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PRINCIPAL MINORS OF GAUSSIAN ORTHOGONAL ENSEMBLE

RENJIE FENG, GANG TIAN, DONGYI WEI, AND DONG YAO

Abstract. In this paper, we prove that the fluctuation of the extreme process of the maxima
of all the largest eigenvalues of m×m principal minors (with fixed m) of the classical Gaussian

orthogonal ensemble (GOE) of size n × n is given by the Gumbel distribution as n tends to
infinity. We also derive the joint distribution of such maximal eigenvalue and the correspond-

ing eigenvector in the large n limit, which will imply that these two random variables are

asymptotically independent.

1. Introduction

Random matrix theory is a classical topic in probability which has applications to a variety
of fields, such as statistics [4], high energy physics [7], wireless communication networks [8], deep
neutral network [17], compressed sensing [19] and so forth.

Motivated by high-dimensional statistics and signal processing, the authors in [9] derived the
growth order of the maxima of all the largest eigenvalues of the principal minors of the classical
random matrices of GOE and Wishart matrices, where the results have applications for the
construction of the compressed sensing matrices as in [19].

In this paper, we further study the fluctuation of such maxima for the GOE case. Our main
result is that the fluctuation is given by the Gumbel distribution with some Poisson structure
involved in the limit, and we also derive the limiting joint distribution of such maxima and its
corresponding eigenvector which indicates that these two random variables are asymptotically
independent.

The Gaussian orthogonal ensemble (GOE) is the Gaussian measure defined on the space of
real symmetric matrices, i.e., G = (gij)1≤i,j≤n is a symmetric matrix whose upper triangular
entries are independent real Gaussian variables with the following distribution

gij
d
=

{
NR(0, 2) if i = j;
NR(0, 1) if i < j.

Let λ1(G) > λ2(G) > · · · > λn(G) be eigenvalues of GOE, then the distribution of these
eigenvalues is invariant under the orthogonal group action and the joint density is

(1)
1

Zn

n∏
k=1

e−
1
4λ

2
k

∏
i<j

(
λi − λj

)
,

where

(2) Zn = 2n(n+1)/4(2π)n/2(n!)−1
n∏
j=1

Γ(1 + j/2)

Γ(3/2)

is the partition function. And the limit of the empirical measure of these eigenvalues is given by
the classical semicircle law [1].

Let’s first introduce some notations in order to present our main results. Given symmetric
matrices G = (gij)1≤i≤j≤n sampled from GOE, for α ⊂ {1, · · · , n} with cardinality |α| = m ∈
Z+, we denote Gα = (gij)i,j∈α as the principal minors of G of size m × m, then Gα is also
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symmetric. Let λ1(Gα) > λ2(Gα) > · · · > λm(Gα) be the ordered eigenvalues of Gα. Now we
define the extreme process of the maxima of all the largest eigenvalues of the principal minors as

Tm,n = max
α⊂{1,··· ,n},|α|=m

λ1(Gα).

In [9], the authors studied the asymptotic properties of Tm,n and proved that under the assump-

tion that m fixed or m→ +∞ with m = o
(

(lnn)1/3

ln lnn

)
, it holds

Tm,n − 2
√
m lnn→ 0

in probability as n→ +∞.
In this paper, we further derive the fluctuation of Tm,n when m is fixed as n tends to infinity.

Our first result is the following

Theorem 1. For GOE, we have the following convergence in distribution

T 2
m,n − 4m lnn− 2(m− 2) ln lnn

d−→ Y

as n→ +∞ for fixed m, where the random variable Y has the Gumbel distribution function

FY (y) = exp(−cme−y/4), y ∈ R.

Here, the constant cm = (2m)(m−2)/2Km
(m−1)!23/2Γ(1+m/2)

, where Km = µ(Sm) is the probability of the event

(3) Sm :=
{
x ∈ Sm−1 :

∑
j∈β

x2
j ≤

√
k/m, ∀β ⊂ {1, · · · ,m} with ∀ 1 ≤ |β| = k < m

}
under the uniform distribution µ on the unit sphere Sm−1. In particular, c1 = 1

2
√
π

and c2 =

− 1
2
√

2
+
√

2
π arcsin

(
1
2

)1/4
.

Our proof for Theorem 1 can imply the joint distribution of the maxima of the largest eigen-
values of principal minors and its corresponding eigenvector. To be more precise, given n, let
v∗ ∈ Sm−1 be the unit eigenvector corresponding to the largest eigenvalue of the principal minor
that attains the maxima Tm,n. By symmetry, −v∗ is also the corresponding eigenvector. Now
we have the following limit for the joint distribution of (Tm,n, v

∗).

Theorem 2. Given any y ∈ R and symmetric Borel set Q ⊂ Sm−1 such that −Q = Q, let
y2
m = 4m lnn+ 2(m− 2) ln lnn+ y, then the joint distribution satisfies

(4) P(Tm,n > ym, v
∗ ∈ Q)→ (1− FY (y))ν(Q)

as n → +∞, which implies that Tm,n and v∗ are asymptotically independent. Here, ν is the
uniform distribution on Sm, i.e.,

ν(Q) = µ(Q ∩ Sm)/µ(Sm).

