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HOMOTOPY COHERENT NERVES OF ENRICHED CATEGORIES

LYNE MOSER, NIMA RASEKH, AND MARTINA ROVELLI

Abstract. We study several flavors of homotopy coherent nerves for enriched categories, in the
form of right Quillen functors valued in simplicial objects. In particular, we extract explicit

models for the (Segal) Reedy-injective fibrant replacement of the ordinary nerve of an enriched

category. In the case of interest of categories enriched over complete Segal Θn−1-spaces, we also
provide an explicit completion for its ordinary nerve. This is then used to obtain a direct Quillen

equivalence between categories enriched over complete Segal Θn−1-spaces and complete Segal

Θn-spaces.
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Introduction

I. Enriching over an∞-category. Many techniques in higher category theory involve the study
of categories enriched in some sense over a monoidal∞-category. Often, the monoidal∞-categories
are in fact cartesian closed∞-categories, namely they admit finite products and have internal homs.
Examples of interest include enriching over the∞-category of spectra with the smash product, the
cartesian closed ∞-category of spaces, or the cartesian closed ∞-category of (n − 1)-categories.
Enriching over those in a suitable sense leads, respectively, to the notion of spectral ∞-categories,
∞-categories, and n-categories. Above all, our motivating example is the cartesian closed ∞-
category of (∞, n− 1)-categories, for n ≥ 1. The procedure of enriching over (∞, n− 1)-categories
defines (∞, n)-categories.

Traditionally, there are (at least) two ways to produce categories enriched in some sense in a
cartesian closed ∞-category M.

(1) One can first consider the ∞-category M∆op

of simplicial objects in M, and localize to obtain
the ∞-category M∆op

Seg of Segal objects in M. This would be considered a way to produce
the ∞-category of categories internal to M. If then M allows for a notion of completeness
(including an appropriate constantness condition), one can further localize to obtain the ∞-
category M∆op

Seg,comp of complete Segal objects in M.

(2) If M can be presented using a nice model categoryM (meaning excellent in the sense of [Lur09,
§A.3]), there is a model structureM-Cat on the category of categories strictly enriched overM,
in which weak equivalences are homotopically essentially surjective functors that are local weak
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equivalences. One can then consider its underlying ∞-category [M-Cat ]∞. This ∞-category
ends up being equivalent to the ∞-category CatM∞ of ∞-categories enriched over M obtained
through the machinery from [GH15], as shown in [Hau15].

The expectation is that the∞-categories M∆op

Seg,comp and [M-Cat ]∞ obtained by implementing the
two viewpoints should be equivalent in cases of interest. Thanks to a zigzag of Quillen equivalences
due to Bergner–Rezk [BR13, BR20], we know this is the case for our major application, namely
when M := Cat(∞,n−1) is the∞-category of (∞, n−1)-categories, which can be presented by Rezk’s

model category for complete Segal Θn−1-spaces [Rez10]. In this case, the ∞-category M∆op

Seg,comp

arises as the collection of (∞, n)-categories presented by complete Segal objects in a model of
(∞, n− 1)-categories, while the ∞-category [M-Cat ]∞ arises as the collection of (∞, n)-categories
presented by categories strictly enriched in a model of (∞, n − 1)-categories. Such a comparison
in a different framework is also treated in [GH15, §6].

In the scope of our research program, we are after an explicit equivalence between the homotopy
theories of M∆op

Seg,comp and [M-Cat ]∞, even induced by a direct Quillen equivalence between the

corresponding model structures M∆op

Seg,comp and M-Cat , at least when M is a cartesian closed

model of (∞, n − 1)-categories for some n ≥ 1, e.g. the said model category on Θn−1-spaces by
Rezk. We explain in Section IV how such a direct Quillen equivalence is important towards the
goal of defining a consistent theory of (weighted) limits and colimits valued in an (∞, n)-category
presented by different models.

In this paper, we construct a Quillen equivalence between categories enriched over complete
Segal Θn−1-spaces and Rezk’s model structure for Segal complete Θn-spaces [Rez10] tailored to
our scopes. Upon completion of this manuscript we learned that, using different techniques, Gindi
constructed in [Gin21] a Quillen equivalence between a model category of enriched categories and
a certain model structure on Θn-sets, which is based on work by Oury [Our10]. The two Quillen
equivalences share similarities at the pointset level, and are possibly directly comparable. However,
making a precise statement about their relationship at the homotopical level would at least require
understanding how the model structure considered by Gindi compares with Ara’s model structure
for n-quasi-categories [Ara14], which is to our knowledge an open problem. Currently, this has
been addressed for n = 2 by Maehara [Mae20], and we did not investigate further the case of
general n. More ideas on this discussion can be found at [Gin19].

II. The ordinary nerve of enriched categories. We now turn to describing how to relate
M-Cat to M∆op

and its localizations M∆op

Seg and M∆op

Seg,comp. There is a naive way to try and encode
explicitly the enriched categorical information into a simplicial direction via a nerve construction,
which we recall in Section 1. Precisely, given anM-enriched category C, one can form an object NC
of M∆op

given in component 0 by the set (NC)0 := Ob C of objects of C and in component m ≥ 1
by the object

(i) (NC)m :=
∐

c0,c1,...,cm∈Ob C

HomC(c0, c1)×HomC(c1, c2)× . . .×HomC(cm−1, cm),

where HomC(−,−) denotes the hom object functor of C, taking values in M.
To see that this formula gives a well-defined functor of ∞-categories, for convenience we focus

on the situation where M is presented by a cartesian closed localization M = sSetΘop

S of a model

category of Θ-shaped space-valued diagrams at a set S ⊆ sSetΘop

. There is evidence that this
framework is not too restrictive1, and it covers the majority of situations of interest for many pur-
poses. For example, the ∞-category M = Cat(∞,n−1) of (∞, n− 1)-categories fits in this framework

1Indeed, Dugger’s theorem [Dug01, Theorem 1.1] guarantees that any locally presentable ∞-category can be

presented by the left Bousfield localization of a model structures on simplicial presheaves valued in spaces. Also,
Nikolaus–Sagave [NS17, Theorem 1.1] show that presentably symmetric monoidal ∞-category is presented by a
symmetric monoidal model category.
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with Θ being Joyal’s cell category Θn−1 from [Joy97] and M = sSet
Θop

n−1

S being Rezk’s model
structure for complete Segal Θn−1-spaces from [Rez10]. Alternatively, Θ could be taken to be the
category t∆ and M = sSet t∆

op

S the model structure for saturated (n − 1)-precomplicial spaces
from [OR20].

In this context, one can easily obtain the following, that we state as Proposition 1.3.6.

Proposition. With M, Θ, and S as above, the nerve defines right adjoint functors of∞-categories

N : [M-Cat ]∞ →M∆op

and N : [M-Cat ]∞ →M∆op

Seg ,

that are induced by right Quillen functors

N : sSetΘop

S -Cat → (sSetΘop

S )∆op

proj and N : sSetΘop

S -Cat → (sSetΘop

S )∆op

proj,Seg.

However, this implementation has two issues.

(1) The functor N is bad for computations in several regards, related to the fact that NC is
essentially never injectively fibrant. Hence this requires to work with the projective model
structure M∆op

proj to present the ∞-category M∆op

, as opposed to the much more manageable

injective model structure M∆op

inj . To mention one consequent limitation, the formula for the

left adjoint is completely unexplicit (at the level of model categories it involves an unknown
projective cofibrant replacement).

(2) When M allows for a notion of completeness (e.g. when M = Cat(∞,n−1)), the functor NC
is generally not complete. Meaning, it does not define a functor valued in the ∞-category
M∆op

Seg,comp.

In this paper, we propose two variants of the construction NC – given by the homotopy coherent
nerve NC and the complete homotopy coherent nerve NcC – that in cases of interest remedy the
issues (1) and (2), respectively.

III. The (complete) homotopy coherent nerve of enriched categories. The main reason
behind the technical issue (1) is caused by the fact that the formula (i) for (NC)m is in a sense too
strict. To give a rough intuition, a point in (NC)2 consists of a pair of composable morphisms in C,
as opposed to a pair of composable morphisms in C with a specified choice of a (weak) composite.

Inspired by the classical homotopy coherent nerve by Cordier–Porter [CP86], we propose in
Section 2 a homotopy coherent variant NC for NC, and prove in Theorems 2.3.1 and 2.3.7 the
following.

Theorem A. With M, Θ and S as above, the homotopy coherent nerve defines right adjoint
functors of ∞-categories

N : [M-Cat ]∞ →M∆op

and N : [M-Cat ]∞ →M∆op

Seg

which are induced by right Quillen functors

N : sSetΘop

S -Cat → (sSetΘop

S )∆op

inj and N : sSetΘop

S -Cat → (sSetΘop

S )∆op

Seg .

When M models certain collections of higher categorical structures, there is a notion of complete-
ness for Segal objects, that encodes the fact that the objects form a space, which is determined by
the higher structure. It then also makes sense to localize M∆op

Seg to obtain the∞-category M∆op

Seg,comp

of complete Segal objects in M.

When M = Cat(∞,n−1) is presented by Rezk’s model structure sSet
Θop

n−1
(∞,n−1), the homotopy coherent

nerve NC is generally not complete. Indeed, the component (NC)0 is just the set Ob C of objects
of C, rather than the underlying space of the (∞, n)-category C. To correct this issue, we propose
in Section 3 an explicit completion NcC of NC, and prove in Theorem 3.6.2 the following.
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Theorem B. For n > 1, the complete homotopy coherent nerve defines an equivalence of ∞-
categories

Nc : [sSet
Θop

n−1
(∞,n−1)-Cat ]∞ → (Cat(∞,n−1))

∆op

Seg,comp

which is induced by a right Quillen equivalence

Nc : sSet
Θop

n−1
(∞,n−1)-Cat → (sSet

Θop
n−1

(∞,n−1))
∆op

cCS .

Our proof relies on the fact that n is at least 2. However, the analog statement does hold
for n = 1, as we treat in Section 3.2. It can be deduced by combining the Quillen equivalence
– given by the homotopy coherent nerve – between Kan-enriched categories and quasi-categories
from [Joy07, Theorem 2.10] (or [Lur09, Theorem 2.2.5.1] and [DS11, Corollary 8.2]) with the Quillen
equivalence between quasi-categories and complete Segal spaces from [JT07, Theorem 4.12].

The underlying ∞-categories of sSet
Θop

n−1
(∞,n−1)-Cat and sSet

Θop
n

(∞,n) are known to be abstractly equiv-
alent, as the model structures are connected by a zigzag of three Quillen equivalences. As a direct
consequence of our result, however, we establish as Corollary 3.6.4 the following direct and explicit
comparison.

Corollary. For n > 1, there is a direct right Quillen equivalence

d∗ ◦Nc : sSet
Θop

n−1
(∞,n−1)-Cat → sSet

Θop
n

(∞,n).

For n = 2 one could achieve a similar comparison combining work by Gindi [Gin21] and Maehara
[Mae20], but for general n we believe no such comparison exists in the literature.

IV. Limits in an (∞, n)-category across different models. The correct notion of a (weighted)
limit for diagrams valued in an (∞, n)-category presented by an enriched category over a model of
(∞, n− 1)-categories is already established as part of a more general pattern, see [Shu06].

However, even for the case n = 1, it is notably harder to work with enriched categories rather
than other models based on presheaves. In that case, instead of studying limits for diagrams valued
in a category strictly enriched over spaces, one prefers to use the notion of limit for diagrams valued
in the corresponding quasi-category, as defined by Joyal in [Joy02].

In this context, the existence of the direct Quillen equivalence between the two models of
(∞, 1)-categories given by the homotopy coherent nerve N : sSet (∞,0)-Cat → Set∆op

(∞,1) by Cordier–
Porter [CP86] was heavily exploited in [RV20, Rov21] to show that, given a (fibrant) sSet (∞,0)-

enriched category C, the limit of a diagram X → NC agrees with the limit of the corresponding
diagram CX → C. The complete homotopy coherent nerve Nc : sSet (∞,0)-Cat → sSet∆op

(∞,1) could
also be used to obtain a further comparison with the notion of limits for diagrams valued in an
(∞, 1)-category presented by a complete Segal space – as studied in [Ras17].

In a similar vein, in our research program, we plan to define the notion of (weighted) limit
for diagrams valued in (∞, n)-categories presented by a complete Segal object in complete Segal
Θn−1-spaces. Then we will deduce definitions for diagrams valued in an (∞, n)-category presented
by a complete Segal Θn-space or an n-fold complete Segal space, and show this is done consistently
with the enriched approach using the explicit Quillen equivalence constructed in this paper.

More precisely, given a (fibrant) sSet
Θop

n−1
(∞,n−1)-enriched category C, we can use the explicit Quillen

equivalences from Section III to represent the same (∞, n)-category as the complete Segal object
in Θn−1-spaces NcC, or as the complete Segal Θn-space d∗N

cC. Furthermore, every diagram
X → d∗N

cC can be represented as a diagram d∗X → NcC, or as a diagram Ccd∗X → C. We plan
to show that the limits of all these different representations of the same diagram across different
models agree, providing a consistent theory of limits for diagrams valued in an (∞, n)-category.

The approach using the model of complete Segal objects in complete Segal Θn−1-spaces is
particularly useful to formulate a notion of (weighted) limits, since it is directly contained in a
model of “internal” categories to (∞, n − 1)-categories, namely, Segal objects in complete Segal
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Θn−1-spaces. This is already apparent when treating the strict case [GP99, cM20, cM22], namely
when studying limits for diagrams valued in a 2-category. In that context, it is crucial to embed the
theory of 2-categories into that of internal categories to categories, i.e., double categories, where
more constructions become available. The upshot is that limits are for many purposes better
encoded using internal categorical structures rather than directly using (∞, n)-categories.

