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Abstract. Let Q(n) be the queer Lie superalgebra. We determine conditions
under which two 1-dimensional modules over the super-Yangian of Q(1) can be
extended nontrivially, and thus belong to the same block of the subcategory of finite-
dimensional Y Q(1)-modules admitting generalized central character χ = 0. We use
these results to determine conditions under which two 1-dimensional modules over
the finite W -algebra for Q(n) can be extended nontrivially. We describe blocks in
the category of finite-dimensional modules over the finite W -algebra for Q(2). In
certain cases we determine conditions under which two simple finite-dimensional
Y Q(1)-modules admitting central character χ ̸= 0 can be extended nontrivially
and propose a conjecture in the general case.

1. Introduction

The queer Lie superalgebra Q(n) is a fixed point subalgebra of the general linear
Lie superalgebra gl(n|n) relative to certain involutive automorphism.

We started to study the representation theory of the finite W -algebra W n for
Q(n) associated with the principal nilpotent coadjoint orbits in [8]. We have shown
that all irreducible representations of W n are finite-dimensional. In [10] we clas-
sified irreducible representations of W n (Theorem 4.7). We used these results to
classify irreducible finite-dimensional representations of the super-Yangian Y Q(1) of
Q(1) (Theorem 5.13). A natural problem is to describe blocks in the subcategory
of finite-dimensional Y Q(1)-modules and in the subcategory of finite-dimensional
W n-modules admitting a given generalized central character χ. We initiated the
study of blocks in these subcategories in [11, 12]. If χ = 0, then the simple mod-
ules in these subcategories are 1-dimensional. In this paper we determine when two
1-dimensional Y Q(1)-modules can be extended nontrivially, and thus belong to the
same block (Theorem 11.1). We use these results and results of [10] to determine
when two 1-dimensional W n-modules can be extended nontrivially (Theorem 14.1).
Using Theorem 14.1, we describe blocks in the category of finite-dimensional modules
over W 2 (Theorem 15.2).
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Every simple finite-dimensional module over Y Q(1) is isomorphic (up to change
of parity) to V (s)⊗ Γf , where V (s) is a simple Y Q(1)-module parameterized by an
n-tuple of nonzero complex numbers s = (s1, s2, . . . , sn) such that si + sj ̸= 0 for all
i < j, and Γf is a 1-dimensional Y Q(1)-module, which is defined by certain generating
function f(u) ∈ Y Q(1)[[u−2]]. If n ≥ 1, then V (s) ⊗ Γf admits a nontrivial central
character. In the case when s = (s1), we determine conditions under which two
simple modules of type V (s1)⊗ Γf can be extended nontrivially (Proposition 12.1).
We propose a conjecture in the general case when s = (s1, s2, . . . , sn) (Conjecture
12.3).

2. The Lie superalgebra Q(n)

Consider the general linear Lie superalgebra gl(n|n) with the standard basis Eij,
where i, j = ±1, . . . ,±n. Define the parity of i by

p(i) = 0 if i > 0 and p(i) = 1 if i < 0.

Let η be an involutive automorphism of gl(n|n) defined by

η(Eij) = E−i,−j.

The queer Lie superalgebra Q(n) is the fixed point subalgebra in gl(n|n) relative to
η. Recall that Q(n) can also be defined as follows (see [3]). Equip Cn|n with the
odd operator ζ such that ζ2 = − Id. Then Q(n) is the centralizer of ζ in the Lie

superalgebra gl(n|n). Let ζ =

(
0 In

−In 0

)
. It is easy to see that Q(n) consists of

matrices of the form (
A B
B A

)
,

where A,B are n× n-matrices. Let

{ei,j, fi,j | i, j = 1, . . . , n}
denote the basis in Q(n) consisting of elementary even and odd matrices. Set

ξi := (−1)i+1fi,i, xi := ξ2i = ei,i.(2.1)

3. The finite W -algebra for Q(n)

Let W n be the finite W -algebra associated with a principal even nilpotent element
φ in the coadjoint representation of g = Q(n). Let us recall its definition (see [13]).
We fix the Cartan subalgebra h ⊂ g to be the set of matrices with diagonal A and B.
By n+ (respectively, n−) we denote the nilpotent subalgebras consisting of matrices
with strictly upper triangular (respectively, low triangular) A and B.

The Lie superalgebra g has the triangular decomposition g = n− ⊕ h⊕ n+, and we
set b = n+ ⊕ h. Choose φ ∈ g∗ such that

φ(fi,j) = 0, φ(ei,j) = δi,j+1.



ON LINKED MODULES OVER Y Q(1) 3

Let Iφ be the left ideal in U(g) generated by x−φ(x) for all x ∈ n−. Let π : U(g) →
U(g)/Iφ be the natural projection. Then

W n = {π(y) ∈ U(g)/Iφ | ad(x)y ∈ Iφ for all x ∈ n−}.

Using the identification of U(g)/Iφ with the Whittaker module U(g) ⊗U(n−) Cφ ≃
U(b) ⊗ C, we can consider W n as a subalgebra of U(b). The natural projection ϑ :
U(b) → U(h) with the kernel n+U(b) is called the Harish-Chandra homomorphism.
It is proven in [8] that the restriction of ϑ to W n is injective. We will identify W n

with ϑ(W n) ⊂ U(h).

Example 3.1. n = 2, h = span{x1, x2 | ξ1, ξ2}. Then W 2 realized as a subalgebra
of U(h) has the following generators:

z0 = x1 + x2, z1 = x1x2 − ξ1ξ2 (even),

ϕ0 = ξ1 + ξ2, ϕ1 = x2ξ1 − x1ξ2 (odd).

