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UNIVERSAL K-MATRICES FOR QUANTUM KAC-MOODY ALGEBRAS

ANDREA APPEL AND BART VLAAR

Abstract. We introduce the notion of a cylindrical bialgebra, which is a quasitriangular bialgebra
H endowed with a universal K-matrix, i.e., a universal solution of a generalized reflection equation,
yielding an action of cylindrical braid groups on tensor products of its representations. We prove
that new examples of such universal K-matrices arise from quantum symmetric pairs of Kac-Moody
type and depend upon the choice of a pair of generalized Satake diagrams. In finite type, this yields
a refinement of a result obtained by Balagović and Kolb, producing a family of non-equivalent
solutions interpolating between the quasi-K-matrix and the full universal K-matrix. Finally, we
prove that this construction yields formal solutions of the generalized reflection equation with a
spectral parameter in the case of finite-dimensional representations over the quantum affine algebra
UqLsl2.
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1. Introduction

1.1. In this paper, we extend the construction of the universal K-matrix for quantum groups
corresponding to complex semisimple Lie algebras obtained by Balagović and Kolb in [BK19] to
the case of an arbitrary symmetrizable Kac-Moody algebra. Our approach relies on the notion of
a cylindrical bialgebra. Informally, this is a bialgebra endowed with a distinguished solution of
a generalized reflection equation, which yields a natural action of cylindrical braid groups on the
tensor products of its representations and generalizes the notion of cylinder twist introduced by
tom Dieck and Häring-Oldenburg and later used by Balagović and Kolb. It bears a simple, yet
crucial, difference with the latter in that the relevant reflection equation is twisted by an algebra
automorphism which does not necessarily preserve the coproduct. However, its defect in being a
morphism of quasitriangular bialgebras is controlled by a Drinfeld twist.
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The first author was supported in part by the ERC STG Grant 637618 and the second author by EPSRC grant

number EP/R009465/1.

1



2 ANDREA APPEL AND BART VLAAR

This more general framework allows us to construct new examples of universal K-matrices in
the context of quantum Kac-Moody algebras. More specifically, given a symmetrizable Kac-Moody
algebra g and an additional combinatorial datum (a pair of generalized Satake diagrams), we
construct an algebra automorphism ψ of Uqg and an operator K satisfying the generalized reflection
equation

(ψ ⊗ ψ)(R21) · (1⊗K) · (ψ ⊗ id)(R) · (K ⊗ 1) = (K ⊗ 1) · (id⊗ ψ)(R21) · (1⊗K) ·R, (1.1)

where R is the universal R-matrix of Uqg. In finite type, our construction leads to new examples
of non-equivalent universal K-matrices, where the Balagović-Kolb universal K-matrix is recovered
as a special case.

1.2. Reflection equations received much attention in the mathematical physics literature from the
1980s onwards, in particular in relation to quantum integrability, see e.g., [Ch84, Sk88, KS92, GZ94].
In this case, the reflection equation depends on an additional parameter, referred to as the spectral
parameter. In the most general case, it takes the following form:

R−−
21 (wz ) · id⊗K(w) ·R−+(zw) ·K(z)⊗ id = K(z)⊗ id ·R−+

21 (zw) · id⊗K(w) ·R++(wz ) ,

where R++(z), R−+(z), and R−−(z) are three, possibly distinct, solutions of a system of Yang-
Baxter type equations with a spectral parameter, see [Ch92, Eqs. (4.12)-(4.14)].

Examples of matrix solutions of the reflection equation have been constucted in the context of
finite-dimensional representations of quantum affine algebras and quantum affine symmetric pairs.
In this case, the operators R±±(z) = R(z) are often assumed to be equal and determined by the
action of the universal R-matrix [Dr86], thus yielding the standard reflection equation. Moreover,
K(z) is generally obtained as an intertwiner of the form

K(z) : V (z)→ V (1z )

with respect to a distinguished coideal subalgebra, see e.g., [DG02, DM03, RV16, BTs18]. Our con-
struction is tailored to provide a universal solution to this problem in greater generality. Namely, in
the case of quantum affine algebras, the universal K-matrix converges on a finite-dimensional rep-
resentation V to a formal intertwiner KV (z) : V (z)→ V ψ(1z ) and yields a solution of Cherednik’s
generalized reflection equation. A major advantage of our approach is that, by carefully chosing
the automorphism ψ, the latter reduces to the standard case and our construction recovers many of
the previously known solutions. In the last section of this paper, we consider the case of quantum
affine sl2, while the general (untwisted) case is discussed in [AV22].

In the rest of this introduction, we review the problem in more detail and outline our main
results.

1.3. Let g be a symmetrizable Kac-Moody algebra and Uqg the corresponding Drinfeld-Jimbo
quantum group [Dr85, Ji86, Lus94]. It is well-known that Uqg is a non-commutative Hopf algebra,
which, up to completion, is equipped with a quasitriangular structure given by the universal R-
matrix R. The use of completion is made necessary by the fact that R is defined only on certain
tensor products of Uqg-modules, e.g., category O modules.

The quantum group Uqg is naturally endowed with a family of distinguished subalgebras, which

are not Hopf subalgebras, but only (one-sided) coideal subalgebras. Let k := gθ the fixed-point
subalgebra of a Lie algebra involution θ. In finite type, building on work by Gavrilik and Klimyk
[GK91] and Koornwinder [K93] in special cases, Noumi, Sugitani, and Dijkhuizen [NS95, NDS97]
and, independently, Letzter [Le99, Le02, Le03] proved that the Hopf subalgebra Uk ⊆ Ug is nat-
urally deformed into a coideal subalgebra Uqk ⊆ Uqg, which we refer to as a quantum fixed-point
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coideal subalgebra. For symmetrizable Kac-Moody algebras, the construction of Uqk was obtained
by Kolb in [Ko14], in the case of θ being an automorphism of the second kind1.

1.4. For certain quantized fixed-point subalgebras of finite type, Ehrig and Stroppel [ES18] and
Bao and Wang [BW18] developed a coideal analogue of the theory of canonical basis (cf. [Kas90,
Lus90]). Central in their results is the use of a coideal version of Lusztig’s bar involution on Uqg,
i.e., a bar involution on Uqk, which we simply refer to as the internal bar involution. This yields a
canonical element, which is known as the quasi-K-matrix, which intertwines between Lusztig’s bar
involution and the internal bar involution on Uqk (see in particular [BW18, Sec. 2.5]). In [BK19],
Balagović and Kolb extended the construction of the quasi-K-matrix to every quantized fixed-point
subalgebra Uqk of the symmetrizable Kac-Moody algebra Uqg. In particular, in finite type, this led
to the construction of a universal K-matrix.

1.5. The main goal of the present paper is to extend the construction of the universal K-matrix
to the case of a symmetrizable Kac-Moody algebra. Note that the formula of the full universal
K-matrix in [BK19] is not valid for infinite-dimensional Kac-Moody algebras, since it relies on the
quantum Weyl group operator corresponding to longest element of the Weyl group, which only
exists if g is finite-dimensional. The main property of this operator is to provide a description
of the quasi-R-matrix as a multiplicative coboundary (cf. [KR90] and Eq. (5.6)), i.e., it is es-
sentially a half-balance on Uqg [KT09, ST09], and it is crucial in the construction of universal
solutions of the reflection equation. There have been various attempts to define this operator for
infinite-dimensional Kac-Moody algebras (e.g., [Ti10]), but none is suited to our purposes. More
importantly, we aim to construct universal K-matrices which specialize to finite-dimensional repre-
sentations of quantum affine algebras and yield solutions of generalized reflection equations with a
spectral parameter. In particular, by restriction, the automorphism ψ should induce the inversion
of the spectral parameter on finite-dimensional representations. This cannot be achieved within
the existing framework of cylinder braided subalgebras used in [BK19], where ψ is required to be
an automorphism of quasitriangular bialgebras.

1.6. Our proposal is to bypass these obstructions altogether by adopting a new framework, which
does not require the use of a global half-balance, while providing a generalization of the notion of
cylinder twist. This prompts the definition of cylindrical bialgebras (cf. Definition 2.3). Roughly,
this is the datum (H,R,ψ, J,K), where (H,R) is a quasitriangular bialgebra, ψ : H → H is an
algebra automorphism, J ∈ H ⊗H a Drinfeld twist such that Hcop,ψ = HJ , and finally K ∈ H is
an invertible element satisfying the coproduct identity

∆(K) = J−1 · (1⊗K) · (ψ ⊗ id)(R) · (K ⊗ 1) .

In particular, the datum (ψ, J), which we refer to as a twist pair, is a twist isomorphismH → Hcop,ψ

in the terminology used in [Dav07]. It follows from the coproduct identity that K is indeed a uni-
versal K-matrix, as it satisfies the generalized reflection equation (1.1). In particular, it yields an
action of cylindrical braid groups on tensor products of its representations (cf. Proposition 2.4).

Any automorphism of quasitriangular bialgebras φ : (H,R)→ (H,R) automatically gives rise to
the twist pair (φ,R−1

21 ). Therefore, our definition recovers as a special case the notion of cylinder
twists from [tD98, tDHO98, BK19]. We shall refer to this case as a strongly cylindrical bialgebra.

1An automorphism θ : g → g is of the second kind if θ(b+) ∩ b+ is finite-dimensional, where b+ ⊂ g denotes the
positive Borel subalgebra, see e.g., [KW92, 4.6].
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Note that, choosing the twist pair (φ,R), we recover the analogue notion with the opposite con-
vention used e.g., in [BZBJ18]. More generally, in this framework, we are able to describe a larger
pool of operators which naturally appear in representation theory. For instance, the notion of a
balance is one of the simplest cases of a cylinder twist, studied in detail in [DKM03]. In contrast,
a half-balance is not a cylinder twist. However, both balances and half-balances are obtained as
examples of solutions of generalized reflection equations in the context of cylindrical bialgebras.

1.7. Our main result is the construction of a family of cylindrical structures on Uqg arising from
quantum fixed-point coideal subalgebras. In fact, we prove that, given a quantum fixed-point
coideal subalgebras Uqk with generalized Satake diagram (X, τ), there is a natural family of twist
pairs (ψY,η,RY,η), indexed by an auxiliary generalized Satake diagram (Y, η). The Drinfeld twist
J = RY,η is obtained by a suitable Cartan modification of the parabolic R-matrix corresponding
to the subdiagram of finite type Y and allows us to avoid the first obstruction due to the non-
existence of a global half-balance in general. We then adapt the approach of [BK19] to this new
setting, constructing an operator KY,η, which acts on integrable category O Uqg-modules as a ψ-
twisted Uqk-intertwiner and yields a (topological) cylindrical structure on Uqg (cf. Proposition 8.7
and Theorem 8.8).

In finite type, we obtain a refinement of [BK19]. Suppose Uqg is a quantum group of finite type
with Dynkin diagram I and opposition involution oiI (i.e., diagram automorphism corresponding
to the longest element of the Weyl group). Then (Y, η) = (I, oiI) is a Satake diagram. In this
case, we recover the universal K-matrix KI,oiI obtained by Balagović and Kolb (up to conventions).
On the other hand, if (Y, η) = (X, τ), then KX,τ coincides with quasi-K-matrix (up to a Cartan
factor). Therefore, we obtain a discrete family of universal K-matrices interpolating between the
Balagović-Kolb universal K-matrix and the quasi-K-matrix.

1.8. The construction of universal K-matrices for Kac-Moody algebras involves a number of addi-
tional generalizations and simplifications with respect to the construction given in [BK19], which
we briefly summarize below. The first two describe the more general setting in which the main
results are valid (Proposition 8.7 and Theorem 8.8).

1.8.1. Quantized pseudo-fixed-point subalgebras. The K-matrix construction of [BK19] applies to
coideal subalgebras Uqk which are q-deformed enveloping algebras of fixed-point subalgebras with
respect to an involutive automorphism of g. In [RV20] this construction was extended to more
general subalgebras of g, called pseudo-fixed-point subalgebras and defined in terms of generalized
Satake diagrams (see also [RV21]). Note that in this setting the description of the automorphism of
g and its quantization is somewhat simpler, as one no longer needs to keep track of the correction
given by a multiplicative character of the root lattice with values in {±1} (see Section 6.3). Our
construction of universal K-matrices is presented in this more general setting.

1.8.2. The quasi-K-matrix and parameter constraints. In [BK19], the parameters involved in the
definition of Uqk are assumed to be invariant under a particular diagram automorphism (cf. [BK19,
Eq. (7.4)-(7.5)]). In our approach we do not need this assumption. Additional constraints on the
parameters are imposed in [BK19, Sec. 5.4] in order to guarantee the existence of an internal bar
involution on Uqg. The latter is indeed a crucial ingredient in the construction of the quasi-K-
matrix given in [BK19]. In this paper, we provide a construction of the quasi-K-matrix, which does
not rely on the internal bar involution and therefore applies to a larger class of coideal subalgebras.
Moreover, as later observed by Kolb in [Ko21], this construction of the quasi-K-matrix can be
used to define the internal bar involution. We obtain this generalization by directly extending
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the arguments in [BK19, Sec. 6], making use of the fundamental lemma of quantum symmetric
pairs [BW21, Thm. 4.1] and of the simplification discussed in [DK19, Sec. 3.5]. Note that in the
quasi-split case an alternative construction of a (weakly) universal K-matrix without parameter
constaints was given in [KY20].

1.8.3. Coproduct identity. Beyond the quasi-K-matrix, the formula for the universal K-matrix given
by Balagović and Kolb involves the quantum Weyl group operators2 and a correcting factor in a
completion of the quantum deformed Cartan subalgebra, see [BK19, Eq. (8.1)]. This makes the
computation of the coproduct identity of the universal K-matrix rather compicated, see [BK19, Sec.
8-9, Thm. 9.5]. Following [KT09], we introduce Cartan-modified quantum Weyl group operators,
whose Cartan correction depends upon the choice of a generalized Satake diagram. These can be
thought of as modified diagrammatic half-balances (see Sec. 5.5) and yield universal K-matrices
whose coproduct identity is easier to compute.

1.8.4. Intertwining equation. The quasi-K-matrix constructed in Sec. 7 is related to the original one
via Lusztig’s bar involution. This simple, and yet subtle, difference allows us to straightforwardly
derive the intertwining equation of the standard K-matrix from those of its factors. Note that this
is in contrast with the proof of the intertwining equation in [BK19, Thm. 7.5], which does not
directly use the intertwining equation of the quasi-K-matrix [BK19, Prop. 6.1]. Moreover, if k is a
fixed-point subalgebra, it becomes clear that at q = 1 the standard K-matrix reduces to an element
of the centralizer of Uk in a completion of Ug.

1.9. Outline. In Section 2, we introduce the notions of twist pair and cylindrical bialgebra (Defi-
nition 2.3). This more general framework is first described in purely algebraic terms. We then rely
on the usual Tannakian formalism to extend it to topological bialgebras. In Section 3, we recall
several facts about symmetrizable Kac-Moody algebras and their automorphism groups. In partic-
ular, we recall the definition of framed realizations compatible with a diagram automorphism and we
prove that such realizations do not always exist, providing a necessary and sufficient condition in
the corank one case (Proposition 3.2). In Section 4, we review the basic theory of Drinfeld-Jimbo
quantum groups, their category O representations, and the universal R-matrix. In particular,
we describe a factorization of the quasi-R-matrix with respect to a subdiagram of arbitrary type
(Proposition 4.3). In Section 5, we recall the definition of the quantum Weyl group operators
on integrable representations and their basic properties. In Section 6, we consider classical and
quantum pseudo-fixed-point subalgebras, combinatorially described in terms of generalized Satake
diagrams (Definition 6.11). The corresponding quantum pseudo-involutions are defined in terms of
modified diagrammatic half-balances (cf. Section 6.5). In Section 7, we revisit and generalize the
construction of the quasi-K-matrix (Theorem 7.3). In Section 8 we modify the quasi-K-matrix with
the multiplicative difference of two modified diagrammatic half-balances corresponding to a pair of
generalized Satake diagrams. This leads to a family of solutions of the generalized reflection equa-
tion, inducing on Uqg a cylindrical structure with respect to which Uqk is a cylindrically invariant
coideal subalgebra (Theorems 8.5 and 8.8). In Section 9, we briefly discuss the application of our
constructions to the case of quantum symmetric pairs for the quantum loop algebra UqLsl2, show-
ing that universal K-matrices constructed in Section 8 give rise to formal solutions of a generalized
reflection equation with a spectral parameter.

2That is, the braid group operators constructed in e.g., [Lus94, Ch. 5] and given in terms of q-deformed triple
exponentials.
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2. Cylindrical bialgebras

In this section, we introduce the notion of a cylindrical bialgebra, which is roughly a quasitri-
angular bialgebra H together with an action of the cylindrical braid group on its representations.
The main ingredient is a distinguished solution of a generalized reflection equation which depends
upon the choice of an algebra automorphism ψ : H → H (a twisting operator) whose defect in
being a morphism from H to Hcop is controlled by a Drinfeld twist. As a special case, we recover
the notion of balanced and half-balanced bialgebras [KT09, ST09], and that of cylinder-braided
bialgebras as they appeared in [tD98, tDHO98, BK19] (see also [DKM03, Enr04, Bro12]). This
more general framework shall be used in Section 8 to describe the representations of the cylindrical
braid group arising from quantum Kac-Moody algebras.

2.1. Quasitriangular bialgebras. Recall that by [Dr90a] a quasitriangular bialgebra is a pair
(H,R) where H is a bialgebra (over a base field F) and R is an element of (H ⊗ H)×, called
universal R-matrix, such that

R ∆(x) = ∆op(x) R for all x ∈ H, (2.1)

(∆⊗ id)(R) = R13R23, (id⊗∆)(R) = R13R12. (2.2)

where ∆ denotes the coproduct and ∆op = (12) ◦∆ the opposite coproduct. Note that, if (H,R)
is a quasitriangular bialgebra and ϵ is the counit of H, then

(ε⊗ id)(R) = 1 = (id⊗ ε)(R). (2.3)

Moreover, (H,R−1
21 ) and (Hcop, R21) are also quasitriangular bialgebras, where Hcop denotes the

co-opposite bialgebra, obtained from H by replacing ∆ by ∆op and leaving the other structure
maps as they are. From (2.1) and either coproduct formula in (2.2) it follows that R is a solution
of the Yang-Baxter equation

R12R13R23 = R12(∆⊗ id)(R) = (∆op ⊗ id)(R)R12 = R23R13R12

and thus it induces a representation of the standard braid groups on the tensor powers of H.
Namely, let ∆(n) : H → H⊗n for n ∈ Z≥1 be the iterated coproducts defined by setting

∆(1) := idH and ∆(n) := (∆⊗ id⊗(n−2)) ◦∆(n−1) (n > 1).

In particular, ∆(2) = ∆. Note that ∆(n) yields a natural action of H on H⊗n given by

x · (h1 ⊗ · · · ⊗ hn) = ∆(n)(x)(h1 ⊗ · · · ⊗ hn).
Let Bn be the braid group of n strands in the plane, presented on the generators S1, . . . , Sn−1

subject to the Artin relations

Si · Si+1 · Si = Si+1 · Si · Si+1 and Si · Sj = Sj · Si (2.4)

for any i = 1, . . . , n− 2 and |i− j| > 1, respectively. For any n ∈ Z⩾2, the assignment

µnR(Si) = (ii+ 1) ◦Ri,i+1, i ∈ {1, . . . , n− 1},
where Ri,i+1 is shorthand for left multiplication by Ri,i+1, defines a morphism of groups µnR : Bn →
AutH(H

⊗n), i.e., an action of Bn on H⊗n which commutes with the action of H.
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2.2. Artin-Tits groups. The braid group Bn is the Artin-Tits group corresponding to the Coxeter
group Sn. It is well-known that Artin-Tits group have a combinatorial description in terms of
labelled diagrams, where a diagram is an undirected graph D with no multiple edges or loops and
a labelling m on D is the assignment of an integer mij ∈ {2, 3, . . . ,∞} to any pair i, j of distinct
vertices of D such that

mij = mji and mij = 2 if and only if i and j are not joined by an edge.

By [BS72, Del72], the Artin-Tits group corresponding to a diagram D with labelling m is the group
BD,m with generators Si, where i runs through the vertices of D, and relations

Si · Sj · Si · · ·︸ ︷︷ ︸
mij

= Sj · Si · Sj · · ·︸ ︷︷ ︸
mij

(2.5)

For n ∈ Z⩾2, consider the Coxeter-Dynkin diagram D = An−1 with the following (standard)
labelling: the vertex set is {1, 2, . . . , n − 1} with mij = 3 if |i − j| = 1 and mij = 2 otherwise.
The corresponding braid group BD,m coincides with Bn, see (2.4). The diagram D = Bn arises
as an extension of An−1 by including a vertex 0 with additional labelling datum m01 = m10 = 4
and m0i = mi0 = 0 if i > 0. The corresponding braid group BD,m is presented on the generators
S0, S1, . . . , Sn−1 subject to the relations (2.4) and

S0 · S1 · S0 · S1 = S1 · S0 · S1 · S0 (2.6)

Moreover, it contains an isomorphic copy of BAn−1 and identifies with the group Bcyln of cylindrical
braids (such topological interpretations of Artin-Tits groups of finite type were given in general in

[Bri71]). We are interested in producing representations of cylindrical braid groups Bcyln in terms
of suitable bialgebras as in Section 2.1.

2.3. Drinfeld twists. A Drinfeld twist of a bialgebra H is an element J ∈ (H ⊗ H)× satisfying
the normalization (ε⊗ id)(J) = 1 = (id⊗ ε)(J) and the cocycle identity

(J ⊗ 1) · (∆⊗ id)(J) = (1⊗ J) · (id⊗∆)(J)

Drinfeld twists allow us to modify the quasitriangular structure of (H,R). Indeed, given a Drinfeld
twist J , one obtains a new quasitriangular bialgebra (HJ , RJ) where HJ is the bialgebra H with
∆ replaced by the twisted coproduct ∆J defined by

∆J(x) = J ·∆(x) · J−1 x ∈ H
and with the other structure maps unchanged; furthermore the twisted R-matrix is given by

RJ := J21 ·R · J−1.

If J ′ is a Drinfeld twist for H and J is a Drinfeld twist for HJ ′ , then J ·J ′ is a Drinfeld twist for H
satisfying HJ ·J ′ = (HJ ′)J and RJ ·J ′ = (RJ ′)J . In general, H and HJ are not isomorphic bialgebras.

However, they give rise to isomorphic braid group representations as µnHJ ,RJ = Ad(J (n)) ◦ µnH,R,
where Ad denotes the conjugation the element and J (n) is defined recursively by

J (2) := J and J (n) := (J (n−1) ⊗ 1) · (∆(n−1) ⊗ id)(J) (n > 2).

New Drinfeld twists can be obtained by gauging (see e.g., [ATL19a]).

Remark 2.1. One checks immediately that the Yang-Baxter equation for a quasitriangular bialge-
bra (H,R) coincides with the cocycle identity for the R-matrix. Thus, the R-matrix R ∈ H⊗H is a
Drinfeld twist and (HR, RR) = (Hcop, R21). Hence (HR21R, RR21R) = (H,R), that is, R21R ∈ H⊗H
is an (H,R)-invariant Drinfeld twist. �
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2.4. Twist pairs. Let (H,R) be a quasitriangular bialgebra and ψ : H → H an algebra automor-
phism. The ψ-twisting of (H,R) is the quasitriangular bialgebra (Hψ, Rψψ) obtained from (H,R)
by pullback through ψ, i.e., Hψ is the bialgebra with modified coproduct and counit:

∆ψ := (ψ ⊗ ψ) ◦∆ ◦ ψ−1, ϵψ := ϵ ◦ ψ−1

and the modified universal R-matrix given by Rψψ := (ψ⊗ψ)(R). Note that, by construction, ψ is
an isomorphism of quasitriangular bialgebras (H,R)→ (Hψ, Rψψ).

