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The aim of this paper is to present an elementary and
self-contained proof of a theorem of R.Brauer that every
complex representation of a finite group G can be written as
a Z2-linear sum of representations induced up from hyperelemen-
tary subgroups of G. The key tools in this proof are the
theorem of Solomon on permutation representations (theorem 2)
and the Mackey Formula relating pullbacks and transfers of
G-vector bundles (theorem 4).

The paper is organized as follows: §1 introduces the basic
notions of G-sets and complex representations of G, namely the
Burnside ring A(G), the complex representation ring R(G), the
permutation homomorphism C : A(G)— R(G) and gives a proof
of the theorem of Solomon: there exist hyperelementary sets
X and Y such that 1 = CX - CY , where 1 in R(G) is the trivial
representation of G; §2 develops the language of G-vector
bundles over finite G-sets B, introduces the group KG(B)f and
for a G-map f : B—» C discusses the pullback homomorphism
£' : K (C) — K (B) and the transfer £, : K (B) — K (C).
The key result here is the Mackey formula. In the final section
§3 we reinterpret Frobenius induction as the transfer along
the collapsing map ¢ : G/H —» G/G, so the Brauer induction
theorem says: given a finite G-set B there exists a G-map
£f : B'"—>B such that B' is a hyperelementary set and the
transfer f! : KG(B') -——-—h-KG(B) is onto. The proof of the
theorem is now very easy. We hope that the reader agrees that
the language of vector bundles is convenient in thinking about
representations of finite groups.

The language of K-theory has been introduced by M.F.Atiyah,
F.Hirzebruch, and G.B.Segal [1] , (2] , [3] ,[12] . The Burn-
side ring has been introduced in the study of induction theo-
rems by A.Dress [7) , [ 8] and has been shown to be very useful
in studying actions of compact Lie groups by T.tom Dieck [6] .

%(I:@ Brauer's theorem (in the sharper form of elementary induction)
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was first proved in [4] , and a new proof was prescnted

by Brauer and Tate in [5]. Our proof is of course inspired
by D.M.Goldschmidt, I.M.Isaacs and L.Solomon [9]), [10].

The same appfoach as used here proves the sharper elementar
induction theorem, but one more notion (Frobenius inductiocn

on bundles) is needed - see [11] for details.

It is a pleasure to thank SFB 40 and the Max Planck Ins
tut fiir Mathematik for providing such pleasant working condi
tions during the author's wvisit to Bonn.

1. The Burnside ring and the representation ring of C.

Let G be a group, B and C finite G-sets. A function £ : B—>
is said to be a G-map if £f(g.b) g.f(b) for all g in G and
b in B. 1If f1: B1-—)- C and f2: Bz—-—->C are G-maps, we
let

H

p = {(b,,by)eB, xB, | .f1(b1) = £,(b) }

and define the action of G on D by g.(b1,b2) = (g.b1,g.b2)-
We have the projection maps p; D —= Bi defined by
pi(b1,b2) = bi , and the diagram of G-maps

D p

Py £,

B1 f1 = C

is called the pullback diagram defined by f1 and f2.

The standard example of a G-set is a coset space G/H
with action g.xH'- gxH. If B is a G-set, then a map of
G-sets f : G/H—>» B 1is completely determined by f(eH).
which is an element of ‘B" = {b&B | h.b=b for all heH}
the fixed point set of H in B. 1In particular,

Map(G/H,G/K) = { ox | = c:.gKg-1}.
This means that two standard orbits G/E and G/K are G-equi-
valent if and only if H and K are conjugate subgroups of G-
To ring yet one more change on this theme: G-equivalences
of G/H are determined by the elements of N/H, where N is
the normalizer of H in G. We call a G-equivalence class of
standard orbits an orbit type of G. If bé€&B, then the orbit
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G.b.of b is G-eguivalent to G/qu(where Gb={ ge,G\ a.b = b}
is the isotropy subgroup at b.

We let fo(G) be the set of finite orbit types of G.
If X is a finite G-set, then it determines a counting function
(X) : fo(G)—> Z defined by (X) (type G/H) = number of
orbits in X of type G/H. The function (X) is finitely non-
zero and takes values in the set of natural numbers.

THEOREM 1 (Structure of finite G-sets). If X and Y are
finite G-sets, then X is G-equivalent to Y if and only if
(X) = (y).