4. The super Yangian of Q(1)

The Yangians Y Q(n) associated with the Lie superalgebras Q(n) were defined by
M. L. Nazarov ([5, 6]). Recall that Y Q(1) is the associative unital superalgebra over

C with the countable set of generators T
(m)
i,j , where m = 1, 2, . . . and i, j = ±1. The

Z2-grading of Y Q(1) is defined as follows:

p(T
(m)
i,j ) = p(i) + p(j), where p(1) = 0 and p(−1) = 1.

To write the defining relations for these generators, we employ the formal series in
Y Q(1)[[u−1]]:

Ti,j(u) = δij · 1 + T
(1)
i,j u

−1 + T
(2)
i,j u

−2 + . . . .

Then for all possible indices i, j, k, l we have the relations

(u2 − v2)[Ti,j(u), Tk,l(v)] · (−1)p(i)p(k)+p(i)p(l)+p(k)p(l)

= (u+ v)(Tk,j(u)Ti,l(v)− Tk,j(v)Ti,l(u))

−(u− v)(T−k,j(u)T−i,l(v)− Tk,−j(v)Ti,−l(u)) · (−1)p(k)+p(l).

(4.1)

Here v is a formal parameter independent of u, so that (4.1) is an equality in the
algebra of formal Laurent series in u−1, v−1 with coefficients in Y Q(1). For all indices
i, j we also have the relations

Ti,j(−u) = T−i,−j(u).(4.2)
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The relations (4.1) and (4.2) are equivalent to the following defining relations:

([T
(m+1)
i,j , T

(r−1)
k,l ]− [T

(m−1)
i,j , T

(r+1)
k,l ]) · (−1)p(i)p(k)+p(i)p(l)+p(k)p(l) =

T
(m)
k,j T

(r−1)
i,l + T

(m−1)
k,j T

(r)
i,l − T

(r−1)
k,j T

(m)
i,l − T

(r)
k,j T

(m−1)
i,l

+(−1)p(k)+p(l)(−T
(m)
−k,jT

(r−1)
−i,l + T

(m−1)
−k,j T

(r)
−i,l + T

(r−1)
k,−j T

(m)
i,−l − T

(r)
k,−jT

(m−1)
i,−l ),

(4.3)

T
(m)
−i,−j = (−1)mT

(m)
i,j ,(4.4)

where m, r = 1, . . . and T
(0)
i,j = δij. Recall that Y Q(1) is a Hopf superalgebra (see [6])

with comultiplication given by the formula

∆(T
(r)
i,j ) =

r∑
s=0

∑
k

(−1)(p(i)+p(k))(p(j)+p(k))T
(s)
i,k ⊗ T

(r−s)
k,j .

The evaluation homomorphism ev : Y Q(1) → U(Q(1)) is defined as follows:

T
(1)
1,1 7→ −e1,1, T

(1)
1,−1 7→ f1,1, T

(0)
i,j 7→ δi,j, T

(r)
i,j 7→ 0 for r > 1, i, j = ±1.

5. W n is a quotient of Y Q(1)

Definition 5.1. (a) Define ∆l : Y Q(1) −→ Y Q(1)⊗l by

∆l := ∆l−1,l ◦ · · · ◦∆2,3 ◦∆.

(b) Let φn : Y Q(1) → U(Q(1))⊗n ≃ U(h) be φn := ev⊗n ◦∆n.

Note that φn(T
(r)
1,1 ) = φn(T

(r)
1,−1) = 0 if r > n.

Proposition 5.2. ([9], Corollary 5.16) The map φn is a surjective homomorphism
from Y Q(1) onto W n, realized as a subalgebra of U(h):

φn(Y Q(1)) = ϑ(W n) ≃ W n.

Note that Wm+n is a subalgebra of Wm ⊗ W n ([10], Lemma 3.3). The following
diagram commutes:

(5.1)

Y Q(1)
∆−−−→ Y Q(1)⊗ Y Q(1)

φm+n

y φm⊗φn

y
Wm+n −−−→ Wm ⊗W n
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6. Simple modules over associative superalgebras

We work in the category of vector superspaces over C. We denote the parity of a
homogeneous vector v of a superspace by p(v) ∈ Z2. All tensor products are over C.

Let A be a superalgebra. By an A-module M we mean a Z2-graded left A-module.
A submodule of M is a Z2-graded submodule. By Π we denote the parity functor
Π(M) = M ⊗C0|1. For a module M over an associate superalgebra A, Π(M) has the
same underlying vector space but with the opposite Z-grading. The new action of
a ∈ A on m ∈ Π(M) is given in terms of the old action by a ·m := (−1)p(a)am.

Recall that if M is a simple finite-dimensional A-module over some associative
superalgebra A, then by Schur’s Lemma EndA(M) is either one-dimensional, or two-
dimensional and has basis {IdM , ϵM}, where ϵM is a (unique up to a sign) odd invo-
lution on M : ϵ2M = IdM . Note that ϵM provides an A isomorphism M −→ Π(M).
We say that M is an irreducible of M-type in the former case and an irreducible of
Q-type in the latter (see [4, 1]).