Definition 2.2. Let (H,R) be a quasitriangular bialgebra. A twist pair (ψ, J) is the datum of an
algebra automorphism ψ : H → H and a Drinfeld twist J ∈ H ⊗H such that Hcop,ψ = HJ , i.e.,

∆op,ψ = Ad(J) ◦∆ , ϵψ = ϵ, and Rψψ21 = J21 ·R · J−1 . �

Note that, in the terminology of [Dav07, Sec. 2.1], (ψ, J) is a twist homomorphism of quasitri-
angular bialgebras H → Hcop,ψ.

2.5. Cylindrical bialgebras. We now introduce a class of bialgebras which naturally give rise to
representations of cylindrical braid groups, in analogy with the case of quasitriangular bialgebras
and braid groups of type A.

Definition 2.3. Let (H,R) be a quasitriangular bialgebra.

(i) We say that (H,R) is cylindrical if there exists a twist pair (ψ, J) and an element K ∈ H×,
called a universal K-matrix, such that the following coproduct identity holds

∆(K) = J−1 · (1⊗K) · (ψ ⊗ id)(R) · (K ⊗ 1) (2.7)

(ii) A subalgebra B ⊆ H is said to be cylindrically invariant if

K · b = ψ(b) ·K (2.8)

for all b ∈ B. �

We shall prove that any cylindrical bialgebra H gives rise to a representation of the cylindrical

braid group Bcyln on H⊗n. More precisely, the action of Bcyln extends the action of Bn given by the
R-matrix and it is therefore determined by the K-matrix. Whenever the subalgebra B is a right
coideal, i.e.

∆(B) ⊆ B ⊗H,
it allows us to describe this action internally, that is, in terms of B-intertwiners.

Proposition 2.4. Let (H,R,ψ, J,K) be a cylindrical bialgebra.

(i) The (ψ, J)-twisted K-matrix K ∈ H satisfies the generalized reflection equation

(K ⊗ 1) · (Rψ)21 · (1⊗K) ·R = Rψψ21 · (1⊗K) ·Rψ · (K ⊗ 1) (2.9)

where Rψ := (ψ ⊗ id)(R).

(ii) Let B ⊆ H be a cylindrically invariant coideal subalgebra. There is a canonical morphism of

groups µnR,K : Bcyln → AutB(H
⊗n) given by the assignment

µnR,K(S0) = (ψ−1 ⊗ idn−1
H ) ◦ (K ⊗ 1⊗n−1) and µnR,K(Si) = (ii+ 1) ◦Ri,i+1.

Proof. (i) It is enough to observe that, since R ·∆(K) ·R−1 = ∆op(K), one has

R · J−1 · (1⊗K) ·Rψ · (K ⊗ 1) = J−1
21 · (K ⊗ 1) · (Rψ)21 · (1⊗K) ·R
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Then (2.9) follows from (ψ ⊗ ψ)(R21) = J21 ·R · J−1.

(ii) We have to show that µnR,K preserves the four–term relation (2.6). We may assume n = 2.

Set µR,K := µ2R,K . Then, we have

µR,K(S0) ◦ µR,K(S1) ◦ µR,K(S0) ◦ µR,K(S1) =

= (ψ ⊗ ψ)−1 ◦
(
(K ⊗ 1) · (Rψ)21 · (1⊗K) ·R

)
= (ψ ⊗ ψ)−1 ◦

(
Rψψ21 · (1⊗K) ·Rψ · (K ⊗ 1)

)
= µR,K(S1) ◦ µR,K(S0) ◦ µR,K(S1) ◦ µR,K(S0)

where the second identity is the generalized reflection equation (2.9). The result follows. □

2.6. The trivial example. It is important to observe that the representations of Bcyln arising from
cylindrical bialgebras are in general genuinely cylindrical in that they cannot be recovered by the

inclusion Bcyln ⊂ Bn+1. Indeed, Bcyln identifies with the subgroup of braids on n + 1 strands which
fix a distinguished strand, mapping Si 7→ Si+1 if i ̸= 0 and S0 7→ S2

1 . Therefore, if (H,R) is a

quasitriangular bialgebra, we obtain an H-invariant action of Bcyln on H⊗(n+1)

µ̃n+1
R : Bcyln → AutH(H

⊗(n+1))

which is the restriction of µn+1
R and therefore it is given by µ̃n+1

R (S0) = R21R. Clearly, this can be

further restricted to an action µn+1
R on the subspace H⊗n = 1 ⊗ H⊗n ⊂ H⊗(n+1), relying on the

projection ε⊗ id⊗n : H⊗(n+1) → H⊗n given by the counit. By (2.3) the result is quite uninteresting
as one gets µn+1

R (S0) = (ε⊗ id)(R21R) = 1. This shows that any quasitriangular bialgebra (H,R)
is endowed with a trivial cylindrical structure given by ψ = idH , J = R, and K = 1. There are on
the other hand many non-trivial examples as we describe below.

2.7. Balanced and half-balanced bialgebras. By [KT09, ST09], a quasitriangular bialgebra
(H,R) is

(i) balanced if there exists an element b ∈ H×, called balance, such that b ∈ Z(H) and ∆(b) =
(b⊗ b)R21R;

(ii) half-balanced if there exists an element h ∈ H× called half-balance, such that h2 ∈ Z(H) and
∆(h) = (h⊗ h)R.

Note that, if h is a half-balance, then h2 is a balance, since R∆(h)R−1 = ∆op(h) and R(h⊗ h) =
(h⊗ h)R21. Balances and half-balances are examples of universal K-matrices.

Proposition 2.5.

(i) Let (H,R) be a quasitriangular bialgebra with balance b. Then H is cylindrical with ψ = id,
J = R−1

21 , and K = b. Moreover, H is cylindrically invariant.

(ii) Let (H,R) be a quasitriangular bialgebra with half-balance h. Then H is cylindrical with
ψ = Ad(h), J = 1⊗ 1, and K = h. Moreover, H is cylindrically invariant.

Proof.

(i) It is clear that Hcop = HR−1
21
, so that (id, R−1

21 ) is a twist pair. Assuming that K is central,

the coproduct identity (2.7) becomes

∆(K) = R21(1⊗K)R(K ⊗ 1) = (K ⊗K)R21R

so that K = b is an admissible solution, which clearly commutes with every element in H.
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(ii) Note that a half-balance h ∈ H is a gauge transformation which trivializes the R-matrix, i.e.,
we have (h⊗ h)∆(h)−1 = R−1

21 and (h−1⊗ h−1)∆(h) = R. Note that Ad(h)2 = id and indeed

HAd(h) = HR−1
21

= Hcop = HR = HAd(h)−1
.

In particular, (Ad(h), 1⊗ 1) is a twist pair and the coproduct identity (2.7) becomes

∆(K) = (1⊗K) · (Ad(h)⊗ id)(R) · (K ⊗ 1).

Thus, K = h is a solution. Finally, note that the intertwining equation (2.8) becomes trivial,
since K · x = Ad(h)(x) · h = ψ(x) ·K for any x ∈ H. □

Remark 2.6. Recall that a quasitriangular Hopf algebra is ribbon if it admits a balance b fixed by
the antipode, in which case it is called a ribbon element. The interplay between ribbon elements
and the reflection equation was first observed by Donin, Kulish and Mudrov [DKM03]. The notion
of half-balance is due to Kamnitzer–Tingley, Snyder–Tingley [KT09, ST09] and Enriquez [Enr10].
It would be interesting to see if the approach in [DKM03] extends to half-balances. �

2.8. Strongly cylindrical bialgebras. We describe now a special case of cylindrical bialgebras,
which first appeared in the work of tom Dieck and Häring-Oldenburg [tD98, tDHO98] and later in
the work of Balagović-Kolb [BK19], under the name bialgebras with a (twisted) cylinder twist. It
corresponds to setting J = R−1

21 in Definition 2.3; equally we may set J = R which corresponds to
the convention used in [BZBJ18].

Definition 2.7. We call a quasitriangular bialgebra (H,R) strongly cylindrical if there exists a
bialgebra automorphism φ of (H,R) and an element K ∈ H× such that

∆(K) = R21 · (1⊗K) ·Rφ · (K ⊗ 1), (2.10)

where Rφ := φ⊗ id(R). �

The following motivates our choice of terminology in Definition 2.3.

Proposition 2.8. Let (H,R,φ,K) be a strongly cylindrical bialgebra. Then, (φ,R−1
21 ,K) is a

cylindrical structure on (H,R), i.e. (H,R) is a cylindrical bialgebra with twist pair (φ,R−1
21 ) and

universal K-matrix K.

Proof. Since φ is a quasitriangular bialgebra automorphism, Hφ = H and Rφφ = R. Thus,
Hcop,φ = HR−1

21
and (φ,R−1

21 ) is a twist pair. The coproduct identity (2.7) then reduces to (2.10). □

Remark 2.9. Note that, for any quasitriangular bialgebra automorphism φ, (φ,R) and (φ,R−1
21 )

are always twist pairs and represent two standard choices. Our more general notion of cylindrical
bialgebra aims to relax this condition on φ by allowing less obvious twist pairs (ψ, J) and new
examples of universal K-matrices. For instance, note that, while balances define strongly cylindrical
structures on quasitriangular bialgebras, half-balances in general do not. However, they arise from
the more general notion of cylindrical structure under consideration here. �

2.9. Tannakian formalism and completions. It is well–known that the purely algebraic setting
we described above is in general too restrictive to describe interesting solutions of the Yang-Baxter
and the reflection equations. Indeed, in the cases of our interest, we should rather consider pseudo
structures (cf. [Dr86]) in that the defining operators, e.g., R-matrices and K-matrices, are not al-

gebraic but rather topological, i.e., they correspond to elements in a suitable completion Ĥ of the

bialgebra H. In general Ĥ is only a topological bialgebra, whose structure involves completed tensor
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products.

Our approach to describe such topological bialgebras is based on the well–known Tannakian

formalism [Del90]. We implicitly describe the completion Ĥ in terms of operators acting on a
distinguished subcategory of H-modules and commuting with every H-intertwiner. This approach

yields a canonical morphism H → Ĥ. Namely, let H be an algebra, C ⊆ Mod(H) a distinguished
full subcategory and F : C → Vect the forgetful functor. Let HC := End(F ) be the algebra of
natural transformations of F . Recall that, by definition, an element ξ ∈ HC is a collection of
operators ξV : F (V )→ F (V ), indexed by V ∈ C, such that the diagram

F (V ) F (V )

F (W ) F (W )

ξV

F (f) F (f)

ξW

commutes for any V,W ∈ C and f : V →W in C. The product on HC is given by the composition
of natural transformations. There is a canonical map ι : H → HC given by the assignment
u 7→ uV := πV (u). A subcategory C ⊂ Mod(H) separates points if ι is injective or, equivalently, if
an element in H is uniquely determined by its action on the objects in C. Intuitively, this condition
forbids the category C from being too small. The existence of a canonical embedding H → HC

yields a natural interpretation of HC as a completion of H.

Remark 2.10. Every algebraic structure described in Section 2 admits a categorical counterpart
(e.g., tensor categories with a cylinder twists or, more generally, braided module categories, cf.
[tD98, Ko20] and references therein). We will avoid to describe such categorical structures in
details. Instead, we shall fix a monoidal subcategory of representations C and consider distinguished
operators in the corresponding completion HC . It is worth noting that HC in general is not a
bialgebra, but rather a cosimplicial algebra, see e.g. [ATL19b, Sec. 8.8]. �

3. Kac-Moody algebras

In this section, we recall several facts about symmetrizable Kac-Moody algebras and their group
of automorphisms, following mainly [Kac90, KW92]. Moreover, we recall the definition of framed
realizations compatible with a diagram automorphism from [Ko14, Sec. 2.6]. We show that, in the
case of generalized Cartan matrices of indefinite type and corank one, such realizations do not
always exist.

3.1. Realizations and lattices. From now on we will work over3 C (and, later on, also over
formal extensions of C). Let I be a finite set with a strict total order <, A = (aij)i,j∈I a matrix
with entries in C and (h,Π,Π∨) a realization of A, i.e., h is a C-vector space, Π := {αi}i∈I ⊂ h∗

and Π∨ := {hi}i∈I ⊂ h are linearly independent subsets such that αi(hj) = aji. It is well–known
that for any N ⩾ 2|I| − rk(A) = |I| + cork(A) there exists a realization with dim(h) = N . This is
said to be minimal precisely when dim(h) = |I|+ cork(A). Attached to any realization one has the
following (co)root subspaces and lattices

Q∨ := spanZ(Π
∨) ⊂ spanC(Π

∨) =: h′ and Q := spanZ(Π) ⊂ spanC(Π) =: (h
∗)′

3In fact, C may be replaced throughout by any algebraically closed field of characteristic 0
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Note that these do not depend on the dimension of h. Recall that the height functions are the
group homomorphisms Q,Q∨ → Z given by xi 7→ 1 for all i ∈ I with xi = αi, hi, respectively.
Similarly, the support functions supp : Q,Q∨ → Pow(I) are given by

supp

(∑
i∈I

mixi

)
:= {i ∈ I |mi ̸= 0}

with xi = αi, hi, respectively. The weight lattice is P := {λ ∈ h∗ | λ(Q∨) ⊆ Z} ⊂ h∗. Finally, we set
z := {h ∈ h | αi(h) = 0 for all i ∈ I}. The essential Cartan is the |I|-dimensional space h/z, which
naturally identifies with the dual of the root lattice Q∗ through the projection

h ≃ (h∗)∗ → Q∗. (3.1)

Henceforth, we fix a minimal realization (h,Π,Π∨).

3.2. Diagram automorphisms. A diagram automorphism of A is a permutation τ : I → I such
that aτ(i)τ(j) = aij for all i, j ∈ I. Diagram automorphisms form a group denoted Aut(A), whose
action on I naturally extends to the subspaces h′ and (h∗)′ if we set τ(hi) := hτ(i) and τ(αi) := ατ(i)
for τ ∈ Aut(A) and i ∈ I. By [KW92, 4.19], any diagram automorphism can be lifted to an element
in GL(h) as follows. The identification Q∗ ≃ h/z given by the projection (3.1) allows us to extend
the action of Aut(A) on Q to h/z in such a way that αi(τ(h)) = ατ(i)(h) for any i ∈ I. Since the
subspace h′/z ⊆ h/z is preserved by any element in the finite group Aut(A), then there exists a
complement h′′ ⊆ h such that h′ ⊕ h′′ = h and (h′′ + z)/z is Aut(A)-stable. Then the action of τ on
h/z is lifted by pullback to an action on h.

3.3. Generalized Cartan matrices and Kac-Moody algebras. The matrix A is a generalized
Cartan matrix if aii = 2 and, for i ̸= j, aij ∈ Z⩾0, and aij = 0 implies aji = 0. We say that A is of
finite type if all the principal minors of A are positive; of affine type if det(A) = 0 and all proper
principal minors of A are positive; of indefinite type if it is neither of finite nor of affine type.

Let g̃ be the Lie algebra generated by h and {ei, fi}i∈I with relations

[h, h′] = 0 [h, ei] = αi(h)ei [h, fi] = −αi(h)fi [ei, fj ] = δijhi

for all h, h′ ∈ h and i, j ∈ I. The Kac-Moody algebra corresponding to A is the Lie algebra g = g̃/r,
where r is the sum of all two–sided ideals in g̃ having trivial intersection with h ⊂ g̃. If A is a
generalized Cartan matrix, the ideal r contains ad(ei)

1−aij (ej) and ad(fi)
1−aij (fj) for any i ̸= j.

The center of g coincides with the subspace z ⊆ h. Set Q+ :=
⊕

i∈I Z⩾0αi ⊆ h∗. Then, g admits a
triangular decomposition g = n− ⊕ h⊕ n+, where

n± :=
⊕

α∈Q+\{0}

g±α and gα := {x ∈ g | [h, x] = α(h)x, ∀h ∈ h}.

Then, Φ+ := {α ∈ Q+ | gα ̸= 0} is the set of positive roots of g and Φ := Φ+ ⊔ (−Φ+) is the root
system of g. We have dim(g) <∞ (and thus Φ is finite) if and only if A is of finite type.

3.4. The derived subalgebra g′. The derived subalgebra g′ ⊆ g is independent of the choice of
the realization. As a vector space, g′ = n− ⊕ h′ ⊕ n+ and admits a presentation similar to that of
g. Namely, let g̃′ the Lie algebra generated by elements {ei, fi, hi}i∈I with relations

[hi, hj ] = 0 [hi, ej ] = aijej [hi, fj ] = −aijfj [ei, fj ] = δijhi

for all i, j ∈ I. The Lie algebra g̃′ is graded by Q, with g̃′0 = h′. The quotient of g̃′ by the sum r′ of
its graded ideals with trivial intersection with g̃′0 is canonically isomorphic to g′. Moreover, z ⊆ h′

and the centre of g′ is z.
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3.5. Symmetrizable Kac-Moody algebras. Assume that the matrix A is symmetrizable, i.e.
there exists a tuple (ϵi)i∈I ∈ (C×)I such that ϵiaij = ϵjaji for all i, j ∈ I. If the non-diagonal matrix
entries aij are integers of the same sign then {ϵi} may be assumed to be a coprime set of positive
integers. Note that generalized Cartan matrices of finite or affine type are always symmetrizable.
Let h′′ ⊂ h be a complementary subspace to h′. By [Kac90], the choice of h′′ induces a symmetric,
non–degenerate bilinear form (·, ·) on h given by

(hi, ·) = ϵ−1
i αi(·) and (h′′, h′′) = 0 . (3.2)

In particular, (hi, hj) = ajiϵ
−1
i = aijϵ

−1
j . Let ν : h → h∗ be the linear isomorphism given by

ν(h)(h′) := (h, h′) for any h, h′ ∈ h. Note that ν restricts to an isomorphism h′ ≃ (h∗)′, but it does
not preserve the lattices unless A is symmetric and defined over Z. We also denote by (·, ·) the
induced bilinear form on h∗. The latter uniquely extends to an invariant symmetric bilinear form
on g̃ such that (ei, fj) = δijϵ

−1
i . The kernel of this form is precisely r, and therefore (·, ·) descends to

a nondegenerate form on g. Set b± := h⊕
⊕

α∈Φ+
g±α ⊂ g. The bilinear form induces a canonical

isomorphism of graded vector spaces b+ ≃ (b−)⋆, where (b−)⋆ := h∗ ⊕
⊕

α∈Φ+
g∗−α denotes the

graded dual. If A is a symmetrizable generalized Cartan matrix, it is well-known that the ideal r
is generated by the Serre relations and g is completely presented by generators and relations.

3.6. Weyl groups. The matrix A = (aij)i,j∈I indecomposable if for all X ⊆ I there exists (i, j) ∈
X × I\X such that aij ̸= 0. Henceforth we assume that A is an indecomposable symmetrizable
generalized Cartan matrix. The Weyl group associated to the realization of A is the subgroup
W ⊆ GL(h) generated by the fundamental reflections si : h→ h, i ∈ I, given by

si(h) = h− αi(h)hi
with h ∈ h. As an abstract group,

W ≃ ⟨si | s2i = 1, (sisj)
mij = 1, i, j ∈ I, i ̸= j⟩

where mij = π/Re
(
cos−1(12

√
aijaji)

)
, given explicitly by the following table:

aijaji 0 1 2 3 ⩾ 4
mij 2 3 4 6 ∞

The Weyl group naturally acts on h∗ through the dual fundamental reflections si : h
∗ → h∗, which

we denote by the same symbol, given by

si(λ) = λ− λ(hi)αi
with λ ∈ h∗. One verifies that, for any w ∈ W , h ∈ h, λ ∈ h∗, (wλ)(h) = λ(w−1h). Moreover,
the bilinear forms on h and h∗ are W -invariant and ν : h → h∗ is an intertwiner. The Weyl group
action on h∗ preserves the weight lattice and the root system h∗ ⊃ Q ⊃ Φ. A root α ∈ Φ is real if
α ∈W (Π) (moreover, in this case, dim(gα) = 1) and imaginary otherwise.

3.7. Braid groups and integrable modules. The braid group associated to the Weyl group W
is the Artin–Tits group BW , generated by the elements Si, i ∈ I, with relations

Si · Sj · Si · · ·︸ ︷︷ ︸
mij

= Sj · Si · Sj · · ·︸ ︷︷ ︸
mij

Let D be the diagram associated to the matrix A is the (unoriented) diagram D with vertices
I, no loops, and an edge between i and j whenever aij ̸= 0. Then, (D,m) is the Coxeter–Dynkin
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diagram of W and BW = BD,m in terms of the notation introduced in Section 2.2.

Recall that an integrable g-module M is an h-diagonalizable module, i.e., M =
⊕

λ∈h∗ Mλ with

Mλ := {m ∈M | ∀h ∈ h, h ·m = λ(h)m},
such that the action of ei and fi, i ∈ I, on M is locally nilpotent. It is useful to observe that the
latter condition is equivalent to the local finiteness of the action of the fundamental Lie subalgebras
g{i} := ⟨ei, fi⟩ ∼= sl2, i.e., dim(g{i} ·m) < ∞ for all m ∈ M and i ∈ I, cf. [Kac90, Ex. 3.16-3.19].
We denote by Wint the category of integrable g-modules.

For any i ∈ I and x ∈ g{i}, the operator exp(x) :=
∑

n⩾0 x
n/n! is well-defined on every M ∈

Wint and can be regarded as an element of the algebra of endomorphisms of the forgetful functor
Wint → VectC. For any i ∈ I, set

s̃i := exp(ei)exp(−fi)exp(ei) = exp(−fi)exp(ei)exp(−fi)
It is well–known that the assignment Si 7→ s̃i|M defines a representation of the braid group BW on
M ∈ Wint [Ti66]. Moreover, s̃i(Mλ) =Msi(λ) for any λ ∈ h∗.

3.8. Kac-Moody group. Associated to g′ there is a Kac-Moody group G, see e.g. [KW92, 1.3].
Roughly, this can be thought of as (a central extension of) a group generated by exp(g±αi), i ∈ I.
Moreover, G naturally acts on any integrable g-module and thus on g itself. For any real root
α ∈ Φ, one has a group embedding exp : gα → G and a group homomorphism Ad : G → Aut(g)
such that, for any real root α ∈ Φ and x ∈ gα, Ad(exp(x)) = exp(ad(x)) . In the following, we
shall consider the subgroup Ad(G) < Aut(g). Finally, note that the triple exponentials s̃i, i ∈ I,
are elements of G and determine a morphism of groups BW → G such that Ad(s̃i)(gα) = gsi(α) and
Ad(s̃i)|h = si for all i ∈ I and α ∈ Φ. In particular, we obtain an the action of BW on integrable
g-modules

3.9. Automorphisms of g. We briefly recall the structure of the group Aut(g) as given by Kac-

Wang in [KW92]. Let H̃ = Homgrp(Q,C×). There is a group homomorphism Ad : H̃ → Aut(g)

given by Ad(χ)(ei) = χ(αi)ei, Ad(χ)(fi) = χ(−αi)fi and Ad(χ)(h) = h for i ∈ I, h ∈ h and χ ∈ H̃.

Following [KW92, 1.10 and 4.23], we may consider the normal subgroup Ad(H̃ ⋉G) < Aut(g). We
also denote by Aut(g; g′) the subgroup of Aut(g) of all automorphisms which fix g′ pointwise, see
[KW92, 4.20]. The action of Aut(A) on h can be further extended to a Lie algebra automorphism
of g by the assignments τ(ei) = eτ(i) and τ(fi) = fτ(i) for all i ∈ I. We denote by ω ∈ Aut(g) the
Chevalley involution defined by

ω(ei) = −fi, ω(fi) = −ei, ω(h) = −h
for i ∈ I and h ∈ h. We denote Out(A) = Aut(A) if A is of finite type and Out(A) = {id, ω}×Aut(A)
otherwise. By [KW92, 4.23] we have the decomposition

Aut(g) = Out(A)⋉ (Aut(g; g′)× Ad(H̃ ⋉G)).