Acknowledgements. The paper benefited from helpful conversations with Julie Bergner and
Viktoriya Ozornova. This material is based upon work supported by the National Science Foun-
dation under Grant No. DMS-1928930 while the first and third authors participated in a program
supported by the Mathematical Sciences Research Institute. The program was held in Summer
2022 in partnership with the Universidad Nacional Autónoma de México. The third author is
grateful for support from the National Science Foundation under Grant No. DMS-2203915.

1. The strict nerve and its properties

In this section, we let Θ be a small category and S be a set of maps in sSetΘop

such that
the model structure sSetΘop

S , obtained as the left Bousfield localization at S of the injective model

structure (sSet (∞,0))
Θop

inj on the category of Θ-presheaves valued in the Kan-Quillen model structure
sSet (∞,0), is cartesian closed.

We first recall in Section 1.1 the strict (m + 1)-point suspension construction for m ≥ 0
Σm : sSetΘop → sSetΘop

-Cat , and use it in Section 1.2 to recall the strict nerve construction
N : sSetΘop

-Cat → sSetΘop×∆op

.
We then study in Section 1.3 the homotopical properties and limitations of the strict nerve.

Roughly speaking, we show that N is well-behaved when endowing its target category with model
structures based on the projective model structure, and not with the injective model structure.

1.1. The strict suspension construction. Many of the sSetΘop

-enriched categories that feature
in this paper have the following property, so we introduce a terminology that streamlines the
exposition. We refer to an object of sSetΘop

as a Θ-space.

Definition 1.1.1. A sSetΘop

-enriched category C is directed if

• its set of objects Ob C is {0, 1, . . . ,m}, for some m ≥ 0,
• for 0 ≤ j ≤ i ≤ m, the hom Θ-space HomC(i, j) is given by

HomC(i, j) =

{
∅ if j < i

∆[0] if j = i.

In particular, compositions in a directed sSetΘop

-enriched category C involving the above hom Θ-
spaces are uniquely determined. Moreover, the value of a sSetΘop

-enriched functor from a directed
sSetΘop

-enriched category is also uniquely determined on these hom Θ-spaces.

Definition 1.1.2. Let m ≥ 0. For X ∈ sSetΘop

, the (m + 1)-point strict suspension of X is the
directed sSetΘop

-enriched category ΣmX such that

• its set of objects Ob(ΣmX) is {0, 1, . . . ,m},
• for 0 ≤ i < j ≤ m, the hom Θ-space is HomΣmX(i, j) := X×(j−i),
• for 0 ≤ i < j < k ≤ m, the composition map is given by

HomΣmX(i, j)×HomΣmX(j, k) = X×(j−i) ×X×(k−j)

HomΣmX(i, k) = X×(k−i)
.

◦i,j,k ∼=
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The construction extends canonically to a functor

Σm : sSetΘop

→ sSetΘop

-Cat .

The following propositions record some elementary properties of this construction, and are of
straightforward verification.

Proposition 1.1.3. The assignment ([m], X) 7→ ΣmX defines a functor

Σ• : ∆op × sSetΘop

→ sSetΘop

-Cat .

Notice that the notation is set up so that Σ0X is the terminal category [0], and Σ1X coincides
with the “usual” suspension traditionally denoted ΣX, which fits into the adjunction

{0,1}/sSetΘop

-Cat sSetΘop

,
Hom

Σ

⊥

where {0,1}/sSetΘop

-Cat denotes the category of bi-pointed sSetΘop

-enriched categories. For m > 1,
the iterated suspension ΣmX is built out of ΣX and [0] as follows.

Proposition 1.1.4. For m ≥ 1 and X ∈ sSetΘop

, there are natural isomorphisms in sSetΘop

-Cat

ΣmX ∼= ΣX q[0] Σm−1X ∼= ΣX q[0] . . .q[0] ΣX,

where the right-hand side is the colimit of m copies of ΣX under their target or source.

Remark 1.1.5. For m ≥ 1 there is an adjunction

{0,1,...,m}/sSetΘop

-Cat sSetΘop

,

Σm

⊥

where {0,1,...,m}/sSetΘop

-Cat denotes the category of sSetΘop

-enriched categories pointed on m+ 1
objects. In particular, the functor Σm : sSetΘop → {0,1,...,m}/sSetΘop

-Cat preserves colimits.

1.2. The strict nerve. We record the following notations, used throughout the whole paper.

Notation 1.2.1. We write:

• F [m] ∈ Set∆op

for the representable at m ≥ 0,
• Θ[θ] ∈ SetΘop

for the representable at θ ∈ Θ,
• ∆[k] ∈ sSet for the representable at k ≥ 0,
• Θ[θ]×∆[k] ∈ sSetΘop

for the representable at (θ, [k]) ∈ Θ×∆,
• F [m]×Θ[θ] ∈ SetΘop×∆op

for the representable at ([m], θ) ∈ ∆×Θ,
• F [m]×Θ[θ]×∆[k] ∈ sSetΘop×∆op

for the representable at ([m], θ, [k]) ∈ ∆×Θ×∆.

All categories Set∆op

,SetΘop

, sSet , sSetΘop

,SetΘop×∆op

are naturally included into sSetΘop×∆op

,
and we regard all the above as objects of it without further specification.

By taking the left Kan extension of the assignment ∆×Θ×∆→ sSetΘop

-Cat given by

([m], θ, [k]) 7→ Σm(Θ[θ]×∆[k]),

we obtain an adjunction

sSetΘop

-Cat sSetΘop×∆op

.
N

c

⊥

The right adjoint in this pair is what is traditionally considered to be the strict nerve of a
sSetΘop

-enriched category, which we now spell out.
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Definition 1.2.2. For a sSetΘop

-enriched category C, the strict nerve NC is the (∆ × Θ)-space
given at m ≥ 0, θ ∈ Θ, and k ≥ 0 by the set

(NC)m,θ,k := sSetΘop×∆op

(Σm(Θ[θ]×∆[k]), C).

Alternatively, NC is given at m = 0 by (NC)0 = Ob C – the set of objects of C seen as an object
in sSetΘop

– and at m ≥ 1 by the object in sSetΘop

(NC)m ∼=
∐

c0,c1,...,cm∈C
HomC(c0, c1)×HomC(c1, c2)× . . .×HomC(cm−1, cm)

∼= Mor C ×Ob C Mor C ×Ob C . . .×Ob C Mor C

with the convention that Mor C is the object of sSetΘop

given by

Mor C :=
∐

c0,c1∈C
HomC(c0, c1).

Remark 1.2.3. Given a sSetΘop

-enriched category C and m ≥ 1, by Proposition 1.1.4 the Segal
map is an isomorphism in sSetΘop

(NC)m ∼= (NC)1 ×(NC)0
. . .×(NC)0

(NC)1.

1.3. Homotopical properties of the strict nerve. We now introduce a homotopical framework,
and study the homotopical properties of the strict nerve construction N : sSetΘop

-Cat → sSetΘop

and its limitations.
Let (sSet (∞,0))

Θop

inj denote the injective model structure on the category of Θ-presheaves valued

in sSet (∞,0). Given a set S of maps in sSetΘop

, let sSetΘop

S denote the left Bousfield localization

of (sSet (∞,0))
Θop

inj at the set S, and assume furthermore that the set S is such that sSetΘop

S is

cartesian closed. This is enough to guarantee that the model structure sSetΘop

S is excellent in the

sense of [Lur09, Definition A.3.2.16]. Consequently, the category sSetΘop

-Cat supports the model
structure sSetΘop

S -Cat from [Lur09, Proposition A.3.2.4, Theorem A.3.2.24], whose main features
we now recall.

In the model structure sSetΘop

S -Cat , a sSetΘop

-enriched category C is fibrant if, for every pair of

objects c, c′ ∈ Ob C, the Θ-space HomC(c, c
′) is fibrant in sSetΘop

S , and a sSetΘop

-enriched functor
F : C → D is:

• a weak equivalence if the induced functor HoF : Ho C → HoD between homotopy categories
is essentially surjective on objects, and for every pair of objects c, c′ ∈ Ob C the induced map

Fc,c′ : HomC(c, c
′)→ HomD(Fc, Fc′)

is a weak equivalence in sSetΘop

S ,
• a fibration between fibrant objects if it the induced functor HoF : Ho C → HoD between ho-

motopy categories is an isofibration of categories, and for every pair of objects c, c′ ∈ Ob C the
induced map

Fc,c′ : HomC(c, c
′)→ HomD(Fc, Fc′)

is a fibration in sSetΘop

S ,
• a trivial fibration if it is surjective on objects, and for every pair of objects c, c′ ∈ Ob C the

induced map

Fc,c′ : HomC(c, c
′)→ HomD(Fc, Fc′)

a trivial fibration in sSetΘop

S .

We do not recall the description of the homotopy category construction Ho C, since we will not
make an explicit use of it. For the purpose of this paper, all one needs to know is that if F : C → D
is bijective on objects, then HoF : Ho C → HoD is essentially surjective on objects.
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The model structure sSetΘop

S -Cat is designed so that the following holds. Here {0,1}/sSetΘop

S -Cat
denotes the slice model structure, in which cofibrations, fibrations, and weak equivalences are
created by the forgetful functor to sSetΘop

S -Cat .

Proposition 1.3.1. The adjunction

{0,1}/sSetΘop

S -Cat sSetΘop

S
Hom

Σ

⊥

is a Quillen pair.

Proof. This follows directly from the local properties of trivial fibrations and fibrations between
fibrant objects, using the fact that trivial cofibrations are determined by their lifting properties
against fibrations between fibrant objects by [Joy08, Lemma E.2.13]. �

Let (sSetΘop

S )∆op

inj and (sSetΘop

S )∆op

proj denote the injective and projective model structures on the

category (sSetΘop

)∆op ∼= sSetΘop×∆op

of simplicial objects in sSetΘop

S .

Notation 1.3.2. Let A → B and X → Y be two maps in a presheaf category. We denote by
(A→ B)×̂(X → Y ) the pushout-product map

(A→ B)×̂(X → Y ) := (A× Y qA×X B ×X → B × Y ).

Remark 1.3.3. We recall sets of generating (trivial) cofibrations for the injective and projective
model structures (sSetΘop

S )∆op

inj and (sSetΘop

S )∆op

proj.

• By [Hir03, Definition 11.5.33], a set of generating (trivial) cofibrations for the projective model
structure (sSetΘop

S )∆op

proj is given by

{F [m]× (X → Y ) | m ≥ 0, X → Y ∈ J },
where J is a set of generating (trivial) cofibrations in sSetΘop

S .

• As a consequence of [Hir03, Corollary 15.7.2], the injective model structure (sSetΘop

S )∆op

inj coin-

cides with the Reedy model structure (sSetΘop

S )∆op

Reedy, so by [Hir03, Theorem 15.6.27] a set of

generating (trivial) cofibrations for (sSetΘop

S )∆op

inj is given by

{(∂F [m]→ F [m])×̂(X → Y ) | m ≥ 0, X → Y ∈ J },
where ∂F [m]→ F [m] is the boundary inclusion and J is a set of generating (trivial) cofibra-
tions in sSetΘop

S .

1.3.4. Denote by (sSetΘop

S )∆op

Seg and (sSetΘop

S )∆op

proj,Seg the left Bousfield localizations of the model

structures (sSetΘop

S )∆op

inj and (sSetΘop

S )∆op

proj at the set of Segal maps

SegΘ = {(F [1]qF [0] . . .qF [0] F [1]→ F [m])×Θ[θ] | m ≥ 1, θ ∈ Θ},
where F [1]qF [0] . . .qF [0] F [1]→ F [m] is the spine inclusion.

The fibrant objects of the model structure (sSetΘop

S )∆op

proj,Seg are those (∆ × Θ)-spaces X such

that Xm is fibrant in sSetΘop

S , for all m ≥ 0, and the Segal map

Xm → X1 ×hX0
. . .×hX0

X1

is a weak equivalence in sSetΘop

S , for all m ≥ 1. In comparison, the fibrant objects of the model

structure (sSetΘop

S )∆op

inj are the Segal objects in S-local Θ-spaces, as defined below.

Definition 1.3.5. An object X ∈ sSetΘop×∆op

is a Segal object in S-local Θ-spaces if X is fibrant
in (sSetΘop

S )∆op

inj , and the Segal map

Xm → X1 ×(h)
X0

. . .×(h)
X0

X1
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is a weak equivalence in sSetΘop

S , for all m ≥ 1.

Note that the fibrancy of X in (sSetΘop

S )∆op

inj implies that Xm is fibrant in sSetΘop

S , for all m ≥ 0,
and that the pullbacks appearing in the Segal maps are in fact homotopy pullbacks.

The following can be deduced using the explicit description of the generating (trivial) cofibra-
tions of (sSetΘop

S )∆op

proj and [Hir03, Theorem 3.3.20(1)(a)], and we omit the proof.

Proposition 1.3.6. The adjunctions

sSetΘop

S -Cat (sSetΘop

S )∆op

proj
N

c

⊥ sSetΘop

S -Catand (sSetΘop

S )∆op

proj,Seg
N

c

⊥

are Quillen pairs.

However, the analog statement fails when replacing the projective with the injective model
structure.

Remark 1.3.7. The adjunction

sSetΘop

S -Cat (sSetΘop

S )∆op

inj
N

c

⊥

is not a Quillen pair. Indeed, given a fibrant sSetΘop

S -enriched category C, Example 1.3.8 shows

that the nerve NC is generally not fibrant in (sSetΘop

S )∆op

inj . As a consequence, the adjunction

sSetΘop

S -Cat (sSetΘop

S )∆op

Seg
N

c

⊥

is also not a Quillen pair.