Let A and B be two superalgebras. The tensor product A⊗B is again a superalgebra,
where multiplication is given by

(a1 ⊗ b1)(a2 ⊗ b2) = (−1)p(b1)p(a2)a1a2 ⊗ b1b2

for ai ∈ A, bi ∈ B. Let M and N be two modules over associative superalgebras A

and B. Then M ⊗N is naturally a module over A⊗ B where

(a⊗ b)(m⊗ n) = (−1)p(b)p(m)am⊗ bn,

where a ∈ A, b ∈ B and m ∈ M,n ∈ N . If M and N are two simple finite-dimensional
modules over associative superalgebras A and B, then the module M ⊗ N might be
not simple. In fact, if M and N are both of M-type, then M⊗N is simple of M-type.
If one of these modules is of M-type, and the other is of Q-type, then M⊗N is simple
of Q-type. However, if M and N are both of Q-type, then M ⊗ N is not simple.
Let ϵM and ϵN be odd involutions of M and N , respectively. Then the map ϵM ⊗ ϵN
defined by

(ϵM ⊗ ϵN)(m⊗ n) = (−1)p(m)ϵM(m)⊗ ϵN(n)

is an even A ⊗ B-automorphism of M ⊗ N , and its square is −IdM⊗N . In this case
M ⊗ N decomposes into a direct sum of two A ⊗ B-submodules, which are formed
by the ±i-eigenspaces of ϵM ⊗ ϵN . We can choose either submodule and denote it by
M�N . Then

M ⊗N ≃ M�N ⊕ Π(M�N).

Both submodules are simple and of M-type.

7. Simple W n-modules

We classified simple W n-modules in [10] (Theorem 4.7). Here we recall their con-
struction.
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7.1. W n-modules V (s). Let s = (s1, . . . , sn) ∈ Cn. We call s regular if si ̸= 0 for all
i ≤ n and typical if si + sj ̸= 0 for all 1 ≤ i < j ≤ n. Note that we have the natural
embedding of the Lie superalgebras

(7.1) Q(1)⊕Q(1)⊕ · · · ⊕Q(1) ↪→ Q(n).

Let h1 denote the Cartan subalgebra of Q(1). Then h1 = span{x1 | ξ1} with x1 = ξ21 ,
and U(h1) ≃ C([ξ1]). Let V (si) be a (1|1)-dimensional U(h1)-module, where the
action is given by

ξ 7→
(

0
√
si√

si 0

)
, x 7→

(
si 0
0 si

)
for i = 1, 2.

The embedding (7.1) induces the isomorphism

U(h) ≃ U(h1)⊗ U(h1)⊗ · · · ⊗ U(h1).

Then V (s) := V (s1) � V (s2) � · · · � V (sn) is a simple U(h)-module. Consider the
restriction of U(h) to W n. Let s = (s1, . . . , sn) be regular typical. Then V (s) is a
simple W n-module, and if s′ = σ(s) for some permutation of coordinates, then V (s)
is isomorphic to V (s′) as a W n-module, see [10].

7.2. Construction of simple W n-modules. Let Γt be the simple W 2-module of
dimension (1|0) on which ϕ0, ϕ1 and z0 act by zero and z1 acts by the scalar t.

Let r, p, q ∈ N and r+2p+ q = n, t = (t1, . . . , tp) ∈ Cp, and λ = (λ1, . . . , λq) ∈ Cq,
where t is regular and λ is regular typical. Recall that there is an embedding W n ↪→
W r ⊗ (W 2)⊗p ⊗W q ([10], Corollary 3.4). Set

S(t, λ) := C� Γt1 � · · ·� Γtp � V (λ),

where the first term C in the tensor product denotes the trivial W r-module. For
q = 0 we use the notation S(t) and set V (λ) = C.

Proposition 7.1. (see [10], Theorem 4.7) (a) Every simple W n-module is isomorphic
to S(t, λ) up to change of parity.
(b) Two simple W n-modules S(t, λ) and S(t′, λ′) are isomorphic if and only if p′ = p,
q′ = q, t′ = σ(t) and λ′ = τ(λ) for some σ ∈ Sp and τ ∈ Sq.

8. Central characters

The center of U(g) for g = Q(n) is described in [7]. The center of U(h) coincides
with C[x1, . . . , xn] and the image of the center of U(g) under the Harish-Chandra
homomorphism ϑ is generated by the polynomials pk = x2k+1

1 + · · · + x2k+1
n for all

k ∈ N. These polynomials are called Q-symmetric polynomials.
In [8] we proved that the center Zn of W n coincides with W n

∩
C[x1, . . . , xn] =

ϑ(Z(U(g))) and hence can be also identified with the ring of Q-symmetric polynomi-
als.
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Every s defines the central character χs : Zn → C. Furthermore, it follows from
the description of simple W n-modules in [10] (Theorem 4.6) that every simple W n-
module admits central character χs for some s. For every s = (s1, . . . , sn) we define
the core c(s) = (si1 , . . . , sim) as a subsequence obtained from s by removing all sj = 0
and all pairs (si, sj) such that si + sj = 0. Up to a permutation this result does not
depend on the order of removing. Thus, the core is well defined up to permutation.
We call m the length of the core.

Example 8.1. Let s = (1, 0, 3,−1,−1), then c(s) = (3,−1).

The following is a reformulation of the central character description in [7].

Lemma 8.2. Let s, s′ ∈ Cn. Then χs = χs′ if and only if s and s′ have the same
core (up to permutation).

It follows from Lemma 8.2 that the core depends only on the central character χs,
we denote it c(χ).

9. Simple finite-dimensional Y Q(1)-modules

We classified simple finite-dimensional Y Q(1)-modules in [10]. First we recall the
description of 1-dimensional Y Q(1)-modules.

Remark 9.1. Note that [T
(k)
1,1 , T

(m)
1,1 ] = 0 if k +m is even (see [8], Proposition 6.4).

Definition 9.2. Let A be the commutative subalgebra in Y Q(1) generated by T
(2k)
1,1

for k ≥ 0. Let

f(u) = 1 +
∑
k>0

f2ku
−2k.

Let Γf be the corresponding 1-dimensional A-module, where the action of

T1,1(u
−2) =

∑
k≥0

T
(2k)
1,1 u−2k

is given by the generating function f(u).

Recall that for any Hopf superalgebra R, the ideal (R1) generated by all odd
elements is a Hopf ideal and the quotient R/(R1) is a Hopf algebra.

