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QUASI-BIALGEBRAS FROM SET-THEORETIC TYPE SOLUTIONS OF THE

YANG-BAXTER EQUATION

ANASTASIA DOIKOU, ALEXANDROS GHIONIS AND BART VLAAR

Abstract. We examine classes of quantum algebras emerging from involutive, non-degenerate

set-theoretic solutions of the Yang-Baxter equation and their q-analogues. After providing some

universal results on quasi-bialgebras and admissible Drinfeld twists we show that the quantum

algebras produced from set-theoretic solutions and their q-analogues are in fact quasi-triangular

quasi-bialgebras. Specific illustrative examples compatible with our generic findings are worked out.

In the q-deformed case of set-theoretic solutions we also construct admissible Drinfeld twists similar

to the set-theoretic ones, subject to certain extra constraints dictated by the q-deformation. These

findings greatly generalize recent relevant results on set-theoretic solutions and their q-deformed

analogues.

Introduction

The primary focus in this article is the investigation of classes of quantum algebras arising from set-

theoretic solutions of the Yang-Baxter equation (YBE) [5, 41] and their q-deformed analogues, and

their connections to quasi-triangular quasi-bialgebras. The problem of identifying and classifying

set-theoretic solutions of the Yang-Baxter equation was first posed by Drinfield in early 90s [12] and

ever since a considerable research activity has been developed on this topic (see for instance [15, 16,

24], [1, 34, 40]). A lot of attention has been focused recently on certain algebraic structures that

generalize nilpotent rings, called braces and generate all involutive, non-degenerate solutions of the

YBE [35, 36]. Skew-braces on the other hand are used [23] to describe non-involutive set-theoretic

solutions of the YBE, and they may be instrumental in identifying universal R-matrices. This

rising research field has been particularly fertile and numerous relevant studies have been produced

over the past several years (see for instance [2, 3, 6, 7], [9]-[11], [18]-[20], [21, 22], [23, 25, 26, 30],

[37]-[39]).

Novel connections between set-theoretic solutions, quantum integrable systems and the associ-

ated quantum algebras were uncovered in [9, 10]. More precisely, quantum groups associated to

Baxterized solutions of the Yang-Baxter equation coming from braces were derived via the FRT

construction [17], new classes of quantum discrete integrable systems with periodic and open bound-

ary conditions were produced and the symmetries of these integrable systems were also identified.

Furthermore, the explicit forms of admissible twists for involutive set-theoretic solutions of the

YBE were derived and their admissibility was proven in [11]. Admissible twists for non-involutive

set-theoretic solutions coming from skew braces were also subsequently introduced in [22].

The notion of an admissible twist F , which links distinct Hopf or quasi-Hopf algebras was

originally introduced by Drinfeld in [14]. If the Hopf algebra is in addition equipped with a quasi-

triangular structure, i.e. a universal R-matrix exists, then the twisted Hopf algebra also has a
1
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quasi-triangular structure. In Drinfeld’s works such twists as well as the associated universal R-

matrices are always considered to have semi-classical limits [13, 14], i.e. they can be expressed as

formal series expansions in powers of some deformation parameter, with the leading term being the

unit element. In the analysis of [9, 10, 11] on the other hand Baxterized R-matrices coming from

set-theoretic solutions of the Yang-Baxter equation were identified, being of the form R(λ) = r+ 1
λP,

where r is the set-theoretic solution of the Yang-Baxter equation and P is the permutation operator.

Interestingly, the r-matrix in this case does not contain any free parameter (deformation parameter),

and consequently the R-matrix has no semi-classical analogue. A similar observation can be made

about the associated admissible twist [11]. This is a crucial difference between the studies in

[9, 10, 11] and Drinfeld’s analysis [14]. Moreover, whenever the notion of the twist is discussed

in Drinfeld’s original work and in the literature in general a quite restrictive action of the co-unit

on the twist is almost always assumed, i.e. (id ⊗ ϵ)F = (ϵ ⊗ id)F = 1A (A is the associated

quantum algebra). It is however worth noting that in [14] Drinfeld describes how to use certain

twists without this restricted counit action to twist quasi-bialgebras with nontrivial unit constraints

to quasi-bialgebras to trivial constraints. For our purposes here we allow quasi-bialgebras with

nontrivial unit constraints. We will further discuss this point in subsection 1.2.

It was shown in [11] that all involutive, set-theoretic solutions of the YBE can be obtained from

the permutation operator via a suitable admissible twist that was explicitly derived. The action

of the co-unit on the twist in this case was also identified and is given as (id ⊗ ϵ)F = 1A and

(ϵ ⊗ id)F ̸= 1A. Bearing these findings in mind, we relax in this study the restrictive condition

(id⊗ ϵ)F = (ϵ⊗ id)F = 1A and consider a general scenario, which leads to intriguing new results.

One would expect that the quantum algebra emerging from any R-matrix that satisfies the Yang-

Baxter equation would be a bialgebra. It was noted however in [11], using a special class of

set-theoretic solutions, that the corresponding quantum algebra was not co-associative and the

related associator was derived. This was indeed the first hint that set-theoretic solutions of the

YBE give rise to quasi-bialgebras. In this article we greatly extend these findings after providing

some universal results on quasi-bialgebras and admissible Drinfeld twists.

More specifically, we describe below what is achieved in each of the subsequent sections.

(1) In section 1 we show some new results on quasi-bialgebras and general admissible Drinfelds’s

twists that lay out the main frame for studying quantum algebras arising from the set-

theoretic and q-deformed set-theoretic solutions of the YBE. More precisely, in subsection

1.1 before we present the main results we first recall fundamental definitions on quasi-

bialgebras and quasi-triangular quasi-bialgebras. We then show that given certain imposed

conditions the non-associative version of the YBE reduces to the familiar YBE; however

the underlying quantum algebra is still a quasi-bialgebra.

In subsection 1.2 we move on to study generic admissible twists by relaxing the conditions

(id ⊗ ϵ)F = (ϵ ⊗ id)F = 1A and we also examine the consequences of such a general

choice. We then give particular emphasis on cases where the twists send a quasi-bialgebra

to a bialgebra. These cases are relevant to the findings of sections 2 and 3. An explicit

illustrative example is also worked out at the end of the subsection.

(2) In section 2 we focus on the quantum algebras emerging from involutive, non-degenerate

set-theoretic solutions of the YBE. More specifically, in subsection 2.1 we present some
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background information regarding set-theoretic solutions of the Yang-Baxter equation as

well as a brief review on the recent findings of [9] on the links between set-theoretic solutions

of the Yang-Baxter equation and quantum algebras.

In subsection 2.2 we review basic definitions and facts about the gln Yangian, useful for

the purposes of our analysis. We first recall the definition of the gln Yangian, which is most

relevant in our present investigation [13, 8]. We then recall that the Yangian is a Hopf

algebra and we comment on the action of the antipode after suitably twisting the algebra.

In subsection 2.3 we study set-theoretic solutions of the Yang-Baxter equation associated

to quasi-bialgebras. We first review some fundamental results on the admissible Drinfeld

twist for involutive, set-theoretic solution of the YBE derived in [11]. Specifically, it was

shown in [11] that Baxterized set-theoretic solutions are always coming from the gln Yangian

R-matrix via a suitable twist. We show here a key proposition by introducing a family

of group-like elements commuting with the Yangian R-matrix, which leads to the main

statement that the respective twisting of the gln Yangian yields a quasi-triangular quasi-

bialgebra in accordance to the findings of section 1. A special case of set-theoretic solution

called the Lyubashenko solution [12] is also presented as an illustrative example.

(3) In section 3 we discuss the q-generalizations of set-theoretic solutions. Although these

generalizations strictly speaking are not set-theoretic solutions of the Yang-Baxter equation

they are certainly inspired by the results of [10] and [11]. First, in subsection 3.1 we provide

basic definitions and information regarding the algebra Uq(ĝln) [13, 27, 28] and we also

comment on the action of the antipode after suitably twisting the algebra.

In subsection 3.2, motivated by the set-theoretic solutions and the associated twists [11],

we generalize results regrading the twist of the U(ĝln) R-matrix. We exploit the admissible

twists found for the set-theoretic solutions to derive generalized q-deformed solutions. The

findings of this section greatly generalize the preliminary results of [10] and produce a

generic class of solutions, i.e. the q-deformed alanogues of the set-theoretic solutions. The

q-analogue of Lyuabshenko’s solution, first introduced in [10], is also discussed as an example

of this construction.

1. Quasi-triangular quasi-bialgebras

In this section we recall fundamental definitions on quasi-bialgebras and quasi-triangular quasi-

bialgebras (see also for instance [4, 8, 14, 29, 32]), and we show various novel propositions on special

classes of quasi-bialgebras as well as on generic admissible Drinfeld twists. Particular emphasis is

given on Drinfeld twists that send a quasi-bialgebra to a bialgebra as this case is pertinent to the

findings of sections 2 and 3.

1.1. Quasi-bialgebras and the usual YBE. Before we present the main results we first recall

some fundamental definitions on quasi-bialgebras and the associated notion of quasi-triangularity.

Throughout Section 1, k is any field. Later on we will restrict to the case k = C. It is worth noting

that if A is a k-algebra then A ⊗ A (in fact A⊗n, ∀n ∈ N∗) is a k-algebra in a natural way. If V

and W are A-modules, then V ⊗ W is an A ⊗ A-module and not necessarily an A-module. The
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following definition due to Drinfeld [14] provides a general setup where the category Rep(A) of all

A-modules naturally has a tensor structure.

Definition 1.1. A quasi-bialgebra
(
A,∆, ϵ,Φ, cr, cl

)
is a unital associative algebra A over some

field k with the following algebra homomorphisms:

• the co-product ∆ : A → A⊗A
• the co-unit ϵ : A → k

together with the invertible element Φ ∈ A ⊗ A ⊗ A (the associator) and the invertible elements

cl, cr ∈ A (unit constraints), such that:

(1) (id⊗∆)∆(a) = Φ
(
(∆⊗ id)∆(a)

)
Φ−1, ∀a ∈ A.

(2)
(
(id⊗ id⊗∆)Φ

)(
(∆⊗ id⊗ id)Φ

)
=

(
1⊗ Φ

)(
(id⊗∆⊗ id)Φ

)(
Φ⊗ 1

)
.

(3) (ϵ⊗ id)∆(a) = c−1
l acl and (id⊗ ϵ)∆(a) = c−1

r acr, ∀a ∈ A.

