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Abstract

We generalize a classical reciprocity law due to Rédei using our recently developed
description of the 2-torsion of class groups of multiquadratic fields. This result is then
used to prove a variety of new reflection principles for class groups, one of which involves
a symbol similar to the spin symbol as defined in work of Friedlander, Iwaniec, Mazur
and Rubin. With these reflection principles we overcome a well-known impasse faced by
the most recent techniques available in class groups. As a first application, we prove
Stevenhagen’s conjecture on the solubility of the negative Pell equation.

1 Introduction

Integral points on conics are a classical topic of study going back to at least the ancient
Greeks. For fixed squarefree d > 0, the equation

22 — dy?> =1 to be solved in z,y € Z

is known as Pell’s equation and features in Archimedes’ cattle problem. This equation was
extensively studied by the Indian mathematicians Brahmagupta and Bhaskara II, who gave
an algorithm to find a non-trivial solution of the equation for a given value of d.

Unbeknownst of the work of these Indian mathematicians, its study began in Europe
with Pierre de Fermat who challenged several English mathematicians to solve it for various
values of d with d = 61 being particularly notorious (the smallest non-trivial solution being
x = 1766319049 and y = 226153980). Inspired by Fermat’s inquiries, William Brouncker and
John Wallis also found an algorithm to solve Pell’s equation. Euler then misattributed their
work to John Pell and named the equation in his honor.

In this paper we shall focus on the equation

2 — dy®> = —1 to be solved in z,y € Z, (1.1)

which is known as the negative Pell equation. Unlike Pell’s equation, it is not true that there
is always a solution to equation . Indeed, for equation to be soluble it must certainly
be soluble with z,y € Q. The Hasse-Minkowski theorem then shows that equation is
soluble with z,y € Q if and only if p | d implies p = 1,2 mod 4.
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Inspired by this, we define D to be the set of squarefree integers d > 0 such that p | d
implies p = 1,2 mod 4 and we define D~ to be the set of squarefree integers d for which
equation is soluble. Dirichlet [I4] proved that every prime number p = 1 mod 4 lies in
D~. In particular, D~ is an infinite set. It is well-known, see [I8, Lemma 1], that d € D~
if and only if the 2-Sylow subgroup of the ordinary class group of Q(v/d) coincides with the
2-Sylow subgroup of the narrow class group. We define D(X) and D~ (X) to be those d that
further satisfy d < X. We are interested in the quantity

L ID(X)]
X [D(X)]

Nagell [37] conjectured that the limit exists and lies in the interval (0,1). Stevenhagen
developed a heuristical model to predict the value of the above limitﬂ Based on this model,
he [43] conjectured that

L 1D (X0

= A — 1 —279) a~ 0.41942.
X [D(X)| o =]l )

7 odd

Cremona—Odoni [I1] studied the analogous problem in case the number of prime divisors is
equal to a fixed integer ¢ > 1, which is traditionally viewed as an easier problemﬂ Their
main theorem shows that, in this setting, the lim inf is bounded below by some number \;
satisfying Ay > «. Their method is similar to the one used by Gerth [2I] to deal with the
4-rank of class groups. Blomer [4] showed that

X
D™ (X —_—
(X) > (log X)0-62”
which is a small logarithmic power off (namely 0.12) from the correct order of magnitude.
Fouvry and Kliiners [I8] were the first to make substantial progress towards Stevenhagen’s
conjecture. They showed that
o ADT (X)) D-(X)| _ 2
a <liminf ————— <limsup ———— < —.
X=oo [DX)| 7 xoeo [DX)] T3
One important feature of their work is that the number of prime factors is no longer treated
as fixed. The lower bound was further improved by Fouvry and Kliiners [19], and later by
joint work of Chan—-Koymans—Milovic—Pagano [§], who extended [41] to the family D. These
works proceeded by studying the 4-torsion and 8-torsion of the narrow class group for which
the algebraic foundations were laid by Rédei and Reichardt [38] 39, [40]. Recently, the upper
bound was further improved by the authors [29] with the main tool being a generalization of
the Rédei reciprocity law. In this paper we shall prove Stevenhagen’s conjecture.

Theorem 1.1. We have
LD
im
X—oo |D(X)|

!Strictly speaking, this is not true, since Stevenhagen orders the real quadratic fields by discriminants
instead of radicands. However, both the heuristical model and our proofs work for both orderings.

2In retrospect, this might in fact be the harder problem. At the time of writing the authors are unable to
prove the analogue of Stevenhagen’s conjecture when the number of prime divisors is fixed.
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Using an argument similar to [42, Corollary 7.2], one can use Theorem to give an
explicit error term for the rate of convergence in Theorem [L.1] The implied constant is
effectively computable.

We remark that the Galois module structure of the unit group of a real quadratic field is
precisely determined by the solubility of the negative Pell equation. From this standpoint,
Theorem [I.T]can be interpreted as giving an asymptotic formula for the occurrence of a certain
Galois module structure, namely Z & Z/27Z with the action that sends (1,0) to (—1,1) and
fixes (0,1). It is also worth mentioning that some interesting conjectures have recently been
proposed for the Galois module structure of the unit group of odd degree abelian extensions
of Q, see [7].

Since classical techniques in analytic number theory give an asymptotic formula for
|D(X)|, Theorem implies an asymptotic formula for |D~(X)|. From now on we will
write CI(K) for the narrow class group of a number field K. Our proof proceeds by study-
ing the distribution of 2C1(Q(+v/d))[2%] for d € D. In outstanding work, Smith [42] recently
proved Gerth’s [21] extension fo the Cohen-Lenstra heuristics [9], that is

{K im. quadr. : |Dg| < X,2CI(K)[2>°] = A}  T[2,(1—27)
{K im. quadr.: |Dg| < X}|  |Aut(A)|

(1.2)

for any finite, abelian 2-group A. Here Dk denotes the discriminant of K. Earlier, Fouvry
and Kliiners [16] [17] found the distribution of 2C1(K)[4] based on work of Heath-Brown on 2-
Selmer groups [22]. Using Smith’s ideas, the authors [27] established the analogue of equation
for cyclic fields of odd prime degree conditional on GRH. This generalizes earlier work of
Klys [25] who dealt with the analogous results of Fouvry and Kliiners [16] [I7] in this setting.
Smith recently announced that he has obtained an unconditional generalization of the results
in [27] to arbitrary base fields. In the process, he also obtained an excellent error term by
developing a flexible version of the large sieve.

In order to prove Theorem [I.1] it is natural to use the ideas introduced by Smith in
[42]. However, it is worth emphasizing that the method developed in [42] faces fundamental
difficulties when applied to the family D: in fact the entire set D lands in the error term
if one were to follow Smith’s methods. In the present work we introduce a number of new
techniques that allow us to overcome this impasse. As we outline below, this technological
advancement is made possible by several discoveries of independent interest.

Firstly, we establish two new types of reciprocity laws. The first reciprocity law general-
izes quadratic reciprocity and Rédei’s reciprocity law to arbitrarily high nilpotency class (a
substantially weaker version of this result can be found in [29]). The second reciprocity law
is intimately related to spins of prime ideals as defined in [20], and proves that a certain spin
symbol vanishes. At this point we make essential use of the fact that we are working with the
set D. An important guide in the proof of these laws has been our finding of a genus theory
in arbitrarily high nilpotency class [28], which generalizes the classical genus theory of Gauss
for quadratic extensions.

Secondly, we use these new reciprocity laws to deduce novel reflection principles, in which
one compares the class group structure of various fields. We expect that these new tools allow
one to attack a large number of well-known conjectures, with an articulated list at the end of
this introduction.

We now describe the four fundamental obstacles that one faces from a more technical
perspective. To explain the issues, we write (b, Xa>k,@( Va) for the pairing Artk,Q( Va) (see



Subsection for the definition) between the character x, : Gg — Fg, corresponding to the
field Q(v/a), and the unique ideal of Q(v/d) of norm b. Let

C ={do} x {p1,1,p12} ¥ - X {Pr1,Pr2}

be a product space, thought of as squarefree integers by multiplying out the coordinates.
Given divisors a and b of dg, Smith’s main algebraic result is a reflection principle of the
shape

deC
Pk—1,17pk,1’2/(@(pk,2), (1.3)

;2000

where 7; denotes the natural projection map, Kp, | py o, pe_1.1,pp_1. 15 a0 explicit number
field depending on p1,1,p1,2,- -, Pk—1,1,Pk—1,2 and Frob(py ;) lands in

Z(Gal(Km,l7P1,2,~~~7Pk71,1,17k71,2/Q)) =T,

with Z(G) denoting the center of a group G. The fields Kj, | 5. pp_ 11951 ar€ extensively
studied in [28]. To apply such a reflection principle one needs to find appropriate choices
for a and b, which is not always possible in our setting. Indeed, a first problem is that the
solubility of negative Pell is equivalent to (\/&) being trivial in the narrow class group. This
means that we have to compute the Artin pairing with d, which is not covered by equation

(1.3)). In this case one gets

deC

This is problematic, since Smith shows equidistribution of the right-hand side and then uses
ingenious combinatorics to deduce from this equidistribution of the left-hand side. To prove
equidistribution of the right-hand side, we extend a reciprocity law first presented in [29].
This reciprocity law is a generalization of the classical quadratic reciprocity law and Rédei’s
reciprocity law [39] (see Stevenhagen’s work for an extensive treatment [44] or Corsman’s
thesis [10]). Equidistribution of the right-hand side is then a consequence of the Chebotarev
density theorem.

To make matters worse, the first Artin pairing Artl’Q( V) is symmetric for d € D. There-
fore we would like to have a reflection principle of the shape

DXk o) =

deC
We first show in Theorem that the right-hand side resembles a spin symbol, see [20] for the
precise definition of spin symbols. Then we will show in Theorem that this particular spin
symbol is trivial. In principle this is possible by adapting the argument in [20, Section 12]
together with our description of the 2-torsion of class groups of multiquadratic fields [28]. We
have however opted for a different argument based on Massey symbols and Hilbert reciprocity.

At first sight, it may seem rather problematic that the right-hand side is identically zero.

However, we use Theorem [5.5] and a simple trick to compute

Z<aﬂ-l(d) Teeet Trk*l(d)a Xa + X7T1(d) et Xﬂ'kfl(d)>k,(@(\/a)'
deC



This does give a reflection principle of the desired shape after an application of Theorem
which is a strengthening of the reciprocity law from [29].

A final obstacle comes from the fact that the cube C is one dimension smaller than the
cubes appearing in [42]. This fact rules out the usual strategy of proving reflection principles,
introduced in [42], by imposing physical equalities between certain 1-cochains. To overcome
this issue, we introduce the formalism of profitable triples (see Section , a new method to
prove reflection principles based on our novel reciprocity law Theorem [3.2]

Once these obstacles are overcome, the rest of the proof is a straightforward adaptation
of Smith’s work. Although we shall not prove it in this paper, it is not hard to extend our
techniques to obtain the distribution of 2C1(Q(+/d))[2] in the family D.

There are several open problems where Smith’s method faces similar issues because of
symmetry properties of a certain pairing:

e show 100% non-vanishing of L(%, X) over function ﬁeldsﬂ;
e remove the assumption on rational 4-torsion points in [42, Theorem 1.1];

e show that Greenberg’s conjecture holds for the cyclotomic Zs-extension for 100% of the
real quadratic fields ordered by discriminant;

e study of the Galois module structure of the unit group for biquadratic (or more general
abelian) extensions ordered by discriminant or conductor. A conjectural framework for
odd degree abelian extensions is developed in [7];

e the strong form of Malle’s conjecture for nilpotent extensions;

e the distribution of unramified G-extensions, where G is a 2-group. Heuristics and func-
tion field results are available for odd p-groups in [5} 6, 33], 48];

e deal with the distribution of 2-parts of class groups in the family Fy(t, VD) with ¢ =
1 mod 4;

e obtain the distribution of CI(K')[2°°] as K varies over cyclic degree 4 extensions;

e find the distribution of C1(K)[2°°] as K varies over quadratic extensions over Q(7) or if
K varies over biquadratic extensions containing Q(%).

It might be possible to extend our reflection principles to some of the above settings. This
could then be combined with Smith’s method. In some of the cases listed above there are
additional roots of unity. In this case it is known that also some of the higher Artin pairings
obey certain symmetry properties, see the work of Morgan—Smith [36] and Lipnowski-Sawin—
Tsimerman [32]. It would be interesting to see the interplay between Smith’s method, the
techniques presented here and the additional symmetry properties.

Finally, we will mention some other results related to the Cohen—-Lenstra heuristics. There
is the classical work of Davenport—Heilbronn [13] on the first moment of Cl1(K)[3] that pre-
dates the work of Cohen and Lenstra. The work of Davenport—Heilbronn was extended by
Datskovsky—Wright [12] to general number fields and to a large class of 2-extensions by Lemke

3We thank Mark Shusterman for pointing this out to the authors. We hope to study this problem further
in future joint work with Mark Shusterman.



Oliver-Wang-Wood [31], while [3] and [45] independently gave a secondary main term over
the rational number field. There is also work of Bhargava [Il, 2] on the number of S; and
Ss-extensions. Over function fields the situation is much better understood thanks to the
work of Ellenberg—Venkatesh—Westerland [15].

1.1

Notation and conventions

Throughout the paper we shall make use of the following notations.

We use C for inclusions and C for strict inclusions.
If n € Z>o, we define [n] :={1,...,n}.

If X = Xy x---x X, is a product space, we write 7; : X — X for the natural projection
map.

For a product space X = X7 x -+ x X, and S C [r], we define

Cube(X, S) = l_IXZ2 X H X;.
i€S i€r]—S

For T' C [r], we let w7 be the natural projection map from Cube(X,S) to

I xx I =X

i€TnS €TN([r]—S)

We write pr; and pr, for the two natural projection maps from X 22 to X;.

Let X = X1 x---xX;, S C[r] and T € Cube(X,S). If ' C S, then z(T') is the subset
of those § € Cube(X,T) such that

mi(9) € {pry(mi(2)), pro(mi(2))} for alli € S =T, 7 _(5-7)(ZT) = Tp)—(5-1) (¥)-

If K is a field, we write G for its absolute Galois group.
If K is a global field, we write Q25 for its set of places.

For v € Qg, we write K, for the completion of K at v. If v is finite, then we write [,
for the residue field.

We say that a finite place is odd if it does not lie above (2).
If K is a local field, we write K" for the maximal unramified extension of K.
We will sometimes use - and [] to denote the compositum of fields.

If a € QF, then x, : Gg — F» is the quadratic character of Gg associated to Q(v/a).
More generally, if K is a field of characteristic 0 and v € K*, we will write x, for the
associated quadratic character.

We will often implicitly view Fy as a Gg-module with the discrete topology and the
trivial action.



e We write CI(K) for the narrow class group of a number field K.

e If GG is a profinite group, X is a discrete topological space and ¢ : G — X is a continuous
map, we define N(¢) to be the largest normal open subgroup through which ¢ factors;
it is an exercise to show that there exists at least one normal open subgroup through
which ¢ factors, so that the above definition makes sense. In case G is a Galois group,
we denote by L(¢) the field extension corresponding to N(¢), and call it the field of
definition.

e Let p be a prime. Let K/Q be a quadratic extension in which p ramifies. Then we
write UpK/Q(p) for the unique place of K above p. More generally, if a is a positive,
squarefree integer composed of primes p ramifying in K/Q, we define Upy /Q(a) to be
the unique integral ideal with norm a.

e If A is a set of quadratic characters from Gg to Fa, we define Q(A) to be the fixed field
of ﬂxeA ker(x).

e We call an integer n € Z squarefree if p | n implies p? { n. In particular, squarefree
integers can be of any sign.
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2 Preliminaries

The goal of this section is to fix a number of choices used in the rest of this paper and to
introduce raw cocycles, expansion maps and Artin pairings. Fix once and for all a separable
closure Q%P of Q. We also fix, for each place v of Q, a separable closure Q" of Q,. We
further choose an embedding

i QP — Q3P

Such an embedding induces a continuous, injective homomorphism
Z;k] : GQU — G@.

From now on all our number fields are implicitly taken inside our fixed separable closure (Q%°P.



We denote by QP2 the union of all finite Galois subextensions of Q%P /Q whose degree
is a power of 2 and we write

gpro— . Gal(@pro-Q/@)

gpro 2

for the corresponding Galois group. Let mpo-2 : Gg — be the natural projection map.

For each finite place v of Q, we let
I, :=ker(Gg, — Gr,) = Gal(QyP/Q;™).

be the inertia group at v. We denote by P the collection of odd places of Q. Let us recall the
following basic fact.

Proposition 2.1. We have
Iv(2) ‘= Tpro-2 © Z;(Iv) gtop.gr. L
for each v € P.

Proof. Since v is odd, it follows from local class field theoryﬁ that the maximal pro-2-extension
L of Q, equals

U (G 7). (2.1)
k=1

where 7 is a uniformizer at v. Let I8 be the maximal pro-2-quotient of I,,. Equation |D
implies that 1572 i op.er. Lo, since

U Qo (Car)
k=1

is an unramified extension of (@U containing all roots of unity (,x. The continuous homomor-
phism mppo2 0 4% I, — ggo induces a contlnuous homomorphism f : I} 2, Q}E{OQ with
the same image as Tpro-2 © 4. Using equation ([2.1)) one more time, we see that f is injective.
Indeed, take any a € Q with v(a) = 1. Since (3 € Q, the field

- Uafer 40

is a pro-2 extension of Q. Furthermore, Q, - i,(K) = L. This completes the proof. O

Thanks to Proposition there exists a topological generator of I,,(2) for each odd place
v. We make a choice o, of such a generator for the remainder of this paper. Write I5(2) :=
Tpro-2 © 15(I2) and pick o2(1),02(2) € I2(2) such that

x-1(02(1)) =1, x-1(02(2)) =0, xa(o2(1)) =0, x2(02(2)) = 1.

This is possible, since the extension Q((g)/Q is totally ramified at (2).

4 Alternatively, one can use an elementary argument based on [27, Proposition A.5].



Proposition 2.2. The set

& = {o,:veP}U{o2(1),02(2)}

is a minimal set of topological generators of g&roa'

Proof. We will first argue that & is a set of topological generators. Note that a subset S of a
profinite group G topologically generates G if and only if 7(S) generates G in every continuous
finite quotient 7 : G — G. So let K/Q be a finite 2-extension. We must show that (the images
of) & generates G = Gal(K/Q).

But since G is a finite group, we know that a subset S generates if and only if it generates
modulo the Frattini subgroup ®(G). Furthermore, ®(G) = G?[G, G] for a finite 2-group G.
Hence it suffices to show that & generates Gal(L/Q), where L/Q is an arbitrary multiquadratic
extension. This is in turn equivalent to & generating Gal(M/Q) for every quadratic extension
M of QQ, which is readily verified.

Finally, if we remove any element of &, it is not hard to find a quadratic extension M/Q
in which & does not generate. This shows the minimality claim. O

From now on we denote by & this fixed choice of topological generators of g}g{o‘? We

shall often invoke the following basic fact.

Proposition 2.3. Let L/Q be a finite Galois subextension of QP™2/Q.
(a) Let v € P. Then v is unramified in L/Q if and only if the image of o, in Gal(L/Q)
is the identity element. More precisely, the ramification index of v in L/Q equals

| <pr0jg(gro-2_>Gal(L/Q) (UU)> | .

(b) If (2) is unramified in L/Q, then both o2(1) and 02(2) have trivial image in Gal(L/Q).
More precisely, the ramification index of (2) in L/Q is divisible by

’ <pr0jg5ro—2_>Gal(L/Q) (0'2 (1)), projgéro-QﬁGal(L/Q) (02(2))> ‘ .
Proof. We recall that, in general, the ramification index of v in L/Q equals
|(Projay—aal(z/q) © @) (Lv)|-

The projection map from Gg to Gal(L/Q) factors through ggo‘Q. Therefore part (a) is an
immediate consequence of the definition of o,. To prove part (b) it suffices to observe that

(proj gérO'Q%Gal(L/Q) (02(1)), proj g(gro'ZaGal(L/Q) (02(2)))

is a subgroup of
(Projgy—cal(z/Q) © 12)(12)-
Hence the desired divisibility. O

We write 'y, (Q) := Homygop r. (G, F2) for the set of quadratic characters of Q. We now
recall some notation first introduced in [42]. Define

Qo
N :=—=
Zy'



which we endow with the discrete topology and view as a Gg-module with trivial action. For
each x € T'r,(Q), we denote by

N(x)

the Gg-module given by the topological abelian group N with the continuous action of Gg
defined by the formula
o ni=(~1)X) . p

for each 0 € Gg and n € N. We now recall the basic material on raw cocycles and expansion
maps that will be used throughout this paper.

2.1 Raw cocycles

For a given x € I'p,(Q), we denote by

Cocy(Gg, N(x))

the group of continuous 1-cocycles from Gg to the Gg-module N(x) defined above. In case
is a squarefree integer, we will also use the notation N(x) := N(x,). We notice that the group
Cocy(Gg, N(x)) is a subgroup of the group of continuous 1-cochains Map,,,;(Gg, N). As such
all these groups of 1-cocycles live in the common ambient group Map,,(Gg, N), which does
not depend on . This simple observation plays a crucial role in the key Proposition [2.9] For
a general continuous 1-cochain

Y GQ — N
and a squarefree integer x, we define for each 0,7 € Gg the coboundary
dy()(0,7) := =(o7) + (=1) - () + ¢ (0).
By definition 1 is in Cocy(Gg, N(xz)) if and only if d,(¢) is identically zero.

Definition 2.4. Whenever we consider the group N X Fo, the implicit action of Fo on N is
by —id. The same applies for N[2°] x Fy for s € Z>o.

We will now demonstrate that elements ¢ of Cocy(Gg, N(x)) are essentially the same as
certain homomorphisms from Gg to N x [Fa.

Proposition 2.5. Let ¢ € Cocy(Gg, N(x)). Then the assignment
GQ — N(X) X FQ,

given by
o = (P(0),x(0)),

is a continuous group homomorphism. Conversely, given a continuous 1-cochain ¢ : Gg — N
such that

o = (¥(0), x(0))

is a group homomorphism from Gg to N(x) % Fa, we have that 1 € Cocy(Gg, N(x)). The
restriction of ¥ to G, is a continuous group homomorphism.
In case P(Goqy)) € N[2], then the field of definition of 1 contains Q(x).

10



Proof. The first statement is straightforward. Since N(x) is a trivial Gg(,)-module, the
restriction of ¢ to Ggyy) is a 1-cocycle with the trivial action, and hence is a homomorphism.
We now prove the last claim. By assumption there exists 7 € Gg,) such that 2 - (7) # 0.
Let H be the largest normal open subgroup of Gg through which ¢ factors and let o € H.
Then we have

(o) = 1(id) = 0,

since a 1-cocycle vanishes on the identity element. We now deduce that

b(r) = p(or) = (=X - 9(r) + (o) = (=X - y(r).

Since 2 - ¥(7) # 0, we obtain the equality x(o) = 0, which shows that ker(x) 2 H as
desired. O

Let ¢ € Cocy(Gq, N(x)). Since ¢ is continuous, Gg is compact and N is discrete, the
image of 1 is finite. Then it follows from Proposition that the restriction of 1 gives an
element of (G&b(x))v[zoo]. We write

Cocyyn: (G, N(x))

for the inverse image of C1(Q(x))"[2°°] under the above restriction map. The relevance of
such 1-cocycles in this work comes from the fact that the Hilbert class field of a quadratic
field is always a generalized dihedral extension over Q. This is formalized in the following
classical proposition.

Proposition 2.6. Let x € I'p,(Q) and let s € Z>¢. Then the natural restriction map

Cocyun (G, N(X))[2°] = CHQ(x))"[27]

is a split surjection of abelian groups. More precisely, the kernel is isomorphic to Z/2°Z.
Furthermore,

¥ € 2 Cocy (G, N(X)) 2] <= ¢lag,,, €2 CUQ(X))V[2°]

for every ¢ € Cocy (G, N (X))[2°].

Proof. Recall that Gal(Q(x)/Q) acts on C1(Q(x))Y by —id. This implies that all subgroups
of C(Q(x))" are Gg-invariant, and hence define an extension that is Galois over Q. Let us
first show that the natural restriction map is surjective. Then, thanks to Proposition [2.5] it
suffices to show that the natural surjection

Gal(L/Q) - Gal(Q(x)/Q)

splits as a semidirect product for all cyclic 2-power extensions L of Q(x) unramified at all
finite places.

Since L/Q(x) is unramified at all finite places, it follows that L/Q has ramification index
at most 2 at all finite places. Therefore, thanks to Proposition every element o € & is

sent to an involution under the natural quotient map = : gg‘)‘ — Gal(L/Q). Since & is

a set of topological generators of gg"‘2 (see Proposition , there exists ¢ € & such that
X(0) = 1. Then 7(0) is a non-trivial involution of Gal(L/Q) that projects to the generator
of Gal(Q(x)/Q). This yields the desired splitting.
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Furthermore, the above argument also shows that the surjection

Gal(H2=(Q(x))/Q) — Gal(Q(x)/Q)

splits as a semidirect product, where Ho(Q(x)) is the largest abelian 2-power extension of
Q(x) unramified at all finite places. Fix an element o € Gal(Ha~(Q(x))/Q) projecting to a
generator of Gal(Q(x)/Q). Then, a simple calculation, using the semidirect product structure
of Gal(Ha-(Q(x))/Q), shows that the elements of

ker (Cocy,u(Go, N (x))[2°] = CHQ(x))"[2°])

are entirely determined by their value on o. Conversely, the elements in the kernel can take
any desired value on o. This identifies the kernel with N(x)[2®], which also proves that
the surjection Cocy,,,(Gg, N(x))[2°] — CLQ(x))¥[2°] is split, since Z/2°Z is injective as a
Z./2%7-module.

The final conclusion is now a trivial consequences of such a splitting applied both to s
and to s + 1. O

Remark 2.7. If (2) is unramified in the extension L(1)/Q or if (2) has residue field degree
1 in the extension L(v)/Q, then the following stronger conclusion holds. For each cocycle
Y € Cocy i, (Go, N(x))[2°], we have that

Y €2 Cocy(Gg, N(x)) 2] <= dlag,, € 2- CUQ(X))"[25H).

A proof of this stronger claim is given during the proof of Theorem and used again in
the proof of Theorem |5.11].

We now give the definition of raw cocycles, which is repeatedly used throughout this text.

Definition 2.8. Let x be a non-trivial element of T'r,(Q) and let s € Z>o. We say that a
sequence

(Yi)o<i<s

with ¥; € Cocyyn, (Go, N(X))[2] is a raw cocycle in case 2 - ;1 = 1; for each 0 <i < s—1.
If we want to stress the dependence on N(x), we say that v; is a raw cocycle for N(x).

To give a raw cocycle as in Definition [2.§8] is clearly the same as giving a cocycle ¥y €
Cocyun (Go, N(x)) with 2% - 1py = 0. We shall sometimes, by abuse of terminology, say that
15 is a raw cocycle, under this identification (and with the 1; automatically defined by the
equation 1; := 2°7%),). Furthermore, whenever the index j of 1; is negative, we use the
convention t; = 0, which conveniently preserves the equation 2 - ¥;;1 = ;.

We now present an important combinatorial calculation. This result is taken from [42]
page 17]. We give a detailed proof for the sake of completeness. Let s € Zso and let
(pi(1),pi(2))ic[s) be 2s distinct primes, all of them coprime to the squarefree integer dy. Let
now

C:={p1(1),p1(2)} x ... x{ps(1),ps(2)} x {do}.
We will often identify a point x € C with the squarefree integer dy - Hie[s] mi(z). Given a
finite collection of squarefree numbers H, we denote by x g the continuous 1-cochain from
Gq to [Fy given by

o> H Xz(0),

zeH
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where the product is the usual multiplication in Fs. By abuse of notation we also view x g
as an indicator function valued in {0,1}. For each subset T of [s], we write Cp for the subset
of z € C such that m;(x) = p;(2) for alli € T

Proposition 2.9. Let j € Z~¢ and let C' be as above. Suppose that we are given a raw cocycle
Yj(x) for N(x) for each x € C. Let xg € C. Then

g, (Z %’(»T)) (0,7) = Z X{pi(l)pi(Q):iET}(a) : (—1)|T|+1+X”°(U)' Z wj—m(ﬂ?)(T)

xeC @#TC[s] zeCr
Remark 2.10. We emphasize that here and later in the paper the sum
> viw)
zeC
takes place in the space Map.,,: (G, N).
Proof. Let x € C. For each 0,7 € Gg we compute
Aoy ($())(0,7) = =t () (07) + (=1)%0(7) - (2) () + 5 (2) (o)
= = (1= (@) (1) + (@) (0)) + (1) - 455 ()(7) + 65 () 0)
= (—1)0@) - (= (=1 1) () (),
where the second equality follows from the definition of Cocy(Gg, N(x)).
Observe that the function from Gg to Zs = Endgz, meq (V) given by o — —(—1)Xm0(‘7) +1
factors through Gal(Q({\/pi(1)pi(2) : i € [s]})/Q). The Zs-module of functions from the

finite Galois group Gal(Q({/pi(1)pi(2) : i € [s]})/Q) to Zz is free of rank 2°, and a basis of
functions is provided by {X{p,(1)p;(2):ieT} }TC[s)- One could proceed now by explicitly writing

down the indicator functions of elements of Gal(Q({\/pi(1)pi(2) : i € [s]})/Q) in terms of
this basis and use this to expand the function o — —(—1)X#20(?) 41 in terms of this basis.
However, in [42, page 17] one finds a shortcut to quickly obtain this expansion, which we
explain next.

We identify the projection of o in Gal(Q({+/pi(1)pi(2) : i € [s]})/Q) with the largest
V' C [s] such that X, (1)p;(2):iev}(0) = 1. We denote this subset by 7,,. Similarly, we identify
each z € C with the subset of [s], denoted by T, consisting of those i € [s] such that
mi(z) = pi(2). We now rewrite
(1o 41 = (1) (1) 4
= (1) (-2 g
= Z (—1)lUI+1olUl,
oAUCT,NT,

Hence we obtain

day (05(2))(0,7) = (=1)X=0(@) . > (NUHRIT g (rn)

AU CT;NT

=)@ [ )y g @)

oAUCT,NT»
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We now let z vary in C' and invoke the linearity of d,,. This gives

ey (ijm) (0,7) = S (1@ [ ST (—D)VH Ly @)(r)

zeC zeC @AUCT,NTy

We exchange the order of summation and observe that for a given non-empty U C [s] we
get a contribution only from those pairs (z,0) such that U C T, and U C T,. The first
containment can be rewritten as * € Cp. The second containment can be rewritten as
X{p:i(1)p:(2):icv} (o) = 1, since this equality means, by definition of 7, exactly that U C T5.
Hence we get

d, (Z %‘(90)) (0,7) = Z X{p:(pr ()it (@) - (=1)ITHx= (@) Z Vi (w)(7)

xeC @#UC|s] zeCy
as desired. O
We will often use the following version of Proposition 2.9

Corollary 2.11. Let j € Z~q, let C be as above and let xy € C'. Suppose that we are given
a raw cocycle v;(x) for N(x) for each x € C —{xo}. Then

deg | D 05@) | (0.7) = D Xpum@yiery () - (=D (N0 (@)(7)

zeC @+TC[s] zeCr
TF#x0
Proof. Define 9;(z) = 0 and apply Proposition O

2.2 Expansion maps

We start by recalling a definition from [28, Definition 3.21]. We write 4 for the free Fa-vector
space on the set A.