Proposition 9.3. ([10], Lemma 5.11) The quotient Y Q(1)/(Y Q(1)1) is isomorphic

to A ≃ C[T (2k)
1,1 ]k>0, with comultiplication

∆T1,1(u
−2) = T1,1(u

−2)⊗ T1,1(u
−2).

Thus we can lift an A-module Γf to a Y Q(1)-module.

Proposition 9.4. ([10], Lemma 5.12) The isomorphism classes of 1-dimensional
Y Q(1)-modules are in bijection with the set {Γf}. Furthermore, we have the identity
Γf ⊗ Γg ≃ Γfg.
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Let s ∈ Cn be regular typical. Then we can lift the W n-module V (s) to a simple

Y Q(1)-module. Note that T
(r)
1,1 and T

(r)
1,−1 act on V (s) by zero if r > n.

Proposition 9.5. ([10], Theorem 5.13) Any simple finite-dimensional Y Q(1)-module
is isomorphic to V (s) ⊗ Γf or ΠV (s) ⊗ Γf for some regular typical s and f(u) =
1 +

∑
k>0 f2ku

−2k. Furthermore, V (s) ⊗ Γf and V (s′) ⊗ Γg are isomorphic up to
change of parity if and only if s′ is obtained from s by permutation of coordinates
and f(u) = g(u).

Proposition 9.6. ([10], Proposition 5.19) The simple Y Q(1)-module V (s) ⊗ Γf is
lifted from some Wm+n-module if and only if f ∈ C[u−2]. Moreover, the smallest m
is equal to the degree of the polynomial f .

Remark 9.7. Note that m = 2p is even. S(t1, . . . , tp, λ) ≃ V (λ)⊗ Γf where

f =

p∏
i=1

(1 + tiu
−2).

10. The category Y Q(1)–mod

We described the center Z of Y Q(1) in [10]. Let

ηi = (−1

2
)i adi T

(2)
1,1 (T

(1)
1,−1), Z2i =

1

2
[η0, η2i],(10.1)

where adi T
(2)
1,1 is the i-power of the adjoint endomorphism adT

(2)
1,1 . The elements

{Z2i | i ∈ N} are algebraically independent generators of Z.
Let Y Q(1)–mod be the category of finite-dimensional Y Q(1)-modules. A Y Q(1)-

module M admits generalized central character χ if for any z ∈ Z and m ∈ M ,
there exists n ∈ Z≥0 such that (z − χ(z))n · m = 0. Let (Y Q(1))χ–mod be the
full subcategory of modules admitting generalized central character χ. The category
Y Q(1)–mod is the direct sum of the subcategories (Y Q(1))χ–mod, as χ ranges over
the central characters for which (Y Q(1))χ–mod is nonempty.

Lemma 10.1. Every simple Y Q(1)-module in the subcategory (Y Q(1))χ–mod is
isomorphic up to change of parity to V (s) ⊗ Γf , where s = (s1, . . . , sn) is regular
typical, which is unique up to permutation.

Proof. Let C ⊂ Y Q(1) be the unital subalgebra generated by {ηi | i ∈ N}. Then

V (s) and V (s)⊗ Γf are isomorphic C-modules. Indeed, η0 = T
(1)
1,−1 and by (10.1)

ηi+1 = (−1

2
)[T

(2)
1,1 , ηi].(10.2)

Note that
∆(T

(1)
1,−1) = T

(1)
1,−1 ⊗ 1 + 1⊗ T

(1)
1,−1.

Hence η0 acts on V (s)⊗ Γf as η0 ⊗ 1. Then it follows by induction from (10.2) that
ηi acts on V (s)⊗ Γf as ηi ⊗ 1 for all i. Then every ζ ∈ C acts as ζ ⊗ 1. Hence V (s)
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and V (s)⊗Γf are isomorphic C-modules, and they admit the same central character
χ.

On the other hand, Y Q(1)-modules V (s) and V (s′), where s = (s1, . . . , sn) and
s′ = (s′1, . . . , s

′
m) are regular typical, have the same central character χ if and only if

n = m and s′ is a permutation of s.
Indeed, a Y Q(1)-module V (s) admits a central character χ. It can be presented

using the generating function

χ(u) =
∞∑
i=0

χ2iu
−2i−1,

where χ2i = χ(Z2i). Let σk denote the k-th elementary symmetric polynomial. We
proved in [10] that

χ(u) =

∑∞
i=0 σ2i+1(s)u

−2i−1

1 +
∑∞

i=1 σ2i(s)u−2i
.

Note that V (s1, . . . , sn) and V (s1, . . . , sn, 0) have the same central character. Suppose
that V (s) and V (s′) have the same central character χ and s, s′ are regular typical.
Assume that n ≥ m. Extend s′ to the n-tuple s′′ = (s′1, . . . , s

′
m, 0, 0, . . . , 0). Then

V (s′′) and V (s) have the same central character χ. Note that φn(Z) = Zn (see [10]).
Thus χ = χs ◦φn = χs′′ ◦φn. Then χs = χs′′ . Hence by Lemma 8.2, s and s′′ have the
same core (up to permutation). Hence m = n and s′ is a permutation of s. Clearly,
if s′ is a permutation of s, then χs = χs′ , and hence V (s) and V (s′) have the same
central character χ. �

Recall that simple modules are partitioned into blocks. If two simple modules M1

and M2 can be extended nontrivially, i.e., if there is a non-split short exact sequence
0 −→ Mi −→ M −→ Mj −→ 0 with {i, j} = {1, 2}, then M1 and M2 belong
to the same block, and we will say that they are linked. Here we agree that Mi

is linked to itself. More generally, if there is a finite sequence of simple modules
M = M1,M2, . . . ,Mn = N such that adjacent pairs belong to the same block, then
modules M and N belong to this block. A module M belongs to a block if all its
composition factors do. Each block lies in a single (Y Q(1))χ–mod. However, different
blocks can belong to the same (Y Q(1))χ–mod: see [2].