3.10. Automorphisms of the first and second kind. Let θ be an automorphism of g. Following
[KW92, 4.6], we say that θ is of the first kind if there exists g ∈ G such that θ(b+) = Ad(g)(b+)
or, equivalently, θ(b+)∩ b− is finite-dimensional. We say that θ is of the second kind if there exists
g ∈ G such that θ(b+) = Ad(g)(b−) or, equivalently, θ(b+) ∩ b+ is finite-dimensional. The set
of all automorphisms of the first kind AutI(g) is a subgroup of Aut(g) and the set AutII(g) of all
automorphisms of the second kind is the corresponding coset ωAutI(g). If g is of finite type then
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AutI(g) = AutII(g) = Aut(g) and otherwise Aut(g) is the disjoint union of AutI(g) and AutII(g).
In [KW92, 4.38-4.39] a combinatorial factorization is given for semisimple automorphisms of g of
the second kind; in addition to a diagram automorphism, this requires as input a subdiagram of
finite type of I. We will come back to this in Section 6.2 but for now review some basic concepts
associated to such subdiagrams.

3.11. Subdiagrams of finite type. If A is a symmetrizable generalized Cartan matrix and X ⊆ I
then the principal submatrix AX := (aij)i,j∈X is also a symmetrizable generalized Cartan matrix.
Throughout this section we let X be a subdiagram of finite type, i.e. a subset X ⊆ I such that AX
of finite type. The subalgebra gX = ⟨{ei, fi}i∈X⟩ of g is a finite-dimensional semisimple Lie algebra.
In particular, hX := h ∩ gX ⊆ h′ is the C-span of Π∨

X = {hi |i ∈ X} and n±X := n± ∩ gX are the
Lie subalgebras generated by {ei |i ∈ X} and {fi |i ∈ X}, respectively. We set ΠX := {αi |i ∈ X},
h∗X := spanC(ΠX), and

QX = Q ∩ h∗X , Q+
X = Q+ ∩ h∗X , ΦX = Φ ∩ h∗X , Φ+

X = Φ+ ∩ h∗X .

Similarly, we have the coroot system Φ∨
X ⊂ hX associated to the Cartan matrix At

X and the

positive subsystem Φ∨,+
X . The root systems ΦX and Φ∨

X are finite and the sum of the corresponding
fundamental weights and coweights are given by

ρX = 1
2

∑
α∈Φ+

X

α, ρ∨X = 1
2

∑
h∈Φ∨,+

X

h.

In particular, ρX(hi) = 1 if i ∈ X.

We denote by AutX(A) the subgroup of all diagram automorphisms τ such that X is τ -stable:
τ(X) = X. Note that restriction to X induces a group homomorphism AutX(A)→ Aut(AX) for all
X ⊆ I which is in general neither injective or surjective. The Weyl groupWX is the subgroup ofW
generated by {si}i∈X . The group WX is finite and has a unique longest element wX which is hence
involutive. There exists a (necessarily unique and involutive) oiX ∈ Aut(AX), called the opposition
involution of X, such that wX(αi) = −αoiX(i) for all i ∈ X. It is well-known that the element
w̃X := s̃i1 · · · s̃iℓ ∈ G, where si1 · · · siℓ is a reduced expression of the longest element wX ∈ WX ,
does not depend on the choice of the reduced expression. By [BBBR95, Lem. 4.9 and Corollary
4.10.3], the corresponding Lie algebra automorphism of g satisfies

Ad(w̃X)|gX = oiX ◦ ω|gX , (3.3)

Ad(w̃2
X)(x) = (−1)2λ(ρ∨X)x (3.4)

for all x ∈ gλ and λ ∈ Φ.

3.12. Dynkin diagrams. Recall that a generalized Cartan matrix A can be fully represented by
its Dynkin diagram, a partially oriented multi–edge diagram defined as follows 4. For simplicity,
we assume that A is of finite or affine type so that aijaji ∈ {0, 1, 2, 3, 4} for all i, j ∈ I. Given two
nodes i ̸= j, there is no edge if aijaji = 0; there is a single or double undirected edge if ϵi = ϵj and
aijaji equals 1 or 4, respectively; there is a double, triple, or quadruple edge directed from i to j if
ϵi > ϵj and aijaji equals 2, 3 or 4, respectively.

4Note that this is different from the Coxeter diagram mentioned in Section 2.2, which does not allow multi–edges,
but rather labelled edges.
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3.13. Framed realizations. Motivated by the theory of quantum Kac-Moody algebras (cf. Section
4), we are interested in larger (co)weights and (co)root lattices, capturing information about the
full Cartan subalgebra h. To this end, given a minimal realization (h,Π,Π∨) of A, we extend

Π∨ to a basis Π∨
ext of h by adjoining a tuple (dr)

cork(A)
r=1 such that αi(dr) ∈ Z for all i ∈ I, r ∈

{1, 2, . . . , cork(A)}; we call Π∨
ext an extended basis and the triple (h,Π,Π∨

ext) a framed (minimal)
realization of A. The dr are called scaling elements; whenever cork(A) = 1 we have a single scaling
element which we simply denote d. Setting h′′ = spanC{dr}1≤r≤cork(A), from (3.2) we obtain that
(dr, ds) = 0 for all 1 ≤ r, s ≤ cork(A). In analogy with Section 3.1, we obtain the extended coroot
lattice and extended weight lattice, respectively given by

Q∨
ext = spanZ(Π

∨
ext) and Pext = {λ ∈ h∗ |λ(Q∨

ext) ⊆ Z}.

Let ρ ∈ Pext be defined by ρ(hi) = 1 for all i ∈ I and ρ(dr) = 0 for all r ∈ {1, 2, . . . , cork(A)}. Given
X ⊆ I of finite type, if i ∈ X then (ρ− ρX)(hi) = 0 and hence ρ− ρX is fixed by si. Therefore we
have

wX(ρ− ρX) = ρ− ρX . (3.5)

3.14. Framed extensions of diagram automorphisms. Let τ ∈ Aut(A). The construction
of a framed realization and the lift of τ to Aut(h) (cf. 3.2) both depend upon the choice of a
complementary subspace h′′ ⊂ h such that h′ ⊕ h′′ = h. Therefore, it is not surprising that, in
general, τ does not necessarily preserve Π∨

ext or Q
∨
ext or, by duality, Pext.

Remark 3.1. If τ preserves Q∨
ext, it can be extended to an algebra automorphism of the quantum

group Uqg (cf. Section 4). More importantly, in order to construct solutions of the generalised
reflection equation (2.9) for Uqg we shall need the automorphism τ to extend to Pext and Uqg. �

Following [Ko14], we say that a framed realization (h,Π,Π∨
ext), the set of scaling elements, Q∨

ext,
and Pext are τ -compatible if there exists a permutation τ̂ of {1, 2, . . . , cork(A)} such that

ατ(i)(dτ̂(r)) = αi(dr) for all r ∈ {1, 2, . . . , cork(A)}. (3.6)

In this case, τ extends to an automorphism of Q∨
ext by setting τ(dr) = dτ̂(r) and the corresponding

dual map on h∗, denoted by the same symbol, preserves Pext.
A framed realization (h,Π,Π∨

ext), the set of scaling elements, Q∨
ext, and Pext are τ -minimal if it

is τ -compatible and each function j 7→ αj(dr) is the characteristic function of a τ -orbit (possibly
depending on r), i.e., if

∀r ∈ {1, 2, . . . , cork(A)} ∃{i, τ(i)} ⊆ I such that αj(dr) =

{
1 if j ∈ {i, τ(i)},
0 otherwise.

Clearly, any scaling element in a τ -compatible set is a Z-linear combination of scaling elements
in a τ -minimal set.

3.15. Existence of τ-compatible realizations in corank one. If A is invertible or τ = id,
any framed realization is clearly τ -compatible. By [Ko14, Prop. 2.12], if A is a generalized Cartan
matrix of affine type, a τ -compatible framed realization always exists. The problem is open for A
of indefinite type with cork(A) ̸= 0 and τ ̸= id [Ko14, Rmk. 2.13]. In the following, we consider
the case cork(A) = 1, where the problem reduces to the existence of a single scaling element d such
that τ(d) = d. More precisely, we provide a criterion for arbitrary matrices with integer entries A
such that cork(A) = 1.
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Proposition 3.2. Let A = (aij)i,j∈I be a matrix with integer entries such that cork(A) = 1 and
τ ∈ Aut(A). Then, τ |Ker(A) = ±id. Moreover, a τ -compatible scaling element exists if and only if
τ |Ker(A) = id.

Proof. We note that Ker(A) is of the form C(ai)i∈I for some rational numbers ai, not all zero.
By clearing denominators we may assume that the ai are coprime integers; this determines them
uniquely up to an overall sign. Consider the basic imaginary root δ =

∑
j∈I ajαj ∈ Q. Note that

the natural C-linear left Aut(A)-action on CI , defined by (τ(x))i = xτ−1(i) for all x = (xi)i∈I ∈ CI ,
i ∈ I, τ ∈ Aut(A), stabilizes the one-dimensional space Ker(A). Thus, there exists ζ ∈ C× such
that aτ(j) = ζaj for all j ∈ I. Since τ is of finite order, ζ must be a root of unity. On the other
hand, since both aj and aτ(j) are integers for all j ∈ I, it follows that ζ ∈ Q. Thus, τ |Ker(A) = ±id.

Suppose that τ |Ker(A) = id. We that there exists a τ -compatible scaling element, by a direct
generalization of the proof given in [Ko14, Prop. 2.12]. Assume that we have a finite-dimensional
vector space h and a basis Π∨

ext = Π∨ ∩ {d} of h where Π∨ = {hi}i∈I and ατ(i)(d) = αi(d) for all
i ∈ I. Now fix i ∈ I so that ai ̸= 0 (such i exist since Ker(A) is one-dimensional) and define αj ∈ h∗

for j ∈ I by:

αj(hi) = aij for all i ∈ I, αj(d) =

{
1 if j ∈ {i, τ(i)},
0 otherwise.

We claim that (h,Π,Π∨
ext) with Π = {αi}i∈I is a τ -compatible framed minimal realization of A.

Note that if the set Π = {αi}i∈I is linearly independent then (h,Π,Π∨) is a minimal realization
by definition. Moreover, by setting τ(d) = d we can check that (3.6) is true, thus obtaining the
τ -compatibility. Suppose therefore that

∑
j∈I mjαj = 0 for some (mj)j∈I ∈ CI ; it suffices to show

that mj = 0 for all j ∈ I. By applying to hi for arbitrary i ∈ I we deduce that (mj)j∈I ∈ Ker(A).
It follows that

∑
j∈I mjαj = mδ for some m ∈ C. Since ζ = 1 we have

0 =
∑
j∈I

mjαj(d) = m
∑

j∈{i,τ(i)}

aj = m|{i, τ(i)}|ai

and we deduce that m = 0 as required.

Suppose that τ |Ker(A) = −id. We show that there exists no τ -compatible set {d}. This follows
from the claim that the existence of such a set implies Ker(δ) = h, so that δ is the zero element of
h∗, contradicting the linear independence of Π. To this end, note that the definition of δ directly
implies that δ(hi) = 0 for all i ∈ I. It remains to show that δ(d) = 0. We denote the τ -orbits in I
by I1, I2, . . . , Iℓ for some ℓ ∈ Z>0. For each k ∈ {1, 2, . . . , ℓ} choose a representative ik ∈ Ik; then
αi(d) = αik(d) for all i ∈ Ik as a consequence of τ -compatibility and Ik = {τ e(ik) |0 ≤ e < |Ik|}.
Furthermore, for each such k we have αik = τ |Ik|(αik) = (−1)|Ik|αik , so that |Ik| is even and hence∑|Ik|−1

e=0 (−1)e = 0. Finally, we conclude that

δ(d) =
∑
j∈I

ajαj(d) =
ℓ∑

k=1

∑
j∈Ik

ajαj(d) =
ℓ∑

k=1

|Ik|−1∑
e=0

(−1)eaikαik(d) = 0.

The result follows. □

If A is a generalized Cartan matrix of affine type, the ai can be chosen to be positive integers.
Therefore, we automatically get τ |Ker(A) = id and recover [Ko14, Prop. 2.12].
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Example 3.3. There are examples of non–invertible indecomposable symmetrizable generalized
Cartan matrices A of indefinite type with nontrivial diagram automorphisms, both with and without
a τ -compatible weight lattice. For instance, in the case of the corank one generalized Cartan
matrices

A1 =


2 −1 0 −3
−1 2 −3 0
0 −3 2 −1
−3 0 −1 2

 and A2 =


2 −1 0 −1
−9 2 −1 0
0 −1 2 −9
−1 0 −1 2

 .

we have that A1 has a τ -compatible weight lattice whereas A2 does not. �

4. Drinfeld-Jimbo quantum groups

In this section we review the basic theory of Drinfeld-Jimbo quantum groups [Dr85, Dr86, Dr90a,
Ji86, Lus94]. In particular, we discuss the factorization properties of the universal R-matrix and
we define (highest and lowest weight) category O representations.

4.1. Quantum Kac-Moody algebras. Let q be an indeterminate and denote by F the algebraic
closure of C(q). We shall use the fact that the multiplicative group F× is a divisible abelian
group5. Let A be a generalized Cartan matrix and (h,Π,Π∨

ext) a framed realization. Following
[Dr85, Dr86, Ji86, Lus94] we denote by Uqg the unital associative F-algebra with generators Ei, Fi
(i ∈ I) and th (h ∈ Q∨

ext) subject to the following relations for h, h′ ∈ Q∨
ext, i, j ∈ I:

t0 = 1, thth′ = th+h′ ,

thEi = qαi(h)Eith, thFi = q−αi(h)Fith, [Ei, Fj ] = δij
ti − t−1

i

qi − q−1
i

,

Serreij(Ei, Ej) = 0 = Serreij(Fi, Fj) (i ̸= j)

where ti = tϵihi , qi := qϵi and Serre denotes the q-deformed Serre relations (e.g., [Lus94, 3.1.1 (e)]).
We endow Uqg with the bialgebra structure determined by the coproduct

∆(Ei) = Ei ⊗ 1 + ti ⊗ Ei, ∆(Fi) = Fi ⊗ t−1
i + 1⊗ Fi, ∆(th) = th ⊗ th .

4.2. Triangular decomposition and diagrammatic subalgebras. We consider the standard
subalgebras

Uqn
+ = ⟨Ei |i ∈ I⟩, Uqn

− = ⟨Fi |i ∈ I⟩, , Uqh = ⟨th |h ∈ Q∨
ext⟩

so that Uqg = Uqn
+UqhUqn

−. We set Uqb
± = Uqn

±Uqh and consider the following quantum
analogue of the derived subalgebra g′ ⊆ g

Uqg
′ = ⟨Ei, Fi, t±1

i |, i ∈ I⟩ and Uqh
′ = ⟨t±1

i |i ∈ I⟩.
For any subset X ⊆ I, the derived quantum Kac-Moody algebra corresponding to AX embeds

in Uqg
′, yielding the diagrammatic subalgebras

UqgX = ⟨Ei, Fi, t±1
i |i ∈ X⟩, UqhX = UqgX ∩ Uqh, and Uqn

±
X = UqgX ∩ Uqn±.

Note that, for any i ∈ I, Uqg{i} ≃ Uqisl2. The assignment αi 7→ ti yields an algebra isomorphism

FQ→ Uqh
′ and, for λ ∈ Q, we set tλ =

∏
i∈I t

ℓi
i if λ =

∑
i∈I ℓiαi. These elements satisfy

tλEi = q(λ,αi)Eitλ, tλFi = q−(λ,αi)Fitλ for all λ ∈ Q, i ∈ I.

5While it is possible to use only a finite extension of C(q) (cf. [BK19, Rmk. 2.3]), the latter depends on the
generalized Cartan matrix A. Therefore, we prefer to work with the algebraic closure of C(q).
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In terms of the linear isomorphism ν from Section 3.5 we have tλ = tν−1(λ) for all λ ∈ Q.

4.3. Root space decomposition. Let M be a Uqh-module. For any µ ∈ Pext, we set

Mµ = {m ∈M |∀h ∈ Q∨
ext : th ·m = qµ(h)m}.

Note that, for all λ ∈ Q and µ ∈ Pext, tλ acts on Mµ as multiplication by q(λ,µ). By considering the
action of Uqh on Uqg and Uqg

′ by conjugation, we obtain the root space decomposition

Uqg =
⊕
λ∈Q

(Uqg)λ, Uqg
′ =

⊕
λ∈Q

(Uqg
′)λ

as Q-graded algebras. Note that Uqn
± are graded by ±Q+, i.e., Uqn

± =
⊕

λ∈Q+(Uqn
±)±λ.

4.4. Automorphisms. We briefly review several distinguished algebra automorphisms of Uqg. An
algebra automorphism is assumed to be F-linear unless otherwise stated. Any diagram automor-
phism τ ∈ Aut(A) (cf. Section 3) acts as a bialgebra automorphism on Uqg

′ by

τ(Ei) = Eτ(i) , τ(Fi) = Fτ(i) , τ(ti) = tτ(i) ,

for any i ∈ I. If the framed realization is τ -compatible, then this action extends automatically to a
bialgebra automorphism of Uqg by setting τ(th) = tτ(h) for all h ∈ Q∨

ext. The Chevalley involution
ω lifts to an involutive algebra automorphism of Uqg, denoted by the same symbol, determined by

ω(Ei) = −Fi , ω(Fi) = −Ei , ω(th) = t−h ,

for any i ∈ I and h ∈ Q∨
ext. Note that ω is a bialgebra isomorphism from Uqg to Uqg

cop,i.e.,

∆ ◦ ω = (ω ⊗ ω) ◦∆op, ϵ ◦ ω = ϵ.

Finally, we discuss the bar involution, which is not F-linear (cf. [Lus94]). Note that the algebraic

closure of the field of formal Laurent series C((q)) is given by C((q)) =
⋃
n≥1C((q1/n)), on which

we define a field automorphism by the rule q1/n = q−1/n. The field F arises as the set of algebraic
elements in C((q)) over C(q) and note that stabilizes C(q) ⊂ C((q)). By considering minimal
polynomials of elements of F in C(q)[x] we obtain that stabilizes F. We extend it to an algebra
automorphism of Uqg by setting

Ei = Ei , Fi = Fi , th = t−h ,

for any i ∈ I and h ∈ Q∨
ext. We use the same notation to denote the corresponding algebra

automorphism of Uqg⊗ Uqg, defined by u⊗ u′ := u⊗ u′ for any u, u′ ∈ Uqg.

4.5. The Drinfeld-Lusztig pairing. Given a bilinear pairing ⟨ , ⟩ : A− × A+ → F between
algebras A− and A+ over a field F, it extends to an F-valued bilinear pairing between (A−)⊗n and
(A+)⊗n for all n ∈ Z⩾1 by

⟨a−1 ⊗ · · · ⊗ a
−
n , a

+
1 ⊗ · · · ⊗ a

+
n ⟩ =

n∏
m=1

⟨a−m, a+m⟩

for all a−1 , . . . , a
−
n ∈ A− and a+1 , . . . , a

+
n ∈ A+. We recall that, by [Dr90a, Lus94], there exists a

unique F-bilinear pairing ⟨ , ⟩ : Uqb− × Uqb+ → F such that

⟨y, xx′⟩ = ⟨∆(y), x′ ⊗ x⟩, ⟨yy′, x⟩ = ⟨y ⊗ y′,∆(x)⟩ (4.1)
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for any x, x′ ∈ Uqb+, y, y′ ∈ Uqb−, and

⟨th, th′⟩ = q−(h,h′), ⟨Fi, Ej⟩ = δij
1

q−1
i − qi

,

⟨th, Ej⟩ = 0, ⟨Fi, th′⟩ = 0.

(4.2)

for any i, j ∈ I, h, h′ ∈ Q∨
ext. In particular, for any e ∈ Uqn+, f ∈ Uqn−, h, h′ ∈ Q∨

ext, one obtains

⟨fth, eth′⟩ = q−(h,h′)⟨f, e⟩ (4.3)

so that ⟨f, xth⟩ = ⟨f, x⟩, for all x ∈ Uqb+, f ∈ Uqn− and h ∈ Q∨
ext.

4.6. The categories Oϵ. It is well–known that the Drinfeld-Lusztig pairing allows for the real-
ization of Uqg as (a quotient of) a quantum double [Dr86]. Thus, the canonical element of ⟨·, ·⟩,
which belongs to a suitable completion of the tensor product Uqb

−⊗Uqb+, is a topological R-matrix
inducing a quasitriangular structure on Uqg. This is more conveniently described in terms of cate-
gories of representations as we explained in Section 2.9.

Let W ⊂ Mod(Uqg) be the full subcategory of Uqg-modules M endowed with a weight space
decomposition, i.e.,

M =
⊕
µ∈Pext

Mµ .

Then, for any λ ∈ Q, the action of (Uqg)λ maps Mµ into Mµ+λ. For ϵ ∈ {±}, let Oϵ denote the
full subcategory consisting of objects in W with a locally finite Uqn

ϵ-action and finite-dimensional
weight spaces (see e.g., [Kac90, Ch. 9] or [Lus94, Ch. 3]). Note that Oϵ is closed under tensor
products.

We denote by (Uqg)
Oϵ the completion of Uqg with respect to the category Oϵ (cf. Section 2.9).

Recall that, by construction, (Uqg)
Oϵ is the algebra of operators defined on category Oϵ modules,

which are natural with respect to Uqg-intertwiners. Similarly, we denote by (Uqg
⊗n)O

ϵ
the algebra

of operators defined on tensor products of n modules in Oϵ. For any n ∈ Z>0, Uqg
⊗n embeds in

(Uqg
⊗n)O

ϵ
and therefore Oϵ separates points [Dr90b, Question 8.2].

Note that (Uqg)
Oϵ contains as a subalgebra the completion (Uqn

ϵ)O
ϵ
:=
∏
µ∈ϵQ+(Uqn

ϵ)µ of Uqn
ϵ

with respect to its natural ϵQ+-grading. Indeed, every element in (Uqn
ϵ)O

ϵ
is convergent on category

Oϵ and commutes with every intertwiner. Similarly, we have that

(Uqn
∓ ⊗ Uqn±)O

ϵ
:=

∏
µ∈±Q+

(Uqn
∓)−µ ⊗ (Uqn

±)µ

are subalgebras in (Uqg
⊗2)O

ϵ
. Finally, note that (Uqn

±)0 = F.

4.7. Quasi-R-matrices. We recall below the construction of the so-called quasi-R-matrix due to
Lusztig [Lus94]. For any µ ∈ Q+, let (b−µ,r)r be an ordered basis for (Uqn

−)−µ and let (b+µ,r)r be

the corresponding dual basis for (Uqn
+)µ with respect to the pairing ⟨ , ⟩ defined by (4.1)-(4.2).

Lusztig’s quasi-R-matrix is the element

Θ =
∑
µ∈Q+

Θµ ∈ (Uqn
− ⊗ Uqn+)O

ϵ
where Θµ =

∑
r

b−µ,r ⊗ b+µ,r ∈ (Uqn
−)−µ ⊗ (Uqn

+)µ. (4.4)
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The element Θµ is independent of the choice of basis. The quasi-R-matrix is deeply related with the
bar involution [Lus94, Thm. 4.1.2]. Namely, Θ is the unique element of the form Θ =

∑
µ∈Q+ Θµ

with Θµ ∈ (Uqn
−)−µ ⊗ (Uqn

+)µ such that Θ0 = 1⊗ 1 and

Θ∆(u) = ∆(u)Θ (4.5)

for any u ∈ Uqg. Moreover, by a standard argument, the normalization Θ0 = 1 guarantees that Θ
is invertible and moreover, by uniqueness, one has

Θ−1 = Θ.