Example 1.3.8. Let X be a fibrant object in sSetΘop

S that is non-discrete (meaning that it is

not in the image of SetΘop

↪→ sSetΘop

). The sSetΘop

-enriched category ΣX is by construction
fibrant in sSetΘop

S -Cat , however its strict nerve NΣX is not fibrant in (sSetΘop

S )∆op

inj . To see this,

we first observe that the model structure (sSetΘop

S )∆op

inj is enriched over sSetΘop

S (see e.g. [Mos19,

Theorem 5.4]), and we denote by HomsSetΘop×∆op (−,−) its hom Θ-space functor. Now, the map
∂F [2]→ F [2] is a cofibration in (sSetΘop

S )∆op

inj , but the map

HomsSetΘop×∆op (F [2], NΣX)→ HomsSetΘop×∆op (∂F [2], NΣX),

is isomorphic to the map

∆[0]qX qX q∆[0]→ ∆[0]q (X ×X)q (X ×X)q∆[0],

induced by the diagonal map of the non-discrete Θ-space X. It is therefore not a fibration in
(sSet (∞,0))

Θop

inj and hence also not a fibration in sSetΘop

S .

In the next section, we propose a variant ofN that remedies the issues presented in Remark 1.3.7.

2. The homotopy coherent nerve and its properties

Like in the previous section, we let Θ be a small category and S be a set of maps in sSetΘop

such that the model structure sSetΘop

S – obtained as a left Bousfield localization of the injective

model structure (sSet (∞,0))
Θop

inj at the set S – is cartesian closed.

We define in Section 2.1 what we call the homotopy coherent (m + 1)-point suspension con-
struction Sm : sSetΘop → sSetΘop

-Cat for m ≥ 0, and use it in Section 2.2 to define the homotopy
coherent nerve construction N : sSetΘop

-Cat → sSetΘop×∆op

.
We then study in Section 2.3 the homotopical properties of the homotopy coherent nerve –

describing in which sense it is better behaved than the strict nerve N – but also its limitations.
Roughly speaking, we show that N is well-behaved when endowing its target category with model
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structures (based on the injective model structure) for Segal objects, but not for complete Segal
objects. We also show that NC provides an injective (and Segal) fibrant replacement of NC for a
fibrant sSetΘop

S -enriched category C.

2.1. The homotopy coherent suspension construction. The following is designed to be a
homotopical version of the strict suspension construction from Section 1.1.

Definition 2.1.1. Let m ≥ 0. Given X ∈ sSetΘop

, the (m+1)-point homotopy coherent suspension
of X is the directed sSetΘop

-enriched category SmX such that

• its set of objects Ob(SmX) is {0, 1, . . . ,m},
• for 0 ≤ i < j ≤ m, the hom Θ-space is HomSmX(i, j) := ∆[1]×(j−i−1) ×X×(j−i),
• for 0 ≤ i < j < k ≤ m, the composition map is given by

HomSmX(i, j)×HomSmX(j, k) = ∆[1]×(j−i−1) ×∆[1]×(k−j−1) ×X×(j−i) ×X×(k−j)

HomSmX(i, k) = ∆[1]×(k−i−1) ×X×(k−i)
.

◦i,j,k id×(j−i−1)×〈1〉 × id×(k−j−1)× ∼=

The construction extends canonically to a functor

Sm : sSetΘop

→ sSetΘop

-Cat .

The following proposition records some elementary properties of this construction, and are of
straightforward verification.

Proposition 2.1.2. The assignment ([m], X) 7→ SmX defines a functor

S• : ∆op × sSetΘop

→ sSetΘop

-Cat .

Notice that we again have that S0X is the terminal category [0], and that S1X coincides with
the usual suspension ΣX.

Remark 2.1.3. For m ≥ 1 there is an adjunction

{0,1,...,m}/sSetΘop

-Cat sSetΘop

,

Sm

⊥

where {0,1,...,m}/sSetΘop

-Cat denotes the category of sSetΘop

-enriched categories pointed on m+ 1
objects. In particular, the functor Sm : sSetΘop → {0,1,...,m}/sSetΘop

-Cat preserves colimits.

We understand several relations between Σm and Sm.

Remark 2.1.4. For m ≥ 0 and X ∈ sSetΘop

, there is a natural isomorphism in sSetΘop

-Cat

SmX ∼= ΣmX ×Σm∆[0] Sm∆[0].

In particular, there is an induced map SmX → ΣmX given by one of the projections.

This comparison map is in fact a weak equivalence in sSetΘop

S -Cat . Indeed, for a fixed m it
admits a section (that is not natural in m) – described in the following proposition – which we
show is a weak equivalence in sSetΘop

S -Cat .

Proposition 2.1.5. For m ≥ 0 and X ∈ sSetΘop

, there is a weak equivalence in sSetΘop

S -Cat

ΣmX
'−→ SmX.

Proof. Let m ≥ 0. We define a sSetΘop

-enriched functor ΣmX → SmX between directed sSetΘop

-
enriched categories as follows:

• on objects, it is the identity at {0, 1, . . . ,m},
• for 0 ≤ i < j ≤ m, it is given by the map
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HomΣmX(i, j) = X×(j−i)

HomSmX(i, j) = ∆[1]×(j−i−1) ×X×(j−i)
.

〈1〉×(j−i−1) × id
×(j−i)
X

It is straightforward to see that this data is compatible with compositions. The sSetΘop

-enriched
functor is by construction a weak equivalence in sSetΘop

S -Cat since ∆[1] is contractible in sSet (∞,0),

and hence also in sSetΘop

S . �

2.2. The homotopy coherent nerve. By taking the left Kan extension along the assignment
∆×Θ×∆→ sSetΘop

-Cat given by

([m], θ, [k]) 7→ Sm(Θ[θ]×∆[k]),

we obtain an adjunction

sSetΘop

-Cat sSetΘop×∆op

.
N

C

⊥

Spelling out the description of the right adjoint, we obtain the following.

Definition 2.2.1. For a sSetΘop

-enriched category C, the homotopy coherent nerve NC is the
(∆×Θ)-space given at m ≥ 0, θ ∈ Θ, and k ≥ 0 by the set

(NC)m,θ,k := sSetΘop×∆op

(Sm(Θ[θ]×∆[k]), C).

In particular, we describe (NC)m explicitly for low values of m. For m = 0, 1 we have

(NC)0 = Ob C and (NC)1 = Mor C,
and for m = 2 we have

(NC)2
∼=

∐
c0,c1,c2∈C

HomC(c0, c1, c2),

where HomC(c0, c1, c2) is given by the following pullback in sSetΘop

.

HomC(c0, c1, c2)

HomC(c0, c1)×HomC(c1, c2)

HomC(c0, c2)∆[1]

HomC(c0, c2)

y

◦c0,c1,c2

(d0)∗

2.3. Homotopical properties of the homotopy coherent nerve. We can now see that the
homotopy coherent nerve construction N : sSetΘop

-Cat → sSetΘop

has some of the homotopical
properties that the strict nerve construction N did not have (see Remark 1.3.7).

Theorem 2.3.1. The adjunction

sSetΘop

S -Cat (sSetΘop

S )∆op

inj
N

C

⊥

is a Quillen pair.

The proof of the proposition relies on several lemmas.

Notation 2.3.2. For X ∈ sSetΘop

, we denote by ∂SmX the sSetΘop

-enriched category given by
the canonical coequalizer in sSetΘop

-Cat

∂SmX := coeq(
∐

0≤i<j≤m

Sm−2X ⇒
∐

0≤i≤m

Sm−1X).
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In fact ∂SmX can be computed as the directed sSetΘop

-enriched category such that

• its set of objects Ob(∂SmX) is {0, 1, . . . ,m},
• for 0 ≤ i < j ≤ m, its hom Θ-space Hom∂SmX(i, j) is given by

Hom∂SmX(i, j) =

{
∆[1]×(j−i−1) ×X×(j−i) if 0 < j − i < m

∂(∆[1]×(m−1))×X×m if i = 0, j = m,

where ∂(∆[1]×(m−1)) is the boundary of the (m−1)-dimensional cube ∆[1]×(m−1) (see [Lur09,
§2.2.5] and [RV20, Notation 5.1.6]),
• composition maps are induced by those of SmX.

It comes with a natural inclusion dX : ∂SmX → SmX. This construction extends to a functor

∂Sm : sSet → sSetΘop

-Cat .

The following lemma describes the pushout ∂SmY q∂SmX SmX.

Lemma 2.3.3. Let f : X → Y be a monomorphism in sSetΘop

, and consider the following pushout
in sSetΘop

-Cat.

∂SmX

∂SmY

SmX

∂SmY q∂SmX SmX
p

dX

∂Smf

Then ∂SmY q∂SmX SmX is the directed sSetΘop

-enriched category such that

• its set of objects Ob(∂SmY q∂SmX SmX) is {0, 1, . . . ,m},
• for 0 ≤ i < j ≤ m, its hom Θ-space Hom∂SmYq∂SmXSmX(i, j) is given by

Hom∂SmYq∂SmXSmX(i, j) =

{
Hom∂SmY (i, j) = ∆[1]×(j−i−1) × Y ×(j−i) if 0 < j − i < m

Hom∂SmYq∂SmXSmX(0,m) if i = 0, j = m,

where Hom∂SmYq∂SmXSmX(0,m) is given by the following pushout in sSetΘop

,

∂(∆[1]×(m−1))×X×m

∂(∆[1]×(m−1))× Y ×m

∆[1]×(m−1) ×X×m

Hom∂SmYq∂SmXSmX(0,m)
p

ι× id×mX

id×f×m ϕX(f)

ϕY

• composition maps are induced by those of ∂SmY .

Proof. Let P be the sSetΘop

-enriched category whose objects, hom Θ-spaces, and structure is as
described in the statement, and we show that P satisfies the universal property of the desired
pushout. For this, we show that there is a unique sSetΘop

-enriched functor L : P → C making the
following diagram commute.

∂SmX

∂SmY

SmX

P
p

C

dX

∂Smf G

F

K

H

L
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For 0 ≤ i ≤ m, we set L(i) := H(i) = K(i), for 0 < j − i < m, we set

Li,j := Hi,j : HomP(i, j) = Hom∂SmY (i, j)→ HomC(L(i), L(j)),

and we set L0,m to be the unique map given by the universal property of the pushout, as in the
following diagram.

Hom∂SmX(0,m) = ∂(∆[1]×(m−1))×X×m

Hom∂SmY (0,m) = ∂(∆[1]×(m−1))× Y ×m

∆[1]×(m−1) ×X×m = HomSmX(0,m)

HomP(0,m)
p

ι× id×mX

id×f×m ϕX(f)

ϕY

HomC(L(0), L(m))

K0,m

H0,m

L0,m

The maps Li,j , Lj,k, Li,k are compatible with composition for all 0 ≤ i < j < k ≤ m with k−i < m,
since the corresponding maps of H do. Finally, the maps L0,i, Li,m, L0,m are also compatible with
composition for all 0 ≤ i ≤ m by compatibility of K and H on ∂SmX. Moreover, we have that
L is the unique sSetΘop

-enriched functor with the desired properties. This shows that P is the
pushout P ∼= ∂SmY q∂SmX SmX, and concludes the proof. �

Lemma 2.3.4. Let P and Q be directed sSetΘop

-enriched categories such that

• they have the same set of objects ObP = {0, 1, . . . ,m} = ObQ,
• for 0 < j − i < m, they have the same hom Θ-spaces HomP(i, j) = HomQ(i, j).

Let F : P → Q be a sSetΘop

-enriched functor such that

• on objects, it is the identity at {0, 1, . . . ,m},
• for all 0 < j−i < m, the map Fi,j on hom Θ-spaces is the identity at HomP(i, j) = HomQ(i, j).

Then the following is a pushout in sSetΘop

-Cat.

Σ HomP(0,m)

Σ HomQ(0,m)

P

Q
p

ι0,m

ΣF0,m F

ι0,m

Moreover, if F0,m is a (trivial) cofibration in sSetΘop

S , then F : P → Q is a (trivial) cofibration in

sSetΘop

S -Cat.

Proof. In order to show that Q satisfies the universal property of the desired pushout, we show
that there is a unique sSetΘop

-enriched functor H : Q → C making the following diagram commute.

Σ HomP(0,m)

Σ HomQ(0,m)

P

Q

C

p

ι0,m

ΣF0,m F

ι0,m

G

g

H
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For 0 ≤ i ≤ m, we set H(i) := G(i), for 0 < j − i < m, we set

Hi,j := Gi,j : HomQ(i, j) = HomP(i, j)→ HomC(G(i), G(j)),

and we set

H0,m := g : HomQ(0,m)→ HomC(G(0), G(m)).

The maps Hi,j , Hj,k, Hi,k are compatible with composition for all 0 ≤ i < j < k ≤ m with k−i < m
since the corresponding maps of G do. It remains to show that H0,i, Hi,m, H0,m are compatible
with composition for all 0 ≤ i ≤ m. For 0 ≤ i ≤ m we have that the following diagram commutes,

HomQ(0, i)×HomQ(i,m)

HomP(0, i)×HomP(i,m)

HomQ(0,m)

HomP(0,m)

◦0,i,m

◦0,i,m

F0,m

HomC(G(0), G(i))×HomC(G(i), G(m)) HomC(G(0), G(m))

G0,mH0,i ×Hi,m = G0,i ×Gi,m

◦G(0),G(i),G(m)

g = H0,m

where the top rectangle commutes by compatibility of F with composition, the bottom one by
compatibility of G with composition, and the right-hand triangle since G ◦ ι0,m = g ◦ΣF0,m. This
shows that H0,i, Hi,m, H0,m are compatible with composition for all 0 ≤ i ≤ m. Moreover, we have

that H is the unique sSetΘop

-enriched functor with the desired properties. This shows that Q is
the pushout

Q ∼= P qΣ HomP(0,m) Σ HomQ(0,m).