11. The subcategory (Y Q(1))χ=0–mod

It follows from Proposition 9.5 that simple modules in the subcategory (Y Q(1))χ=0–
mod are exactly the 1-dimensional modules Γf up to change of parity. Let Γf and
Γg be two Y Q(1)-modules, where

f(u) =
∑
k≥0

a2ku
−2k, g(u) =

∑
k≥0

b2ku
−2k, a0 = b0 = 1.(11.1)
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Recall that Γf is linked to itself. If f ̸= g, then one can easily check that the short
exact sequence

0 −→ Γf −→ M −→ Γg −→ 0

splits. Indeed, we have the following relations in Y Q(1):

[T
(2k)
1,1 , T

(1)
1,−1] = 2T

(2k)
1,−1.(11.2)

[T
(2)
1,1 , T

(2k)
1,−1] = 2T

(2k+1)
1,−1 + 2T

(2k)
1,−1 − 2T

(2k)
1,1 T

(1)
1,−1.(11.3)

[T
(1)
1,−1, T

(2k+1)
1,−1 ] = −2T

(2k+1)
1,1 .(11.4)

All odd generators T
(r)
1,−1 act on M by zero, since M is a purely even module. Then

T
(2k+1)
1,1 also acts on M by zero by (11.4). Note that T

(2k)
1,1 acts on M as

(
a2k c2k
0 b2k

)
,

and there exists m such that a2m ̸= b2m, since f ̸= g. We can choose a basis in M so

that c2m = 0. Then c2k = 0 for all k, since T
(2k)
1,1 commute. Hence M ≃ Γf ⊕ Γg.

We will determine when Γf is linked with P(Γg). Let xk =
1
2
(a2k − b2k).

Theorem 11.1. Ext1(P(Γg),Γf ) ̸= 0 if and only if x1 is an arbitrary complex number
and xk for k > 1 satisfies the recurrence relation

xk+1 = (x1xk − xk + a2k)x1.(11.5)

Proof. Note that the short exact sequence

0 −→ Γf −→ M −→ Π(Γg) −→ 0

is non-split if and only if T
(1)
1,−1 does not act by zero. Indeed, if T

(1)
1,−1 acts by zero,

then T
(2k)
1,−1 and T

(2k+1)
1,−1 also act by zero for all k by (11.2) and (11.3), but then

M ≃ Γf ⊕ P(Γg). Clearly, if M ≃ Γf ⊕ P(Γg), then all odd generators act by zero.
Hence Ext1(P(Γg),Γf ) ̸= 0 if and only if one can define a representation ρ :

Y Q(1) −→ End(C1|1) such that (up to equivalence)

ρ(T
(2k)
1,1 ) =

(
a2k 0
0 b2k

)
, ρ(T

(1)
1,−1) =

(
0 1
0 0

)
.(11.6)

Then

ρ(T
(2k)
1,−1) =

(
0 1

2
(a2k − b2k)

0 0

)
,(11.7)

ρ(T
(2k+1)
1,−1 ) =

(
0 1

4
(a2 − b2)(a2k − b2k) +

1
2
(a2k + b2k)

0 0

)
,(11.8)
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ρ(T
(2k+1)
1,1 ) = 0.(11.9)

Here (11.7) follows from (11.6) and the relation (11.2), (11.8) follows from (11.6),
(11.7), and (11.3), and (11.9) follows from (11.8) and (11.4).

Let xk =
1
2
(a2k − b2k). Then from (11.7)

ρ(T
(2k)
1,−1) =

(
0 xk

0 0

)
,(11.10)

and from (11.8)

ρ(T
(2k+1)
1,−1 ) =

(
0 x1xk − xk + a2k
0 0

)
,(11.11)

The recurrence relation (4.3) with m = 2k − 1 and r = 2p+ 2 gives the relation

([T
(2k)
1,1 , T

(2p+1)
1,−1 ]− [T

(2k−2)
1,1 , T

(2p+3)
1,−1 ]) =

T
(2k−1)
1,1 T

(2p+1)
1,−1 + T

(2k−2)
1,1 T

(2p+2)
1,−1 − T

(2p+1)
1,1 T

(2k−1)
1,−1 − T

(2p+2)
1,1 T

(2k−2)
1,−1

+T
(2k−1)
−1,1 T

(2p+1)
−1,−1 − T

(2k−2)
−1,1 T

(2p+2)
−1,−1 − T

(2p+1)
1,−1 T

(2k−1)
1,1 + T

(2p+2)
1,−1 T

(2k−2)
1,1 .

(11.12)

From (11.12) and (11.6), (11.10), (11.11), (11.9) we obtain the relation

x1xpxk + (a2p − xp)xk − x1xp+1xk−1 = xp+1(a2k−2 − xk−1).

If p = 0 (and a0 = 1, x0 = 0) we have

xk − x2
1xk−1 = x1(a2k−2 − xk−1),

which is equivalent to (11.5). On the other hand, one can check that ρ defined by
(11.6), (11.9), (11.10) and (11.11), with xk satisfying (11.5), preserves the relations
(4.3). �
Corollary 11.2. Let xk = 1

2
(b2k − a2k). Then Ext1(Γf ,P(Γg)) ̸= 0 if and only if x1

is an arbitrary complex number and xk for k > 1 satisfies the recurrence relation

xk+1 = (x1xk + xk + a2k)x1.(11.13)

12. Towards the general case: the subcategory (Y Q(1))χ–mod

Making use of Lemma 10.1, we would like to determine conditions under which
two Y Q(1)-modules V (s)⊗ Γf and V (s)⊗ Γg can be extended nontrivially.

