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A Jacobian mate defines the Jacobian pair.

Leonid Makar-Limanov ∗

To the memory of Ernest Borisovich Vinberg

Abstract

A polynomial f ∈ C[x, y] is a Jacobian mate if the Jacobian J(f, g) =

1 for some g ∈ C[x, y]. It is not known that then C[f, g] = C[x, y] and a

conjecture that this is the case is the Jacobian conjecture. In this note

we will check that if f is given then the subalgebra C[f, g] is known

and that g can be recovered up to a summand which is a polynomial

in f .

Mathematics Subject Classification (2000): Primary 14R15.

Key words: Jacobian mate, Jacobian conjecture.

Introduction.

Assume that f ∈ C[x, y] (where C is the field of complex numbers)

satisfies J(f, g) = ∂f
∂x

∂g
∂y −

∂f
∂y

∂g
∂x = 1 for some g ∈ C[x, y]. This polynomial

∗The author is grateful to the Max Planck Institute for Mathematics, where he is

presently a visitor.
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can be the image of x under an automorphism φ and it is well known that

then J(φ−1(f), φ−1(g)) = c ∈ C∗, a non-zero complex number. Then from

the properties of Jacobian it follows that φ−1(g) = cy + p(x) and therefore

C[f, g] = C[x, y].

The JC (Jacobian conjecture) states that J(f, g) = 1 implies C[f, g] =

C[x, y] (see [K]). This conjecture occasionally becomes a theorem even for

many years but today it is a problem. So it is possible that f is not an

image of x under an automorphism and then C[f, g] 6= C[x, y].

Recall that if p ∈ C[x, y] is a polynomial in 2 variables and each monomial

of p is represented by a lattice point on the plane with the coordinate vector

equal to the degree vector of this monomial then the convex hull N (p) of

the points so obtained is called the Newton polygon.

It is known for many years that for a potential counterexample to JC

there exists an automorphism ξ of C[x, y] such that the Newton polygon

N (ξ(f)) of ξ(f) contains a vertex v = (m,n) where n > m > 0 and is

included in a trapezoid with the vertex v, edges parallel to the y axis and

to the bisectrix of the first quadrant adjacent to v, and two edges belonging

to the coordinate axes (see [A1], [A2], [AO], [GGV], [H], [J], [L], [MW],[M],

[Na1], [Na2], [NN1], [NN2], [Ok]). This was improved with a completely new

approach by Pierrette Cassou-Noguès who showed that N (f) does not have

an edge parallel to the bisectrix (see [CN] and [ML]). From now on we will

assume that f is “shaped” like this, i.e. that N (f) is a trapezoid described

above.

Our goal is to recover g.
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Expansion of g.

Consider the ring L = C[x−1, x] of Laurent polynomials in x. Define A

to be the algebra of asymptotic power series in y with coefficients in L, i.e.

the elements of A are
∑i=k
−∞ yiy

i where yi ∈ L, yk 6= 0. For a =
∑i=k
−∞ yiy

i

define the leading form of a as |a| = yky
k.

The polynomial f(x, y) and a polynomial g which we are trying to find

are elements of A and |f | = cxmyn. If |g| = gNy
N then since J(f, g) =

1 and n > 1 we must have J(xmyn, gNy
N ) = 0. (If J(xmyn, gNy

N ) =

(mNxm−1gN − nxmg′N )yn+N−1 6= 0 then |J(f, g)| = cc1(mNx
m−1gN −

nxmg′N )yn+N−1 and J(f, g) 6= 1.) Hence gN = c1x
M and |g| = c1x

MyN

where Mn = mN , i.e. xMyN = (xmyn)λ0 where λ0 ∈ Q.

Lemma on radical. If r ∈ Q is a rational number, |a| = cxlyk, c ∈ C,

and |a|r ∈ A then ar ∈ A.