Let a1, ..., an be i.i.d. Gaussian random variables NR(0, 2), for the extreme process

Mn := max{a1, ..., an},
let

an = 2
√

lnn

and

bn = 2
√

lnn− ln lnn+ ln(4π)

2
√

lnn
.

Then for any y ∈ R, the following classical result holds (Theorem 1.5.3 in [14])

lim
n→+∞

P [an (Mn − bn) ≤ y] = e−e
−y/2

.
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One can check that Theorem 1 for T 2
1,n when m = 1 is equivalent to this classical result for Mn. In

this sense, our result is fundamental which can be considered as a natural generalization of such
classical result for the extreme process of the scalar-valued random variables to the matrix-valued
random variables (with correlations).

One motivation to study the maxima of the largest eigenvalues of principle minors is from
the study of compressed sensing, where one has to recover an input vector f from the corrupted
measurements y = Af + e. Here, A is a coding matrix and e is an arbitrary and unknown vector
of errors. The famous result by Candès-Tao [19] is that if the coding matrix A satisfies the
restricted isometry property (Definition 1.1 in [19]), then the input f is the unique solution to
some `1-minimization problem provided that the support S (the number of nonzero entries) of
errors e is not too large. Therefore, one of the major goals in compressed sensing is to construct
the coding matrix A that satisfies the restricted isometry property. In Section 3 of [19], Candès-
Tao proved that the Gaussian random matrices A can satisfy such property with overwhelming
probability, and they can derive the estimate about the support S via the probabilistic estimate
on the maxima of the largest eigenvalues of principle minors of Wishart matrices ATA. A simple
proof based on the concentration measure theory is present in [5]. In this article, we only deal
with the GOE case, but it seems that the method can be applied to the Wishart case and it’s
expected that some Gumbel fluctuation will be observed as well, which can imply better estimates
on S. We would like to postpone the Wishart case for further investigate.

Another motivation is that the extreme process of the maxima of the largest eigenvalues of
principal minors may provide a model that interpolates between the Gumbel distribution in the
Poisson regime and the Tracy-Widom law in the random matrix regime.

It’s well-known that for GOE, the largest eigenvalue Tn,n when m = n in our setting is
asymptotic to 2

√
n, and its fluctuation is given by the Tracy-Widom law,

F1(y) = lim
n→+∞

P
(

(Tn,n − 2
√
n)n1/6 ≤ y

)
,

where F1(y) can be expressed in term of the Painlevé equation [1].
This together with our main result Theorem 1 indicate that there may exist several transi-

tions from the Gumbel distribution to the Tracy-Widom law when m is increasing with n. There
are some other models that have such phenomena. In [13], Johansson studied a family of de-
terminantal processes whose edge behavior interpolates between a Poisson process with density
e−x and the Airy kernel point process. This process can be obtained as a scaling limit of a
grand canonical version of the random MNS-models [16]. Therefore, it provides a model that the
largest eigenvalue has a density transition from the Gumbel distribution to the Tracy-Widom
law. Another important model is provided by the (Gaussian) random band matrices. It’s also
conjectured that there is a transition from the Poisson regime to the random matrix regime
while the band width has different critical growth orders, the results in [18] almost confirm this
conjecture at the spectral edge of some random band matrices.

Our proof of Theorem 1 is based on Lemma 1, which roughly states that if some random
variables are weakly correlated, then the point processes constructed via these random variables
have a chance to converge to the Poisson processes. In our case when m is fixed or a very slowly
varying function of n, the principal minors of size m×m are weakly correlated with each other as
n large enough, therefore, one can expect that the point process of the largest eigenvalues of these
principal minors converges to some Poisson point process, and thus some Gumbel distribution
for the extreme process of the maxima of these largest eigenvalues will be observed in the limit.
But this is not the case if m is a rapid varying function of n such as m =

√
n, and the arguments

in this article will not work, especially, the Poisson limit will not hold any more. Here, we would
like to propose some natural questions such as the descriptions of the intermediate phases and
the critical growth orders of m corresponding to these phases.
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It’s worth mentioning that there are many other contexts about the (principal) minors of
random matrices, and we list few of them as follows. In [10], Diaconis conjectured that the
size of minors of the random matrices sampled from the orthogonal group O(n) with the Haar
measure such that the minors can be approximated by independent standard normals is of order
o(
√
n), which can be considered as a generalization of the classical Poincaré-Borel Lemma. The

conjecture is solved in [12] and we refer to [15] for more details and other relevant results. In
[6, 20] and the reference therein, the authors studied the principal minor assignment problems
of the determinantal point processes with applications in graph theory and machine learning
theory. In statistical physics, the matrix minor process constructed via eigenvalues of minors
of random matrices will form an interlacing particle system. For example, the minor process of
the Gaussian unitary ensemble is a determinantal point process [11]. One can find some other
random matrix minor processes in [2].

Notation. In this paper, c, C and C ′ stand for positive constants, but their values may change
from line to line. For simplicity, the notation an ∼ bn means limn→+∞ an/bn = 1.