We will consider the case, when s = (s). We denote V (s) by V (s).

Proposition 12.1. Let V (s) ⊗ Γf and V (s) ⊗ Γg be Y Q(1)-modules, where s ̸= 0,
let f(u) and g(u) be given by (11.1), and let xk =

1
2
(a2k − b2k). Then

Ext1(V (s)⊗ Π(Γg), V (s)⊗ Γf ) ̸= 0 if and only if xk satisfies the recurrence relation
(11.5).
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Proof. First, show that if

0 −→ Γf −→ C1|1 −→ Π(Γg) −→ 0(12.1)

is a non-split short exact sequence of Y Q(1)-modules, then the short exact sequence
of Y Q(1)-modules

0 −→ V (s)⊗ Γf −→ V (s)⊗ C1|1 −→ V (s)⊗ Π(Γg) −→ 0(12.2)

is non-split if and only if x1 ̸= s.
Let C1|1 =< 1 | 1̄ > and V (s) =< v | w >, where 1 and v are even and 1̄ and

w are odd. Note that T
(1)
1,1 and T

(1)
1,−1 act on V (s) as

(
−s 0
0 −s

)
and

(
0

√
s√

s 0

)
,

respectively, and T
(r)
1,1 and T

(r)
1,−1 act by zero if r ≥ 2. Let Γf =< 1 >. Suppose that

V (s)⊗C1|1 = V (s)⊗Γf⊕M is a direct sum of Y Q(1)-modules. ThenM =< X | Y >,
where

X = a(v ⊗ 1) + (w ⊗ 1̄), a ∈ C,

Y := T
(1)
1,−1(X) = (a

√
s− 1)(w ⊗ 1) +

√
s(v ⊗ 1̄).

(12.3)

Obviously, T
(n)
1,1 (X) = λnX for some λn ∈ C. If n is even this implies that 2x1a =

√
s,

and if n is odd, then 2a
√
s = 1. Hence x1 = s. One can easily check that if x1 = s,

then M defined by (12.3), where a = 1
2
√
s
, is a Y Q(1)-submodule of V (s)⊗ C1|1.

Next, suppose that there is a non-split short exact sequence of Y Q(1)-modules

0 −→ V (s)⊗ Γf −→ M −→ V (s)⊗ Π(Γg) −→ 0.(12.4)

Describe the action of Y Q(1) on V (s)⊗ Γf . Recall that Y Q(1) is generated by T
(2k)
1,1

and T
(1)
1,−1 (see [10], Lemma 5.1). Let {v, w} be a basis of V (s), and Γf =< 1 >. Then

V (s)⊗ Γf =< v1 | w1 >, where v1 = v ⊗ 1 and w1 = w ⊗ 1. The action of T
(2k)
1,1 and

T
(1)
1,−1 with respect to this basis is given by the matrices

(
a2k 0
0 a2k

)
and

(
0

√
s√

s 0

)
,

respectively.
Let f and g be given by (11.1), and let xk =

1
2
(a2k−b2k). Assume that f ̸= g. Then

there exists m such that a2m ̸= b2m. We can choose a basis in M : {v1, w1, v2, w2},
where v1 and v2 are even and w1 and w2 are odd, with respect to which the action

of T
(2m)
1,1 is given by a diagonal matrix, and since all T

(2k)
1,1 commute, they also act by

diagonal matrices: 
a2k 0 0 0
0 a2k 0 0
0 0 b2k 0
0 0 0 b2k

 .(12.5)
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We choose a basis so that in addition T
(1)
1,−1 acts by

0
√
s 0 1√

s 0 −1 0
0 0 0

√
s

0 0
√
s 0

 .(12.6)

Using (11.2)-(11.4) we obtain that the action of T
(2k)
1,−1 and T

(2k+1)
1,−1 on M is given by

the following matrices, respectively:


0 0 0 xk

0 0 −xk 0
0 0 0 0
0 0 0 0

 ,


0 a2k

√
s 0 x1xk − xk + a2k

a2k
√
s 0 −(x1xk − xk + a2k) 0

0 0 0 b2k
√
s

0 0 b2k
√
s 0

 ,

(12.7)

and T
(2k+1)
1,1 acts by 

−a2ks 0 0 xk

√
s

0 −a2ks −xk

√
s 0

0 0 −b2ks 0
0 0 0 −b2ks

 .(12.8)

Then using the relation (11.12), we can show that xk are determined exactly by the
recurrence relation (11.5). If f = g, then all xk are zero. Clearly, they satisfy (11.5).
On the other hand, one can define the action of Y Q(1) on M by (12.5), (12.7) and
(12.8), where xk satisfy the recurrence relation (11.5), and show that this actions
respects (4.3). �

Remark 12.2. Note that if x1 ̸= 0, s, then M is isomorphic to the Y Q(1)-module
V (s) ⊗ C1|1 defined by (12.2). Indeed, let V (s) =< v | w > and C1|1 =< 1 | 1̄ >.

Then V (s)⊗C1|1 =< v⊗ 1, w⊗ 1 | w⊗ 1̄, v⊗ 1̄ >. Note that in this basis T
(2)
1,1 acts by

a2 0 −
√
s 0

0 a2 0
√
s

0 0 b2 0
0 0 0 b2

 .(12.9)

If x1 ̸= 0, one can choose a basis so that the matrix of T
(2)
1,1 is diagonal, and cor-

respondingly, the matrices for all T
(2k)
1,1 are given by (12.5). Also, if x1 ̸= s, then

multiplying v ⊗ 1 and w ⊗ 1 by 1− s
x1
, we obtain that T

(1)
1,−1 acts in this basis by the

matrix (12.6). Then M ≃ V (s)⊗ C1|1, since Y Q(1) is generated by T
(2k)
1,1 and T

(1)
1,−1.
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Conjecture 12.3. Let S be a simple finite-dimensional Y Q(1)-module. Let n ≥ 2,
s = (s1, s2, . . . , sn) be regular typical, and let f(u) and g(u) be given by (11.1). Let
xk =

1
2
(a2k − b2k). Then

Ext1(S, V (s)⊗ Γf ) ̸= 0,

if and only if S ≃ V (s) ⊗ Π(Γg), where x1 is an arbitrary complex number and xk

for k > 1 satisfies the recurrence relation (11.5). The short exact sequence (12.2) is
non-split.