Proof. From the Newton binomial theorem ar = |a|r
∑∞
j=0

(r
j

)
(
∑i=k−1
−∞

yi
yk
yi−k)j

because a = |a|(1 +
∑i=k−1
−∞

yi
yk
yi−k). Since all yi

yk
∈ L, element ar ∈ A. 2

Since we can divide f by c, we may assume without loss of generality that

|f | = xmyn. Not to be confused with rational powers of complex numbers

let us agree that any rational power of f which belongs to A has as the

leading form a monomial with coefficient 1.

By lemma on radical fλ0 ∈ A and hence g1 = g − c1f
λ0 ∈ A. Since

J(f, g1) = 1 either J(|f |, |g1|) = 0 or J(|f |, |g1|) = 1. If J(|f |, |g1|) = 0 then

|g1| = c1|f |λ1 , c1 ∈ C, λ1 ∈ Q and we can define g2 = g − c0fλ0 − c1fλ1

which is in A for the same reasons as g1. We can proceed until we obtain
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gκ = g −
∑κ−1
i=0 cif

λi ∈ A for which J(|f |, |gκ|) = 1, i.e. J(xmyn, |gκ|) = 1.

Therefore |gκ| = (cκ(xmyn)
1−n
n − 1

n−mx
1−my1−n) where cκ ∈ C. If cκ 6= 0

then (xmyn)
1−n
n ∈ A and m

n ∈ Z which is impossible since 0 < m < n. Thus

|gκ| = 1
(m−n)x

1−my1−n and

g =
κ−1∑
i=0

cif
λi + gκ, ci ∈ C (1)

where degy(|fλi |) > 1−n, degy(|gκ|) = 1−n, and |gκ| = 1
(m−n)x

1−my1−n =

1
(m−n)x

n−m
n |f |λκ where λκ = 1−n

n .

We will find g if we find ci and λi for 0 ≤ i < κ since g is a polynomial.

Reductions of f .

Newton introduced the polygon which we call the Newton polygon in

order to find a solution y of p(x, y) = 0 in terms of x for a polynomial

p(x, y) =
∑

(i,j)∈N (p) pijx
iyj (see [N]). Here is the process of obtaining such

a solution. Consider an edge e of N (p) which is not parallel to the x axis.

Denote by p(e) =
∑

(i,j)∈e pijx
iyj . The form p(e) allows to determine the

first summand of the solution as follows. Consider an equation p(e) = 0.

Since p(e) is a homogeneous form relative to a weight given by w(x) = α(6=

0), w(y) = β, w(xiyj) = iα + jβ, solutions of this equation are y = cix
β
α

and ci ∈ C. Choose any solution cix
β
α and replace p(x, y) by p1(x, y) =

p(x, cix
β
α +y). Though p1 is not necessarily a polynomial in x we can define

the Newton polygon of p1 in the same way as it was done for the polynomials;

the only difference is that p1 may contain monomials xµyν where µ ∈ Q

rather than in Z. The polygon N (p1) contains the degree vertex v of e, i.e.
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the vertex with y coordinate equal to degy(p(e)) and an edge e′ which is a

modification of e (e′ may collapse to v). Take the order vertex v1 of e′, i.e.

the vertex with y coordinate equal to the order of p1(e
′) as a polynomial in

y (if e′ = v take v1 = v). Use the edge e1 for which v1 is the degree vertex to

determine the next summand and so on. After possibly a countable number

of steps we obtain a vertex vµ and the edge eµ for which vµ is not the degree

vertex, i.e. either eµ is horizontal or the degree vertex of eµ has a larger

y coordinate than the y coordinate of vµ. It is possible only if N (pµ) does

not have any vertices on the x axis. Therefore pµ(x, 0) = 0 and a solution

is obtained.

When characteristic is zero the process of constructing a solution is more

straightforward then it may seem from this description. The denominators

of fractional powers of x (if denominators and numerators of these rational

numbers are assumed to be relatively prime) do not exceed degy(p). Indeed,

for any initial weight there are at most degy(p) solutions while a summand

cx
M
N can be replaced by cεMx

M
N where εN = 1 which gives at least N

different solutions.

Let yk ∈ C(x) be one of the solutions of f(x, y) = 0 by the decreasing

powers of x. Call fk(x, y) = f(x, y + yk) ∈ C(x)[y] a reduction of f .