2. Proof of Theorem 1

In this section, we will prove Theorem 1 by assuming some technical lemmas where the proofs
of these lemmas are postponed to §3.

The proof of Theorem 1 is based on Lemma 1 with the proof given in [3] by the Stein-Chen
method. It provides a criteria to prove the convergence of the total number of occurrences of the
point process to the Poisson distribution, and thus it provides a method to derive the distribution
for some extreme processes.

Lemma 1. Let I be an index set, and for α ∈ I, let Xα be a Bernoulli random variable with
pα = P(Xα = 1) = 1− P(Xα = 0). For each α ∈ I, let Nα be a subset of I with α ∈ Nα, that is,
α ∈ Nα ⊂ I. Let

S =
∑
α∈I

Xα, λ = ES =
∑
α∈I

pα ∈ (0,+∞),

let Z be the Poisson random variable with intensity EZ = λ, then it holds that

‖L(S)− L(Z)‖ ≤ 2(b1 + b2 + b3),

and the probability of no occurrence has the estimate

|P(S = 0)− e−λ|

=|P(Xα = 0, ∀ α ∈ I)− e−λ|
≤min(1, λ−1)(b1 + b2 + b3).

Here, ‖L(S)− L(Z)‖ is the total variation distance between the distributions S and Z, and

b1 =
∑
α∈I

∑
β∈Nα

pαpβ ,

b2 =
∑
α∈I

∑
α 6=β∈Nα

E[XαXβ ],

b3 =
∑
α∈I

E|E[Xα|σ(Xβ , β 6∈ Nα)]− pα|,

and σ(Xβ , β 6∈ Nα) is the σ-algebra generated by {Xβ , β 6∈ Nα}. In particular, if Xα is indepen-
dent of {Xβ , β 6∈ Nα} for each α, then b3 = 0.
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One may think of Nα as a ‘neighborhood of dependence’ for α such that Xα is independent or
nearly independent of all of Xβ for β /∈ Nα. And Lemma 1 indicates that when b1, b2 and b3 are
all small enough, then S which is the total number of occurrences tends to a Poisson distribution.

2.1. Proof of Theorem 1. Given any `× ` symmetric matrix S, we rearrange the eigenvalues
of S in descending order λ1(S) ≥ · · · ≥ λ`(S), and we denote

(5) |S|2 := TrS2

and

(6) λ∗1(S) := [(λ1(S)2 + |S|2)/2]
1
2 .

For fixed m ≥ 2, we define the index set

Im = {α ⊂ {1, · · · , n}, |α| = m}
and the neighborhood set

Nα = {β ∈ Im : α ∩ β 6= ∅} for α ∈ Im.
Throughout the article, for any fixed real number y, we define

y2
k := 4k lnn+ 2k ln lnn, yk > 0, 1 ≤ k < m

and
y2
m := 4m lnn+ 2(m− 2) ln lnn+ y, ym > 0.

For symmetric matrices G = (gij)1≤i≤j≤n sampled from GOE, for α ∈ Im where |α| = m, we
denote Gα = (gij)i,j∈α as the principal minor of size m×m and we define the event

Aα =
{
λ1(Gα) > ym; λ∗1(Gβ) ≤ yk, ∀ 1 ≤ k < m, β ⊂ α, |β| = k

}
.(7)

Recall the definition of Tm,n in §1, we first have

0 ≤ P(∩α∈ImAcα)− P(Tm,n ≤ ym)

≤ P(λ∗1(Gβ) > yk for some β ∈ Ik, 1 ≤ k < m)

≤
m−1∑
k=1

∑
β∈Ik

P(λ∗1(Gβ) > yk)

=

m−1∑
k=1

(
n

k

)
P(λ∗1(G{1,··· ,k}) > yk).

(8)

Now we need the following lemma and we postpone its proof to the next section.

Lemma 2. For fixed k ≥1, there exists a constant C > 0 (depending on k) so that for all x > 1,

P(|G{1,··· ,k}|2 > x2) ≤ Cxk(k+1)/2−2e−x
2/4,(9)

P(λ1(G{1,··· ,k}) > x) ≤ Cxk−2e−x
2/4,(10)

P(λ∗1(G{1,··· ,k}) > x) ≤ Cxk−2e−x
2/4.(11)

Using (11) we have

(12)

m−1∑
k=1

(
n

k

)
P(λ∗1(G{1,··· ,k}) > yk) ≤ C

m−1∑
k=1

nkyk−2
k e−y

2
k/4 ≤ C/ lnn.

Combining this with (8) we get

(13) 0 ≤ P(∩α∈ImAcα)− P(Tm,n ≤ ym) ≤ C/ lnn,
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and thus we have

(14) lim
n→+∞

P(Tm,n ≤ ym) = lim
n→+∞

P(∩α∈ImAcα).