It is clear that Θ is not the full R-matrix of Uqg. As Θ is the canonical element of the pairing
between Uqn

+ and Uqn
−, the missing factor is a weight zero operator, computed in terms of Cartan

elements.

4.8. A completion of the quantum Cartan subalgebra. We shall describe several weight zero
operators. For convenience, we think of such elements as belonging to the completion (Uqg)

W . In
particular, they act on category Oϵ modules. Let Fun(A,B) denote the functions from a set A to
a set B. Any β ∈ Fun(Pext,F) induces an element of (Uqg)

W , also denoted β, whose action on
M ∈ W is given by

β ·m = β(µ)m

for any µ ∈ Pext and m ∈ Mµ. The subspace of (Uqg)
W spanned by such β is a commutative

subalgebra, which we denote by (Uqh)
W . Indeed, note that the Cartan subalgebra Uqh naturally

embeds in (Uqh)
W . The group (Uqh)

W,× of invertible elements is given by Fun(Pext,F×). Similarly,
any κ ∈ Fun(Pext × Pext,F) defines an element of (Uqg ⊗ Uqg)W , also denoted κ, whose action on
M ⊗N , for M,N ∈ W is given by

κ ·m⊗ n = κ(µ, ν)m⊗ n
for any µ, ν ∈ Pext, m ∈ Mµ, and n ∈ Nν . In particular, for any g ∈ EndZ(Pext), we denote by κg
the function from Pext × Pext → F× given by

κg(µ, ν) := q(g(µ),ν).

Remark 4.1. Let ψq be an algebra endomorphism of Uqg, whose restriction functor, which we refer
to as the pullback of ψq, gives an endofunctor ψ∗

q :W →W. Then, ψq extends to an endomorphism

of (Uqg)
W , given by ψq(φ)|M := φ|ψ∗

q (M) for any φ ∈ (Uqg)
W and M ∈ W. Suppose that ψq

is invertible and ψ∗
q acts by permuting the weight spaces, i.e., there exists ψ ∈ EndZ(Pext) such

that, for any M ∈ W and µ ∈ Pext, ψ
∗
q (M)µ = Mψ(µ). Then, for any g ∈ EndZ(Pext), we have

(ψq ⊗ id)(κg) = κg◦ψ. �

4.9. A distinguished subgroup of (Uqh)
W,×. For any ζ ∈ EndZ(Pext) and λ ∈ Pext, we define

Gζ,λ ∈ Fun(Pext,F×) by

Gζ,λ(µ) := q(ζ(µ),µ)/2+(λ,µ) (4.6)

for any µ ∈ Pext. For example, for λ ∈ Q, we have G0,λ = tλ . Note that the set of functions Gζ,λ
with ζ ∈ EndZ(Pext) and λ ∈ Pext form a subgroup of (Uqh)

W,×, since Gζ1,λ1Gζ2,λ2 = Gζ1+ζ2,λ1+λ2 .
We restrict to the case of ζ ∈ EndZ(Pext) which are self-adjoint with respect to ( , ).

Lemma 4.2. Let ζ ∈ EndZ(Pext) be self-adjoint and λ ∈ Pext.

(i) The functional equation

Gζ,λ(µ+ ν) = Gζ,λ(µ)Gζ,λ(ν)q
(ζ(µ),ν) (4.7)

holds for any µ, ν ∈ Pext.
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(ii) In (Uqg⊗ Uqg)W , it holds

∆(Gζ,λ) = Gζ,λ ⊗Gζ,λ κζ , (4.8)

where ∆ denotes the coproduct (Uqg)
W → (Uqg⊗ Uqg)W .

(iii) If ζ(Q) ⊆ Q, the automorphism Ad(Gζ,λ) preserves Uqg in (Uqg)
W . More precisely, it holds

Ad(Gζ,λ)(u) = Gζ,λ(µ)utζ(µ) = G−ζ,λ(µ)tζ(µ)u, (4.9)

for any µ ∈ Q and u ∈ (Uqg)µ.

Proof.

(i) This follows immediately from the self-adjointness of ζ.

(ii) Let M,N ∈ W and let m ∈ M , n ∈ N such that m ∈ Mµ and n ∈ Nν for some µ, ν ∈ Pext.
Then m⊗ n ∈ (M ⊗N)µ+ν , so that

∆(Gζ,λ)(m⊗ n) = Gζ,λ(µ+ ν)m⊗ n = Gζ,λ(µ)Gζ,λ(ν)κζ(µ, ν)m⊗ n =
(
Gζ,λ ⊗Gζ,λ κζ

)
(m⊗ n),

as required, where we have used (4.7).

(iii) Let N ∈ W, ν ∈ Pext, µ ∈ Q and u ∈ (Uqg)µ. Then we have

Ad(Gζ,λ)(u)|Nν =
Gζ,λ(µ+ ν)

Gζ,λ(ν)
u|Nν = Gζ,λ(µ)q

(ζ(µ),ν)u|Nν = Gζ,λ(µ)utζ(µ)|Nν

and note that tζ(µ)u = q(ζ(µ),µ)utζ(µ). It follows that Ad(Gζ,λ)(u) preserves Uqg. □

We shall consider also the subgroup of group homomorphisms Homgrp(Pext,F×), i.e., β : Pext →
F× such that β(µ + ν) = β(µ)β(ν) for µ, ν ∈ Pext. For any β ∈ Homgrp(Pext,F×), we have
∆(β) = β ⊗ β and Ad(β)(u) = β(µ)u for any µ ∈ Q and u ∈ (Uqg)µ.

4.10. The universal R-matrix. We review the construction of the full universal R-matrix of
Uqg. For our choice of conventions, it is preferable to work with the operator Ξ := Θ−1 = Θ, which
satisfies

Ξ ·∆(u) = ∆(u) · Ξ (4.10)

for any u ∈ Uqg. One has Ad(κid) ◦∆( ) = ∆op. Therefore, by (4.5), the universal R-matrix given
by R := κid · Ξ ∈ (Uqg

⊗2)O
ϵ
(see e.g. [Dr85, Ji86]) satisfies

R∆(u) = ∆op(u)R (4.11)

for any u ∈ Uqg. Moreover, the following coproduct identities hold:

(∆⊗ id)(R) = R13R23 and (id⊗∆)(R) = R13R12.

Finally, one has

(ω ⊗ ω)(R) = R21 and (τ ⊗ τ)(R) = R (4.12)

for any τ ∈ Aut(A).
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4.11. Diagrammatic factorizations. The factorization of R has the following interpretation. As
a bialgebra, Uqb

− projects onto Uqh. By a theorem of Radford [Rad92], the Borel bialgebra Uqb
−

can be realized as the so-called Radford biproduct of Uqh and Uqn
−, where the latter should be

regarded as a Yetter-Drinfeld Uqh-module (see e.g., [ATL18, Sec. 2.17]). As the bialgebra structure
on Uqb

− is recovered by those on Uqh and Uqn
−, in the same way the R-matrix of (the quantum

double of) Uqb
− is realized as the product of those of Uqh and Uqn

−, represented respectively by
κid and Ξ. A similar phenomenon can be described more generally, when Uqh is replaced by a
diagrammatic subalgebra Uqb

−
X , X ⊆ I.

Let X ⊆ I be arbitrary (in particular, not necessarily of finite type). There is a unique diagram-
matic quasi-R-matrix

ΘX ∈
∏
λ∈Q+

X

(Uqn
−)−λ ⊗ (Uqn

+)λ

such that ΘX,0 = 1⊗ 1 and

ΘX∆(u) = ∆(u)ΘX (4.13)

for any u ∈ UqgX . Moreover, for any κ ∈ Fun(Pext × Pext,F) such that κ(µ + ν, µ′) = κ(µ, µ′ + ν)
for ν ∈ QX and µ, µ′ ∈ Pext, we have

[κ,ΘX ] = 0 (4.14)

In particular, for any µ ∈ Q, we have

[tµ ⊗ tµ,ΘX ] = 0 (4.15)

and, for any β ∈ FunX(Pext,F) where
FunX(Pext,F) := {β ∈ Fun(Pext,F) | β(µ+ ν) = β(ν) for all µ ∈ QX , ν ∈ Pext} ,

we have

[β ⊗ 1,ΘX ] = 0 . (4.16)

We shall need the following result.

Proposition 4.3. We have

ΘΘ−1
X ∈

∏
λ∈Q+\Q+

X

(Uqn
−)−λ ⊗ (Uqn

+)λ.

Proof. Set ΞX := Θ−1
X = ΘX , so that ΞX∆(u) = ∆(u) · ΞX for all u ∈ UqgX . Note that Uqb

−

projects, as a bialgebra, onto the quantum Levi subalgebra Uqn
−
XUqh. Similarly, the latter projects

on Uqh. Thus, by a double application of Radford’s theorem and [ATL18, Prop. 4.8], we obtain a
refined factorization

R = κid · ΞX ·R
where R ∈

∏
λ∈Q+\Q+

X
(Uqn

−)−λ ⊗ (Uqn
+)λ. The result follows. □

Remark 4.4. When I is of finite type, the result is an obvious consequence of the so-called
Kirillov–Reshetikhin factorization of the quasi-R-matrix [KR90]. �

5. Quantum Weyl groups and integrable representations

We review the basic properties of the category of integrable Uqg-modules, including the action
of the quantum Weyl group and the associated diagrammatic half-balances, which will be used in
Section 6.
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5.1. Integrable Uqg-modules. Recall that a Uqg-module is integrable if it has a locally finite
Uqg{i}-action for all i ∈ I. We denote6 by Wint the full subcategory of integrable objects in W,
cf. Section 4.6. For ϵ ∈ {±}, let Oϵint := Oϵ ∩ Wint denote the category of integrable category Oϵ
modules. This is a semisimple category whose simple objects are given by highest-weight (if ϵ = +)
or lowest-weight (if ϵ = −) modules. Moreover, Oϵint is a braided tensor subcategory of Oϵ with
braiding induced by the action of the R-matrix.

Remark 5.1. The pullback of the Chevalley involution defines a braided tensor equivalence O+
int →

O−,op
int , where the latter category is endowed with the opposite tensor product and braiding, cf.

Section 4.12. Note that, if g is of finite type, O+
int = O−

int and ω∗ is an autoequivalence at the
level of abelian categories. However, if dim(g) = ∞, then every non-trivial module in Oϵint is

infinite-dimensional and O+
int ∩ O

−
int consists only of trivial representations. �

Let (Uqg)
Oϵint be the completion of Uqg with respect to category Oϵint. By restriction, one gets

a canonical morphism (Uqg)
Oϵ → (Uqg)

Oϵint . By [Lus94, Prop. 3.5.4], the category Wint separates
points. By [ATL22, E22], the same result holds for category Oϵint, thus Uqg embeds into (Uqg)

Oϵint

through (Uqg)
Oϵ . In (Uqg)

O+
int , we shall consider elements of the form

u =
∑
µ∈ϵQ+

cµuµ

with uµ ∈ (Uqn
ϵ)µ and cµ ∈ Uqb−ϵ (cf. [Dr90b, Question 8.2]).

5.2. Quantum Weyl group operators. Let M ∈ Wint. For j ∈ I, we denote by T̃j Lusztig’s
operator T ′′

j,1 from [Lus94, 5.2.1] (see also [KR90, LS90]). Recall that this is the element of (Uqg)
Wint

defined on M ∈ Wint by

T̃j |Mµ
:=

∑
a,b,c∈Z≥0

a−b+c=−µ(hj)

(−1)bqb−acj E
(a)
j F

(b)
j E

(c)
j |Mµ

for any µ ∈ Pext. We have T̃j(Mµ) ⊆ Mµ−(a−b+c)αj = Msj(µ) for any µ ∈ Pext. By [Lus94, 5.2.3]

T̃j is invertible. It is well-known that the operators T̃j satisfy the generalized braid relations (2.5)
and thus induce an action of BW on any integrable representation [Lus94, 39.4.3]. At q = 1, this
reduces to the action by triple exponentials described in Section 3.7.

For j ∈ I, let Ad(T̃j) be the algebra automorphism of (Uqg)
Wint given by conjugation by T̃j . By

[Lus94, 37.1], Ad(T̃j) preserves Uqg and Uqg
′. Thus, it restricts to an automorphism of Uqg and

satisfies T̃j(x ·m) = Ad(T̃j)(x) · T̃j(m) for any x ∈ Uqg and m ∈ M ∈ Wint. Also, by [Lus94, 5.2.3
and 37.2.4] we have

Ad(T̃j)(u) = (−1)µ(hj)q−(αj ,µ)Ad(T̃−1
j )(u) , (5.1)

for any µ ∈ Q and u ∈ (Uqg)µ.

5.3. Diagrammatic operators. We shall be interested in distinguished operators arising from
finite type subdiagrams X ⊆ I. In this case, there is a well-defined element

T̃X := T̃j1 · · · T̃jℓ ∈ Uqg
Wint

6We used the same symbol for the analogue category of g-modules. From now on we only consider Uqg-modules.
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where wX = sj1 · · · sjℓ is any reduced expression of the longest element in WX . Note that T̃X is
invertible and maps Mµ to MwX(µ), for all M ∈ Wint and µ ∈ Pext.

By the explicit formulae in [Lus94, 37.1.3], it follows that Ad(T̃X)(Ei) ∈ Uqn
+ for all i ̸∈ X.

Moreover, if τ ∈ AutX(A), then, by the uniqueness of the longest element, we have τ ◦ Ad(T̃X) =
Ad(T̃X) ◦ τ . Note also that

Ad(T̃X)(Uqgµ) ⊆ UqgwX(µ) (5.2)

for any µ ∈ Q. Define the algebra automorphism

ω̃ := ω ◦ Ad(Gid,ρ) = Ad(Gid,−ρ) ◦ ω

where Ad(Gid,ρ) is given by (4.9). Note that ω̃ coincides with the automorphism tw from [BK19,
Sec. 7.1]. By [Jan96, Prop. 8.20], one gets

Ad(T̃X)|UqgX = ω̃−1 ◦ oiX |UqgX . (5.3)

where oiX is the opposition involution from 3.11. By [BK19, Lem. 7.1], ω̃ commutes with Ad(T̃i)
for any i ∈ I and hence

ω̃ ◦ Ad(T̃X) = Ad(T̃X) ◦ ω̃ (5.4)

Recall that if sj1 · · · sjℓ = wX is a reduced decompostion, then the positive roots in ΦX are explicitly
given by

Φ+
X = {αj1 , sj1(αj2), . . . , (sj1 · · · sjℓ−1

)(αjℓ)}.

Hence, (5.1) implies

Ad(T̃X)(u) = (−1)µ(2ρ∨X)q−(2ρX ,µ)Ad(T̃−1
X )(u), (5.5)

for any µ ∈ Q and u ∈ (Uqg)µ. Note that this is the key property used in [BK19] to relate
intertwiners for the subalgebra Uqk to the bar involution.

5.4. Pullback of integrable modules. As mentioned above, for any j ∈ I, Ad(T̃j) preserves Uqg
and therefore it gives rise to a restriction functor on Uqg-modules, which we refer to as its pullback.
We shall need the following.

Lemma 5.2. For all j ∈ I, the pullback Ad(T̃j)
∗ preserves integrable (resp. category Oϵ integrable)

Uqg-modules.

Proof. Let M ∈ Wint. For any µ ∈ Pext, we have Ad(T̃j)
∗(M)µ = Msjµ, therefore Ad(T̃j)

∗(M)

decomposes into weight spaces. We shall prove that the action of Ad(T̃j)(Uqg{i}) is locally finite
for all i ∈ I. Since the module M is integrable, the subspace Uqg{i} ·m is finite-dimensional for all

m ∈M . Therefore, T̃j(Uqg{i}·T̃−1
j (m)) is finite-dimensional and Ad(T̃j)(Uqg{i}) = T̃jUqg{i}T̃

−1
j acts

locally finitely on Ad(T̃j)
∗(M). Similarly, since in this case the weight spaces are finite-dimensional,

in order to show that Ad(T̃j)
∗ maps Oϵint into Oϵint, it suffices to prove that Uqn

ϵ act locally finitely

on Ad(T̃j)
∗(M) for all M ∈ Oϵint, which follows as before. □
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5.5. Diagrammatic half-balances. As mentioned in Remark 4.4, one of the main applications

of the diagrammatic operators T̃X is to provide an alternative description of the quasi-R-matrix
ΘX . Indeed, by [KR90, Thm. 3] and [LS90] (see also [BK19, Lem. 3.8]), we have the following
coproduct formula:

ΘX = ∆(T̃−1
X ) · (T̃X ⊗ T̃X). (5.6)

and therefore

ΞX = (T̃−1
X ⊗ T̃−1

X ) ·∆(T̃X). (5.7)

By (5.3), the square of the operator T̃X is almost central in UqgX . Thus, for finite type subdiagrams,

T̃X is essentially a half-balance for UqgX up to a Cartan correction. This is particularly simple in

the formal setting, i.e., q = eℏ/2 ∈ C[[ℏ]]. In this case, the operator qhi(hi+1)/2T̃si is a half-balance
for the quantum sl2 subalgebra corresponding to αi. Note that this is a key property, which implies
the rigidity of the representations of BW given by the quantum Weyl group operators are essentially
rigid cf. [ATL15]. More generally, Kamnitzer and Tingley in [KT09] (see also [ST09, Definition
3.9]) proved that the modified operator

TX := Gid,ρX · T̃X = T̃X ·Gid,−ρX (5.8)

satisfies

RX = (T−1
X ⊗ T−1

X ) ·∆(TX) (5.9)

where RX is the universal R-matrix of UqgX . Furthermore, T 2
X is central and therefore TX is a

half-balance for the diagrammatic subalgebra UqgX , cf. Section 2.7.
In the next section, we shall discuss a modification of such diagrammatic half-balances, which

depends on the choice of a generalized Satake diagram (cf. Section 6.5).

6. Classical and quantum pseudo-fixed-point subalgebras

In this section we define the notions of (classical and quantum) pseudo-fixed-point subalgebras
of Kac-Moody type, following [RV21, Sections 2 and 3]. Their combinatorial datum is given in
terms of a generalized Satake diagram, whose definition is a generalization of the finite type theory
from [RV20]. As a special case, one recovers the fixed-point subalgebras of involutions and their
quantizations, whose theory for Kac-Moody type is developed in [KW92, BBBR95] and [Ko14], for
the classical and quantum case, respectively.

Along the way, we introduce a modification, depending upon a generalized Satake diagram, of
the diagrammatic R-matrix and longest quantum Weyl group operator. These can be interpreted
as modified diagrammatic half-balances.

6.1. Generalized Satake diagrams. Just as Kac-Moody algebras g and their quantizations Uqg
are defined in terms of the combinatorial datum (I, A), we will define certain subalgebras of g
and Uqg by adjoining some combinatorial datum which can be seen as a decoration of the Dynkin
diagram. We assume that A is a symmetrizable indecomposable generalized Cartan matrix.

Definition 6.1. Let X ⊆ I be of finite type and τ ∈ AutX(A) such that τ2 = idI and τ |X = oiX .
We call a node i ∈ I unsuitable for (X, τ) if i /∈ X, τ(i) = i and the connected component of X∪{i}
containing i is of type A2, or, equivalently, θ(αi) = −αi−αj and aji = −1 for some j ∈ X. We call
(X, τ) a generalized Satake diagram if I has no unsuitable nodes for (X, τ) and write GSat(A) for
the set of generalized Satake diagrams. �
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This notion arose in [He84] for g of finite type in the study of root system involutions and
associated restricted Weyl groups. In [RV20] this generalization was found to describe coideal
subalgebras of Uqg possessing a universal K-matrix for g of finite type (for suitable parameters).

6.2. Pseudo-involutions. From now on fix (X, τ) ∈ GSat(A) and assume that the extended weight
lattice Pext is τ -compatible. We consider the pseudo-involution

θ = θ(X, τ) := Ad(w̃X) ◦ ω ◦ τ ∈ Aut(g) (6.1)

cf. [KW92, 4.38-4.39] and [RV21, (2.26)]. From the fact that θ stabilizes h it follows that the dual
map of θ, θ∗ ∈ GL(h∗) permutes root spaces: θ(gα) = gθ∗(α). Therefore θ∗ preserves Φ and hence
also Q. Since Pext is τ -compatible, θ∗ also preserves Pext.

The terminology “pseudo-involution” is motivated by the fact that θ has properties similar to an
honest Lie algebra involution. Namely, θ2(gα) = gα for all α ∈ Φ and θ restricts to h and h′ as an
involution, namely −wX ◦ τ . The dual map θ∗ is also given by the formula −wX ◦ τ and therefore
we also denote it by θ henceforth. Because the three automorphisms Ad(w̃X), ω and τ commute,
see [Ko14, Prop. 2.2 (3)], it follows from (3.4) that

θ2|gα = (−1)α(2ρ∨X)idgα for all α ∈ Φ.

The above statements are satisfied for any pair (X, τ) with X of finite type and τ ∈ AutX(A)
involutive. For the following property of θ we also require the condition τ |X = oiX . Combining
(3.3) and (6.1) we obtain

θ|⟨gX ,hθ⟩ = id⟨gX ,hθ⟩ (6.2)

and hence
(τ − id) ◦ (θ − id) = 0 (6.3)

as an identity in EndC(h) or EndC(h
∗), see [Ko14, Equation (5.7)]. From (6.2)-(6.3) it follows that

(h′)θ = hX ⊕
⊕
i ̸∈X
i<τ(i)

C(hi − hτ(i)) and (h′)−θ =
⊕
i̸∈X
i≤τ(i)

C(hi + hτ(i)),

so that the number of τ -orbits in I\X equals dim
(
(h′)−θ

)
, which we refer to as restricted rank of

(X, τ). Note that hθ ⊆ h′ if cork(A) ⩽ 1, in particular if A is of finite or affine type.

6.3. Comparison with standard Satake diagrams. One can always choose a group homomor-
phism s ∈ Homgrp(Q, {1,−1}) such that

s(αi) = 1 if i ∈ X or τ(i) = i

s(ατ(i)) = (−1)αi(2ρ∨X)s(αi) otherwise
(6.4)

(see e.g., [BK19, Eqns. (5.1) and (5.2)]) and consider with the modified automorphism θ = Ad(s)◦θ.
By (3.4), for any i ∈ I, one has

θ
2|gαi = s(αi)s(θ(αi))Ad(w̃X)

2|gαi =
s(αi)

s(ατ(i))
(−1)αi(2ρ∨X)idgαi .

It follows that θ is an involution if (X, τ) is a Satake diagram,i.e., if, in addition to the conditions
in Definition 6.1, it holds αi(ρ

∨
X) ∈ Z for any i ̸∈ X such that τ(i) = i (cf. [Ko14, Definition 2.3]).

One checks that if i ∈ I is an unsuitable node for (X, τ), then i ̸∈ X, τ(i) = i, and αi(ρ
∨
X) = −

1
2 .

Thus, in the case of Satake diagrams, there are no unsuitable nodes and every Satake diagram
is a generalized Satake diagram. Satake diagrams are known to describe and, up to a natural
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equivalence, classify involutive automorphisms of g of the second kind, see [Ko14, App. A] and cf.
[KW92, 5.33] and [BBBR95, 4.4-4.5].