If g exists then J(fk, gk) = 1 for gk(x, y) = g(x, y+yk). Since fk(x, 0) = 0,

we have 1 = −∂gk(x,0)
∂x fk,1 where fk,1 = ∂fk(x,y)

∂y |y=0. Because of that the

lowest vertex of N (fk) is (µ(k), 1) where µ(k) 6= 1 and the lowest vertex of

N (gk) is either (1−µ(k), 0) or (0, 0). Call (µ(k), 1) the principal vertex and

the slanted (non-horizontal) edge of N (fk) containing (µ(k), 1) the principal

edge of fk.

The polygonN (fk) is not compact, it has an infinite edge [(−∞, 1), (µ(k), 1)].
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There is also an infinite horizontal edge through the leading vertex, i.e. the

vertex (m,n) of N (fk), which contains only this vertex.

Call a slanted edge e of a Newton polygon semi-positive, zero, semi-

negative if its extension intersects the x axis in a point with a positive, zero,

negative abscissa.

Call e positive if it is semi-positive and the line parallel to e and con-

taining point (1, 1) intersects the x axis in a point with a positive abscissa.

Call a positive edge of N (fk) which contains the leading vertex the lead-

ing edge. (This is the right edge containing the leading vertex.)

If the principal edge of a reduction is positive call this reduction positive.

It is easy to see that for a positive reduction the edges in the chain of slanted

edges starting with the leading edge and ending with the principal edge are

positive.

In order to say more about reductions we use some extensions of C[x, y].

Take a weight on C[x, y] given by w(x) = 1, w(y) = −α where α ∈ R.

Observe that α ≥ 0 for the edges of N (fk).

With the help of this weight we can define an extension Aw of C[x, y]:

Aw consists of fractional asymptotic power series
∑∞
i=k ci(z)x

−i
N where z =

xαy, k ∈ Z, ci(z) ∈ C(z), N ∈ Z+ and depends on the element. For any

a =
∑∞
i=k ci(z)x

−i
N ∈ Aw the leading form |a| is defined as |a| = ck(z)x

−k
N

(assuming ck 6= 0). The Newton binomial formula (1 + δ)λ =
∑∞
j=0

(λ
j

)
δj

insures that if |a|λ ∈ Aw then aλ ∈ Aw (see Lemma on radical).

Take an edge e of N (fk). Denote by we the weight given by we(x) =

1, we(y) = −α for which all points on e have the same weigh. Denote by

fk(e) the leading form of fk relative to this weigh and assume that ρ =

we(fk) 6= 0. Then fk(e) = xρp(z) where z = xαy, p(z) ∈ C[z], ρ ∈ Q∗.
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We can present gk as gk =
∑s−1
i=0 cif

λi + gk,s where ci ∈ C, λi ∈ Q, λi >

λi+1, and J(fk(e), gk,s(e)) = 1 (h(e) denotes the leading form of h relative

to we).

Indeed, if J(fk(e), gk(e)) = 0 then gk(e) = c0fk(e)
λ0 for some c0 ∈

C∗, λ0 ∈ Q. Since gk(e) is a polynomial in z, λ0 = a0
N , a0 ∈ Z where

f
1
N is a polynomial in z and N ∈ Z is maximal possible under this condi-

tion. In this case gk = c0f
λ0
k +c1gk,1 where gk,1 ∈ Aw. If J(fk(e), gk,1(e)) = 0

then gk,1(e) = c1fk(e)
λ1 and λ1 = a1

N , a1 ∈ Z because gk,1(e) is a rational

function in y, and so on. After a finite number of steps we will get gk,s for

which J(fk(e), gk,s(e)) = 1.

The form gk,s(e) = xσq(z) where q(z) ∈ C(z) and J(fk(e), gk,s(e)) = 1

corresponds to ρpq′ − σp′q = 1.

It is more convenient to look at p(z) and r(z) = p(z)q(z) which satisfy

ρpr′ − τp′r = p (2)

where τ = ρ+ σ.