Therefore, it’s enough to derive the limit of P(∩α∈ImAcα) to prove Theorem 1. By Lemma 1, we
have

(15) |P(∩α∈ImAcα)− e−tn | ≤ bn,1 + bn,2,

where

tn =

(
n

m

)
P(A{1,··· ,m}),

bn,1 ≤
(
n

m

)((
n

m

)
−
(
n−m
m

))
P(A{1,··· ,m})

2,

bn,2 ≤
m−1∑
k=1

(
n

k

)(
n− k
m− k

)(
n−m
m− k

)
P(A{1,··· ,k,··· ,m} ∩A{1,··· ,k,m+1,··· ,2m−k}).

Using (10) we have

P(A{1,··· ,m}) ≤ P(λ1(G{1,··· ,m}) > ym) ≤ Cym−2
m e−y

2
m/4 ≤ Cn−m.

And thus we have

bn,1 ≤ Cn2m−1P(A{1,··· ,m})
2 ≤ C ′n−1,

which tends to 0 in the limit.
It remains to find the limit of tn and show that bn,2 tends to 0 in order to complete the proof

of Theorem 1.
Let α = {1, · · · ,m}, γ = {m − k + 1, · · · ,m}, ζ = {m − k + 1, · · · , 2m − k}, then α ∩ ζ = γ,

|α| = |ζ| = m and |γ| = k. By rearranging the indices, we have

P(A{1,··· ,k,··· ,m} ∩A{1,··· ,k,m+1,··· ,2m−k})

=P(A{1,··· ,m} ∩A{m−k+1,··· ,2m−k})

≤P(λ1(Gα) > ym, λ1(Gζ) > ym,

λ∗1(Gα\γ) ≤ ym−k, λ∗1(Gζ\γ) ≤ ym−k, λ∗1(Gγ) ≤ yk)

=E[P(λ1(Gα) > ym, λ1(Gζ) > ym, λ
∗
1(Gα\γ) ≤ ym−k, λ∗1(Gζ\γ) ≤ ym−k|Gγ)

× 1{λ∗1(Gγ)≤yk}]

=E[P(λ1(Gα) > ym, λ
∗
1(Gα\γ) ≤ ym−k|Gγ)21{λ∗1(Gγ)≤yk}].

The following lemma will imply that bn,2 tends to 0 as n→ +∞.

Lemma 3. For α ∈ Im, γ ⊂ α, |γ| = k, 1 ≤ k < m, β = α \ γ, x > 1, δ, δ′ ∈ (0, 1), then there
are some constants C and C ′ (depending on m, δ and δ′) such that

P(λ1(Gα) > x|Gβ , Gγ)1{λ∗1(Gβ)≤(1−δ)x,λ∗1(Gγ)≤(1−δ′)x}(16)

≤Cx−1(x/(λ∗1(Gβ) + 1) + x/(λ∗1(Gγ) + 1))k(m−k)−1e−(x−λ∗1(Gβ))(x−λ∗1(Gγ))/2

and

P(λ1(Gα) > x, λ∗1(Gβ) ≤ (1− δ)x|Gγ)1{λ∗1(Gγ)≤(1−δ′)x}(17)

≤C ′xm−k−2(x/(λ∗1(Gγ) + 1))k(m−k)−1e((λ∗1(Gγ))2−x2)/4.
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By assuming Lemma 3, we have

E[P(λ1(Gα) > ym, λ
∗
1(Gα\γ) ≤ ym−k|Gγ)21{λ∗1(Gγ)≤yk}]

≤CE[y2m−2k−4
m (ym/(λ

∗
1(Gγ) + 1))2k(m−k)−2e((λ∗1(Gγ))2−y2

m)/21{λ∗1(Gγ)≤yk}]

= : CE[f(λ∗1(Gγ)))1{λ∗1(Gγ)≤yk}](18)

where we define

(19) f(t) = y2m−2k−4
m (ym/(t+ 1))2k(m−k)−2e(t2−y2

m)/2, t ≥ 0.

Integration by parts, we have

E(f(λ∗1(Gγ))1λ∗1(Gγ)≤yk) =

∫ yk

0

f ′(t)P(λ∗1(Gγ) > t)dt

− f(yk)P(λ∗1(Gγ) > yk) + f(0).

(20)

Note that

f ′(t) = −(2k(m− k)− 2)(t+ 1)−1f(t) + tf(t) ≤ tf(t).(21)

Hence, using (11) for t > 1 and (21), we have∫ yk

0

f ′(t)P(λ∗1(Gγ) > t)dt

≤
∫ 1

0

tf(t)dt+

∫ yk

1

f ′(t)P(λ∗1(Gγ) > t)dt

≤ max
0≤t≤1

f(t) + C

∫ yk

1

ty2m−2k−4
m (ym/(t+ 1))2k(m−k)−2e(t2−y2

m)/2tk−2e−t
2/4dt.

(22)

Therefore, by (20) we further have

E(f(λ∗1(Gγ))1λ∗1(Gγ)≤yk) ≤ 2 max
0≤t≤1

f(t)

+ C

∫ yk

1

ty2m−2k−4
m (ym/(t+ 1))2k(m−k)−2e(t2−y2

m)/2tk−2e−t
2/4dt.