The “moreover” part follows directly from the facts that, if F0,m is a (trivial) cofibration in sSetΘop

S ,

then ΣF0,m is a (trivial) cofibration in sSetΘop

S -Cat by Proposition 1.3.1, and that (trivial) cofibra-
tions are closed under pushout. �

The following lemmas analyze certain canonical maps of sSetΘop

-enriched categories of the form
∂SmY q∂SmX SmX → SmY .

Lemma 2.3.5. Let f : X → Y be a (trivial) cofibration in sSetΘop

S . Then the map

I0,m : Hom∂SmYq∂SmXSmX(0,m)→ HomSnY (0,m)

is a (trivial) cofibration in sSetΘop

S .

Proof. The map I0,m is obtained as the unique map given by the universal property of pushouts

as in the following diagram in sSetΘop

,

∂(∆[1]×(m−1))×X×m

∂(∆[1]×(m−1))× Y ×m

∆[1]×(m−1) ×X×m

Hom∂SmYq∂SmXSmX(0,m)
p

ι× id×mX

id×f×m ϕX(f)

ϕY

∆[1]×(m−1) × Y ×m

id×f×m

ι× id×mY

I0,m
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where the pushout is given by Lemma 2.3.3. Note that each non-dashed map of the diagram is a
monomorphism, either by definition or because it is a pushout of a monomorphism.

We first show that I0,m is a monomorphism, hence a cofibration in sSetΘop

S . To this end, suppose

we are given (σ, ~x) ∈ ∆[1]×(m−1) ×X×m and (τ, ~y) ∈ ∂(∆[1]×(m−1))× Y ×m such that

(id×f×m)(σ, ~x) = (σ, f~x) = (τ, ~y) = (ι× id×mY )(τ, ~y) ∈ ∆[1]×(m−1) × Y ×m.

Then, if we consider (τ, ~x) ∈ ∂(∆[1]×(m−1))×X×m, we have that

(ι× id×mX )(τ, ~x) = (σ, ~x) and (id×f×m)(τ, ~x) = (τ, ~y).

Hence (σ, ~x) and (τ, ~y) define equal objects in the pushout Hom∂SmYq∂SmXSmX(0,m). Since f
and ι are monomorphisms, this is sufficient to conclude that I0,m is a monomorphism.

Now, if f is a trivial cofibration in sSetΘop

S , given that sSetΘop

S is cartesian closed, the maps

id×f×m are also trivial cofibrations. Hence ϕX(f) is also a trivial cofibration in sSetΘop

S as a
pushout of such. It follows by 2-out-of-3 applied to id×f×m = I0,m ◦ ϕX(f) that I0,m is also a

weak equivalence and hence a trivial cofibration in sSetΘop

S . �

Lemma 2.3.6. If the map f : X → Y is a (trivial) cofibration in sSetΘop

S , then the sSetΘop

-
enriched functor

I : ∂SmY q∂SmX SmX → SmY

is a (trivial) cofibration in sSetΘop

S -Cat.

Proof. Let f : X → Y be a (trivial) cofibration in sSetΘop

S . Using Lemma 2.3.3, we have that the
map I satisfies the hypotheses of Lemma 2.3.4. Then, by Lemma 2.3.5, the induced map

I0,m : Hom∂SmYq∂SmXSmX(0,m)→ HomSmY (0,m)

is a (trivial) cofibration in sSetΘop

S . Hence, we conclude from the “moreover” part of Lemma 2.3.4

that I : ∂SmY q∂SmX SmX → SmY is a (trivial) cofibration in sSetΘop

S -Cat . �

We can now prove the theorem.

Proof of Theorem 2.3.1. To show that C is left Quillen, it is sufficient to show that C sends gener-
ating (trivial) cofibrations of (sSetΘop

S )∆op

inj to (trivial) cofibrations in sSetΘop

S -Cat .

Recall from Remark 1.3.3 that a generating (trivial) cofibration of (sSetΘop

S )∆op

inj is of the form

∂F [m]× Y q∂F [m]×X F [m]×X → F [m]× Y

for m ≥ 0 and X → Y a (trivial) cofibration in sSetΘop

S . Since C preserves colimits, this map is

sent to the sSetΘop

-enriched functor

C(∂F [m]× Y )qC(∂F [m]×X) C(F [m]×X)→ C(F [m]× Y ).

We first compute C(F [m]×X):

C(F [m]×X) ∼= C(F [m]× colimΘ[θ]×∆[k]→X(Θ[θ]×∆[k]))

∼= C(colimΘ[θ]×∆[k]→X(F [m]×Θ[θ]×∆[k])) × preserves colimits

∼= colimΘ[θ]×∆[k]→X C(F [m]×Θ[θ]×∆[k]) C preserves colimits

∼= colimΘ[θ]×∆[k]→X Sm(Θ[θ]×∆[k]) definition of C

∼= Sm(colimΘ[θ]×∆[k]→X(Θ[θ]×∆[k])) Remark 2.1.3
∼= SmX.
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Similarly, using Notation 2.3.2 we compute C(∂F [m]×X):

C(∂F [m]×X) = C(coeq(
∐

0≤i<j≤m F [m− 2]⇒
∐

0≤i≤m F [m− 1])×X)

∼= C(coeq(
∐

0≤i<j≤m F [m− 2]×X ⇒
∐

0≤i≤m F [m− 1]×X))

∼= coeq(
∐

0≤i<j≤m C(F [m− 2]×X)⇒
∐

0≤i≤m C(F [m− 1]×X))

∼= coeq(
∐

0≤i<j≤mSm−2X ⇒
∐

0≤i≤mSm−1X)

= ∂SmX.

All-in-all, this says that the image under C of the desired map is the map

∂SmY q∂SmX SmX → SmY,

which is a (trivial) cofibration in sSetΘop

S -Cat by Lemma 2.3.6. This concludes the proof. �

Theorem 2.3.7. The adjunction

sSetΘop

S -Cat (sSetΘop

S )∆op

Seg
N

C

⊥

is a Quillen pair.

Proof. Recall that (sSetΘop

S )∆op

Seg is the left Bousfield localization of (sSetΘop

S )∆op

inj with respect to

the set SegΘ. Since C : (sSetΘop

S )∆op

inj → sSetΘop

S -Cat is left Quillen by Theorem 2.3.1, by [Hir03,

Theorem 3.3.20(1)(a)] it is enough to show that C sends maps in SegΘ to weak equivalences in
sSetΘop

S -Cat . Now recall that a map in SegΘ is of the form

F [1]×Θ[θ]qF [0]×Θ[θ] . . .qF [0]×Θ[θ] F [1]×Θ[θ]→ F [m]×Θ[θ]

for m ≥ 1 and θ ∈ Θ. Since C preserves colimits, it is sent to the sSetΘop

-enriched functor

C(F [1]×Θ[θ])qC(F [0]×Θ[θ]) . . .qC(F [0]×Θ[θ]) C(F [1]×Θ[θ])→ C(F [m]×Θ[θ]).

We have that

C(F [1]×Θ[θ]) = S1Θ[θ] = ΣΘ[θ] and C(F [0]×Θ[θ]) = [0],

and for m > 1 we have that
C(F [m]×Θ[θ]) = Sm(Θ[θ]).

Using the identification from Proposition 1.1.4, we see that the above map is a sSetΘop

-enriched
functor of the form

ΣmΘ[θ] ∼= ΣΘ[θ]q[0] . . .q[0] ΣΘ[θ]→ SmΘ[θ].

In fact, it is precisely the sSetΘop

-enriched functor from Proposition 2.1.5 when taking X = Θ[θ],
which is a weak equivalence in sSetΘop

S -Cat , as desired. �

Remark 2.3.8. Let C be a fibrant sSetΘop

S -enriched category. There is a canonical map NC → NC
induced by the maps

Sm(Θ[θ]×∆[k])→ Σm(Θ[θ]×∆[k])

of Remark 2.1.4, for m ≥ 0, θ ∈ Θ, and k ≥ 0. At m = 0, 1 this map induces equalities

(NC)0 = Ob C = (NC)0 and (NC)1 = Mor C = (NC)1.

Given m > 1, there is a commutative diagram in sSetΘop

S

(NC)m (NC)1 ×(h)
(NC)0

. . .×(h)
(NC)0

(NC)1

(NC)m (NC)1 ×(h)
(NC)0

. . .×(h)
(NC)0

(NC)1

'

∼=

∼=

'
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where the pullbacks are homotopy pullbacks because they are taken over the discrete object Ob C
(see [BR13, §4.1]). Note that the horizontal maps are weak equivalences in sSetΘop

S by Remark 1.2.3
and Theorem 2.3.7 and therefore so is the left-hand map by 2-out-of-3. Since the presheaves (NC)m
and (NC)m are by Proposition 1.3.6 and Theorem 2.3.1 fibrant in sSetΘop

S , the map (NC)m →
(NC)m is in fact a weak equivalence in (sSet (∞,0))

Θop

inj . This shows that NC → NC is a weak

equivalence in (sSet (∞,0))
∆op×Θop

inj .

We have then shown the following.

Proposition 2.3.9. Given a fibrant sSetΘop

S -enriched category C, the natural canonical map

NC → NC

is a weak equivalence in (sSet (∞,0))
∆op×Θop

inj , and so a weak equivalence in (sSetΘop

S )∆op

inj .

We now describe the homotopical limitations of the homotopy coherent nerve N.

Notation 2.3.10. For k ≥ 0, let I[k] denote the contractible groupoid on k + 1 objects, i.e.,
it is the category with k + 1 objects and a unique isomorphism between any two objects. We
write E[k] ∈ Set∆op

for the nerve of I[k]. Since Set∆op

is naturally included in SetΘop×∆op

and
sSetΘop×∆op

, we regard E[k] as an object of those categories without further specification.

2.3.11. Denote by (sSetΘop

S )∆op

cS the left Bousfield localization of the model structure (sSetΘop

S )∆op

Seg

at the set of constantness maps

CstΘ = {F [0]× (Θ[θ]→ Θ[θ′]) | θ → θ′ ∈ Θ}.

Denote by (sSetΘop

S )∆op

cCS the left Bousfield localization of the model structure (sSetΘop

S )∆op

cS at the
set of completeness maps

CptΘ = {(F [0]→ E[1])×Θ[θ] | θ ∈ Θ}.

We suggestively call the fibrant objects of the model structure (sSetΘop

S )∆op

cS pre-complete Segal

objects in S-local Θ-spaces, while the fibrant objects of the model structure (sSetΘop

S )∆op

cCS are
complete Segal objects in S-local Θ-spaces, as we now make explicit.

Definition 2.3.12. An object X ∈ sSetΘop×∆op

is a pre-complete Segal object in S-local Θ-spaces
if X is a Segal object, as defined in Definition 1.3.5, and the map

X0,θ′ → X0,θ

is a weak equivalence in sSet (∞,0), for all maps θ → θ′ ∈ Θ. Such an X is called complete if, in
addition, the map

X0 → Xheq
1 := HomsSetΘop×∆op (E[1], X)

is a weak equivalence in sSetΘop

S . Here HomsSetΘop×∆op (−,−) denotes the hom Θ-space functor of

sSetΘop×∆op

.

2.3.13. The first instance of this framework in the literature is the case where Θ is the terminal
category, and S = ∅. The resulting model structure (sSet (∞,0))

∆op

cCS is precisely Rezk’s cartesian
closed model structure from [Rez01, Theorem 7.2], in which the fibrant objects are the complete
Segal spaces, which model (∞, 1)-categories. The idea was later generalized in [Rez10] to the case
where Θ is Joyal’s cell category Θn−1 from [Joy97] and S is the set S(∞,n−1), for n ≥ 1, which are
recursively defined as follows.

For n = 1, Θn−1 is the terminal category and S(∞,0) is the empty set, as mentioned above,
and for n > 1, Θn−1 is the wreath product ∆ oΘn−2 (see e.g. [Ber07a, Definition 3.1]) and the set
S(∞,n−1) consists of the following monomorphisms:
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• the Segal maps

Θn−1[1](θ1) t[0] . . . t[0] Θn−1[1](θl)→ Θn−1[l](θ1, . . . , θl),

for all l ≥ 1 and θ1, . . . , θl ∈ Θn−2,
• the completeness map

F [0]→ E[1]

seen as a map in SetΘop
n−1 through the inclusion Set∆op → SetΘop

n−1 induced by pre-composition
along the projection Θn−1 → ∆ given by [l](θ1, . . . , θl) 7→ [l],

• the recursive maps
Θn−1[1](A)→ Θn−1[1](B),

where A→ B ∈ sSetΘop
n−2 ranges over all monomorphisms in S(∞,n−2).

Note that by [Rez10, Theorem 8.1] the model structure sSet
Θop

n−1
(∞,n−1) obtained by localizing the injec-

tive model structure (sSet (∞,0))
Θop

n−1

inj with respect to the set S(∞,n−1) is cartesian closed. Moreover,

for n = 2, we have that sSet∆op

(∞,1) is again Rezk’s model structure for complete Segal spaces.

The resulting model structure (sSet
Θop

n−1
(∞,n−1))

∆op

cCS is precisely Bergner–Rezk’s model structure from
[BR20, Theorem 5.6], in which the fibrant objects are the complete Segal objects in Θn−1-spaces,
which model (∞, n)-categories. This notion of completeness is inspired by the one featuring in
Barwick’s definition of n-fold complete Segal spaces [Bar05]. Complete Segal objects in a more
general setting have also been studied by Bergner–Rezk in [BR20, §5] and by the second author
in [Ras21, §§1.4-1.5].