13. The category W n–mod

Let W n–mod be the category of finite-dimensional W n-modules. Let (W n)χ–mod
be the full subcategory of modules admitting generalized central character χ. The
categoryW n–mod is the direct sum of subcategories (W n)χ–mod, as χ ranges over the
central characters χ for which (W n)χ–mod is nonempty. We proved in [10] (Lemma
4.12) that a simple W n-module S belongs to (W n)χ−mod if and only if it is isomor-
phic (up to change of parity) to S(t, λ) with λ = c(χ).

14. The subcategory (W n)χ=0–mod

Note that simple modules in the subcategory (W n)χ=0–mod are exactly the 1-
dimensional modules S(t) up to change of parity (see [10]).

Theorem 14.1. Fix t = (t1, . . . , tp) and t′ = (t′1, . . . , t
′
q), where p and q are less than

or equal to n
2
. Consider the W n-modules S(t) and S(t′). Define a2k = σk(t1, . . . , tp)

for k = 1, . . . , p, a2k = 0 for k > p. Similarly, define b2k = σk(t
′
1, . . . , t

′
q) for k =

1, . . . , q, b2k = 0 for k > q. Let xk =
1
2
(a2k − b2k).

(a) If S(t) is a nontrivial W n-module, then Ext1(P(S(t′)), S(t)) ̸= 0 if and only if
x1 ̸= 0 and xk for k > 1 satisfies the recurrence relation (11.5) or S(t′) is isomorphic
to S(t) and n > 2p.
(b) If S(t) = C1|0 is the trivial W n-module, then Ext1(P(S(t′)), S(t)) ̸= 0 if and only
if S(t′) = C1|0 or t′ = (t′1) with t′1 = −2.

Proof. Suppose that Ext1(P(S(t′)), S(t)) ̸= 0. Lift S(t) and S(t′) to Y Q(1)-modules
Γf and Γg, respectively, where f and g are given by (11.1). Then Ext1(P(Γg),Γf )) ̸=
0. Hence by Theorem 11.1, xk satisfy (11.5). Note that if x1 = 0, then all xk = 0
and hence S(t′) is isomorphic to S(t). One can show that if S(t) is a nontrivial W n-
module, which is linked with P(S(t)), then n > 2p. Indeed, suppose that n = 2p.
Then there exists a non-split short exact sequence

0 −→ S(t) −→ M −→ Π(S(t)) −→ 0.(14.1)
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We lift the W n-module M to a Y Q(1)-module. Then the action of Y Q(1) on M is
given by (11.6)-(11.9) (up to equivalence), where a2k = b2k for all k. Then

ρ(T
(2p+1)
1,−1 ) =

(
0 a2p
0 0

)
.(14.2)

Note that ρ(T
(2p+1)
1,−1 ) = 0, since 2p+ 1 > n. Hence a2p = 0, but

a2p = σp(t1, . . . , tp) = t1 · . . . · tp.

Hence ti = 0 for some i. A contradiction, since all ti are nonzero.
Conversely, show that if xk satisfy (11.5), then the lifted modules Γf and P(Γg)

are linked (see (12.1)). Assume that x1 ̸= 0. Then (11.5) implies that

x1xk − xk + a2k = 0

for 2k ≥ n, if n is even, and for 2k ≥ n− 1, if n is odd. Hence ρ(T
(r)
1,−1) = 0 if r > n

by (11.10) and (11.11), and ρ(T
(r)
1,1 ) = 0 if r > n by (11.6) and (11.9). Recall that the

kernel of the surjective homomorphism φn : Y Q(1) −→ W n is generated by T
(r)
1,1 and

T
(r)
1,−1, where r > n. This allows one to define a representation µ : W n −→ End(C1|1)

such that ρ = µ ◦ φn. Thus S(t) is linked with P(S(t′)).
If S(t) = C1|0, then a2k = 0 for k ≥ 1. From (11.5), x1 = 0 or x1 = 1. In the first

case xk = 0 and b2k = 0 for k ≥ 1. Hence S(t′) is the trivial module. In the second
case, x1 = 1 and xk = 0 for k ≥ 2, b2 = −2, and b2k = 0 for k ≥ 2. Hence t′ = (t′1)
with t′1 = −2.

Finally, assume that S(t) is a nontrivial W n-module and n > 2p. Let r = n− 2p.
Recall that there is an embedding W n ↪→ W r ⊗ (W 2)⊗p, and

S(t) = C� Γt1 � · · ·� Γtp ,

where the first term C in the tensor product denotes the trivial W r-module. By (b),
there exists a non-split short exact sequence of W r-modules

0 −→ C1|0 −→ C1|1 −→ C0|1 −→ 0.(14.3)

Consider the W n-module M = C1|1 � Γt1 � · · · � Γtp . Then we obtain an exact
sequence (14.1), which is non-split. Indeed, let ξi for i = 1, . . . , r be odd elementary
matrices in Q(r), and ξ1j , ξ

2
j be odd elementary matrices in Q(2) for j = 1, . . . , p, see

(2.1). Recall that there is a surjective homomorphism φn : Y Q(1) −→ W n for every

n, see Proposition 5.2. Note that φr(T
(1)
1,−1) = ξ1 + . . . + ξr by (2.6) in [10]. Because

the exact sequence (14.3) is non-split, the action of φr(T
(1)
1,−1) on C1|1 is nonzero. Also,

φr+2p(T
(1)
1,−1) =

r∑
i=1

ξi ⊗ 1⊗p +

p∑
j=1

1⊗ 1⊗(j−1) ⊗ (ξ1j + ξ2j )⊗ 1⊗(p−j)
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by (2.6) and (3.10) in [10]. Note that ξ1j and ξ2j act on Γtj by zero for j = 1, . . . , p.