(23)

We now separate this integration into 1 < t < yk/2 and yk/2 < t < yk. For 1 < t < yk/2 the
integrand is bounded by

Cy2m−k−6
m y2k(m−k)−1

m ey
2
k/16−y2

m/2,

where we used the fact that yk ≤ ym for n large enough. For yk/2 < t < yk, we can bound the
integrand by

Cy2m−k−6
m tet

2/4−y2
m/2,

where we used the fact that ym/yk ≤ 2
√
m/k as n large enough. Therefore, as n large enough,

we have ∫ yk

1

f ′(t)P(λ∗1(Gβ) > t)dt

≤Cy2m−k−6
m e−y

2
m/2

(∫ yk/2

1

y2k(m−k)−1
m ey

2
k/16dt+

∫ yk

yk/2

tet
2/4dt

)
≤Cy2m−k−6

m e−y
2
m/2

(
y2k(m−k)
m ey

2
k/16 + ey

2
k/4
)

≤Cy2m−k−6
m ey

2
k/4−y

2
m/2,

(24)

where in the last inequality we used the fact that y
2k(m−k)
m e−3y2

k/16 can be bounded from above
uniformly for all n.
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The definition of f(t) in (19) and the fact that ym/yk ∼
√
m/k imply

(25) max
0≤t≤1

f(t) ≤ y2m−2k−4
m y2k(m−k)−2

m e(1−y2
m)/2 ≤ Cy2m−k−6

m ey
2
k/4−y

2
m/2

as n large enough. It follows from (18), (23), (24) and (25) that

E[P(λ1(Gα) > ym, λ
∗
1(Gα\γ) ≤ ym−k|Gγ)21{λ∗1(Gγ)≤yk}]

≤Cy2m−k−6
m ey

2
k/4−y

2
m/2

(26)

as n large enough. Therefore, we have

bn,2 ≤
m−1∑
k=1

(
n

k

)(
n− k
m− k

)(
n−m
m− k

)
P(A{1,··· ,k,··· ,m} ∩A{1,··· ,k,m+1,··· ,2m−k})

≤
m−1∑
k=1

n2m−kP(A{1,··· ,m} ∩A{1,··· ,k,m+1,··· ,2m−k})

≤ C
m−1∑
k=1

n2m−ky2m−k−6
m ey

2
k/4−y

2
m/2

≤ C
m−1∑
k=1

y2m−k−6
m (lnn)k/2−m+2 ≤ C(lnn)−1,

(27)

which tends to 0 as n→ +∞.
The following lemma gives the limit of tn.

Lemma 4. We have the limit

(28) lim
n→+∞

tn = cme
−y/4,

where

cm =
(2m)(m−2)/2Km

(m− 1)!23/2Γ(1 +m/2)
,

where Km is the constant defined in Theorem 1.

By assuming Lemma 4, by (15) together with the facts that bn,1 → 0 and bn,2 → 0, we can
conclude that

lim
n→+∞

P(∩α∈IAcα) = exp(−cme−y/4).

By (14), this further implies

lim
n→+∞

P(Tm,n ≤ ym) = exp(−cme−y/4),

which proves Theorem 1.

3. Proofs of lemmas

In this section, we will prove Lemma 2, Lemma 3 and Lemma 4, and thus we complete the
proof of Theorem 1.
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3.1. Proof of Lemma 2.

Proof. We simply have the following estimates. For s ∈ R, there are some constants C,C ′ > 0
depending on s such that for all x > 1 we have

(29)

∫ +∞

x

rs exp(−r)dr ≤ Cxs exp(−x)

and

(30)

∫ +∞

x

rs exp(−r2/2)dr ≤ C ′xs−1 exp(−x2/2).

Now let g1, . . . , g` be ` independent NR(0, 1) random variables, then for all t ≥ 1, we have

(31) P
(∑̀
i=1

g2
i ≥ t

)
≤ Ct`/2−1 exp(−t/2),

where C > 0 only depends on `. The proof of (31) follows if we combine the estimate (29) and

the fact that the probability density of the chi-squared distribution χ2(`) :=
∑`
i=1 g

2
i with `

degrees of freedom is given by
1

2`/2Γ(`/2)
x`/2−1e−x/2.

Lemma 2 holds obviously when k = 1 (note that gii
d
= NR(0, 2)), and thus in the followings we

consider the case when k ≥ 2. By the definition of the principal minor, G1,...,k = (gij)1≤i,j≤k is

also sampled from GOE. Now let ḡij = gij if j 6= i and gij/
√

2 otherwise, then ḡij , 1 ≤ i ≤ j ≤ k
are i.i.d. NR(0, 1) random variables. To prove (9), we note that by definition,

|G1,...,k|2 = Tr(G2
1,...,k) =

k∑
i,j=1

g2
ij = 2

∑
1≤i≤j≤k

ḡ2
ij ,

therefore, by (29) and (31) we have

P(|G1,...,k|2 > x2) = P
( ∑

1≤i≤j≤k

ḡ2
ij > x2/2

)
≤ Cxk(k+1)/2−2e−x

2/4.