Proposition 2.3.14. The adjunction

sSetΘop

S -Cat (sSetΘop

S )∆op

cS
N

C

⊥

is a Quillen pair.

Proof. Recall that (sSetΘop

S )∆op

cS is the left Bousfield localization of (sSetΘop

S )∆op

Seg with respect to

the set CstΘ. Since C : (sSetΘop

S )∆op

Seg → sSetΘop

S -Cat is left Quillen by Theorem 2.3.7, by [Hir03,

Theorem 3.3.20(1)(a)] it is enough to show that C sends maps in CstΘ to weak equivalences in
sSetΘop

S -Cat . For this, recall that a map in CstΘ is of the form F [0] × Θ[θ] → F [0] × Θ[θ′] for
a morphism θ → θ′ ∈ Θ. Such a map is sent by C to the identity at [0] and hence is a weak
equivalence in sSetΘop

S -Cat . �

Remark 2.3.15. Let C be a fibrant sSetΘop

S -enriched category. Combining Proposition 2.3.9 and The-
orem 2.3.7, we obtain that the homotopy coherent nerve NC provides a fibrant replacement of NC
in (sSetΘop

S )∆op

Seg and in (sSetΘop

S )∆op

cS .

Remark 2.3.16. The adjunction

sSetΘop

S -Cat (sSetΘop

S )∆op

cCS
N

C

⊥

is not a Quillen pair. Indeed, given a fibrant sSetΘop

S -enriched category C, Example 2.3.17 shows

that the homotopy coherent nerve NC is generally not fibrant in (sSetΘop

S )∆op

cCS .

Example 2.3.17. The sSetΘop

-enriched category I[1] is fibrant in sSetΘop

S -Cat , however its homotopy

coherent nerve NI[1] – as well as its strict nerve NI[1] – is not fibrant in (sSetΘop

S )∆op

cCS . We show
this for NI[1], and the same argument works for NI[1], given that they agree in components 0
and 1. To this end, we first observe that the model structure (sSetΘop

S )∆op

cCS is simplicial as a
consequence of [Mos19, Theorem 5.4] and [Hir03, Theorem 4.1.1], and we denote by Map(−,−) its
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hom space functor. Now, the map 0: F [0] → E[1] is a trivial cofibration in (sSetΘop

S )∆op

cCS , but we
argue that the map

0∗ : Map(E[1],NI[1])→ Map(F [0],NI[1]) ∼= (NI[1])0,> = {0, 1}

can not be a trivial fibration in sSet (∞,0). If it were, there would be a lift in the following diagram
in sSet ,

∂∆[1] Map(E[1],NI[1])

∆[1] (NI[1])0,> = {0, 1}

0∗

0

where the top map picks two maps E[1] = NI[1] → NI[1] given by the constant map at 0 and
the component at I[1] of the canonical fibrant replacement map of Proposition 2.3.9, respectively.
This lift could be used to produce a 1-simplex

∂∆[1]

∆[1] Map(E[1],NI[1]) (NI[1])0,> = {0, 1}1∗

〈0, 1〉

between 0 and 1 in the discrete space (NI[1])0,>, but this is impossible.

3. The complete homotopy coherent nerve and its properties

In this section, we specialize the results from the previous sections to the case where Θ is Joyal’s
cell category Θn−1 from [Joy97] for some n ≥ 1, and S is the set of maps S(∞,n−1) from § 2.3.13.

The resulting model structure sSet
Θop

n−1

S(∞,n−1)
agrees with Rezk’s cartesian closed model structure

on sSetΘop
n−1 for complete Segal Θn−1-spaces from [Rez10, Theorem 8.1]. Since this model structure

is a model for the homotopy theory of (∞, n− 1)-categories (in the sense of [BSP21]), we use for it

the more appropriate notation sSet
Θop

n−1
(∞,n−1). Consequently, we denote by (sSet

Θop
n−1

(∞,n−1))
∆op

cCS the model

structure (sSet
Θop

n−1

S(∞,n−1)
)∆op

cCS , and by sSet
Θop

n−1
(∞,n−1)-Cat the model structure sSet

Θop
n−1

S(∞,n−1)
-Cat . A special

feature of this setup is that the model structure (sSet
Θop

n−1
(∞,n−1))

∆op

cCS coincides with the left Bousfield

localization of (sSet
Θop

n−1
(∞,n−1))

∆op

cS with respect to just the single map

{F [0]→ E[1]}.

This can be established with a similar argument to that of [JFS17, Lemma 2.8]; see also [BR20,
Proposition 5.10].

In this context, we define in Section 3.1 a preliminary version of a complete homotopy coherent

nerve construction N : sSetΘop
n−1-Cat → SetΘop

n−1×∆op

, which generalizes Cordier–Porter’s nerve
from [CP86], and use it to define our preferred complete homotopy coherent nerve construction

Nc : sSetΘop
n−1-Cat → sSetΘop

n−1×∆op

.
After recalling the case n = 1 from the literature in Section 3.2, we study in Section 3.3 the

homotopical properties of both nerves N and Nc, showing as Theorem 3.3.8 that Nc defines a
right Quillen functor when considering on its target the model structure for complete Segal objects

in sSet
Θop

n−1
(∞,n−1) for n > 1.

Afterwards, building on preliminary work and background from Sections 3.4 and 3.5, we show in

Section 3.6 that Nc gives a right Quillen equivalence between sSet
Θop

n−1
(∞,n−1)-Cat and (sSet

Θop
n−1

(∞,n−1))
∆op

cCS ,
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and that it can be used to construct a direct right Quillen equivalence d∗◦Nc between sSet
Θop

n−1
(∞,n−1)-Cat

and sSet
Θop

n
(∞,n).

3.1. The complete homotopy coherent nerve(s). Fix n ≥ 1. The definitions of the functors

N : sSetΘop
n−1-Cat → SetΘop

n−1×∆op

and Nc : sSetΘop
n−1-Cat → sSetΘop

n−1×∆op

rely on a few preliminary
adjunctions, which we now describe.

The adjunctions

Θn−1 ×∆ Θn−1

p

ι0
⊥ ∆×Θn−1 ×∆and ∆×Θn−1 ,

p

ι0
⊥

where p(x, [k]) := x and ι0(x) := (x, [0]) for x an element of Θn−1 or ∆×Θn−1, respectively, induce
by pre-composition adjunctions

sSetΘop
n−1 SetΘop

n−1

ι∗0

p∗

⊥ sSetΘop
n−1×∆op

and SetΘop
n−1×∆op

,
ι∗0

p∗

⊥

where p∗ are in fact the canonical inclusions.

Then, recall from Notation 2.3.10 the object E[k] ∈ SetΘop
n−1×∆op

, for k ≥ 0. By taking the left

Kan extension of the assignment t : ∆×Θn−1 ×∆→ SetΘop
n−1×∆op

given by

([m], θ, [k]) 7→ F [m]×Θn−1[θ]× E[k],

we obtain an adjunction

SetΘop
n−1×∆op

sSetΘop
n−1×∆op

.
t!

t!

⊥

We define an auxiliary nerve, based on set-valued presheaves. It generalizes Cordier–Porter’s
[CP86] homotopy coherent nerve, which we recover as the case n = 1.

By taking the left Kan extension of the assignment ∆×Θn−1 → sSetΘop
n−1-Cat given by

([m], θ) 7→ Sm(Θn−1[θ]),

we obtain an adjunction

sSetΘop
n−1-Cat SetΘop

n−1×∆op

.
N

C

⊥

The following remark explains the relation between the functors N and N.

Remark 3.1.1. The adjunction C a N is the composite of the adjunctions p∗ a ι∗0 and C a N.

sSetΘop
n−1-Cat sSetΘop

n−1×∆op

SetΘop
n−1×∆op

N : :C
N

C

⊥
ι∗0

p∗

⊥

By taking the left Kan extension of the assignment ∆×Θn−1 ×∆→ sSetΘop
n−1-Cat given by

([m], θ, [k]) 7→ C(F [m]×Θn−1[θ]× E[k]),

we obtain an adjunction

sSetΘop
n−1-Cat sSetΘop

n−1×∆op

.
Nc

Cc

⊥

Spelling out the description of the right adjoint, we obtain the following.
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Definition 3.1.2. For a sSetΘop
n−1-enriched category C, the complete homotopy coherent nerve

NcC is the (∆×Θn−1)-space given at m ≥ 0, θ ∈ Θn−1, and k ≥ 0 by the set

(NcC)m,θ,k := sSetΘop
n−1×∆op

(C(F [m]×Θn−1[θ]× E[k]), C).

The following remark explains the relation between the functor Nc and N.

Remark 3.1.3. The adjunction Cc a Nc is the composite of the adjunctions t! a t! and C a N.

sSetΘop
n−1-Cat SetΘop

n−1×∆op

sSetΘop
n−1×∆op

Nc : :Cc

N

C

⊥
t!

t!

⊥

3.2. Homotopical properties of the complete homotopy coherent nerve for n = 1. When
n = 1, we can endow Set∆op

with the Joyal model structure Set∆op

(∞,1) for (∞, 1)-categories from
[Joy08], sSet with the Kan–Quillen model structure sSet (∞,0) for (∞, 0)-categories from [Qui67],
and sSet-Cat with the resulting model structure being the Bergner model structure sSet (∞,0)-Cat
from [Ber07b]. With respect to these model structure, it is known (see [Joy07, Theorem 2.10],
or [Lur09, Theorem 2.2.5.1], and [DS11, Corollary 8.2]) that the discrete complete homotopy
coherent nerve N defines a Quillen equivalence between models of (∞, 1)-categories.

Theorem 3.2.1. The adjunction

sSet (∞,0)-Cat Set∆op

(∞,1)

N

C

⊥

is a Quillen equivalence.

If (sSet (∞,0))
∆op

cCS = sSet∆op

(∞,1) denotes Rezk’s model structure on sSet∆op

for complete Segal
spaces, we then obtain that the complete homotopy coherent nerve Cc also gives an equivalence of
models of (∞, 1)-categories.

Theorem 3.2.2 ([JT07, Theorem 4.12]). The adjunction

Set∆op

(∞,1) sSet∆op

(∞,1)

t!

t!

⊥

is a Quillen equivalence.

Corollary 3.2.3. The adjunction

sSet (∞,0)-Cat sSet∆op

(∞,1)

Nc

Cc

⊥

is a Quillen equivalence.

Proof. The adjunction Cc a Nc is a Quillen pair because by Remark 3.1.3 it is the composite

sSet (∞,0)-Cat Set∆op

(∞,1) sSet∆op

(∞,1)
Nc : :Cc

N

C

⊥
t!

t!

⊥

of the Quillen equivalence C a N from Theorem 3.2.1 and the Quillen equivalence t! a t! from
Theorem 3.2.2. �
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3.3. Homotopical properties of the complete homotopy coherent nerve for n > 1. We
now assume n > 1. Recall from § 1.3.4 and § 2.3.11 that we considered the “space-based” model

structures sSet
Θop

n−1
(∞,n−1), (sSet

Θop
n−1

(∞,n−1))
∆op

inj , (sSet
Θop

n−1
(∞,n−1))

∆op

cS , and (sSet
Θop

n−1
(∞,n−1))

∆op

cCS . We need to define

“set-based” analogs of those: Set
Θop

n−1
(∞,n−1), (Set

Θop
n−1

(∞,n−1))
∆op

inj , (Set
Θop

n−1
(∞,n−1))

∆op

cS , and (Set
Θop

n−1
(∞,n−1))

∆op

cCS .

First, we denote by Set
Θop

n−1
(∞,n−1) Ara’s model structure on SetΘop

n−1 for (n − 1)-quasi-categories
from [Ara14, §5.17], which is also a model of (∞, n− 1)-categories.

Theorem 3.3.1 ([Ara14, Theorem 8.4]). The adjunction

sSet
Θop

n−1
(∞,n−1) Set

Θop
n−1

(∞,n−1)

ι∗0

p∗

⊥

is a Quillen equivalence.

3.3.2. We denote by (Set
Θop

n−1
(∞,n−1))

∆op

inj the injective model structure on the category of simplicial

objects valued in Set
Θop

n−1
(∞,n−1).

We denote by (Set
Θop

n−1
(∞,n−1))

∆op

cS the left Bousfield localization of (Set
Θop

n−1
(∞,n−1))

∆op

inj with respect to
the set SegΘn−1

∪ CstΘn−1
, where

SegΘn−1
= {(F [1]qF [0] . . .qF [0] F [1]→ F [m])×Θn−1[θ] | m ≥ 1, θ ∈ Θn−1},

and

CstΘn−1
= {F [0]× (Θn−1[θ]→ Θn−1[θ′]) | θ → θ′ ∈ Θn−1}.

We further denote by (Set
Θop

n−1
(∞,n−1))

∆op

cCS the left Bousfield localization of (Set
Θop

n−1
(∞,n−1))

∆op

cS with re-
spect to the set

CptΘn−1
= {(F [0]→ E[1])×Θn−1[θ] | θ ∈ Θn−1}.

Theorem 3.3.1 together with [Lur09, Remark A.2.8.6] and [Hir03, Theorem 3.3.20(1)(b)] im-

plies the following. In particular, since (sSet
Θop

n−1
(∞,n−1))

∆op

cCS is a model of (∞, n)-categories, so is

(Set
Θop

n−1
(∞,n−1))

∆op

cCS .

Theorem 3.3.3. The adjunction between injective model structures

(sSet
Θop

n−1
(∞,n−1))

∆op

inj (Set
Θop

n−1
(∞,n−1))

∆op

inj
ι∗0

p∗

⊥

is a Quillen equivalence, and so the adjunctions between left Bousfield localizations

(sSet
Θop

n−1
(∞,n−1))

∆op

cS (Set
Θop

n−1
(∞,n−1))

∆op

cS
ι∗0

p∗

⊥ (sSet
Θop

n−1
(∞,n−1))

∆op

cCS
and (Set

Θop
n−1

(∞,n−1))
∆op

cCS
ι∗0

p∗

⊥

are also Quillen equivalences.