Definition 2.12. Let X C I'p,(Q) be a linearly independent finite set and let xo € X. An
expansion map with support X and pointer xo is a continuous group homomorphism

w . GQ N FQ[Fg(_{XO}] X Fg—{m}
such that

e m o1 = x for every x € X — {xo}, where m, : IFQ[IF?_{XO}] X Ff_{x‘)} — Fy is the
natural projection;

[Fgf—{xo}] 9 F?-{Xo}

e To1 = Xo, where 7 : Fo — Fy is the unique non-trivial character

that sends the subgroup {0} » Ff_{XO} to 0.

An expansion map is automatically surjective, since it surjects by construction on the
quotient of [y []Fg(_{XO}] X IE“;(_{XO} by its Frattini subgroup. Although we shall not make use
of it, we mention that

]FQ[F?*{XO}] “ F?*{Xo} ~ T, HF?*{XO}’

14



where ! is the wreath product. We will now give an alternative characterization of expansion
maps based on the material in [28, Section 3.3]. Consider the isomorphism

FoFy XN 2 Fyl{t, 12 € X — (xo}})/({2: 2 € X — {x0}})

obtained by sending ¢, to 1-id + 1 - e,, where e, € F;(_{XO} is the vector that is 1 exactly on
the z-th coordinate. Observe that the collection of squarefree monomials ty := Her ty, as
Y varies through the subsets of X — {xo}, give a basis of the Fa-vector space

Fol{ts v € X — {xo}}/({t2 1 2 € X — {x0}})-

Hence projection on the monomials ty gives rise to continuous 1-cochains

gf)y(?/)) : GQ — ]FQ

for every Y C X — {x¢}. These 1-cochains allow us to reconstruct ¢ using the formula

v =1 D @@ty (X(9))yex—txo) | - (2.2)

YCX—{xo}

Let d : Map(G(’é,IFg) — Map(G(grl,FQ) be the operator that sends a map ¢ € Map(GE,Fy)
to

k

(o) (g1, Gra1) = D92y Gra1) +O(g1, - gk T D BG1s -3 i1, Gili4 1, Giv2s - > Ger1)-
=1

From equation (2.2)) and the composition law for the semidirect product we deduce that

(doy (¥))(g1,92) = Y xs(g1)by—s(1)(92), (2.3)

ZCSCY

where yg = ers Xx- Equation is just [42, equation (2.2)]. Conversely, if we have a
system of maps (¢y)ygx_{x()} satistying equation and ¢z = Xp, then we obtain an
expansion map v with support X and pointer x( using equation (2.2)).

We now show that for each finite linearly independent set X C I'p, (Q) and xo € X, there
exists at most one expansion map, denoted ¥ (®), with support X and pointer x( such that
oy (¥(8))(0) = 0 for all non-empty subsets Y C X —{xo} and all o € &. Indeed, let 1) be such
an expansion map. We claim that (o) is determined for every o € &. But this follows from
equation , our assumption ¢y (1)(c) = 0 and the fact that x(o) is prescribed for ever
X € I'r,(Q) and o € &. Since & is a set of topological generators of ggo‘Q by Proposition
the homomorphism ¢ is completely determined by its values on &. This yields the desired
uniqueness.

If there exists such an expansion map (&), we write

¢S;d(®)

for the 1-cochain ¢x_ 1,1 (¥(®)), where S is the set of squarefree integers corresponding to
the characters in X — {xo} and d is the squarefree integer corresponding to xo. In this way,
whenever we have a non-negative integer s, a set of squarefree integers S of cardinality s and
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a squarefree integer as41 such that S together with as41 spans a s + 1-dimensional space in
&, we have at most one 1-cochain

¢S;as+1 (6)

satisfying the above properties. In case we have one, we will say that ¢g.,, ,(®) exists. We
shall refer to such 1-cochains as normalized expansion maps.

Lemma 2.13. Let s € Z>1. Let S be a set of squarefree integers of cardinality s and let
T1, 22,73 also be squarefree integers with r1xe = x3 in Q*/Q*2. Suppose that ¢S;xj(®) exists
for j € [2]. Then ¢g..,(®) exists and furthermore

¢S;x3 (QS) = ¢S;~’B1 (QS) + ¢S;$2 (QS)
Now suppose that A = {a1,...,as}, B={b1,...,bs} and C = {c1,...,cs} are sets of square-
free integers such that there exists j € [s] with

a; =b; =c¢;foralli e [s]—{j} and ajbj=c¢;in —

Q*2 :
Let x be a squarefree integer. Suppose that ¢ a..(®) and ¢p.,(®) exist. Then ¢pc.x(B) exists
and

¢C;a§(®) = ¢A,$(®) + (Z)B,x(@)

Proof. Let us prove the first part, the second part being similar. We proceed by induction on
s. First suppose that s = 1 and consider

¢ = Payz, ((’5) + (Z)al;l"z(@)'
It follows from equation (2.3) that

dp(0,7) = Xa1(0) * Xo122(T) = Xa1(0) * Xa3(T)

Since ¢ vanishes at all 0 € &, we conclude that ¢4, .z, (®) exists. Now suppose that s > 1.
Again we consider

¢ = dsa, (8) + ¢S;w2(®)‘
It follows from equation (12.3)) and the induction hypothesis that
dp(o,7) = Y X1(0) - b5y (®)(7).

ZCTCS
Furthermore, ¢ vanishes at all 0 € &. Therefore ¢g.,,(®) exists. O

The following proposition examines the field of definition of ¢g.4 in terms of ¢r.4 for
T C S. The proof is straightforward group theory and we leave it to the reader.

Proposition 2.14. Let X C I'p,(Q) be a linearly independent finite set of cardinality at least
2 and let xo € X. Let

1/} . GQ N ]FQ[F?_{XO}] X F;(—{XO}
be an expansion map with support X and pointer xo. Then L(ng,{XO}(l/J)) coincides with

the field (Qsep)ker(w). This field is a multiquadratic extension of Q(X — {xo}) given by the
quadratic characters

{¢Y(¢)|G@(X—{Xo}) Y CX - {XO}}
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Writing
M(y):=Q(X)-  [[  Lier(®),
YEX—{xo}
we have that L(¢x_gy,1(¥))/M(¥) is a central Fa-extension. Furthermore,

Gal(L(§x —{xo3 (1)) /M ()
equals the center of Gal(L(¢x_{y,}(¥))/Q)-

Following the notation of Proposition we will also use the notation

M(px—(xo1 (V) == M(¢)

in the rest of the paper. In the next proposition we give a sense of the ramification behavior
in the field of definition of a normalized expansion map.

Proposition 2.15. Let n be a positive integer. Suppose that ai,...,an4+1 are squarefree,
pairwise coprime and not equal to 1. Suppose that a; = 1 mod 8 for each i € [n] and that
Plar,....an}ians: (O) exists. Then the extension

L(®far,...an}ians: (8))/QU{vai - i € [n]})

is a multiquadratic extension containing Q(\/an+1). Furthermore, the multiquadratic exten-
sion
L<¢{a1,...,an};an+1 (6))/(@({@ EAS [n + 1}})

is unramified at all finite places.

Proof. We will abbreviate A = {aq,...,a,}. Proposition implies that the extension
L(¢a,an.,(8))/Q({y/a; : i € [n]}) is a multiquadratic extension containing the field Q(,/a,11).
We now focus on the ramification claims.

Let us first prove this for a place v € P coprime to all the a;. Then combining equation
(2.2) with the definition of normalized expansion maps, we see that o, is sent to the identity
element of Gal(L(¢aa,.,(®))/Q). Hence the extension L(¢a.q,,,(®))/Q is unramified at v
in view of Proposition [2.3]

Next, since a; = 1 mod 8 for all i € [n], it follows from equation (2.3)), combined with the
definition of normalized expansion maps, that the map

¢{a¢:i6T};an+1 (6) © 7“;

is an unramified quadratic character of G, for each subset @ C T' C [n], . Hence it follows
from equation that the homomorphism v 4.q,,,,(®) o i3 factors through the kernel of
(X5> Xani1)- As such, the extension L(¢a,q, ., (®))/Q({\/a; : i € [n+1]}) is unramified at any
place above (2).

Finally, suppose that v € P divides one of the a;. Observe that, by the coprimality con-
ditions, there exists exactly one iy € [n] such that v | a;,. It follows from the definition of
normalized expansion maps, combined with equation , that Y44, ,(®)(0y) is an involu-
tion. Therefore Proposition [2.3| implies that the ramification index of v in L(¢ 4, ,,(®))/Q
equals 2. Since the ramification index of v in Q({\/a; : i € [n + 1]})/Q is also 2, we conclude
that any place of Q({\/a; : i € [n +1]}) above v is unramified in

L($asa,4.,(8))/Q{Vai - i € [n+1]}).
This ends the proof. O

17



The following criterion gives an inductive procedure for creating expansion maps, see also
[42, Proposition 2.1].

Proposition 2.16. Let ay,...,as11 be odd, squarefree integers that are pairwise coprime.
Assume that ay,...,as > 1 and asy1 # 1. Further suppose that

(‘Z) —1 (2.4)

for all distinct 3,5 € [s + 1] and all primes p dividing a;. Then ¢iq,.ic(s]}ian,, (B) evists if
Plaiicls)—{i}ysassr (B) exists for all j € [s] and every prime divisor p of a; splits completely in
L(¢{ai:i6[s]—{j}};as+1 (6))

Remark 2.17. The converse of Proposition[2.16is also true, but we shall not need or prove
it here.

Proof. We claim that there exists a continuous 1-cochain ¢ : Gg — Fa such that

dg(o,7) = Z H Xa; (o) ] - ¢{ai:i6[s}—5};as+1(®)(7) =:6(0, 7).

@CSC[s] \JeS

Once such a ¢ exists, we certainly have that ¢(id) = 0. Since ¢ is continuous, this implies that
¢(0) = 0 except for possibly finitely many o € &. Then the proposition follows by twisting ¢
by the unique quadratic character x : Gg — Fa such that ¢(o) = x(0) for all o € &.

To prove the claim, we first show that 0 is a 2-cocycle. If v satisfies (o, 7) = ¢1(0) - p2(7)
with ¢1, ¢2 : Gg — Fa, then we have the formula

(d@ﬁ)(@ T, :u) =¢1 (U) : dng(T, :u) +d¢y (07 7_) * 2 (M)

We combine this with the equations

d HXaj (o,7) = Z HXaj(U) : H Xaj(T)

jeT @CScT \jes jeT—=s

for all T' C [s] and

dgb{ai:ieT};aerl (6)(03 7—) = Z H Xa; (U) ’ ¢{ai:i€T—S};as+1 (6)(7-)

GCSCT \jes

for all strict subsets T of [s] to deduce that € is indeed a 2-cocycle. Hence the claim is equiv-
alent to the class of § vanishing in H?(Gg,Fa), which is in turn equivalent to the restriction
of § vanishing in H?(Gg,,F2) for all places v of Q by class field theory.

If v is the infinite place, then 6 becomes the zero map when restricted to Gr since the a;
are positive for ¢ € [s]. If v is an odd, finite place, then we distinguish two cases. If v does not
divide any of the a;, then the restriction of § to Gg, factors through the maximal unramified
extension of QQ,. It follows that € is in the image of the inflation map from

H*(Gal(Qy™/Q,), F2) = H*(Z,F2) = 0,
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which implies that 6 is trivial at such places v. Now suppose that v divides a; for some j. If
J = s+ 1, then equation implies that 6 becomes the zero map when restricted to Gg, .
Therefore @ is certainly trivial in H%(Gq,,F2). Instead suppose that j € [s]. Now observe
that our assumptions imply that ¢(q,.icls]— {j1 10011 (®) is the zero map when restricted to Gg, .
Then it follows from equation that 6 is also locally trivial at such v. We have now dealt
with all odd places and the infinite place. Then 6 also vanishes locally at the unique 2-adic
place of Q by Hilbert reciprocity. O

Finally, we need some additional maps that can be thought of as degenerate expansion
maps with two indices. Let a € D. Then observe that

Xa U Xa

vanishes in H?(Gg, F2). There is a unique map
¢a;a(®) : G@ — FQ

such that
(dfba;a(@))(av 7_) = Xa(a) : Xa(T)

and ¢gq.q(®) vanishes at all elements of &. If a > 1, then L(¢q(®)) is a cyclic degree 4
extension of Q with its unique quadratic subextension equal to Q(1/a). Indeed, one can write
7.]AZ set-theoretically as Fo x Fo with the group law given by

(@,y) * (2, ¢) = (@ + 2"+ v,y +9/).
Then the Z/47Z-character corresponding to ¢q.q(®) is the map

0 = (¢a;a(6)(0); Xa())-

Take v € P and suppose that v is unramified in Q(y/a). Then the above map sends o,
to (0,0), which is the identity. We deduce from Proposition that all v € P ramifying
in L(¢g;e(®))/Q must divide a. In case v divides a, then the ramification index of v in
L(¢a:0(®))/Q is 4 thanks to Proposition The above statements also apply to v = (2) in
case 2 | a.

Suppose now that 2 does not divide a. Observe that a is then either 1 or 5 modulo 8. In
case a is 1 modulo 8, then ¢q.4(®) o i3 becomes a quadratic character, and since it vanishes
on 02(1),02(2) it must be an unramified quadratic character. Therefore, in this case, (2) does
not ramify in L(¢q.,(®))/Q.

In case a is 5 modulo 8, then there exists ¢' : Gal(Q4™/Q2) — Fo with (d¢')(o, 1) =
Xa(0) - Xa(7). Indeed, this 1-cochain comes from the Z/4Z-character Gg, — Gal(Q16/Q2).
Hence ¢q.q(®) — ¢ is a quadratic character in I'p, (Q2). However, it vanishes on o2(1), 02(2),
since each of the two 1-cochains do. Hence it must be in the span of the unramified quadratic
character of Q. It follows that (¢g.q(®), xq) is unramified at (2). We summarize our results
in the next lemma.

Lemma 2.18. Let a € D be greater than 1. Then the extension L(¢q.q(®))/Q is a Z/AZ-
extension of Q ramifying exactly at those places where Q(y/a)/Q ramifies. Furthermore, the
ramification index of such places equals 4.
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2.3 The Artin pairing

Let A be a finite abelian 2-group and let s € Z>1. Denote by

AV = Homygp, gr. (A, QQ)
Ty

the dual group. We define the pairing
(= =) art(a) 1 2571 A[2°] x 2571 AV [2°] = Fy

by the formula
<(I, X>ArtS(A) = w(a)a

where 1) is any element of AY with 25~ .4 = x. Observe that changing the choice of 1
amounts to taking an element of the shape 1 + ¢’ with ¢’ € AY[2°7!]. This does not affect
the resulting pairing, since a is in 2°7! - A[2°] and thus vanishes when paired, through the
canonical duality pairing, with AY[2°7!]. Also observe that the pairing is valued in Fs, as
we claimed, since a € A[2] and ¢ is a group homomorphism. Thus we have shown that the
pairing does not depend on the choice of ¥ and is valued in Fs.

We claim that the left kernel and the right kernel of (—, —) Ay, (4) actually coincide with,
respectively, 25 - A[25T!] and 2° - AV[257!]. Indeed, a moment reflection shows that

<_7 _>Arts(A) = <_7 _>Art1(2$_1-A)'

In this last equality we are implicitly identifying (257! - A)Y and 257! . AV, through the
standard inclusion of (257! - A)Y in AV induced by the natural surjection A — 2571 . A given
by multiplication by 2°~!. Hence the claim follows from the case s = 1, which is an immediate
consequence of the duality theory of finite dimensional vector spaces over Fs.

In case z is a squarefree integer different from 1 and A = Cl(Q(1/z))[2°°], we will simply
write

(= ) Arta(2) = (= =) Arts (CHQVE))[2])-
In what follows we will canonically identify Cl(Q(y/x))[2°°] with the largest quotient of
Cl(Q(y/z)) which is a 2-group: the natural projection map from the former to the latter

induces an isomorphism. In this way, via the Artin reciprocity map, Cl(Q(y/x))[2°°] is iden-
tified with

Gal(H2~(Q(vz))/Q(Vx)),

where we recall that Hoe (Q(+/)) is the largest extension of Q(y/x) inside Q%P that is abelian,
unramified at all finite places of Q(1/z) and of degree a power of 2. This allows us to reinterpret
the Artin pairing (—, —)art, () as the Artin symbol of a 2-torsion ideal class in a cyclic degree
2%-extension of Q(y/z) unramified at all finite places. We will repeatedly use throughout the
text this way of computing (—, =) s, (z)-

3 Higher Rédei reciprocity

This section generalizes one of the central results in [29], which is a generalization of the
classical Rédei reciprocity law (in turn a generalization of quadratic reciprocity).
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3.1 Statement of the reciprocity law

Let n € Z>; and let A C I'p,(Q) with |A] = n. Let x1,x2 be two distinct elements of
I'r,(Q) — A and put
Aq ::AU{XI}, Ao ::AU{XQ}.

Given a finite Galois extension L/Q, we denote by Ram(L/Q) the set of places of Q that
ramify in the extension L/Q. Furthermore, for a collection of characters T' C T'p,(Q), we
recall that Q(7") denotes the corresponding multiquadratic extension of Q.

Write oo for the infinite place of Q. We assume that, as y varies in A, the n sets
Ram(Q(x)/Q) are non-empty, pairwise disjoint and none of them contains oo (in other words
Q(A)/Q is totally real). This forces A to be a linearly independent set of characters over [Fs.
Additionally, we assume that Ram(Q(x1)/Q) and Ram(Q(x2)/Q) are non-empty and disjoint
from Uyc 4ARam(Q(x)/Q), which certainly implies that x; is linearly independent from A, and
similarly for yo.

Suppose that we are given two expansion maps

wlﬂ/}Z : GQ —» FQ[]F?] X FQA

with supports A, A2 and pointers xi, x2 respectively. Write (¢1,5)pca, (¢2,8)Bca for the
corresponding system of continuous 1-cochains from Gg to Fa satisfying ¢1,6 = x1, 92,6 = Xo2.
Thanks to Proposition L(v1) and L(19) are central Fo-extensions of respectively M (1)1)
and M (12). We will impose some further conditions on x; and x2, which we will refer to as
the coprimality constraints on the pointers.

First of all, we demand that Ram(Q(x1)/Q) NRam(Q(x2)/Q) C {(2)}. Next we demand
that inve(x1 U x2) = 0 and that at least one between xj and 2 vanishes on 09(2). Finally,
we require (2) to split completely in Q(A)/Q. If all these conditions are met, we say that the
pointers satisfy the coprimality constraints.

We give one more definition before stating our reciprocity law. We remark that whenever
we have a 4-tuple as above, then for each subset 7" C A the 1-cochains ¢ (1) 0ib, ¢/ (1)9) 0}
are quadratic characters from Ggq, to [F2, as one can see by combining equation with the
fact that (2) splits completely in Q(A)/Q.

Definition 3.1. Let (A1, A2,11,1¢2) be a 4-tuple as above. We call (A1, A2,11,12) Rédei
admissible if the following four conditions hold

e if oo splits completely in Q(A; U A2)/Q, then oo splits completely in M (1) M (12)/Q
as well.

e whenever {i,j} = {1,2} and oo ramifies in L(;)/Q, then oo splits completely in
M(v;)/Q-

e whenever {i,j} = {1,2}, if a place w of Q(A), lying above a place v € P, ramifies in
the extension L(1);)/Q(A), then v splits completely in M (;)/Q. Furthermore, we also
demand that v is unramified in L(1;)/Q;

e whenever L(11)L(19)/Q is ramified at (2), then there exist i,j with {i,j} = {1,2} such
that ; is a normalized expansion map satisfying xi(c2(2)) =0 and ¢ (1) o ib =0 for
each @ # T C A. Furthermore, the characters x; o5 and ¢p/ (1)) o i are orthogonal
with respect to the local Hilbert pairing at (2) for each T' C A.
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We say that (x1,x2) is the pointer vector of the 4-tuple and that A is the base set of the
4-tuple.

Let (A1, A2, 11, 12) be a Rédei admissible 4-tuple with pointer vector (x1, x2). Then each
place v € Ram(Q(x1)/Q) N P is unramified in L(v2)/Q. Indeed, this follows from the third
condition in Definition [3.1{ combined with the fact that Ram(y) is disjoint from Ram(x) for
each y € A. Consequently, it makes sense to speak of the Artin class Art(v, L()2)/Q) for each
place v € Ram(Q(x1)/Q) NP. Furthermore, this Artin symbol lands in Gal(L(v2)/M (12)),
which is the center of Gal(L(v¢2)/Q) (see Proposition of size equal to 2 and hence can
uniquely be identified with Fo. Therefore Art(v, L(12)/Q) is a well-defined element of Fs.
Symmetrically, the same holds if we swap the roles of 1 and 2.

Next, whenever {i,j} = {1,2} and oo ramifies in Q(y;)/Q, then oo splits completely
in M(%;)/Q by the second condition of Definition Consequently the Artin symbol
Art(oo, L(1);)/Q) is also an element of the center Gal(L(v;)/M (1)) and hence is a well-
defined element of [Fs.

Whenever (2) ramifies in L(t1)L(¢2)/Q, let {i,5} = {1,2} be as in the last condition
of Definition Then, in case x; o5 = 0, (2) splits completely in M (¢;)/Q and (2) is
unramified in L(1);)/Q. Consequently, the Artin symbol Art((2), L(1;)/Q) is also an element
of the center Gal(L(t;)/M (;)) and thus a well-defined element of Fo.

Instead suppose that x; o # 0. Then L(1);)/Q(x;) is unramified at UpQ(Xi)/Q(2)7 thanks
to Proposition and this place splits completely in M (v);)/Q(x;). Consequently, the
Artin symbol Art(Upgy,)/q(2), L(¥:)/Q(xi)) is well-defined and an element of the center
Gal(L(%;)/M (1);)) and therefore a well-defined element of Fy. By abuse of notation we will
sometimes denote this symbol as Art((2), L(¢;)/Q). Also, observe that in case x; o i3 = x5,
then it must be that x;(c2(2)) = 0, thanks to the fact that x; is orthogonal to x; with respect
to the local Hilbert pairing at (2).

Finally, for a quadratic extension Q(v/d)/Q, we put

Ram(Q(v/d)/Q) \ (2) if d has even 2-adic valuation

Ram(@(\/a)/(@) = { Ram(@(\/a)/Q) otherwise.

We can now state the reciprocity law.

Theorem 3.2. Let (A1, A2,11,12) be a Rédei admissible 4-tuple with pointer vector (x1, X2)-
Then

> Art(v, L(¥2)/Q) = > Art(v, L(1)/Q).

veRam(Q(x1)/Q) v'€Ram(Q(x2)/Q)

3.2 Proof of Theorem [3.2]

Take a Rédei admissible 4-tuple (A1, Ag2,v1,12) with pointer vector (xi1,x2) and base set
A. We derive from equation that the tuple of 1-cochains (¢; 5)pca becomes a tuple of
quadratic characters when restricted to Gg(a) for every i € {1,2}. Furthermore, it follows
directly from the definition of an expansion map that the character ¢; 4 generates a rank 1 free
module over the ring Fa[Gal(Q(A)/Q)] for every i € {1,2}, and furthermore the corresponding
Galois extension of Q equals L(v).

For each B C A we denote by a; p € % the unique element, provided by Kummer
theory, corresponding to the restriction of ¢; p to Gg(py (which is a quadratic character).
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Our next proposition is a generalization of the well-known connection between Dg-extensions
and solution sets of certain conics, see for instance [44, Section 5], which also explains how
this phenomenon is related to Rédei symbols.

Proposition 3.3. We have for all i € {1,2} and all B C A that

No(ay/ap)(@i,a) = aiB

as elements of %.

Proof. From the recursive formula (2.3) we see that it suffices to show that

QA -{a})
No(a)/g(a-{a})(@i,4) = @i A—(a) In W

for all a € A: the full proposition is then obtained by applying this repeatedly.

By Kummer theory, this is the same as showing that the co-restriction of the character ¢; 4
from Gg(a) to Gga—{a}) €quals the character ¢; 41,3 To this end, let us recall the following
basic fact. Let G1 C G2 be a continuous inclusion of profinite groups with [G2 : G1] = 2. If
X : G1 — Fy and x’' : Go — Fy are two continuous characters, then the co-restriction of y to
G equals X' if and only if

x(@?) =X'(0) (3.1)

and

X(o7o™) +x(7) = X/(7) (3.2)

for each 0 € G2 — G1, T € G1. Equation only implies that the co-restriction of y equals
X' as characters of the index 2 subgroup G;. This leaves two possibilities for the character y
from the larger group Ga: the two possibilities constitute a single coset under the subgroup
generated by the character € : Go — g—f = . Said differently, equation forces the
co-restriction of x to be in the set {x/, x’+¢€}. These two cases can be distinguished by means
of equation (3.1]).

Returning to our setup, we will now explain how equation follows from the definition
of expansion maps as coordinates of monomials in a semidirect product. Here G4 plays
the role of G1 and Gg(a—y4}) plays the role of G3. We claim that

05, A(0T0 1) + i a(T) = di a0y (T) (3.3)

for each o € Gga—{a}) — Goa) and 7 € Gg(a)- To prove the claim, observe that ker(q);) is
contained in the kernel of all the quadratic characters ¢; a, (1+0); a, ¢; 4—{a}, since it gives
a normal extension of (Q containing the kernel of the first and the third.

Hence it suffices to check equation in the quotient given by ker(t);) or equivalently
in im(%;). The group ¥;(Gg(a)) equals Fz [F4] x {0}. The character ¢; 4 is the projection on
the monomial ¢4, the character ¢; 4_,} is the projection on the monomial ¢4_(4) and o acts
as multiplication by 1 + ¢4, since 0 € Gg(a—{a}) — Gg(a)- This yields the identity

Y (Gir(oro )+ ¢ir(0)) tr = (1+0)- | Y dir(r) - tr

TCA TCA

=1, Z Gir(T) tr | = Z Gi7(T) - truga)

TCA TCA—{a}
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for all 7 € Fo[F5] x {0}. Comparing the ¢ 4-coefficients gives precisely the desired conclusion.

It remains to check equation , which forces the norm relation to hold as characters
of the larger group Gg(a—{q})- To this end, pick 0 € Gga—{a}) — Go(a), and plug in (o,0) in
equation . The left hand side equals ¢; 4 (02), which is the quantity we are after, while
the right hand side equals ¢; 4_{,1(0). This establishes the proposition. O

Our next result is a direct consequence of Proposition [3.3

Corollary 3.4. Leti € {1,2}.

(a) Let v be a finite place of Q that splits completely in Q(A)/Q. Thenv € f/{:;El(@(xi)/Q)
if and only if

Hw € Qg(a) : w | v,w(a; 4) =1 mod 2}| =1 mod 2.

(b) We have oo € Pfia\ui/n((@(xz-)/@) if and only if

{o:Q(A) = R:o(a;4) <0} =1mod 2.

Proof. We shall explain the argument for part (a) and leave part (b), which can be proven
similarly, to the reader. Recall that ¢; s = x; for i € {1,2} and that Q(x;) = Q(\/ai.5). Let
us start by observing that

v e angr/n((@(xl-)/@) <= v(aj ) =1 mod 2 (3.4)
for all finite places v of Q. Furthermore, Proposition [3.3] applied to B := &, yields
Noay/g(@ia) = aig.

Since v splits completely in Q(A) by assumption, this shows that

Z w(ay a) = v(a,e) mod 2. (3.5)
welg(a)
wlv
The corollary is now a consequence of equations ([3.4) and (3.5]). O

We will now prove a general lemma about local fields. If K is a local field, we denote by
(—, =)k the Hilbert pairing on Ilg—; For a place v of a number field L we will write, by abuse
of notation, (—, —), for the pairing (—, —)z, .

Lemma 3.5. Let p be a finite place of Q and let K be a finite extension of Q,. Let a be the
unique class of II((—; corresponding to the unramified quadratic extension K(\/a). Then the
linear functional

(Ck,—)K : 7K*2 — Fy
equals the reduction of vi(—) modulo 2.

Proof. Let m be a uniformizer of K. The local Artin map fx sends 7 to the generator of
Gal(K (y/«a)/K), which implies that the Hilbert symbol («, 7) x is non-trivial. Since this holds
for all uniformizers, the lemma follows. O
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We will make use of one final ingredient. If w is a real place of a number field L (i.e. a
place corresponding to an embedding o : L — R), we put

w(a) = 0 ifo(a) >0
"1 1 otherwise.

Let v be a place of Q. Suppose that that there exists a place w € Qg4 dividing v such that
w ramifies in L(¢1)/Q(A). In that case we remark that Art(v, L(¢2)/Q) is a well-defined
element of Fy (see also the remarks preceding Theorem , and similarly if we swap the
roles of 1 and 2.

Proposition 3.6. The following statements hold.

(a.1) Let v be a finite rational place and let w € Qgay be a place lying above v. Suppose that
w is unramified in L(1) - L(v2)/Q(A). Then

(01,4, 02, 4)w = 0.

(a.2) Suppose that co ¢ Ram(Q(x1)/Q) URam(Q(x2)/Q). Then the value of (a1 a,x2,.4)w is
the same for all places w € Qq(a) lying above oo.

(b) Suppose that (2) ramifies in L(11)L(2)/Q. Let {i,j} = {1,2} be as in the fourth point
of Definition |3.1. Then

(1,4, @2,4)w = w(aja) - Art((2), L(¢:)/Q)

for every w € Qg4 lying above (2), where the product is taken in Fa.

(c) Let {1,2} = {i,j}. Let v be a rational place not equal to (2) and let w € Qg(a) be a
place lying above v. Suppose that w ramifies in L(1;)/Q(A). Then

(a1,4, a2,4)w = wlaga) - Art(v, L(1;)/Q),
where the product is taken in Fo.

Proof of Proposz'tz'on part (a.1). Let v and w be as in the statement. Our assumptions
imply that the extensions L(i1)/Q(A) and L(32)/Q(A) are unramified at all places of Qg 4)
above v. Now, since the fields L(t)1), L(1)2) are respectively equal to the Galois closure (over

Q) of the quadratic extensions Q(A)(,/a1.4)/Q(A), Q(A)(\/a2.4)/Q(A), it follows that the

classes of a1 4,2 4 are unramified classes in Q(A),, But, thanks to Lemma the Hilbert

Q(A)F?
symbol between two unramified classes is trivial.