(2) can be rewritten as ln(rρp−τ )′ = 1
r . This allows us to obtain a

Dixmier relation

pτ = rρ exp(

∫ −d z
r

) (3)

between p and r (see [D]). Thus all roots of a rational function r must be

simple.

If e is a positive edge then ρ > 0, τ > 0, r cannot have poles, and r is

a polynomial with simple roots. Assume that e is positive.

If deg(r) = 1 then p = µrκ = (c1z + c2)
d, d ∈ Z+ and c2 = 0 since

fk(e)(x, 0) = 0, i.e. e collapses to a vertex.
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If e is not a vertex then deg(r) > 1 and 1
r =

∑
i

ci
z−µi where

∑
i ci = 0.

(Of course, ρ−ci
τ ∈ Z+ since p(z) is a polynomial.) So deg(p) = ρ

τ deg(r)

while the multiplicity of any root of p is ρ−ci
τ 6= ρ

τ since ci 6= 0, i. e. for any

edge e′ obtained from e in the resolution process, the order vertex ofe′ does

not belong to the bisectrix. We can also see that there is a root with the

multiplicity larger than ρ
τ : since

∑
i ci = 0 there is a negative cj

.

Lemma on positive reductions. There exists a positive reduction.

Proof. The leading edge e is positive. Therefore there are roots of f(e) with

the multiplicity larger than we(f)
we(xy)

. Use any of these roots in the Newton

resolution process. Denote by e1 the edge attached to the modification of

e. Its degree vertex is above the bisectrix. If e1 is positive we can find a

root of the form supported on e1 with a sufficiently large multiplicity and

proceed with a resolution process. Suppose after several steps we obtain a

non-positive edge ei. Its degree vertex is above the bisectrix.

After that proceed with the resolution process to obtain fk. Consider

also gk which, we assumed, exists and recall expansion (1). The leading

vertices of N (fk) and N (gk) are homothetic with the coefficient λ0 and

their leading edges are also homothetic with the same coefficient because

J(fk(e), gk(e)) = 0. Since J(fk(ej), gk(ej)) = 0 for 1 ≤ j < i we will get

the chain of edges of N (fk) staring with the leading edge up to, but not

including ei, such that its homothetic image with the coefficient λ0 is a

chain of edges of N (gk).

If ei is not a principal edge then J(fk(ei), gk(ei)) = 0. In this case both

N (fk) and N (gk) belong to the sector bounded by the ray connecting the

origin and dv(ei) = (µ, ν) (the degree vertex of ei) and the negative ray of
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the x axis.

We can rewrite fk and gk in the variables u = ν
ν−µx

ν−µ
ν , z = x

µ
ν y. Since

dv(ei) is above the bisectrix µ < ν and in coordinates u, z the Newton

polygons of fk, gk belong to the second quadrant. But then J(fk, gk) = 1

is impossible. Hence ei is the principal edge of fk, its order vertex is the

principal vertex (µ(k), 1) where µ(k) < 1, and N (gk) has a vertex (1 −

µ(k), 0).

Consider the non-horizontal edge e′i adjacent to (1−µ(k), 0). If the slope

of e′i is larger than the slope of ei then gk(ei) = x1−µ(k) and J(fk(ei), gk(ei))

is neither zero nor one. So the slope of e′i does not exceed the slope of e.

In this case the degree vertex of e′i cannot be proportional to the degree or

to the order vertex of ei since these edges are separated by the ray with the

vertex in the origin and parallel to ei. Again J(fk(ei), gk(ei)) is neither zero

nor one.

Thus ei is positive and Lemma is proved. 2.

As we know, N (fk) has a finite number of slanted edges, connecting the

leading and principal vertices. With a resolution process described above,

all vertices of these edges are above the bisectrix of the first quadrant.

Now we can find all ci and λi from (1). Indeed, if ep is the principal

edge of fk then J(fk(ep), gk(ep)) = 1. Hence w(fkgk) = w(xy) for the weight

w = wep . The degree vertices of fk(ep) and gk(ep) are proportional with the

coefficient λ0 so (1 + λ0)w(fk) = w(xy). Therefore the point ( 1
1+λ0

, 1
1+λ0

)

belongs to the line which contain e and we know λ0.