Using the above Quillen equivalences and [Hir03, Theorem 3.3.20(1)(b)], we deduce that the

model structure (Set
Θop

n−1
(∞,n−1))

∆op

cCS coincides with the left Bousfield localization of (Set
Θop

n−1
(∞,n−1))

∆op

cS with
respect to just the map F [0]→ E[1] since the analogous statement holds for the space-based model

structure (sSet
Θop

n−1
(∞,n−1))

∆op

cCS .

The adjunction t! a t! also gives a Quillen equivalence between the last models, and we prove
this in Appendix A.

Theorem 3.3.4. The adjunction
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(Set
Θop

n−1
(∞,n−1))

∆op

cCS (sSet
Θop

n−1
(∞,n−1))

∆op

cCS
t!

t!

⊥

is a Quillen equivalence.

We are now ready to analyze the homotopical properties of N when valued in the model structure

(Set
Θop

n−1
(∞,n−1))

∆op

cS .

Proposition 3.3.5. The adjunction

sSet
Θop

n−1
(∞,n−1)-Cat (Set

Θop
n−1

(∞,n−1))
∆op

cS
N

C

⊥

is a Quillen pair.

Proof. The adjunction C a N is a Quillen pair because by Remark 3.1.1 it is the composite

sSet
Θop

n−1
(∞,n−1)-Cat (sSet

Θop
n−1

(∞,n−1))
∆op

cS (Set
Θop

n−1
(∞,n−1))

∆op

cSN : :C
N

C

⊥
ι∗0

p∗

⊥

of the Quillen pair C a N from Proposition 2.3.14 and the Quillen pair p∗ a ι∗0 from Theorem 3.3.3.
�

Next, we analyze the homotopical properties of the functor N when valued in the model structure

(sSet
Θop

n−1
(∞,n−1))

∆op

cCS . For this, let π2 : Θ × ∆ → ∆ denote the projection given by π2(θ, [k]) := [k].

Then the pre-composition functor π∗2 : sSet → sSetΘop
n−1 is the canonical inclusion, and the induced

base-change functor (π∗2)∗ : sSet-Cat → sSetΘop
n−1-Cat is also the canonical inclusion.

Lemma 3.3.6. The adjunction

sSet
Θop

n−1
(∞,n−1)-Cat sSet (∞,0)-Cat

((π2)∗)∗

(π∗2)∗

⊥

obtained by base-change along the adjunction π∗2 a (π2)∗ is a Quillen pair.

Proof. First note that the adjunction

sSet
Θop

n−1
(∞,n−1)

sSet (∞,0)

(π2)∗

π∗2

⊥

is a Quillen pair. Indeed, the canonical inclusion π∗2 clearly preserves monomorphisms, and it
preserves weak equivalences, since a weak equivalence in sSet (∞,0) is in particular a weak equivalence

in (sSet (∞,0))
Θop

n−1

inj and so a weak equivalence in sSet
Θop

n−1
(∞,n−1). Then, by e.g. [MOR22, Proposition 4.3],

the induced adjunction by base-change

sSet
Θop

n−1
(∞,n−1)-Cat sSet (∞,0)-Cat

((π2)∗)∗

(π∗2)∗

⊥

is also a Quillen pair, as desired. �

Proposition 3.3.7. The adjunction
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sSet
Θop

n−1
(∞,n−1)-Cat (Set

Θop
n−1

(∞,n−1))
∆op

cCS
N

C

⊥

is a Quillen pair.

Proof. Recall that the model structure (Set
Θop

n−1
(∞,n−1))

∆op

cCS can be taken to be the left Bousfield local-

ization of (Set
Θop

n−1
(∞,n−1))

∆op

cS with respect to the map F [0] → E[1]. Hence, by Proposition 3.3.5 and

[Hir03, Theorem 3.3.20(1)(a)], it is enough to show that the functor C sends the map F [0]→ E[1]

to a weak equivalence in sSet
Θop

n−1
(∞,n−1)-Cat . However, by Theorem 3.2.1, we know that C(F [0]→ E[1])

is a weak equivalence in sSet (∞,0)-Cat between cofibrant objects. Since the inclusion functor

sSet (∞,0)-Cat → sSet
Θop

n−1
(∞,n−1)-Cat is left Quillen by Lemma 3.3.6, we get that C(F [0] → E[1]) is

also a weak equivalence in sSet
Θop

n−1
(∞,n−1)-Cat . �

We can now deduce the homotopical properties of Nc from those of N.

Theorem 3.3.8. The adjunction

sSet
Θop

n−1
(∞,n−1)-Cat (sSet

Θop
n−1

(∞,n−1))
∆op

cCS
Nc

Cc

⊥

is a Quillen pair.

Proof. The adjunction Cc a Nc is a Quillen pair because by Remark 3.1.3 it is the composite

sSet
Θop

n−1
(∞,n−1)-Cat (Set

Θop
n−1

(∞,n−1))
∆op

cCS (sSet
Θop

n−1
(∞,n−1))

∆op

cCSNc : :Cc

N

C

⊥
t!

t!

⊥

of the Quillen pair C a N from Proposition 3.3.7 and the Quillen pair t! a t! from Theorem 3.3.4. �

We conclude by explaining that NcC should be thought of as a completion of NC (as well as
NC).

Proposition 3.3.9. Given a fibrant sSet
Θop

n−1
(∞,n−1)-enriched category C, the natural canonical maps

NC → NC → NcC

are weak equivalences in (sSet (∞,0))
∆op×Θop

n−1

inj , and so weak equivalences in (sSet
Θop

n−1
(∞,n−1))

∆op

inj .

Proof. Let m ≥ 0, θ ∈ Θ, and k ≥ 0. The map ∆[k] → ∆[0] is a weak equivalence in

(sSet (∞,0))
∆op×Θop

n−1

inj , so F [m] × Θ[θ] × ∆[k] → F [m] × Θ[θ] × ∆[0] = F [m] × Θ[θ] is also one

since (sSet (∞,0))
∆op×Θop

n−1

inj is cartesian closed. By Theorems 2.3.1 and 3.3.8, the functors

C,Cc : (sSet (∞,0))
∆op×Θop

n−1

inj → sSet
Θop

n−1
(∞,n−1)-Cat

are left Quillen functors, and in particular preserve weak equivalences. So there is a commutative

diagram in sSet
Θop

n−1
(∞,n−1)-Cat ,

C(F [m]×Θn−1[θ]×∆[k])

C(F [m]×Θn−1[θ])

Cc(F [m]×Θn−1[θ]×∆[k])

Cc(F [m]×Θn−1[θ])

' '
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where the vertical maps are weak equivalences. By 2-out-of-3, we obtain that the top map is also

a weak equivalence in sSet
Θop

n−1
(∞,n−1)-Cat .

Using [Cis19, Corollary 1.3.10] together with Theorems 2.3.1 and 3.3.8, we deduce that, for every

(cofibrant) object X ∈ (sSet (∞,0))
∆op×Θop

n−1

inj , the canonical map CX → CcX is a weak equivalence in

(sSet (∞,0))
∆op×Θop

n−1

inj . By [Hov99, Corollary 1.4.4(b)], it follows that, for every sSetΘop
n−1-enriched

category C, there is an adjoint natural canonical map NC → NcC, which is a weak equivalence

when C is fibrant in sSet
Θop

n−1
(∞,n−1)-Cat .

The statement follows, when combined with Proposition 2.3.9. �

Remark 3.3.10. Let C be a fibrant sSet
Θop

n−1
(∞,n−1)-enriched category. Combining Proposition 3.3.9

and Theorem 3.3.8, we obtain that the complete homotopy coherent nerve NcC provides a fibrant

replacement of NC and of NC in (sSet
Θop

n−1
(∞,n−1))

∆op

cCS .

3.4. The known Quillen equivalences of models of (∞, n)-categories. For n > 1, we let
d : ∆ × Θn−1 → Θn be the diagonal functor given by d([m], θ) := [m](θ, . . . , θ). It induces by

pre-composition a functor d∗ : sSetΘop
n → sSetΘop

n−1×∆op

which admits a right adjoint d∗.

Theorem 3.4.1 ([BR20, Corollary 7.1]). The adjunction

(sSet
Θop

n−1
(∞,n−1))

∆op

cCS sSet
Θop

n
(∞,n)

d∗

d∗

⊥

is a Quillen equivalence.

We now consider the full subcategory PCat(sSetΘop
n−1) of sSetΘop

n−1×∆op

spanned by the objects

W ∈ sSetΘop
n−1×∆op

such that W0 is discrete, meaning that W0 lies in the image of Set ↪→ sSetΘop
n−1 .

There is a “projective-like” model structure on PCat(sSetΘop
n−1), denoted by PCat(sSet

Θop
n−1

(∞,n−1))Seg

and constructed in [BR13, Theorem 6.12]. The inclusion I : PCat(sSetΘop
n−1)→ sSetΘop

n−1×∆op

has
a right adjoint R.

The following is a combination of [BR20, Theorem 9.6] with [BR13, Proposition 7.1].

Theorem 3.4.2. The adjunction

(sSet
Θop

n−1
(∞,n−1))

∆op

cCS PCat(sSet
Θop

n−1
(∞,n−1))Seg

R

I

⊥

is a Quillen equivalence.

Finally, the strict nerve construction N : sSetΘop
n−1 -Cat → sSetΘop

n−1×∆op

restricts to a functor

N : sSetΘop
n−1-Cat → PCat(sSetΘop

n−1) since (NC)0 is discrete, for every sSetΘop
n−1-enriched cate-

gory C.

Theorem 3.4.3 ([BR13, Theorem 7.6]). The adjunction

sSet
Θop

n−1
(∞,n−1)-Cat PCat(sSet

Θop
n−1

(∞,n−1))Seg
N

c

⊥

is a Quillen equivalence.

3.5. Recognizing cells in models of (∞, n)-categories. For 0 ≤ j ≤ n, we denote by Cj the
j-cell, which can be seen as an n-category and an object of Θn.

Barwick–Schommer-Pries identify what it means for an object of a model of (∞, n)-categories
(in the sense of Barwick–Schommer-Pries [BSP21]) to be a representative for the j-cell.

For instance, the j-cells in sSet
Θop

n
(∞,n) have been identified by Barwick and Schommer-Pries.
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Proposition 3.5.1 ([BSP21, §13]). For 0 ≤ j ≤ n, the Θn-space Θn[Cj ] is a representative of the

j-cell in sSet
Θop

n
(∞,n).

This notion is useful to apply the following criterion to establish that a given Quillen pair is a
Quillen equivalence between models of (∞, n)-categories.

Proposition 3.5.2 ( [BSP21, Proposition 15.10]). Let M and N be model categories that are
models for (∞, n)-categories, and L : M � N : R a Quillen pair between them. Then the Quillen
pair (L,R) is a Quillen equivalence if and only if the derived functor of L sends j-cells to j-cells
for all 0 ≤ j ≤ n.

The following helps one identify cells through a known left Quillen equivalence. The proof is
analogous to [BOR21, Lemma 3.2], where the case n = 2 is treated.

Remark 3.5.3. Let F : M→N be a left Quillen equivalence between models of (∞, n)-categories,
and let X be a cofibrant object in M. Then X is a j-cell in M for some 0 ≤ j ≤ n if and only if
F (X) is a j-cell in N .

We recalled in the previous subsection that there is a zig zag of Quillen equivalences relating

the model structures (sSet
Θop

n−1
(∞,n−1))

∆op

cCS and sSet
Θop

n−1
(∞,n−1)-Cat , which we now use to identify the cell

representatives.

To identify the j-cells in (sSet
Θop

n−1
(∞,n−1))

∆op

cCS , we use the Quillen equivalence of Theorem 3.4.1.

Proposition 3.5.4. For 0 ≤ j ≤ n, the (∆ × Θn−1)-space d∗(Θn[Cj ]) is a representative of the

j-cell in (sSet
Θop

n−1
(∞,n−1))

∆op

cCS .

Proof. Let 0 ≤ j ≤ n. We know that Θn[Cj ] is cofibrant in sSet
Θop

n
(∞,n), as all objects are cofibrant,

and by Proposition 3.5.1 it is a representative of the j-cell in sSet
Θop

n
(∞,n). So, by Proposition 3.5.2,

its derived image d∗(Θn[Cj ]) under the left Quillen equivalence d∗ is a representative of the j-cell

in (sSet
Θop

n−1
(∞,n−1))

∆op

cCS . �

Lemma 3.5.5. For j = 0 we have that d∗(Θn[0]) = F [0], and for 1 ≤ j ≤ n we have that the

(∆×Θn−1)-space d∗(Θn[Cj ]) can be computed as the following pushout in sSetΘop
n−1×∆op

.

Θn−1[Cj−1]qΘn−1[Cj−1] F [1]×Θn−1[Cj−1]

F [0]q F [0] d∗(Θn[Cj ])
p

Proof. We compute the (m, θ)-component of d∗(Θn[Cj ]) for m ≥ 0 and θ ∈ Θn−1:

(d∗(Θn[Cj ]))m,θ ∼= (d∗(Θn[1](Cj−1)))m,θ
∼= Θn([m](θ, . . . , θ), [1](Cj−1))

∼= ∆([m], [0])q∆([m], [0])q (∆nc([m], [1])×Θn−1(θ, Cj−1))

∼= (F [0]q F [0]q (∆nc([m], [1])×Θn−1[Cj−1]))m,θ,

where ∆nc([m], [1]) denotes the set of non-constant maps from [m] to [1] in ∆. Observe that this
is precisely the (m, θ)-component of the given pushout. �

To identify the j-cells in PCat(sSet
Θop

n−1
(∞,n−1))Seg, we use the Quillen equivalence of Theorem 3.4.2.