6.4. Pseudo-fixed-point subalgebras. The introduction of unsuitable nodes in Definition 6.1 is
motivated by the following generalization of fixed-point subalgebras with respect to an involutive
Lie algebra automorphisms. For i ∈ Iℓ, ℓ ∈ Z>0, set

fi :=
(
ad(fi1) ◦ · · · ◦ ad(fiℓ−1

)
)
(fiℓ)

and consider the vector space gi,θ = spanC
{
fi, θ(fi)

}
. Choose a subset J ⊂ ∪ℓ∈Z>0I

ℓ such that

the set {fi |i ∈ J } is a basis of n−. Note that, for all i ∈ J , we have θ(fi) = fi, if i ∈ Xℓ for
some ℓ > 0, and θ(fi) ∈ n+ otherwise. Hence gi,θ is one-dimensional if i ∈ Xℓ for some ℓ > 0 and

two-dimensional otherwise. We have the following decomposition of g as an ad(hθ)-module:

g = n+X ⊕ hθ ⊕
⊕
i∈J

gi,θ ⊕ h−θ. (6.5)

Let γ = (γi)i∈I ∈ (C×)I such that γi = 1 if i ∈ X. We denote by the same symbol γ the element
of Homgrp(Q,C×) given by γ(αi) = γi. Set

θγ := Ad(γ) ◦ θ ∈ Aut(g).

Then θγ |h = θ|h = −wX ◦ τ , θγ(gα) = gθ(α) and θγ |⟨gX ,hθ⟩ = id⟨gX ,hθ⟩ for all α ∈ Φ. If θγ is indeed

involutive, the decomposition of the fixed-point subalgebra gθγ will be supported in the first three
components of (6.5) and its projection onto g{i},θ is

C(fi + θγ(fi)) = C(fi + γiθ(fi)).

The following definition naturally generalizes fixed-point subalgebras of involutive algebra auto-
morphisms of the second kind, cf. [RV20, Definition 2 and Rmk. 3 (i)].

Definition 6.2. Suppose that X ⊆ I is of finite type and that τ ∈ AutX(A) is an involution
satisfying τ |X = oiX ; furthermore suppose that γ ∈ (C×)I such that γi = 1 for all i ∈ X. In terms
of (6.1), we define the pseudo-fixed-point subalgebra

k = kγ(X, τ) = ⟨gX , hθ, {bi |i ̸∈ X}⟩ = ⟨n+X , h
θ, {bi |i ∈ I}⟩,

where

bi = bi;γi :=

{
fi if i ∈ X,
fi + γiθ(fi) otherwise.

�

The subalgebra k is closely related to the fixed-point subalgebra gθ as we explain in the following.
Note that k ∩ gθ contains ⟨gX , hθ⟩ and bi ∈ g{i},θ. It is natural to require k to be supported in the
first three components of (6.5) and to be such that the projection on g{i},θ is Cbi. Consider

Ieq := {i ∈ I |i < τ(i), (θ(αi), αi) = 0}
= {i ̸∈ X |i < τ(i), ∀j ∈ X ∪ {τ(i)} aij = 0},

Γ := {γ ∈ (C×)I | ∀i ∈ X γi = 1 and ∀i ∈ Ieq γi = γτ(i)}.

(6.6)

The following key result motivates the definition of a generalized Satake diagram. Set bi :=
(
ad(bi1)◦

· · · ◦ ad(biℓ−1
)
)
(biℓ) for i ∈ Iℓ.



UNIVERSAL K-MATRICES FOR QUANTUM KAC-MOODY ALGEBRAS 29

Theorem 6.3 ([RV21, Thm. 3.8]). Let X ⊆ I be of finite type, τ ∈ AutX(A) an involution satisfying
τ |X = oiX , and γ ∈ (C×)I such that γi = 1 for all i ∈ X. The following statements are equivalent:

(i) (X, τ) ∈ GSat(A) and γ ∈ Γ;

(ii) k = n+X ⊕ hθ ⊕
⊕

i∈J Cbi as ad(hθ)-modules;

(iii) k ∩ h = hθ.

Note that from (ii) we deduce that k projects onto the first three summands in the decomposition
(6.5). Moreover, if cork(A) ⩽ 1, then k ⊆ g′, since in this case hθ ⊆ h′.

As in [Ko14, Cor. 2.9], the generators of the universal enveloping algebra U(kγ(X, τ)) corre-
sponding to the bi can be further modified by adding a scalar term, yielding an additional tuple of
parameters. A similar phenomenon occurs in the q-deformed case discussed in [Le99, Rmk. 5.10]
and [Ko14], yielding however a non-trivial deformation.

6.5. Modified diagrammatic half-balances. As before, let A be a symmetrizable indecompos-
able generalized Cartan matrix, (X, τ) ∈ GSat(A), and Pext a τ -compatible extended weight lattice.

Note that Ad(w̃X) and ω commute as elements of Aut(g) and Aut(Ug). By (5.4), the quantum

analogues Ad(T̃X) and ω̃ also commute. However, ω̃ is not an involution and the interaction of

Ad(T̃X) and ω̃ with the quasitriangular bialgebra structure of Uqg is not optimal. On the other
hand, the involution ω ∈ Autalg(Uqg) is a coalgebra antiautomorphism and does interact nicely with
the quasitriangular bialgebra structure. Similarly, one can use instead the element TX as in (5.8),
which commutes with the undeformed ω and resolves the diagrammatic universal R-matrix (5.9).

Modifying the definition of TX , we introduce another correction of the element T̃X which enjoys
similar properties and is explicitly tailored around Uqkγ,σ.

Definition 6.4. The modified diagrammatic half-balance associated to the generalized Satake di-
agram (X, τ) is the operator on integrable UqgX -modules

TX,τ := Gθ(X,τ),ρX T̃X = T̃XGθ(X,τ),−ρX ∈ (UqgX)
Wint ,

where θ(X, τ) is the pseudo-involution associated to (X, τ) and Gθ(X,τ),ρX ∈ Fun(Pext,F×) is defined
in (4.6). �

Note that TX,τ is an invertible element in (Uqg)
Wint and TX,τ (Mλ) ⊆ MwX(λ) for any M ∈ Wint

and λ ∈ Pext.

Remark 6.5. If I is of finite type and X = I, this coincides with the diagrammatic half-balance

(5.8) from [KT09] (cf. Section 5.5). Similar modifications of T̃X also appeared in [Ko14, Sec. 4.4]
and [CM18, Sec. 4.2 and App. A]. �

The algebra automorphism Ad(TX,τ ) ∈ Autalg(Uqg) satisfies several useful properties, which
motivate the definition of TX,τ .

Lemma 6.6.

(i) The analogue of (5.2) holds:

Ad(TX,τ )(Uqgλ) ⊆ UqgwX(λ) , (6.7)

for any λ ∈ Q .
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(ii) The analogue of (5.3) holds:

Ad(TX,τ )|UqgX = Ad(Gθ−id,ρX−ρ) ◦ ω ◦ oiX |UqgX = ω ◦ oiX |UqgX . (6.8)

(iii) The analogue of (5.4) holds:

ω ◦ Ad(TX,τ ) = Ad(Gθ−id,ρ−ρX T̃X) ◦ ω̃ = Ad(TX,τ ) ◦ ω . (6.9)

(iv) The analogue of (5.5) holds:

Ad(TX,τ )(u) = (−1)λ(2ρ∨X)Ad(T−1
X,τ )(u) , (6.10)

for any λ ∈ Q and u ∈ (Uqg)λ.

Proof. We note that (6.7) and (6.8) follow, respectively, from (5.2) and (5.3). The properties (3.5)
and (5.4) imply that ω and Ad(TX,τ ) commute, yielding (6.9). Finally, (6.10) follows from (5.5). □

6.6. Modified diagrammatic R-matrices. In analogy with Section 5.5, the element TX,τ can
be thought of as an half-balance resolving a modified diagrammatic universal R-matrix (cf. 2.7).
Note that, since Pext is τ -compatible, the map θ = θ(X, τ) = −wX ◦ τ ∈ End(h∗) restricts to Pext

and is self-adjoint.

Definition 6.7. The modified diagrammatic R-matrix corresponding to (X, τ) is the operator

RX,τ := κθ(X,τ)ΞX

where κθ(X,τ) is defined as in 4.8. �

The definition is motivated by the following result.

Lemma 6.8.

(i) The intertwining identity holds:

RX,τ∆(u) = ∆op(u)RX,τ (6.11)

for any u ∈ UqgX .

(ii) The following coproduct identities holds:

RX,τ = (T−1
X,τ ⊗ T

−1
X,τ ) ·∆(TX,τ ) , (6.12)

and

(RX,τ )21 = ∆(TX,τ ) · (T−1
X,τ ⊗ T

−1
X,τ ) . (6.13)

Proof. We first prove (6.12). Since θ(X, τ) and wX commute, as a consequence of (4.8) and (5.7)
we have, as required,

RX,τ = κθ(X,τ) · (T̃−1
X ⊗ T̃−1

X ) ·∆(T̃X)

= (T̃−1
X ⊗ T̃−1

X ) · κθ(X,τ) ·∆(T̃X)

=
(
(Gθ(X,τ),ρX T̃X)

−1 ⊗ (Gθ(X,τ),ρX T̃X)
−1
)
·∆(Gθ(X,τ),ρX T̃X)

= (T−1
X,τ ⊗ T

−1
X,τ ) ·∆(TX,τ ).

Observing that θ(X, τ) fixes h∗X pointwise and recalling that θ(X, τ) preserves roots, we obtain
θ(X, τ)|QX = idQX , so that

κθ(X,τ)∆(u) = ∆op(u)κθ(X,τ)
for all u ∈ UqgX . Finally, (6.11) follows from (4.10). Combining (6.12) and (6.11), we obtain
(6.13). □
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6.7. Quantum pseudo-involutions. We have two triples of commuting algebra automorphisms,

i.e., (Ad(T̃X), ω̃, τ) and (Ad(TX,τ ), ω, τ), both of which specialize to the triple (Ad(w̃X), ω, τ) of
algebra automorphisms of Ug providing a factorization of the pseudo-involution θ. Therefore, we
obtain two distinct quantum analogues of θ (see also Remark 6.13):

θ̃q = θ̃q(X, τ) := Ad(T̃X) ◦ ω̃ ◦ τ and θq = θq(X, τ) := Ad(TX,τ ) ◦ ω ◦ τ. (6.14)

By [Ko14, Thm. 4.4 (1-2)], the map θ̃q preserves certain nice properties of θ, listed in Lemma 6.9
below. The same properties remains for θq, thanks to the relation

θ̃q = Ad(Gid−θ,ρX−ρ) ◦ θq = θq ◦ Ad(Gid−θ,ρ−ρX ). (6.15)

Note that (6.15) follows from (6.9) and the observation that Ad(Gid−θ,ρX−ρ) fixes UqgX pointwise (a
consequence of the invariance of Gid−θ,ρX−ρ under the translation action of QX on Pext). Therefore,
we have the following

Lemma 6.9.

(i) For any λ ∈ Q, θ̃q((Uqg)λ) = θq((Uqg)λ) = (Uqg)θ(λ).

(ii) For any h ∈ Q∨
ext, θ̃q(th) = θq(th) = tθ(h).

(iii) For any λ ∈ Q, θ̃q(tλ) = θq(tλ) = tθ(λ) .

In particular, Uqh and Uqg
′ are both θ̃q-stable and θq-stable and

θ̃q(u) = u = θq(u) . (6.16)

for any u ∈ UqgXUqhθ.

Note that (6.16) follows immediately from (5.3) and (6.8), since τ |X = oiX .

Remark 6.10. In summary, we have introduced in parallel two series of data(
ω̃, T̃X , R̃X , θ̃q(X, τ)

)
←→

(
ω, TX,τ , RX,τ , θq(X, τ)

)
.

The data on the left are predominant in [BK19] and are crucial in the construction of the quasi-K-
matrix. However, once the quasi-K-matrix has been constructed, we will mainly work with their
counterparts on the right, which enjoy more convenient relations with the coproduct structure. �

6.8. Quantum pseudo-fixed-point subalgebras. Together with the subset Ieq of I\X defined
in (6.6), we also consider

Ins := {i ∈ I |θ(αi) = −αi} = {i ̸∈ X |τ(i) = i, ∀j ∈ X aij = 0}.
Accordingly, we consider the following sets of parameter tuples:

Γq = Γq(X, τ) := {γ ∈ (F×)I | ∀i ∈ X γi = 1 and ∀i ∈ Ieq γi = γτ(i)}
Σq = Σq(X, τ) :=

{
σ ∈ FI

∣∣∀i ∈ I\Ins σi = 0 and ∀(i, j) ∈ I2ns aij ∈ 2Z or σj = 0
}
.

Definition 6.11. Let (X, τ) ∈ GSat(A) and (γ,σ) ∈ Γq × Σq. For i ∈ I we set

Bi = Bi;γi,σi(X, τ) :=

{
Fi if i ∈ X,
Fi + γiθq(X, τ)(Fi) + σit

−1
i otherwise.

(6.17)

The quantum pseudo-fixed-point subalgebra corresponding to (X, τ,γ,σ) is the subalgebra of Uqg
given by

Uqk = Uqkγ,σ(X, τ) = ⟨UqgX , Uqhθ, {Bi |i ̸∈ X}⟩ = ⟨Uqn+X , Uqh
θ, {Bi |i ∈ I}⟩. �
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The main result of the present paper is that, up to completion, Uqk is equipped with a universal
K-matrix. The following Lemma compares our expression of the generators with that used in [Ko14]
and [BK19].

Lemma 6.12. Let i ̸∈ X. Then

Bi = Fi +Gθ,−ρX (αi)γiθ̃q(X, τ)(Fiti)t
−1
i + σit

−1
i . (6.18)

Proof. In the proof we write θ instead of θ(X, τ) for simplicity, and similarly for θ̃q and θq. We
have

θq(Fi) = −Ad(Gθ,ρX T̃X)(Eτ(i))

= −Gθ,ρX (wX(ατ(i)))Ad(T̃X)(Eτ(i))tθ(wX(ατ(i)))

= Gθ,−ρX (αi)θ̃q(Fiti)t
−1
i

by virtue of Lemma 4.2 (iii) and the definitions (6.14). Now (6.18) follows as an immediate conse-
quence. □

Remark 6.13. Note that the map θ(X, τ) as defined in [Ko14, BK19] differs from ours by having an
extra factor Ad(s). This guarantees that θ(X, τ) is an involutive automorphism of g. Nevertheless,
its quantum analogue θq(X, τ) is not an involutive automorphisms of Uqg. Moreover, it follows
from (6.18) that, if (X, τ) is a Satake diagram, our expression for Bi corresponds precisely to that
used in [BK19, (5.8)] upon identifying, for any i ∈ I\X,

γi = s(ατ(i))G−θ(X,τ),ρX (αi)ci

where s ∈ Homgrp(Q, {1,−1}) is constrained by (6.4). �

6.9. Structure of Uqk. By [Ko14, Prop. 5.2], Uqk is a right coideal of Uqg; the proof of this
statement requires τ |X = oiX but not the condition that (X, τ) has no unsuitable nodes, or anything
stronger. More precisely, by [Ko14, Eq. (5.5)], we have

∆(Bi)−Bi ⊗ t−1
i ∈ UqgXUqh

θ ⊗ Uqg. (6.19)

Furthermore, it follows from [Ko14, Prop. 6.2] that

Uqk ∩ Uqh = Uqh
θ, (6.20)

providing a quantum analogue of the identity k ∩ h = hθ. If cork(A) ⩽ 1 (in particular if A is of
affine type), then Uqh

θ ⊆ Uqh
′. Combining with (6.20), we obtain Uqk ⊆ Uqg

′. These statements
follow from the analysis of the expressions Serij(Bi, Bj) in [Ko14, Sec. 5.3] for (γ,σ) ∈ Γq × Σq.
This analysis remains valid for any generalized Satake diagram.

7. The quasi-K-matrix

In this section, we review the construction of the so-called quasi -K-matrix, which is the essential
ingredient in the construction of universal K-matrices for quantum groups. We present a more
general and simpler construction as we explain below.

In [ES18] M. Ehrig and C. Stroppel studied the categorification of certain coideal subalgebras of
UqglN and the associated skew Howe duality. For the same quantum symmetric pairs, H. Bao and
W. Wang in [BW18] developed a coideal version of Lusztig’s theory of canonical bases. Central to
both papers is the notion the internal bar involution,i.e., an algebra automorphism of Uqk which
is a suitable analogue of Lusztig’s bar involution of Uqg. Note indeed that the latter does not
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preserve Uqk and therefore the two involutions do not coincide on Uqk. In [BW18] this leads to
the first definition of the quasi-K-matrix, as a canonical Uqk-intertwiner between the restriction of
Lusztig’s bar involution and the internal bar involution. M. Balagović and S. Kolb generalized the
existence of the internal bar involution and the associated quasi-K-matrix in [BK15, BK19] to all
quantum symmetric pairs of finite type considered by G. Letzter [Le99, Le02, Le03] and, subject to
a technical conjecture, to all quantum symmetric Kac-Moody pairs considered by Kolb in [Ko14].
This conjecture was later proved in [BW21]. Finally, and more importantly for us, it was shown
in [BK19] that the quasi-K-matrix is a key factor of the universal K-matrix of quantum symmetric
pairs of finite type.

In the above works, the existence of the internal bar involution relies on certain constraints on the
parameters γ and σ (e.g., [BK19, (5.16)-(5.17)]). The latter apply also to the quasi-K-matrix, since
its construction requires the internal bar involution. In this section we provide a generalization of
the latter result, valid for quantum symmetric pairs of Kac-Moody type, which does not rely on the
existence of the internal bar involution and does not require special constraints on the parameters
(Theorem 7.3). In fact, as proved by Kolb in [Ko21], this yields to an alternative definition of the
internal bar involution.

7.1. Locally inner automorphisms. We recalled in Section 4 that the construction of the
quasi-R-matrix due to Lusztig essentially amounts to produce a solution to the following prob-
lem: find an element X in Uqg

⊗2 (or rather in a suitable completion) such that the subalgebras

∆
(
Uqg

)
, ∆(Uqg) ⊂ Uqg⊗2 are pointwise related by conjugation by X. Note that the two subalgebras

do not coincide. Therefore, if the solution X exists, it is certainly non-trivial. This is indeed the
defining intertwining equation satisfied by X = Ξ (4.10).

This suggests the notion of locally inner automorphisms, that is, a global automorphisms of
algebras, which become inner (or rather topologically inner) when restricted to a distinguished
subalgebra. We shall consider the following situation. Let A ⊆ B ⊆ C be a tower of (unital
associative) algebras over a field F. Let A0 be a given generating set for A. Suppose we have a
function f : A0 → B and an element c ∈ C× such that f(a0) = Ad(c)(a0) for all a0 ∈ A0. We
extend f to an algebra embedding A → C by setting f(a) = Ad(c)(a). Since every element of A
can be written as a linear combination of products of the elements of A0, it follows that f maps
A into B. Finally, restricting the codomain of f to the subalgebra f(A), we obtain an algebra
isomorphism between A and f(A). Furthermore the set f(A0) = {Ad(c)(a0) |a0 ∈ A0} is clearly a
generating set of f(A).

7.2. The case of the bar involution. Proving that the bar involution is a locally inner automor-
phism is the problem at the origin of the quasi-K-matrix. We shall consider the situation described

above with A = Uqkγ,σ(X, τ), B = Uqg and C = (Uqg)
O+

for (X, τ) ∈ GSat(A) and (γ,σ) ∈ Γq×Σq.
The set A0 will simply be the canonical set of generators UqgXUqh

θ ∪ {Bi;γi,σi |i ̸∈ X} of Uqkγ,σ.
We choose f |A0 as follows:

f |UqgXUqhθ = idUqgXUqhθ , and f(Bi;γi,σi) = Bi;γ′i,σ′
i

(i ̸∈ X)

where in addition to the parameter tuples γ = (γi)i∈I ∈ Γq, σ = (σi)i∈I ∈ Σq, we have chosen
alternative tuples γ ′ = (γ′i)i∈I ∈ Γq, σ

′ = (σ′i)i∈I ∈ Σq, to be specified later, see (7.3). The element
c will be given by an element

Υ = Υγ,σ(X, τ) ∈ (Uqn
+)O

+ ⊂ (Uqg)
O+
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which we will construct in the following.
The condition Ad(Υ)(u) = f(u) for all u ∈ UqgXUqhθ∪{Bi;γi,σi |i ̸∈ X} is equivalent to requiring

ΥBi;γi,σi = Bi;γ′i,σ′
i
Υ and Υu = uΥ (7.1)

for i ∈ I\X and u ∈ UqgXUqhθ. By the above discussion, we obtain that f(Uqkγ,σ) is an algebra

isomorphic to Uqkγ,σ, generated by UqgXUqh
θ and {Bi;γ′i,σ′

i
|i ̸∈ X}. Since the bar involution is an

algebra automorphism of Uqg preserving UqgXUqh
θ, we have f(Uqkγ,σ) = Uqkγ′,σ′ .

Remark 7.1. Similarly to the case of the quasi-R-matrix, we shall see in the following sections
that f(Uqk) = Ad(Υ)(Uqk) and Uqk are different subalgebras of Uqg, for generic values of (γ,σ).
Define the internal bar involution of Uqkγ,σ to be the composition

· B := · ◦ f. (7.2)

On the subbialgebra UqgXUqh
θ this coincides with the usual bar involution (note that this map

preserves UqgXUqh
θ). The condition (γ ′,σ′) = (γ,σ) imposed in [BK15, BK19] implies that the

internal bar involution fixes Bi;γi,σi for all i ̸∈ X. Note that ibid. it is furthermore assumed that · B
preserves Uqkγ,σ. Detailed information on the presentation of Uqkγ,σ, in particular the quantum
Serre relations satisfied by the generators Bi, is then necessary to deduce that · B is indeed an
algebra automorphism of Uqkγ,σ, cf. [BK19, Thm. 5.6 (1)].

Our approach allows instead to completely avoid the use of the internal bar involution, and hence
does not require detailed results on the presentation of Uqkγ,σ. Indeed, we show below that the
proofs in [BK19, Sections 6 and 9.2] are independent of the condition (γ ′,σ′) = (γ,σ). Thus, we
obtain a quasi-K-matrix in a more general setting. In [Ko21] this observation is further exploited
to prove the existence a fortiori of the internal bar involution in the case (γ ′,σ′) = (γ,σ). �

7.3. The involution on the set of parameters. Define a map ′ on FI via

(x′)i = x′i := (−1)αi(2ρ∨X)xτ(i) (7.3)

for x ∈ FI and i ∈ I.

Lemma 7.2. The map ′ defined by (7.3) is an involution which preserves Γq and Σq. Moreover,
for the latter, it maps σ to σ.

Proof. Note that ′ restricts to (F×)I\X . From τ ∈ AutX(A) it follows that (γ ′′)i = γi and that
γ′i = γ′τ(i) if and only if γi = γτ(i), for all i ̸∈ X, which proves the claim for Γq. The claim for Σq
follows immediately from the fact that σi = 0 if τ(i) ̸= i or αi(ρ

∨
X) ̸= 0. □

7.4. Parameters as elements in (Uqh)
O+

int. By a mild abuse of notation, given x ∈ (F×)I , we
shall denote by the same symbol the corresponding character of the root lattice x ∈ Homgrp(Q,F×)
given by x(αi) = xi for i ∈ I. By further abuse of notation, by the same symbol we shall denote
an arbitrary extension to a group homomorphism of Pext. Note that such extensions exist since
Q ⊂ Pext is an embedding of abelian groups and F× is a divisible abelian group. Finally, we will

denote by x also the corresponding element of (Uqh)
O+

int defined as in Section 4.8. In the following,

we shall consider the tuples γ ′, γ, and γ−1 = (γ−1
i )i∈I as elements in (Uqh)

O+
int .
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7.5. The quasi-K-matrix. We state the main result of this section. It is convenient to rewrite
the system (7.1). In order to be able to apply Lusztig’s theory of skew derivations directly, we write

Υγ,σ = Xγ,σ

for some X = Xγ,σ ∈ (Uqn
+)O

+
. We note that the system (7.1) is equivalent to

XBi;γi,σi = Bi;γ′i,σ′
i
X and Xu = uX (7.4)

for i ̸∈ X and u ∈ UqgXUqhθ (note that the bar involution preserves UqgXUqh
θ).