Proof of Pmposz'tz'on part (a.2). By definition oo splits completely in Q(A). Since co ¢
Ram(Q(x1)/Q) URam(Q(x2)/Q), we deduce from Definition [3.1] that oo splits completely in
M (1h1) M (1h2).

Observe that a; 4 and ag 4 are Gg-invariants of respectively ]\]}4((12011)):2 and ﬁ(gz022))**2.
the conjugates of a; 4 are equal to o; 4 times a square in M (v);). In particular, o(a; 4) equals
o’ (a;, 4) times the square of a real number for all real embeddings 0,0’ : Q(A) — R. Therefore
o(a; 4) has constantly the same sign as we vary o : Q(A) — R over all real embeddings. Since
the Hilbert symbol in the local field R is entirely determined by the sign of its two entries,
the result follows. O

Hence
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Proof of Proposition part (b). The inclusion iz : Q%P — Q5 provides us with a unique
place t € Qg(4) above (2), namely the place t corresponding to the absolute value obtained
by composing iy with the canonical absolute value of Q5". Recalling that Gal(Q(A)/Q) acts
transitively (and in this case freely) on the 2" places of Qq(4) above (2), it suffices to take
any element o of Gal(Q(A)/Q), and show the desired conclusion for

(i 4 5. 4) oty = (07 aia), 0 (05.4))e-

We now apply Proposition [3.3| and rewrite the right hand side as

(0, a%i, 0. 475 = (0 A, g AY5)e(Vis @, AVt (3.6)

where 73, belongs to ({anr}rca) for h € {i,5}. We know that ¢7(v;) o i3 is the trivial
character, whenever @ # T C A, by the fourth condition of Definition It follows that ~;
is in the span of a; o locally at t. Since ;g pairs trivially with all the o by assumption,
equation becomes

(i, A, @j,a77)e = (i, 0 (,4) e

Note that the character o; 4 is unramified locally at t, since v; is a normalized expansion
map. Therefore we conclude, by means of Lemma that this Hilbert symbol equals
t(c71(aj.a)) = o(t)(cj 4) in case a; 4 is the unique non-trivial unramified quadratic class at t,
and equals 0 in case a; 4 is trivial. But now observe that the triviality of the unramified char-
acter o 4 locally at t precisely coincides with the triviality of the symbol Art((2), L(v;)/Q).
Hence the result is

o(t)(aj,a) - Art((2), L(¥:)/Q)
as desired. ]

Proof of Proposition part (c). Let us firstly suppose that v is a finite place (hence in P)
and let w € Qg(4) be above v. Observe that L(1;)/Q(A) is unramified at w by definition.
M ;)"
. M(¢j])*2 .
in the same unramified class ¢ of =% as we vary over the 2" embeddings of Q(A) into Q,.
Recalling that

L(y;) = M(4;) (vaj,a)
and that v splits completely in M (v;)/Q by assumption, we see that ¢ is trivial if and only
if Art(v, L(2;)/Q) is trivial. Lemma (3.5 shows that

Furthermore, «; 4 is a Gg-invariant class in It follows that o(c; 4) always lands

' ‘ [ w(a;a) if Art(v, L(¢;)/Q) is non-trivial
(2,4, @54 )w = { 0 if Art(v, L(¢j)/@) is trivial.

This proves part (c) in case v is finite.

It remains to treat the case where v equals the infinite place oo of Q. Let w € Qg4 be
above v. If w(a; 4) = 0, then the proposition is correct, because the Hilbert symbol (—, —)gr
vanishes in case one of the two entries is positive. Finally, suppose that w(c; 4) = 1. Recalling

one more time that a; 4 is a Gg-invariant class in Al\j((;f?‘))**Q, we see that the sign of o (o .4)
J

does not depend on the embedding o : Q(A) — R. Furthermore, since oo splits completely
in M(v;)/Q, it follows from L(v;) = M (;)( /0. 4) that this sign is positive if and only if
Art(oo, L(1);)/Q) is trivial. O
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We will now prove the main result of this section.

Proof of Theorem[3.2. Hilbert’s reciprocity law yields

> (ara,a24)0 =0, (3.7)

weg(a)

Suppose that w € Qg(4) does not ramify in the extension L(v1)L(¢p2)/Q(A). If w is a finite
place, then we obtain that (a4, a2 4)w = 0 thanks to Proposition part (a.1). If w is an
infinite place, then we certainly have

oo ¢ Ram(Q(x1)/Q) U Ram(Q(x2)/Q).

We deduce from Proposition part (a.2) that the total contribution coming from all the
places of Qg(4) above oo equals 2" times the same number, which is 0 since n > 1.

Now suppose that w ramifies in L(¢1)L(12)/Q(A). Let us first treat the case where w
ramifies in L(1)1)/Q(A) and write v for the place of Q below w. Then thanks to Proposition
[3.6] part (b) and part (c), we obtain that

(1,4, 02,4)w = w(ar,a) - Art(v, L(12)/Q)).

By assumption v splits completely in the extension M (12)/Q, so it certainly splits completely
in the extension Q(A)/Q. Corollary [3.4] shows that

> (ara,02,4)0 = { Art(v, L(12)/Q) if v € Ram(Q(x1)/Q)

0 otherwise.
weg(a)

wlv

The same conclusion holds by swapping the roles of 1 and 2. After grouping all w € Qg4
lying above the same rational place v together, equation (3.7) becomes

Y Art(u, Lg)/Q+ Y Art(v, L(¥1)/Q) =0,
veRam(Q(x1)/Q) v'€Ram(Q(x2)/Q)

which can be rewritten as

> Art(v, L()/Q) = > Art(v', L(¢1)/Q).

veRam(Q(x1)/Q) v'€Ram(Q(x2)/Q)
This completes the proof of the theorem. O

4 Profitable triples

The next two sections provide a novel way to gain class group data on one point of a cube of
quadratic fields from class group data available on the other points. We will informally refer
to this as a reflection principle. Since the material is of a rather technical nature, we will
now provide an overview of what is going to unfold below, and its main differences with [42
Theorem 2.8]. We hope in this way to provide some guiding intuition for the reader.

The key concept is that of a profitable triple. Roughly speaking, with respect to [42]
Theorem 2.8], we have less control over the raw cocycles that we encounter in our reflection

27



principles. However, the rather general form of Theorem allows us to still obtain a
reflection principle, where the relative governing fields are reasonably similar to the expansion
MAPS G, (1)p;(2)ii€ls]iper1 (peta (2) (B) appearing in {2, Theorem 2.8].

Another novel feature is that we repeatedly invoke Theorem during the proof of our
reflection principles, where the level of generality of Definition[3.I]allows us to have remarkably
little knowledge of the raw cocycles and expansion maps involved, but still gives sufficient
control over the relevant splitting conditions. In contrast, [42] Theorem 2.8] does not require
as input any form of reciprocity law. Although we shall not prove it here, our techniques are
able to prove a result eerily similar to [42, Theorem 2.8], except that the roles of T'(w,) and
T (wp) are interchanged. We remark that in the setup of [42] Theorem 2.8] it is not at all
obvious how to achieve such a result.

Our approach might seem surprising at first, since in the reflection principles of Smith
[42] it is customary to find exact relations among raw cocycles and expansion maps and only
in a later step physically plug an Artin symbol in such relations. In contrast, in our setup of
profitable triples, we have remarkably loose control on the relations between the raw cocycles
and expansion maps. It is a crucial appeal to the reciprocity law of Theorem [3.2] that gives
the reflection principle. Most of the constraints we put on our raw cocycles are merely to
meet the conditions of Theorem [3.2] to allow such a reciprocity law to come into play.

Let s € Z>1 and let

C = {p1(1),p1(2)} x -+ x {ps(1),ps(2)} x {do},

where (p;(1),pi(2))ic[s are 2s distinct, positive, odd prime numbers satisfying p;(1)p;(2) =
1 mod 8 for each i € [s], and [[;c( pi(1)pi(2) is coprime to the positive squarefree integer dy.
Thanks to this assumption, we can identify each element ((p;(f(7)))ic[s],do) of C with the
squarefree integer do - [[7_; pi(f(?)), where f is any function from [s] to [2]. We denote by

o - — do . sz(l)
i=1

For each i € [s] and each h € [2] we denote by Cp, ) the subset of x € C' consisting of those

elements satisfying m;(x) = p;(h). More generally, for each 7' C [s] and for each function

f from T to {1,2}, we denote by C(y,(f(i))),er the subset of C consisting of those x such

that m;(x) = p;(f(i)) for each ¢ € T. This notation will be often invoked for the function f

constantly equal to 2, for which we give the following special notation in order to lighten up

our formulas. We denote by Cr the subset of z € C such that i € T implies m;(x) = p;(2).
Let a be a divisor of dy. Suppose that we are given a tuple

(Vs+1(T)) zeC—{z0}
where 1s41(x) is a raw cocycle for N(z) for each z € C' — {x¢} satisfying
Y1(x) = 2% Yet1(2) = Xa- (4.1)

Remark 4.1. Observe that equation implies that a is positive. Indeed, since s+1 > 2,
equation implies that xq U X—y vanishes in H*(Gg,F2) for each x in C' — {z¢}. Since x
1s positive, taking the Hilbert symbol at the unique infinite place of Q forces a > 0.

We next make a crucial definition.
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Definition 4.2. Let (C,Xa, (¥5+1(%))zec—{z0)) be a triple as above. We call the triple
(Cs Xas (Vs+1(7))zec—{a0}) Profitable if for each i € [s]

e we have

Z VYsr1-7(®) | (0p,2)) =0

zeCr

for each T C [s] containing i;

e we have

> thea(z) =05 (4.2)
2E€CD;(2)
o the map dip,;(1)p;(2)jelsl—{iyhimi (1pi(2) (B) exists;

o cvery prime | dividing do splits completely in
L&, (1)) (2):s€ls) i) ma0pi () (6))/ Qs

* (2) and oo split completely in M(dyy, 1)p,; 2):sels)—{i}yim (1pi(2) (8))/ Qs
Remark 4.3. We claim that the second condition in Definition [{.3 implies that

Z ws—|T\($) =0

zeCp

for each @ # T C [s|. To see this, fixt some j € [s] and apply the operator d, to equation
. Then we get

> Xppem@ery (@) - (=D)ITHTX@ Ny (@)(7)

@ATC[s]—{i} zeCr

by Proposition|2.9. Now evaluate the resulting expression at (o,T) satisfying xp,(1)p,(2)(0) =1
and Xp, (1ypp(2)(0) = 0 for all k € [s] — {i,j}. This gives

Z Ys—2(x) = 0.
Tterating this argument we obtain the desired conclusion.

We will often make use of the following important observation, which, informally put, says
that the various quadratic fields, corresponding to the points of C, coincide locally at (2) and
at the common ramified primes in the cube.

Proposition 4.4. Let (C,Xa, (¥s+1(2))zec—{x,}) be a profitable triple. Let p be a prime
divisor of dg or let p = 2. Then we have

Qp(ﬁ) = @p(\/xio)

for each x € C. Moreover, we have for each i € [s], each h € [2] and all z,2" € C}, ()

Q. (V) = Qpy iy (V).
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Proof. The case p = 2 readily follows from the requirement that p;(1)p;(2) = 1 mod 8 for
each i € [s]. Every odd prime divisor p of dy splits completely in

L(&gp, (1)p; (2:5€ls]— (it b (Dpa(2) (6))/Q

by assumption. This certainly implies that p splits completely in Q(1/pi(1)p;(2)) for each
i € [s], which immediately gives us the desired conclusion.

Finally, take distinct indices i,j € [s]. Since s +1 > 2, the map &, (1)p,(2)p:(1)p:(2) (E)
exists. This map satisfies

(d%j(l)pj(z);piu)pi(z)((’5))(07 T) = Xp;(1)p;(2) (G)Xpi(l)pi(Q) (7).

Hence the right hand side is trivial in H?(Gg,F2). Therefore it is trivial in H 2(G@p_ )+ F2)
for all h € [2]. This means that p;(1)p;(2) is a square modulo p;(h), which proves the last
assertion. ]

Before we present the main theorem on profitable triples, we will state a useful lemma.
When we apply Lemma later, Proposition [.4] will guarantee that the decomposition
groups of the field Q({y/z : © € S}) are indeed cyclic.

Lemma 4.5. Let S be a set of squarefree integers all greater than 1. Assume that the decom-
position group of (2) in the field K = Q({y/x : x € S}) is cyclic. Let k > 1 be an integer and
suppose that we are given raw cocycles Yyy1(x) for N(z) for each x € S. Then

(i) if p does not ramify in K, p is unramified in

T L@rsr(@));

zeSsS

(ii) suppose that p ramifies in K. Then the ramification index of p in

[T L@Wkr1())

€S

equals 2. Now assume that all decomposition groups of K/Q are cyclic. Then, if p
ramifies in Q(\/x) for every x € S, the residue field degree of p in

IT L))

€S
equals 1.

Proof. Straightforward. O

Let a profitable triple (C, Xa, (¥s+1(2))sec—{xo}) and a subset @ C T' C [s] be given. To
this data we associate the map

wT(C7 Xa» <ws+1(x)):c60—{l‘o}) = Z ¢|T|+l(m)'

IEC[S],T

Note that the above definition also makes sense for T = [s] in case we are further given a raw
cocycle s11(xo).
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Theorem 4.6. Let (C, Xa, (¥s+1(%))zec—{z0}) be a profitable triple. Then there exists a raw
cocycle Ysi1(xg) for N(zg) such that the following two properties hold

e for each i € [s] we have that

> i) =05 (4.3)

zeC

e the tuple
(W1 (C, Xas (Ys+1(%))eec—{z0)))TC[s)
is an expansion map Y(C, Xa, (Vs+1(2))zec—{zo}) With support {Xp,1)p,2) 1 € [s]} U
{Xa} and pointer x,. Furthermore, if v € P ramifies in

L(¥(C, Xa, ($s+1(2))oec—{a0})) /QUVPi(1)pi(2) : i € [s]}),

then v divides do. The ramification index of v € g is at most 2 in the extension
L(¥(C, Xa» (Vs+1(2)) zec—{wo}))/ Q- Finally, the 1-cochain

¢T(¢(Cv Xas (¢s+1 (x))meC—{xo})) o 23 = 7vZ)T(C’7 Xas (1/}S+1(x))z€C—{zo}) o 13

is a quadratic character contained in the span of {Xs5, Xz} for each subset T" C [s].

If (2) ramifics in Q(y/0)/Q, then o7 ((C. Xa, (Vi1 (¢))sec—(an))) © i3 is @ quadratic
character contained in the span of {xz,} for each T C [s].

Proof. We claim that

(o) = — Y hs() (4.4)

zeC
TH#x0

is a raw cocycle for N(zg) lifting x,. Since 2° — 1 is odd, we certainly have
28_171)8(1‘0) = Z 25_1¢8(x) = Z Xa = Xa-
zeC zeC

TH#xT0 TF£x0
Furthermore, it follows from Proposition [2.9] that

Aoy (Vs(20))(0,7) = D Xqmm(@yiery(@) - | D ooy (@)(7) |

@#£TC(s] zeCr

which is zero term by term thanks to equation (4.2]) of Definition and Remark This,
together with Proposition [2.5] gives a field extension corresponding to the homomorphism

Go = N(20)[2°] X F2, 0 = (¢s(20)(0); Xao ()

where the generator of Fy acts by —id on N(xg). Our next goal is to show that the extension
L(1s(0))Q(y/70)/Q(\/Zo) is unramified at all finite places. By equation (4.4), we have an

inclusion

L(ts(z0)) © [] Lws()). (4.5)

zeC
rF#x0
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Then Lemma |4.5|implies that L(vs(x0))Q(/70)/Q(y/0) is unramified at all finite places not
lying above some p;(2).

It remains to show that L(vs(x0))Q(y/Z0)/Q(y/Z0) is unramified for any place of Q(,/z¢)
above p;(2). Recall from Proposition 2.5 that the Galois extension L(s(z))Q(v/x)/Q is given
by the homomorphism from Gg to N(z)[2°] X Fo defined by the formula

o = (¢s(2)(0), Xz (0))-

Notice that p;(2) is unramified in the extension L(vs(x))/Q for each = € C), (1) — {xo}. Then
it follows from Proposition that ¢s(x)(0p,(2)) = 0 for all z € Cp, (1) — {wo}. Hence, the
first condition of Definition [4.2] together with the definition of 1s(xo) implies that

(¥s(20)(0,(2))s Xao (0p,(2))) = 1d.

Invoking one more time Proposition and Proposition we conclude that p;(2) is unram-
ified in L(ts(x0))/Q as desired. Since we have shown that L(1s(x0))/Q(\/Zo) is unramified
at all finite places of Q(/Zo), we conclude that t4(zo) is a raw cocycle for N(xzg) lifting xa,
which satisfies equation by construction.

In order to prove the existence of ¥s1(xg) with 2511 (xg) = 1¥s(xg) we will instead show

the equivalent statement that Upg( /z/q(p) splits completely in L(vs(20))Q(y/Zo)/Q(y/Zo)
for each prime p ramifying in Q(,/79)/Q (here we use the material in Subsection and
Proposition . This is in turn equivalent to

ip(L(s(20))) € Qpl/T0) (4.6)

for each prime p ramifying in Q(/z0)/Q.

Let us begin with the case that p divides dy (or p = 2 in case xg is 3 modulo 4). For
all such choices of p, equation is a consequence of Lemma and equation . We
are now left with proving the sought inclusion for p;(1) for each i € [s]. First of all we
claim that ip,1)(L(¥s(2))) € Qp,1)(y/Zo) for each x € Cp, 1) — {7o}. Indeed, the Artin

symbol of Upg(,/z)/0(pi(1)) in Gal(L(¥s(z))Q(vz)/Q(vx)) vanishes thanks to the equation
2-1s11(x) = Ys(x) and the claim is a consequence of Proposition Therefore noticing that

L(ts(0)) C I Z@s@) | L{ D ws@) |,

xECpi(l)—{:Uo} IEECPZ.(Q)

we see that it is enough to show that i, 1) (L(>_,cc . Ys(7))) € Qp,(1)- Hence it suffices to
pi
show that p;(1) splits completely in the extension

LI > @) |/Q
T€Cp;(2)

Define C := Cp,(2)- We start by observing that equation 1) combined with Remark and
Proposition [2.9) implies that

Z Yir)1(2)

€ty -1 TCs)- (i)

32



is an expansion map, say £, with support set equal to {X,,(1)p;2) : J € [s] — {i}} U {xa} and
pointer xg.

We claim that p;(2) splits completely in L(E). Let us first show that p;(2) is unramified
in L(E). We obtain, as an immediate consequence of equation and the first point of
Definition that o, (o) is mapped to the identity element via E. Then p;(2) is indeed
unramified by Proposition Since L(E) is contained in HIECM@) L(vs(x)), it follows from

Lemma that p;(2) has residue field degree 1 in L(F) implying the claim.
We next claim that

iy (M| D _Ws(@) | | S Quay and iy | L Dows(@) | | SQity. (A7)

xeé xeé

The second containment in equation (4.7)) is clear, since p;(1) is unramified in L(3s(z)) for
every x € C. Thanks to Proposition the first condition is equivalent to p;(1) splitting
completely in

LY (@)
zeCr

for every T' C [s] of size 2 containing i. Let us first observe that the above field is contained
in the compositum of L(1)s(x)) for z satisfying m;(z) = p;(2). Hence

iy [ L[ D vsma(@) ] | Q- (4.8)
zeCrp
Next observe that
Sodealw == Y vl
v€Cr 2€C(p;(1),p5(2)

thanks to equation ([4.2)), where T' = {i, j}. It follows from Lemma [4.5| that p;(1) has residue
field degree 1 in L(erc(p_(l) @) s—1(x)). Therefore we have
i(1),Pj

iy | L D ¢sa(@) | | € Qpy(vo). (4.9)

zeCr

We derive from equations (4.8) and (4.9)) that

i [ L D s1(@) | | € Quay(VEo) N QT = Q-

zeCr

This establishes equation (4.7]).
We are now in position to show that the 4-tuple

{xp; (0ps2) 13 € [8] = {iHU{xa}s {Xp;1)p;2) 1 7 € [8] = {i}} U {Xps)me2) 1

D V(@) 7 (G mm@erymp@ (E)rei )
PEC (i}
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is Rédei admissible. From this we will derive, by an application of Theorem the desired
splitting of p;(1). Let us start by checking the coprimality conditions among the pointers.
Observe that a and p;(1)p;(2) do not share any common prime divisor by construction. Fur-
thermore, a is positive, see Remark and p;(1)p;(2) is obviously positive. Finally, we have
pi(1)pi(2) = 1 mod 8 by assumption, hence the desired orthogonality at 2 between x, and
Xpi(1)ps(2)» With respect to the Hilbert pairing, is evidently satisfied.

We now check Rédei admissability. To lighten the notational burden, we denote, as in
Section (3] by 1 the first expansion map and by - the second expansion map appearing in
the 4-tuple above.

Let us start by examining the infinite place. It follows from Remark [£.1] that oo splits
completely in the field Q({+/pr(1)px(2) : k € [s]}, v/a). Hence we need to check that oo splits
completely in M (11) M (1)3). The field L(1bs(z)) is totally real for each # € C thanks to the
equation 2111 (z) = 1s(x). Therefore their compositum is totally real and thus we conclude
that M (1) is totally real. Regarding M (v2) this is explicitly prescribed in the fifth point of
Definition (4.2

Let us now consider the place (2). It follows from the fifth condition of Definition that
(2) splits completely in the extension L(t2)/Q. Therefore, in view of Definition there is
no further condition to check for 4)y.

It remains to examine the odd places dividing dy or places of the form p;(h) for some
J € [s] and h € [2]. Indeed, L(11)/Q does not ramify at any other odd place by Lemma
while Proposition implies that L(12)/Q ramifies only at primes of the form p;(h) for
j € [s] and h € [2]. So let us take an odd prime p dividing dy. Thanks to the fourth condition
of Definition p splits completely in L(2)/Q.

We now examine the place p;(h) with j different from i. Then we claim that each place
above p;(h) is unramified in

L(1) L(1h2) /QUV pr(D)pr(2) : k € [s] = {i}}).

In fact we make the stronger claim that 0y, (h) has order at most 2 when projected to the Galois
groups Gal(L(¢1)/Q) and Gal(L(t2)/Q). This implies the original claim, since the ramifica-
tion index of p;(h) in Q({v/pr(1)pr(2) : k € [s] —{i}})/Q already equals 2, since j is different
from 4. For 1)1, observe that this holds for each individual Galois group Gal(L(vs(x))/Q),
since the extension L(ts(z))/Q(yv/z) is unramified for each z € C. For s, observe that
normalized expansion maps send every o € & to an involution by construction.

We are now left with the places p;(1) and p;(2). But we have already shown above
that L(v1)/Q is unramified at both of them, and even that p;(2) splits completely therein.
Furthermore, we have established, see equation , that p;(1) splits completely in M (1) /Q.
Therefore the 4-tuple is Rédei admissible. We now apply Theorem The relevant Artin
symbols in L(1)2) are zero thanks to the fourth point of Definition[4.2l We have already shown
that Art(p;(2), L(¢)1)/Q) vanishes. Hence Theorem (3.2 yields that p;(1) splits completely in
the field of definition of ;.

Since i € [s] was arbitrary, we have completed the proof that ¥s(z¢) pairs trivially with
Cl(Q(y/%0))[2]. Therefore there exists 1s41(xg) with

2. (Z ¢s+1(x)> = 0.

zeC
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Invoking one more time Proposition combined with equation (4.2) and Remark we
obtain that

¢(C7 Xas (¢8+1(x))1’60—{$0})

is an expansion map with support {X,,(1)p,(2) : © € [s]} U {xa} and pointer x,.
Let us now prove the final claims concerning the ramification locus of the extension
L((C, Xas (¥s+1(T))eec—{201))/ Q. First of all, recall that (2) splits completely in the field

Q({/pi(1)pi(2) : i € [s]})/Q, because of our assumption p;(1)p;(2) = 1 mod 8 for each i € [s].
In view of Proposition 2.9 this also shows that the map ¢7(¢(C, Xa, (Vs+1(7))sec—{a0})) © 15
is a character from Gg, to Fa. The other claims are now a consequence of Lemma O

From now on we will refer to the maps 9s+1(z0) and ¥(C, Xa, (¥s+1(7))zec—{a0}) Obtained
in Theorem as, respectively, the raw cocycle and the expansion map attached to the

profitable triple (C, Xa, (¥s+1(2) rec— (x0})-

5 Reflection principles for profitable triples

We divide our reflection principles for profitable triples in three families. The final family of
reflection principles is taken from Smith [42], and does not involve the notion of profitable
triples.

5.1 Reflection principles for co

We say that a squarefree integer d > 1 is special in case it has no prime divisors congruent
to 3 modulo 4. From now on we shall use the notation for s and C' as given at the beginning
of Section [l We say that C' is special in case all its elements are special. Let us start by
defining —1-profitable triples. If ¢4, .ic(s]};a,,, (&) exists, then recall that

M(é{ai:ie[s}};ayrl(@)) = Q({Xai S [8]}) H L(¢{ai:i€T};a3+1 (6))

T¢ls]

Definition 5.1. Let (C, Xa, (¥s+1(2))secc—{ao}) be a special, profitable triple. We say that
(Cy Xas (Vs11(7))zec—{a0}) 18 a —1-profitable triple in case

® the map ¢yp,(1)p;(2):icls)}i—1(O) exists;

e cvery odd prime divisor of dy splits completely in M (¢, (1)p, (2):ic[s]}:—1(8))/Q;
o (Vx) € 2°CI(Q(v/))[2°FY] for each x € C;

e the place (1+ 1) of Q(i) splits completely in M (¢, (1)p;(2):ic[s]}:—1(®))/ Q7).

Before stating out next theorem, we remind the reader that the splitting of (y/z) in an
unramified extension (at all finite places) of Q(1/z) is the same as the splitting behavior of an
infinite place. Furthermore, we remind the reader of the conventions about Art(2, L(¢;)/Q)
discussed after Definition B.11

Theorem 5.2. Let (C, Xa, (Ys+1(%))zec—{a0}) be a —1-profitable triple. Then

€ 2°Cl(Q(v0)) " [27].

35



Furthermore, each odd prime number p | a splits completely in M (¢, (1)p:(2):icls]}:-1(8))/Q,
the place (1 + 1) splits completely in M (¢ gy, (1)p;(2):icls]}—1(8))/Q(4) and

Y AVT), Xa) Artia () Z%l Dpi(2)siefs]}—1(®) (Frob(p)).

zeC pla

Proof. Since (C, Xa;, (Ys+1(7))zec—{a0}) 18 in particular a profitable triple, an application of
Theorem yields

Xa € 2°CHQ(V0)) " [2°7].

It is also clear that (14 4) splits completely in M(¢{pz(1)pz(2) iefs]}—1(®))/Q(4) and that every
odd prime p dividing a splits completely in M (¢gp,(1)p;(2):ic[s]};—1(8))/Q. Indeed, this is
literally the second and fourth condition in Definition [5

It remains to prove the last part of the theorem. Pick araw cocycle Y541 (o) as in Theorem
Let ¥(C, Xas (¥s+1(%))zec—{z}) be the expansion map attached to the profitable triple.
Denote by Frob(oo) the generator of Gal(Q%"/Q). We claim that

Y AVE) Xa) vt sa(@) = Y1) (C Xas (Ps1(2)) oo fao)) (5 (Frob(00)) ). (5.1)

zeC

Indeed, for each x € C, we can write

((VT), Xa) Artos (2) = Yst1(2) (% (Frob(0))),

and hence equation (j5.1)) follows from the equality

Z ¢s+1($) = 2p[s] (Ca Xa> (¢8+1(x))96607{x0})'

zeC

We now show that the 4-tuple

({Xpipi2) 7 € [81F UXa s {Xpspa(2) 17 € [s1F U {x-1}s
V(O Xas (Vs+1(2))wec—{20})s (Pips(1)pi(2):ieTyi—1(8)) 7))

is Rédei admissible. Once we have completed this task, then the desired conclusion follows
at once from Theorem combined with equation .

Let us start by examining the coprimality conditions. The coprimality condition at the
odd places is satisfied since one of the two pointers is y_1. At oo we need to guarantee that
a is positive, which follows from Remark At (2) we need to guarantee that y_; and y,
are orthogonal with respect to the local Hilbert pairing. Since a is special, X, is contained in
the span of {x2, x5} locally at 2. This last space is precisely the orthogonal complement of
(x—1) with respect to the local Hilbert pairing at 2.

It remains to check the conditions in Definition [3.1] In what follows we will denote, as
in Section [3] by %1 the first expansion map and by 19 the second expansion map of the 4-
tuple. The first condition of Definition is trivially satisfied. Let us now check the second
condition.

Observe that oo certainly ramifies in Q(7)/Q. Therefore we need to check that oo splits
completely in M (1)1). But the extension L(vs(z))/Q is totally real for each = € C' due to the
equation 2 - s11(x) = 1s(x). Hence the desired conclusion follows immediately, since M (1)1)
is contained in the compositum of totally real fields. We now check the third condition of
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Definition [3.I] Thanks to Theorem [£.6] and Proposition [2.15, we only need to check the odd
primes d1V1d1ng do and those of the form p;(h) for some i € [s] and some h € [2].

Let p be an odd prime dividing dy. Then p splits completely in M (12)/Q by the second
condition of Definition Furthermore, p is unramified in L(1)2)/Q by Proposition[2.15 Let
now i € [s] and h € [2]. In this case we claim that every place of Q({+/p;(1)p;(2) : j € [s]})
above p;(h) stays unramified in L(v1)L(v2)/Q({\/p;(1)p;(2) : j € [s]}). To see this last
claim, we use the last statement in Theorem for 1 and Proposition for 1.

It remains to check the fourth condition of Definition We have x_1(02(2)) = 0 by
construction of o3(2). We will now verify that ¢7(i2) o iy = 0 for each @ C T C [s]. First
observe that ¢r(i2) o i3 is a quadratic character. Since 12 is normalized, it follows that
o1 (1h2) 013 is in the span of the unramified quadratic character. But (14 14) splits completely
in M(12)/Q(7) by the fourth condition of Definition This shows that ¢r (i) o = 0.

Finally, we need to check for each T' C [s] that the map ¢p (1)) restricts to a quadratic
character that is in the span of {xs, x2}, which is the orthogonal complement of (y_1) with
respect to the local Hilbert pairing at (2). This follows from the last part of Theorem
keeping in mind that xg is a special integer, which forces the span of {xz,, x5} to be contained
in the span of {xs, x2} locally at (2). This ends the proof that the 4-tuple is Rédei admissable,
which, as explained above, concludes the proof of the theorem. O

5.2 Reflection principles for the self-pairing

We begin with two auxiliary results, which are the two fundamental steps towards the main
results of this subsection, Theorem [5.6] and Theorem [5.7] Theorem [5.3]is a result similar to
Theorem [5.2] if not a simpler one, in the sense that it does not invoke any further usage of
reciprocity than already invoked in Theorem [£.6] Instead Theorem [5.5 is a genuinely novel
result having no analogue in the previous reflection principles. It relies on Hilbert’s reciprocity
law in a critical manner.