Note that d∗(Θn[Cj ]) lies in the image of I : PCat(sSetΘop
n−1) ↪→ sSetΘop

n−1×∆op

, and hence we can

see it as an object in PCat(sSetΘop
n−1).
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Lemma 3.5.6. For 0 ≤ j ≤ n, the object d∗(Θn[Cj ]) is cofibrant in PCat(sSet
Θop

n−1
(∞,n−1))Seg.

Proof. For j = 0, the fact that the unique map ∅ → F [0] = d∗(Θn−1[C0]) is a cofibration in

PCat(sSet
Θop

n−1
(∞,n−1))Seg, namely that d∗(Θn−1[C0]) is cofibrant, is mentioned in the proof of [BR13,

Lemma 6.5].

Now let 1 ≤ j ≤ n. For every m ≥ 0 and every cofibration A→ B in sSet
Θop

n−1
(∞,n−1), by [BR13, §6.2]

the map A[m] → B[m] is a cofibration in PCat(sSet
Θop

n−1
(∞,n−1))Seg. For the reader’s convenience, we

recall that A[m] is defined as the following pushout in sSetΘop
n−1×∆op

.∐
m+1A F [m]×A

∐
m+1 F [0] A[m]

p

In particular, by Lemma 3.5.5 we have an isomorphism

Θn[Cj ][1]
∼= d∗Θn−1[Cj ].

Since Θn−1[Cj ] is cofibrant in sSet
Θop

n−1
(∞,n−1), then the map

F [0]q F [0] ∼= ∅[1] → Θn[Cj ][1]
∼= d∗Θn−1[Cj ]

is a cofibration in PCat(sSet
Θop

n−1
(∞,n−1))Seg. Since F [0] is cofibrant in PCat(sSet

Θop
n−1

(∞,n−1))Seg, then so is

F [0]q F [0] and we conclude that d∗Θn−1[Cj ] is cofibrant in PCat(sSet
Θop

n−1
(∞,n−1))Seg. �

Proposition 3.5.7. For 0 ≤ j ≤ n, the object d∗(Θn[Cj ]) is a representative of the j-cell in

PCat(sSet
Θop

n−1
(∞,n−1))Seg.

Proof. Let 0 ≤ j ≤ n. By Lemma 3.5.6 we have that d∗(Θn[Cj ]) is cofibrant in PCat(sSet
Θop

n−1
(∞,n−1))Seg.

So its derived image under the left Quillen equivalence I is Id∗(Θn[Cj ]) ∼= d∗(Θn[Cj ]), which is

a representative of the j-cell in (sSet
Θop

n−1
(∞,n−1))

∆op

cCS by Proposition 3.5.4. Hence we conclude by Re-

mark 3.5.3 that d∗(Θn[Cj ]) is a representative of the j-cell in PCat(sSet
Θop

n−1
(∞,n−1))Seg. �

To identify the j-cells in sSet
Θop

n−1
(∞,n−1)-Cat , we use the Quillen equivalence of Theorem 3.4.3.

Proposition 3.5.8. The terminal category [0] is a representative of the 0-cell in sSet
Θop

n−1
(∞,n−1)-Cat,

and, for 1 ≤ j ≤ n, the sSetΘop

-enriched category Σ(Θn−1[Cj−1]) is a representative of the j-cell

in sSet
Θop

n−1
(∞,n−1)-Cat.

Proof. Let 0 ≤ j ≤ n. By Lemma 3.5.6 we have that d∗(Θn[Cj ]) is cofibrant in PCat(sSet
Θop

n−1
(∞,n−1))Seg,

and by Proposition 3.5.7 it is a representative of the j-cell in PCat(sSet
Θop

n−1
(∞,n−1))Seg. So, by Proposi-

tion 3.5.2, its derived image c(d∗(Θn[Cj ])) under the left Quillen equivalence c from Theorem 3.4.3

is a representative of the j-cell in sSet
Θop

n−1
(∞,n−1)-Cat .

When j = 0, it is straightforward to see that c(d∗(Θn[0])) = c(F [0]) ∼= [0], and we now prove
that for 1 ≤ j ≤ n there is an isomorphism

c(d∗(Θn[Cj ])) ∼= Σ(Θn−1[Cj−1]).

Let 1 ≤ j ≤ n. Since c preserves pushouts, then by Lemma 3.5.5 c(d∗(Θn[Cj ])) can be computed

as the following pushout in sSetΘop
n−1 -Cat .
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c(Θn−1[Cj−1]qΘn−1[Cj−1]) c(F [1]×Θn−1[Cj−1])

c(F [0]q F [0]) c(d∗(Θn[Cj ]))
p

Since the left-hand map is the isomorphism

c(Θn−1[Cj−1]qΘn−1[Cj−1]) ∼= [0]q [0] ∼= c(F [0]q F [0]),

the right-hand map gives an isomorphism

c(d∗(Θn[Cj ])) ∼= c(F [1]×Θn−1[Cj−1]) ∼= Σ(Θn−1[Cj−1]),

where the last isomorphism holds by definition of c. This concludes the proof. �

3.6. New Quillen equivalence of models of (∞, n)-categories. The goal of this subsection
is to show that the functor Nc defines a Quillen equivalence for n > 1.

Lemma 3.6.1. For 1 ≤ j ≤ n, there is an isomorphism in sSetΘop
n−1-Cat

Cc(d∗(Θn[Cj ])) ∼= Σ(Θn−1[Cj−1]).

Proof. For 1 ≤ j ≤ n, since Cc preserves pushouts, then by Lemma 3.5.5 Cc(d∗(Θn[Cj ])) can be

computed as the following pushout in sSetΘop
n−1-Cat .

Cc(Θn−1[Cj−1]qΘn−1[Cj−1]) Cc(F [1]×Θn−1[Cj−1])

Cc(F [0]q F [0]) Cc(d∗(Θn[Cj ]))
p

The left-hand map is the isomorphism

Cc(Θn−1[Cj−1]qΘn−1[Cj−1]) ∼= [0]q [0] ∼= Cc(F [0]q F [0])

so the right-hand map yields an isomorphism

Cc(d∗(Θn[Cj ])) ∼= Cc(F [1]×Θn−1[Cj−1]),

where the right-hand side can be computed as

Cc(F [1]×Θn−1[Cj−1]) = C(F [1]×Θn−1[Cj−1]) = S1(Θn−1[Cj−1]) = Σ(Θn−1[Cj−1])

by definition of Cc. This concludes the proof. �

Theorem 3.6.2. For n > 1, the adjunction

sSet
Θop

n−1
(∞,n−1)-Cat (sSet

Θop
n−1

(∞,n−1))
∆op

cCS
Nc

Cc

⊥

is a Quillen equivalence.

Proof. We show that the derived functor of Cc sends j-cells to j-cells, for all 0 ≤ j ≤ n. Since Cc

is left Quillen by Theorem 3.3.8, it then follows from Proposition 3.5.2 that the functor Cc is a left
Quillen equivalence, as desired.

By Lemma 3.5.6 and Proposition 3.5.7, we know that d∗(Θn[Cj ]) is cofibrant in (sSet
Θop

n−1
(∞,n−1))

∆op

cCS

and that it is a j-cell. For j = 0, we have that Cc sends the 0-cell d∗(Θn[0]) ∼= F [0] to the terminal

category [0], which is by Proposition 3.5.8 a 0-cell in sSet
Θop

n−1
(∞,n−1)-Cat . For 1 ≤ j ≤ n, Lemma 3.6.1

shows that Cc sends the j-cell d∗(Θn[Cj ]) to the sSetΘop
n−1-enriched category Σ(Θn−1[Cj−1]), which

is by Proposition 3.5.8 a j-cell in sSet
Θop

n−1
(∞,n−1)-Cat . �
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Combining Remark 3.1.3, Proposition 3.3.5, and Theorem 3.6.2, we also obtain that N is a
Quillen equivalence.

Corollary 3.6.3. For n > 1, the adjunction

sSet
Θop

n−1
(∞,n−1)-Cat (Set

Θop
n−1

(∞,n−1))
∆op

cS
N

C

⊥

is a Quillen equivalence.

Combining Theorems 3.4.1 and 3.6.2, we also obtain a direct Quillen equivalence between the

model categories sSet
Θop

n−1
(∞,n−1)-Cat and sSet

Θop
n

(∞,n).

Corollary 3.6.4. The adjunction

sSet
Θop

n−1
(∞,n−1)-Cat sSet

Θop
n

(∞,n)

d∗ ◦Nc

Cc ◦ d∗
⊥

is a Quillen equivalence.

Appendix A. Set- vs space-based model structures for (∞, n)-categories

Recall from Section 3.1 the functor t : ∆×Θn−1 ×∆→ SetΘop
n−1×∆op

given by

([m], θ, [k]) 7→ F [m]×Θn−1[θ]× E[k],

and the induced adjunction

SetΘop
n−1×∆op

sSetΘop
n−1×∆op

t!

t!

⊥

obtained by left Kan extending along t. The goal of this appendix is to show – in Appendix A.3 –
that this gives a Quillen equivalence

(Set
Θop

n−1
(∞,n−1))

∆op

cCS (sSet
Θop

n−1
(∞,n−1))

∆op

cCS
t!

t!

⊥

between the model structures (Set
Θop

n−1
(∞,n−1))

∆op

cCS and (sSet
Θop

n−1
(∞,n−1))

∆op

cCS introduced in § 3.3.2 and § 2.3.11,

respectively. To this end, we first study point-set properties of the adjunction t! a t! in Appen-

dix A.1 and the enrichment of the model structure (Set
Θop

n−1
(∞,n−1))

∆op

CS over Set∆op

(∞,1) in Appendix A.2.

A.1. Auxiliary adjunctions. To better understand the adjunction t! a t!, we make use of the
auxiliary adjunction κ! a κ! from [JT07, §2], and study how they compare.

By left Kan extending along the assignment κ : ∆→ Set∆op

given by

[k] 7→ E[k] = NI[k]

from Notation 2.3.10, we obtain an adjunction

Set∆op
sSet .

κ!

κ!

⊥

The following is [Joy08, Theorem 6.22] (also re-stated as [JT07, Theorem 1.19]).

Theorem A.1.1. The adjunction

Set∆op

(∞,1)
sSet (∞,0)

κ!

κ!

⊥
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is a Quillen pair.

The following notations are inspired by the notations used in [JT07, §2].

Notation A.1.2. We denote by

• (−)�(−) : SetΘop
n−1×∆op

× sSet → sSetΘop
n−1×∆op

the bi-functor sending a pair (A,K) to the

product A×K ∈ sSetΘop
n−1×∆op

,

• A\(−) : sSetΘop
n−1×∆op

→ sSet the right adjoint of the functor A�(−) : sSet → sSetΘop
n−1×∆op

,

for A ∈ SetΘop
n−1×∆op

,

• A t (−) : SetΘop
n−1×∆op

→ Set∆op

the right adjoint of A × (−) : Set∆op → SetΘop
n−1×∆op

, for

A ∈ SetΘop
n−1×∆op

.

The following lemmas are analog statements to the ones of [JT07, Lemma 2.11].

Lemma A.1.3. Let A ∈ SetΘop
n−1×∆op

and K ∈ sSet. There is a natural isomorphism in

SetΘop
n−1×∆op

t!(A�K) ∼= A× κ!(K).

Proof. Write

A ∼= colim(∆×Θn−1)↓A F [m]×Θn−1[θ] and K ∼= colim∆↓K ∆[k].

We have the following natural isomorphisms:

t!(A�K) ∼= t!((colim(∆×Θn−1)↓A F [m]×Θn−1[θ])× (colim∆↓K ∆[k]))

∼= t!(colim(∆×Θn−1)↓A colim∆↓K(F [m]×Θn−1[θ]×∆[k])) × preserves colimits

∼= colim(∆×Θn−1)↓A colim∆↓K t!(F [m]×Θn−1[θ]×∆[k]) t! preserves colimits

∼= colim(∆×Θn−1)↓A colim∆↓K(F [m]×Θn−1[θ]× E[k]) t! on representables

∼= (colim(∆×Θn−1)↓A(F [m]×Θn−1[θ]))× (colim∆↓K E[k]) × preserves colimits

∼= (colim(∆×Θn−1)↓A(F [m]×Θn−1[θ]))× (colim∆↓K κ!∆[k]) κ!∆[k] ∼= E[k]

∼= (colim(∆×Θn−1)↓A(F [m]×Θn−1[θ]))× κ!(colim∆↓K ∆[k]) κ! preserves colimits

∼= A× κ!(K).

as desired. �

Lemma A.1.4. Let A,X ∈ SetΘop
n−1×∆op

. Then there is a natural isomorphism in sSet

A\t!(X) ∼= κ!(A t X).

Proof. We have a square of adjunctions

SetΘop×∆op Set∆op

A t (−)

A× (−)

⊥

sSetΘop×∆op
sSet

A\(−)

A�(−)

⊥

t!t! ⊥ κ!κ! ⊥

where the diagram of left adjoint functors commutes up to isomorphism by Lemma A.1.3. Hence,
the diagram of right adjoints also commutes up to isomorphism, yielding the desired result. �
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A.2. Auxiliary homotopical facts. Let (sSet
Θop

n−1
(∞,n−1))

∆op

CS and (Set
Θop

n−1
(∞,n−1))

∆op

CS denote the left

Bousfield localizations of (sSet
Θop

n−1
(∞,n−1))

∆op

inj and (Set
Θop

n−1
(∞,n−1))

∆op

inj , respectively, with respect to the
set SegΘn−1

∪ CptΘn−1
.