The rest of the section is devoted to the construction of the quasi-K-matrix X based on its
intertwining properties and the computation of its coproduct. More precisely, we prove the following

Theorem 7.3. For all (γ,σ) ∈ Γq × Σq we have the following two results:

(i) There is a unique operator X = Xγ,σ ∈ (Uqn
+)O

+
of the form

X =
∑

λ∈(Q+)−θ

Xγ,σ;λ

such that Xγ,σ;0 = 1, Xγ,σ;λ ∈ (Uqn
+)λ and the system (7.4) is satisfied.

(ii) The following coproduct identiy holds:

∆(X) = (X⊗ 1) · (Ad(γ ′) ◦ θ−1
q ⊗ id)(Θ) · Ad(κid)(1⊗ X) ·Θ−1

X .

This is a generalization of analogue results from [BK19]. The proof of (i) (Theorem 7.14) is
carried out in Section 7.6-7.10. The proof of (ii) (Theorem 7.17) is carried out in Section 7.11-7.14.

Remark 7.4. We follow the same approach used in [BK19, Sec. 6]. The results for arbitrary values
of σ ∈ Σq are obtained from the special case σ = 0 (Theorem 7.10). This relies on the arguments
given in [DK19, Sec. 3.5] and simplifies the computations significantly. �

7.6. The intertwining property. The key ingredient to prove the existence of the intertwiner
is the use of the so-called Lusztig skew derivations. To this end, we shall first find an equivalent
formulation of the intertwining system. We shall make use of the following

Lemma 7.5. For all i ̸∈ X,

Ad(TX,τ )(Eτ(i)) = (−1)αi(2ρ∨X)Ad(T−1
X,τ )(Eτ(i)), (7.5)

Ad(tiTX,τ )(Eτ(i)) = q−(θ(αi),αi)Ad(TX,τ )(Eτ(i)).

Moreover,

Bi;γi,σi = Fi −
(
ζiAd(T̃

−1
X )(Eτ(i))− σi

)
ti

Bi;γ′i,σ′
i
= Fi − t−1

i

(
ζτ(i)Ad(T̃X)(Eτ(i))− σi

)
(7.6)

where

ζi :=

{
(−1)αi(2ρ∨X)G−θ,−ρX (αi)γi = G−θ,−ρX (αi)γ

′
τ(i) if i ̸∈ X

0 if i ∈ X.

Proof. It is enough to observe that (7.5) follows from (6.10) and the defining relations of Uqg. Then,
the explicit formula (6.17) implies (7.6). □
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It follows that (7.4) together with the condition XFi = FiX (i ∈ X) is equivalent to the condition[
X, Fi

]
= X

(
ζiAd(T̃

−1
X )(Eτ(i))− σi

)
ti − t−1

i

(
ζτ(i)Ad(T̃X)(Eτ(i))− σi

)
X.

for any i ∈ X.

7.7. Skew derivations. We recall some basic facts from [Lus94] and [Jan96]. Let i ∈ I and

note that Ad(ti) is an algebra automorphism of Uqn
+. Following [Lus94, 1.2.13], let D

(ℓ)
i , D

(r)
i ∈

EndF(Uqn
+) be the unique linear maps (denoted ri and ir in ibid.) such that D

(ℓ)
i (Ej) = δij =

D
(r)
i (Ej) for any j ∈ I and

D
(r)
i (uu′) = D

(r)
i (u)Ad(ti)(u

′) + uD
(r)
i (u′), D

(ℓ)
i (uu′) = D

(ℓ)
i (u)u′ + Ad(ti)(u)D

(ℓ)
i (u′) (7.7)

for anu u, u′ ∈ Uqn+. They satisfy D
(ℓ)
i ((Uqn

+)λ) ⊆ (Uqn
+)λ−αi ⊇ D

(r)
i ((Uqn

+)λ) for all λ ∈ Q+

and

op ◦D(r)
i = D

(ℓ)
i ◦ op, (7.8)

where op is the unique algebra antiautomorphism of Uqg which fixes each Ei and Fi (i ∈ I) and
inverts each th (h ∈ Q∨

ext). Recall that the following properties hold.

(i) By [Lus94, Prop. 3.1.6],

[u, Fi] =
D

(r)
i (u)ti − t−1

i D
(ℓ)
i (u)

qi − q−1
i

. (7.9)

for any u ∈ Uqn+.

(ii) By [Lus94, Lem. 1.2.15 (a)],

u = 0 ⇔ ∀i ∈ I D(r)
i (u) = 0 ⇔ ∀i ∈ I D(ℓ)

i (u) = 0

for any u ∈ Uqn+λ with λ ∈ Q+\{0}.

(iii) By [Jan96, Lem. 10.1],

D
(r)
i ◦D

(ℓ)
j = D

(ℓ)
j ◦D

(r)
i

for any i, j ∈ I.

(iv) By [Lus94, 1.2.13],

⟨Fiv, u⟩ =
1

q−1
i − qi

⟨v,D(ℓ)
i (u)⟩ and ⟨vFi, u⟩ =

1

q−1
i − qi

⟨v,D(r)
i (u)⟩ (7.10)

for any u ∈ Uqn+ and v ∈ Uqn−.

Note that the maps D
(ℓ)
i , D

(r)
i naturally extend to (Uqn

+)O
+

(roughly, the latter consists of
formal series in Uqn

+ converging on category O+ modules, cf. Section 4.6).

7.8. The intertwining property in terms of skew derivations. We shall use the skew deriva-
tions to provide an equivalent description of the system (7.4). By (7.9) and the linear independence

of ti and t
−1
i over (Uqn

+)O
+
, X is a solution of (7.4) if and only if it is a solution of the following

system in (Uqn
+)O

+
:

D
(r)
i (X) = (qi − q−1

i )X
(
ζiAd(T̃

−1
X )(Eτ(i))− σi

)
, (7.11)

D
(ℓ)
i (X) = (qi − q−1

i )
(
ζτ(i)Ad(T̃X)(Eτ(i))− σi

)
X,
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for any i ∈ I. For λ ∈ Q, let Xλ be the projection of X on the root space (Uqn
+)λ with respect

to the root space decomposition Uqn
+ =

⊕
λ∈Q(Uqn

+)λ. Then, Xλ = 0 if λ ̸∈ Q+ and we get the
following result.

Lemma 7.6. Let X ∈ (Uqn
+)O

+
be an invertible element. Then, X is a solution of (7.4) if and

only if

D
(r)
i (Xλ) = (qi − q−1

i )
(
ζiXλ−αi+θ(αi)Ad(T̃

−1
X )(Eτ(i))− σiXλ−αi

)
, (7.12)

D
(ℓ)
i (Xλ) = (qi − q−1

i )
(
ζτ(i)Ad(T̃X)(Eτ(i))Xλ−αi+θ(αi) − σiXλ−αi

)
(7.13)

for any λ ∈ Q+ and i ∈ I.

We normalize X by setting X0 = 1. In order to show that the system (7.12)-(7.13) has a solution,
we rely on [BK19, Prop. 6.3].

Proposition 7.7. Let µ ∈ Q+ be a positive weight of height ⩾ 2 and A
(r)
i , A

(ℓ)
i ∈ (Uqn

+)µ−αi, for
i ∈ I, a collection of given elements.

(i) There exists u ∈ (Uqn
+)µ such that, for any i ∈ I,

D
(r)
i (u) = A

(r)
i and D

(ℓ)
i (u) = A

(ℓ)
i (7.14)

if and only if, for any i, j ∈ I, we have

D
(r)
i (A

(ℓ)
j ) = D

(ℓ)
j (A

(r)
i ) (7.15)

and, for i ̸= j,

1

qi − q−1
i

1−aij∑
s=1

(−1)s
(
1− aij
s

)
qi

〈
F

1−aij−s
i FjF

s−1
i , A

(r)
i

〉
=

1

q−1
j − qj

〈
F

1−aij
i , A

(r)
j

〉
. (7.16)

(ii) If the system (7.14) has a solution, it is unique.

Remark 7.8. If X =
∑

λ∈QXλ with X0 = 1 is a solution of the system (7.12)-(7.13), then so is
op(X)|γi↔γτ(i) . Therefore, by uniqueness, op(X)|γi↔γτ(i) = X. �

Finally, proceeding exactly as in [BK19, case (3) ⇒ (4) of the proof of Prop. 6.1], we get the
following result.

Proposition 7.9. Let X ∈ (Uqn
+)O

+
be an invertible solution of (7.12). Then, Xλ = 0 unless

λ ∈ (Q+)−θ, i.e., X has the form

X =
∑

λ∈(Q+)−θ

Xγ,σ;λ

with Xγ,σ;λ ∈ (Uqn
+)λ. Moreover, [X, u] = 0 for any u ∈ Uqn+XUqhθ.

7.9. The case σ = 0. We prove the result in the case σ = 0. Namely, we have the following.

Theorem 7.10. For any γ ∈ Γq and σ = 0, there exists a unique solution X of the system (7.4)
of the form X =

∑
µ∈(Q+)−θ Xµ with X0 = 1 and Xµ ∈ (Uqn

+)µ.

Note that, by uniqueness, X = X−1|γ 7→γ′ . The proof is carried out in Sections 7.9.1-7.9.2.
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7.9.1. The recursive construction of X through Proposition 7.7 (i) relies on the following technical
result.

Lemma 7.11.

(i) For any i ̸∈ X,
(
D

(r)
i ◦ Ad(T̃X)

)
(Ei) is fixed by op ◦ τ .

(ii) Let i, j ∈ I such that i ̸= j and consider λij := (1− aij)αi + αj ∈ Q+. If θ(λij) = −λij, then
either τ(j) = i ∈ Ieq ∪ τ(Ieq) or i, j ∈ Ins.

(iii) Let i, j ∈ I such that i ̸= j and consider λij := (1− aij)αi + αj ∈ Q+. If θ(λij) = −λij, then
either τ(j) = i ∈ Ieq ∪ τ(Ieq) or i, j ∈ Ins.

Proof. (i) The statement that it is fixed by op ◦ τ is [BW21, Thm. 4.1], the proof of which does not
use the condition αi(ρ

∨
X) ∈ Z, so that it holds for all pairs (X, τ) such that X ⊆ I of finite type,

τ ∈ AutX(A) is involutive and τ |X = oiX .

(ii) This is [BK19, Lem. 6.4]. Note that in the proof nothing stronger than the defining condition of
GSat(A) is used, namely that there exists no pair (i, j) ̸∈ X ×X such that τ(i) = i, the connected
component of X neighbouring i is {j} and aij = −1 = aji.

(iii) This is [BK19, Lem. 6.5]. Recall that we assumed σj = 0 at the start of this section. □

7.9.2. We fix µ ∈ Q+ and assume that for all λ < µ we have constructed elements Xλ ∈ (Uqn
+)λ

satisfying X0 = 1 and, for all i ∈ I, (7.12)-(7.13). Define, for all i ∈ I, the following elements in
(Uqn

+)µ−αi :

A
(r)
i := (qi − q−1

i )ζiXµ−αi+θ(αi)Ad(T̃
−1
X )(Eτ(i)), (7.17)

A
(ℓ)
i := (qi − q−1

i )ζτ(i)Ad(T̃X)(Eτ(i))Xµ−αi+θ(αi). (7.18)

We will now prove (7.15)-(7.16) for the above choices of A
(ℓ)
i , A

(r)
i .

Proposition 7.12. With A
(ℓ)
i , A

(r)
i as in (7.17)-(7.18), the condition (7.15) is satisfied.

Proof. We follow the proof of [BK19, Lem. 6.7]. The crucial observation is that, for all i, j ∈ I,
D

(r)
j (Ad(T̃X)(Eτ(i))) = 0 unless j = i, see [BK19, Equation (5.10)], which goes back to [Ko14,

Lem. 7.2]. As a consequence, by the defining property of D
(r)
i and the induction hypothesis most

terms in D
(r)
i (A

(ℓ)
j ) and D

(ℓ)
j (A

(r)
i ) match pairwise. We have D

(r)
i (A

(ℓ)
j ) − D(ℓ)

j (A
(r)
i ) = 0 if i or j

lies in X or if τ(i) ̸= j. Without loss of generality we may assume j = τ(i) ̸∈ X. In this case

D
(r)
i (A

(ℓ)
j )−D(ℓ)

j (A
(r)
i ) = (qj − q−1

j )q(µ−αj+θ(αj),αi) ζi
(
D

(r)
i ◦ Ad(T̃X)

)
(Eτ(j))Xµ−αj+θ(αj)+

− (qi − q−1
i )q(αj ,µ−αi+θ(αi)) ζiXµ−αi+θ(αi)

(
D

(ℓ)
j ◦ Ad(T̃

−1
X )
)
(Eτ(i)).

In this case qi = qj and q
(−αj+θ(αj),αi) = q(αj ,−αi+θ(αi)) so that

D
(r)
i (A

(ℓ)
j )−D(ℓ)

j (A
(r)
i ) = (qj − q−1

j )q(αj ,θ(αi)−αi+µ) ζi

(
q(µ,αi−αj)

(
D

(r)
i ◦ Ad(T̃X)

)
(Ei)Xµ−αj+θ(αj)+

− Xµ−αi+θ(αi)
(
D

(ℓ)
j ◦ Ad(T̃

−1
X )
)
(Ej)

)
.
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Recall (6.3). Also, note that
(
D

(ℓ)
j ◦Ad(T̃

−1
X )
)
(Ej) lies in Uqn

+
X and hence commutes with Xµ−αi+θ(αi).

We obtain

D
(r)
i (A

(ℓ)
j )−D(ℓ)

j (A
(r)
i ) = (qj − q−1

j )q(αj ,θ(αi)−αi+µ) ζiXµ−αi+θ(αi)·

·
(
q(µ,αi−αj)

(
D

(r)
i ◦ Ad(T̃X)

)
(Ei)−

(
D

(ℓ)
j ◦ Ad(T̃

−1
X )
)
(Ej)

)
.

If Xµ−αi+θ(αi) = 0 we obtain the desired statement; hence we may assume that it is nonzero. By
Proposition 7.9we have θ(µ) = −µ. Applying (6.3) again, we have (µ, αi − αj) = 0. By [Lus94,

37.2.4] we have op ◦ Ad(T̃X) ◦ op = Ad(T̃−1
X ). Recalling (7.8), we obtain

D
(r)
i (A

(ℓ)
j )−D(ℓ)

j (A
(r)
i ) = (qj − q−1

j )q(αj ,θ(αi)−αi+µ) ζiXµ−αi+θ(αi)·

·
((
D

(r)
i ◦ Ad(T̃X)

)
(Ei)−

(
op ◦D(r)

j ◦ Ad(T̃X)
)
(Ej)

)
.

Finally, Lemma 7.11 (i) implies D
(r)
i (A

(ℓ)
j )−D(ℓ)

j (A
(r)
i ) = 0, as required. □

Proposition 7.13. With A
(r)
i given by (7.17), (7.16) is satisfied for all i, j ∈ I such that i ̸= j.

Proof. We may follow the proof of [BK19, Lem. 6.8]. Note that F
1−aij−s
i FjF

s−1
i ∈ (Uqn

−)λij−αi
and F

1−aij
i ∈ (Uqn

−)λij−αj . By the non–degeneracy of the bilinear pairing, we only need to consider
the case that µ = λij . By Proposition 7.9, we may assume θ(µ) = −µ and by Lemma 7.11 (ii) we
are in one of two possible cases: τ(j) = i ∈ Ieq ∩ τ(Ieq) or i, j ∈ Ins. In the former case, we have

µ = αi + αj , γi = γj and qi = qj . It follows that A
(r)
i = (qi − q−1

i )γiEj and A
(r)
j = (qi − q−1

i )γiEi,

so that (7.16) is an immediate consequence of ⟨Fj , Ej⟩ = ⟨Fi, Ei⟩.
It remains to consider the case i, j ∈ Ins, for which we can now follow the first part of [BK19,

Proof of Lemma 6.8, Case 2]. Namely, we invoke Lemma 7.11 (iii) and deduce that

(1− aij)αi + αj ∈ Z≥0(αj − θ(αj)) + Q+
I\{j} = 2Z≥0αj + Q+

I\{j},

which is a contradiction. Hence this case does not occur and there is nothing left to prove. □

Finally, relying on the previous results, the proof of [BK19, Thm. 6.10] applies to this case. The
result follows.

7.10. The intertwining property of X for general σ. Theorem 7.10 generalizes as follows.

Theorem 7.14. For any (γ,σ) ∈ Γq × Σq, there is a unique X = Xγ,σ =
∑

λ∈(Q+)−θ Xγ,σ;λ ∈
(Uqn

+)O
+
such that Xγ,σ;0 = 1, Xγ,σ;λ ∈ (Uqn

+)λ and the system (7.4) is satisfied.

The proof relies on a generalization of the arguments made in [DK19, Sec. 3.5] to the case
(γ ′,σ′) ̸= (γ,σ) and is carried out in 7.10.1-7.10.2.

7.10.1. By [Ko14, Thm. 7.1], the algebra Uqkγ,σ has a presentation in terms of generators and
relations, which are independent of σ. That is, the assignments

ϕσ(Bi;γi,0) = Bi;γi,σi and ϕσ(u) = u

for i ̸∈ X and u ∈ UqgXUqhθ, define an algebra isomorphism

ϕσ : Uqkγ,0 → Uqkγ,σ.

Hence, χσ := ϵ ◦ ϕσ : Uqkγ,0 → F is a one-dimensional representation. Note that χσ(Bi;γi,0) = σi
for i ̸∈ X.
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Lemma 7.15. We have the following identities of morphisms of algebras Uqkγ,0 → Uqg:

ϕσ = (χσ ⊗ id) ◦∆, (7.19)

ϕσ = · ◦ (χσ′ ⊗ id) ◦ ( · B ⊗ · ) ◦∆. (7.20)

where the map · B : Uqkγ,0 → Uqkγ′,0 is defined by (7.2).

Proof. The relations (7.19)-(7.20) can be verified by checking on generators. Applying both sides
of (7.19) to u ∈ UqgXUqhθ we obtain u for either side. Furthermore, applying ϕσ ⊗ id to (6.19)
implies (

(ϕσ ⊗ id) ◦∆
)
(Bi;γi,0)−Bi;γi,σi ⊗ t−1

i = ∆(Bi;γi,0)−Bi;γi,0 ⊗ t−1
i .

To this we apply ϵ⊗ id and deduce, using ϵ(Bi;γi,σi) = σi, that (χσ⊗ id)
(
∆(Bi;γi,0)

)
= Bi;γi,σi . This

completes the proof of (7.19).

As for (7.20), one can check that the right-hand side fixes Ei and Fi for i ∈ X and th for
h ∈ (Q∨

ext)
θ pointwise, so that (7.20) is true when restricted to UqgXUqh

θ. It remains to prove that(
χσ′ ◦ · B ⊗ ·

)
(∆(Bi;γi,0)) = Bi;γi,σi (7.21)

for i ̸∈ X. If i /∈ Ins, then σi = σ′i = 0. Thus, from the identity(
χσ′ ◦ · B ⊗ ·

)
(Bi;γi,0 ⊗ t−1

i ) = χσ′(Bi;γi,0)⊗ ti = 0 ,

(6.19), and ϵ(u) = ϵ(u)|q→q−1 , we deduce that(
χσ′ ◦ · B ⊗ ·

)
(∆(Bi;γi,0)) =

(
ϵ ◦ · ⊗ ·

)
(∆(Bi;γi,0)) =

(
ϵ⊗ id

)
(∆(Bi;γi,0)) = Bi;γi,0 .

Therefore, (7.21) is satisfied in this case. On the other hand, if i ∈ Ins, then by (6.18) we have

Bi;γi,σi = Fi − q−1
i γiEit

−1
i + σit

−1
i and ∆(Bi;γi,0) = Bi;γi,0 ⊗ t−1

i + 1⊗Bi;γi,0.

Therefore, (
χσ′ ◦ · B ⊗ ·

)
(∆(Bi;γi,0)) = σ′iti +Bi;γi,0 = Bi;γi,0 + σit

−1
i = Bi;γi,σi .

The result follows. □

7.10.2. Following [BW18, 3.1] and [Ko20, Sec. 3.3], we consider the 2-tensor quasi-K-matrix for

Uqkγ,σ(X, τ), i.e., the operator in (Uqg
⊗2)O

+
given by

Θγ,σ := ∆(Xγ,σ) ·Θ · X−1
γ,σ ⊗ 1 .

By [BW18, Prop. 3.2] and [Ko20, Prop. 3.9], it satisfies

Θγ,σ

((
· B ⊗ ·

)
◦∆
)
(b) = ∆

(
b
B
)
Θγ,σ (7.22)

for b ∈ Uqkγ,σ. By [Ko20, Prop. 3.10, cf. Rmk. 3.11] (see also [BW18, Prop. 3.5]), the operator
Θγ,σ is given by a series

Θγ,σ =
∑
λ∈Q+

Θγ,σ;λ where Θγ,σ;λ ∈ Uqkγ,σ ⊗ Uqn+λ . (7.23)

We then obtain the following generalization of [DK19, Prop. 3.26].
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Proposition 7.16. For any (γ,σ) ∈ Γq × Σq, the operator in (Uqn
+)O

+
given by

X′
γ,σ := (χσ′ ⊗ id)(Θγ,0)

satisfies the system (7.4).

Proof. Applying χσ′ ⊗ id to (7.22) in the special case σ = 0, we deduce

X′
γ,σ

((
χσ′ ⊗ id

)
◦
(
· B ⊗ ·

)
◦∆
)
(b) =

(
χσ′ ⊗ id

)
∆
(
b
B)

X′
γ,σ

for b ∈ Uqkγ,0. By (7.19)-(7.20), we obtain

X′
γ,σ ϕσ(b) = ϕσ′

(
b
B)

X′
γ,σ

for any b ∈ Uqkγ,0. The result follows. □

By (7.23), we have

X′
γ,σ =

∑
λ∈Q+

X′
γ,σ;λ where X′

γ,σ;λ ∈ (Uqn
+)λ .

with X′
γ,σ;0 = 1. By Proposition 7.7 (ii), we deduce that Xγ,σ = X′

γ,σ. Finally, Theorem 7.14

follows. This concludes the proof of part (i) of Theorem 7.3.

7.11. The coproduct formula for X. We now address the proof of part (ii) of Theorem 7.3.
In order to establish a factorization of the coproduct of X, we use the bilinear pairing again. We
consider the subalgebra

(Uqb
+ ⊗ Uqn+)O

+

∆ :=
∏
λ∈Q+

Uqn
+tλ ⊗ (Uqn

+)λ ⊂ (Uqb
+ ⊗ Uqn+)O

+
.

Note that ∆((Uqn
+)O

+
) ⊂ (Uqb

+ ⊗ Uqn+)O
+

∆ . By [BK19, Lem. 2.4] we have, for all X ∈ (Uqb
+ ⊗

Uqn
+)O

+

∆ ,

∀y, z ∈ Uqn− ⟨y ⊗ z,X⟩ = 0 =⇒ X = 0. (7.24)

The following result is the direct generalization of [BK19, Theorem 9.4] to the case of unrestricted
parameters.

Theorem 7.17. We have

∆(X) = (X⊗ 1) · (Ad(γ ′) ◦ θ−1
q ⊗ id)(Θ) · Ad(κid)(1⊗ X) ·Θ−1

X . (7.25)

The proof, given in Section 7.14, relies on the properties of the auxiliary element Ψ, which we
discuss in Sections 7.12-7.13.

7.12. The auxiliary element Ψ. In [BK19, Secs. 8 and 9] the coproduct of X is computed for
the special case that I is of finite type, γ = γ ′ and σ = σ′. We will now generalize this.