(4) (id⊗ ϵ⊗ id)Φ = cr ⊗ c−1
l .

In the special case where Φ = 1⊗ 1⊗ 1 one recovers a bialgebra, i.e. co-associativity is restored.

Before we move on to the definition of a quasi-triangular quasi-bialgebra we first introduce some

useful notation. Let σ : A ⊗ A → A ⊗ A be the “flip” map, such that a ⊗ b 7→ b ⊗ a ∀a, b ∈ A,

then we set ∆(op) := σ ◦ ∆. A quasi-bialgebra is called cocommutative if ∆(op) = ∆. We also

consider the general element A =
∑

j aj ⊗ bj ∈ A ⊗ A, then in the “index” notation we denote:

A12 :=
∑

j aj ⊗ bj ⊗ 1, A23 :=
∑

j 1⊗ aj ⊗ bj and A13 :=
∑

j aj ⊗ 1⊗ bj . In fact, given an algebra

A with homomorphisms ∆ : A → A ⊗ A and ϵ : A → k, the conditions (1)-(4) listed in the

Definition 1.1 are equivalent to the statement that the category of A-modules, equipped with the

tensor product of the category of k-linear spaces, is itself a tensor category (see e.g. [29, Proposition

XV.1.2]).

By means of the axioms of Definition 1.1 we can derive further counit formulas for the associator

and unit constraints.

Lemma 1.2. Let
(
A,∆, ϵ,Φ, cr, cl

)
be a quasi-bialgebra, then:

(ϵ⊗ id⊗ id)Φ = ∆(c−1
l )(cl ⊗ 1), (id⊗ id⊗ ϵ)Φ = (1⊗ c−1

r )∆(cr) (1.1)

ϵ(cl) = ϵ(cr) (1.2)

Proof. By applying the counit on the second and third tensor factors in axioms (2) and using axiom

(3), we obtain (1.1). Hence, applying the counit on the remaining (or third) tensor factor in axiom

(4) and using axiom (3) we obtain (1.2). □

Remark 1.3. We may define the normalized quantities ĉl = ϵ(c−1
l )cl and ĉr = ϵ(c−1

r )cr. Then(
A,∆, ϵ,Φ, ĉr, ĉl

)
is a quasi-bialgebra over k with ϵ(ĉl) = ϵ(ĉr) = 1; indeed the normalization of

cl, cr leaves the quasi-bialgebra axioms invariant. Considering the latter statement we may assume,

without loss of generality, that ϵ(cr) = ϵ(cl) = 1. In this case axiom (4) of Definition (1.1) implies

that we may recover cl and cr from Φ via

c−1
l =

(
ϵ⊗ ϵ⊗ id

)
Φ, cr =

(
id⊗ ϵ⊗ ϵ

)
Φ. (1.3)

Henceforth, we will always assume that ϵ(cr) = ϵ(cl) = 1 and define a quasi-bialgebra structure just

by specifying (A,∆, ϵ,Φ); in particular, we impose the axioms of Definition 1.1, where cl and cr
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are shorthand notations defined in (1.3). It is worth emphasizing that the common assumption for

quasi-bialgebras is cl = cr = 1 [14], so even though we have a counit-normalization here we still

discuss a more general situation (see also later in the text the relevant Corollary 1.8).

Following [14], see also [29], the notion of quasitriangularity for bialgebras extends to quasi-

bialgebras and can be defined category-theoretically. The following definition captures the equiva-

lent algebraic characterization.

Definition 1.4. A quasi-bialgebra
(
A,∆, ϵ,Φ

)
is called quasi-triangular (or braided) if an invertible

element R ∈ A⊗A (universal R-matrix) exists, such that

(1) ∆(op)(a)R = R∆(a), ∀a ∈ A.

(2) (id⊗∆)R = Φ−1
231R13Φ213R12Φ

−1
123.

(3) (∆⊗ id)R = Φ312R13Φ
−1
132R23Φ123.

By employing conditions (1)-(3) of Definition 1.4 and condition (3) of Definition 1.1 one deduces

that (ϵ⊗id)R = c−1
r cl and (id⊗ϵ)R = c−1

l cr. Moreover, by means of conditions (1)-(3) of Definition

1.4, it follows that R satisfies a non-associative version of the Yang-Baxter equation

R12Φ312R13Φ
−1
132R23Φ123 = Φ321R23Φ

−1
231R13Φ213R12. (1.4)

IfA is a quasi-bialgebra in Definition 1.4 then
(
A,∆, ϵ,Φ,R

)
is a quasi-triangular quasi-bialgebra.

The quasi-bialgebra is called triangular if in addition to the conditions (1)-(3) of Definition 1.4, R
also satisfies R21R12 = 1.

In the special case where Φ = 1⊗1⊗1 one recovers a quasi-triangular bialgebra. Indeed, the co-

associativity is restored (id⊗∆)∆(a) = (∆⊗ id)∆(a), and cr = cl = 1. Also, (id⊗∆)R = R13R12,

(∆⊗ id)R = R13R23, and the universal R-matrix satisfies the usual Yang-Baxter equation

R12R13R23 = R23R13R12. (1.5)

In the remainder of this paper we consider two special cases of the general algebraic setting

for quasi-triangular quasi-bialgebras as described above. This specific setup, introduced in the

following proposition, will be central in proving general key properties in this section and will be

particularly relevant to the findings of sections 2 and 3.

Proposition 1.5. Let
(
A,∆, ϵ,Φ,R

)
be a quasi-triangular quasi-bialgebra, then the following two

statements hold:

(1) Suppose Φ satisfies the condition (in the index notation) Φ213R12 = R12Φ123, then

(id⊗∆)R = Φ−1
231R13R12, (∆⊗ id)R = R13R23Φ123, (1.6)

and the universal R matrix satisfies the usual Yang-Baxter equation.

Also, (ϵ⊗ id)R = cl, (id⊗ ϵ)R = c−1
l and cr = 1A.

(2) Suppose Φ satisfies the condition Φ132R23 = R23Φ123, then

(id⊗∆)R = R13R12Φ
−1
123, (∆⊗ id)R = Φ312R13R23, (1.7)

and the universal R matrix satisfies the usual Yang-Baxter equation.

Also, (ϵ⊗ id)R = c−1
r , (id⊗ ϵ)R = cr and cl = 1A.
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Proof. The proof of (1.6) and (1.7) is straightforward by means of relations (2) and (3) of Definition

1.4 and the conditions of cases (1), (2) of the Proposition.

By considering case (1) of Proposition 1.5 we conclude that the modified Yang-Baxter equation

(1.4) becomes

R12R13R23Φ123 = R23R13R12Φ123, (1.8)

and because Φ is an invertible element, equation (1.8) reduces to the usual Yang-Baxter equation

(1.5). We end up to the same conclusion by considering case (2).

The remaining statements are shown as follows:

(1) We act on the second of the equations (1.6) with id⊗ ϵ⊗ id:

(id⊗ ϵ⊗ id)
(
(∆⊗ id)R

)
= (id⊗ ϵ⊗ id)

(
R13R23Φ123

)
⇒

(c−1
r ⊗ 1)R13(cr ⊗ 1) = R13

(
(id⊗ ϵ⊗ id)R23

)
(cr ⊗ c−1

l ) ⇒
R−1

13 (c
−1
r ⊗ 1)R13(1⊗ cl) = (id⊗ ϵ⊗ id)R23. (1.9)

We now act with ϵ on the first position of the tensor product (1.9) and we obtain (recall

ϵ(cl) = ϵ(cr) = 1) (ϵ ⊗ id)R = cl. By substituting the latter on (1.9) we conclude that

cr = 1A.

Similarly, we can act on the first of equs. (1.6) with id⊗ id⊗ ϵ, and arrive at

(id⊗ id⊗ ϵ)R13 = (c−1
l ⊗ 1)R12(1⊗ cr)R−1

12 ,

which after acting with ϵ on the second position of the tensor product leads to (id⊗ϵ)R = c−1
l

and cr = 1A.

(2) Likewise, assuming that Φ132R23 = R23Φ123 holds we show, following the logic of the proof

above, that (ϵ⊗ id)R = c−1
r , (id⊗ ϵ)R = cr and cl = 1A. □

Remark 1.6. Let u ∈ A be a group-like element, i.e. u is invertible and ∆(u) = u ⊗ u, and

consequently ϵ(u) = 1. Let also Φ = 1⊗ 1⊗ u−1 and R = u−1 ⊗ u. With this choice of Φ and R a

quasi-triangular quasi-bialgebra structure is defined. Indeed, the case (1) of Proposition 1.5 holds,

i.e. conditions (1.6) are satisfied and R trivially satisfies the Yang-Baxter equation. Also, cr = 1A,

cl = u and (ϵ⊗ id)R = u, (id⊗ ϵ)R = u−1.

1.2. Drinfeld twists. One of the main results on quasi-triangular (quasi-)bialgebras as shown by

Drinfeld [13, 14] is the fact that the property of being quasi-triangular (quasi-)bialgebra is preserved

by twisting (see also [31]). As far as we can tell whenever the notion of Drinfeld twist is discussed

in the literature a trivial action of the co-unit on the twist is almost always assumed. In the

following proposition we are going to relax this condition and consider the most general scenario.

In [14] (Drinfeld 1989, Section 1) it is explained how to use certain Drinfeld twists without this

restricted counit action to twist quasi-bialgebras with nontrivial unit constraints to quasi-bialgebras

to trivial constraints. For our purposes it is convenient to allow quasi-bialgebras with nontrivial

unit constraints. We come back to this point later. We are then going to discuss a specific case

that is associated to the study of quantum algebras emerging from set-theoretic solutions of the

Yang-Baxter equation corresponding also to the conditions of Proposition 1.5.
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The following result is the natural extension of Drinfeld’s result [14] on twists for quasi-bialgebras

to the case of nontrivial unit constraints. Recall that we assume that, without loss of generality,

the unit constraints are expressed in terms of the associator by means of equation (1.3).

Proposition 1.7. Let
(
A,∆, ϵ,Φ,R

)
be a quasi-triangular quasi-bialgebra and let F ∈ A ⊗ A be

an invertible element, such that

∆F (a) = F∆(a)F−1, ∀a ∈ A (1.10)

ΦF (F ⊗ 1)
(
(∆⊗ id)F

)
= (1⊗F)

(
(id⊗∆)F

)
Φ (1.11)

RF = F (op)RF−1, (1.12)

where F (op) := σ(F). Then
(
A,∆F , ϵ,ΦF ,RF

)
is also a quasi-triangular quasi-bialgebra.