The following is a consequence of Theorem 3.3.3 and [Hir03, Theorem 3.3.20(1)(b)].

Proposition A.2.1. The adjunction

(sSet
Θop

n−1
(∞,n−1))

∆op

CS (Set
Θop

n−1
(∞,n−1))

∆op

CS
ι∗0

p∗

⊥

is a Quillen equivalence.

The reason that we consider these model structures – rather than their localizations at CstΘn−1

(sSet
Θop

n−1
(∞,n−1))

∆op

cCS and (Set
Θop

n−1
(∞,n−1))

∆op

cCS – is that unlike the latter, the former are cartesian closed, as
we now record.

Proposition A.2.2. The model structures (sSet
Θop

n−1
(∞,n−1))

∆op

CS and (Set
Θop

n−1
(∞,n−1))

∆op

CS are cartesian
closed.

Proof. It is shown as [BR20, Proposition 5.9] that the model structure (sSet
Θop

n−1
(∞,n−1))

∆op

CS is cartesian

closed. For (Set
Θop

n−1
(∞,n−1))

∆op

CS , this follows from [Ara14, Proposition 2.8] applied to the left Quillen

equivalence p∗ : (Set
Θop

n−1
(∞,n−1))

∆op

CS → (sSet
Θop

n−1
(∞,n−1))

∆op

CS from Proposition A.2.1, which preserves binary
products and creates weak equivalences. �

Let π1 : ∆ × Θn−1 → ∆ denote the projection given by π1([m], θ) := [m]. Then the pre-

composition functor π∗1 : Set∆op → SetΘop
n−1×∆op

is the canonical inclusion.

Lemma A.2.3. The adjunction

(Set
Θop

n−1
(∞,n−1))

∆op

CS
Set∆op

(∞,1)

(π1)∗

π∗1

⊥

is a Quillen pair.

Proof. The canonical inclusion π∗1 , being also a right adjoint, preserves monomorphisms, namely
cofibrations. To show that it is left Quillen, by [Joy08, Proposition E.2.14 and Theorem 5.22] it is
enough to show that the inner horn inclusions

Lt[m]→ F [m]

for m > 1 and 0 < t < m, and either inclusion

F [0]→ E[1]

are trivial cofibrations in (Set
Θop

n−1
(∞,n−1))

∆op

CS .
However, by [JT07, Lemma 3.5] the map Lt[m] → F [m] is in the saturated class of monomor-

phisms generated by the inclusions F [1] qF [0] . . . qF [0] F [1]→ F [m] ∈ SegΘn−1
for m ≥ 1, so it is

also a trivial cofibration in (Set
Θop

n−1
(∞,n−1))

∆op

CS . Clearly, the map F [0] → E[1] ∈ CptΘn−1
is a trivial

cofibration in (Set
Θop

n−1
(∞,n−1))

∆op

CS . This concludes the proof. �

Proposition A.2.4. The model structure (Set
Θop

n−1
(∞,n−1))

∆op

CS is enriched over Set∆op

(∞,1) with Set∆op

-
enriched hom functor given by (−) t (−).

Proof. This follows directly from Proposition A.2.2 and Lemma A.2.3, using [GMMO19, Proposi-
tion 3.8]. �
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A.3. The Quillen equivalence. We are now ready to study the homotopical properties of the
adjunction t! a t!.

Proposition A.3.1. The functor t! : sSetΘop
n−1×∆op

→ SetΘop
n−1×∆op

preserves monomorphisms.

Proof. It is enough to show that t! sends pushout-product maps

(A→ B)×̂(∂∆[k]→ ∆[k])

with A→ B a monomorphism in SetΘop
n−1×∆op

and k ≥ 0 to monomorphisms in SetΘop
n−1×∆op

. By
Lemma A.1.3, the image under t! of the above map is given by

t!((A→ B)×̂(∂∆[k]→ ∆[k])) = (A→ B)×̂κ!(∂∆[k]→ ∆[k]).

By Theorem A.1.1, the functor κ! preserves monomorphisms. Hence the above map is a pushout-
product of two monomorphisms, and so it is a monomorphism as well. �

Remark A.3.2. Let A ∈ SetΘop
n−1×∆op

and Y ∈ sSetΘop
n−1×∆op

. There is a natural isomorphism
in sSet

A\Y ∼= Map(A, Y ),

where Map(−,−) denotes the hom space functor of sSetΘop
n−1×∆op

. Furthermore, if Y is a fibrant

object in (sSet (∞,0))
∆op×Θop

n−1

inj , then the same hom space computes the derived mapping space

A\Y ∼= Maph(A, Y ).

Lemma A.3.3. If X is a fibrant object in (Set
Θop

n−1
(∞,n−1))

∆op

CS , and A→ B is a (trivial) cofibration in

(Set
Θop

n−1
(∞,n−1))

∆op

CS , then the induced map between mapping spaces

Map(B, t!(X))→ Map(A, t!(X))

is a (trivial) fibration in sSet (∞,0).

Proof. Let X ∈ (Set
Θop

n−1
(∞,n−1))

∆op

CS be fibrant. First note that, since (Set
Θop

n−1
(∞,n−1))

∆op

CS is enriched over

Set∆op

(∞,1) by Proposition A.2.4, then for every (trivial) cofibration A → B in (Set
Θop

n−1
(∞,n−1))

∆op

CS , the

induced map B t X → A t X is a (trivial) fibration in Set∆op

(∞,1). Then, since the functor

κ! : Set∆op

(∞,1) → sSet (∞,0) is right Quillen by Theorem A.1.1, the induced map

κ!(B t X)→ κ!(A t X)

is a (trivial) fibration in sSet (∞,0). By Lemma A.1.4, the above map is isomorphic to the map

B\t!(X)→ A\t!(X)

and by Remark A.3.2 to the map

Map(B, t!(X))→ Map(A, t!(X)),

which are therefore also (trivial) fibrations in sSet (∞,0). �

Lemma A.3.4. A map X → Y is a fibration in (sSet (∞,0))
∆op×Θop

n−1

inj if and only if, for every

monomorphism A→ B in SetΘop
n−1×∆op

, the induced map

Map(B,X)→ Map(A,X)×Map(A,Y ) Map(B, Y )

is a fibration in sSet (∞,0). In particular, an object X is fibrant in (sSet (∞,0))
∆op×Θop

n−1

inj if and only

if, for every monomorphism A→ B in SetΘop
n−1×∆op

, the induced map

Map(B,X)→ Map(A,X)

is a fibration in sSet (∞,0).
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Proof. As a consequence of [Hir03, Corollary 15.7.2], we have that the injective model structure

(sSet (∞,0))
∆op×Θop

n−1

inj coincides with the Reedy model structure (sSet (∞,0))
∆op×Θop

n−1

Reedy . In particular

by [Hir03, Theorem 15.3.4(1)], a map X → Y is a fibration in (sSet (∞,0))
∆op×Θop

n−1

inj if and only if,
for all m ≥ 0 and θ ∈ Θn−1, the induced map

Map(F [m]×Θn−1[θ], X)

Map(∂(F [m]×Θn−1[θ]), X)×Map(∂(F [m]×Θn−1[θ]),Y ) Map(F [m]×Θn−1[θ], Y )

is a fibration in sSet (∞,0), where

∂(F [m]×Θn−1[θ]) := ∂F [m]×Θn−1[θ]q∂F [m]×∂Θn−1[θ],X F [m]× ∂Θn−1[θ].

This holds if and only if, for every monomorphism A→ B in SetΘop
n−1×∆op

, the induced map

Map(B,X)→ Map(A,X)×Map(A,Y ) Map(B, Y )

is a fibration in sSet (∞,0). Indeed, the direct implication follows from the fact that for all m ≥ 0
and θ ∈ Θn−1 the pushout-product

(∂F [m]→ F [m])×̂(∂Θn−1[θ]→ Θn−1[θ])

is a monomorphism in SetΘop
n−1×∆op

. The converse implication follows from the fact that the model

structure (sSet (∞,0))
∆op×Θop

n−1

inj is simplicial (see e.g. [Mos19, Theorem 5.4]). �

Proposition A.3.5. The functor t! : (Set
Θop

n−1
(∞,n−1))

∆op

CS → (sSet
Θop

n−1
(∞,n−1))

∆op

CS preserves fibrant objects.

Proof. By applying Lemma A.3.3 to specific monomorphisms A→ B, we get that t!(X) is fibrant

in (sSet
Θop

n−1
(∞,n−1))

∆op

CS . Indeed, by taking A→ B to be

• a generic monomorphism in SetΘop
n−1×∆op

, we get that

Map(B, t!(X))→ Map(A, t!(X))

is a fibration in sSet (∞,0), which combined with Lemma A.3.4 shows that t!(X) is fibrant in

(sSet (∞,0))
∆op×Θop

n−1

inj ,

• the trivial cofibration F [m] × C → F [m] × D in (Set
Θop

n−1
(∞,n−1))

∆op

inj with m ≥ 0 and C → D a
monomorphism in S(∞,n−1), we get that

Map(h)(F [m]×D, t!(X))→ Map(h)(F [m]× C, t!(X))

is a trivial fibration in sSet (∞,0), which shows that t!(X)m is fibrant in sSet
Θop

n−1
(∞,n−1) for all m ≥ 0,

and so t!(X) is fibrant in (sSet
Θop

n−1
(∞,n−1))

∆op

inj ,

• the trivial cofibration (F [1]qF [0] . . .qF [0] F [1])×Θn−1[θ]→ F [m]×Θn−1[θ] in (Set
Θop

n−1
(∞,n−1))

∆op

CS

with m ≥ 1 and θ ∈ Θn−1, we get that

Map(h)(F [m]×Θn−1[θ], t!(X))→ Map(h)((F [1]qF [0] . . .qF [0] F [1])×Θn−1[θ], t!(X))

is a trivial fibration in sSet (∞,0), which shows that t!(X) is fibrant in (sSet
Θop

n−1
(∞,n−1))

∆op

Seg ,

• the trivial cofibration F [0] × Θn−1[θ] → E[1] × Θn−1[θ] in (Set
Θop

n−1
(∞,n−1))

∆op

CS with θ ∈ Θn−1, we
get that

Map(h)(E[1]×Θn−1[θ], t!(X))→ Map(h)(F [0]×Θn−1[θ], t!(X))

is a trivial fibration in sSet (∞,0), which shows that t!(X) is fibrant in (sSet
Θop

n−1
(∞,n−1))

∆op

CS .
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This concludes the proof. �

Proposition A.3.6. The functor t! : (Set
Θop

n−1
(∞,n−1))

∆op

CS → (sSet
Θop

n−1
(∞,n−1))

∆op

CS preserves fibrations be-
tween fibrant objects.

Proof. Let f : X → Y be a fibration in (Set
Θop

n−1
(∞,n−1))

∆op

CS between fibrant objects. By Proposi-

tion A.3.5, the objects t!(X) and t!(Y ) are fibrant in (sSet
Θop

n−1
(∞,n−1))

∆op

CS . By construction of the

left Bousfield localization, it follows that t!(f) : t!(X) → t!(Y ) is a fibration in (sSet
Θop

n−1
(∞,n−1))

∆op

CS

if and only if it is a fibration in (sSet (∞,0))
∆op×Θop

n−1

inj . We show that t!(f) is a fibration in

(sSet (∞,0))
∆op×Θop

n−1

inj .

Since (Set
Θop

n−1
(∞,n−1))

∆op

CS is enriched over Set∆op

(∞,1) by Proposition A.2.4, for every monomorphism

A→ B in SetΘop
n−1×∆op

, the map

B t X → A t X ×AtY B t Y

is a fibration in Set∆op

(∞,1). As κ! : Set∆op

(∞,1) → sSet (∞,0) is right Quillen by Theorem A.1.1, we get
that the map

κ!(B t X → A t X ×AtY B t Y )

is a fibration in sSet (∞,0). By Lemma A.1.4, the above map is isomorphic to the map

B\t!(X)→ A\t!(X)×A\t!(Y ) B\t!(Y )

and by Remark A.3.2 to the map

Map(B, t!(X))→ Map(A, t!(X))×Map(A,t!(Y )) Map(B, t!(Y )),

which is therefore also a fibration in sSet (∞,0). By Lemma A.3.4 this shows that t!(f) : t!(X) →
t!(Y ) is a fibration in (sSet (∞,0))

∆op×Θop
n−1

inj , as desired. �

Theorem A.3.7. The adjunction

(Set
Θop

n−1
(∞,n−1))

∆op

CS (sSet
Θop

n−1
(∞,n−1))

∆op

CS
t!

t!

⊥

is a Quillen equivalence.

Proof. Using [Joy08, Proposition E.2.14], it follows from Propositions A.3.1 and A.3.6 that t! a t!
is a Quillen pair. By Lemma A.1.3, the composite of left adjoints

(Set
Θop

n−1
(∞,n−1))

∆op

CS (sSet
Θop

n−1
(∞,n−1))

∆op

CS (Set
Θop

n−1
(∞,n−1))

∆op

CSid : : id
t!

t!

⊥
ι∗0

p∗

⊥

is the identity. Hence, by Proposition A.2.1 and 2-out-of-3 for Quillen equivalences, we conclude
that t! a t! is also a Quillen equivalence. �

We finally obtain the desired result as a direct consequence of the above theorem and [Hir03,
Theorem 3.3.20(1)(b)].

Theorem 3.3.4. The adjunction

(Set
Θop

n−1
(∞,n−1))

∆op

cCS (sSet
Θop

n−1
(∞,n−1))

∆op

cCS
t!

t!

⊥

is a Quillen equivalence.
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