation*}
$$

Then Γ_{a} lies in the block formed by $\Gamma_{a_{n}}$ if n is even and $\Pi \Gamma_{a_{n}}$, if n is odd. $\Pi \Gamma_{a}$ lies in the block formed by $\Pi \Gamma_{a_{n}}$ if n is even and $\Gamma_{a_{n}}$, if n is odd.

Proof. Statements (1) and (2) follow from Lemma 8.2 and Lemma 15.1. To prove (3), first we will show that Γ_{a} is linked with $\Pi \Gamma_{b}$ if and only if

$$
\begin{equation*}
b=a-1 \pm \sqrt{1-4 a} \tag{15.2}
\end{equation*}
$$

Let $S(\mathbf{t})=\Gamma_{a}$ and $S\left(\mathbf{t}^{\prime}\right)=\Gamma_{b}$. Set $a_{0}=b_{0}=1, a_{2}=a, b_{2}=b$ and $a_{2 k}=b_{2 k}=0$ for $k>1, x_{k}=\frac{1}{2}\left(a_{2 k}-b_{2 k}\right)$ for $k \geq 0$. Suppose $a \neq 0$, then by Theorem 14.1 (a)

$$
x_{2}=\left(x_{1}^{2}-x_{1}+a_{2}\right) x_{1}
$$

and x_{1} must satisfy $x_{1}^{2}-x_{1}+a_{2}=0$. Hence $x_{1}=\frac{1}{2}(1 \pm \sqrt{1-4 a})$. Thus $b=$ $a-1 \pm \sqrt{1-4 a}$. Note that Corollary 14.3 (a) gives the same result.

If $a=0$, then by Theorem 14.1 (b) we have that $b=0$ or $b=-2$. Hence (15.2) holds.

Note that b is a root of the equation

$$
\begin{equation*}
b^{2}+(2-2 a) b+\left(a^{2}+2 a\right)=0 \tag{15.3}
\end{equation*}
$$

The sum of the roots of equation (15.3) is $2 a-2$. This gives the relation

$$
\begin{equation*}
a_{n-1}+a_{n+1}=2 a_{n}-2 \quad\left(a_{n}=a\right) . \tag{15.4}
\end{equation*}
$$

Then (15.2) and (15.4) imply (15.1).
Example 15.3. (1) $a=0$, then $a_{n}=n(1-n)$ and Γ_{0} lies in the block

$$
\ldots, \Gamma_{-30}, \Pi \Gamma_{-20}, \Gamma_{-12}, \Pi \Gamma_{-6}, \Gamma_{-2},, \Pi \Gamma_{0}, \Gamma_{0}, \Pi \Gamma_{-2}, \Gamma_{-6}, \Pi \Gamma_{-12}, \Gamma_{-20}, \Pi \Gamma_{-30}, \ldots
$$

(2) $a=\frac{1}{4}$, then $a_{n}=\frac{1}{4}-n^{2}$ and $\Gamma_{\frac{1}{4}}$ lies in the block

$$
\Gamma_{\frac{1}{4}}, \Pi \Gamma_{-\frac{3}{4}}, \Gamma_{-\frac{15}{4}}, \ldots
$$

(3) $a=1$, then $a_{n}=1-n^{2}+n \sqrt{-3}$ and Γ_{1} lies in the block

$$
\ldots, \Pi \Gamma_{-3 \sqrt{-3}-8}, \Gamma_{-2 \sqrt{-3}-3}, \Pi \Gamma_{-\sqrt{-3}}, \Gamma_{1}, \Pi \Gamma_{\sqrt{-3}}, \Gamma_{2 \sqrt{-3}-3}, \Pi \Gamma_{3 \sqrt{-3}-8}, \ldots
$$

Acknowledgement . This research was supported by Simons Foundation Collaboration Grant 354874. This work has been partly done at the Max-Planck-Institut für Mathematik in Bonn in the summer of 2022. I wish to thank the MPIM for the hospitality and support. I am grateful to V. Serganova for very helpful discussions.

References

1. S.-J. Cheng and W. Wang, Dualities and representations of Lie superalgeras, Graduate Studies in Mathematics 144 (Providence, RI: American Mathematical Society, 2012), pp. 94-95.
2. J. Humphreys, Representations of semisimple Lie algebras in the BGG category O, Graduate Studies in Mathematics 94 (Providence, RI: American Mathematical Society, 2008), pp. 30-32.
3. V. G. Kac, Lie superalgebras, Adv. Math. 26 (1977) 8-96.
4. V. G. Kac, Representations of classical Lie superalgebras, Differential geometrical methods in mathematical physics, II (Proc. Conf., Univ. Bonn, Bonn, 1977), pp. 597-626. Lecture Notes in Math. vol 676, Springer, Berlin, 1978.
5. M. Nazarov, Yangians of the "strange" Lie superalgebras, in: P.P. Kulish (Ed.), Quantum Groups, Lecture Notes in Mathematics, vol. 1510, 1992, Springer, Berlin-Heidelberg, pp. 9097.
6. M. Nazarov, Yangian of the queer Lie superalgebra, Comm. Math. Phys. 208 (1999) 195-223.
7. A. Sergeev, The centre of enveloping algebra for Lie superalgebra $Q(n, \mathbb{C})$, Lett. Math. Phys. 7 (1983) 177-179.
8. E. Poletaeva, V. Serganova, On Kostant's theorem for the Lie superalgebra $Q(n)$, Adv. Math. 300 (2016) 320-359. arXiv:1403.3866v1 [Math RT].
9. E. Poletaeva, V. Serganova, On the finite W-algebra for the Lie superalgebra $Q(n)$ in the non-regular case, J. Math. Phys. 58(11) (2017) 111701. arXiv:1705.10200v1 [Math RT].
10. E. Poletaeva, V. Serganova, Representations of principal W-algebra for the superalgebra $Q(n)$ and the super Yangian $Y Q(1)$, J. Algebra 570 (2021) 140-163. arXiv:1903.05272v3 [math RT].
11. E. Poletaeva, Blocks in the category of finite-dimensional representations of principal W-algebra for $Q(2)$, Journal of Physics: Conference Series 1416 (2019) 012028.
12. E. Poletaeva, On 1-dimensional modules over the super-Yangian of the superalgebra $Q(1)$, in: Proceedings of the XIV International Workshop "Lie Theory and Its Applications in Physics", (Sofia, Bulgaria, June 2021, on-line), ed. V. Dobrev, Springer Proceedings in Mathematics and Statistics, Vol. 396, (Springer, Heidelberg-Tokyo, 2022). To appear.
13. A. Premet, Special transverse slices and their enveloping algebras, Adv. Math. 170 (2002) 1-55.