Theorem 5.3. Let (C, Xa, (Ys+1(7))zec—{a0}) be a profitable triple. Suppose that

Upg(ym)a(a) € 2° - ClQ(VT))[2°]

for each x € C. Then UpQ(ﬁ)/Q(p) splits completely in M (Y(C, Xa, (Vs+1(T))zec—{a0})) for
each p | a. Furthermore, we have that

Xa € 2° - CQ(v/20))"[2°"]

and

Z<UPQ(\/E)/Q( )s Xa) Artyr1 (z) Zlf)[s] (C, Xas (Vs+1(2)) wec—{20}) (Frob(Upg(/a)/0(P)))-

zeC pla

Proof. For each prime p | a the map 4, gives us a unique prime p above p in

K = Q({vpi(1)pi(2 [s]}, v/Z0).

For each x € C' the extension Q(y/z) is inside K. Therefore we conclude that

KL(sy1(x))/ K
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is unramified at p and

(Upg(va)/a(@) Xa) Arteys (2) = D st () (Frob(p)),

pla

since p has residue field degree 1 in K by Proposition [4.4, Summing up all the contributions,
we get

Z 1/1[3} (07 Xas (werl(:E))xEC—{xo})(FrOb(p))‘

pla

Lemma {4.5implies that Upg(,/z) /0 (p) splits completely in M (4/(C, Xa, (¥s+1(2))zec—{a0})) K
for each p | a. Therefore we can rewrite

sz)[s] (C’ Xa> ('(Z)erl (x))mGC—{xo})(FrOb(p))

as
V1) (C Xas (Vs54+1())zec—{z0}) (Frob(Upg( vz /0 (P)))-
We conclude that

D (Upg(ym)/0(a): Xa) Artess @) = D ) (Cs Xas (sr1(2))zec—{z0}) (Frob(Upg(ay 0(P))

zeC pla
as desired. ]

We are now going to abstract the crucial features of the cochains appearing on the right
hand side of Theorem[5.3] As an auxiliary piece of notation, we remind the standard notation
that one attaches to a finite Galois extension F//Q and to a prime number p

ep(F/Q) := #(proj(Go — Gal(F/Q)) o) (1),

and
(g o 010i(G > GallF/®) o ) G,
g ep(F/Q)
Definition 5.4. Let s € Z>;. Let {a1,...,asy1} be pairwise coprime, special squarefree
integers greater than 1. An expansion map (¢{a;:ieT}a,., )TC[s] With support set {ay, ..., ast1}

and pointer agy1 is said to be Pellian in case

e for each finite prime p ramifying in L(¢{a,:ic[s)); as+1)/@7 we have that

ep(L(P1a:ic[s)}iass )/ Q) = ep(M(P1a,:ic[s] a0 )/ Q) = 2
and p is not 3 modulo 4;

e we have

To(M(dqa;:ic[s)}ia5:1)/Q) =1
for each finite prime p ramifying in M(¢{ai:z’e[s}};as+1)/@;

e the character Xq, is locally trivial at 2 for all i € [s];

e oo splits completely in M(Qf){ai:ie[s}};asﬂ)/(@;
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i Qb{ai:iGT};aerl (02(1)) =0 for each T - [S];

o all prime divisors of a; are unramified in

L((ajsjels (i} }ianin )/ Q
for each i € [s].

Let p be a prime divisor of as41. By definition of a Pellian expansion, we have that
UpQ(m)/Q(p) is unramified in L(¢{q,:ic(s]};a,,,) and splits completely in M (¢y4,:ic(s]}ia0s1)-
Therefore we have that Frob(Upg( /a7)/0 (p)) is well-defined and lands in

As+1
Gal(L(¢{ai:i€[s]};as+l)/M(¢{ai:i€[s]};as+1)) = ]FQ

We now give the second auxiliary result, which has some similarities with the computations
in |20, Section 12].

Theorem 5.5. Let s € Z>o. Let {ai,...,as41} be pairwise coprime, special squarefree in-
tegers. Let (@{a;:icT)ia.r1)TCs) bE @ Pellian expansion map with support {a1,...,asy1} and
pointer asy1. Then

D blagicislian (Frob(Upg e o)) = 0.
plast+1

Proof. Until specified, all intermediate assertions that we are going to make also apply to the
case s = 1.

Construction of an auxiliary 1-cochain

Let us write K := Q({a; : i € [s] — {1}}). Observe that the restriction of ¢ya,.ic[s]—{1}}1a011
to Gk is a quadratic character, while ¢(q,.ic[s) restricted to Gk is a 1-cochain whose
differential equals the following cup product

hast1

(d¢{aiii€[5]};as+1)(av T) = Xa1 (0> ’ ¢{ai:i€[s}f{l}};a5+1 (T)

of quadratic characters.
Thanks to the first point of Definition the quadratic character (o), (.41 dO€S
not ramify at odd finite places of K not possessing a primitive 4-th root of unity. As such

the 2-cocycle
9(0’, T) = (ﬁ{ai:ie[s]f{l}};as.,_l (0) ' ¢{ai:i€[s]f{l}};a5+1 (T)

is locally trivial at all finite odd places of K. Furthermore,  is trivial at all the 257! infinite
places of K, in virtue of the fourth point of Definition We now examine the places above
(2). Observe that by the third point (2) splits completely in K. Call t the unique place of K
given by i2. Then Ki = Qs.

Recall that the set of characters x € Homyop gr.(Gg,,F2) with x U x = 0 in Hz(GQZ’]FQ)
forms a subspace thanks to the antisymmetry of the Hilbert symbol. Furthermore, it coincides
precisely with the space of characters vanishing at o2(1). To see this, remark that x2 U xo
and 5 U x5 are trivial (since 22 = 2 + 2 and 5% = 5+ 5-22). Then, since both spaces are
2-dimensional, they must coincide.
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Now, thanks to the fifth condition in Definition we see that

InVi(@fa;iicls)—{1}hassr (F) - Plaziics—{1}}iasps (7)) = 0.
We now show it for all the other places above (2). Take any p € Gal(K/Q). Observe that

inv, ) (Pgasicls]—{1}hausr (F) - Plasiicls|—{1} }iasss (T)) =
V(G faziicls)— {1} }asir (PTP 1) * Blagics—{1}hawrs (PTP))-

Invoking Proposition we see that ¢rq..ic(s]—{1)}:a041 (pop~1) is in the span of

{¢{ai:i€T};aS+1 T C [S] - {1}}

However, invoking again the fifth condition of Definition we see that each ¢4, .ieTyia,4,
is in the subspace of x € Homyop gr. (G K, F2) with

invi(x Ux) =0.

Therefore we conclude that

IV (Gfaziicis)— {11 }ae (PTP 1) * Blasicis)—{1}haers (PTP ) =0

and hence
v, () (Dfaicls)— {1} hass1 () * Playiicls]—{1}}asss (T)) = 0.
We have proved that 6 vanishes locally at all places above (2) as well. Hence we have

completed the proof that the class of 6 is locally trivial at all places of K. Therefore there
exists a 1-cochain ¢ : Gxg — Fy with

(do)(0,7) = 0(0,7) = Ppasicis] (11 :ans1 (T) - lasicls]— (1} :ansa (T)-

The possible choices of the cochain qg form a coset under Homgop.gr. (G, F2). We are going

to make a choice of c;~3 that will simplify the coming discussion. Since x4, is a character that
ramifies at some place, we can always choose a set S;(K) of odd prime ideals of Ok spanning
% such that x,, is locally trivial at each of them.

Let us call S(K) the set of places of K that are in Si(K) or lie above (2) or co. We
now claim that we can always make a choice of ¢ such that L(¢)/K is unramified outside of

S(K) and the places where L(d(4,:ic[s]—{1}};a.,,)/ K ramifies. Indeed, start with one cochain
51 : Gg — Fy such that

(dd1)(0,7) = 0(0,T) = basicis]—{111a011 (0) * Dlasiicls]—{1)}sasss (T)-

Suppose first that the field extension L(¢;)/K ramifies at some place p outside of S(K) and
the set of places where L(¢{4,:ic[s]—{1}}:as:,)/ K Tamifies. By definition of S(K) we can find
an ideal J entirely supported in S(K) such that pJ = (7) - I? for some integral ideal I of O
and some non-zero element v, of K.

Observe that the quadratic character X ramifies at p and its ramification locus is con-
tained in {p} US(K). Furthermore, writing ¢y = ¢; + X~y We see that L((;Sg) /K is unramified

at p. Since L( (]51) /K ramifies at finitely many places, we get a 1-cochain qﬁ with the claimed
properties by iterating this procedure. In what follows we consider this choice of qb.
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Construction of a 2-cocycle

A quick calculation shows that

0(0,7) := Ofayiclsl}iasis (0) * Plasiicls|— {1} iasss (T) + Xar (0) - O(7T)
is a 2-cocycle, giving a class in H?(Gg,Fa). Hence Hilbert reciprocity yields

Z inv, () = 0.

vEQK

We next calculate for each v € Qk the value of inv,(6).

The infinite places

Observe that x,, is locally trivial at any infinite place, since a; > 0. Furthermore, thanks
to the fourth condition in Definition @, we see that ¢4, .ic[s|—{1}}:a04, 15 also locally trivial

at each infinite place. We therefore conclude that the 2-cocycle 8 becomes literally the zero
map when restricted to each decomposition group of an archimedean place of K. Hence
inv,(6) = 0 for each infinite place v of K.

Places above a4

We distinguish two cases. Let first p be an odd prime factor of asyi. Clearly, p ramifies in
L(91a;:i€(s]};as41)/Q- 1t follows that p splits completely in K(,/a1) thanks to the first and
the second condition of Definition Let p be one of the 27! places of Q lying above p.
Then xq, is locally trivial at p, thanks to the just mentioned splitting of p in K(,/a1). We
conclude that ¢(q;.ie[s]};a551 A0 Pfa;:ic]s]—{1}}:asq: L€ both quadratic characters locally at p.

Therefore, locally at p, the 2-cocycle 8 becomes the cup product
¢{ai:i6[s}};as+1 (U) : qb{ai:ie[s}—{l}};aSJrl (7—)
This shows that

ian(e) - invp(¢{ai:i€[s]};as+1 (J) ’ ¢{ai:i€[s]—{1}};as+1 (T))
It follows from the first and the second condition in Definition [5.4] that the set
{¢{a¢:i€T};a_g+1 : T g- [3]}
spans the 1-dimensional space generated by X,,,, locally at p. From this we deduce that

¢{a¢:i€[s]};a5+1 (FrOb(UpQ(\/m)/Q(p))) =0

if and only if ¢(4,.ic[s)};a,4, lands in the space generated by Xa,,,. In case ¢gy;icls—{11}ia0s1
is locally trivial at p, we evidently get

invp(¢{ai:i6[s}};as+1 (U) U ¢{ai:i6[s]—{1}};as+1 (7—)) =0.

Otherwise, ¢1q;:ic[s]—{1}};as,, 15 DON-trivial locally at p and hence equals xq,,, locally at p.
Then we get

vy (Gfaziicls)biacs: (0) - Plagiicls)- 11 aer (T)) = Pagiiclsibiacs: (Frob(Upg( /o) o (@))-
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Indeed, the above Hilbert symbol vanishes if and only if ¢(4;.i¢[s]}:a.,, 15 in the space generated
by the non-trivial character x,,,,, which, as we argued, is also decided by the Artin symbol.
Finally, Corollary implies that the total contribution of the places above p is precisely

Plaziiclslas (Frob(Upg( s o (P)))-

Suppose now that 2 divides as41. We explain why the above argument works in this case as
well. Thanks to the first and the second condition in Definition [5.4] we know that

{(b{ai:iET};aS.;,.l ’i;(GQ2) T C [3}}

spans a space that is at most 2-dimensional, containing xq,, and reaching dimension 2 if and
only if x5 is therein. Again the symbol ¢(q,:ic[s]}:a511 (Frob(UpQ(\/m)/Q@))) detects whether
the dimension is 2 and likewise for the Hilbert symbol

vy (faiicls)biacss (0) - Plasiicls) {1} aer (T)) = Plasiiclslbiacs: (Frob(Upg( am)/0(2)))

In case @fq;ic(s]—{1}}:ass, 1S DON-trivial locally at p. With these small differences, the rest of
the proof is identical and one reaches again the conclusion that the final contribution above
(2) is

Plassiclsl b (FrOb(Upg( arm)/0(2)))-
Hence we conclude that the total contribution from the places above the prime divisors of
asi1 18

Z ﬁb{ai:ie[s]};asﬂ(FTOb(UP@(\/m)/Q(p)))-

plast1

The remaining places not dividing a;

Suppose that v is a finite place of K above a prime ¢ such that the residue field F, is a
non-trivial extension of F,. We claim that

inv,(0) = 0. (5.2)

Observe that ¢ is unramified in L(¢{q,:ic[s)}ia,4,)/Q by the first and second condition of
Definition By our assumption on v, we have Fy C F*2. Then the character x,, is locally
trivial at v for all i € [s], and therefore ¢yq,.ic[s]}ia,.1(0) a0 P4, icls]—{1}}5a04, (T) are both

quadratic characters locally at v. Hence 6 becomes the cup product

(b{ai:ie[s}};as_,_l (U) : ¢{a¢:i€[3]7{1}};a3+1 (T)

of two unramified characters, which proves the claimed equation .

We are left with the finite places v with residue field degree one in K and not dividing
as+1. Write ¢ for the place of Q below v. Let us first consider v such that ¢ is unramified in
L(9a;:ic]s]};as41)/Q- Then g splits completely in K.

First suppose that v ramifies in L(gg) /K. Then, by our choice of S(K) if ¢ is odd, and
by the third condition of Definition in case ¢ = 2, we have that x,, is trivial locally at q.
Since g splits completely in K, we conclude that y,, is also locally trivial at v. Therefore at
all such places we are left with the cup product of two unramified characters and thus we get
that the Hilbert symbol is trivial.
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_Next suppose that v is unramified in L(¢$)/K. For each such v we have that the restriction
of 0 to Gk, is in the image of the inflation

inf : H?(Gal(K™ /K,),Fa) — H*(Gg,,Fa).

But we know that Gal(K"/K,) = Z and H?(Z,Fs) = 0, since any central extension of Z is
clearly trivial. We conclude that ~
inv,(6) =0

in this case.

Hence we have proved that the contribution from all the places above finite rational primes
q unramified in L(¢{q,:ic[s]}:a.,,)/Q is pointwise 0. We now turn to the ramified places.

Among the remaining places, let us first examine those v for which ¢ does not divide a;.
It follows from the second condition of Definition that xq, is locally trivial at such places.
Hence we are left with

¢{ai:i€[5]};as+1 (U) ’ ¢{ai:i€[s]—{1}};a5+1 (T)

locally at v. Let us further suppose that g does not ramify in K/Q. Then it must split
completely in K/Q. Now for each of the 2°~! places above g where the quadratic character
¢{ai:i€[s}f{1}};a5+1 of Gk ramifies, the invariant map is zero if fq(L(qS{am-e[s}};asH)/Q) =1
and non-zero if f;(L(¢1q,:ic(s]}a.1)/Q) = 2. Since ¢ does not divide asy1, there is an even
number of places above g ramifying in ¢, .ic(s)—{1}};as,, 11 Virtue of Corollary Therefore
the total contribution from such places is trivial.

In case s > 2, we still need to deal with the places ¢ not dividing a; but dividing a; for
some ¢ € [s] — {1}. Take a place v above ¢ and observe that both characters

¢{ai:i€[s]};as+17 ¢{ai:i€[s]—{1}};as+1

have even valuation at v, thanks to the first condition in Definition [5.4f Therefore the Hilbert
symbol is trivial also in this case.

Places dividing a3

We are now left with the v such that ¢ divides a;. Indeed, we have shown that the total
contribution from all the other places not dividing asy1 is trivial. Take now such a prime ¢
dividing a;. Observe that all the characters

¢{ai:i€[s}—{l}};a5+1

are locally trivial at v, thanks to the second and fifth condition of Definition In particular
¢ becomes a quadratic character locally at v and 6 becomes the cup product

Xa (0) - $(7).

Furthermore, v is unramified in the cyclic degree 4 extension L((ﬁ) /K and splits in the unique
quadratic subextension given by @4;.ic(s]—{1}}:a,4,- Let us call

¥ : Gg — LJAZ
the continuous epimorphism given by

0 = (D(0), Dlasicls]— {1} }:ae1 (T))5

43



where Z /47 is represented as Fy x Fo with the product law
(al, bl) * (ag, bg) = (CL1 + as + b1ba, by + bz).
We have that the total contribution from places above ¢ dividing a; is
Z ¥ (Frob(v)).
VEQK
vlg

This is precisely the same as

(N /q(¥))(Frob(q)).

Now N /Q(z/z) is a cyclic degree 4 character of G lifting the quadratic character x, +1, thanks
to Proposition As such it can be given by

0 (Pagi13a011(8)(0) + X(0), Xagy (),
thanks to Lemma B.18

Study of the character y

We claim that y is a quadratic character that only ramifies at primes that split completely
in Q(y/a1). Indeed, observe that all the primes ramifying in K split completely in Q(\/a1).
Furthermore, L(@Z) /K ramifies only at places of K that split completely in Q(/a1) by con-
struction of S(K), and the same is true for all the conjugates of J Therefore the field of
definition L(@a, 1:a.,:(®) + x)/Q can ramify only at places where x,, is locally trivial.

We will now show how this implies that x has the desired property. By assumption
the places (2) and oo split completely in Q(\/a1)/Q, so we can focus entirely on the odd
primes. We show that if an odd prime p ramifies in Q(x)/Q, then it must also ramify in
L(¢a,; 13051 () +x)/Q, and thus, as we argued above, p must split completely in Q(,/a1)/Q.
Observe that, by definition, we have that

¢as+1;as+1(®)(0p) =0,
and, by Proposition we have that x(o,) = 1. It follows that
Op = (17Xas+1 (UP)) # (070)'
Therefore by Proposition we conclude that p ramifies in L(¢a,, ;0,1 (®) + x)/Q, which
establishes the claim.
End of proof

What we have proven so far applies also to the Pellian expansion map ¢q;q,,,, since we have
not made use that s > 2 yet. But now we have

Y Plaviclslass: (Frob(Upg( ) a(P) = D (Pa,s 50,1 (8) + X) (Frob(q))

plast1 qla
= Z ¢al§as+1 (Frob(UpQ(m)/@(p))) =0,
plas+1
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where the first equality follows from the above analysis for ¢(4,.ic[s]};a.,, the second equality

follows from the above analysis for ¢q4,.q,., (i-e. the case s = 1) and the last equality follows
from s > 2 and the first two conditions of Definition O

The following results are the main theorems of this subsection.

Theorem 5.6. Let s € Z>a. Let (C, Xa, (¥s+1(2))zec—{a0)) be a —1-profitable triple. Suppose
that Upg(,/z)/0(a) € 2° - ClHQ(v/x))[2°TY for each x € C. Then we also have that

Xa € 2°- ClQ(Va))V[2°1]

and
> (Upg(y)0(@), Xa) Arty s (x) = 0-
zeC
Proof. This is now a straightforward combination of Theorem and Theorem O

Theorem 5.7. Let s € Z>2. Let (C, Xa, (¥s+1(%))zec—{z}) be a —1-profitable triple. Suppose
that Upq(z)/q(a) € 2° - Cl(Q(y/7))[25TY] for each x € C. Then we also have that

Xa € 2°- CI(Q(v))Y[2°F]

and

(V7) >
Y {———xe = O (2)sicls)}i—1(8)(Frob(p)).
xeC < UpQ(ﬁ)/Q (a) Arts41(x) pla

Proof. Observe that

(V) >
U — (o)’ X5 = ( (V) - Upg(yz)/0(a); Xa
< Up@(ﬁ)/@(a) ¢ Artyi (@) < Qv=)/Q >Arts+1 (z)

= <UpQ(\/§)/Q(a)7 Xa> + <(\/E)7 Xa>Arts+1(£C) :

Hence the conclusion follows upon combining Theorem and Theorem O

Artsyi(x)

5.3 Standard reflection principles

We now establish the more classical reflection principles. Some of our arguments are different,
but the material of this subsection is based on [42]. We include it here with proofs in order
to keep our work self-contained.

Let s be a positive integer and let

C = {p1(1),p1(2)} x -+ x {ps(1), ps(2)} X {Ps41(1), ps41(2)} x {do},

where {p1(1),p1(2),...,ps+1(1),ps+1(2)} is a set of 2s+2 distinct prime numbers, each of them
coprime with the positive squarefree integer dy. Furthermore, we demand that p;(1)p;(2) =
1 mod 8 and that p;(1)p;(2) is a square modulo every odd prime factor of dy for every i € [s].
Let a be a divisor of dg. As at the beginning of Section {4, we identify points in C' with

squarefree integers. We write
s+1

o :=dp - Hpi(l).
=1
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Suppose that we have for each z € C' — {z¢} a raw cocycle 51 1(x) for N(z) such that either

2" Ys11(2) = Xa

for each x € C' — {zp}, or
2% Ys11(T) = Xr, 11 (2)a

for each © € C' — {z¢}, where we recall that w511 is the projection on the s+ 1-th coordinate
of C. For convenience, the first case will be referred to as being of type 1, while the second
case is said to be of type 2. We now make the two key definitions of this subsection. We begin
with the notion of minimal triples.

Definition 5.8. Suppose that (C, (¥s+1())zec—{z0}s Xa) 18 a triple of type 1. We say that
the triple is @ minimal triple in case for each non-empty subset T' C [s + 1] we have that

> beprpea(a) =0. (5.3)

zeCrp
We next turn to the notion of governing triples.

Definition 5.9. Suppose that (C, (Ys11(7))zec—{a0}» Xa) 18 a triple of type 2. We say that
the triple is a governing triple in case

o for each T C [s] the map ¢(p,1)p:(2:ieT}ipes1(Dpara (2)(B) ezists;

e for each non-empty T C [s], we have

D e ir141(%) = i, (ps@ysiels =Ty pess Wposa () (B);

zeCrp

e for each T C [s+ 1] with s+ 1€ T, we have

> Uy yrpal@) =0.

zeCrp

We can now give the two main results of this subsection. We start with the one on minimal
triples.

Theorem 5.10. Let (C, (¥s5+1(2))zec—{wo}> Xa) be a minimal triple. Then
Xa € 2"+ CI(Q(v/70)) "2,
Moreover, we have the following results.
(i) Let b | dy (resp. b| 2dp in case Q(y/20)/Q ramifies at 2) be such that
Upg(ya)/ab) € 2° - CHQ(Va))[2°H]

for each x € C. Then

Z <UpQ(\/E)/Q(b)v Xa>Art5+1(x) =0.
zeC
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(ii) Instead suppose that
Upg(ya)/o(®) € 2° - CHQ(V))[2° )
for each x € C. Then

> (Upg(ya)0(®)s Xa) Artess (2) = O-
zeC

Proof. Let us start by proving that y, € 25 - CI(Q(y/70))"[2°*!]. To this end, consider the
1-cochain 9s41(z0) : Gg — N[2°71] defined by

¢s+1(3«"0) = Z ¢s+1($)-

zeCix#xg

We will show that ts41(z¢) is a 1-cocycle for N(zp) with 2° - ¥sy1(x9) = xq. This last
assertion follows immediately from

2% sy1(z0) = —(2° = 1) - Xa = Xa-

Let us next prove that ¥s1(70) : Gg — N(x0)[2°T!] is in fact a 1-cocycle. Thanks to
Proposition [2.9] we have that

(daysi1(@0))(@7) = D> Xip(m(2)iery (@) - (— 1)/ T+ () D Yy (@)(7)

GATC[s+1] zeCrp
=0,

where the last equation follows from our assumption

Z ws—|T\+1(x) = 07

zeCrp

see equation (|5.3]).

In particular it follows that ¥s(xg) := 2 ¥s41(xo) is a 1-cocycle with values in N (zq)[29].
We claim that ¢s(x9) once restricted to Gy, /zg) naturally lands in CI(Q(y/zg))"[2°], i.e. that
it yields a cyclic degree 2° extension of Q(,/zg) unramified at all finite places. Let us first
consider a prime p that does not ramify in Q(y/z) for any z € C. Then we simply observe
that

Ls(zo)) ©  J]  L(ws(@)). (5-4)

zeC—{zo}

Lemma and equation give the desired conclusion in this case.

We now consider the case of a prime p ramifying in Q(y/z) for every zz € C or of the
form p;(1) for some i € [s+ 1]. Since p has ramification index 2 in [, cc_ 5,3 L(¥s(2))/Q by
Lemma and since p ramifies in Q(/zo)/Q, this case is also okay. We finally consider the
case of an odd prime of the form p;(2) for some i € [s + 1]. Then we deduce from equation

that
Z 1/J5($) =0,

Cﬂecpi(g)
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which shows that

1/15(330) = - Z ws(x)
zeC—{zo}
mi(z)=pi(1)

It follows that L(s(xo)) - Q(y/Zo) is contained in the compositum

Qvao)- | ] Lws(@)

zeC—{zo}
m(z)=pi(1)

The prime p;(2) visibly does not ramify in the above field, since Q(1/z) is unramified at p;(2)
for each x with m;(z) = p;(1) and L(¢s(x)) - Q(v/z)/Q(y/z) is unramified at all finite places of
Q(y/x). This establishes the claim, since every place of Q either equals p;(1) or p;(2) for some
i € [s+ 1], or ramifies in Q(y/z) for every x € C, or is unramified in Q(y/z) for all z € C.
We now prove that there exists a raw cocycle ¢, (2o) with 2 -4, (z) = 1s(xo). This

is equivalent to showing that Upq(, /z)/q(p) has trivial Artin symbol in Gal(L(ts(zo)) -
Q(v/70)/Q(y/70)) for each prime p ramifying in Q(y/zo)/Q.

Let us first prove this for an odd prime p. Then, necessarily, p divides xg. We are going
to show that the mere existence of the lift 1sy1(zp), which itself is not guaranteed to be
unramified, guarantees the existence of an unramified lift of ¥s(z¢). Thanks to the shape of
the tame local Galois group, we see that (1s+1(20), Xa,) © i, induces a homomorphism

Zy 3 p%2 — N(x0)[2°11] x Fy.

This homomorphism factors through the subgroup 2 - Zs x p?2, since the order of the image
of o, equals exactly 2. Indeed, elements with non-trivial second coordinate in the dihedral
group N (x0)[257!] x Fy are all involutions and clearly x,(0,) = 1. Hence (s+1(70), Xap) © in
induces a homomorphism Fy x p”2 — N (x)[2°7!] x Fy, which surjects on the Fy component.
This forces the restriction of the homomorphism to Gg,(/zg) to land in N(x0)[2], since no
other element of N(zy) commutes with an element of the shape (n,1). But hence, when we

project to N(x¢)[2°] x Fa, we obtain that

¥s(wo) (Frob(Upgy(,/z5)/0(P))) =0

as desired.

It remains to prove that Upg /z5)/0(2) splits completely in L(¢s(x0)) - Q(y/Z0)/Q(y/Zo)
in case (2) ramifies in Q(1/20)/Q. Recalling that p;(1)p;(2) = 1 mod 8 for each i € [s 4 1] we
find that (2) ramifies in Q(y/x)/Q for every = € C. Hence, the equation 2951 (z) = ¥s(z) in
Cl(Q(v/x))" implies that ts(z) pairs trivially with the 2-torsion class Upgy, /z)/0(2) for each
x € C — {xo}. Therefore, keeping in mind that Qq(v/z) = Q2(/7o), we have that

ia(L(¥s(z)) - Q(V)) € Qa(v/z0),

for each x in C' — {xo}, which implies

ia(L(ths(0)) - Q(v/70)) € Qa(v/Z0)

due to the inclusion {i This means exactly that Upg ) /o(2) splits completely in
L(¢s(x0)) - Q(/70)/Q(y/T0). This concludes our examination at (2).
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We deduce the existence of a raw cocycle wr1(x) satisfying 2 -4 (2) = ¢s(x). In
particular, we have shown that y, € 2° - Cl(Q(y/Zg))"[2°T!], which is the first part of the
theorem. We now proceed with the proof of (7). The proof of (ii) is similar and is omitted.
First of all notice that

X = Yip1(20) — Yst1(20)

is a quadratic character. Indeed, y is a 1-cocycle valued in N(z¢)[2] = F2, equipped with the
only possible Gg-action, namely the trivial one. As we shall see, this observation will allow
us to replace 1, (xo) with 1541 (xo) for the purpose of evaluating the Artin pairing. To take
advantage of this, let us rewrite each of the Artin pairings as an Artin symbol taken from the
same field extension.

To this end, fix € C' and a prime divisor p of b. The map 7, gives a unique place above

p in
K = QU{V/pDp(@) i € [s + 1]}, y/ao).

Let us denote this place of K as p. Observe that the extension

L(sp1(z)) - K/K

is abelian and unramified at p. Hence the Artin symbol of p in this extension is a well-defined
element of its Galois group. We claim that

(Upg(ya) =Y s11(2) @y (Frob(p)).

plb

Indeed, p;(1)p;(2) is a square modulo each odd prime divisor p of b for all i € [s 4+ 1]. Hence
the residue field of p in L(¢s4+1(z)) - K coincides with the residue field of p in L(¢)sy1(x)).
This implies that

Vs11(@) |G (Frob(p)) = Vst1(@)|cy sz (Frob(Upgya) o(p))-

Hence our claim follows from the definition of the Artin pairing. Therefore we conclude that

Z<UPQ(\/E)/Q(b)=Xa>Art5+1(:Jc) = Z Vi1 (o) (Frob(p Z Yst1(z)(Frob(p))

xeC plb zeC
TF#x0

Recalling that x = ¢, ;(x0) — 1s41(x0) and recalling the definition of 1),41(x) we conclude
that

Z(UPQ(ﬁ)/@(b) Xa) Artgsr (z) ZX|GK Frob(p)).

zeC plb

Hence it suffices to show that

™ ey (Frob(p)) =

plb

To this end we will conduct a more careful study of the character x. First of all observe that

i2(L(ts+1(20)) - L(¥41(20))) € Q2(V5, Vo).
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Therefore, since Q(x) € L(tps41(x0)) - L(¢%,,(x0)), we conclude that at least one of x and
X + Xz is unramified at (2). Let us pick one such character unramified at (2) and call this
choice x’. We now claim that

X = § Ai.h Xp; (h)* T E ALX1* 5
ic[s+1] l|do
he(2] 1#2

where the various \;j, and A; are in Fy and n* is the unique integer satisfying |n*| = n and
n* = 1 mod 4. Indeed, the character y’ is unramified at (2) and x’ certainly does not ramify
at any odd prime not dividing p1(1)p1(2) ... ps+1(1)pst1(2) - dp, since

Q(X) € L(¥s41(20)) - L(W11 (z0)) - Qv/0).-

This establishes the claim. Hence it suffices to prove that

™ ol (Frob(p)) = 0

plb

and

D Xt | (Frob(p)) = 0

plb

for each odd prime ¢ dividing p;(1)p1(2) ... ps+1(1)ps+1(2) - do. The first equation is trivial,
since X, is identically 0 when restricted to Gx. Let us show the second equation. Each p
dividing b splits completely in Q(+/p;(1)p;(2)) for each i € [s + 1]. It follows that

Xt+ |G (Frob(p)) = Xe+ |y sz (Frob(Upg(yz)0(P))),

where z is any element of C' with ¢ | x. This yields

> Xerla (Frob(p)) = (Upgym o), xer)1 = 0,
plb

where the last equality follows from our assumption Upg(, /z),0(b) € 2 - C(Q(VT)). O

We now turn to the main result on governing triples. The proof is similar to the one given
for Theorem however there are a few technical differences. Below we report only the
steps in the proof where the argument differs.