For X ⊆ I, recall Lusztig’s quasi-R-matrix ΘX ∈ (Uqn
−
X ⊗ Uqn

+
X)

O+
. The key ingredient for the

coproduct of X is the element

Ψ :=
(
Ad(γ ′) ◦ θ−1

q ⊗ id
)
(ΘΘ−1

X ) ∈ (Uqg⊗ Uqg)O
+
.

Note that we proved in Proposition 4.3 that the element ΘΘ−1
X is supported on Q+ \Q+

X . More
precisely,

ΘΘ−1
X ∈

∏
λ∈Q+\Q+

X

(Uqn
−)λ ⊗ (Uqn

+)λ

We shall use this result in Lemma 7.19.
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Remark 7.18. Let I be of finite type and assume γ′i = γi for all i ̸∈ X; note that for i ∈ X we
automatically have γ′i = γi(= 1). We observe that the function ξ : Pext → F× defined by [BK19,
Equation (8.1)] is of the form ξ(µ) = G−id−θ,0(µ)ξgrp(µ) with ξgrp ∈ Homgrp(Pext,F×) such that
ξgrp = G0,ρ−ρXγ

′ for some extension γ′ ∈ Homgrp(Pext,F×) of the group homomorphism: Q → F×

defined by αi 7→ γ′i. It follows that ξ = G−id−θ,ρ−ρXγ
′. Also, we have Ad(T̃−1

I ) = ω̃ ◦ oiI . By
inspecting the list of generalized Satake diagrams [He84, Table I] we see that oiI preserves X, so

commutes with Ad(T̃−1
X ), and commutes with τ . Hence

Ad(T̃−1
I T̃−1

X ) ◦ τ ◦ oiI = ω̃ ◦ oiI ◦ Ad(T̃−1
X ) ◦ τ ◦ oiI = ω̃2 ◦ θ̃−1

q = Ad(Gid+θ,ρX−ρ) ◦ θ−1
q

so that Ad(ξT̃−1
I T̃−1

X ) ◦ τ ◦ oiI = Ad(γ ′) ◦ θ−1
q and hence Ψ coincides with the element defined by

[BK19, Equation (9.1)] �

7.13. Properties of Ψ. The element Ψ satisfies the following properties, which generalize [BK19,
Lem. 9.1-9.2-9.3].

Lemma 7.19. We have

Ψ ∈
∏

λ∈Q+\Q+
X

(Uqn
+)−θ(λ)tλ ⊗ (Uqn

+)λ (7.26)

(id⊗D(r)
i )(Ψ) = (qi − q−1

i )ζiΨAd
(
ΘX T̃

−1
X ⊗ 1

)
(Eτ(i) ⊗ 1) · (ti ⊗ 1). (7.27)

Proof. We have

θ−1
q ((Uqn

−)−λ) = Ad(G−θ,ρX T̃
−1
X )((Uqn

+)τ(λ)) = Ad(G−θ,ρX )((Uqn
+)−θ(λ)) = (Uqn

+)−θ(λ)tλ.

Therefore, (7.26) follows from Proposition 4.3. From (4.5) and (4.13), for i ∈ X, ∆(Fi) commutes
with ΘΘ−1

X . Combined with (7.9) and the linear independence of ti and t
−1
i over Uqn

+, this yields
(7.27) for i ∈ X. We need to prove the case i ̸∈ X. As before, we obtain

(id⊗D(r)
i )(Θ) = (q−1

i − qi)ΘFi ⊗ 1 (7.28)

for any i ∈ I. Since for i ̸∈ X, we have (id⊗D(r)
i )(ΘX) = 0, the identities (7.7) and (7.28) yield

(id⊗D(r)
i )(ΘΘ−1

X ) = (id⊗D(r)
i )(Θ) Ad(1⊗ ti)

(
Θ−1
X

)
= (q−1

i − qi) Θ Fi ⊗ ti Θ−1
X 1⊗ t−1

i .
(7.29)

Since ΘX ∈ (Uqn
−
X ⊗ Uqn

+
X)

O+
, it is fixed by both Ad(γ ′)⊗ 1 and θ−1

q ⊗ 1. Moreover,(
Ad(γ ′) ◦ θ−1

q

)
(Fi) = −Ad(γ ′G−θ,ρX T̃

−1
X )(Eτ(i))

= −G−θ,ρX (−θ(αi))γ
′
τ(i)Ad(T̃

−1
X )(Eτ(i))ti

= −ζiAd(T̃−1
X )(Eτ(i))ti.

Applying Ad(γ ′) ◦ θ−1
q ⊗ id to (7.29), we get

(id⊗D(r)
i )(Ψ) = (qi − q−1

i )γi (Ad(γ
′) ◦ θ−1

q ⊗ id)(Θ) Ad(T̃−1
X )(Eτ(i))ti ⊗ ti Θ−1

X 1⊗ t−1
i

= (qi − q−1
i )ζi Ψ Ad(ΘX)

(
Ad(T̃−1

X )(Eτ(i))ti ⊗ ti
)
1⊗ t−1

i .

Thus, by (4.15), we obtain (7.27) in the case i ̸∈ X. □
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Note that

Ad(κid)(1⊗ Xλ)|Mµ⊗Nν = q(λ,µ)1⊗ Xλ|Mµ⊗Nν = tλ ⊗ Xλ|Mµ⊗Nν

for λ ∈ Q+, µ, ν ∈ Pext and M,N ∈ O+. Hence,

Ad(κid)(1⊗ X) =
∑
λ∈Q+

tλ ⊗ Xλ (7.30)

and Ad(κid)(1⊗ X) coincides with the element defined by [BK19, Equation (9.6)].

Lemma 7.20. We have

(id⊗D(r)
i )
(
Ad(κid)(1⊗ X)

)
=

=(qi − q−1
i )Ad(κid)(1⊗ X)

(
ζi t−θ(αi) ⊗ Ad(T̃−1

X )(Eτ(i))− σi1⊗ 1
)
ti ⊗ 1

(7.31)

Moreover,

[Ad(κid)(1⊗ X),ΘX ] = 0 = [Ad(κid)(1⊗ X),Ad(T̃−1
X )(Eτ(i))ti ⊗ ti] . (7.32)

Proof. Note that (7.32) follows immediately from (7.30) and Proposition 7.9. Instead, by (7.30),
we have

(id⊗D(r)
i )
(
Ad(κid)(1⊗ X)

)
=
∑
λ∈Q+

tλ ⊗D
(r)
i (Xλ)

Thus, by (7.12), it follows

(id⊗D(r)
i )
(
Ad(κid)(1⊗ X)

)
=

= (qi − q−1
i )

∑
λ∈Q+

tλ ⊗
(
ζiXλ−αi+θ(αi)Ad(T̃

−1
X )(Eτ(i))− σiXλ−αi

)
= (qi − q−1

i )

(
ζi

( ∑
λ∈Q+

tλ−αi+θ(αi) ⊗ Xλ−αi+θ(αi)

)
tαi−θ(αi) ⊗ Ad(T̃−1

X )(Eτ(i))+

− σi
( ∑
λ∈Q+

tλ−αi ⊗ Xλ−αi

)
ti ⊗ 1

)

= (qi − q−1
i )Ad(κid)(1⊗ X)

(
ζi tαi−θ(αi) ⊗ Ad(T̃−1

X )(Eτ(i))− σi ti ⊗ 1
)

The result follows. □

7.14. Proof of Theorem 7.17. By (4.16) and (7.32), the coproduct identity (7.25) is equivalent
to

∆(X) = (X⊗ 1) ·Ψ · Ad(κid)(1⊗ X). (7.33)

By (7.26) and (7.30), the right-hand side of (7.33) belongs to (Uqb
+⊗Uqn+)O

+

∆ . Since also ∆(X) ∈
(Uqb

+ ⊗ Uqn+)O
+

∆ , by (7.24), the coproduct identity (7.33) is equivalent to

⟨y ⊗ z,∆(X)⟩ = ⟨y ⊗ z, (X⊗ 1) ·Ψ · Ad(κid)(1⊗ X)⟩ (7.34)

for y, z ∈ Uqn−. By linearity it suffices to consider the case z = Fi1Fi2 · · ·Fiℓ for all (i1, . . . , iℓ) ∈ Iℓ,
ℓ ∈ Z⩾0. We do this by induction on ℓ.
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Consider the case ℓ = 0. Denote by P+
0 the projection from (Uqb

+ ⊗ Uqn−)O
+

∆ to the direct

summand Uqn
+ ⊗ F. By (7.26), Ad(γ ′) ◦ θ−1

q ⊗ id maps
∑

λ∈Q,µ∈QX
λ+µ=ν

ΘI,λΘX,µ into (Uqn
+)−θ(ν)tν ⊗

(Uqn
+)ν for ν ∈ Q+, so that P+

0 (Ψ) = 1⊗ 1. Also, by (7.30) we have

P+
0

(
Ad(κid)(1⊗ X)

)
=
∑
λ∈Q+

P+
0

(
tλ ⊗ Xλ

)
= 1⊗ 1.

Therefore, we obtain

⟨y ⊗ 1, (X⊗ 1) ·Ψ · Ad(κid)(1⊗ X)⟩ = ⟨y ⊗ 1,X⊗ 1⟩ = ⟨y,X⟩ = ⟨y ⊗ 1,∆(X)⟩ .

Assume (7.34) is satisfied for all y ∈ Uqn
+ and all monomials z = Fi1Fi2 · · ·Fiℓ with ℓ ⩾ 0. It

remains to prove that

⟨y ⊗ zFi,∆(X)⟩ = ⟨y ⊗ zFi, (X⊗ 1) ·Ψ · Ad(κid)(1⊗ X)⟩ (7.35)

for any i ∈ I. By (4.1) and (7.10), we have

⟨y ⊗ zFi,∆(X)⟩ = ⟨yzFi,X⟩ = (q−1
i − qi)

−1⟨yz,D(r)
i (X)⟩.

Thus, by (7.11), we get

⟨y ⊗ zFi,∆(X)⟩ =
〈
yz,X

(
σi − ζiAd(T̃−1

X )(Eτ(i))
)〉

=
〈
y ⊗ z,∆(X)

(
σi1⊗ 1− ζi∆

(
Ad(T̃−1

X )(Eτ(i))
))〉

.

By induction, the LHS of (7.35) gives

⟨y ⊗ zFi,∆(X)⟩ =
〈
y ⊗ z, (X⊗ 1) ·Ψ · Ad(κid)(1⊗ X)

(
σi1⊗ 1− ζi∆

(
Ad(T̃−1

X )(Eτ(i))
))〉

.

while the RHS of (7.35), by (4.3), (7.10), and (7.7), gives

⟨y ⊗ zFi, (X⊗ 1) ·Ψ · Ad(κid)(1⊗ X)⟩ =
= ⟨y ⊗ zFi, (X⊗ 1) ·Ψ · Ad(κid)(1⊗ X)t−1

i ⊗ 1⟩ =

= (q−1
i − qi)

−1
〈
y ⊗ z, (id⊗D(r)

i )
(
X⊗ 1 Ψ Ad(κid)(1⊗ X)

)
t−1
i ⊗ 1

〉
= (q−1

i − qi)
−1
〈
y ⊗ z, (X⊗ 1) (id⊗D(r)

i )
(
Ψ Ad(κid)(1⊗ X)

)
t−1
i ⊗ 1

〉
.

Therefore, the desired identity (7.35) reduces to

Ψ Ad(κid)(1⊗ X)
(
σi1⊗ 1− ζi∆

(
Ad(T̃−1

X )(Eτ(i))
)
=

= (q−1
i − qi)

−1(id⊗D(r)
i )
(
Ψ Ad(κid)(1⊗ X)

)
t−1
i ⊗ 1.

(7.36)

By (7.27) and (7.31), if i ∈ X, then (7.36) is satisfied since ζi = 0 = σi. If i ̸∈ X, then by (7.32),
we have

(q−1
i − qi)

−1(id⊗D(r)
i )(Ψ)Ad((1⊗ ti)κid)(1⊗ X)t−1

i ⊗ 1 =

= −ζiΨ Ad
(
ΘX(T̃

−1
X ⊗ 1)

)
(Eτ(i) ⊗ 1)Ad((ti ⊗ ti)κid)(1⊗ X)

= −ζiΨ ΘX Ad(T̃−1
X )(Eτ(i))⊗ 1 Ad((ti ⊗ ti)κid)(1⊗ X)Θ−1

X

= −ζiΨ ΘXAd(κid)(1⊗ X)
(
Ad(T̃−1

X )(Eτ(i))⊗ 1
)
Θ−1
X

= −ζiΨ Ad(κid)(1⊗ X)Ad
(
ΘX(T̃

−1
X ⊗ 1)

)
(Eτ(i) ⊗ 1).
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Hence, (7.7) implies

(qi − q−1
i )−1(id⊗D(r)

i )
(
Ψ Ad(κid)(1⊗ X)

)
t−1
i ⊗ 1 =

= Ψ Ad(κid)(1⊗ X)
(
ζiAd

(
ΘX(T̃

−1
X ⊗ 1)

)
(Eτ(i) ⊗ 1) + ζit−θ(αi) ⊗ Ad(T̃−1

X )(Eτ(i))− σi1⊗ 1
)
.

Therefore, (7.36) further reduces to

∆
(
Ad(T̃−1

X )(Eτ(i)) = Ad
(
ΘX(T̃

−1
X ⊗ 1)

)
(Eτ(i) ⊗ 1) + t−θ(αi) ⊗ Ad(T̃−1

X )(Eτ(i)).

Let j ∈ X. Applying Ad(T̃−1
X ) ◦ τ to EiFjtj = q−(αi,αj)FjtjEi, we obtain Ad(T̃−1

X )(Eτ(i))Ej =

q−(αi,αj)EjAd(T̃
−1
X )(Eτ(i)) and

(t−θ(αi) ⊗ Ad(T̃−1
X )(Eτ(i))) (Fj ⊗ Ej) = q(θ(αi)−αi,αj)(Fj ⊗ Ej) (t−θ(αi) ⊗ Ad(T̃−1

X )(Eτ(i)))

= (Fj ⊗ Ej) (t−θ(αi) ⊗ Ad(T̃−1
X )(Eτ(i))).

Hence, t−θ(αi) ⊗ Ad(T̃−1
X )(Eτ(i)) commutes with ΘX and, by (5.6), we conclude that

∆
(
Ad(T̃−1

X )(Eτ(i))
)
= Ad(ΘX(T̃

−1
X ⊗ T̃−1

X ))(Eτ(i) ⊗ 1 + tτ(i) ⊗ Eτ(i))

= Ad(ΘX)
(
Ad(T̃−1

X )(Eτ(i))⊗ 1 + t−θ(αi) ⊗ Ad(T̃−1
X )(Eτ(i))

)
= Ad

(
ΘX(T̃

−1
X ⊗ 1)

)
(Eτ(i) ⊗ 1) + t−θ(αi) ⊗ Ad(T̃−1

X )(Eτ(i)) .

The result follows.

8. Universal K-matrices

In this section, we introduce the standard universal K-matrix and derive its key properties. A fur-
ther modification in terms of a multiplicative difference of two modified diagrammatic half-balances,
corresponding to a pair of generalized Satake diagrams, yields a rich theory of new modified uni-
versal K-matrices. Among those, in special cases, certain choices are more convenient or natural
than others. In particular, when the two diagrams coincide, this yields a natural interpretation of
the quasi-K-matrix as a universal K-matrix. For quantum groups of finite type, this recovers the
Balagović-Kolb universal K-matrix and their formalism (cf. Section 8.10). In Section 9, we shall
outline the applications of this approach in the theory of quantum affine algebras.

Throughout the section, we fix (X, τ) ∈ GSat(A), (γ,σ) ∈ Γq × Σq, we assume that Pext is τ -
compatible, and we consider the associated quantum pseudo-fixed-point subalgebra Uqkγ,σ ⊂ Uqg.

8.1. The inverse of the quasi-K-matrix. It is convenient for us to work with the inverse of the
quasi-K-matrix constructed in Section 7 (cf. Theorem (7.14)). Thus, we set

Υ = Υγ,σ := Xγ,σ = X−1
γ′,σ′ , (8.1)

where the parameters (γ ′,σ′) are defined in (7.3). Recall the injective algebra homomorphism
f : Uqkγ,σ → Uqg defined by f(u) = u if u ∈ UqgXUqhθ and f(Bi;γi,σi) = Bi;γ′i,σ′

i
for all i ̸∈ X. We

have the following

Lemma 8.1. The operator Υ ∈ (Uqn
+)O

+
is the unique element with Υ0 = 1 satisfying the inter-

twining equation
Υu = f(u)Υ (8.2)

for any u ∈ Uqkγ,σ. Moreover, it satisfies the coproduct identity

∆(Υ) = R−1
X,τ · (1⊗Υ) · (Ad(γ) ◦ θ−1

q ⊗ id)(R) · (Υ⊗ 1). (8.3)
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Proof. By Theorem 7.14, it follows that Υ satisfies (8.2). Then, from (7.25), we have

∆(Υ) = R̃−1
X Ad(κid)(1⊗Υ) (Ad(γ) ◦ θ−1

q ⊗ id)(R̃) (Υ⊗ 1)

= R̃−1
X Ad(κ−θ)(1⊗Υ) (Ad(γ) ◦ θ−1

q ⊗ id)(R̃) (Υ⊗ 1)

= R−1
X,τ (1⊗Υ) (Ad(γ) ◦ θ−1

q ⊗ id)(R) (Υ⊗ 1).

where the first equality follows from the identity Ad(κθ+id)(1⊗x) = 1⊗x for any x ∈ (Uqn
+)λ and

λ ∈ Q−θ, while the third equality follows from (θ−1
q ⊗ id)(κid) = κθ (cf. Remark 4.1). □

Remark 8.2. The choice of κθ in the definition of RX,τ (cf. Definition 6.7) is therefore instrumental
to obtain (8.3), in that it absorbs the Cartan corrections that naturally arise in the coproduct
identity of the quasi-K-matrix. �

8.2. Quantum pseudo-involutions on Uqkγ,σ. In the following, we shall use the quantum
pseudo-involution θq as defining a new intertwining equation. To this end, we need to describe

its action on Uqkγ,σ. Recall that we regard γ as an element in (Uqh)
O+

int . We have the following

Proposition 8.3. For any u ∈ Uqkγ,σ, it holds θ−1
q (u) = Ad(γ−1)(f(u)).

Proof. For u ∈ UqgXUqhθ, we have Ad(γ−1)(u) = f(u) = u = θ−1
q (u). It remains to prove that, for

i ̸∈ X, (
θq ◦ Ad(γ−1)

)
(Bi;γ′i,σ′

i
) = Bi;γi,σi . (8.4)

Note that (
θq ◦ Ad(γ−1)

)
(Fi) = γiθq(Fi). (8.5)

Moreover, by (7.3) and (6.10), we have

γ′iθq(Fi) = −(−1)
αi(2ρ

∨
X)γτ(i)Ad(TX,τ )(Eτ(i)) = −γτ(i)Ad(T−1

X,τ )(Eτ(i)) = γτ(i)θ
−1
q (Fi) .

Therefore, (
θq ◦ Ad(γ−1)

)(
γ′iθq(Fi)

)
= γτ(i)

(
θq ◦ Ad(γ−1)

)
(θ−1
q (Fi)) = Fi.

Finally, (
θq ◦ Ad(γ−1)

)
(σiti) = σiθq(ti) = σitθ(αi) = σit

−1
i (8.6)

since σi = 0 if θ(αi) ̸= −αi. Combining (8.5)-(8.6), we obtain (8.4). □

8.3. The standard universal K-matrix KX,τ . We introduce a subtle correction of the operator
Υ, which reveals crucial in the following.

Definition 8.4. The standard universal K-matrix is the operator in (Uqb
+)O

+
given by

KX,τ := γ−1Υ

where Υ is defined in (8.1). The standard twisting operator is the algebra automorphism of Uqg
given by ψX,τ := θ−1

q . �

We prove the first main result of the paper.

Theorem 8.5. The standard universal K-matrix KX,τ satisfies the intertwining equation

KX,τu = ψX,τ (u)KX,τ (8.7)

for any u ∈ Uqkγ,σ and the coproduct identity

∆(KX,τ ) = R−1
X,τ · (1⊗KX,τ ) ·

(
ψX,τ ⊗ id

)
(R) · (KX,τ ⊗ 1) . (8.8)
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Proof of Theorem 8.5. Combining (7.1) with Proposition 8.3, we immediately obtain (8.7). To
prove (8.8), note that ∆(γ) = γ ⊗ γ and (8.3) imply

∆(KX,τ ) = (γ−1 ⊗ γ−1) R−1
X,τ (1⊗Υ)

(
Ad(γ) ◦ θq(X, τ)−1 ⊗ id

)
(R) (Υ⊗ 1).

By (4.14), γ ⊗ γ commutes with RX,τ = κθ(X,τ)Θ
−1
X , which completes the proof. □

8.4. The universal K-matrices KY,η. The twisting operator ψX,τ = θ−1
q is in general quite a

complicated automorphism, whose pullback functor is not easily described. It is therefore convenient
to introduce a further modification of the pair (KX,τ , ψX,τ ) in terms of an auxiliary generalized
Satake diagram (Y, η) which yields a simpler twisting operator. This however requires to restrict
to integrable category O+ modules.

Definition 8.6. For any (Y, η) ∈ GSat(A) such that Pext is η-compatible, we consider the operator

in (Uqg)
O+

int given by

KY,η := (T−1
Y,η TX,τ ) ·KX,τ = (T−1

Y,η TX,τ ) · γ
−1 ·Υ (8.9)

and the algebra automorphism of Uqg given by

ψY,η := Ad(T−1
Y,ηTX,τ ) ◦ ψX,τ = θq(Y, η)

−1 ◦ η ◦ τ = Ad(TY,η)
−1 ◦ ω ◦ τ , (8.10)

where θq(Y, η) denotes the quantum pseudo-involution associated to (Y, η). �

Note that, in the case (Y, η) = (X, τ), Definitions 8.4 and 8.6 yield the same operators and there
is no clash of notations.

Our next main result is that the element KY,η is a universal K-matrix for Uqkγ,σ with respect to
the twisting operator ψY,η. More precisely, following Definition 2.2, we shall prove that (ψY,η, RY,η)
is a twist pair, (Uqg, R, ψY,η, RY,η,KY,η) is a cylindrical bialgebra, and Uqkγ,σ is a cylindrically
invariant coideal subalgebra. These results will be proved in Proposition 8.7 and Theorem 8.8,
respectively.

8.5. The twist pair (ψY,η, RY,η). We first prove that (ψY,η, RY,η) is a twist pair for the qua-
sitriangular bialgebra (Uqg,∆, ϵ, R). This amounts to proving that ψY,η is an isomorphism of
quasitriangular bialgebras

ψY,η : (Uqg,∆
op, ϵ, R21) −→ (Uqg,Ad(RY,η) ◦∆, ϵ, (RY,η)21 ·R ·R−1

Y,η) .

Proposition 8.7. The following relations hold:

(ψY,η ⊗ ψY,η) ◦ ∆op = Ad(RY,η) ◦∆ ◦ ψY,η , ϵ ◦ ψY,η = ϵ, (8.11)

and

(ψY,η ⊗ ψY,η)(R21) = (RY,η)21 ·R ·R−1
Y,η. (8.12)

Proof. Since the diagram automorphisms are bialgebra automorphisms and ω is a coalgebra anti-
automorphism satisfying (4.12), the identities (8.11)-(8.12) reduce to

Ad(T−1
Y,η ⊗ T

−1
Y,η) ◦ ∆ = Ad(RY,η) ◦∆ ◦ Ad(T−1

Y,η), (8.13)

ϵ ◦ Ad(TY,η) = ϵ, (8.14)

Ad(T−1
Y,η ⊗ T

−1
Y,η)(R) = (RY,η)21 ·R ·R−1

Y,η. (8.15)

The identity (8.14) follows from (6.7) and the fact that Ad(TY,η)(th) = twY (h) for h ∈ Q∨
ext. The

identities (8.13) and (8.15) follow from (6.12). □
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8.6. Properties of KY,η. We prove that the operator KY,η is indeed a universal K-matrix with
respect to the twist pair (ψY,η, RY,η).