Proof. Let as consider the general twist F =
∑

j fj ⊗ gj . In terms of the invertible elements

v :=
∑

j ϵ(fj)gj , w :=
∑

j ϵ(gj)fj , we have

(ϵ⊗ id)F = v, (id⊗ ϵ)F = w. (1.13)

Axioms (1)-(2) of Definition 1.1 as well as axioms of Definition 1.4 are checked as in the original

proof by Drinfeld (see also [14, 29]). For these the action of the counit on the twist is never used.

The check of these axioms is somehow tedious, but nevertheless straightforward. Let us for instance

check the axioms (1)-(3) of Definition 1.4:

• Axiom (1) of Definition 1.4: we compute

∆
(op)
F (a)RF = F (op)∆(op)(a)(F (op))−1F (op)RF−1

= F (op)R∆(a)F−1 = RF∆F (a). (1.14)

• Axioms (2) and (3) of Definition 1.4: we compute

(id⊗∆F )RF =
(
(id⊗F)(id⊗∆)F (op)

)(
(id⊗∆)R

)(
(id⊗∆)F−1(id⊗F−1)

)
.

It is convenient to introduce some useful notation:

F1,23 := (id⊗∆)F , F12,3 := (∆⊗ id)F , (1.15)

and by the quasi-bialgebra axioms F21,3R12 = R12F12,3, F1,32R23 = R23F1,23; also recall

(RF )12 = F21R12F−1
12 . We then denote according to the index notation (id ⊗ ∆)F (op) =

F23,1, and we re-express condition (1.11) as F12F12,3 = F23F1,23Φ123, then

(id⊗∆F )RF = F23F23,1

(
(id⊗∆)R

)
F−1
1,23F

−1
23

= (ΦF )
−1
231F31F2,31Φ231

(
Φ−1
231R13Φ213R12Φ

−1
123

)
F−1
1,23F

−1
23

= (ΦF )
−1
231(RF )13F13F2,13Φ213R12F−1

123

= (ΦF )
−1
231(RF )13(ΦF )

−1
213F21F21,3R12F−1

123

= (ΦF )
−1
231(RF )13(ΦF )

−1
213(RF )12F12F12,3Φ

−1
123F

−1
1,23F

−1
23

= (ΦF )
−1
231(RF )13(ΦF )

−1
213(RF )12(ΦF )

−1
123. (1.16)

Similarly, for (∆F ⊗ id)RF .
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We shall now examine axioms (3)-(4) of Definition 1.1, and working out the action of the counit

on the twisted R-matrix.

• Axiom (3) of Definition 1.1: we recall (1.13) and axiom (3) of Definition 1.1, then (ϵ ⊗
id)∆F (a) = (ϵ⊗id)

(
F∆(a)F−1

)
= (cFl )

−1acFl , where c
F
l = clv

−1. Similarly, (id⊗ϵ)∆F (a) =

(cFr )
−1acFr , where cFr = crw

−1, ∀a ∈ A.

• Axiom (4) of Definition 1.1: we recall that (id⊗ϵ⊗ id)(1⊗F) = 1⊗v, (id⊗ϵ⊗ id)(F⊗1) =

w⊗1, and (id⊗ϵ⊗id)(id⊗∆)F = (1⊗c−1
l )F(1⊗cl), (id⊗ϵ⊗id)(∆⊗id)F = (c−1

r ⊗1)F(cr⊗1),

bearing also in mind (1.11) and the fact that (id ⊗ ϵ ⊗ id)Φ = cr ⊗ c−1
l , we deduce that

(id ⊗ ϵ ⊗ id)ΦF = cFr ⊗ (cFl )
−1, and this concludes our proof as all the axioms of the

quasi-triangular quasi-bialgebra are satisfied.

We also examine (id⊗ ϵ)RF and (ϵ⊗ id)RF , recalling (1.12) and (1.13) we conclude that (id⊗
ϵ)RF = v

(
(id ⊗ ϵ)R

)
w−1 and (ϵ ⊗ id)RF = w

(
(ϵ ⊗ id)R

)
v−1. When one of the quasi-bialgebras

is a bialgebra, e.g. set ΦF = 1 ⊗ 1 ⊗ 1 (cFl = cFr = 1), then (ϵ ⊗ id)RF = (id ⊗ ϵ)RF = 1,

and consequently (id ⊗ ϵ)R = v−1w and (ϵ ⊗ id)R = w−1v. Recalling also that cFl = clv
−1 and

cFr = crw
−1 we deduce that cl = v and cr = w.

When also Φ = 1⊗ 1⊗ 1, i.e. we are dealing with two bialgebras then we also have (ϵ⊗ id)R =

(id⊗ ϵ)R = 1 and hence v = w, and due to Axiom (3) of (quasi) bialgebras we immediately deduce

that u = 1. □

We note that in the case of a triangular quasi-bialgebra the extra condition R(op)R = 1A⊗A
holds, and due to (1.12) we deduce that R(op)

F RF = 1A⊗A, so triangularity is also preserved.

We examine in the next Corollary a special case of the Proposition 1.7, namely the case where

the Drinfeld twist is a special pure tensor (see also [14], Dinfeld 1989).

Corollary 1.8. Let
(
A,∆, ϵ,Φ,R

)
be a quasi-triangular quasi-bialgebra and consider the special

twist F = cr ⊗ cl, where cr and cl are derived from Φ according to Remark 1.3. Then the twisted

quasi-triangular quasi-bialgebra
(
A,∆F , ϵ,ΦF ,RF

)
[14], has trivial unit constraints i.e. cFl = cFr =

1A.

Proof. For any quasi-triangular quasi-bialgebra (ϵ⊗ id)R = c−1
r cl and (id⊗ϵ)R = c−1

l cr. According

to Remark 1.3 any quasi-triangular quasi-bialgebra can be suitably counit- normalized such that

ϵ(cr) = ϵ(cl) = 1. We now consider the special twist F = cr ⊗ cl, which in the context of quasi-

triangular quasi-bialgebras is admissible. The F-twisted quasi-triangular quasi-bialgebra has an

R-matrix: RF = (cl ⊗ cr)R(c−1
r ⊗ c−1

l ), which satisfies: (ϵ ⊗ id)RF = (id ⊗ ϵ)RF = 1. The

latter statement together with axiom (3) of Definition 1.1 lead to the “trivialization” of the quasi-

bialgebra, i.e. cFl = cFr = 1A. □

Note that twists can be in general composed, i.e. if the twist F sends quasi-bialgebra A to

quasi-bialgebra B, with trivial unit constraints, and the twist G sends B to a third quasi-bialgebra

C, then the product GF is a twist as well, sending A to C. This type of factorization might make

the technicalities of describing certain admissible twists a bit easier to follow, breaking it up into

possibly more manageable building blocks. In particular, if A is an arbitrary quasi-triangular

quasi-bialgebra and C is a quasi-triangular bialgebra, then there always exist a quasi-triangular

quasi-bialgebra B with trivial unit constraints, and twists F and G such that:
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(1) F is as described in Corollary 1.8,

(2) G satisfies (ϵ⊗ id)G = (id⊗ ϵ)G = 1,

(3) B is obtained from A by twisting with F ,

(4) C is obtained from B by twisting with G.

We shall be focusing henceforth on situations of twisting between a (quasi-)bialgebra and a bial-

gebra in accordance to Propositions 1.7 for the special case of (quasi-)bialgebras of 1.5, specifically

ΦF = 1⊗ 1⊗ 1 and Φ ̸= 1⊗ 1⊗ 1. We are considering thus two specific cases that consist the ap-

propriate framework to describe the quantum algebras [9, 10] emerging from set-theoretic solutions

of the Yang-Baxter equation expressed as suitable Drinfeld twists [11] as will be discussed in the

subsequent section. We introduce now some useful notation and a worked out example appropriate

for our frame here when examining quantum algebras emerging form set-theoretic solutions of the

YBE and their q-analogues (Sections 2 and 3), compatible also with the analysis in [11].

Remark 1.9. According to Proposition 1.5 we distinguish two cases: Let
(
A,∆, ϵ,Φ,R

)
be a quasi-

triangular quasi-bialgebra and
(
A,∆F , ϵ,RF

)
a quasi-triangular bialgebra and let the conditions of

Proposition 1.5 hold. We first recall the useful notation introduced in the proof of Proposition 1.7:

F1,23 := (id⊗∆)F and F12,3 := (∆⊗ id)F , and by the quasi-bialgebra axioms F21,3R12 = R12F12,3,

F1,32R23 = R23F1,23.

(1) If the associator satisfies Φ213R12 = R12Φ123, we denote (index notation):

F∗
12,3 :=

(
(∆⊗ id)F

)
Φ−1, (1.17)

then condition (1.11) can be re-expressed as F123 := F23F1,23 = F12F∗
12,3. Due to constraint

(1.6) we also deduce F∗
21,3R12 = R12F∗

12,3. This is compatible also with the first part of

Proposition 1.5.

(2) If the associator satisfies Φ132R23 = R23Φ123, we denote

F∗
1,23 =

(
(id⊗∆)F

)
Φ, (1.18)

then condition (1.11) is re-expressed as F123 := F23F∗
1,23 = F12F12,3. In this case, due to

constraint (1.6), we also deduce F∗
1,32R23 = R23F∗

1,23. This is compatible with the second

part of Proposition 1.5.

Remark 1.10. Under the conditions of Proposition 1.5 the universal R-matrix satisfies the usual

YBE, and hence the object T1,23 := R13R12 satisfies the RTT relation [17]:

R(T⊗ 1)(1⊗ T) = (1⊗ T)(T⊗ 1)R. Also, due to the properties described in Remark 1.9:

(TF )1,23 := (RF )13(RF )12 = F231T1,23F−1
123. (1.19)

The above is checked as in [11] (the N -generalization also holds as described in [11]).

Before we focus on set-theoretic solutions of the YBE we will first work out a particular example

compatible with the special case of Remark 1.6.

Example 1.11. Let
(
A,∆A, ϵ,RA

)
be a quasi-triangular bialgebra. Let also u ∈ A⊗A be a group-

like element, i.e. u is invertible and ∆A(u) = u⊗u, and consequently ϵ(u) = 1,
[
∆A(u), RA

]
= 0.