Theorem 5.11. Let (C, (v¥s4+1(2))zec—{wo}> Xa) be a governing triple. Then

Xpst1(1)a € 2°- CI(Q(\/QTO))V[2S+1]'

Suppose that b | dy is such that
Upg(ya)a(b) € 2° - CHQ(V))[2° )

for each x € C. Then every p | b splits completely in M (¢, (1)p; (2):i€[s]}:pssr (Dpssr (2) () /Q,
is unramified in L(§gp, (1)p,(2):i€ls]}ips 1 (Dpes1 (2)(6))/Q and

> (Upg(ymya0): Xa) Artess(0) = D, Blos(Upi icslyipess (Dposr 2)(B) (Frob(p).
zeC plb
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Proof. We start by showing that x,_, (1) € 2° - CI(Q(y/Z0))"[257!]. Consider the 1-cochain

Par1(20) = Gy (Vypr()sicls]ipers Ve @)(B) = D Psp1 ().
xeC
TH#TQ

We have

2° - Por1(20) = 2° - Dpp(Opu@)eicisipo s Mpes1 @ (B) = D Xmypa(@)a
zeC
TF#x0

=0- Xps+1(1)-a = Xpsy1(1)-a
since the 1-cochain ¢y, (1)p;(2):ic(s]}ipsst (1)psii(2) (@) is valued in Fo and s > 1. Let us next

prove that 9s11(z0) : Gg — N(z0)[2°T!] is in fact a 1-cocycle for N(z¢). Thanks to Proposi-
tion [2.9] we have that

(dagths1(z0))(0,T) = D XpuOp(@yiier} (0)-
@#TC[s+1]
s+1¢T

()T @ N 7 1 (2)(7) | = Dpppi(yielslyipest Dpesa ) (B)(T) | 4

zeCrp

where we have used the third condition of Definition to remove the terms with s+1 € T
It follows from the second condition of Definition that the above expression is identically
ZETO.

Certainly, ¥s(zo) 1= 2 - 9¥s+1(20) is a 1l-cocycle with values in N(x)[2°]. We claim that
¥s(wo) once restricted to G /zg) naturally lands in CI(Q(y/Z0))"[2°] so that it yields a cyclic
degree 2° extension of Q(/Zo) unramified at all finite places. Following the proof of Theorem
we obtain the claim for all places lying above (2), all odd primes dividing dy and all odd
primes not dividing any x € C.

It remains to treat the places lying above a prime of the form p;(h) with j € [s 4+ 1] and
h € [2]. Let us begin with the case j € [s] and h = 2. Then we can rewrite ¥s(x) as

- Z Ys() — Z Vs ().

xEij(2> xEij(l)—{ZEO}

We now invoke the second condition of Definition with T':= {j}, and we get

¥s(20) = B, (Vp @yicls— 1o Wpen@(B) = Y ().
2€Cyp 1) —{zo}

By construction of the 1-cochain .y, (1)p;(2):iels]—{i}}iper1 (Dpess(2)(®) and by our assumption
J € [s] we deduce that

Dps (Vpi (2)sils]— {51 ps 1 (Dpsrr (2) (B)(0p;(2)) = 0.

Now notice that

> (@) (o) =0,

z€Cyp 1)—{zo}
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since every individual field L(s(x))/Q is unramified above p;(2) for each z € Cp ;). This
demonstrates that the homomorphism (15(z¢), Xz,) maps 0p,(2) to the identity and therefore
p;j(2) is unramified in the extension L(1)s(zo))/Q by Proposition

We now consider j = s+ 1 and h = 2. We still rewrite 95(z¢) as

- Z Ys(x) — Z Vs(),

ZEEij(Q) acEij(l)—{a:o}

but this time we invoke the third condition of Definition with T'= {s+ 1} to obtain that

blw)=— Y ).

.IGCPJ.(U—{LE()}

The field of definition of ¢)5(z¢) is contained in

11 L(ths(x)).
zeC

poy1 ()10}

The prime pg1(2) is unramified in the above field, since ps1(2) is unramified in Q(/x)/Q for
each x € C}, (1) and furthermore L(vs(x))Q(v/z)/Q(y/r) is unramified at all finite places.
We finally consider the primes of the form p;(1) for some j € [s + 1]. We observe that

Lys(xo)) € [  L(s(@))

zeC—{zo}

and that o, (1) has order at most 2 in Gal(L(¢s(z))/Q) for each z in C' — {zo}. Hence it
has order at most 2 in Gal(L(ts(z0))/Q), which, by means of Proposition implies that
the ramification index of p;(1) in L(vs(x0))Q(\/70)/Q is exactly 2. But the prime p;(1)
ramifies in the extension Q(,/zo)/Q and therefore the place Upg. /z5)/0(p;j(1)) is unramified
in L(vs(20))Q(y/20)/Q(y/Z0). We have now verified that 1,(xo) restricts to an unramified
character of Go(,/zg)-

At this point we follow the argument in the proof of Theorem to deduce that ¥s(zg)
is in 2 - CI(Q(\/7o))". Indeed, all that we used in that proof was the existence of a lift
(by multiplication of 2) of 14(x¢) in the space of cocycles from Gg to N(zg), which, of
course, is also available in this proof (namely t,41(x0)). Let ¢ (z0) be a raw cocycle with
29,1 (x0) = ¥s(x0). The examination of the quadratic character

X = Peq (20) — st (w0)

can be reproduced almost verbatim also in this argument with the only difference being that
we invoke Proposition to control the ramification coming from the 1-cochain

Dipi (V)i (2):i€ls]}ips+1(Dpssa(2) (&).

We now justify the claim that each prime p dividing b splits completely in the extension

M (b (p,(1)ps (2):i€(s]}ipass (Dpay1 () (6))/Q

and is unramified in the extension

L@ p,(1)ps (2)ils]}ipasr (Dpesa (2) (8))/ Q.
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This last conclusion is just Proposition In order to show that p splits completely in
M (@ (p:(1)pi(2):i€[s]}ipsss (Dpssn (2)(B)), We invoke the second condition of Definition Then
we see that it suffices to show that

ip(L(¥s(x))) € Qp(v/Z0) (5.5)

for each x in C' — {zp}. Indeed, this forces

iP(M(¢{pi(l)pi(2):i€[8]}§PS+1(l)ps+1(2)(6))) - Q;amr N @p(\/x»O) = Qp

as we want. But equation ([5.5)) follows from Lemma From here onwards, the rest of the
proof is identical to the proof of Theorem [5.10 O

6 Combinatorial results

In this section we recall for the reader’s convenience the main combinatorial results from
Smith’s work [42] Section 3-4].

6.1 Additive systems

One of the key tools in Smith’s work is the notion of an additive system. It provides a
convenient abstract framework for our algebraic results.

Definition 6.1. Let X, ..., X, be non-empty finite sets, let X = X1x---x X, andlet S C [r].
An additive system on (X, S) is a tuple (Cr, C3°, Fr, Ar)rcs, indexed by the subsets T C S,
satisfying the following properties

e we have Cp C C3°¢ C Cube(X,T), Fr : Cr — Ar is a function and At is a finite
Fs-vector space;

e we have

C¥¢ ={z e Cr: Fr(z) =0}
and furthermore
Cp = {7 € Cube(X,T) : (T — {i}) € Cp%y;y for all i € T}
forall@ #T CS;

e suppose that T1, %2, %3 € Cr and suppose that there exists i € T and p1,p2,p3 € X; such
that

T —fi} (T1) = 7 —1iy (T2) = 7y (T3)
and
7i(T1) = (p1,p2), mi(T2) = (p2,p3), mi(T3) = (p1,P3).

Then we have
FT(.f'l) + FT(i'Q) = FT((Eg). (61)

The most important feature of additive systems is that we have good control over the
density of Cg™.
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Proposition 6.2. Toke non-empty finite sets X1,...,X,, take X = X1 X+ x X, and take a
subset S C [r]. Let (Cr,CiC, Fr, Ar)rcs be an additive system on (X, S) such that |[Ar| < a
for allT C S, and write 6 for the density of C5° in X. Then we have

el 52151 31"
|Cube(X, S)| —

Proof. This is first proven in [42, Proposition 3.2] and reproven in [30, Proposition 2.2]. [

6.2 Ramsey theory

The following result allows us to find structured subsets of any ¥ C X provided that Y has
sufficiently large density in X.

Lemma 6.3. Take non-empty finite sets X1,...,X, and take X = X1 x --- x X,.. Suppose
that Y is a subset of X of cardinality at least 6 - | X|. We further assume that 27""1 > § >0
and we let b > 1 be an integer satisfying

log min, e, | X 1/(r=1)

b< .
- 5log !

Then there exist subsets Z; C X; with |Z;| = b for all i € [r] such that

Zi %X 7 CY.
Proof. This is [42], Lemma 4.1], where their d is our 7 and their r is our b. O

Remark 6.4. As Smith [{2, p. 6] already remarks, this lemma is sharp up to a change of
constant. Indeed, take a random subset Y of [2N]". Then the probability that Y contains a
given product set Zy X --- x Z,, where |Z;| = b for each i € [r], equals (1/2)*". There are at
most 2N such sets Zy x --- x Z,. Hence we see that, as soon as b > (rN)Y=1 q random
subset Y of [2V]" fails the conclusion of the lemma with positive probability.

We now state Smith’s main combinatorial result. It provides the crucial connection be-
tween our equidistribution results based on the Chebotarev density theorem and the reflection
principles. Let X = X x --- x X, and let S C [r]. Define

V = Map(X,Fs), W = Map(Cube(X,S),Fs).
We say that & € Cube(X,S) is degenerate if there exists i € S with
pry (mi(Z)) = pro(mi(7)).
We define ¥ : V. — W to be the linear map given by

$E(z) = > sen(eo) () if T is not degenerate
70 if Z is degenerate.

We denote the image of ¥ by Add(X,S). More generally, we define for a subset Y C X a
map from Map(Y,F3) to Map(Cube(X, S),Fs) by

Zze:f:(@) F(z) if z is not degenerate and z(@) C Y

zn@:{o

if T is degenerate.

By abuse of notation, we will also denote this map by X.
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Lemma 6.5. Let X1,..., X, be finite, non-empty sets, let X = Xy x---x X, and let S C [r].
Then

dimp, Add(X, ) = [J(x:/ - 1) - [] 1l
€S ie[r]—S

Proof. This follows from [27, Proposition 9.3] by taking [ = 2. O
Given an additive system 2 = (Cr, C%, Fr, Ar)rcs on (X, 5), we set

c@) = {x € Cube(X, 5) : 2(S — {i}) N C&%y # @} .
€S

We say that 2 is (a, S)-acceptable if |[Ap| < aforall T'C S and z € C(2) implies Z(2) C C&*°.
Proposition 6.6. There exists an absolute constant A > 0 such that the following holds.
Take non-empty finite sets Xi,..., X, take X = X7 x --- x X, and take S C [r]. Let a > 2

and € > 0 be such that e < a~' and
logriréi? | X;| > A-6"-loge L.

Then there exists g € Add(X,S) such that for all (a,S)-acceptable additive systems
A= (Cr,C¥, Fr, Ar)rcs

on (X,S) and for all F : CF° — Fa satisfying XF (z) = g(x) for all z € C(2), we have

CaCC CaCC
_cxi <o < e x,
Proof. This is [42, Proposition 4.4]. O

6.3 Galois groups

In this subsection we describe the structure of some important Galois groups that we shall
encounter later. To do so, we will introduce some notation. If Xi,..., X, are non-empty,
finite sets of odd prime numbers, we write K(X; x --- x X)) for the compositum of Q(,/p)
with p lying in some X;. If z € Cube(X,S) and d # 1 is an integer coprime to all elements
of X, then we say that the expansion map

¢£;d

exists if Z is degenerate or if the expansion map

Dfpr, (ms(2))pry(ms(7)):icS}:d (B)

exists. In case ¥ is degenerate, we define the field of definition of ¢z4 to be Q. The coming
results are very similar to [42, Proposition 2.4].
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Lemma 6.7. Let r € Z>1. Take non-empty, disjoint, finite sets of odd prime numbers
X1,..., X, with product X. Let i € [r] and suppose that the map (bﬂ'[v“]f{z}
exists for all T € Cube(X, [r]). For S C [r] — {i} write

Ms:=K(X) [  L(brs@ipr(m(@)praim(@))-
z€Cube(X,5U{i})

(2);pry (i (Z))pra (i (Z))

Then we have

logo | [ Ms: ] Ms|= > I] (Xl-1).

SClr]—{i} S'Clr]—{i} SClr]—{i} keSU{i}
|S|=j+1 |8"=j |S1=5+1

for all integers 0 < j <r — 2.

Proof. Write

M= [] Ms.
5'Clrl—{i}
|5[=j

Let S C [r] — {i} with |S| = j + 1. Note that

Pre (2);pr, (mi (2))pro(ms(2))

is a quadratic character when restricted to M; and gives a central Fo-extension of Gal(M;/Q)
by Proposition Enumerate Xy as {pk,1,- -, Pr,|x,|} and define

Ty = {Pk,1s Pris1}

for I € [|Xx| — 1]. For T C [r] — {i}, let Basis(X,T') be the set of z € Cube(X,T U {i}) such
that for every k € T'U {i} there is some [ satisfying

{pr1(m(2)), pro(mk(2)) ) = Th-

It follows from Proposition that

U U {¢rs@spriim@)pram@n

SC[r]—{i} zeBasis(X,S)
IS|=j+1
generates the dual of Gal(M;y1/M;). We claim that the above characters are also linearly
independent, which clearly implies the lemma. Here we caution the reader that two distinct
elements Z1,Z2 € Basis(X,S) can give rise to the same character. This happens precisely
when
{pry (7 (1)), pro(m (1))} = {pr1(mx(Z2)), pro(mi(T2)) }

for all k € SU{i}. This defines an equivalence relation on Basis(X,S), which we denote by
~. To prove the claim, let ¢z € Fo be such that

> Y G brg@n(mi@)pra(m(@)(0) =0 (6.2)

SC[r]—{i} z€Basis(X,S)/~
|S|=5+1
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for all o € Gpy;. We define the operator §; by

Bi¢ = ¢([o1,[o2, . .. [oj11, 0542]]]])

for ¢ € Map(Gu;,Fa) and 01,...,0512 € Gg. This is well-defined, since the nilpotency
degree of Gal(M;/Q) is j + 1. Writing ¢ for ¢rg(z):pr, (mi(2))pry(m (z)): WE compute

¢([o,7]) = ¢p(oT) + ¢(70) + dé([o, 7], T0)
= ¢(o7) + ¢(70)
=do(o,7) + do(T,0),

where the second equality uses equation (2.3) and the fact that quadratic characters vanish
on commutators. Utilizing equation (2.3 again and inducting on j yields

B b (@):pry (ms(2))pra (mi(z)) = > IT  Xor oy @pratrs @) (O8);
Fili+2—Su{i}  1<k<j+2
f is a bijection

FG+D)=i or f(j+2)=i

where we again use that d¢(r,0) = 0 if 7 is a commutator. Hence §; induces a homomorphism
from Gal(Mj11/M;)Y to the set of bilinear maps from Gal(K(X)/Q)’*2 to Fa. Observe that
the bilinear maps

(Ulv ce 7Uj+2> = H XDkl Pl ol +1 (Um)

1<m<j+2
<m<j+ kle[r},...,kj+2€[7“],l1€HXk1 |71],...,lj+2€Hij+2}fl}

are linearly independent. Therefore, applying /; to equation ([6.2), we see that ¢z = 0, which
completes the proof. O

Lemma 6.8. Let r € Z>1 be given. Let Xy,..., X, be non-empty, disjoint, finite sets of odd
prime numbers, let X be their product and let i € [r]. Assume that the map

Py 3y (@)1 (m3(@)prs (s (2)
exists for all T € Cube(X, [r]). Write

Mo(X)=K(X) ] II  Lrs@nm@pnm@))
Sc[r]—{i} zeCube(X,SU{i})

Then we have

Mo(X): K(X) = [] 2esow@I-0, (6.3)
aCSCr]—{i}

Also let Y1, ...,Y, be non-empty, disjoint, finite sets of odd prime numbers and let Y be their
product. Assume that the map ¢r . (z)pr, (mi(7))pry(mi(z)) €ists for all T € Cube(Y, [r]).
Suppose that | X;NY;| =1 for all j € [r] and X;NY}, = @ for distinct j and k. Then we have

Mo(X)NMo(Y) =Q(v/p1s---,/Dr),

where p; is the unique element of X; NY;.
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Proof. Equation follows immediately from Lemma For the second part, D is obvious,
so it remains to prove C. But the arguments from Lemma [6.7|imply that M, (X)/K(X)K(Y)
and M,(Y)/K(X)K(Y) are disjoint extensions. Then M,(X) N My(Y) is a subfield of
K(X)K(Y) only ramified at 2 and p1,...,p,. This readily implies C. O

Lemma 6.9. Take an integer v € Z>o. Let X1,..., X, be non-empty, disjoint, finite sets of
odd prime numbers, let X be their product and let i € [r]. Suppose that the map

Dty iy (B)ipr (ms(@)pra (s (7))
exists for all T € Cube(X, [r]). Write
M, :=K(X) ] I  LOrs@onm@pnm@)
Sclr]—{i} zeCube(X,SU{i})

and

M=KX) JI L@y @i m@)prm@))-
zeCube(X,[r])

Then the map f, that sends o € Gal(M/M,) to the function g, in Add(X, [r]) given by

T iy @i (mi(@)pra (ms(2)) ()
s a group isomorphism.

Proof. First of all, we have to check that f is well-defined, that is g, € Add(X,[r]). This
follows from Proposition Next recall that

Doty iy (B)ipr (ma(@)pro (s (7))

is a quadratic character when restricted to Gy, . Since o fixes M,, it follows that f is a group
homomorphism.

Furthermore, <Z57rm,{i}(f);prl(m(a@))prQ(m(f)) gives a central Fo-extension of Gal(M,/Q) by
Proposition and hence the restrictions of the ¢7rm_{i}(i);prl(m(i))prg(m (@) to G, together
generate the dual of Gal(M/M,). This shows that f is injective. Since r > 2, we deduce from
Lemma [6.7 that

|Gal(M/M,)| = 2Hj€[’r](|X]'|_1)'

Therefore our lemma follows from Lemma [6.5 O

Finally, we will need a version of the above lemmata in case the pointer is an arbitrary
fixed squarefree integer d # 1.

Lemma 6.10. Let r € Z>1 be given. Let X1,...,X, be non-empty, disjoint, finite sets of
odd prime numbers and write X = X1 x --- X X,.. Also suppose that d # 1 is a squarefree
integer coprime with all the primes in X. Suppose that the map

¢i;d
exists for all T € Cube(X, [r]). Write

X) = H H (¢7r — 13} (&);prq (m:(2))pra (74 (T) X H H L(¢§:,d)

i€[r] zeCube(X,[r]) TClr] zeCube(X,T)
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and

zeCube(X,[r])

Then we have

and
Mo(X): K(X)]= [ 2lbesX0. T alles(-D,
@CSC|r] (i,5)
{i}cSCr]
i#max(S)

Furthermore, the map f, that sends o € Gal(M(X)/M(X)) to g» € Add(X, [r]) given by
T — ¢f;d(0)7

is a group isomorphism between Gal(M (X)/Ms(X)) and Add(X,[r]). Finally, let Yi,...,Y;
satisfy the same conditions as X1, ..., X, and write Y for their product. We also assume that
| X;NY;| =1 forall j €r] and X; Yy, =& for distinct j and k. Then

MO(X) N MO(Y) = Q(\/]Tla sty \/pirv \/&),
where p; is the unique element of X; NY;.

Proof. The proof proceeds among the same lines as for the other lemmata presented in this
subsection. The condition 7 # max(S) is imposed because we have the relation

Z Prs_ g3y (@)pr: (m3(2))pra(mi(2) = X{pr, (m;(2))pra(m; (2)):5€S)

€S
for all |S| > 1. Using the operator 35—, one sees that there are no further relations, since
for every @ C T' C S, there exists a bijection f : [|S|] — S such that

{eeT: f(S]=1) =ior f(|S]) =i}

is odd. O

7 Equidistribution of the first Artin pairing

In this section we will recall and reprove some important results from [8, Section 4-5], which
are directly based on [42], Section 5-6] of Smith’s work. Although most of the material in this
section is rather similar to [8, Section 4-5] and [42] Section 5-6], we have simplified some of
the proofs.

The main theorem of this section is Theorem [7.13] which improves on earlier work of
Fouvry and Kliiners [I§]. In [I8, Corollary 2] one finds the limiting distributionﬂ of the 4-
rank of special discriminants. Here we give an error term and prove that the implied constant
is effectively computable. It is worth mentioning that the work in [8, Theorem 5.15] also

5We remark that Fouvry and Kliiners proceed by computing the moments of the 4-rank, while we do not.
In particular there is no direct analogue of their [I8, Theorem 3] in our work.
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provides an error term, but there it was not shown that the implied constant is effectively
computable.

From now on X1, ..., X, denote disjoint, non-empty sets of prime numbers (always equal
to 1 or 2 modulo 4) and we let X = X; x -+ x X, be the corresponding product space. There
is an injection from X to D by sending z = (z1,...,2,) € X to x1 - ... z,. We shall often

implicitly think of elements of X as squarefree integers in this way.

7.1 Prime divisors

Let us first consider some desirable properties of elements in D.

Definition 7.1. Let N > 10'%% gnd let d € D. Write p1,...,p, for the prime divisors of d
ordered such that

p1 < <pr

Dy = e(loglogN)l/lo’ Co := +/logloglog N.

We say that d € D is N-nice if the following three properties are all satisfied

Put

® p; > Dy implies 2p; < pit1;

e we have

1
'2 loglogp; — 1| < Cé/5 max (i, 00)4/5 foralll1 <i< g; (7.1)
o there exists some i satisfying # <i< g and
i—1
log p; > (loglog p;)? - logloglog N - Zlogpj.
j=1

Define D,.(N) to be the subset of d € D(N) with w(d) = r, where w(d) equals the number of
distinct prime divisors of d.

Theorem 7.2. We have

[D(N)|

D, (N .
U Dr(N)] < (loglogN)l/mO

|r7% log log N|>(loglog N)2/3

Furthermore, for all A > 0, there exist C1,Co, N9 > 0 such that for all r < Aloglog N and
all N > Ny

(7.2)

C1N  (3loglog N)™~! CyN  (3loglog N)™~!

. < |D,.(N . 7.3
log N (r—1)! < [P )’_logN (r—1)! (7.3)
Now suppose that r satisfies
1
r—3 log log N’ < (loglog N)?/3, (7.4)
Then we also have
|{d € D,(N) : d is not N-nice}| 1
|D,.(N)| e(logloglog N)1/4”

Proof. Equation ([7.2)) follows from the Erdés—Kac theorem, while equation ([7.3]) can be found
on [8, p. 13]. The second part is [8, Theorem 4.1}, which is based on [42, Theorem 5.4]. [

60



7.2 Preboxes and Legendre symbols

We will now introduce the notion of preboxes. Their usefulness lies in the simplicity of
their definition, which makes preboxes suitable for inductive arguments. Later on we shall
define the similar, but more stringent, notion of boxes, which will be the objects we naturally
encounter in our final section.

Definition 7.3. A preboz is a pair (X, P), where P, X1,..., X, are disjoint sets of primes
all 1 or 2 modulo 4 and X = X1 x --- x X,.. We assume that there exist real numbers

2<s1<t1 <o <5<
such that X; C (s;,t;] for alli € [r] and P C (1, s1].

Recall that the first Artin pairing of d € D is determined by the quadratic behavior
between the prime divisors of d. This prompts the following definition. Write ¢ for the unique
group isomorphism from Fs to {£1}.

Definition 7.4. Let (X, P) be a prebox. Define
M, ={(i,j) :i,j€rl,i<j}, M,p:=r]xP.

Let M, € M, and M, p C M, p and let a : M, UM, p — Fa, where U denotes disjoint
union. Then we define X (a) to be the subset of (x1,...,2z,) € X satisfying

(x) — u(a(i, ) for all (i,) € M, and @) = u(a(i.p)) for all (i.p) € M, p.

Lj

Our aim is to prove an equidistribution statement for X (a) for certain desirable preboxes.
One undesirable property is the presence of a Siegel zero, which we define now.

Definition 7.5. For a real number 0.5 > ¢ > 0, we define S(c) to be the (conjecturally empty)
set of squarefree integers d such that L(s,xq) has a real zero in the region

c
l———— <s<1.
log(|d|+4) = —
List the elements of S(c) as dy,da,... in such a way that |di| < |d2] < .... By Landau’s

theorem, there exists a sufficiently small crandan > 0 such that |dz~\2 < |diy1|. We fix such a
Clandau for the remainder of the paper.

Let (X, P) be a prebox. We say that (X, P) is Siegel-free above a real number t > 0 if
there does not exist some |d;| >t and some x € X such that d; divides x [[,¢p p-

Our next proposition is the first of a series of two on equidistribution of Legendre symbols.
In our first result we shall avoid some delicate issues with small primes by making extra
assumptions on the map a : M, UM, p — Fy and the Xj, see equation . Later we
shall see how to deal with the small primes. The next proposition is directly based on [42]
Proposition 6.3]. Watkins [46] observed that A can be effectively computed by using an
effective lower bound for Siegel zeroes.
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Proposition 7.6. Let c1,co, cs, 4, cs5, g, C7, cg > 0 be real numbers such that

c7log 2 1 CoCy

1
>1 >3 >1 - >
c3 , Cs , Ce 3 cs + 5 o 5

There exists an effectively computable constant A > 0, depending only on the real numbers
c1,Co,C3,C4, C5, Cg, C7, C8, Such that the following holds.

Let (X, P) be a prebox with s; > A. Assume that (X, P) is Siegel-free above some real
number t satisfying s1 > t > A. Toke subsets M, C M, and M, p C M, p and take
a: M, UM,p — Fy. Suppose that 1 < k < r is an integer such that (i,p) € M, p implies
1 > k. Furthermore, we assume that

X; = {p € (si,t;] : p=1mod 4 and (5) = 1(a(i,p))) for all (i,p’) € Mr,p} (7.5)

for all i > k. Moreover, we assume that
(i) |P| <logt; —i for alli € [r|;
(i1) t1 > r and t < e’

(iii) we have
9cst . ¢
x> 20h
(log ;)

for all i € [r];
(v) if k # r, we assume that

tp+1 > max (e(log“)c5 ; et%) ;

(v) we assume that k < [c7logti]|. Furthermore, we assume that for all i < r and all
i+ crlogt; < j <r that

t; > ellogti)
Then we have X| X X
X r| X X
‘|X(a)| - oM. | = t§8+1/01 CoIMy| T t‘is oM

Proof. The last inequality follows immediately from our assumption (i7). We will prove the
first inequality by induction on r. For »r = 1 we have k =1 and M, = M, = M, p = M, p =
@. We conclude that X (a) = X, so the inequality holds. Now suppose that r > 1.

Let 1 € X7 and let 2 < ¢ < r be an integer. We define

X;(a,x1) = {p € X;: <”;1> - L(a(1,z’))}

if (1,7) € M,.. It will be convenient to set X;(a,z1) := X; in case (1,7) € M,. We claim that

| X

<
=

(7.6)

1
(e - 1
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for all i > k with (1,4) € M,, provided that we pick A sufficiently large. Define

K = Q(V=L,ya1. {vp:p € P}).

Let x : Gal(K/Q) — {1} be a non-trivial character. Then there exists a squarefree integer
D # 1 such that x factors through Q(v/D). Therefore the Chebotarev density theorem gives
the estimate
—clogt;
> x(Frob,) <t +t; - eViEtHosPl - (logt;| D|)* (7.7)

s, <p<t;

for some absolute constant ¢ > 0, see for example [24, Theorem 5.13]. We have the effective

lower bound 1

1_B>>€W

for every € > 0. Furthermore, by the Siegel-free assumption we have |D| < t in this case.
Then assumption (iv) together with ¢g > 1 implies

1 1 1

1— B> Dz 2 125 7 (g 12" (7.8)
if we pick e sufficiently small in terms of cg. Now observe that
log |D| < (|P| +2)logt; < (logt;)? < (logt;)¥/< (7.9)

by assumption (i) and (iv). Plugging equations (|7.8) and (7.9)) in equation (7.7) we obtain
ti

Z x(Frob,) <« Slogt)i/3
s, <p<t;
where we used that ¢5 > 3. We conclude that
1 [K:QJ -t
el - 1| <« B

Since [K : Q] < t; < ello8 1) and since ¢5 > 3, we deduce from assumption (zii) that

1Xi)

<
=

1
(el - 1

upon taking A sufficiently large. This establishes equation ([7.6]).
Next consider the case 1 < ¢ < k and suppose that (1,7) € M,. Choose real numbers cg
and ¢y such that

1 1 1
cg+cg< — —cocy, cC9g>crlog2+cg+ —, cig>cg+ —.
4 c1 c1

Note that there exist such real numbers, since

1 c7log2 1 CoCy
- >
g~ 8T 3 o2
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by assumption. Call 27 € X; bad if there exists (1,7) € M, with

| Xi|

i tclo )

| Xi(a, )| = IX | =

which implies i < k by equation ([7.6). Write X224 for the subset of 71 € X; that are bad.
We claim that

k- X1

Co
t

| xbhad| < (7.10)

The large sieve implies that for all € > 0
x
> (2 wnedte
r1€X1 |2, €X;5 Li
see for example [42] Proposition 6.6]. Then we get
1 | Xa |- X
> (2)| < (711
r1€X1 Z‘iEXi 1

thanks to assumptions (ii) and (ii7). Now fix 0 < € < 1/4—cocy — cg — c19. Applying equation
(7.11) with ¢/2 and taking A sufficiently large in terms of €¢/2, we get

Z Z | | Xa| - | X
i — t—l/4+0204+6 :
r1€X1 |2, €X;5 1

This quickly implies equation ((7.10), therefore establishing the claim. We now split X (a)
depending on x;

IX@l- s X ¥ 1+ X > N A

z1€XPad 2€X(a) r1gXPad z€X(a
7r1() = 7T1($) $1

To deal with the first term, fix some x1 € XP?. We move x; to P and apply the induction
hypothesis to the prebox

(X2 X X Xk X XkJrl(a,xl) X oo X X,,(a,xl),PU {xl})

Write kqiq for the current value of k and kypey for the value of k£ to which we apply the induction
hypothesis. Then we take knew > koig — 1 to be the smallest integer such that

log t2)°5 16
trpota > max(e(l0812) oty

We take kpew = 7 — 1 if no such integer exists. Assumptions (i) and (i7) are satisfied, since

C
6t22 > e(logtz)%
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for A sufficiently large. Furthermore, assumption (éii) follows from ¢z > 1 and our bounds on
X; if we take A sufficiently large. Meanwhile assumption (iv) holds by construction of kpey-.
To check assumption (v), we distinguish two cases. If kpew = kolq — 1, then assumption (v)
holds. Otherwise note that

knew +2 <2+ [07 log t2-|

and hence kpew < [c7logty] as desired. Having checked all the conditions, we apply the
induction hypothesis, which leads to the bound

S 1< Mok RS
z€X(a) - |Xl|

w1 (z)=21

for A sufficiently large, since (1 + 2)" — 1 is small by assumption (ii) and the inequality

t
¢1 > 8. Therefore we deduce that '

v€X (a) AR A

1 ([L’)EX}’ad

thanks to assumption (v) and the choice of ¢g. Next we turn our attention to bounding

| X
Z Z 1 T olM |
z1¢XP2d 2€X(a)
m(x)=x1

We move z;1 to P and apply the induction hypothesis to the prebox
(Xa(a,z1) X -+ x Xg(a,21) X Xgg1(a,z1) X -+ x Xp(a,21), PU{x1}).