The proof is immediate: if £ : X ——9=Y is a G-equiva-
lence, then of course it sets up a type-preserving one-to-one
correspondence between the orbits in X and the orbits in Y,
so we have (X) = (Y). Conversely, if (X) = (Y), then since
this means that we can set up a type-preserving one-to-one
correspondence between the orbits in X and Y, it follows that
there exists a G-equivalence f : X—> Y. This is because it
is enough to define £ orbit by orbit, and if h : G.x —» G/H
and k : G.y —» G/H are G-equivalences, then of course
x"Th : G.x — G.y 1is a G-equivalence.

An example: let G = (Z,+), the additive group of theé in-
tegers. The orbit types are given by Z/(n) with n a positive
integer (and Z/(n) is known as an n-cycle). The structure
theorem gives as an immediate consequence the structure of the
conjugacy classes of elements in the symmetric groups Sk.

We let A(G) be the set of all finitely non-zero functions
f fo(G) —» Z. Notice that each f in A(G) can be written as
£ (X) - (YY) , that is £ is the difference of counting
functions of finite G-sets (of course we define the addition
in A(G) by (£+f')(G/H) = £(G/H) + £'(G/H)). Indeed, A(G)
is a free abelian group with the counting functions (G/H) as

"

a basis (where we choose exactly one H from its conjugacy class.
This addition operation corresponds to disjoint sum of G-sets:

(XY ) = (X) + (Y). We define the multiplication in A(G)
to correspond to Cartesian product of G-sets: (X)x(Y) = (XxY),
where G acts diagonally on XxY : g.(x,y) = (g.%x,g9.y). Notice

that evaluation of counting functions is not in general a
homomorphism of rings from A(G) to Z.
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We can sum up the construction of the Eurnside ring

A(G) as follows. Let Set-G denote the set of G~eguivale.:
classes of finite G-sets. Disjoint sum defines addition and
Cartesian product defines multiplication in Set-G. The Bur:
side ring A(G) is the completion of Set-G to a ring. Indeed,
the construction of the Burnside ring is just an extension of
the familiar process of constructing the integers Z from the
natural numbers N. More precisely, if E is the group consist
ing of the identity element alone, then Set-E = N with the
usual addition and multiplication, and A(E) = Z.

Here is a second instance of this process of completicn
to a ring: the representation ring R(G) of complex represen-
tations of G. A complex representation of G is a C-linear
action G X V — V on a finite dimensional vector space
V over C. That is, for each g in G the map g.:V-——3 V is
a C-linear map. Equivalently, a representation is a homomor-
phism G~—3 GL(V) into the full linear group of V. If V
and W are representations of G, then a C-linear map T:V—>W
is said to be a map of representations (or a CG-map) if
T(g.v) = g.T(v) for all g in G and v in V. That is, a CG-map
is both a C-map and a G-map (equivalently, it is a map of CG-
modules over the group ring CG of G over C). We let Rep-G be
the set of CG-isomorphism classes of representations of G ove
the complex numbers. Direct sum of vector spaces defines add
tion in Rep-G and tensor product of vector spaces over C defi
multiplication in Rep-G. We let R(G) be the completion of
Rep-G to a ring. Elements of R(G) (often known as virtual
representations of G) are formal differences V - W of
CG-isomorphism types of finite dimensional representations
of G. Just as in the case of the Burnside ring A(G), the reP
resentation ring R(G) turns out to be a free abelian group
with irreducible complex representations fdrming a free basis
(surprisingly enough, this will not be used in the proof of
Brauer's hyperelementary induction theorem). Given an elemen
g of G, it defines a function Trace g : Rep~G ———3>» C
by setting Trace g (V)= Trace g.:V —p= V. Since Trace 9
preserves addition and multiplication, it induces a ring homo
morphism Trace g : R(G) ~——> C . We will use the fact
(see Serre [13] for an easy and elegant proof) that the funct

Trace g separate elements in R(G). Indeed, we will use the
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zvon weaker conseguence: a necessary and sufficient condi-

tion that an element u of R(G) is the unit element 1 = C '
that is the class of the trivial representation g.=1 : C—C
is that for each g in G we have Trace g (u) = 1 .

There is an important relation between the Burnside

ring A(G) and the representation ring R(G), namely the permu-
tation representation homomorphism. Given a finite G-set X,
we consider the vector space CX with X as basis over C. We
notice that g.:X —3>» X gives a C-linear map g. : CX-=CX,

SO CX 1is a representation of G. Since C(XuwY¥Y) = CX + CY
and C(X x Y) = CX @ CY , this means that the function

C : Set-G —~——3 Rep—-G induces a homomorphism of rings

C : A(G) —> RI(G) .