Consider also the Drinfeld twist F = 1⊗ u : R = F (op)−1RAF and ∆(a) = F−1∆A(a)F , a ∈ A.
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Then
(
A,∆, ϵ,Φ,R

)
is a quasi-triangular quasi-bialgebra:

• Φ = 1⊗ 1⊗ u−1.

• cr = 1, cl = u.

• (∆⊗ id)R = R13R23Φ123 and (id⊗∆) = Φ−1
231R13R12.

We recall the twist: F = 1⊗ u, we can then readily check that (ϵ⊗ id)F = u, and via ϵ(u) = 1,

we conclude (id ⊗ ϵ)F = 1. Even though the condition (ϵ ⊗ id)F = 1, is now relaxed, the twist is

still admissible, indeed this is a rather trivial statement: F satisfies the following

F123 := F12F∗
12,3 = F23F1,23 (1.20)

where F1,23 := (id⊗∆)F = 1⊗ u⊗ u and F∗
12,3 :=

(
(∆⊗ id)F

)
Φ−1 = 1⊗ 1⊗ u2. The N -fold twist

is then defined as

F12...N := F23..NF1,23..N = F12...N−1F12...N−1,N , (1.21)

more specifically F12..N = 1 ⊗ u ⊗ u2 ⊗ . . . ⊗ uN−1. The twist is admissible and hence the YBE is

also satisfied by R (see also [12] and Proposition 1.7).

Notice also that Φ213R12 = R12Φ123, so Proposition 1.5 holds as well as Proposition 1.7 and

Remark 1.9, then all the axioms of Definitions 1.1 and 1.4 are satisfied, indeed:

• (id⊗∆)∆(a) = (1⊗ 1⊗ u−1)
(
(∆⊗ id)∆(a)

)
(1⊗ 1⊗ u), ∀a ∈ A.

• Axiom 2 of Definition 1.1 is trivially satisfied.

• (ϵ⊗ id)∆(a) = u−1au and (id⊗ ϵ)∆(a) = a

• (id⊗ ϵ⊗ id)Φ = 1⊗ u−1.

• ∆(op)(a)R = R∆(a), ∀a ∈ A.

• (id⊗∆)R = Φ−1
231R13R12 and (∆⊗ id)R = R13R12Φ123.

And due to Proposition 1.5 the R-matrix satisfies the Yang-Baxter equation. It is also straight-

forward to show, using that ϵ is an algebra homomorphism, that (ϵ ⊗ id)R = u, (id ⊗ ϵ)R = u−1,

as expected due to Proposition 1.5. In this example it is clear that in the quasi-bialgebra setting

Drinfeld twists do not require a counit constraint.

2. Quasi-bialgebras from Yangians

In this section we focus on the quantum algebras emerging from involutive, non-degenerate, set-

theoretic solutions of the YBE. From now on we work over the field k = C. It was shown in

[11] after identifying a suitable admissible twist that Baxterized set-theoretic solutions are always

coming from the gln Yangian R-matrix via the mentioned twist. We will show here that the

respective twisting of the gln Yangian leads to a quasi-triangular quasi-bialgebra in accordance to

the findings of section 1.

2.1. Set-theoretic solutions of the YBE. We present in this section basic background infor-

mation regarding set-theoretic solutions of the Yang-Baxter equation as well as a brief review on

the recent findings of [9] on the links between set-theoretic solutions of the Yang-Baxter equation

and quantum algebras.

Let X = {x1, x2, . . . , xn} be a finite set and ř : X ×X → X ×X, such that

ř(x, y) =
(
σx(y), τy(x)

)
.
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We say that ř is non-degenerate if σx and τy are bijective functions. Also, the solution (X, ř) is

involutive: ř(σx(y), τy(x)) = (x, y), (ř2(x, y)) = (x, y)). We focus on non-degenerate, involutive

solutions of the set-theoretic braid equation:

(ř × idX)(idX × ř)(ř × idX) = (idX × ř)(ř × idX)(idX × ř).

Let V be the space of dimension equal to the cardinality of X, and with a slight abuse of

notation, let ř also denote the matrix associated to the linearisation of ř on V = CX (see [39] for

more details), i.e. ř is the n2 × n2 matrix:

ř =
∑

x,y∈X
ex,σx(y) ⊗ ey,τy(x). (2.1)

where ex,y is the n × n matrix: (ex,y)z,w = δx,zδy,w. The matrix ř : V ⊗ V → V ⊗ V satisfies as

expected the (constant) Braid equation:

(ř ⊗ IV )(IV ⊗ ř)(ř ⊗ IV ) = (IV ⊗ ř)(ř ⊗ IV )(IV ⊗ ř),

where IV the identity matrix. Note also that ř is involutive, i.e. ř2 = IV⊗V .

We define also, r = P ř, where P =
∑

x,y∈X ex,y ⊗ ey,x is the permutation operator; consequently

r =
∑

x,y∈X ey,σx(y) ⊗ ex,τy(x). The Yangian [41] is a special case: ř =
∑

x,y∈X ex,y ⊗ ey,x.

We recall now the Yang-Baxter equation in the braid form in the presence of spectral parameters

λ1, λ2 (δ = λ1 − λ2) :

Ř12(δ) Ř23(λ1) Ř12(λ2) = Ř23(λ2) Ř12(λ1) Ř23(δ). (2.2)

where Ř : V⊗ → V ⊗ V and let in general Ř =
∑

j aj ⊗ bj , then in the index notation Ř12 =∑
j aj ⊗ bj ⊗ IV , Ř23 =

∑
j IV ⊗ aj ⊗ bj and Ř13 =

∑
j aj ⊗ IV ⊗ bj .

We focus henceforth on involutive, non-degenerate set-theoretic solutions of the YBE, given by

(2.1). The set-theoretic solution ř (2.1) is a representation of the A-type Hecke algebra for q = 1

(see also [9]), as ř satisfies the braid relations and also ř2 = IX⊗X . The set-theoretic ř provides a

representation of the A-type Hecke algebra, hence Baxterized solutions of the Yang-Baxter equation

can be derived [9]:

Ř(λ) = λř + IX ⊗ IX , (2.3)

where IX is the identity matrix of dimension equal to the cardinality of the set X. Let also

R(λ) = PŘ(λ), (recall the permutation operator P =
∑

x,y ex,y ⊗ ey,x), then the following proper-

ties for R-matrices coming from set-theoretic solutions were shown in [9]:

(1) Unitarity: R12(λ) R21(−λ) = (−λ2 + 1)IX⊗X .

(2) Crossing Unitarity: Rt1
12(λ) R

t2
12(−λ− n) = λ(−λ− n)IX⊗X .

(3) Rt1t2
12 (λ) = R21(λ), where

t1,2 denotes transposition on the first, second space respectively.

We give a brief account on the quantum algebra emerging from Baxterized set-theoretic solutions

of the Yang-Baxter equation. Our approach on deriving the quantum group associated to set-

theoretic solutions [9, 10] is based on the FRT construction [17], which is in a sense dual to the

Hopf algebraic description [13]. Given a solution of the Yang-Baxter equation, the quantum algebra
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is defined via the fundamental relation [17](we have multiplied the familiar RTT relation with the

permutation operator):

Ř12(λ1 − λ2) L1(λ1) L2(λ2) = L1(λ2) L2(λ1) Ř12(λ1 − λ2), (2.4)

where Ř(λ) ∈ End(Cn) ⊗ End(Cn), L(λ) ∈ End(Cn) ⊗ A and A is the quantum algebra defined

by (2.4). We focus on solutions given by (2.3), (2.1). The defining relations of the corresponding

quantum algebra were derived in [9]:

The quantum algebra associated to the set-theoretic R-matrix (2.3), (2.1) is defined by generators

L
(m)
zw , z, w ∈ X, and defining relations

L(n)
z,wL

(m)
ẑ,ŵ − L(m)

z,wL
(n)
ẑ,ŵ = L

(m)
z,σw(ŵ)L

(n+1)
ẑ,τŵ(w) − L

(m+1)
z,σw(ŵ)L

(n)
ẑ,τŵ(w)

− L
(n+1)
σz(ẑ),w

L
(m)
τẑ(z),ŵ

+ L
(n)
σz(ẑ,)w

L
(m+1)
τẑ(z),ŵ

. (2.5)

The proof is based on the fundamental relation (2.4) and the form of the Baxterized set-theoretic

R-matrix (for the detailed proof see [9]). Recall also that in the index notation we define Ř12 =

Ř⊗ idA:

L1(λ) =
∑

z,w∈X
ez,w ⊗ IX ⊗ Lz,w(λ), L2(λ) =

∑
z,w∈X

IX ⊗ ez,w ⊗ Lz,w(λ) (2.6)

where Lz,w(λ) =
∑∞

m=0 λ
−mL

(m)
z,w and L

(m)
z,w are the generators of the affine algebra A and Ř is given

in (2.3), (2.1). Note that the element T1,23(λ) = L13(λ)L12(λ), also satisfies (2.4) [17, 13], i.e it is

a tensor representation of the quantum algebra.

2.2. The Yangian Y(gln). We now present a brief review on the gln Yangian useful for our

purposes here. We first briefly recall the definition of the gln Yangian, which is most relevant in

our present investigation (for a review on Yangians see e.g. [13, 8, 33]). We also review the Yangian

as a Hopf algebra and we then comment on the action of the antipode after a suitable twist of the

algebra.

Definition 2.1. The gln Yangian Y(gln), is a non-abelian algebra with generators Q
(p)
ab , p ∈{

1, 2, . . .
}
, a, b ∈

{
1, 2, . . . , n

}
and defining relations given below[

Q
(1)
ab , Q

(1)
cd

]
= δcbQ

(1)
ad − δadQ

(1)
cb[

Q
(1)
ab , Q

(2)
cd

]
= δcbQ

(2)
ad − δadQ

(2)
cb[

Q
(2)
ab , Q

(2)
cd

]
= δcbQ

(3)
ad − δadQ

(3)
cb +

1

4
Q

(1)
ad (

∑
e

Q(1)
ce Q

(1)
eb )−

1

4
(
∑
e

Q(1)
ae Q

(1)
ed )Q

(1)
cb (2.7)

also relations [
Q

(1)
ab ,

[
Q

(2)
cd , Q

(2)
ef

]]
−

[
Q

(2)
ab ,

[
Q

(1)
cd , Q

(2)
ef

]]
=

1

4

∑
p,q

([
Q

(1)
ab ,

[
Q(1)

cp Q
(1)
pd , Q(1)

eq Q
(1)
qf

]]
−
[
Q(1)

ap Q
(1)
pb ,

[
Q

(1)
cd , Q(1)

eq Q
(1)
qf

]])
, (2.8)

. . . (higher orders)
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It will be useful for what follows to introduce at this point the definition of a quasi-Hopf algebra

[13].