Since z1 ¢ XP2d we see that all the assumptions are satisfied. Let M be the number of
pairs of the shape (1,7) in M,. Writing X (z1) for the above product space, the induction
hypothesis shows that

_ I X@)l| o (= D)IX (@)

”X(m)(a)’ MM | = jesti/er i |-n” (7.14)

where we have implicitly restricted a in the obvious way. Using that x7 € X %’ad once more,

we see that
X|| _ |x| 2 \* 2\"
oM | x XX 1+ =) -1
- | < (( ria) (14

|X|
7100 - £ x|

(7.15)

for A sufficiently large, where we used that r < t%/cl, k < [crlogti] and c19 > ¢+ 1/c1. We
obtain from equations (7.14)) and ([7.15])
X o (r=1/2)|X]

AMel | X || tig+l/c1 oMl X

[ X (z1)(a)]
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We conclude that

X —1/4)| X
DD DN s ot (7.16)
a1 gXbad zE€X(a) 21 - 2IM|
w1 (x)=x1

Inserting equations ([7.13) and ((7.16]) in equation (7.12)) finishes the proof of the induction
step. ]

Our next goal is to deal with the small primes. We shall only be able to achieve savings
by introducing some extra averaging. Write P, for the set of permutations of [r] and write
P, (k) for the o € P, such that o(i) =i for all ¢ > k. Given a : M, LI M, p — Fy, we will use
the convention that a(j,4) equals a(i, j) for j > i. We then define o(a) to be

o(a)(i, j) = ale™'(i),07'(j), o(a)(i,p) = alo™" (i), p)-

Given integers k1 > ko > 0, we define X' (0,a) to be the set of x = (z1,...,2,) € X such
that

(x,) = (a0 (3),071(4))) for all i, j € [k1] with o1 (i) < o~ 1(j) and min(i, j) < ko

and furthermore

(?) = 1(a(071(i),p)) for all (i,p) € [k1] x P.

We remark that the number of distinct elements i,j € [ki] with 071(i) < o~ !(j) and
min(, j) < ko equals

1
C(ko, k1) == 5(kg — ko) + ko(ky — ko).
In particular, this number does not depend on o. Roughly speaking, X};gu,?l (0,a) imposes
the conditions of o(a) on the small primes. This makes it possible to apply Proposition

to X};‘;‘,?l (0,a). The next entirely combinatorial lemma offers a convenient tool to reduce to
X% (0, a), see also [42, Proposition 6.7] for a similar result.

Lemma 7.7. Let (X, P) be a prebox. Let 0 < ko < k1 < ko <1 be integers such that
ko PIF1E2 ko
Then we have for all x € X

k2! run 2
Z (W—HJGPT(%Q) 3$€X]E:O’kl(0',a)}> S

CLIMTUMT,P*)]FQ
ko+|P|+1 2
ko PI+1 g2 .

—2C(ko,k1)—2k1|P|+|M,-UM, 2
; 9—2C (ko,k1)—2k1| P|+]| Pl (kg2
2

Proof. Write
B(z,a) :=A{o € Pr(ks) : x € X;3'%, (0,0)}.
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We start by computing

> Bwa)l= Y Ha:M,UMp—TFy:ac X (0,a)}

a:MTUan%FQ Uepr(kg)
QIMTUMT,PI | 2|MTUMT,P|
B PZ(:k | 20T TP kol e R RTET (7.17)
ocPr 2
Next, we compute
> B(z,a)>= > Ha:MUM.p—Fy:ae X[ (01,a)N X0 (02, 0)}.

a:MyUM,, p—F> 01,026Pr (k2)
For now we fix 01,09 € P,(k2) and we aim to bound
N(oy,02) :==Ha: M, UM, p —-Fy:2 € X}EEL,IJ?I(UMG) N X,gg?,?l(ag,a)ﬂ.
We introduce the quantities
Ty iy (01, 02) := [{i € [k] : 01(0) < k1, 02(i) < K}
and
S(o1,02) :=A{(i,7) € My : (01(i), 01(j)), (02(), 02(4)) € [ko] x [ka] U [ka] x [Ko]}

and

T(O’l,O'Q) = {(i,p) € Mryp : Ul(i) S [kﬂ,o‘g(i) S [kl]}

Then z € X} (01, a) N X0 (02, @) gives at least
2C (ko, k1) + 2k1|P| — |S(01,02)| — | T (01, 02)]
conditions on a. But we have the upper bounds
|S(01,02)| < Ik ko(01,02) - ko,  |T(01,02)| < I, ky(01,02) - | P.
The first upper bound comes from the injective map
S(o1,02) = {i € [ka] 1 01(3) < k1,02(7) < k1} x [ko]

given by
(i,5) = (o7 H(max(o1(i), 01(5))), min(o1 (), 71 (5))),
while the second upper bound is straightforward. This yields the bound

o|MrUM;. p|

< .
N(o1,02) < 920(ko, k1) +2k1 [P~ Ty ky (01,02) (Ko + 1)

Having bounded N(o1,03), we next fix some I < k;. We will bound the number of pairs
(01,02) € Pr(kz) X 'Pr(kz) with
Ik17k2(0'1, 0'2) =1.
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There are (kf) ways to pick the indices that map to [k1] under o1 and o2. Once we have
picked these indices, we can extend them to a pair (o1,02) € Pr(k2) X Pr(k2) in at most

ways. Indeed, suppose that B C [ks] is the set of indices mapping to [k1] under oy and o9, so
that |B| = I. Then there are

k- (kl = 1) - (k! — T+ 1)

possibilities for o to send B to [k1], and similarly for o9. Furthermore, there are at most
(ko — I)! choices where o can send the indices in [ks] \ B, and similarly for oo. We conclude
that the total number of pairs (o1, 02) with given I, x,(01,02) = I is bounded by

@2) | <(klki'1)' A I)!>2 <t ((klki!f)!>2 ' (ka;[)! < hatt <Z>I

We deduce that

> B(z,a)>= > Ha:M,UM.p—TFy:axe X0 (o1,0) N X0 (02,0)}|
a:MyUM, p—TFa 01,02€Pr(k2)

= Z N(oy,09)

01,02 GPT(ICQ)

2\ ! | M, UM, p|
<k Y (H) 2
- k2 220(k0,k1)+2k1‘Pl*['(k0+‘P‘)
I>0
2|MT|_IMT7P| k2

" 92C(ko,k1)+2k1|P| | kiy — 2o+ PIE2’

= (ka!)? (7.18)

where the last equality uses that
2k0+|P‘+1k% < kQ,

so the geometric series converges. The lemma follows upon combining equations ([7.17)) and
(7.18) with the inequality 2Fo+PIH1E2 < fy. O

We will now deal with the small primes. The coming proposition is directly based on [42]
Theorem 6.4].

Proposition 7.8. Take real numbers ci, ca, c3, ¢4, C5, Cg, €7, C8, C9, C10, C11, C12 Salisfying

c7log 2 i CoCy

1
> 1, > 3, s >1, —> ;
C3 Cs C6 3 cg + 5 o 9

c10log2 + 2c11 + 2c12 < 1, c11 + c12 < ¢g.

There exists an effectively computable constant A > 0, depending only on the real numbers
c1,Co,C3,C4, C5, Cg, C7, C8, C9, C10, C11, C12, Such that the following holds.

Let (X, P) be a prebox such that X; equals the set of primes in the interval (s;,t;] that are
1 or 2 modulo 4. Let 0 < kg < k1 < ko < r be integers such that ko > A. We assume that
(X, P) is Siegel-free above some real number t satisfying sg,4+1 >t > A. Moreover, suppose
that
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(i) |P| <logt; —i for all kg <i <r;
€2
(”) tk0+1 > r°l and tkl < etkoJrl;

(iii) we have
o|P|+esi kS -t

(log t;)cs

| Xi| >
forall kg <i <wr;
(iv) we assume that

C, C
tg+1 > max <e(logtk0“) °el 6) ;

(v) we assume that k1 — ko < [c7logtr,+1]. Furthermore, we assume that for all kg < i <r

and all i + crlogt; < j < r that
t; > ellost)™;

(vi) ko + |P| < ciplogky and log ki < c11 log ka.
Then we have
kol - | X| _ _
> SALOM, ]~ ST IX(o()]] < kot X (kg £5).
a:MyUM, p—F o€Pr(k2)

Proof. We readily reduce to the case where | X;| = 1 for i € [kg]. Henceforth we shall assume
that X; = {x;} for ¢ € [ko]. It follows from the triangle inequality that

kol | X
P D D ()]
a:MrUM, p—TF o€Pr(k2)

is bounded by

[ Xk, (0:0)]

> |yt +
oM, UM, p] 9| M, UM, p|—C (ko,k1)—k1|P]
GI:MTL'MT,P‘}FZ O'Epr(kg)

2.2

0€Pr(k2) a:MrUM,. p—1IF2

| Xk, (0, a)]
ST 0, | —CRo o) —yP] — X (@ (@)}

By the triangle inequality the first sum is at most

20(k0,k1)+k21 |P|

2|MTLIMT,P\ Z Z

ko!
Sk aip — 10 € Pr(ka) s € Xioh (o, a)}l' :
a:M UM, p—Fs x€X

An application of Lemma [7.7] and the Cauchy—Schwarz inequality shows that the above is
bounded by

1/2
9ko+|P|+1 k% ko) - |X’
( ky kol | X| < S o (7.19)
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where the last inequality follows for sufficient A from assumption (vi) and c¢19log2 + 2¢17 +
2¢12 < 1. Let us now consider the second sum. Fix o € P,(k2) and a : M, U M, p — Fa. We
aim to bound each .

[ Xk, (050)]
1M, UM, p|=C ko .k1)~k1 [P X (o(a))]

individually. Without loss of generality we may assume that
<) = 1(a(c71(i),071(4))) for all distinct i, j € [ko),

since otherwise X (o(a)) and XiI% (0,a) are empty. If i > ko, define XM (g a) to be the
subset of x; € X; such that

<mz> = 1(a(o71(i),p)) for all p € P, <xz> = w(a(a™(i),071(5))) for all j € [ko).

p Lj

0

We turn Xig‘f,?l (0,a) in a prebox (X', P') by taking P’ to be the union of the primes x1, ...,z

with P and by taking X' = X7 x --- x X _, , where
X — XU (0,a) if i € [k — kol
’ Xi-l—ko if ¢ > k1 — ko.
It follows from the Chebotarev density theorem that
trim ’X’L‘ ’XZ|
! — < .
"Xz (0-, a)| oko+ P | = tkOJrl (7 20)

for all i > k1. Therefore, in case

|Xi+k?0’

/!
Xil 2 SRTIPT

for all i € [r — ko,

we apply Proposition W to (X", P") := (Xlggifl(a, a) x -+ x X% (g a), P') to obtain the
bound

X"

TR =D
2 (0] 5 (0]

X
- |X(U(Cl))| S 9. t28+1 . Q‘Mrqu,p‘—C(kO,kl)_kl|P|7
0

where we save an extra factor 2 by taking the cg of Proposition slightly smaller than our
cg. This implies

Mmool
2| My UM, p|=C(ko,k1)—k1| P|

Xt < Xz (0. )

Tt 2IMrMypl=Clho k)~ [P (7.21)

thanks to equation ([7.20)). Instead suppose that

|Xi+k0‘

!/
Xil < SriPT g

for some i € [r — ko|. Then certainly ¢ must be in [k; — kg], and we call the pair (o, a) bad at

i. For every given o € P,(k2) and j € [k1 — ko], we define an equivalence relation on the set
of maps a : M, UM, p — Fy by declaring a ~; o’ if

a(o™(j"), 07 (G + ko)) = a' (07 (5"), 07 (j + ko)) for all j € [ko]
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and
a(o™'(j + ko),p) = d’(c~"(j + ko),p) for all p € P.

If the pair (o, a) is bad at j and if a’ ~; a, then (o, ad’) is also bad at j. The trivial bound
yields that in a given equivalence class represented by a’

>

CLZMTuan*)]F2
(o,a) bad
’

a~g jQ

it -Glro k1P~ X O] < S2pT

X (o, a)| ' x|

Since there are at most 2k0H Pl equivalence classes and at most ki - ko! equivalence relations
~q.j, We get after summing over all o and all j

>

O'EIPT(]CQ) aZMTUMT-’P*)F2
(o,a) bad

el
o|MrUM,. p|—C(ko,k1)—k1|P| g\a

l.
1X] _ ot |X]

< ki1 -ko!-
= Rl 2 k§9—2'k512

(7.22)

thanks to assumption (vi) and the inequality c¢11 + c12 < ¢g. Furthermore, equation ((7.21])
implies that

)IREDY

UEPT‘(kQ) a:MTuM'r,P‘)IF2
(0,a) not bad

| X (o, a)) ‘ k! - | X|

oM, UM, p|=C(ko,k1)—k1[P] [X(o(a)]| < R (7.23)

ko+1

since for a given o the sets X,tcg“,?l (0,a) partition X and there are

2|Mr|_|Mr’p|fc(k0,k‘1)fk1 |P|

maps a : M, U M, p — Fy with the same X,gg‘,ll?l(a, a). Adding the bounds from equations

(7.19), (7.22)) and (7.23)), we get the proposition. O
7.3 Boxes

We are now ready to define boxes. We recall that

Dy = e(loglogN)l/lo

Also define

DSiegel = B(IOgIOg N)I/IOO.

Definition 7.9. Let N > 101000, let r be a positive integer and let 0 < k < r. Lett =
(P1y -y Dky Skt1,---,Sr), where the p; are prime numbers congruent to 1 or 2 modulo 4 and
the s; are real numbers satisfying

2 .
pr<--<ppr <Dy, Di<spr1<---<5p, si<§si+1 forall k <i<r.

To t we associate a product space X (t) = X1 X -+ x X, as follows
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o for 1 <i<k we have X; = {pi};

o for all k < i <r we have that X; consists of the prime numbers (1 or 2 modulo 4) in

the interval )
Siy 8- |1+ )
(s (1+ )]

where 100 < Ceompr < (log N)1 s q real number. If N is sufficiently large, then the sets X;
are disjoint and non-empty, so that we may naturally view X (t) as a subset of D. We call a
product space X = X1 X -+ x X, a (N, k,r)-boz if there is some t such that X = X (t) and
X CD(N). We say that X is an excellent (N, k,r)-boz if additionally there is d € X that is
N-nice and

aHm(m)

€S

{aHm(x) cxe X, SClr),ae{l,—-1},

> DSiegel} N S(CLandau) = J.

The next proposition is [42, Proposition 6.9], although our proof is more similar to the
one appearing in Watkins [46].

Theorem 7.10. Let N > 1099 be g real number and let r be a positive integer satisfying
equation (7.4]). Let V,W C D,(N) and let € > 0 be such that

(W[> (1 —¢)-[Dr(N)].

Suppose that
VX =6 |X[| <e-|X|

for all integers k and all (N, k,r)-boxes X such that X N W # @&. Then

N

o N\T
(1 + Ccc}mpr)

1
e(logloglog N)1/4

1 7
“ ! < * Ccompr>

Let C be the collection of product spaces X = X7 X - -- x X, that are (N, k, r)-boxes for some
integer k such that

V=80, +0 | (e )+ D)+ (Do) - D,

Proof. Define

S; € {60,61,62,...}

for all k41 < i < r and such that X NW # @. If we take distinct X,Y € C, then we see that
X NY = @. Furthermore, in case d € D,(N) is not in some product space X € C, then we
see that d fails the first condition of Definition (and hence d is not N-nice) or d ¢ W or

1 -r
axn (1t )
Ccompr

Write D234 (V) for this set of d. Then we have

V=6 D (N <2- [P+ Y [IVNX|=6-1X]|.
XeC
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The latter term is bounded by € - |D,(N)| thanks to our assumption
IV AX| =5 X]| < e |X].
Furthermore, it follows from Theorem and

(W[> (1 =€) [Dr(N)|

D,(N) — D, (N (1 n Ccolmpr> —T> .

This gives the theorem. O

that

1
bad
D) < (4 by ) - D]+

Remark 7.11. If (log N)'~¢ > Ceompr > rite. then one can show that

‘DT(N) -, (N (1 " Ccolmpr> 4)

and hence we get a genuine error term in Theorem[7.10, However, since we have the luzury
to also average over r later on, we have opted to use the trivial bound

> |DH(N) =D, <N <1 + Ccolmpr)_T) < |D(N)| - |D (N <1 + Ccolmpr)_r) ‘

T
and the classical asymptotic formula

ID(N)| = J%' (HO <10;N>>

D (N

re

<e

for some C' > 0.

From now on we shall take
Ceompr := (loglog N)SO.

We remark that Theorem works equally well for the set of odd or even radicands, or in
fact any congruence conditions on our radicands. Keeping this in mind, we see that all our
proofs also work if we order by the discriminant instead. We will now deal with Siegel zeroes,
see also [42], Proposition 6.10].

Proposition 7.12. Let N > t > 101990 be real numbers and let v be a positive integer
satisfying equation . Let f1, fa, f3,... be a sequence of squarefree integers greater than t
such that fi1 > f2. Define

W(fi) :={z € D(N) : thereis a (N,k,r)-box X and 2’ € X such that f; | 2’ and z € X}.

Suppose that log N > (logt)3. Then
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Proof. We factor f; = p1 ... pm. Suppose that x € W(f;). Then there exist prime factors
q,-..,qm of x such that

»;
pi = g; for p; < Dy, 52 < g < 2p; for p; > D;.

First suppose that f; < N2/3. Since r satisfies equation 1) it follows from equation 1)
that

2mN .
W(fi)| < Dr—m< 7 >‘ 1] Ha prime:p;/2 < g; < 2p;}|
’ pi>D1
C™ . |D.(N ; D.(N
< |A()'H1pA<<|1(.)’
fi oS, 08P og fi

for some absolute constant C' > 0. Since f; > t2i, we deduce that

D, (N

U W(f:) <<| (V)

i>1 logt
fz’<7\72/3

Next suppose that f; > N2/3. Since fir1 > N3, it follows that W (f;) is empty for j > i+ 1.
Therefore it remains to bound |W(f;)|. We have

N :
(W (f)] < 7 H [{g; prime : p;/2 < ¢; < 2p;}|
pi=D1
N 2W; N N
7 ey Ctogs loen

2

<

for N sufficiently large. A final appeal to equation ([7.3) shows that this is within the error
term thanks to our assumption log N > (logt)3. O

We can now prove the main result of this section. Let D, be the set of d € D such that
rk,C1(Q(Vd)) = n. Write Pgym(r,n) for the probability that a symmetric r x r matrix with
coefficients in Fo has kernel of dimension n with respect to the uniform probability measure.

Theorem 7.13. Let N > 101990 pe g real number and let n > 0 be an integer. Then we have

|D2yy ND(N)| . 1
T s, Byl ) + O\ i )

The implied constant is effectively computable.

Better error terms are available in the literature, see [, [42] 46], with the best result due
to Watkins [46]. One can also find the above result in earlier work of Fouvry and Kliiners
[18], albeit without an error term. We have not yet used (and will not use in this section) the
third point in the definition of N-nice. Similarly, one can pick Cy substantially larger than
we did for the purposes of this section. The improvements available in the literature come
from a better upper bound in Theorem in this more relaxed setting.
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Proof. By Remark and by equation ([7.2)) it suffices to show that

D, ND,(N)] |
T A Peym(sn) + O e )

0 ( D,(N) - D, (N (1 * Ccolmpr>_r) D

with r satisfying equation (7.4). By the explicit formulas in [34], we readily bound the
difference

Pyym(r —1,n) — Slg(r)lo Psym(s,n).

We apply Theorem with W equal to the largest subset of the N-nice elements in D, (V)
disjoint form the W (d;) with |d;| > Dgjegel, see Definition [7.5|for the definition of d;. It follows
from Theorem and Proposition with ¢ = Dgjeger that

D (N)]
Dy (N)| = W] < ogloglog )77

Hence it suffices to show that

|D27nﬂX| . 1
T = PSym<T — 1,77,) + O W (724)
for every (N, k,r)-excellent box X. We apply Proposition to (X, @) with
(c1,¢2,c3,¢4,C5,C6, C7, C8, C9, C10, C11, C12) = | 100, 5,10.5,5, — 15111
1, €2, €3, ¢4, C5, C6, €7, €8, €9, C10, €11, €12) — 09» 100 100°°'5° 575 )

ko = k, k1 the smallest integer such that

5 5
tr, 41 > max(ellogthtn)” ot

)

and ko = r. It follows from equations ([7.1)) and (7.4) that all the conditions of Proposition
are satisfied for IV sufficiently large. We conclude that

X
Z 27‘7“1/|2 Z‘X

a:M,—TFo o€Py

<l X (Y ) (7.25)

for N sufficiently large. To a : M, — Fy we associate a matrix A(a) as follows: the (i, j)-th
entry of A(a) equals a(i,7) if i # j and
ali,i) =Y a(i, k). (7.26)
ki
Then A(a) is a symmetric r X r matrix with row sum zero. In this way we have created a
bijection between maps M, — Fy and symmetric » X r matrices with row sum zero. Write
A'(a) for the matrix obtained form A(a) by dropping the last column and last row of A(a).

Then we get a bijection between maps M, — Fo and symmetric (r — 1) x (r — 1) matrices. If
x € X(a), then we have

rkyCl(Q(v/z)) = —1 + dimy, ker(A(a)) = dimp, ker(A'(a)) (7.27)
thanks to classical work of Rédei. Since we have
dimp, ker(A(a)) = dimg, ker(A(o(a))),

equation (7.24)) follows from equations ((7.25)) and - O
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8 Proof of Theorem 1.1

Let Dy, be the set of d € D such that rkyxCl(Q(v/d)) = n and furthermore (vd) €
2k=1C1(Q(V/d)). Define Dy, ,,(N) for the subset of d € Dy, with d < N. We write P(m,n, j)
for the probability that a m X n matrix, chosen uniformly at random with coefficients in Fo,

has right kernel of rank j. Let Acomp > 0 be a choice of real number such that Proposition

[6.6] holds. Define )

B AComb -1010°
In this section we shall establish the following theorem.

Cc

Theorem 8.1. There are real numbers A, Ng > 0 such that for all reals N > Ny, all integers

m > 2 and all sequences of integers na, ..., Nm+1 >0
m+1 m
P(np, nm, n A-ID(N
ﬂ Di,ni(N)‘ _ (nm 27?; 1) . mDi,m(N) < [ D(NV))| —
=2 =2 (loglogloglog N)m2em

We remark that the m = 2 case of the above theorem was already established in [§]
Theorem 6.1]. Therefore it remains to prove Theorem for m > 3. It is perhaps worth
emphasizing once more that from the 16-rank onwards, the class group behaves rather dif-
ferently than for the 8-rank. This leads to substantial differences between the reflection
principles presented here and those in [§].

The assumption m > 3 means then that we do not have to reprove some of the results
from [8]. We will use this assumption in particular when applying Theorem (we remark
that m = 3 corresponds to s = 2). Note that Theorem is not correct when s = 1, which
shows the qualatitive difference between the 16-rank and the 8-rank. This is certainly related
to the fact that there are no governing fields for the 16-rank, while there are governing fields
for the 8-rank. For a precise statement, see [20, Theorem 3|, which builds on earlier work in
[20].

The error term from [§] was later substantially improved by Watkins [47]. Let us now
show that Theorem [8.1| implies Theorem The argument is very similar to the material in
[29, Appendix A].

Proof that Theorem [8.1] implies Theorem [I.1. We will show that 43, Conjecture 3.4(i)] and
[43, Conjecture 3.4(ii)] hold. Then, as already argued immediately after [43, Conjecture 3.4],
we get Theorem We also remark that [43 Conjecture 3.4(ii)] follows from the results of
Fouvry—Kliners [18, Corollary 2] (or, alternatively, our Theorem, so it remains to verify
[43, Conjecture 3.4(i)]. Define for every integer m € Z>¢ the quantities

- DT (X) N Dy (X)L . D™ (X) N Dy (X))
P, (m) = liminf : , Py (m) =limsu :
> ) = B D, () 2 (m) = 0o =D, (X))

The content of [43, Conjecture 3.4(i)] is that

1

P27(m):P2+(m):m-

(8.1)
It follows from Theorem [8.1| that P, (m) = P; (m) for all m, and hence

o DT(X) N Dy (X))
Po(m) = Jim ]D;m()?)\
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exists. From the Markov chain behavior in Theorem we similarly deduce that

D™ (X) N Doy (X) N D3 (X))
T Xooo | D2 (X) N D3 (X))

exists and equals Py(n) for all pairs of integers m > n > 0. Now consider the identity

D= (X) N Doy (X)) _ i D™ (X) N Dayu(X) N D3n(X)| | D2m(X) 0 Dsn(X)|

Do (X)) 2 Do) N Dsn(X)| [Da(X)|

Taking X — 0o, we obtain
ngn P, m;n) Z& Pl ). (82)

We recall the identity [29, eq. (A.2)]

1 i 1 P(m,m,n) .

gnil—1~ Luyonil_1  gm
Together with equation (8.2) and P»(0) = 1, this implies equation (8.1)). O

8.1 Boxes
To prove Theorem we are going to cover D(N) by boxes X with some desirable properties.

Theorem 8.2. There are real numbers A, Ny > 0 such that for all reals N > Ny, all integers
m > 3, all sequences of integers na, ..., nymy1 > 0, all integers r satisfying equation , all
integers 0 < k < r and all excellent (N, k,r)-boxes X

A-|X|
<

XN () Dim,(N)|| < —
m (log log log log N ) m2e™

1=2

X0 () Diny(N)
1=2

+1
H " ‘ . P(nmanm7nm+1) ] |

27m

Proof that Theorem [8.9 implies Theorem[8.1 By equation (7.2]) of Theorem [7.2| we have

U RO p—

log log N)1/100°
|r—4 log log N|> (log log N)2/3 (loglog N)

Hence, by Remark it suffices to prove that there exist real numbers A’, Ny > 0 such that

m-+1 m
M i,n; i r 3 i,n;
— A/’DT(N)‘ c +A,' DT(N)_DT N<1+ 1 >_T
(log log log log N ) mZe™ Ceompr

for all real numbers N > Ny and all positive integers r satisfying equation (7.4). Now apply
Theorem [7.10] twice with

m+1 m
N () Dim(N) and V' =Du(N)N () Din,(N)
= =2
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and with W the maximal subset of D,(/N) that intersects trivially with all the W (d;) for
d; > Dsieger and also intersects trivially with the set

{d € D,(N) : d is not N-nice}.

To apply Theorem we need a lower bound for |W| and a good estimate for [V N X|
and |V' N X| for boxes X that intersect W non-trivially (note that such boxes are (N, k,r)-
excellent). From Theorem and Proposition we get the required lower bound for W.
Let X be a box that intersects W non-trivially. Repeated application of Theorem yields

T P(ni,ni, i) -1 X
VX[ [] =52 ) 1X N Doy (N Z
on; , 2
o — loglogloglogN) el
2A - X|
~ (loglogloglog N)m206m

for N sufficiently large, and similarly for |V’ N X|. Here we used that
(loglogloglog N) mlem > 2,

which we may always assume, since otherwise Theorem is trivially true. Inserting the
estimate for | X N Da p, (V)| from equation ([7.24) shows that

m
P(ni, ni, ni 3A- X
Vx| - HW : Pyym(r — 1,mp) - | X|| < |X] _
i=2 ' (log log log log N) m2e

for N sufficiently large, and likewise for |V’ N X|. This finishes the proof of the reduction
step. ]
8.2 Genericity

We will split X as the union over X(a) and then prove equidistribution for most a. If X
is an excellent (N, k,r)-box, then there exists € X and an integer kg,p satisfyin
kgap +1 < 5 and

kgap

log z,,,+1 > (loglog l“kgap+1)2 -logloglog N - Zlog zj, (8.3)
j=1

where = (z1,...,2,). From now on fix such a choice of kgap.

Definition 8.3. Let X = X; x --- x X, be a product space, let S C [r] and let Q € [[,cq X;.
We say that Q is a-consistent with a : M, U M, 5 — Fo if

(ﬂiéi) — u(a(i, j)) for all distinct i,j € S,
&

We define X (a, Q) to be the subset of v € X (a) for which wg(z) = Q. Finally, given j € [r]—S,
let X;(a,Q) be the subset of p € X; with

(7”(Q)> = u(a(i, J))

p
forallie S.
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Definition 8.4. Let r be a positive integer and let a : M, LU M, & — Fa. Recall that we have
associated to a : M, U M, 5 — Fo a r x r matriz that we call A(a), see equation .
The left and right kernel of A(a) are naturally subspaces of Fy, and viewed as such they
coincide and contain the element R := (1,...,1). Let us call this subspace Vg 2. We say that
a: M, UM,z — Fy is (N,m)-generic for a box X if

e putting
10c
Nmax ‘= G logloglogloglog N
we have
dim V, 2 < Nmax; (8.4)
e we have for all j > k
| X1
[ Xj(a, Q)] = (8.5)

(log sp-+1)'%0”

where Q) is the unique element of X1 X --- X Xy. Furthermore, @) is a-consistent;

o setting apre to be the number of integers i satisfying kgap/2 < @ < kgap, we have for all
elements w € V2 \ (R) and all j € Fy

. kgap _ . : Apre Fgap
HZE[T’] 5 = != Pgap a0 mi(w) ]}‘ 2 |~ logloglog N (8.6)
and
i € 1]+ igap < < Zhgap and mi(w) = j}] — " o ®.7)
- Rgap = “hgap v 2 log loglog N '

Equation and equation give us very fine control over V, 2 as the following lemma
shows, see also [8, Lemma 6.9)].