This proves (9). To prove (10), by formula (1), the joint density of eigenvalues λ1 ≥ · · · ≥ λk of
G{1,··· ,k} is

Jk(λ1, . . . , λk) =
1

Zk

∏
1≤i<j≤k

(λi − λj) exp

(
−
∑k
i=1 λ

2
i

4

)
.

Note that if λ1 > x > 1, we have λ1 − λj ≤ (λ1 + 1)(|λj |+ 1) ≤ 2λ1(|λj |+ 1), and thus we have

(32)
∏

1≤i<j≤k

(λi − λj) ≤ Cλk−1
1

∏
2≤i≤k

(|λi|+ 1)
∏

2≤i<j≤k

(λi − λj),

which further implies∫
λ1>x

Jk(λ1, . . . , λk)dλ1 · · · dλk ≤ C
∫ ∞
x

λk−1
1 exp(−λ2

1/4)dλ1

×
∫

+∞>λ2>···>λk>−∞

∏
2≤i≤k

(|λi|+ 1)
∏

2≤i<j≤k

(λi − λj) exp

(
−
∑k
i=2 λ

2
i

4

)
dλ2 · · · dλk,

which is bounded from above by C ′xk−2 exp(−x2/4) by (30), thereby proving (10).
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Now we prove (11). By definition of λ∗1(G1,...,k), we have

P(λ∗1(G1,...,k) > x)

=P

(
k∑
i=2

λ2
i + 2λ2

1 > 2x2

)

≤
b
√

2xc+1∑
y=0

P

(
2λ2

1 > (2x2 − (y + 1)2)+, y
2 ≤

k∑
i=2

λ2
i ≤ (y + 1)2

)

+ P

(
k∑
i=2

λ2
i > 2x2

)
:=I1 + I2.

By the fact λ1 − λj ≤ (|λ1|+ 1)(|λj |+ 1) for all 2 ≤ j ≤ k, we first have

(33)
∏

1≤i<j≤k

(λi − λj) ≤ C(|λ1|+ 1)k−1
∏

2≤i≤k

(|λi|+ 1)
∏

2≤i<j≤k

(λi − λj).

Then by the inequality of arithmetic and geometric means, for
∑k
i=2 λ

2
k ≥ 1, we have

∏
2≤i≤k

(|λi|+ 1)
∏

2≤i<j≤k

(λi − λj) ≤
∏

2≤i≤k

(|λi|+ 1)
∏

2≤i<j≤k

(|λi|+ |λj |)

≤

(
1 +

∑k
i=2 |λi|

k/2

)k(k−1)/2

≤

1 +
√
k − 1

√∑k
i=2 λ

2
i

k/2

k(k−1)/2

≤ C

(
k∑
i=2

λ2
i

)k(k−1)/4

.

(34)

Therefore, for x > 1, combining (33) and (34), we can bound I2 as follows

∫
∑k
i=2 λ

2
i>2x2>2

Jk(λ1, . . . , λk)dλ1 · · · dλk ≤ C
∫ ∞

0

(|λ1|+ 1)k−1 exp(−λ2
1/4)dλ1

×
∫
∑k
i=2 λ

2
i>2x2

(
k∑
i=2

λ2
i

)k(k−1)/4

exp

(
−

k∑
i=2

λ2
i /4

)
dλ2 · · · dλk.

The first integral is bounded. Using the polar coordinate to the second integral, and by (30) we
have the bound

(35) I2 ≤ C
∫
r>
√

2x

rk(k−1)/2 exp(−r2/4)rk−2dr ≤ Cxk(k+1)/2−3 exp(−x2/2),

which can be further bounded by C ′xk−2 exp(−x2/4) for x > 1 by choosing C ′ large enough.
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Now we estimate I1 for x > 1. For the case x2 − (y + 1)2/2 > 1, by (30) and (32), we have

P

(
2λ2

1 > (2x2 − (y + 1)2)+, y
2 ≤

k∑
i=2

λ2
i ≤ (y + 1)2

)

≤C
∫
λ2

1>x
2−(y+1)2/2>1

|λ1|k−1 exp(−λ2
1/4)dλ1

×
∫
λ2>···>λk:(y+1)2≥

∑k
i=2 λ

2
i≥y2

∏
2≤i≤k

(|λi|+ 1)
∏

2≤i<j≤k

(λi − λj) exp
(
−

k∑
i=2

λ2
i /4
)
dλ2 · · · dλk

≤Cxk−2 exp(−(x2 − (y + 1)2/2)/4)

×
∫
Rk−1:(y+1)2≥

∑k
i=2 λ

2
i≥y2

∏
2≤i≤k

(|λi|+ 1)
∏

2≤i<j≤k

(|λi|+ |λj |) exp(−
k∑
i=2

λ2
i /4)dλ2 · · · dλk.

We denote the last integral as

Ak(y) :=

∫
Rk−1:(y+1)2≥

∑k
i=2 λ

2
i≥y2

∏
2≤i≤k

(|λi|+ 1)
∏

2≤i<j≤k

(|λi|+ |λj |) exp(−
k∑
i=2

λ2
i /4)dλ2 · · · dλk.