The theorem of Solomon will say that there is an element of
very special form in A(G) whose image under C is 1.

If G = E , the identity group, then A(E) = Z = R(E), and
C : A(E) — R(E) is the identity map. 1In general C has
both a nontrivial kernel (for example G=S3 , the symmetric
group on three letters) and a nontrivial cokernel (for example,
G =12/(3) ).

We introduce the notion of a family of G-séts. A sub-
set %F of Set-G is said to be a family if for each X in F
and each G-map f : X'—>X we also have X' in EFfL For
example, if we have a pullback diagram

—P . )

D B

P
B1—————£+—ﬁ> C

and B, is in CJ— , then D is also in F . in particular,

B1 b4 B2 is in ?F {take C to be a single point * = G/G ).

If we let AEF(G) to be the subset of A(G) consisting of

elements of the form (X) - (Y) with X and Y in % , then

AﬁF(G) is an ideal in the ring A(G): not is it only closed

under addition, but it is closed under multiplication by all

elements in A(G).
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Let C: be the collection of all G-sets B such that for
each b in B the isotropy subgroup Gb ={geG (g.b=bj} is a cyc
subgroup of G. We claim: C:,is a family, for if £ : B'—»©E
is a G-map, then for b' in B' the isotropy subgroup Gb' is
a subgroup of Gf(b),.so if this group is cyclic, Gb' is alsc

cyclic.

If p is a prime, let CI') be the collection of all G-set
B such that Gb is cyclic of order prime to p for each b in B
It is also immediate that ' is a family for each prime p.

For our next family we need the notion of a covering.
A Gmap q : X—> Y 1is said to be a covering if g is onto
and the inverse image of an orbit in Y is a single orbit in
(this is really a connectedness hypothesis). A covering tra
formation is a G-map ¢ : X ~—>=X which makes the followin

diagram commute:

X ——S x

lq q

Y — >y,
that is qc = q . Given x, and x, with q(xo) = q(x,) there
may not be any covering transformation ¢ with c(xo) = X, (or

there may be many, if Y consists of more than one orbit).
However, if there exists a covering transformation c : X->X

with c(x,) = x, , then its value on the orbit of X, is comp L

1
tely determined by this condition. This is easy to see: if
KO = Gx 'Ho = Gq(xg

y then we may replace q by the canoni
quotieng map p : G/

0™ G/I-Io induced by the inclusion of
K, into H, . By our normalization the point X, = €Ky, and

there exists a G-map c : G/Ko-f:—dv-G/Ko with c(eKy) = ¥,
= hK0 0 < hKoh (notice that heHo , sin

q(xy) = g(x,) by hypothesis). If we impose the condition thal

if and only if K

X is a finite G-set, then covering transformations are G-equ:
valences. Our discussion above allows us to talk of the grot
0 in X (we will denote this

group by Cov (q,xo) ). Notice that this group depends just

of covering transformations at x

on the orbit of Xg under G, rather than on X, itself. We sha.
call the covering q : X ——>Y a principal covering if
for each X in X the group of covering transformations at ¥
acts transitively on the fiber of g above q(xo). That is:
g : X—»Y is a principal covering if and only if for any

Xy and x; in X with q(xy) = q(x,) there exists a covering
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rancsformation ¢ : X—m— X with c(x.) = = (nctice that

0
c defines a unigue element of Cov(q,xo) ).

If f : Y'——= Y is a G-map and q : X—>Y is a
‘covering, then the pullback

x'-——iz—e- X
q' q

vr—L o v

has the property that gq' : X'——s=Y' 1is a covering as

well. If q is a principal covering, then so is q'.
Indeed Cov{g',x') = Cov(g,f'(x')).

We are now ready to define hyperelementary sets: if
p is a prime, we shall say that Y is a p-hyperelementary
set if there exists a principal covering gq : X —>Y with
X a C:é -set such that for each x in X the group Cov(g,x) 1is
a p-group. Locally this means the following: we have a
normal cyclic group C in H such that the order of C is prime
to p and H/C is a p-group (such an H is known as a p-hyper-
elementary group), and g: X—>Y locally looks like the
canonical projection G/C —>» G/H with the group of covering
transformations H/C. The remarks above on pullbacks show
that p~hyperelementary sets form a family in Set-G . We shall
denote the union of these families over all primes p bf{ Qe '
and call elements of Qe hyperelementary sets. We can now
state and prove the theorem of L.Solomon. G is now a finite grour

THEOREM 2 (Solomon) . Let g€ be the family of hyperele-
mentary sets, and Aat(G) the corresponding ideal of elements
of the form (X) - (X') with X,X' in 3¢ . Then there exists
an element u € AQQ(G) such that Cu = 1 .