Definition 2.2. A quasi-Hopf algebra A is a quasi-bialgebra
(
A,∆, ϵ,Φ

)
for which there exist

α, β ∈ A and a bijective algebra anti-homomorphism S : A → A (the antipode) such that

(1)
∑

j S(fj)αhj = ϵ(w)α and
∑

j fjβS(hj) = ϵ(w)β

where ∆(w) =
∑

j fj ⊗ hj , ∀w ∈ A.

(2)
∑

j xjβS(yj)αzj = 1A and
∑

j S(x̂j)αŷjβS(ẑj) = 1A
where Φ =

∑
j xj ⊗ yj ⊗ zj and Φ−1 =

∑
j x̂j ⊗ ŷj ⊗ ẑj .

Quasi-Hopf algebras generalize Hopf algebras in the same way that quasi-bialgebras generalize

bialgebras.

The Yangian
(
Y(gln),∆Y , ϵ, SY ,RY

)
is a quasi-triangular Hopf algebra over C equipped with:

• A coproduct ∆Y : Y(gln) → Y(gln)⊗ Y(gln) such that

∆Y (Q
(1)
ab ) = Q

(1)
ab ⊗ 1 + 1⊗Q

(1)
ab

∆Y (Q
(2)
ab ) = Q

(2)
ab ⊗ 1 + 1⊗Q

(2)
ab +

1

2

n∑
d=1

(Q
(1)
ad ⊗Q

(1)
db −Q

(1)
db ⊗Q

(1)
ad ). (2.9)

The l-fold co-product (l is an integer greater than 2) ∆
(l)
Y : Y(gln) → Y⊗(l)(gln) is defined

as

∆
(l)
Y = (id⊗∆

(l−1)
Y )∆Y = (∆

(l−1)
Y ⊗ id)∆Y . (2.10)

• A co-unit ϵ : Y(gln) → C, such that

ϵ(Q
(1)
ab ) = ϵ(Q

(2)
ab ) = 0, (2.11)

• An antipode SY : Y(gln) → Y(gln) such that

SY (Q
(1)
ab ) = −Q

(1)
ab , SY (Q

(2)
ab ) = −Q

(2)
ab +

1

2
Q

(1)
ab (2.12)

• Also, there exists an invertible element RY ∈ Y(gln) ⊗ Y(gln) (the universal R-matrix),

such that

(1) RY ∆Y (Q
(p)
ab ) = ∆

(op)
Y (Q

(p)
ab )RY .

(2) (∆Y ⊗ id)RY = (RY )13(RY )23 and (id⊗∆Y )RY = (RY )13(RY )12.

We recall now Example 1.11 and we briefly discuss the notion of the antipode in the following:

Remark 2.3. We specialize Example 1.11 to the case of the Yangian Y(gln), i.e.
(
Y(gln),∆, ϵ,Φ,R

)
,

where Φ = 1 ⊗ 1 ⊗ u−1 for some group-like element u, is a quasi-triangular quasi-bialgebra. We

now want to test whether
(
Y(gln),∆, ϵ,Φ,R

)
is a quasi-Hopf algebra, i.e. if there exist S, α, β

such that axioms (1) and (2) in Definitio 2.2 hold.

Suppose that the group-like element u exists, then ∆(u) = u⊗ u and:

(1) S(u)αu = α and uβS(u) = β, which lead to S(u) = αu−1α−1 = β−1u−1β.

(2) βαu−1 = 1Y and αβS(u) = 1Y , which lead to u = βα and S(u) = β−1α−1.

All the above equations are self-consistent. Similarly, we can show that S(u−1) = αβ

We now check the axioms of Definition 2.2 for the primitive elements Q
(1)
ab , with a coproduct

after twisting given as ∆(Q
(1)
ab ) = Q

(1)
ab ⊗ 1 + 1⊗ u−1Q

(1)
ab u:
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(1) S(Q
(1)
ab )α + αu−1Q

(1)
ab u = 0 and Q

(1)
ab β + βS(u−1Q

(1)
ab u) = 0, which lead to (by requiring

also that S is an algebra anti-homomorphism): S(Q
(1)
ab ) = −αu−1Q

(1)
ab uα

−1 and S(Q
(1)
ab ) =

−αQ
(1)
ab α

−1. The two latter expressions lead to
[
Q

(1)
ab , u

]
= 0, which is not true in general.

The axioms for the antipode restrict u to be in the center of the algebra. This is very limiting, and

in general is not true. Indeed, a simple class of such non-central group-like elements can be defined

as u = eQ
(1)
ab , where recall Q

(1)
ab are primitive elements of the algebra. Also, a specific example of a

represented non-central u is used in the next subsection for a special class of set-theoretic solutions.

To conclude, we are not able to define S(Q
(1)
ab ) in a consistent way for a generic u by strictly

following the axioms of Definition 2.2. A generalization on the axiomatic formulation for the

antipode in quasi-Hopf algebras with nontrivial unit constraints may be in order, however this issue

will be thoroughly studied elsewhere.

It is useful for the purposes of the present investigation to introduce the evaluation representation

πλ : Y(gln) → End(Cn), λ ∈ C, such that

πλ(Q
(1)
ab ) = ea,b, πλ(Q

(2)
ab ) = fa,b (2.13)

where we define fa,b := λea,b. Let RY : V ⊗V toV ⊗V be the R-matrix associated to Yangian with

explicit form RY (λ) = I⊗2 + 1
λP, where P is the permutation operator and I is the n× n identity

matrix.

We also introduce the following convenient notation:(
πλ1 ⊗ πλ2

)
∆Y (Q

(1)
ab ) = ∆Y (ea,b),

(
πλ1 ⊗ πλ2

)
∆Y (Q

(2)
ab ) = ∆Y (fa,b;λ1, λ2), (2.14)

also,
(
πλ1 ⊗πλ2

)
∆

(op)
Y (Q

(2)
ab ) = ∆

(op)
Y (fa,b;λ1, λ2) and ∆

(op)
Y (fa,b;λ1, λ2) = P∆Y (fa,b : λ2, λ1)P, then

we explicitly express the coproducts as

∆Y (ei,j) = ∆(op)(ei,j) = ei,j ⊗ I + I ⊗ ei,j ,

∆Y (fi,j ;λ1, λ2) = λ1ei,j ⊗ I + λ2I ⊗ ei,j +
1

2

(
ei,k ⊗ ek,j − ek,j ⊗ ei,j

)
. (2.15)

The Yangian R-matrix satisfies the following intertwining relations:

RY (λ1 − λ2)∆Y (ei,j) = ∆Y (ei,j)RY (λ1 − λ2)

RY (λ1 − λ2)∆Y (fi,j ;λ1, λ2) = ∆
(op)
Y (fi,j ;λ1, λ2)RY (λ1 − λ2). (2.16)

Specifically, ŘY = PRY is gln invariant, i.e.
[
ŘY (λ), ∆Y (ex,y)

]
= 0.

And with this we conclude our short discussion on the gln Yangian, which will be useful for the

findings of the next subsection.

2.3. Set-theoretic solutions of the YBE and quasi-bialgebras. After the brief review on the

gln Yangian we may now move on to our main aim which is the study of set-theoretic solutions of

the Yang-Baxter equation associated to quasi-bialgebras. We first review some fundamental results

on the admissible Drinfeld twist for involutive set-theoretic solution of the YBE derived in [11] and

we use these admissible twists to produce quasi-bialgebras associated to the Yangian.

From Proposition 3.3 in [10] we can extract explicit forms for the twist F ∈ End(Cn)⊗End(Cn)

and state the following Proposition which is Proposition 3.10 in [11].
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Proposition 2.4. ([10, 11]) Let ř =
∑

x,y∈X ex,σx(y) ⊗ ey,τy(x) be the set-theoretic solution of the

braid YBE, P is the permutation operator and V̂k, Vk are their respective eigenvectors. Let F−1 =∑n2

k=1 V̂k V T
k be the similarity transformation (twist), such that ř = F−1PF. Then the twist can be

explicitly expressed as F =
∑

x∈X ex,x ⊗ Vx, where we define Vx =
∑

y∈X eσx(y),y.

For a detailed proof of the Proposition we refer the interested reader to [10] and [11]. However,

by recalling that r = P ř, and using the fact that σx, τy are bijections, we confirm by direct

computation that (F (op))−1F =
∑

x,∈X ey,σx(y) ⊗ ex,τy(x) = r. This is an admissible twist as was

shown in [11] and as will be discussed later in the text.

Let the Baxterized solution of the YBE be R(λ) = λr+P. If r satisfies the YBE and r12r21 = I

then the Baxterized R(λ) matrix also satisfies the YBE. If r = P ř is the set-theoretic solution

of the YBE then, R12(λ) = F−1
21 (RY )12(λ)F12, where RY (λ) = λI + P is the Yangian R-matrix.

This immediately follows from the form RY (λ) = λI + P, and the property F−1
21 P12F12 = P12.

Note also that the twist is not uniquely defined, for instance an alternative twist is of the form

G =
∑

x,y∈X eτy(x),x ⊗ ey,y, and
∑

x,∈X ey,σx(y) ⊗ ex,τy(x) = G−1
21 G12, see [11].

Before we introduce the next fundamental quantities it is useful to prove the following Proposi-

tion.

Proposition 2.5. Let RY : Cn ⊗ Cn → Cn ⊗ Cn be the Yangian R-matrix. Let also Vη =∑
x∈X eση(x),x, ∀η ∈ X consist a family of group-like elements, i.e. ∆Y (Vη) = Vη ⊗ Vη and

R(λ) = λr + P, where r is the set-theoretic solution r =
∑

x,y∈X ey,σx(y) ⊗ ex,τy(x). Then

∆(op)(Vη)R(λ) = R(λ)∆(Vη), (2.17)

where ∆(op)(Vη) = P∆(Vη)P,

∆(Vη) =
∑
x∈X

eση(x),x ⊗
∑
y∈X

eστx(η)(y),y

∣∣
C1=0

, (2.18)

and C1 = σση(x)(στx(y)(y))− ση(σx(y)).