For the case x2 − (y + 1)2/2 ≤ 1, by (33) and the arguments as above, we simply have

P

(
2λ2

1 > (2x2 − (y + 1)2)+, y
2 ≤

k∑
i=2

λ2
i ≤ (y + 1)2

)

≤C
(∫

R
(|λ1|+ 1)k−1 exp(−λ2

1/4)dλ1

)
Ak(y)

≤CAk(y)

≤Cxk−2 exp(−(x2 − (y + 1)2/2)/4)Ak(y)

for x > 1. Therefore, in both cases, by the polar coordinate, we further have the upper bound,

P

(
2λ2

1 > (2x2 − (y + 1)2)+, y
2 ≤

k∑
i=2

λ2
i ≤ (y + 1)2

)

≤Cxk−2e−x
2/4

∫
y+1>r>y

(1 + r)k−1r(k−1)(k−2)/2rk−2 exp((r + 1)2/8− r2/4)dr.

By taking the summation, I1 can be bounded from above by

I1 ≤Cxk−2 exp(−x2/4)

∫ b√2xc+1

0

(1 + r)k−1r(k−1)(k−2)/2rk−2 exp((r + 1)2/8− r2/4)dr

≤Cxk−2 exp(−x2/4)

∫ +∞

0

· · · = C ′xk−2 exp(−x2/4).

This will complete the proof of (11) by the estimates of I1 and I2. �

3.2. Proof of Lemma 3.

Proof. We first prove (16). We claim that (16) is equivalent to the following statement: for any
δ > 0, x > 1, there exists a constant C depending on δ, such that

P(λ1(Gα) > x|Gβ , Gγ)1{λ∗1(Gβ)≤(1−δ)x,λ∗1(Gγ)≤(1−δ)x}(36)

≤Cx−1(x/(λ∗1(Gβ) + 1) + x/(λ∗1(Gγ) + 1))k(m−k)−1e−(x−λ∗1(Gβ))(x−λ∗1(Gγ))/2.
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The implication that (16) ⇒ (36) is trivial. We now show that (36) implies (16). For any
δ, δ′ ∈ (0, 1), we define δ̄ = min{δ, δ′}. (36) implies that there exists a constant C(δ̄) such that

P(λ1(Gα) > x|Gβ , Gγ)1{λ∗1(Gβ)≤(1−δ̄)x,λ∗1(Gγ)≤(1−δ̄)x}(37)

≤Cx−1(x/(λ∗1(Gβ) + 1) + x/(λ∗1(Gγ) + 1))k(m−k)−1e−(x−λ∗1(Gβ))(x−λ∗1(Gγ))/2.

(37) implies (16) since{
λ∗1(Gβ) ≤ (1− δ)x, λ∗1(Gγ) ≤ (1− δ′)x

}
⊂
{
λ∗1(Gβ) ≤ (1− δ̄)x, λ∗1(Gγ) ≤ (1− δ̄)x

}
.

This completes the proof of the equivalence between (16) and (36). We now prove (36). Without
loss of generality, we may assume

α = {1, . . . ,m}, γ = {1, . . . , k}, β = {k + 1, . . . ,m}.

Since Gβ and Gγ are both symmetric matrices sampled from GOE (independently), we can find
orthogonal matrices U and U ′ such that

UGβU
t = X, U ′GγU

′t = Z,

where the diagonal matrices

X =


λ1(Gβ)

λ2(Gβ)
. . .

λ`(Gβ)

 , Z =


λ1(Gγ)

λ2(Gγ)
. . .

λk(Gγ)

 ,

where ` := m− k.
It follows that (

U
U ′

)
Gα

(
U t

U ′
t

)
=

(
X V
V t Z

)
,

where V is an `× k matrix with i.i.d. NR(0, 1) entries.
Given any 1×m vector v, we decompose it as

v = (p,q), p = (p1, . . . , p`), q = (q1, . . . , qk),

then we have

v

(
X V
V t Z

)
vt =

∑̀
i=1

λi(Gβ)p2
i +

k∑
j=1

λj(Gγ)q2
j + 2

∑̀
i=1

k∑
j=1

pivijqj .

For simplicity, we use P∗ to denote the conditional probability (conditional on Gβ and Gγ). By
Rayleigh quotient, for x > 1, we have

P∗(λ1(Gα) > x)

=P∗
∃(p,q) 6= 0,

∑̀
i=1

λi(Gβ)p2
i +

k∑
j=1

λj(Gγ)q2
j + 2

∑̀
i=1

k∑
j=1

pivijqj ≥ x
∑̀
i=1

p2
i + x

k∑
j=1

q2
j


=P∗

∃(p,q) 6= 0, 2
∑̀
i=1

k∑
j=1

pivijqj ≥
∑̀
i=1

(x− λi(Gβ))p2
i +

k∑
j=1

(x− λj(Gγ)q2
j

 .

We define the event

Ω :=
{
λ∗1(Gβ) ≤ (1− δ)x, λ∗1(Gγ) ≤ (1− δ)x

}
.