Lemma 8.5. Suppose that a : M, U M, 5 — Fo is (N, m)-generic for a box X. Suppose that
,wq, R € V2 are linearly independent. Then we have for all v € 4

; . « 34 .k
H{ <4 < kgap and mi(w;) = m;(v) forall 1 < j < d}‘ _ 2p;e < logloglgoagpN
and similarly
~ k 3.k
(i € Ir] : hgap < < 2hgap and milwy) = mj(v) for all 1 <5 < d}| = 38| < o R,

Proof. Let us prove the first part by induction on d, the second part follows using the same
argument. For d = 0 the statement follows immediately from the definition of oy, while for
d = 1 the statement falls as a consequence of equation . Now suppose that d > 1 and
define for w € F4

k
{i €r]: g2ap < i < kgap and m;(w;) = mj(w) for all 1 < j < d}‘ .
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Let v € ]Fg be given and define vi, vy, vy as the unique unordered triple of distinct vectors
that have the same projection as v on the first d — 2 coordinates but are not equal to v. We
have the inequalities

30pre

3
< |< fv)+ f(v») -
i=1

Z )

2| fv) - 2

3
+ |55~ F) = Y F ()

=1

3
s — Fv) = > f(v)

3
< (Z ‘f(V) + f(vi) — ;dp_ri
=1

(3-3%71 +3972) . kgap,

<

log log log N
where the last inequality follows from the induction hypothesis applied to wy,...,wqs_9 and
W, - ..y We—2,w with w € {wg_1,wq, wg—1 + wq}. d

Instead of controlling the 2¥-ranks of the narrow class group, we will control the full Artin
pairing of the narrow class group, which is a finer invariant than just the sequence of 2*-ranks.
We will make this precise in our next definition.

Definition 8.6. Let X be a box and let a : M, UM, 5 — Fa. A sequence of bilinear pairings
{AI‘ti :A; x B; — FQ}QSZ‘<m, is called valid if

o Ay =By =V,9;
o the left kernel of Art; is A;+1 and the right kernel of Art; is Bjy1 for2 <i<m —1;
o R is in the right kernel of Art; for 2 <i < m.

The sequence is called Pellian if furthermore R is in the left kernel of Art; for all 2 < i < m.
For such a sequence of bilinear pairings, we define A,, to be the left kernel of Art,, 1 and B,
to be the right kernel of Art,,_1.

Meanwhile for x € X, we get for every integer k > 1 a pairing

Arty : 2871 CLQ(VE))[2¥] x 2V CIY(Q(Va)) [2¥] — P,

see Subsection . Genus theory gives natural surjections Fy — Cl(Q(v/x))[2] and F —
ClY(Q(\/7))[2]. More explicitly, the map Fy — Cl(Q(y/x))[2] is given by

i=1

and the map F, — C1V(Q(v/7))[2] is given by

T
(617 ceey 67‘) — ZeiXpm
i=1

where x =p1 - ... -pp with p1 < --- < p,. Pulling back, this induces a pairing

Fjy x F} — Fa,
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and for x € X(a) the left and right kernel both equal Vg o. Then we get natural surjections
Va2 — 2C1HQ(v/x))[4] and V2 — 2C1Y(Q(v/x))[4] and hence a pairing

Va,g X Va72 — FQ.

Continuing this process gives for each x € X (a) a valid sequence of Artin pairings, which we
will also call Arty, .. Furthermore, the negative Pell equation is soluble for x if and only if its
sequence of Artin pairings is Pellian.

We then define for a sequence of valid Artin pairings {Art;}o<icm

X(a,{Art;}o<icm) = {x € X(a) : the Artin pairing of x equals {Art;}o<icm} -

We will now reduce to the case where a : M, U M, 5 — Fy is (IN, m)-generic for X and the
first m — 1 Artin pairings are given. The next theorem essentially says that the Artin pairing
is a random pairing on A,, X B, except that R must always be in the right kernel.

Theorem 8.7. There are real numbers A, Ng > 0 such that for all reals N > Ny, all integers
m > 3, all integers r satisfying equation , all integers 0 < k < r, all excellent (N, k,r)-
boxes X, all (N, m)-generic a : M, UM, o — Fy for X, all Pellian sequences of Artin pairings
{Arty fo<kem and all Artin pairings Art,, : Ay, X By, — Fo with R in the right kernel

[ X (a, {Arty}ockam)| | _ A- | X(a)l

2di1’1’l]}:‘2 Am(71+dlmﬂ:‘2 Am) - ( 100c¢_ *

| X (a, {Arty bo<pm)| — e
log log log log N ) mé™

Proof that Theorem implies Theorem [8.3. We claim that there exists an absolute constant
A’ > 0 such that

Z |X(a)‘ < A/ ) |X| ] 2—2clog1:)leé)§nloglogN ' (88)

a: M UM, 5—Fa
a not (N,m)-generic

As a first step, we estimate

> 1 X (a)). (8.9)
a:MyUM, z—TF2
fails for some j>k

For every j > k we define an equivalence relation ~; by setting a ~; o’ if and only if
a(i,j) = d'(i,j) for all 1 < i < k. Note that if a ~; o/, then equation (8.5)) fails for a if and
only if it fails for a’. By our choice of Cy, D; and equation (7.1)), we see that

1
k< 3 logloglog N

for N sufficiently large. Hence ~; has at most

2k < 2% log log log N

equivalence classes. Furthermore, in a given equivalence class we have the trivial bound

U X(a)| < X1

= (log sp41)100°
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Summing over all j > k and summing over all equivalence classes gives the desired estimate
for equation .

We return to bounding equation , and thanks to our upper bound for equation ,
it suffices to bound the union of | X (a)| for a failing equation (8.4), equation or equation
(8-7). If o is a permutation of [r], then we recall that

o(a)(i,j) = a(o ™ (i), 071 (5))-

Note that a satisfies equation ({8.4) if and only if o(a) does.
Take ko to be the largest integer smaller than kg.p/2 and suppose that o is a permutation
of [r] fixing all indices greater than kg: recall that P, (k2) denotes the set of such permutations.

For any such permutation o, we have that a satisfies equation if and only if o(a) does,
and similarly for equation . We apply Proposition to obtain

ko! - | X| ka! - | X| ko! - | X|
D e~ 2. X(e@)lf < < (8.10)
M|+ M.z | b b1b
a:M UM, 5—TFo oMMl | o€ Py (ks) kgt (loglog N )b1b

for some absolute constants by, by > 0. Here we used equation ([7.4]) to obtain the lower bound
ko > (loglog N)b2 for N sufficiently large. We will now give an upper bound for

{a: M, U M, 5 — F : a fails equation (8.4) or or (8.7)}] (8.11)
{a: M, UM,z — Fa} ’ '

Note that this is an entirely combinatorial problem about certain symmetric 7 X r matrices.
Once this is done, equation will give the desired upper bound for equation .
After dropping a row and a column from A(a), we see that A(a) is a random symmetric
matrix. By the explicit formulas for the number of symmetric matrices with a given rank in
[34], we see that the proportion of a : M, U M, 5 — Fy with dimp, V2 > nmax is bounded by

—2clogloglogloglog N
O (2 m2em ) ,

which disposes with the a failing equation (8.4)).
Next we bound the proportion of a : M, U M, s — o failing equation , a similar
argument works for equation (8.7)). The proportion of w € [} with

kga
i (8.12)

k
H{Z € [r]: g;p < i < kgap and mi(w) :j}‘ -5 logloglog N

- 2

is bounded by

1) (6—(10g log log N)‘2~kgap)
thanks to Hoeffding’s inequality. For any given w € F5 \ (R) we have that the proportion of
a: M, UM,z — Fo with w € V2 is bounded by O(27"). Using this for all w € Fj \ (R)
satisfying equation then shows that the proportion of a : M, U M, s — Fs failing
equation is also bounded by

0 (e—(log log log N)’2-kgap> )
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Since kgap > rl/2 /2, it follows from equation |D that this fits in the error term. We conclude
that equation (8.11]) is bounded by

—2cloglog log log log N
Al . 2 m2em

for some absolute constant A; > 0. Then equation (8.10]) implies that there exists an absolute
constant A, > 0 such that

Z |X(a)‘ S A2 . ‘X’ ) 2*2010glflegrgnloglog]v.

a:MyUM; g—F2
a not (IN,m)-generic

Therefore we have established the claimed equation . To complete the proof of the
reduction step, we split X as the union over X(a), removing all a that are not (N,m)-
generic. For the a that are (N, m)-generic, we split each X (a) over all sequences of Artin
pairings and use Theorem Observe that there are at most

2m(dimﬂ:2 Va2)? < 2mn?nax

sequences of Artin pairings. By the choice of nyax, we complete the proof of the reduction
step. ]

The next reduction step is a straightforward application of orthogonality of characters.

Theorem 8.8. There are real numbers A, Ny > 0 such that for all reals N > Ny, all
integers m > 3, all integers r satisfying equation , all integers 0 < k < r, all ex-
cellent (N, k,r)-bozes X, all (N, m)-generic a : M, U M,z — Fo for X, all Pellian se-
quences of Artin pairings {Arty}o<k<m and all non-trivial linear maps F : {Ap, X By, —
Fy bilinear with R in the right kernel} — Fy

A-|X(a)l
> U(F(Arty..))| < | oo
CEEX(G,{Artk}2§k<m) (log ]'Og lOg log N) mer

The plan is to fix all but m or m + 1 indices of the box X, and then apply the algebraic
and combinatorial results from Sections [l and [6l The indices of the box that we do not fix
are called variable indices. We now lay out exactly what properties we demand from these
variable indices as a function of F.

Definition 8.9. Define for 2 <i<m
Ci:=A;NB;, dj:=-1+dimp, C;, n;:=—1+ dimp, 4;.
Pick a basis vy,...,v,,,, R of Ay and a basis wy, ..., wy,,, R of By, such that
v; = w; for all 1 <1 <d,,.
Hence vy,...,vq,,, R is a basis of Cp,. We extend the basis w1, ..., wy,,, R of By, to a basis

wla"',leQaR
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of Va2 such that wy, ..., wy,, R is a basis of B; for all 2 < i < m. Write Mat(a,b, K) for
the set of a x b matrices over a field K. Using our basis, Art,, ., is naturally an element of
Mat(n, + 1,n, + 1,Fa). More precisely, the entry (i,j) of the associated matriz is

Arty, o (vi, wy)

fori,j € [nm], and we use the last row and column for the pairing with R. Since R is in
the right kernel of Art,, ., we shall from now on implicitly view Art,, ; also as an element of
Mat (1, + 1, 1y, Fa).

Let Ej, j, be the matriz with a 1 on the entry (j3, ja) and O everywhere else. Define F}, j,
Mat(nm+1, nm, Fa) — Fa be the unique linear map that sends the matriz Ej, ;, to 1 if and only
if 1 = js and jo = js. Then we can write write any linear map F : Mat(ny, + 1, ny,, Fa) — Fa
as

F= E : Cirgo i gy Cirga € Fa.
1<ji<nm+1
1<ja<nm
For every non-trivial map F, we pick a pair (j1,j2) satisfying c;j, j, = 1 according to the

following rules. In case there exists (ji,j2) such that cj, j, = 1, such that j1 < Ny, and such
that one of the following three conditions is satisfied

® Ny > J1 > diyy Or
® Ny > Jo > dy or
e 1< j1,j2 <dy and cj, j, =0,

then we fix such a choice of (j1,72). We say that we are in case I. If there is no such pair
(41, 72), but we have ¢y, 1 =1 for some j, then we fix a choice of (j1,Jj2) = (nm +1,J) and
we say that we are in case I1. Again if there is no such pair (ji,j2), but we have ¢jj =1
for some j, then we fix (j1,j2) = (J,7) and we say that we are in case I11. Finally, in the
remaining cases we fix a pair (ji,j2) with j1 # jo and c¢j, j, = ¢j, 5, = 1 and we say that we
are in case IV . Observe that we can always find such a pair (j1,72) since F' is assumed to be
non-trivial.

We say that a subset S of the integers is a set of variable indices for a non-trivial linear
map F : Mat(ny, + 1, ny,, Fao) — Fo if the following properties are satisfied

o if we are in case I, then we demand that S contains m + 1 elements of which m — 1
elements are contained in

n2
{kgap/2 < i < kgap} N [|{i € [r] : miwy) = 0},
=1
one element is contained in the intersection of {kgap/2 < i < kgap} with
(N {icll:m@)=0yn () {i€r]:m(w)=0}n{i€lr]:mw,) =1},

1<i<nm 1<i<nm
J2<dm=l#j2 I#52
and one element is contained in the intersection of {kgap < i < 2kgap} with

() el :m@)=0tn () {i€l]:m(w)=0}n{ie[r]:mv;) =1}

1<i<nm 1<i<nm,
I#5 S <dm=l#£5
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e if we are in case 11, then we pick S such that |S| = m, of which m — 1 are contained in

{kgap/2 < i < kgap} N ﬂ{z € [r] : mi(wy) = 0}
=1

and one element is contained in the intersection of {kgap < @ < 2kgap} with
(| fickl:m@)=01n () {i€lr]:mw)=0}n{ie[r]:mw,) =1}

1<i<nmg, 1<i<nm,
J2<dm=l#j2 I#j2

e if we are in case 111, recall that j = j1 = jo. We choose S such that |S| = m, of which
m — 1 are contained in

n2
{kgap/2 < i < kigap} N [ {i € [r] s miwy) = 0} N {i € [r] : mi(wy) = 1},
=1
I#j
and one element is contained in

Nm

{kgap < i < 2kgap} N (V{i € [1] : mi(v)) = mi(wy) = 0}
=1

e if we are in case IV, then we pick S such that |S| = m, of which m — 1 are contained

m
n2

{kgap/2 <0 < kgap} N () {7 € [r] s miwy) = 0} N {i € [r] : mi(wyy) = 1},
=1
I#52

and one element is contained in the intersection of {kgap < @ < 2kgap} with

Nm,

(i € [r]: mi(v) = mi(w) =0} N {i € [r] - milvy,) = 1}

=1
I#51

Define icnen to be the unique element of S N {kgap < @ < 2kgap}-

Note that we may always assume that
m < loglog log log log log IV, (8.13)

since otherwise Theorem is trivially true. Then Lemma [8.5] shows that for every non-
trivial bilinear map F we can find a set of variable indices S for F, provided that we take
N sufficiently large. For the final reduction step of this subsection, we fix all primes before
kgap except those in S. For a point Q € Hie[kgap]—s X, define X(a, Q, {Artg}o<k<m) to be
the subset of x € X (a, {Arty}a<k<m) for which mp, 1_s(z) = Q.

Theorem 8.10. There are real numbers A, Nyg > 0 such that for all reals N > Ny, all integers
m > 3, all integers r satisfying equation , all integers 0 < k < r, all excellent (N, k,r)-
bozxes X, all (N, m)-generic a : M, UM, 5 — Fy for X, all Pellian sequences of Artin pairings
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{Arty }o<kem, all non-trivial linear maps F' : Mat(ny, + 1, np,Fa2) — Fa, all variable indices
S for F and all a-consistent @) € Hie[kgap]—s X; such that

|Xj(a, Q) > 47 ke - | X (8.14)
fOT allj € S N [kgap], we ha/l)e
A1 X(a,Q
> L(F(Art,))| < X@ Q)
xeX(an»{Artk}2§k<m) (log log log log N) me™

Proof that Theorem implies Theorem[8.8. First, we use the triangle inequality

> W(F(Arty,.))| < > > W(F(Arty,.))].

z€X (a,{Artgto<k<m) Q€[ Licirgap)—s Xi |r€X(a,Q{Artk }ockcm)

In case @ satisfies equation (8.14)), the desired upper bound follows immediately from Theorem
RI0 It remains to bound

> ) (FArt) < S IX(@Q)

QEHie[kgap]—s Xi  |2€X(a,Q,{Artr}o<k<m) QGHie[kgap]_s X;
Q fails equation (8.14) Q fails equation (8.14)

Let Q' be the unique element of X7 x - -+ x X}, and let X’ be the product space

H Xi (CL, Ql)
i€ [kgap] —S—[K]
We apply Proposition to (X', Q") to deduce that the number of a-consistent elements
Q € [Licfyay)—s Xila, Q') is bounded by

2 |X'|

(kgap —|S|—k)(kgap—|S|—=k—1) ~
2

Note that condition (iii) of Proposition is satisfied thanks to equation ({8.5)). Let us now
bound | X (a, Q)| for each individual Q. Since @ fails equation (8.14]), we have

H'esnkm | X H‘esmkl |Xi(a7Q/)|
[ 1Xi(e Q) < =0l o < el - (log s141)100.

1€SN[kgap)

Therefore

o |X; !
HZGS’ z(a’ Q )‘ . (log Sk+1)100m . max X(a7 P X Q)

X <
| X (a,Q)] < 4m-kgap Pelies Xi

But for ¢ > kgap, we apply the Chebotarev density theorem to obtain

Xi(a, P x Q) = K@@l (1 +0 (e—’fgap» .

9kgap—k
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We apply Proposition to

(X, P) « H Xi(a,PxQ), @ |, k71— kgap
i€[r]—[kgap]

to deduce that
Hi>kgap | Xi(a, P x Q)] < Hi>kgap | Xi(a, P x Q)’

(r—kgap)(r—kgap—1) —
2 log N -2

[ X (a, P x Q)] -

(r—kgap)(r—kgap—1) ~
2
We conclude that

> X (a,Q)| <

Qenie [kgap]—S Xi

Q fails equation
4 . (log sk’—‘,—l)loom : Hie[r}—[k] |Xi(a7 Q,)| (8 15)
(kgap—k—\5|)(’2€gap—k—\5|—1) ) 4m'kgap ) 2(kgapik)_(r7kgap)+(T_kgap)(;—kgﬂp_l) ' :
A final application of Proposition [7.6] to the prebox
H XZ (CL, Q/)7 Ql
i€ [r]—[K]
shows that
[Licp—p 1Xi(a, @)
2| X (a)| > SR —ED) (8.16)
The proposition follows from equations (8.15) and (8.16)). O

8.3 A second moment computation

We have now arrived at a critical point of the proof. We have a rather unstructured set
X(a, @, {Art; }oa<k<m). To make matters even worse, we do not know yet that the expansion
maps exist to apply our algebraic theorems. We will cover X (a, @, {Arty}o<k<m) by small
product spaces and then use a second moment trick to reduce to such product spaces. We
will then be able to apply the algebraic and combinatorial results from the previous sections.

Definition 8.11. Let N, m, k, v, X, a, Q, {Arty}o<k<m, F and S be as above. Put
Myox := L(log log log log N)WJ .
It follows from equation that Myox > 2 for sufficiently large N. Define
S = 5N [kgap),
so that S = S"U{icheb}. Let Z; C X; fori € S’ and put

Z::HZi.

€S’

We say that Z is a great product space if
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|Zi| = Myox for alli € S’;

Z; € Xi(a,Q) forallie S';

we have for all z € Z and all distinct 1,5 € S’

<m-(2)> = u(ali, 7));

mi(z)

e if we are in case I, let ichay be the unique index in S" with m;,, (w;,) = 1. Then we
want that for all subsets T C S" — {ichar}, all Z € Cube(Z,T U {ichar}), there exists an

ELPANSION Map Py (z) in which all primes in Q, (2) and oo split

P (T, (2))PP2(Ti g0, ()7

completely in case T C S" — {ichar}. We put

Mo(Z) = H H L(rr(z)ipry (miy . (2))pro(miy . (2))

TCS/—{ichar} EECube(Z,TU’L‘Char)

and

MZ)i= J1 Llrg i @0 iy (Dpra(mig (1)
zeCube(Z,5")

e if we are in case II, III or IV, we demand that for all subsets T C S’, all Z €
Cube(Z,T) and all i € T, there exists an expansion map ¢7-I—T7{i}(2);prl(7ri(2))pr2(ﬂ-i(2)) m
which all primes in Q, (2) and oo split completely. Furthermore, for all subsets T C S’,
all z € Cube(Z,T), there exists an expansion map Grp(z);—15 in which all odd primes in
Q and Upg;yo(2) split completely in case T C S’. Set

Mo(Z):=1] Il LGryy@ommemmmen) < 1T 11 Lm0

i€S’ zeCube(Z,5) TCS’ zeCube(Z,T)

and

M(Z) = H L(¢WS/(2);—1)‘

zeCube(Z,5")

For i > kgap, define X;(a,Q, Mo(Z)) to be those primes p € X;(a,Q) that split completely in
My(Z) and
<Z> = u(a(j,i)) for all j € §' and all z € Z;.
p
This is equivalent to Frob, landing in a given central element of the Galois group of the
compositum of Mo(Z) and Q(y/z) with z equal to —1, a prime in Q or a prime in Z; for
some j € S'. If Z is a great product space, we define

Z=Qx2Zx [[ Xia,Q,Ms(2)).

i>kgap

The following lemma constructs an additive system that will aid us in producing expansion
maps. Define

Xpre i= [ [ Xi(a, Q).

€S’

88



Lemma 8.12. Let W C X.. Then there exists an additive system (Cp, C3°, Fr, Ar)rcs
on (Xpre, S") with the following properties

o CC =TV,
° ‘AT| < 9(18"1+100)- (kgap+|S’|+100) for all T C S/,'

e suppose that we are in case I. If &z € C%°, then there exists an expansion map

Pt s yuny (BT (B, (B)IPra(miy (7))

Furthermore, for ichay € T C S" and T € C¥°°, there exists an expansion map

DL i) T (i (D)P (s, ()
in which all primes in Q, all primes in wg_7(Z), (2) and oo split completely;

e suppose that we are in case II, III or IV. If & € C§°, then ¢r , (z),—1 ewists. Fur-
thermore, all odd primes in Q, all primes in wg_7(Z) and Upg;),q(2) split completely
i Prp(z);—1 Jor all T C S" and T € C¥°. Finally, we demand that for all T C S, all
z € CF° and all i € T, there erists an expansion map qSWT*M(@;prl(m(j))ph(m@)) m
which all primes in Q, all primes in wg/_7p(Z), (2) and oo split completely.

Proof. Let us deal with case I, the other cases being analogous. Take Cyz = W and take Fy
to be the zero map. We will now inductively construct the maps Frr for T a non-empty subset
of ', which determine the additive system. If 7' = {i}, we let Fy;; be the map that sends
T e C{z} to

q

where ¢ runs over all prime divisors of @, all primes in 7;(Z) for j # ¢ and the prime (2).
Now suppose that |T| > 1. If iehar & T, we let Fp be the zero map. So suppose that ichay € T
and take T € Cp. From the induction hypothesis it follows that for all 7/ C T there exists an
expansion map

(prl(m( ))prz(m(w))> ’

Prps_ iy 3 @pry (i, (@)Pra (i, (2)

in which all primes in @, all primes in 7g/_77(Z), (2) and oo split completely. In particular,
it follows from Proposition [2.16] that

Prr_i 3 @)ipry (i, (3))Pra(miy (@)

char

exists. Furthermore, we know that the Frobenius symbol of a prime in @, a prime in wg_7(Z),
(2) or oo lands in

Z(Gal(L (6, |,

Indeed, recall that L(

)01 (Figy g ()1 (i, () Q) = T2

char}

o G} @iPr (mig, L (@)Pra (i, (j))) is a central Fs-extension of

Q ({\/prl(ﬂ—l( ))pTQ(WZ( )) (S T}) ’ H L(¢7rT/,{iChar}(f);prl(ﬂichar(a’c))prz(mchar(i)))

T'CT
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by Proposition Now let Fr be the map that sends z € Or to

Drp_ iy @ipry (migy  (@)pra(miy (@) (FTOD(q)),
where ¢ is a prime divisor of @), a prime in mg_7(Z), (2) or co. Since Frob(g) lands in the
center, it follows from Lemma that Fp satisfies equation (6.1). O

Our next theorem is our final reduction step. We will reduce to spaces of the shape
X(a, @, {Art; }oa<k<m) N Z with Z a great product space.

Theorem 8.13. There are real numbers A, Nog > 0 such that for all reals N > Ny, all integers
m > 3, all integers r satisfying equation , all integers 0 < k < r, all excellent (N, k,r)-
boxes X, all (N, m)-generic a : My, UM, g — Fy for X, all Pellian sequences of Artin pairings
{Arty }o<kem, all non-trivial linear maps F' : Mat(ny, + 1, np,Fa2) — Fa, all variable indices

S for F, all a-consistent QQ € Hie[kgap]—s X, and all great product spaces Z

> (F(Arty,))| < A X@QAOZ]

e X (0.0 {Art o<k am)NZ (log log log log N ) me™

Proof that Theorem [8.13 implies Theorem [8.10, We set

kgap
R .= {ee g J

and we let Zp,,¢ be those z € X satisfying

= (a(i, j)) for all distinct 4,5 € S".
(5) ety

Choose a sequence Z1, ..., Z; of maximal length satisfying the following properties
e cach Z; C Z. is a great product space;
e we have that [Z; N Z;| <1 for all distinct ,j € [t];
® every z € Zpe is in at most R of the Z;.

Define Zpre bad to be the subset of 2 € Ze that are in less than R of the Z; and write § for
the density of Z,re paa in Xpre.

As a first step we aim to upper bound . By a straightforward greedy algorithm we can
find a subset W of Ze paa of density at least 6/RM]" such that [W N Z;| <1 for all i € [t].
We apply Proposition with the additive system from Lemma with W equal to C&°.
This shows that the density of C%° in Cube(Xpre, S’) is at least

3m
§ = d
T 2(|S'\+100)~(kgap+|S’|+100)RMgn ’
OX
Now given zg € W, we define

W(zg) ={x € W : c(xg,z) € CF°},
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where ¢(xo, ) is the unique z € Cube(Xpye, S’) such that

pry(mi(Z)) = mi(20), pro(mi()) = mi(z).

There is a natural injective map from C%* to the disjoint union of the W (xg) as xo runs
through W. This map sends Z to the unique pair (w,zp) € W x W satisfying

mi(w) = pry(m;(z)) for all i € S, m;(x0) = pro(m;(z)) for alli € .

Hence we deduce that
O] < [ Xpre| - max [W(zo)],
roEW

so that there exists xo such that the density of W(xp) in Xpre is at least ¢’. Fix such a xo.
Now if we were to find subsets W; C X;(a, Q) such that |W;| = My and

H Wi € W (xo),
€S’

we could extend the sequence Z1,..., Z; to a longer sequence. Since this is impossible by our
choice of Z1,...,Z;, we apply the contrapositive of Lemma to deduce that

log min;e s | X;(a, Q)|
log 6’1 )

It follows from equation (8.14) and equation (|7.1]) that

S5Mpe. >

= a
[Xi(a, Q)] = e
for N sufficiently large. We conclude that
§ < emaeEr (8.17)

for N sufficiently large. Now we split

ST UF(Artne))| < S UF(Arte))| + 1] (8.18)
r€X (a,Q,{Artg o<k <m) €X (a,Q,{Artk}o<kam) r€X(a,Q)
g1 ()& Zpre,bad 751 (2)€Zpre,bad
with the latter sum fitting in the error term by equation and two applications of
Proposition [7.6] (namely to X (a, Q) and to the subset of X (a, Q) projecting to a given element
in Zpre, bad)- So it remains to deal with the former sum.
Now for z € X (a,Q) with 7g/(z) € Zprebad, We write A(x) for the number of i € [t] for
which x € Z We will compute the first and second moment of A(z), and then use this to
bring Theorem [8.13|into play. We have

2. M@= > > D) Ly

zeX(a,Q) 2€Zpre  z€X(a,Q)i€[t]
FS’(x)QZpre,bad ZgZpre bad TI'S/( ):Z
= > D |X(a,QnZinmg'(2). (8.19)
2€Zpre iE[t}
Zgzpre,bad
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Fix some z € Zpre \ Zpre,bad- Define
L(Q) = O(V=T} U{/m5(2)  j € 8} U {y/5(@)  J € [haap] — 5'}).
Write d(Mpoyx, m) for the degree of L(Q)M,(Z;) over L(Q). Crucially, d(Mpox, m) does not

depend on ¢ by Lemma and Lemma Since our box X is Siegel-less, the Chebotarev
density theorem [42, Proposition 6.5] yields for i > kgap,

Xi(a, QMo (2))| = X;‘l((‘j\foj ij)}” (140 (e ).

Here we use equation (8.3) and a well-known result of Heilbronn [23] to deal with potential
Siegel zeroes. It follows from two applications of Proposition to the preboxes

[I Xi@@x{z}).2|, [ Xia.Q M(2),2

i€[r]—[kgap] i€[r]—[kgap]

that

L X@Qnagl() o
|X(CL, Q) N ZZ N Mg (Z)‘ - 1Z€Zz‘ ’ d(MbOX7 m)rfkgap <1 +0 (6 )) :

Continuing the computation in equation (8.19) gives

S A= fiX(a, Q)| (140 (), (8.20)

r—Kkga
z€X(a,Q) d(MbO)” m) o

g1 ()& Zpre,bad

since every z € Zpre \ Zpre,bad 1s in precisely R of the Z;. Having computed the first moment,
we now consider the second moment

> A@)?
z€X (a,Q)
gl (z)gzpre,bad

For distinct ¢ and j, we see that the assumption |Z; N Z;| < 1 gives that L(Q)MO(Z)MO(Z)
has degree d(Mypox, m)? over L(Q) by Lemma [6.8 and Lemma Then, following the first

moment computation, we obtain

R*|X(a,Q)| e
EXX(:Q) Ala)’ = d(MboJ(,mC)lz(’"kgap) (1 +0 (e e p)) : (8.21)

gl (:17) gZprc,bad

It follows from equation (8.20)), equation (8.21)) and Chebyshev’s inequality that outside a set
of density O(e~*sr/2) in the set of x € X (a, Q) satisfying ms () & Zprebad, we have that

—kgap
4

R
A(Mpox, m)"~Feer

Re
-~ d(Mbox7 m)rfkgap .

Alz) — (8.22)
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Recalling equation (8.18)), it suffices to bound

S UF(Artma)|-
z€X (a,Q,{Artg o<k cm)
Tt (m)gzpre,bad

By the triangle inequality this is bounded by

m)"—kgap
d(Mpox, m) . Z Z U(F(Artmg))| +

R _
i€lt] e X (a,Q{Arty}a<ham)NZ;

d( My, m)"Feo
Y UF(Arty) - Do T 5 > FAr)].
xeX(arQ»{Artk}2§k<’m) i€t] IEX(a,Q,{Artk}2§k<m)ﬂZ

TSt (3}) gZpre,bad

(8.23)
It follows from Theorem that the former sum is bounded by

d(Mboxa m)r—k‘gap

A 100c
R - (loglogloglog N)me™

Y IX (@, Q)N Zi.

1€t]

Now observe that

Y IX@enzi< Y, A+ Y, R

ielt] r€X(a,Q) r€X(a,Q)
Ury (w)gzpre,bad gt (I)EZpre,bad

To bound the first term above, we use equation . For the second term, we use equation
and the argument immediately following equation ([8.18|).