Theorem 8.8. The operator KY,η satisfies the intertwining equation

KY,η · u = ψY,η(u) ·KY,η , (8.16)

for any u ∈ Uqkγ,σ, and the coproduct identity

∆(KY,η) = R−1
Y,η (1⊗KY,η) (ψY,η ⊗ id)(R) (KY,η ⊗ 1). (8.17)

Proof. From (8.7), one has

KY,η · u = T−1
Y,η TX,τ θ

−1
q (u)KX,τ =

(
Ad(T−1

Y,η) ◦ ω ◦ τ
)
(u)T−1

Y,η TX,τKX,τ = ψY,η(u)KY,η ,

for any u ∈ Uqkγ,σ. Then, from (8.8), one has

∆(KY,η) = ∆
(
T−1
Y,ηTX,τ

)
R−1
X,τ (1⊗KX,τ )

(
θq(X, τ)

−1 ⊗ id
)
(R) (KX,τ ⊗ 1)

= ∆(TY,η)
−1 (TX,τ ⊗ TX,τ ) (1⊗KX,τ )

(
θq(X, τ)

−1 ⊗ id
)
(R) (KX,τ ⊗ 1)

= ∆(TY,η)
−1 (1⊗ TX,τKX,τ )

(
Ad(TX,τ ) ◦ θq(X, τ)−1 ⊗ id

)
(R) (TX,τKX,τ ⊗ 1)

= R−1
Y,η (T

−1
Y,η ⊗ T

−1
Y,η) (1⊗ TX,τKX,τ )

(
Ad(TX,τ ) ◦ θq(X, τ)−1 ⊗ id

)
(R) (TX,τKX,τ ⊗ 1)

= R−1
Y,η (1⊗KY,η)

(
ψY,η ⊗ id

)
(R) (KY,η ⊗ 1),

where the second and fourth equalities follows from (6.12). □

8.7. Generalized reflection equation. The following result is the analogue of Proposition 2.4.

Theorem 8.9. The operator KY,η satisfies the generalized reflection equation (2.9) with respect to
the twisting operator ψY,η, i.e.,

(ψY,η ⊗ ψY,η)(R21) · (1⊗KY,η)·(ψY,η ⊗ id)(R) · (KY,η ⊗ 1) =

=(KY,η ⊗ 1) · (id⊗ ψY,η)(R21) · (1⊗KY,η) ·R.
(8.18)

Proof. From the coproduct formula (8.17), one has

∆op(KY,η) = (RY,η)
−1
21 (KY,η ⊗ 1) (id⊗ ψY,η)(R21) (1⊗KY,η)

and, from (4.11),

∆op(KY,η) = R ·∆(KY,η) ·R−1 = R R−1
Y,η (1⊗KY,η) (ψY,η ⊗ id)(R) (KY,η ⊗ 1) R−1.

Therefore,

(KY,η ⊗ 1) · (id⊗ ψY,η)(R21) · (1⊗KY,η) ·R =

= (RY,η)21 R ·R−1
Y,η · (1⊗KY,η) · (ψY,η ⊗ id)(R) (KY,η ⊗ 1).

Thus, the result follows from (8.12). □

8.8. Cartan corrections of universal K-matrices. We describe a further modification of the
standard K-matrix KX,τ associated to the elements g ∈ (Uqh)

W,× such that Ad(g) preserves Uqg ⊂
(Uqg)

Wint . Namely, we set

Kg
Y,η := g ·KY,η and ψgY,η := Ad(g) ◦ ψY,η . (8.19)

The operator Kg
Y,η remains a universal K-matrix.
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Theorem 8.10. The operator Kg
Y,η satisfies the intertwining equation

Kg
Y,ηu = ψgY,η(u)KY,η

g , (8.20)

for any u ∈ Uqkγ,σ, the coproduct identity

∆(Kg
Y,η) = (RgY,η)

−1 · (1⊗KY,η
g) · (ψgY,η ⊗ id)(R) · (Kg

Y,η ⊗ 1) , (8.21)

where (RgY,η)
−1 := ∆(g)R−1

Y,η (g
−1 ⊗ g−1), and the generalized reflection equation

(Kg
Y,η ⊗ 1) · (id⊗ ψgY,η)(R21) · (1⊗KY,η

g) ·R =

= (ψgY,η ⊗ ψ
g
Y,η)(R21) · (1⊗KY,η

g) · (ψgY,η ⊗ id)(R) · (Kg
Y,η ⊗ 1).

(8.22)

Proof. The identities (8.20), (8.21) and (8.22) follow by multiplying (8.16), (8.17) and (8.18) by g,
∆(g) and g ⊗ g, respectively. □

Remark 8.11. Clearly, g can be thought of as a gauge transformation acting on the cylindrical
structure (ψY,η, RY,η,KY,η), i.e., we have g ⋆ (ψY,η, RY,η,KY,η) = (ψgY,η, R

g
Y,η,K

g
Y,η). In fact, the

same result applies for any g ∈ (Uqg)
O+

int such that Ad(g) preserves Uqg (cf. [AV22, Sec. 3]). In

particular, we have (T−1
Y,ηTX,τ ) ⋆ (ψX,τ , RX,τ ,KX,τ ) = (ψY,η, RY,η,KY,η). �

8.9. An alternative choice. From Remark 8.11, it is clear that the universal K-matrix KX,τ

and the twisting operator ψX,τ give rise to large family of universal K-matrices depending upon
the choice of a gauge transformation with some mild restrictions. In particular, we can recover
immediately the slightly different setup used in [BK19]. Namely, instead of considering KY,η and
ψY,η defined by (8.9)-(8.10), we can set

K ′
Y,η := (TY,ηTX,τ ) ·KX,τ and ψ′

Y,η := Ad(TY,ηTX,τ ) ◦ ψX,τ .
Proceeding as before, one verifies that the operator K ′

Y,η satisfies the intertwining equation

K ′
Y,ηu = ψ′

Y,η(u)K
′
Y,η

for any u ∈ Uqkγ,σ, the coproduct identity

∆(K ′
Y,η) = (RY,η)21 (1⊗K ′

Y,η) (ψ
′
Y,η ⊗ id)(R) (K ′

Y,η ⊗ 1) ,

and the generalized reflection equation

(K ′
Y,η ⊗ 1) · (id⊗ ψ′

Y,η)(R21) · (1⊗K ′
Y,η) ·R =

=(ψ′
Y,η ⊗ ψ′

Y,η)(R21) · (1⊗K ′
Y,η) · (ψ′

Y,η ⊗ id)(R) · (K ′
Y,η ⊗ 1) .

8.10. Distinguished K-matrices. By Sections 8.4 and 8.6, as (Y, η) ranges through GSat(A), we
obtain various universal K-matrices KY,η. In the case (Y, η) = (X, τ), we recover the standard
universal K-matrix KX,τ . From a representation theoretic point of view, this choice is somewhat

preferable, since KX,τ ∈ (Uqg)
O+

,i.e., it acts on any category O+ Uqg-module. Note however that
this is no longer true if Y ̸= X.

In the case (Y, η) = (X, τ), the twisting operator ψX,τ is in general a complicated automorphism,
since it coincides with θ−1

q . From the point of view of integrability theory, it is convenient to look
for choices of (Y, η), yielding a simple form of the generalized reflection equation. As a measure,
since ψY,η = θq(Y, η)

−1 ◦ η ◦ τ , we consider the dimension of the subspace of fixed points in h′.
Namely, we define a strict linear order on GSat(A) given by

(Y, η) < (Y ′, η′) ⇐⇒ dim((h′)−θ(Y,η)) < dim((h′)−θ(Y
′,η′)).
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Recall that, since η|Y = oiY , the dimension of (h′)−θ(Y,η) equals the restricted rank of (Y, η), i.e.,
the number of η-orbits in I\Y . There are two extreme cases.

(i) The restricted rank is maximal. This corresponds to the choice (Y, η) = (∅, id). In this case,
we have θ(∅, id) = ω,

K∅,id := T−1
∅,id · TX,τ ·KX,τ and ψ∅,id = Ad(T∅,id)

−1 ◦ ω ◦ τ

Since T∅,id ∈ (Uqht)
W,×, by setting g = T∅,id in Theorem 8.10, we obtain a distinguished

universal K-matrix

Kω := TX,τ ·KX,τ and ψω := ω ◦ τ , (8.23)

which we refer to as the semi-standard universal K-matrix. Note that in this case the twisting
operator ψω is an involution on Uqg and we obtain the generalized reflection equation

(Kω ⊗ 1) · (id⊗ ψω)(R21) · (1⊗Kω) ·R = R · (1⊗Kω) · (ψω ⊗ id)(R) · (Kω ⊗ 1).

(ii) The restricted rank is minimal, i.e., it equals the number of τ -orbits in the complement of
the largest τ -stable subset of I of finite type. If A is of infinite type, there are in general
several (Y, η) ∈ GSat(A) whose restricted rank is minimal. On the other hand, if A is of finite
or affine type, the minimal restricted rank is 0 or 1, respectively, and the choice is canonical
as we describe below.

(iii) If g is of finite type, GSat(A) has a unique minimal element given by (I, oiI). In this case,
we get

Kfin := T−1
I,oiI
· TX,τ ·KX,τ and ψfin = oiI ◦ τ ,

since θq(I, oiI) = id. Note that the twisting operator is an involution on Uqg (cf. [BK19, Rmk
7.2]). Finally, we obtain the generalized reflection equation

(Kfin ⊗ 1) · (id⊗ ψfin)(R21) · (1⊗Kfin) ·R = R21 · (1⊗Kfin) · (ψfin ⊗ id)(R) · (Kfin ⊗ 1).

Remark 8.12. The case (iii) is considered in [BK19, Corollary 7.7], where the opposition involution
oiI is denoted τ0. More precisely, relying on the alternative formalism from Section 8.9, the operator
K constructed in [BK19, Corollary 7.7] is related to K ′

I,oiI
by

K−1 = (oiI ◦ τ)
(
K ′
I,oiI

)
under the additional constraints γ = γ ′, σ = σ′, γ(oiI◦τ)(i) = γi, and σ(oiI◦τ)(i) = σi, cf. [BK19,
(7.4)]. This is a consequence of the fact that

ϕ
(
Uqkγ,σ(X, τ)

)
= Uqkϕ(γ),ϕ(σ)(X, τ)

for involutive ϕ ∈ AutX(A) commuting with τ . �

9. Spectral K-matrices for quantum affine sl2

In this section, we motivate our construction by discussing its application in the finite-dimensional
representation theory of the quantum loop algebra UqLsl2. The general case is treated in detail in
[AV22]. We show that the inversion of the spectral parameter on finite-dimensional representations
can be realized in terms of a suitable choice of the twisting operators ψY,η. The specialization of
the corresponding universal K-matrix yields a formal solution of the generalized reflection equation
with a spectral parameter. Finally, we prove that this construction gives rise to matrix solutions
of the standard reflection equation which are formal series in the spectral parameter.



UNIVERSAL K-MATRICES FOR QUANTUM KAC-MOODY ALGEBRAS 51

9.1. The quantum loop algebra UqLsl2. We set I := {0, 1} and we consider the symmetric
generalized Cartan matrix A with a01 = −2. We denote the corresponding Kac-Moody algebra by

s̃l2 and its derived subalgebra by ŝl2 (see e.g., [FR92]). We shall consider 0 as the affine node [Kac90,

Ch. 6]. The Lie algebra ŝl2 is an extension of the loop algebra Lsl2 := sl2 ⊗ C[t, t−1] by a central

element c. Similarly, the element tc is central in Uq ŝl2 and the quotient UqLsl2 := Uq ŝl2/(tc − 1) is
known as the quantum loop algebra of sl2. As in the classical case, UqLsl2 is endowed with a family
of algebra homomorphisms eva : UqLsl2 → Uqsl2 (a ∈ F×) called evaluation homomorphisms (see
e.g., [CP91, Prop. 4.1]) defined as follows:

eva(E1) = E, eva(F1) = F eva(t1) = t,

eva(E0) = q−1aF, eva(F0) = qa−1E, eva(t0) = t−1 .

Here we have denoted the Chevalley-Serre generators of Uqsl2 by E, F , t±1, suppressing the sub-
script 1. Note that UqLsl2 is also endowed with a grading shift automorphism (cf. [Dr86])

Σz : UqLsl2[z, z
−1]→ UqLsl2[z, z

−1] ,

where UqLsl2[z, z
−1] := UqLsl2 ⊗ F[z, z−1], given by Σz(th) := th, Σz(Ei) := zδ0iEi, and Σz(Fi) :=

z−δ0iFi. By specializing z in F×, we obtain a one-parameter family of automorphism of UqLsl2
satisfying eva = ev1 ◦ Σa.

9.2. Evaluation representations. By pullback through eva, every irreducible finite-dimensional
Uqsl2-module is acted upon by UqLsl2. Specifically, let Vn be the (n + 1)-dimensional irreducible
Uqsl2-module. For any a ∈ F×, we obtain an irreducible (type 1) UqLsl2-module Vn(a) :=
ev∗a(Vn), which is referred to as an evaluation representation. Let Repfd(UqLsl2) be the category
of finite-dimensional (type 1) UqLsl2-modules, which clearly contains every evaluation representa-
tion. By [CP91, Thm. 4.11], every irreducible module in Repfd(UqLsl2) arises as a tensor prod-

uct of evaluation representation. Note that, while category O+ integrable Uq s̃l2-modules form a
semisimple and braided category, Repfd(UqLsl2) is not semisimple nor braided (see e.g., [CP95,
Ch. 12]). However, as we briefly recall below, it is functionally braided, since the universal R-

matrix of Uq s̃l2 gives rise to a parameter-dependent operator on finite-dimensional UqLsl2-modules
(cf. [FR92, KhT92, KS95, EM03]).

9.3. Spectral R-matrices. The universal R-matrix does not immediately act on finite-dimensional
UqLsl2-modules, since the series Ξ determined by R = κid ·Ξ (cf. Section 4.10) does not necessarily
converge. Relying on the grading shift, for any V ∈ Repfd(UqLsl2) with action πV : UqLsl2 →
End(V ), we consider the infinite-dimensional representation V (z) := V ⊗ F((z)), with action given
by πV,z := πV ◦ Σz. Then, for any V,W ∈ Repfd(UqLsl2), we obtain an operator

RVW (z, w) := πV,z ⊗ πW,w(R) ∈ End(V ⊗W )[[z−1, w]]

By the explicit description of Ξ and (4.4), it follows that RVW (z, w) is a formal series in w/z, which
we denote by RVW (w/z). For any V1, V2, V3 ∈ Repfd(UqLsl2), the specialization of the universal
R-matrix on the tensor product V1(z

−1)⊗ V2 ⊗ V3(w) yields a formal solution of the Yang-Baxter
equation with a spectral parameter:

R12(z)R13(zw)R23(w) = R23(w)R13(zw)R12(z) .

Relying on a similar strategy, the universal K-matrices constructed in Section 3 produce formal
solutions of generalized reflection equations with a spectral parameter.
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9.4. Quantum pseudo-fixed-point subalgebras for UqLsl2. We shall consider the quantum

pseudo-fixed-point subalgebras Uqk = Uqkγ,σ(X, τ) ⊂ Uq s̃l2, where γ ∈ Γq is such that γ0γ1 = 1,
σ ∈ Σq, and (X, τ) is one of the Satake diagrams (∅, id), ({1}, id), (∅, (01)), with (01) being
the permutation of two nodes of the affine Dynkin diagram. Following [BB17], we refer to the
corresponding subalgebras as the q-Onsager algebra, invariant q-Onsager algebra and augmented
q-Onsager algebra, respectively. Note that Uqk(X, τ) identifies with a coideal subalgebra in UqLsl2,
since θ(X, τ)(c) = −c.

9.5. Spectral K-matrices for the q-Onsager algebra. We consider the Satake diagram (X, τ) =
(∅, id). The corresponding coideal subalgebra Uqk ⊆ UqLsl2 is generated by

B0 := F0 − q−1γ0E0t
−1
0 + σ0t

−1
0 , and B1 := F1 − q−1γ1E1t

−1
1 + σ1t

−1
1 .

Following Section 8.4, we choose the auxiliary Satake diagram (Y, η) = ({1}, id) and we consider
the universal K-matrix K and the twisting operator ψ given by the formulae (8.9). Note that ψ
descends to an automorphism of UqLsl2 and satisfies Σz ◦ψ = ψ◦Σ1/z. We get the following special
case of [AV22, Thm. 4.2.1].

Theorem 9.1.

(i) For any V ∈ Repfd(UqLsl2), the universal K-matrix K descends to a formal series KV (z) ∈
End(V )[[z]] satisfying

KV (z)πV (Σz(u)) = πV (ψ(Σ1/z(u)))KV (z) (9.1)

for any u ∈ Uqk, i.e., it yields a formal Uqk-intertwiner KV (z) : V (z) → V ψ(1/z), where

V ψ := ψ∗(V ).

(ii) For any V,W ∈ Repfd(UqLsl2), the generalized reflection equation with a spectral parameter
holds:

KV (z)⊗ id ·RWψV (zw)21 · id⊗KW (w) ·RVW (wz ) =

= RWψV ψ(
w
z )21 · id⊗KW (w) ·RV ψW (zw) ·KV (z)⊗ id

(9.2)

Proof. We shall prove that K = (T−1
Y,ηTX,τ ) · γ−1 ·Υ acts on V (z). Any finite-dimensional UqLsl2-

module has a weight decomposition over P/(P ∩ Qδ) and is integrable as a Uqsl2-module. Thus,

(T−1
Y,ηTX,τ ) · γ−1 naturally descends to an element in End(V ), since γ0γ1 = 1 and T−1

Y,ηTX,τ is

supported only on Uqsl2. Moreover, it is invariant under Σz. Finally, as in the case of Ξ [Dr86],
the shifted quasi-K-matrix Σz(Υ) gives a formal series in End(V )[[z]]. Therefore, we get

KV (z) := πV,z(K) ∈ End(V )[[z]].

Note that (9.1) follows from (8.16) and the identity Σz ◦ ψ = ψ ◦ Σ1/z. Similarly, (9.2) follows
directly from (8.18). □

A direct computation shows that ψ is the identity on Uqsl2 = ⟨E1, F1,K1⟩ and, for any a ∈ F×,
it satisfies eva ◦ ψ = evq2a−1 . Thus, we get the following special case of [AV22, Thm. 7.2.1].

Corollary 9.2. Let V,W ∈ Repfd(UqLsl2) be evaluation representations at a = q. Then, the
standard reflection equation with a spectral parameter holds:

KV (z)⊗ id ·RWV (zw)21 · id⊗KW (w) ·RVW (wz ) =

= RWV (
w
z )21 · id⊗KW (w) ·RVW (zw) ·KV (z)⊗ id

(9.3)
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Proof. It is enough to observe that, for any n ⩾ 0,

ψ∗(Vn(q)) = (evq ◦ ψ)∗(Vn) = ev∗q(Vn) = Vn(q) .

Thus, V ψ = V , Wψ =W , and (9.3) follows from (9.2). □

Remark 9.3. For any a ∈ F×, we obtain an analogue of Corollary 9.2 by observing that Vn(a)
ψ =

Vn(q
2a−1). �

9.6. Spectral K-matrices for the invariant q-Onsager algebra. We now consider the Satake
diagram (X, τ) = ({1}, id). Note that in this case we have γ0 = 1 = γ1. The corresponding coideal
subalgebra Uqk is generated by E1, F1, t

±1
1 , and

B0 := F0 − q2Ad(T̃1)(E0)t
−1
0 .

Following Section 8.4, we choose the auxiliary Satake diagram (Y, η) = ({1}, id) = (X, τ) and we
consider the universal K-matrix K and the twisting operator ψ given by the formulae (8.9). Note
that ψ is the same as in Section 9.5. In particular, it descends to an automorphism of UqLsl2,
satisfies Σz ◦ ψ = ψ ◦ Σ1/z, and is the identity on Uqsl2. Then, the analogues of Theorem 9.1 and
Corollary 9.2 hold for Uqk. The proofs are the same and therefore omitted.

Remark 9.4. Other examples of spectral K-matrices for Uqk and Uqk can be obtained by choos-
ing different auxiliary Satake diagrams. For instance, following Section 8.10, one can choose
(Y, η) = (∅, id) and consider the semi-standard universal K-matrix and twisting operator given
by the formulae (8.23), i.e., K := T∅,(01) · γ−1 · Υ and ψ := ω. Note that, in this case, one has

eva ◦ ω = ω ◦ evq2a−1 and, for any n ⩾ 0 and a ∈ F×,

ω∗(Vn(a)) = (eva ◦ ω)∗(Vn) = (ω ◦ evq2a−1)∗(Vn) ≃ ev∗q2a−1(Vn) = Vn(q
2a−1) ,

where the third identity relies on the isomorphism of Uqsl2-modules ω∗(Vn) ≃ Vn. Thus, the semi-

standard universal K-matrix yields a formal intertwiner Vn(az)→ Vn(
q2

az ) with respect to the action
of the coideal subalgebra. �

9.7. Spectral K-matrices for the augmented q-Onsager algebra. Finally, we consider the
Satake diagram (X, τ) = (∅, (01)). The corresponding coideal subalgebra Uqk is generated by

t±1
0 t∓1

1 = t±2
0 ,

B0 := F0 − qγ0E1t
−1
0 and B1 := F1 − qγ1E0t

−1
1 .

As in Remark 9.4, we consider the semi-standard universal K-matrix and the twisting operator

K := TX,τ · γ−1 ·Υ and ψ := ω ◦ τ .
Note that the operator TX,τ is in this case just a Cartan correction. Up to such correction, K and
ψ correspond to the standard universal K-matrix KX,τ and θq(X, τ)

−1, respectively.

In this case, the procedure described in Section 9.5 does not immediately apply, since τ does not
commute with the grading shift. To remedy this, we consider the principal grading shift

Σpr
z : UqLsl2[z, z

−1]→ UqLsl2[z, z
−1] ,

given by Σpr
z (ti) := ti, Σpr

z (Ei) := zEi and Σpr
z (Fi) := z−1Fi for i ∈ {0, 1}. Indeed, it satisfies

Σpr
z ◦ψ = ψ ◦Σpr

1/z. For any V ∈ Repfd(UqLsl2) with action πV : UqLsl2 → End(V ), we consider the

infinite-dimensional representation V (z) := V ⊗ F((z)), with action given by πV,z := πV ◦Σpr
z . With

this correction, the analogue of Theorem 9.1 holds for Uqk.
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Fix a ∈ F×. Let β : Q → F× be the group homomorphism given by β(α0) = −qa−1 and
β(α1) = −q−1a. As in Section 4.9, we obtain an algebra automorphism Ad(β) : UqLsl2 → UqLsl2.
Following Section 8.8, we consider the universal K-matrix and twisting operator given by (8.19),
i.e.,

Kβ := β · T∅,(01) · γ−1 ·Υ and ψβ := Ad(β) ◦ ω ◦ τ .
By direct inspection, the twisting operator ψβ satisfies eva ◦ ψβ = evq2a−1 . Therefore, for any

n ⩾ 0, we obtain ψ∗
β(Vn(a)) = Vn(q

2a−1). In particular, for V = Vn(q), the universal K-matrix Kβ

specializes to a formal Uqk-intertwiner V (z) → V (1/z), yielding the analogue of Corollary 9.2 for
Uqk. It is to be expected that Kβ is related to the generic K-matrices for the augmented q-Onsager
algebra given in [BTs18, Sec. 4.1.2].
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