To find c0 we should find gk(ep) using (3) and compare coefficients with
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the leading monomials of fk(ep) and gk(ep). As we saw above, finding gk(ep)

boils dawn to finding a polynomial q(z) for which ρpq′−σp′q = 1 where ρ and

p(z) ∈ C[z] are known (ρ = w(fk), fk(ep) = xρp(z)) and σ = 1− µ(k). We

can replace ρ and σ by relatively prime integers: apq′−bp′q = k. Finding q is

possible only if neither a nor b is one. Indeed, if deg(p) = d1 > 1, deg(q) = d2

then ad2 = bd1. If, say, a = 1 then p(q − cpb)′ − bp′(q − cpb) = k for any

c ∈ C and we can find c such that deg(q − cpb) < d2. This means that λ0 is

neither integer nor the reciprocal of an integer.

Using other edges ofN (fk) we can find other λi and ci including cκ−1, λκ−1

defined by the leading edge, but not all of them. It is possible to have some

intermediate values of λi corresponding to the vertices of N (fk).

If d = (m,n) (greatest common divisor) and λ0 = m0
d then g = [

∑m0
i=0 cif

m0−i
d ],

the polynomial part of the expression, and finding ci is a linear algebra prob-

lem. Since
∑m0
i=0 ci[f, [f

m0−i
d ]] = 1 we should express 1 as a linear combina-

tion of known polynomials.

If a g is recovered and J(f, h) = 1 then h− g ∈ C[f ] (see [No]). Here is a

somewhat different proof that J(p, f) = 0 only when p ∈ C[f ]. If J(p, f) = 0

then p and f are algebraically dependent, i.e. Q(p, f) = 0 for some polyno-

mial Q. Therefore J(Q(p, f), g) = QpJ(p, g) +Qf = 0 and J(p, g) ∈ C(p, f).

Therefore J(J(p, g), f) = 0, i.e Jacobian with g acts on C(f), a subalgebra

of elements algebraically dependent with f .

Lemma on degree. degy(J(p, g))− degy(p) ≤ −degy(f).

Proof. It is clear that degy(J(p, g)) < degy(p) + degy(g). Hence we can

find q ∈ C(f) for which D(q) = degy(J(q, g)) − degy(q) is maximal pos-
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sible. Assume that D(q) > −degy(f). Since J(f, q) = 0 the leading

form of q is proportional to a fractional power of |f |. Hence we can find

a, b ∈ Z and c ∈ C for which degy(q
a − cf b) < degy(q

a). Now, D(qa) =

degy(J(qa, g)) − degy(q
a) = degy(aq

a−1J(q, g)) − degy(q
a)) = D(q) and

D(qa−cf b) = degy(J(qa−cf b, g))−degy((q
a−cf b)) > D(q). Indeed, J(qa−

cf b, g) = aqa−1J(q, g)−cbf b−1 and degy(J(qa−cf b, g)) = degy(aq
a−1J(q, g)−

cbf b−1) = degy(aq
a−1J(q, g)) since degy(q

a−1J(q, g)) = degy(q
a) + D(q) =

degy(f
b) + D(q) > degy(f

b−1) by our assumption while degy(q
a − cf b) <

degy(q
a). We have a contradiction which proves the lemma. 2

Assume now that there are elements in C(f) which are not polynomi-

als in f . Say, p ∈ C(f) is such an element with minimal degree possi-

ble. Then J(p, g) =
∑d
i=0 pif

i since degy(J(p, g)) < degy(p). Therefore

J(p −
∑d
i=0

pi
i+1f

i+1, g) = 0, i.e. p′ = p −
∑d
i=0

pi
i+1f

i+1 is algebraically de-

pendent with g. Since p′ is also algebraically dependent with f and f and g

are algebraically independent, p′ ∈ C and p ∈ C[f ].
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