Proof. By Proposition 2.4 we have R(λ) = (F (op))−1RY (λ)F, where we recall F =
∑

x∈X ex,x⊗Vx.

Recall also ∆Y (Vη) = Vη ⊗ Vη, then

∆Y (Vη)RY (λ) = RY (λ)∆Y (Vη) ⇒
(F (op))−1

(
∆Y (Vη)RY (λ)

)
F = (F (op))−1

(
RY (λ)∆Y (Vη)

)
F ⇒

∆(op)(Vη)R(λ) = R(λ)∆(Vη), (2.19)

where ∆(Vη) = F−1∆Y (Vη)F. By recalling that F =
∑

η eη,η ⊗ Vη and Vη =
∑

x∈X eση(x),x we

obtain

∆(Vη) =
( ∑
η̄,x̄∈X

eη̄,η̄ ⊗ eση̄(x̄),x̄

)(∑
ξ∈X

eση(ξ),ξ ⊗
∑
ζ∈X

eση(ζ),ζ

)( ∑
η̂,x̂∈X

eη̂,η̂ ⊗ ex̂,ση̂(x̂)

)
=

∑
ξ,x̄,x̂∈X

eση(ξ),ξ ⊗ ex̄,x̂ (2.20)

subject to the following constraints: σση(ξ)(x̄) = ση(ζ) and ζ = σξ(x̂), which lead to

σση(ξ)(x̄) = ση(σξ(x̂)). (2.21)
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Also, the constraint C1 = 0 holds for the twist F to be admissible, i.e. σση(ξ)(στξ(η)(x̂)) = ση(σξ(x̂)),

which combined with (2.21) leads to x̄ = στξ(η)(x̂), and thus

∆(Vη) =
∑
x∈X

eση(x),x ⊗
∑
y∈X

eστx(η)(y),y

∣∣
C1=0

. (2.22)

Note that the constraint C1 = 0 holds so that the set-theoretic r-matrix satisfies the YBE (details

on the constraints due to YBE in the form used here, see also e.g. [11] and relevant references

therein). □

We recall that in Proposition 3.13 in [11] the following quantities were introduced:

F1,23 =
∑

x,y,η∈X
eση(x),ση(x) ⊗ eη,τx(η) ⊗ eσx(y),y

∣∣
C1=0

(2.23)

F ∗
12,3 =

∑
x,y,η∈X

eση(x),ση(x) ⊗ eτx(η),τx(η) ⊗ eση(σx(y)),y

∣∣
C1=0

(2.24)

where C1 = σση(x)(στx(y)(y))− ση(σx(y)). Let also ř =
∑

x,y∈X ex,σx(y) ⊗ ey,τy(x), then

ř12F
∗
12,3 = F ∗

12,3ř12, ř23F1,23 = F1,23ř23. (2.25)

The detailed proof of (2.25) is given in [11].

This is a straightforward, but useful comment. Recall, r = P ř, where P is the permutation op-

erator. If F ∗
12,3ř12 = ř12F

∗
12,3, and F1,23ř23 = ř23F1,23, then by multiplying the latter two equalities

with P from the left we conclude: F ∗
21,3r12 = r12F

∗
12,3, and F1,32r23 = r23F1,23.

A useful Corollary follows which is key in formulating our main Conjecture later.

Corollary 2.6. Consider F1,23 and F ∗
12,3 defined in (2.23) and (2.24) respectively. Then F1,23 =

(id⊗∆)F, but F ∗
12,3 ̸= (∆⊗ id)F. Also, if ϵ(Vη) = 1, ∀η ∈ X, then (ϵ⊗ id)F ̸= I and (id⊗ ϵ)F = I.

Proof. We recall that F =
∑

η∈X eη,η⊗Vη, then (id⊗∆)F =
∑

η∈X eη,η⊗∆(Vη). Recalling also the

form of ∆(Vη) in (2.18) and the defintion (2.23) we conclude that F1,23 = (id ⊗∆)F. In a similar

fashion, (∆⊗ id)F =
∑

η∈X ∆(eη,η)⊗
∑

x∈X eση(x),x ̸= F ∗
12,3 (2.24).

Also, we can immediately deduce that (id⊗ ϵ)F =
∑

η∈X eη,η = I and

(ϵ⊗ id)F =
∑

η∈X ϵ(eη,η)Vη ̸= I, which is compatible with Proposition 1.7. □

The admissibility of the twist is proven in Proposition 3.15 in [11], and is stated below:

Proposition 2.7. ([11]) Let F12 = F ⊗ I and F23 = I ⊗ F , where F =
∑

η,x,y∈X eη,η ⊗ eση(x),x.

Let also F ∗
12,3 and F1,23 defined in (2.23) and (2.24). Then

F123 := F12F
∗
12,3 = F23F1,23. (2.26)

The proof is straightforward although tedious. By substituting the expressions for F12, F23, F
∗
12,3

and F1,23 (recall C1 = 0 holds for F ∗
12,3, F1,23) we obtain by direct computation: F12F

∗
12,3 = F23F1,23.

The explicit form the 3-twist is given from the expressions above as

F123 =
∑

η,x,y∈X eση(x),ση(x) ⊗ eη,τx(η) ⊗ eση(σx(y)),y|C1=0, [11].

Given the findings of the first section based on Propositions 1.5, 1.7, Remark 1.9 and Corollary

2.6 we formulate the following conjecture:
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Conjecture 2.8. The element F ∗
12,3 can be expressed as F ∗

12,3 =
(
(∆ ⊗ id)F

)
Φ−1, where Φ ∈

End((Cn)⊗3) is an invertible element such that Φ213r12 = r12Φ123.

This conjecture suggests that the quantum group emerging from set-theoretic solutions of the YBE

is a quasi-bialgebra and is compatible with Propositions 1.5 and 1.7. A few comments are in

order at this point: note that the explicit expression for F ∗
12,3 is given in (2.24), then following the

statement in Conjecture 2.8 and recalling that ∆ is an algebra homomorphism we can formally

write Φ−1 =
(
(∆⊗ id)F−1

)
F ∗
12,3. Also, it was shown in [11] that

[
F ∗
12,3, ř12

]
= 0 and by definition[

(∆⊗ id)F, ř12
]
= 0, so we conclude that Φ123 should also commute with ř12.

We will be discussing below the symmetries of the set-theoretic r-matrix and the corresponding

Baxterized solutions.

Corollary 2.9. Let RY : Cn⊗Cn → Cn⊗Cn be the Yangian R−matrix and R(λ) = λr+P, where

r is the set-theoretic solution r =
∑

x,y∈X ey,σx(y) ⊗ ex,τy(x). Then

∆(op)(ez,w)R(δ) = R(δ)∆(ez,w), ∆(op)(fz,w;λ1, λ2)R(λ) = R(λ)∆(fz,w;λ1, λ2) (2.27)

where δ := λ1 − λ2, and

∆(ez,w) =
∑

ξ,ζ∈X

(
ez,w ⊗ eξ,ζ + eσz(ξ),σw(ζ) ⊗ eτξ(z),τζ(w)

)
σz(ξ)=σw(ζ)

∆(fz,w;λ1, λ2) =
∑

ξ,ζ∈X

(
λ1ez,w ⊗ eξ,ζ + λ2eσz(ξ),σw(ζ) ⊗ eτξ(z),τζ(w)

)
σz(ξ)=σw(ζ)

.

1

2

∑
y,ŷ∈X

(
ez,σz(y) ⊗ ey,ŷ|w=σσz(y)(ŷ)

− eσw(y),w ⊗ eŷ,y|z=σσw(y)(ŷ)

)
(2.28)

Moreover, the matrix Ř(λ) = PR(λ) is gln symmetric.

Proof. The Yangian R-matrix satisfies relations (2.16), (2.15), then R(δ)∆(ez,w) = ∆(op)(ez,w)R(δ)

and R(δ)∆(fz,w;λ1, λ2) = ∆(op)(fz,w;λ1, λ2)R(δ), where R(λ) = λr + P and r is the set-theoretic

solution r =
∑

x,y∈X eyσx(y) ⊗ ex,τy(x), also

∆(ez,w) = F−1
(
ez,w ⊗ I + I ⊗ ez,w

)
F,

∆(fz,w, λ1, λ2) = F−1
(
λ1ez,w ⊗ I + λ2I ⊗ ez,w +

1

2

∑
y∈X

(ez,y ⊗ ey,w − ey,w ⊗ ez,y)
)
F,(2.29)

where we recall F =
∑

η,x∈X ex,x ⊗ Vx. Explicit computation of the latter leads to (2.28).

Also, ∆ is an algebra homomorphism, hence ∆(ex,y) also satisfy the gln algebra relations, thus

Ř = PR is gln symmetric ie.
[
Ř(λ), ∆(ex,y)

]
= 0. □

The Lyubashenko solution. We finish this section with a discussion of a special set-theoretic

solution known as Lyubashenko’s solution that supports Conjecture 2.8. The analysis for this

special class of set-theoretic solutions is compatible with Remark 1.6 and Example 1.11.

The Lyubashenko solution is defined as

ř =
∑

x,y∈X
ex,σ(y) ⊗ ey,τ(x), (2.30)
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where τ, σ : X → X are bijective functions, such that σ(τ(x)) = τ(σ(x)) = x. Let V =∑
x∈X ex,τ(x), then as was shown in [10] the special solution (2.30) can be obtained from the

permutation operator as ř = (I ⊗ V−1)P(I ⊗ V), which leads to (2.30). Also, r = P ř and the

Baxterized solution R(λ) have a simple form for this class of solutions:

r = V−1 ⊗ V ⇒ R(λ) = λV−1 ⊗ V+ P. (2.31)

Some examples of the above construction are given below:

1. σ(x) = x+ 1, τ(x) = x− 1, where addition is modulo n (see also [39]).

2. σ(x) = n+ 1− x, τ(x) = n+ 1− x.

In both examples x ∈ {1, . . . , n}.

In the case of Lyubashenko solution, we consider Example 1.11 (special case), where we set A
to be the Yangian Y(gln), i.e.