Proof. This is a desert island proof - each step forces
the next. The argument is really the original one of Solomon.

First notice that it is enough- to show that for each ele-
ment ‘g of Q there is an element ug in AQC(G) such that

Trace g (Cug) = 1, for we then have
I (1-u) = 1-u
geG g

with ue A,.,(G) and Trace g (Cu) = 1 for all g in G, so Cu=1.

e
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The second step consists in showing that the homomorphi:

of rings

Trace.g o, C : AaL(G)—————+-Z
is onto 2. Of cours§7'we have to remark that Trace g(CX) =
( Fix(g,X)l = lxgl , the number of points in X fixed under

the element g, so we indeed land in the integers. To show
that Trace g , C : Aae(G)-———%— Z 1is onto, it is enough to
show that 1 is in the image, or since Trace g,C( AQC(G)) =
is an ideal, it is enough to show that for each prime p the
natural number n is not divisible by p (that is, n=1 as was
claimed). To recapitulate: given g and a prime p, we wish t¢
construct a.hyperelementary set X with \xg( # 0 mod (p).
Since we only have g and p to work with, let's start with (g
the cyclic group generated by g in G. Write £g> = C x D
as a product of two cyclic groups C and D, with D a p-group
and the order of C prime to p. Let N = NG(C) be the normali:
of C in G - the principle of maximum unhappiness leads us to
expect that the quotient group N/C fails to be a p-group. St:
N/C has at least one p-Sylow subgroup P. We let H be the set
of elements in N which represent the cosets of P. This means
that G/H is a p-hyperelementary set. Wouldn't it be nice if
((G/H)gl # 0 mod (p)? Let's prove it: this will complete tl
argument of the theorem. An element xH is fixed under g if
and only if x—1gx<;H, SO x-14 g>»>x € H, in particular x—1C X
But this means that X 'C x € C = Ker H —H/C = P , since
the target is a p-group and the order of x—1Cx is relatively
prime to p. This means that x-1Cx = C, or x ¢N, that is
(c/m)% = w/m9 = m/m 9 = (N/H)D , the last since CcN,
so acts trivially on N/H. Since D is a p-group, we have

| /mPl = |n/H| mod (p), but |N/H| =|(N/C)/(H/C)| # O
mod (p), for H/C has been chosen to be a p-Sylow subgroup
of N/C. To sum up: Trace g (C(G/H)) # 0 mod (p) for the
hyperelementary set G/H, hence Trace g (C(A_.(G))) = (1) =Z

4

as we wanted to show.
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2. Mackev's Formula for G-vector bundles. A G-vector
bundle over a G-set B is a G-map p: E(p{-———er B such that~
for each b in B the fiber Py = p-1(b) ={§reE(p)l p(y)=b}
has the structure of a complex vextor space and for each g

in G the map g. : pb'—___"pg.b is a C—ligéar map.

If B = * 1is a single point, then a G-vector bundle over B
is just a complex representation of G. More generally, a
G-vector bundle over G/H is completely determined by its
fiber over eH which is a representation of H. Conversely,
given a representation W of H, we consider the G-set

GxHW which is a quotient of G x W under the relation
(gh,w) ~ (g,hw) for h in H, with G-action g'.(g,w)=(g'g,w).
The map p : G x,W —> G/H induced by the projection

H

p(g,w) = gH is a G-vector bundle over G/H with W = Pegy*

Let us note this down:
LEMMA3. Restriction to the fiber at eH gives a one-
to-one correspondence VectG(G/H) with Rep-H.

If £f : B———»C 1is a G-map of finite G-sets, then
we define the pullback and transfer of G-vector bundles over f.
The pullback

1
B —ee S
£ VectGC VectGB

is defined by setting (f!p)b = pf(b)' The transfer

f, : VectGB ——— VectGC
is defined by setting

o, = @ g -
f(b)=c

Of course, it is much better to define £' and £, by their
universal mapping properties, but these definitions have the
virtue of giving explicit models for the pullback and transfer.
By the way, notice that in our definition of G-vector bundles
the fibers may have varying dimensions - for example, (f!q)c= 0
if ¢ is not in the image of f. Of course the dimensions of
fibers over a single orbit are the same, since g. : pb'_*’pg.b
furnish C-isomorphisms.