Hence φr+2p(T
(1)
1,−1) acts on M as (ξ1 + . . . + ξr) ⊗ 1⊗p, and this action is nonzero.

Thus Ext1(P(S(t)), S(t)) ̸= 0. �
Remark 14.2. Suppose that Γf is lifted from a nontrivial module S(t), and assume
that Ext1(P(Γg),Γf ) ̸= 0. Note that Γg is lifted from some W n-module S(t′) which
is not isomorphic to S(t), if and only if xn+2

2
= 0 if n is even and xn+1

2
= 0 if n is

odd, see (11.5). This means that x1 is a (nonzero) root of the polynomial of degree n
(respectively, n−1) defined by the recurrence relation (11.5) if n is even (respectively,
odd). Then we set b2k = a2k − 2xk for all k and find t′ = (t′1, . . . , t

′
q) such that

b2k = σk(t
′). Here t′ is defined up to permutation of t′1, . . . , t

′
q, and we delete all zero

entries. Then Ext1(P(S(t′)), S(t)) ̸= 0. Also, if n > 2p, then Ext1(P(S(t)), S(t)) ̸=
0. Moreover, all modules S(t′) satisfying the above formula are obtained in this way.

Corollary 14.3. (a) If S(t) is a nontrivialW n-module, then Ext1(S(t),P(S(t′))) ̸= 0
if and only if xk :=

1
2
(b2k − a2k) satisfies the recurrence relation (11.13) for k > 0 and

x1 ̸= 0 or S(t′) is isomorphic to S(t) and n > 2p.
(b) If S(t) is a trivial W n-module, then Ext1(S(t),P(S(t′))) ̸= 0 if and only if
S(t′) = C1|0 or t′ = (t′1) with t′1 = −2.

15. Blocks in the category W 2–mod

Lemma 15.1. Let n = 2. A simple W 2-module S belongs to (W 2)χ − mod if and
only if one of the following three cases takes place:

(1) S ≃ V (s1, s2) for s1 ̸= −s2, s1, s2 ̸= 0 and c(χ) = (s1, s2),
(2) S ≃ V (s, 0) for s ̸= 0 and c(χ) = (s),
(3) S ≃ Γt or Π(Γt) and χ = 0.

Proof. Follows from Lemma 4.12 in [10]. �
Theorem 15.2. (1) Each simple W 2-module V (s1, s2) for s1 ̸= −s2, s1, s2 ̸= 0 forms
a block in (W 2)χ-mod, where c(χ) = (s1, s2).
(2) Each simple W 2-module V (s, 0) for s ̸= 0 forms a block in (W 2)χ-mod, where
c(χ) = (s).
(3) The blocks in the subcategory (W 2)χ=0-mod are described as follows. Let a ∈ C.
Define

an = a− n2 + n
√
1− 4a for n = 0,±1,±2, . . .(15.1)

Then Γa lies in the block formed by Γan if n is even and ΠΓan , if n is odd. ΠΓa lies
in the block formed by ΠΓan if n is even and Γan , if n is odd.

Proof. Statements (1) and (2) follow from Lemma 8.2 and Lemma 15.1. To prove
(3), first we will show that Γa is linked with ΠΓb if and only if

b = a− 1±
√
1− 4a.(15.2)
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Let S(t) = Γa and S(t′) = Γb. Set a0 = b0 = 1, a2 = a, b2 = b and a2k = b2k = 0 for
k > 1, xk =

1
2
(a2k − b2k) for k ≥ 0. Suppose a ̸= 0, then by Theorem 14.1 (a)

x2 = (x2
1 − x1 + a2)x1,

and x1 must satisfy x2
1 − x1 + a2 = 0. Hence x1 = 1

2
(1 ±

√
1− 4a). Thus b =

a− 1±
√
1− 4a. Note that Corollary 14.3 (a) gives the same result.

If a = 0, then by Theorem 14.1 (b) we have that b = 0 or b = −2. Hence (15.2)
holds.

Note that b is a root of the equation

b2 + (2− 2a)b+ (a2 + 2a) = 0.(15.3)

The sum of the roots of equation (15.3) is 2a− 2. This gives the relation

an−1 + an+1 = 2an − 2 (an = a).(15.4)

Then (15.2) and (15.4) imply (15.1). �
Example 15.3. (1) a = 0, then an = n(1− n) and Γ0 lies in the block

. . . ,Γ−30,ΠΓ−20,Γ−12,ΠΓ−6,Γ−2, ,ΠΓ0,Γ0,ΠΓ−2,Γ−6,ΠΓ−12,Γ−20,ΠΓ−30, . . .

(2) a = 1
4
, then an = 1

4
− n2 and Γ 1

4
lies in the block

Γ 1
4
,ΠΓ− 3

4
,Γ− 15

4
, . . .

(3) a = 1, then an = 1− n2 + n
√
−3 and Γ1 lies in the block

. . . ,ΠΓ−3
√
−3−8,Γ−2

√
−3−3,ΠΓ−

√
−3,Γ1,ΠΓ√

−3,Γ2
√
−3−3,ΠΓ3

√
−3−8, . . .
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