(
Y(gln),∆, ϵ,Φ,R

)
(Φ = 1 ⊗ 1 ⊗ u−1) is a quasi-triangular quasi-

bialgebra. We recall the evaluation representation πλ : Y(gln) → End(Cn), such that u 7→ V,
Q

(1)
xy 7→ ex,y, Q

(2)
xy 7→ λex,y etc. Then the twist becomes F = I ⊗ V and the twisted coproducts are

∆(ez,w) = ez,w ⊗ I + I ⊗ eτ(z),τ(w),

∆(fx,y;λ1, λ2) = λ1ez,w ⊗ I + λ2I ⊗ eτ(z),τ(w) +
1

2

∑
y∈X

(
ez,σ(y) ⊗ ey,τ(w) − eσ(y),w ⊗ eτ(z),y

)
.

Recall that in this case F = I ⊗ V, and Φ = I ⊗ I ⊗ V−1, then we have:

F1,23 := (id⊗∆)F = I ⊗ V⊗ V
F ∗
12,3 :=

(
(∆⊗ id)F

)
Φ−1 = I ⊗ I ⊗ V2,

in accordance to the Conjecture 2.8. Also, the N -fold twist is F12...N = I ⊗ V⊗ V2 ⊗ . . .⊗ V(N−1)

(see also relevant findings in [11]).

3. Quasi-bialgebras from Uq(ĝln)

We will discuss in this section the q-generalizations of set-theoretic solutions. Although the situa-

tions we are going to address here strictly speaking are not set-theoretic solutions of the Yang-Baxter

equation they are certainly inspired by the results of the preceding section. After a brief review

onUq(ĝln) we will consider the q-deformed analogues of the set-theoretic solutions via the twists

discussed in the previous section and in [11], subject to certain extra constraints. The findings of

this section greatly generalize the preliminary results of [10].

3.1. The algebra Uq(ĝln). It will be useful in what follows to recall the basic definitions regarding

the algebra Uq(ĝln) [13, 27, 28]. Let

aij = 2δij − (δi j+1 + δi j−1 + δi1 δjn + δin δj1), i, j ∈ {1, . . . , n} (3.1)
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be the Cartan matrix of the affine Lie algebra ŝln
1. Also define:

[m]q =
qm − q−m

q − q−1
, [m]q! =

m∏
k=1

[k]q, [0]q! = 1

[
m

n

]
q

=
[m]q!

[n]q! [m− n]q!
, m > n > 0. (3.3)

Definition 3.1. The quantum affine enveloping algebra Uq(ŝln) has the Chevalley-Serre generators

ei, fi, q
±hi

2 , i ∈ {1, . . . , n} obeying the defining relations:[
q±

hi
2 , q±

hj
2

]
= 0 q

hi
2 ej = q

1
2
aijej q

hi
2 q

hi
2 fj = q−

1
2
aijfj q

hi
2 ,[

ei, fj

]
= δij

qhi − q−hi

q − q−1
, i, j ∈ {1, . . . , n} (3.4)

and the q deformed Serre relations

1−aij∑
n=0

(−1)n
[
1− aij

n

]
q

χ
1−aij−n
i χj χn

i = 0, χi ∈ {ei, fi}, i ̸= j. (3.5)

Remark 3.2. The generators ei, fi, q±hi for i ∈ {1, . . . , n} form the Uq(ŝln) algebra. Also,

q±hi = q±(εi−εi+1), i ∈ {1, . . . , n − 1} and q±hn = q±(εn−ε1), where the elements q±εi belong to

Uq(ĝln). Recall that Uq(ĝln) is obtained by adding to Uq(ŝln) the elements q±εi i ∈ {1, . . . , n} so

that q
∑n

i=1 εi belongs to the center (for more details see [27]).

We also note that
(
Uq(ĝln),∆q, ϵ, Sq,Rq

)
is a quasi-triangular Hopf algebra over C equipped with

[13]:

• A coproduct ∆q : Uq(ĝln) → Uq(ĝln)⊗ Uq(ĝln) such that

∆q(ξi) = q−
hi
2 ⊗ ξi + ξi ⊗ q

hi
2 , ξi ∈

{
ei, fi

}
(3.6)

∆q(q
± εi

2 ) = q±
εi
2 ⊗ q±

εi
2 , i ∈ {1, . . . , n}. (3.7)

The l-fold co-product ∆
(l)
q : Uq(ĝln) → Uq(ĝln)

⊗(l) is defined as ∆
(l)
q = (id ⊗∆

(l−1)
q )∆q =

(∆
(l−1)
q ⊗ id)∆q.

• A co-unit ϵ : Uq(ĝln) → C such that

ϵ(ej) = ϵ(fj) = 0, ϵ(qεj ) = 1. (3.8)

• An antipode Sq : Uq(ĝln) → Uq(ĝln) such that

Sq(q
εi) = q−εi , Sq(ξi) = −q

hi
2 ξiq

−hi
2 . (3.9)

• There exists an invertible element Rq ∈ Uq(ĝln)⊗ Uq(ĝln), such that it satisfies the axioms

of Definition 1.4 for Φ = 1⊗ 1⊗ 1.

1For the ŝl2 case in particular

aij = 2δij − 2(δi1 δj2 + δi2 δj1), i, j ∈ {1, 2} (3.2)
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We recall now Example 1.11 and we briefly discuss the notion of the antipode for Uq(ĝln). We

fist introduce a shorthand notation for the unit element of Uq(ĝln): 1q := 1
Uq(ĝln)

.

Remark 3.3. We specialize Example 1.11 to the case of Uq(ĝln), i.e.
(
Uq(ĝln),∆, ϵ,Φ,R

)
, where

Φ = 1 ⊗ 1 ⊗ u−1 for some group-like element u, is a quasi-triangular quasi-bialgebra. We now

want to test whether
(
Uq(ĝln),∆, ϵ,Φ,R

)
is a quasi-Hopf algebra, i.e. if there exist S, α, β such

that axioms (1) and (2) in Definition 2.2 hold. Suppose that the group-like element u exists, then

∆(u) = u⊗ u and:

(1) S(u)αu = α and uβS(u) = β, which lead to S(u) = αu−1α−1 = β−1u−1β.

(2) βαu−1 = 1q and αβS(u) = 1q, which lead to u = βα and S(u) = β−1α−1.

All the above equations are self-consistent. Similarly, we can show that S(u−1) = αβ

We now check the axioms of Definition 2.2 for the elements ej , fj , qεj , with coproducts, after

twisting, given as ∆(ξj) = q−
hj
2 ⊗u−1ξju+ξj⊗u−1q

hj
2 u, ξj ∈ {ej , fj} and ∆(qεj ) = qεj ⊗u−1qεju:

(1) We consider S(qεj )αu−1qεju = α and qεjβS(u−1qεju) = β, which lead to (by requiring

that S is an algebra anti-homomorphism): S(qεj ) = αq−εjα−1 = β−1q−εjβ. The latter

expression leads to
[
qεj , u

]
= 0. Similar conclusions hold for S(ξj). Indeed, from axiom (1)

of Definition 2.2 we conclude that S(ξj) = −αq
hj
2 ξj q−

hj
2 α−1 = −β−1q

hj
2 ξj q−

hj
2 β, which

leads to
[
ξj , u

]
= 0.

As in the case of the Yangian studied in the previous section, the axioms for the antipode restrict

u to be in the center of the algebra, which in general is not true. Indeed, simple examples of such

group-like elements that are not central are given by u = q±εj . Hence, we can not consistently

define S(w), w ∈ Uq(ĝln) for a generic u by strictly following the axioms of Definition 2.2.

It will be useful for the findings of the next subsection to recall the evaluation representation of

Uq (̂gln) [27] (homogeneous gradation), πλ : Uq(ĝln) → End(Cn), λ ∈ C:

πλ(ei) = ei,i+1, πλ(fi) = ei+1,i, πλ(q
εi
2 ) = q

ei,i
2 , i ∈ {1, . . . , n− 1}

πλ(en) = e−2λen,1, πλ(fn) = e2λe1,n, πλ(q
hn
2 ) = e

en,n−e1,1
2 (3.10)

and we also introduce some useful notation:

(πλ1 ⊗ πλ2)∆q(ej) = ∆q(ej,j+1), (πλ1 ⊗ πλ2)∆q(fj) = ∆q(ej+1,j),

j ∈ {1, . . . , n− 1},
(πλ1 ⊗ πλ2)∆q(en) = ∆q(en,1;λ1, λ2), (πλ1 ⊗ πλ2)∆q(fn) = ∆q(e1,n;λ1, λ2)

(πλ1 ⊗ πλ1)∆q(q
ϵj ) = ∆q(q

ej,j ), j ∈ {1, . . . , n}. (3.11)

We recall also the Uq(gln)-invariant representation of the A-type Hecke algebra [28]:

g =
∑

x ̸=y∈X

(
ex,y ⊗ ey,x − q−sgn(x−y)ex,x ⊗ ey,y

)
+ qI. (3.12)

Indeed, the above element satisfies the braid relation (I ⊗ g)(g ⊗ I)(I ⊗ g) = (g ⊗ I)(I ⊗ g)(g ⊗ I)

as well as the Hecke constraint (g − q)(g + q−1) = 0. The Baxterized Uq(ĝln) solution of the Yang

Baxter equation is the Rq(λ) = eλg+ − e−λg−, where g+ = Pg, g− = Pg−1 (P the permutation
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operator). We also define ∆
(op)
q (w;λ1, λ2) := P∆q(w;λ2, λ1)P, the Uq(ĝln) Rq-matrix satisfies the

intertwining relations:

Rq(λ1 − λ2)∆q(ζ) = ∆(op)
q (ζ)Rq(λ1 − λ2) ζ ∈ {ej,j+1, ej+1,j , q

ej,j , qen,n},
j ∈ {1, . . . , n− 1}
Rq(λ1 − λ2)∆q(ζn;λ1, λ2) = ∆(op)

q (ζn;λ1, λ2)Rq(λ1 − λ2), ζn ∈ {en,1, e1,n,}. (3.13)

This brief review on Uq(ĝln) will be particularly useful for the findings of the subsequent subsec-

tion.

3.2. The q-analogues of set-theoretic solutions of the YBE & quasi-bialgebras. Inspired

by the set-theoretic solutions and the associated twists [11], as discussed in the previous section,

we generalize in what follows results regarding the twist of the U(ĝln) R-matrix. Note that strictly

speaking this solution is not a set-theoretic solution of the braid equation. Nevertheless, the

admissible twists found for the set-theoretic solutions can be still exploited to yield generalized

solutions based on (3.12).