We now exhibit a fundamental relation between pullback

and transfer which is known as Mackey's Formula.



So far we have been working only with the sets VectGB.

They have the direct sum operation

H e
‘+ VectGB b4 Vec;GB VectGB

defined-by (p + p')b = Py, @pg , the direct sum of fibers,
and the product operation

.
-~ VectGB X VectGB B R S VectGB

defined by (p « p')b = Py ® pt': » the tensor product of fiber
We now introduce additive inverses and complete VectGB to a
ring called KG(B). If * denotes a point, then KG(*) = R{(G),
the representation ring of G. More generally, Lemma 3 gives
us KG(G/H) = R(H), the isomorphism given by restriction to
fibers over eH. If £ : B—>»C is a G-map, then pullback

induces a ring homomorphism

1
T ——
£ KG(C) KG(B) ’
so in particular we can think of KG(B) as a KG(C)—module.
The transfer along f induces a homomorphism of additive group

£, : Kg(B) ———3>= K. (C)

which in general is not a homomorphism of rings, but Corolla
says that £, is a homomorphism of KG(C)-modules, namely

f! (f!p ~ P') =p vf!(p') .

In particular if we want to prove that f, is onto KG(C) it is
enough to show that 1 is in the image of £, , where
1 is the trivial line bundle over C.

3. The Brauer induction theorem. Before we state the

Brauer induction theorem for the family of hyperelementary
subgroups of the finite group G, we need to introduce the
concept of Frobenius induction of representations. If H is
a subgroup of G and W is a representation of H, we think of
W as a CH-module, and define

G =
Indg W = CCQy W,

with the action of CG coming from multiplication in CG. If
we let G/H = {91H, cee 4 ng} , then Indg W is the direct
sum of 94 ® W (each isomorphic to W as a vector space over
the complex numbers C), with the action of G defined as folld
if gg; = gjh , then g.(g,® W) =gy x h.w . That is, g. pe

J
mutes the summands and twists by the original action of H on |
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LEMMA 6. Let ¢ : G/H ———» G/G=* be the collapsing
G ..

map, then c, = IndH : R(H) ——> R(G).

Proof. Suppose that peVect G/H is a G-vector bundle
with p_. = W , that is E@=Gwa w1tth [9;- W],
the set of equivalence classes of (gi,w) . In partlcular,

g.. = W= peﬂa——a- pg H is an isomorphism. We thus have
i

@l:gi’w

and we have to determine the action of G. Now if 99, = g h
with h in H, then .[gi,w] [ég ,w] [g h, w) [g sh. w]
so

p = IndSIW ’

as claimed.

We can now state Brauer's hyperelementary induction
theorem. Recall that a finite group H is called hyperelemen-
tary if there exists a prime p and a normal cyclic subgroup
C of H of order prime to p such that H/C is a p-group.

THEOREM 7 (Brauer hyperelementary induction). Let G be
a finite group, then

E IndS -: @ R(H) ————> R(G)
H

H
hyperelementary

is onto.

We can restate this theorem in the language of vector
bundles.

‘"THEOREM 8 (Brauer hyperelementary induction). Let G be
a finite group, B a finite G-set. There exists a G-map
f : B'"——> B with B a hyperelementary G-set such that
: ') —
£, = K5(B") K (B)

is onto.

Proof. The case of general B follows from the special

case of B = * (and this is a faithful translation of Theorem 7).
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According to Solomon's theorem there exists a ue€ A
such that Cu = 1 in R(G) = KG(*). Write u
with X and Y hyperelementary sets. Let 1

3e(G)
(Y)

. H
[

>
x S
o'
>

X
be the trivial line bundle over X, then if ¢ : X~ * is

the collapsing map, we have c,1x = CX . We let B' = Xuy .
and define w = (1)(’- 1Y), where we have used the canonical
isomorphism

KX w ¥) = K. (X) ® K (Y)

We notice that c!w = c!1x - c!1Y =CX - CYy

Cu = 1€eR(G),
so ¢, : KG(B') —— KG(*) = R(G) is onto, proving the

hyperelementary induction theorem.
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