Finally, to deal with the latter sum in equation , we first take care of the points
projecting to an element in Zj,;¢ pag- Then it remains to bound

d(Mb X’m)r—kgap
> UF(Artpg)) — = > > U(F (At )|,
meX(anu{Artk}2§k<m) iG[t] xEX(a,Q,{Artk}2§k<m)ﬂZ
751 () Zpre,bad Tl (m)gzpre,bad

which is at most

I
R

Ax)].

z€X (a,Q,{Arty }o<k<m)
gt (aj)gzpre,bad

We split the above sum depending on whether x satisfies equation (8.22). To deal with the x
failing equation (8.22)), we use the trivial bound A(z) < R. This completes the proof. O
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8.4 Finishing the proof

It remains to prove Theorem The main technical input that we need is an additive
system as in Proposition which we will construct in the first part of the proof.

Proof of Theorem[8.13 For every non-zero v € V, 2 and for every z € X (a,Q), we choose a
raw cocycle (¥;(z,v))o<i<t(z,v) Such that

Yi(z,v) = Z X7;(x)
1<5<r
71']'(1)):1

with ¢(z,v) maximal among the set of such raw cocycles. Recall that we fixed a basis

wl,...,wm,R
of Vg 2 such that
Wi, ..., Wp,, R
is a basis of B; for all 2 < i < m, where we recall that n; := —1 + dimp, B; (we also set

ny := ny). We also remind the reader that we fixed a pair of integers (ji, j2) associated to
the linear map F' : Mat(n, + 1, nm,, Fo) — Fa.
Desired properties of an additive system

We start the proof by constructing an additive system A = (Cp, C%°, Fr, Ar)rcs on (2,8 )
such that

(a) CF° = X(a,Q,{Arty}acrem) N Z;
(b) A is (2(maxt10)(nmax+2m+10) " §)_acceptable;

(c) suppose that we are in case I. Then we have for all z € C(2)

(EF)E) = bng_(, | @)ipr (i, (@)Pra(miy, (2)) (FrOD(OI1 (Tigy,q, (7)) +
(bwsf ~Lignae} @)iPT1 (T (2))Pro (i, (7)) (Frob(pr2 (ﬂ-iChcb (E> ) )) )

where F' : X(a, Q, {Artg fo<kem) N Z — Ty is the function that sends z to F(Arty, z).
If we are in case I1, I11 or IV, then we have

(EF,)(E) = ¢7r5/ (i);—l(FrOb(prl (Ticnen (2)))) + ¢7rS/(a‘c);—1(FTOb(pTQ(ﬂ'iCheb (Z))));

(d) suppose that we are in case I. Let [T| < m and let 1 < j < njp1;. Denote by W the set
{71,752} if j1 < dp, and {ja} otherwise. Then we further demand that z € C2° implies
that

o if T CS" — {ichar} or j < nyy, we have

Z ¢‘T‘($,wj) =0 (8.24)

T€F(D)

for j & W;
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o if i € T, we have
Z (@, Wie) = Gy, @)ipry (migy,, (8)Pra(mi g, (0)) (8.25)
zE€T(D)
e if icpar € T, we have
> Wy, w,) = 0; (8.26)
2€z(2)
o if ichen € T and j; € W, we have
Z Vi) (2, wj,) = 0; (8.27)
2cz(2)
o if T £ &, we have
7 W (@ w) (r @) =0 (8.28)
zcz(2)
forallie S—1T.

If we are in case I, I11 or IV, take @ CT'C S and 1 < j < njp41. Now suppose that
we are in case I1. Then Z € C7*¢ implies that

e if T C S orj < ny, we have

> Yy, wy) =0
r€Z(D)
for j # joi
e if T # &, we have
Z ¢|T|+1(~"U7wj)(0m(i)) =0

z€T(D)
for j #Zjsandallie S —1T;
o if iCheb ¢ T, we have

Z ¢\T\($7wj2) = 0;

z€T(D)

o ifiche €T and T # &, we have

S i, 10,) (0, 2) = 0

z€T(D)
forallie S —T.
Next we deal with case I11. In this case we demand that z € C3° implies that

e if T C S orj < nyy, we have

> Yy, wy) =0

T€Z(D)

for j # jo;
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e if T # & we have
Z w|T|+l($7wj)(O-7r¢(i)) =0

zE€T(D)
for j# joand alli e S —1T;
o if ichep € T, we have

Z w|T\(xa Wy, + R) =0;

zez(2)
o if icpep € T and T # &, we have
Z ¢|T|+1<wij2 + R)(Jm(i)) =0
zcz(2)
forallie S—1T.

Finally, suppose that we are in case I'V. Then we will ensure that € C3*° implies that

e if TC S orj<n,,, we have
Z w\T\(wij) =0
2€%(2)
for j & {j1,jo}. Furthermore, we have
Z ¢|T\(l‘, Wiy + Wy + R) =0;
2€%(2)

e if T # & we have
Z ¢|T|+l(‘r7wj)(o-7ri(i)) =0

z€T(D)
for j & {j1,j2} and all i € S — T, and furthermore
Z w|T|+1 (.’L‘, Wi, + Wi, + R)<Jrrz(:?:)) =0
zex(2)
forallte S —1T;
o if ichep € T', we have

Z w|T|(wij1) =0

z€Z(D)
and

Z Yiry(x, wj, + R) = 0;

r€T(D)
e if icher € T and T # &, we have
Z 7/}|T\+1(xa wj1)(0-7ri(f)) =0
z€Z(D)
foralli e S —T and
Z ¢|T|+l<m7 Wi, + R)(Jm(i)) =0
zez(2)

forallie S—1T.
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To achieve this, we will first put
C5 = X(a, Q. {Art}azkeam) N Z,

so that 2 indeed satisfies property (a). Observe that an additive system 2 is completely
determined by CZ° and the maps Fr. Our goal is now to construct the maps Fr : Cr — Ap
(with |Ap| < 2(tmaxt10)(nmax+2m+10)) guch that property (d) holds. We will then show that 2
also satisfies properties (b) and (c).

Construction of the additive system

In order to construct Fp, we will suppose that we are in case I with the other cases being
similar and we proceed by induction on |T|. If T'= @& or if |T| > m, we let Fr be the zero
map. Let 0 < |T| <m and let 1 < j < nyp4;. We assume that 7' C S" — {icpar} if j > 1.
Now take T € Cr and define

Z w\T|(x7wj) if j # j2 or ichar €T
Pz, j) =4 5T R
’ P oy @1y (i (@)Pra (i @) T 20 Ypry(@,wy) 1§ = jo and denar € T

TE€T(D)
for j # j1. Further define
> U (w,wyy) ifdichen €T or j1 g W

Y(T, 1) = w€z(2)
0 if ichep € T and j; € W.

A priori ¢(z, j) is a 1-cochain from Gg with values in N. But since € Cr, it follows from
Proposition [2.9] that

dlb(:iu .]) = 07
so ¥(Z, ) is a quadratic character. Furthermore, using once more that & € Cr, we find that
P(,j)(0p) =0 (8.29)

for all p € {pry(mi(Z)), pry(mi(z))} and all i € T provided that |T| > 2. In case |T| = 1,
we may directly verify equation . It follows that v (Z,7) is an unramified quadratic
character of Q(y/z) for all z € z(@). Take a prime p = 7;(Z) with j € [r] —T. We claim that
the place Upg(,/z)/0(p) splits completely in the extension L(¢(z,7))Q(v/z)/Q(/x). Since
7 < nyr+1, UPg(yz)/o(p) certainly splits completely in L(¢r|(z, w;))Q(v/x)/Q(y/z) for every
x € (), and p splits completely in

L(én,_,

by assumption. This clearly implies the claim.
If N is sufficiently large, it follows from equation (8.7)) that there exists an injective map
f:[ne] = [r] =S — {1} such that

L @)ipry (i, (@))pra (i (3)))/Q

char

Wf(i)(wj) =l<<=i=
for all i,j € [ng]. Similarly, there exists ig € [r] — S — {1} such that

Tio(w;) = 0 for all j € [na].
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Choose a point zg € Z(@). Define Fr; to be the map that sends Z to the tuple

(. 1) (Frob(Upgy, )0 (mi(w0)))))

)
1<j<n|r|41,4€T

define Fro to be the map that sends Z to the tuple

((l/}(f,j)(ffmo(xo)))

and finally define Fr3 to be the map that sends Z to the tuple

1§j§”T+17i€[n2]>

: <¢(ff,j)(0wf(i)(:co)))

1<j<nip|41

Z w|TH-1 (377 wj) (Um'(a?o))

T€Z(D) 1<j<np|41,i€S-T

Since 7 s (;)(20), Tiy(z0) and m;(xo) (for i € S —T') do not depend on the choice of g € 7(2),
one readily verifies that Frro and Frr 3 satisfy equation . We will now argue that Fr 1 also
satisfies equation (6.1). To this end, observe that (@) C X (a) by our choice of C3*. From
this we deduce that Fr; also does not depend on the choice of xg. Then Fr; also satisfies
equation . Finally, we define Fr to be the map

(Fra, Fra, Frs)

in case T'C S’ — {ichar}- In case T is not a subset of S" — {icpar}, we define Fp in the same
way, except that j runs up to ny, instead of np|4; in the definitions of Fr; and Fr2. Having
constructed the map Fr, we will now verify that C3° satisfies property (d).

Verification of property (d)

Let Z € C¥¢, so that Z € Cp and Fr(z) = 0. In particular Fr3(Z) = 0, so equation (8.28)
holds. Therefore it remains to establish that z satisfies equations (8.24)), (8.25)), (8.26|) and
, which is equivalent to showing that (7, j) = 0 for all 1 < j < njp4q. In case |T| = 1,
this follows from our choice of variable indices. So henceforth we will assume that |T'| > 1.

In order to show that (Z,j) = 0, we first observe that L(¢(Z,))Q(v/z)/Q(y/x) is an
unramified extension for every x € z(&). Indeed, this is a consequence of the vanishing of
Fr 3(y) for all @ C T C T and all y € Z(T"): it is at this point that we make essential use
of the assumption |7'| > 1.

Next we claim that ¢(z,j) € V,2. Let x € Z(@) and let p = m;(z) for some i € [r].
We have to show that UpQ(ﬁ)/Q(p) splits completely in L(¢(Z,j))Q(v/x)/Q(y/x). In case
i € [r] — T, we have already established this, while for ¢ € T' this follows from the vanishing
of Fr(z). This establishes the claim.

We are now ready to prove that ¢(Z,j) = 0. Indeed, since ¥(Z,j) € Vg2, we can write
Y (Z,j) as a linear combination of R and the elements wy. But Fr2(Z) = 0 implies that
¢(Z, ) vanishes on o, () for all z € Z(&), so ¥(7,j) must in fact be a linear combination
of the elements wy. Using once more that Frs(Z) = 0 and the definition of the injection
f i [ne] = [r] =S — {1}, we conclude that ¥ (z, j) = 0.

So far we have constructed an additive system 2 satisfying properties (a) and (d) such
that |Ap| < 2(tmaxt10)(Pmax+2m+10) - We will now show that this implies properties (b) and
(c), and we will do so case by case.
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Verification of property (b) and (c) in case [

We start with case I. Take z € C(21). If z € C(2) is degenerate, then property (b) and (c)
hold. So suppose that Z is not degenerate. By definition of C'(21), it follows that

HS — {ih N Oy # 2.

Fix for every i € S an element Z; in the intersection (S — {i}) N C§ ;- Then there exists a
unique z¢ € Z(@) such that xo ¢ z;(&) for all i. For all 21 € (&) with x1 # xp, we see that
there exists ¢ € S such that z; € Z;(@). In particular, we deduce that x; € C&°. Therefore it
is enough to show that zg € C2°° to conclude that 2 is (2(max+t10)(max+2m+10) | §)_acceptable,
i.e. property (b) holds.

To start, we see that zo € X (a). We will show that

Arti,xo = AI‘ti

for all 2 < i < m by induction on i. Since i < m and |S| = m + 1, we can pick a subset T
of S such that |T'| =i and T does not contain icpep OF ichar- We apply Theorem to any
element y in z(T") containing zo. Since z; € g"_c{j} for all j € T, it follows that

(9(2), (1) (%, W) wey(@)—fzo} X(WE))

is a minimal triple for all 1 < k < np|, where x(wy) = 1 (7, wy) for any choice of x € y(2).
We emphasize that ¢ (x,wy) does not depend on the choice of z € §(&) by our choice of
variable indices and our choice of T'. Now take an element b € A If there does not exist
l € T with m(b) = 1, then we deduce from Theorem that

Art; z, (b, wi) = Art;(b, wy).

Now suppose that there exists [ € T with m;(b) = 1. By our choice of variable indices, we see
that there does not exist | € T with m(b+ R) = 1. Therefore it follows from the previous
case that

Arti,xo (b + R, wk) = Arti(b + R, wk).

But Theorem yields
Art@xo (R, wk) = Arti(R, ’wk),

50 A is (2(maxt10)(Mmaxt2m+10) " G)_acceptable in case 1.
We will now show that property (c) holds in case I. Let £ € C(2) and let § € z(S —
{iCheb}). It follows from Theorem and Theorem that

0 if k % j
D Attmy(onwr) =9 2 Org @i, @), () (Frob(mi())) i £ = 7o
yei (@) (o)t

forall 1 < k,l < n,,, where we impose the additional condition [ # js if jo < d,,. Now suppose
that [ = jo with j5 < d,,. Then Theorem applied to the cube § € Z(S — {ichar}), gives

Z Artmy(%, wg) =0
yey(9)
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for all 1 < k < n,,, where we impose that k # j; if j; < d,,. Using the above equations for
both choices of ¢, we obtain the identity

> Arty, e (v, wi) =0 (8.30)

2€3(2)
for all pairs (I, k) satistying (I, k) € {(j1, J2), (J2, J1)} if 41, j2 < d, and all pairs (1, k) # (41, j2)
otherwise. We also get the identity

D Artyn e (0, W) = Gy, tray @1 (i (@))prs (i (@) (FTOD(PT (i, (7)) +
2€x(2)

¢7TS/ lichar) (®);pr1 (i, (@))Pra(miyy (7)) (Frob(prQ (TriCheb (f) ) )) : (831)

We now apply part (ii) of Theorem to a cube § € (S — {icheb}). This yields

> Artyn (R wy) =0 (8.32)
yey(9)
if k # jo. Similarly, part (i7) of Theorem gives for g € Z(S — {ichar})
> Artyy(R,wj,) = 0. (8.33)
yey(2)

Adding up equation (8.32]) and equation (8.33)) for the two choices of g, we conclude that

> Arty, (R wg) =0 (8.34)

z€T(D)

for all 1 <k < ny,. Equation (8.30, (8.31)) and (8.34]) and the shape of F' imply that

(ZF)(z) = ¢7TS’7{ichar} (@)3pr1 (Wi, (B))PT2(Ti gy, () (Frob(pry (Tig,,.,, (2))))+
Prgr ooy @1 (T, (@)pra (i, () (FTOD(PL2(Tigy e, (7))

as desired.

Verification of property (b) and (c¢) in case I]

We will now deal with case I1. We will start with property (b) and adapt the notation from
case I. Solet z € C(2) and let g be the element of Z(&) not in any of the z;(&) (for the
definition of z;, see case ). We have to show that

Arti,xo = AI‘ti

for all 2 < i < m. Since |S| = m in this case, we can find a subset T' of S with |T| = i and
icheb € 1. Take y € Z(T'). Then

(5(2), (W) (2, wk)) weg(@)—{zo} X (Wk))
is a minimal triple for all 1 <k < nj|. Proceeding as in case I gives

Arti,xo = Arti .
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Our next task is to verify property (c) in case I1. Take £ € C(2). By construction of the
variable indices, we know that

F= > cyiFisjn  Cisis € Fa
1<j3<nm+1
where cj, ;, satisfies
® Cjs.ja = Cjy,js for all 1 < 73,74 <
o cjy = 0if ng > g3 > dyy or Ny > s > di;
® Cppilgo = L.
We deduce from Theorem [5.10] that

Z Artmvx(vl,wk) =

TE€T(D)

Let g € 2(S — {ichep}). Theorem implies that

> Attpy(Rowe) = Y brg @1 (Frob(mi())).

0 for all [ # js and all k # js if jo < d,,
0 for all k # jo if jo > dp,.

€ 1<ilr
yey(9) e
Therefore we get
> Arty, o (Rwg) =0 (8.35)
T€T(D)

if k # jo and

Y Attma (R, wp) = brg, (a1 (Frob(pry (igy, (2)))) + by, (2)1 (Frob(pry(igy,,, (2))))

T€F(D)

(8.36)

if kK = jo. Now suppose that jo < d,,. Then, since m > 3, we apply Theorem [5.6] twice to
obtain

Z Artyy, 2 (wj,, wj,) = 0. (8.37)
TE€T(D)

Since we are working with pairings valued in Fy, we have the identity
Arty, 2 (v, Wy, ) + Arty, o (W), V1) = Aty 2 (v, 01) + Arty, 2 (W5, , W), ) + Arty, o (v + w5y, v +Wj,)

for all I < d,,. Six applications of Theorem [5.6] show that
Z Arty, 2 (v, Wy, ) + Arty, 2 (wj,,v) =0 (8.38)
©€%(9)
for all [ < d,,,. It follows from equations (8.35)), (8.36)), (8.37)), (8.38]) and the properties of

Cj3,ja that

(EF/)( ) ¢ﬂsl(1’ 71(Fr0b(pr1(7r7vcheb( )))) + ¢Tr5/ 1(Fr0b(pr2(ﬂ-icheb (i'))))

as desired.
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Verification of property (b) and (c) in case [I]

We will now treat case I11. Let us verify property (b) first. In case I1] we can expand F' as

F= Z CigjaElsjas  Csga € Fo,
1<j3<nm+1
where c;j, ;, satisfies
® Cj3,ja = Cja,ja for all 1 < j3, 4 < Ny
® Cjz,j4 = 0 if j3 > dm or j4 > dm;
e cp+1k =0 forall 1 <k < ngy;
®* Cjjp = L.

Take € C'(2) and define zp to be the unique element of Z(&) outside of all the z;(&). Again
we have to show that
Artmo = Art;

for all 2 < i < m. Because |S| = m, there exists a subset T of S with |T| = ¢ and ichep & T

Fix a choice of § € Z(T') containing xy. We now apply Theorem to the minimal triple
(g(@), (¢\T| ("E, wk))zeg(@)—{cco}a X(wk))

for k # j2 and the minimal triple

(y(2), (¢\T|(x7 Wy, + R))xeg(g)—{xo}a X(wj2 + R)),

where x(wj, +R) = ¥1(y, wj, + R) for any choice of y € 7(&). Note that this does not depend
on the choice of y precisely by our choice of variable indices. This gives property (b).
As for property (c), take z € C'(2() and take § € Z(S — {ichep }). Theorem [5.7] yields

7 Aty (Wi wi) = Y Gy (@)1 (Frob(mi(7))).
YEY(D) 1<i<r
T (’wj2 +R):1
We conclude that
Z Artm,x (wj27 wjz) = d)frsx (a’c);fl(FrOb(prl (TriCheb () + ¢7r5/ (Z);—1 (Frob(pr, (ﬂ'ic}]eb (2)))).

z€T(D)

(8.39)
Take some [ < d,, satisfying [ # jo. Using Theorem twice, we obtain

> Arty, (v, v) =0. (8.40)
z€z(2)
Following the argument that led to equation ({8.39)), we show in a completely analogous fashion
that

Z Arty, o (v + wjy, v + wjy) =

z€T(D)

¢7rs/(i);—1(FrOb(pr1 (ﬂ-iCheb (j)))) + ¢7rsl(:i);—1(Fr0b(pr2 (Trioheb (g_j)))) (8'41)
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for all I < d,, with [ # js. Recalling the identity

Aty 2 (v, Wy, )+ Arty, o (W)y, v) = Arty, o (U1, U1) + ATt 2 (W), W)y ) + ATty 2 (v + w5y, v+ w5, ),

we get from equations (8.39)), (8.40) and (8.41))

Z Arty, o (v, wjy ) + Arty, o (w5, v1) = 0. (8.42)

z€T(D)

If we take k and [ both not equal to jo, then we have the equality

Z Arty, o (v, wi) + Arty, o (wg, v) =0 (8.43)

T€ZT(D)

as a consequence of Theorem From the shape of F' and equations (8.39)), (8.42) and
(8.43), we conclude that

(BF)(Z) = by (3);—1 (Frob(pri iy, () + brg, (@)1 (Frob(pra(mic,,, (7)))),

which finishes the proof of property (c) in case IT1.

Verification of property (b) and (c¢) in case IV

Finally, we deal with case I'V. In case IV we can expand F as

F= Z cj37j4Fj3,j47 Cis,js € [y,
1<jz3<nm+1
1<ja<nm

where c;j, ;, satisfies

® Cjyju = Cjyjy for all 1 < s, ju < nm;

® Cj3js = 0 if 3 > dy, Or Ja > dm;

e Cp+1kx =0 forall 1 <k < nyy;

o ¢ =0forall 1l <k <dpy;
1.

® Cjrjo =

Suppose that we are given z € C (). Then let o be the unique element of (&) outside of
all the z;(@). For property (b), we need to establish that

Arti,xo = AI‘ti

for all 2 < ¢ < m. We will proceed as in case I1I. Because |S| = m, we may and will choose
a subset T of S with |T'| =i and icher € 1. Take y € Z(T") containing z¢. Now we are in the
position to apply Theorem to the minimal triple

(D), (Wr)(x, wk)) eey(2)— {20} X(WE))

for k # js and the minimal triple

(g(@), (¢\T|(x7 Wy, + R))a:eg(g)—{zo}v X(wjz + R))’

103



where x(wj, + R) = 91(y, wj, + R) for any choice of y € 3(&). This yields property (b) in
case I'V.

It remains to deal with property (c). Let | and k be distinct and bounded by d,,. If
{l, k} = {j1,j2}, then Theorem yields (applied to the character x(wj, + v, + R))

Z Artm o (wj, + vy, wi, +v5,) = 0.
©€z(2)

Now suppose that {l,k} # {j1,j2}. It follows from Theorem and Theorem that

Z Artmw(wk + vy, w + Ul) =0

2E€T(D)
if jo & {k,l} and

Z Artyy, 5 (Wi + v, wi + ;) =
2€2(2)

Prg ()i 1 (Frob(pry (Ticye, (7)) + Pry, (@);—1 (Frob(pra (i, (7))))

otherwise. Furthermore, we deduce from Theorem [5.6] and Theorem [5.7] that

Z Artm,x(wk,wk) =0

T€E(D)

if k # jo and

Z Artm,x (wjz ) wjz) = (z)frsx (z);—1 (Frob(pr; (TriCheb () + ¢7TS’ (z);—1 (Frob(pr, (ﬂ-icheb (2)))).

2€T(D)
Using the identity
Arty, o (v, wg) + Arty, o (Wi, v1) = Arty, o (vg, vp) + Arty, o (Wk, wi) + Arty, o (v + Wy, v + wy)

once more, this shows that

(EF)(Z) = bry (@) -1 (Frob(pry (Tigye, (7)) + brg (2);-1 (Frob(pra(ic,,., (7))

as desired.

End of proof

The final step of the proof is very similar to the proof of Proposition 8.5 in Smith [42]. Let o €
Gal(Mo(Z)M(Z)/My(Z)). Define X;(a,Q, Ms(Z),0) to be the subset of p € X;(a,Q, Ms(Z))
such that Frob(p) = o. This is well-defined, since Gal(Mo(Z)M(Z)/M.(Z)) is a central
subgroup of Gal(M.(Z)M(Z)/Q). We apply the Chebotarev density theorem [42], Proposition
6.5] to the extension L(Q)M.(Z)M(Z)/Q to deduce that

_ [Xi(a.Q. M (2)))

|XZ‘(CL,Q,MO(Z)’O-)| 2(Mbox*1)|sll

: (1 + O(e—kgap)) (8.44)
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for i > kgap, where we deal with potential Siegel zeroes by appealing to [23] and where we
used Lemma [6.7| and Lemma to compute the size of Gal(My(Z2)M(Z)/Ms(Z)).
Given an element
onst € H Xi(anaMO(Z))7

i€[r]—[kgap]

1#1Cheb

we define Z(onst) to be the subset of # € Z such that W[r]_[kgap}_{ic}‘eb}(ib) = Qpost- We
call @post unevenly distributed over the Chebotarev classes if there exists an element o €
Gal(Ms(Z)M(Z)/M(Z)) such that

| Xicpen (@, @ X Qpost; Mo(2))| >
2(Mbox71)|5/| -

’XiCheb (a,@ x Qpost s My (2))|
e0-5kgap . Q(Mbox*1)|5,|

|Xi0heb (a,@Q x Qpost My(Z),0)| -

)

and we call Qpost evenly distributed otherwise. The sets 7 (Qpost) cover 7 , and we will make

one more reduction step by reducing to the sets 7 (Qpost) With Qpost evenly distributed over
the Chebotarev classes. To complete this reduction step, we need to bound

> 3 LU(F(Artm.))| <

Qpost Uneven gy ¥ (a,Q {Arty }o<kem)NZ(Qpost)

2] Xy (@, Q@ Mo(Z)) - Y 1. (845)

Qpost uneven

We say that an element

Qj,post S H Xi(aaQaMO(Z))
i€[j]—[kgap)
17iCheb
is an evenly distributed candidate if the following two conditions are satisfied
e j— 1> kgap implies that W[j,l],[kgap](Qj7post) is an evenly distributed candidate;

® j = icheh implies that

< p ) < |Xi0heb (a,Q x Qj—1,post My(Z),0)|
E : 0. = 1/100

PEXicpep (,:QXQj—1,post, Mo (Z),0) i (QJ’pOSt) |ngap+1(a’ @ Mo(2))]
for all o € Gal(Mo(Z)M(Z)/Ms(Z)).

If Qpost = Qrpost is an evenly distributed candidate, then equation and a direct compu-
tation show that Qpost is evenly distributed over the Chebotarev classes provided that we take
Ny sufficiently large. We will now repeatedly apply the large sieve, as for example presented
in [42, Proposition 6.6]. This yields that the number of Qpost, that are not evenly distributed

candidates, is bounded by
[Lieri—heap) [ Xi(a; Q, Mo(Z))]

i#4Cheb

| Xhgapt1(a; Q, Mo(Z))[1/100
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if we take Ny sufficiently large. In particular, we conclude that equation ({8.45) is upper
bounded by
‘Z‘ ' Hze[r [kgap] |X (CL Q M ( ))’
| Xkgap+1(a, Q, Mo (Z))[1/100
Note that Proposition allows us to calculate the size of X (a, Q) N Z. Then we see that
121 Tieir-prgap) [ Xi(a: @ Mo(2))] X (a, Q)N Z|
|ngap+1(a’7 Q7 MO( ))|1/100 B |Xk'gap+1(a7@7MO(Z))|1/1000’

which fits in the error term. Therefore it suffices to show that there exists A > 0 such that

A-1X(a,Q) N Z(onst)|

(8.46)
(log log log log N ) me™ o

> UF(Arty, )| <

reX(a,Qv{Artk}2§k<m)mZ(onst)

for every Qpost evenly distributed over the Chebotarev classes.
We are now ready to use our combinatorial results from Section [6] We remark that the
space

X (a,Q) N Z(Qpost)

is just the product
Z x XiCheb (a> Q X onsta MO(Z))

We now formally apply Proposition to the product set Z x [Mpox| and
1

a = 2(nmax+10)(nmax+2m+10) €=

(logloglog log N) o

Denote by go € Add(Z X [Mpoy], S) the function guaranteed by Proposition Here
we implicitly index the space Z X [Mpox] by S in the obvious way. To primes pi,...,pa,,.,

we associate the element gp,,..p,, € Add(Z X [Mpox,S) by mapping a cube (Z, (i,j)) €
Cube(Z X [Mpoy], S) to

We observe that € < a~! and log Mpox > Acomn - 6™ - log e by definition of c.

Prsr iy Eiprs (Wi (2)prs (i (2) FTOD(D)) s, @yipry (i (2)prs (i, (2)) (FTOD(D))

in case I and
¢z-1(Frob(p;)) + ¢z-1(Frob(p;))

in case 11, II1 or IV. Our goal is now to partition Xj,, , (a,Q X Qpost, Mo(Z)) as

XZCheb (a Q X onsh =L U U Az, (8.47)

where each A; = {pi1,...,Pim,,, } is an ordered set (so it comes with a map [Mpey] — A;) of
size M,y satisfying
Ipi1seping,,, — 90

and where |L| is small.
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To this end pick any element p; € X, . (@, Q X Qpost, Mo(Z)). We claim that we can find
D2 -+ -y PM,,, With
Ip1,pray,,, — 90-
So fix 2 < j < Mpox and consider the additive function

90(2,(1,7)) — érg_ {ichar}(E);prl(mchar(2))pr2(7richar(2))(FI'Ob(pl)) € Add(Z,5)
in case I and consider the additive function
90(27 (L])) - gbi;fl(FrOb(pl)) € Add(Za S,)

in case II, III or IV. By Lemma and Lemma there exists a unique element
o€ Gal(M(Z)M(Z)/M(Z)) such that

g0 (27 (17 J)) - ¢7r5/—{ichar} (2);pry (mchar (2))pry (ﬂichar (2)) (Frob(pl)) =

Prgr_gi (@i (2)pra(ry . ()(0)

char
in case I and

90(%, (1, 7)) — ¢z-1(Frob(p1)) = ¢z-1(0)
in case I1, I11 or IV. Now pick p; such that Frob(p;) = 0. Note that ¢ implicitly depends

on our choice of p;. In fact, o is a fixed linear shift of Frob(p;). Using additivity in the last
coordinate, we directly check that

Ip1,pnr,,, = 90

Since Qpost is evenly distributed in the Chebotarev classes, we can repeatedly use the above
procedure to get a partition as in equation (8.47)) with

’XiCheb ((I, Q X onstu MO(Z))’

L] < 20-25kgap

provided that we take Ny sufficiently large. From this, we obtain that

Z] | X5 . a,Q X Qpost, Mo(Z
Z L(F(Artm’x)) §| | | Ch b(60.25kgapp t ( ))|

2€X(a,Q,{Art) }2<k<m)NZ(Qpost)(Zx L)

(8.48)

Let 2; be the additive system on Z x [M}x| obtained by restricting 2 to Z x A; and then
using the map [Myox] — A; (coming from the fact that A; was an ordered set). By properties
(b) and (c) of &, it follows that 2; is (a, S)-acceptable and that

(ZF")(7) = g0(7)
for all z € C(2;). By the defining property of gg, see Proposition this implies that

> WF(Arty.))| <€ |Z x Ayl (8.49)

zGX(a,Q,{Artk}2§k<m)02(onst)ﬂ(Z><Ai)

Equation (8.46) now falls as a consequence of equations (8.47), (8.48) and (8.49), which

completes the proof. O
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