We state below a basic Lemma that will lead to the main Proposition of this section associated

to admissible twists of the Uq(ĝln) R-matrix. This construction provides the q-analogue of the

R-matrices coming from set-theoretic solutions of the YBE and greatly generalizes the preliminary

results of [10].

Lemma 3.4. Let Vη =
∑

x∈X eση(x),x, ∀η ∈ X consist a family of group-like elements, i.e.

∆q(Vη) = Vη ⊗ Vη, and let g be the U(gln)-invariant element (3.12). Then
[
g, ∆q(Vη)

]
= 0,

subject to the constraint sgn(x− y) = sgn
(
ση(x)− ση(y)

)
, ∀η, x, y ∈ X.

Proof. It is convenient to re-express the element g as

g = P −
∑

x,y∈X
q−sgn(x−y)ex,x ⊗ ey,y + qI, (3.14)

where P is the permutation operator and I is the n× n identity matrix. It is obvious that ∆q(Vη)

commutes with P, so it suffices to show that ∆q(Vη) commutes with the second term of (3.14),

indeed we compute( ∑
x,y∈X

q−sgn(x−y)ex,x ⊗ ey,y
)( ∑

ξ,ζ∈X
eση(ξ),ξ ⊗ eση(ζ),ζ

)
=

∑
ζ,ξ∈X

q−sgn
(
ση(ξ)−ση(ζ)

)
eση(ξ),ξ ⊗ eση(ζ),ζ

(3.15)( ∑
ξ,ζ∈X

eση(ξ),ξ ⊗ eση(ζ),ζ

)( ∑
x,y∈X

q−sgn(x−y)ex,x ⊗ ey,y
)
=

∑
ζ,ξ∈X

q−sgn(ξ−ζ)eση(ξ),ξ ⊗ eση(ζ),ζ . (3.16)

Requiring expressions (3.15) and (3.16) to be equal we conclude that [g,∆q(Vη)] = 0, ∀η ∈ X, if

and only if ση is an order-preserving permutation of X, i.e. sgn(x − y) = sgn
(
ση(x) − ση(y)

)
,

∀η, x, y ∈ X. □

If X is finite then the identity map is the only order-preserving permutation. It is important

however to note that the condition sgn(x−y) = sgn
(
ση(x)−ση(y)

)
possibly holds when considering

countably infinite sets. A characteristic example is demonstrated at the end of the section, where

the q-analogue of the Lyubaschenko solution is presented. A further detailed analysis of this

construction and possible generalizations will be presented in future works.
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We come now to the main proposition of this section.

Proposition 3.5. Let g be the U(gln)-invariant element (3.12) and F =
∑

η∈X eη,η ⊗ Vη (Vη =∑
x∈X eση(x),x) be the set-theoretic twist. Let also F1,23 and F ∗

12,3 be the quantities defined in (2.23),

(2.24). We also define G = F−1gF, then provided that C1 = 0, C = 0 (C1 = ση(σx(y)) −
σση(x)(στx(η)(y)), C = sgn(x− y)− sgn

(
ση(x)− ση(y)

)
):

(1)
[
G12, F

∗
12,3

]
=

[
G23, F1,23

]
= 0.

(2) The twisted element G satisfies the braid relation and the Hecke constraint (i.e. it provides

a representation of the A-type Hecke algebra).

Proof. We showed in Lemma 3.4 that
[
g, ∆q(Vη)

]
= 0, subject to the constraint C = 0. This leads

to
[
G, ∆(Vη)

]
= 0, ∀η ∈ X, where G = F−1gF and ∆(Vη) = F−1∆q(Vη)F, where ∆q(Vη) is

derived subject to C1 = 0 (see Lemma 3.4).

(1) We recall that F1,23 = (id⊗∆)F, i.e. F1,23 =
∑

η∈X eη,η⊗∆(Vη), then using
[
G, ∆(Vη)

]
= 0

we obtain,
[
G23, F1,23

]
= 0, subject to C1 = C = 0.

We show now that
[
G12, F

∗
12,3

]
= 0, to achieve this we explicitly derive the form of G :

G = F−1gF = ř −
∑

x,y∈X
q−sgn

(
x−σx(y)

)
ex,x ⊗ ey,y + qI, (3.17)

where ř =
∑

x,y∈X ex,σx(y)⊗ey,τy(x).We recall also the explicit expression F ∗
12,3 =

∑
η,x,y∈X eη,η⊗

ex,x ⊗ eση(σx(y))|C1=0 and we compute:

G12F
∗
12,3 = F ∗

12,3G12 = (3.18)∑
x,y,z∈X

(
ex,σx(y) ⊗ ey,τy(x) − q−sgn

(
x−σx(y)

)
ex,x ⊗ ey,y

)
⊗ eσx(σy(z)),z + qF ∗

12,3.

(2) Due to the fact that: (1) F is an admissible Drinfeld twist, (2)
[
G12, F

∗
12,3

]
=

[
G23, F1,23

]
=

0, and (3) g satisfies the braid relation, we conclude that G also satisfies the braid equation.

Similarly, (g − q)(g + q−1) = 0 ⇒ (G− q)(G + q−1) = 0. □

Remark 3.6. The Baxterized solution Ř(λ) = F−1Řq(λ)F = eλG − e−λG−1 (recall Řq(λ) =

eλg− e−λg−1), and hence R(λ) = PŘ(λ) = eλG+− e−λG−, which is a solution of the Yang-Baxter

equation. Moreover, by means of (3.13) and the R-matrix twist we conclude that

R(λ1 − λ2)∆(ζ) = ∆(op)(ζ)Rq(λ1 − λ2) ζ ∈ {ej,j+1, ej+1,j , q
ej,j , qen,n}, (3.19)

j ∈ {1, . . . n− 1}
R(λ1 − λ2)∆(ζn;λ1, λ2) = ∆(op)(ζn;λ1, λ2)R(λ1 − λ2), ζn ∈ {en,1, e1,n}, (3.20)

where ∆(a) = F−1∆q(a)F, ∀a ∈ U(ĝln). From (3.19) and recalling that Ř = PR we deduce

Ř(λ1 − λ2)∆(ζ) = ∆(ζ)Ř(λ1 − λ2) ζ ∈ {ej,j+1, ej+1,j , q
ej,j , qen,n}, (3.21)

j ∈ {1, . . . , n− 1},

i.e. the Ř-matrix is Uq(gln)-invariant as is the Řq-matrix.
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The q-Lyubashenko solution. We focus in the end of this section on a special example, the

q-deformed analogue of Lyubashenko’s solution introduced in [10]. The analysis for this special

class of q set-theoretic like solutions is compatible with Remark 1.6 and Example 1.11.

Let τ, σ : X → X be isomorprhisms, such that σ(τ(x)) = τ(σ(x)) = x and let V =
∑

x∈X ex,τ(x),

then by direct computation it follows that,
[
V⊗V, g

]
= 0 provided that sgn(x− y) = sgn

(
σ(x)−

σ(y)
)
. We then define G = (I ⊗ V−1) g (I ⊗ V), which leads to

G =
∑

x,y∈X

(
ex,σ(y) ⊗ ey,τ(x) − q−sgn(x−σ(y))ex,x ⊗ ey,y

)
+ qI (3.22)

i.e. the element G is obtained from the Uq(gln)-invariant braid solution (3.12), provided that

sgn(x− y) = sgn
(
σ(x)− σ(y)

)
[10].

An example compatible with the construction above is: σ(x) = x+ 1, τ(x) = x− 1, x ∈ Z (see

also [39]),

We recall Example 1.11, where we setA to be Uq(ĝln), i.e.
(
Uq(ĝln),∆, ϵ,Φ,R

)
(Φ = 1⊗1⊗u−1) is

a quasi-triangular quasi-bialgebra. We recall the evaluation representation πλ : Uq(ĝln) → End(Cn),

such that u 7→ V, ej 7→ ei,j+1, fj 7→ ej+1,j and qεj 7→ej,j . Then the twist becomes F = I ⊗ V and

the twisted coproducts are

∆(qei,i) = qei,i ⊗ qeτ(i),τ(i) , ∆(ξj) = ξj ⊗ q
hτ(j)

2 + q−
hj
2 ⊗ ξτ(j). (3.23)

hj =
(
ej,j − ej+1,j+1

)
, hτ(j) =

(
eτ(j),τ(j) − eτ(j+1),τ(j+1)

)
, for ξj ∈

{
ej,j+1, ej+1,j

}
, we define

respectively: ξτ(j) ∈
{
eτ(j),τ(j+1), eτ(j+1),τ(j)

}
. We also recall that g (3.12) is Uq(gln)-invariant,

i.e.
[
g, ∆q(Y )

]
= 0, Y ∈

{
ej,j+1, ej+1,j , qej,j

}
and the co-products ∆q of the algebra elements

are given in (3.6), (3.7) and (3.11). Then it follows that the element G (3.22) is also Uq(gln)

symmetric [10], i.e.
[
G, ∆(Y )

]
= 0, where the modified co-products are given in (3.23). Naturally

the Baxterized Ř-matrix is also Uq(gln)-invariant (3.21), (3.23).

As in the case of the Yangian the admissible twist is F = I ⊗ V and Φ = I ⊗ I ⊗ V−1, then we

have: F1,.23 = (id⊗∆)F = I ⊗V⊗V and F ∗
12,3 =

(
(∆⊗ id)F

)
Φ−1 = I ⊗ I ⊗V2, in accordance to

the Conjecture 2.8. Also, the N -fold twist is F12...N = I ⊗ V⊗ V2 ⊗ . . .⊗ V(N−1), (see also [11]).
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[3] D. Bachiller, F. Cedó and L. Vendramin, A characterization of multipermutation solutions of the Yang-Baxter

equation, Publ. Mat. 62 (2018) 641-649.



24 A. DOIKOU, A. GHIONIS AND B. VLAAR

[4] D. Bulacu, S. Caenepeel, F. Panaite and F. Van Oustaeyen, Quasi-Hopf algebras: A categorical approach,

Cambridge University Press (2019).

[5] R.J. Baxter, Exactly solved models in statistical mechanics, Academic Press (1982).

[6] F. Catino, I. Colazzo, P. Stefanelli, Semi-braces and the Yang-Baxter equation, J. Algebra 483 (2017) 163–187.
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