For the rest of the proof, all the arguments are restricted on the event Ω and x > 1.
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On Ω, by the definition λ∗(A) for any symmetric matrix A in (6), we simply have x+
√

2(1−
δ)x ≥ x−λi(Gβ) ≥ x−λ∗1(Gβ) ≥ δx > 0 and x+

√
2(1−δ)x ≥ x−λj(Gγ) ≥ x−λ∗1(Gγ) ≥ δx > 0.

Therefore, on Ω it holds that

(38) zij := (x− λi(Gβ))(x− λj(Gγ)) ∈ [δ2x2, (
√

2−
√

2δ + 1)2x2].

We denote

p̄i =
√
x− λi(Gβ)pi, q̄j =

√
x− λj(Gγ)qj , v̄ij =

vij√
zij
.

Using Cauchy-Schwartz inequality we have

2
∑̀
i=1

k∑
j=1

p̄iv̄ij q̄j ≤ 2

√√√√√√
(∑̀
i=1

p̄2
i

)∑̀
i=1

 k∑
j=1

v̄ij q̄j

2


≤ 2

√√√√√(∑̀
i=1

p̄2
i

) k∑
j=1

q̄2
j

∑̀
i=1

k∑
j=1

v̄2
ij


≤

√√√√∑̀
i=1

k∑
j=1

v̄2
ij

∑̀
i=1

p̄2
i +

k∑
j=1

q̄2
j

 .

Therefore, we further have the probabilistic estimate of λ1(Gα) as

P∗(λ1(Gα) > x)

=P∗
∃(p̄, q̄) 6= 0, 2

∑̀
i=1

k∑
j=1

p̄iv̄ij q̄j ≥
∑̀
i=1

p̄2
i +

k∑
j=1

q̄2
j


≤P∗

∑̀
i=1

k∑
j=1

v̄2
ij ≥ 1

 .

If k = ` = 1, on the event Ω, by (30) for Gaussian random variable v11 we have

P∗(v̄2
11 ≥ 1) = P∗(v2

11 > z11) ≤ C
√
z11

exp(−z11/2)

≤ C

x
exp(−(x− λ1(Gβ))(x− λ1(Gγ))/2)

≤ C

x
exp(−(x− λ∗1(Gβ))(x− λ∗1(Gγ))/2),

(39)

where we have used the fact that z11 ≥ δ2x2. This will imply (36) in the case m = 2, k = ` = 1.
Now we consider the case k ≥ 2 or ` ≥ 2. We define

κ =


min

{
λ1(Gβ)−λ2(Gβ)

x−λ2(Gβ) ,
λ1(Gγ)−λ2(Gγ)

x−λ2(Gγ)

}
if `, k ≥ 2;

λ1(Gβ)−λ2(Gβ)
x−λ2(Gβ) if k = 1, ` ≥ 2;

λ1(Gγ)−λ2(Gγ)
x−λ2(Gγ) if ` = 1, k ≥ 2.

On the event Ω, one can show that

(40) 0 ≤ κ ≤ (1− δ)x− λ2(Gβ)

x− λ2(Gβ)
≤ (1− δ)x− (−

√
2(1− δ)x)

x− (−
√

2(1− δ)x)
=

(1 +
√

2)(1− δ)
1 +
√

2(1− δ)
:= cδ < 1.
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Note that∑̀
i=1

k∑
j=1

v̄2
ij =

∑̀
i=1

k∑
j=1

v2
ij

(x− λi(Gβ))(x− λj(Gγ))

=
1

(x− λ1(Gβ))(x− λ1(Gγ))

v2
11 +

∑
(i,j)6=(1,1)

(x− λ1(Gβ))(x− λ1(Gγ))

(x− λi(Gβ))(x− λj(Gγ))
v2
ij


≤ 1

(x− λ1(Gβ))(x− λ1(Gγ))

v2
11 + (1− κ)

∑
(i,j)6=(1,1)

v2
ij

 ,

where we used the fact that

(x− λ1(Gβ))(x− λ1(Gγ))

(x− λi(Gβ))(x− λj(Gγ))
≤ max

{
x− λ1(Gβ)

x− λ2(Gβ)
,
x− λ1(Gγ)

x− λ2(Gγ)

}
= 1−min

{
λ1(Gβ)− λ2(Gβ)

x− λ2(Gβ)
,
λ1(Gγ)− λ2(Gγ)

x− λ2(Gγ)

}

for (i, j) 6= (1, 1). Hence, by (31) we can conclude the following bounds on the event Ω

P∗(λ1(Gα) > x)

≤P∗
∑̀
i=1

k∑
j=1

v̄2
ij ≥ 1


≤P∗

v2
11 + (1− κ)

∑
(i,j)6=(1,1)

v2
ij ≥ z11


≤P∗

∑̀
i=1

k∑
j=1

v2
ij ≥ z11


≤Czk`/2−1

11 exp(−z11/2)

≤Cxk`−2 exp(−(x− λ1(Gβ))(x− λ1(Gγ))/2),

(41)

where in the last step we used (38), and C is a constant depending on δ and m.
We now consider the case when one of the following two conditions holds.
Condition 1: λ∗1(Gβ) ≤ 1 or λ∗1(Gγ) ≤ 1. Under this condition, since λ1(Gβ) ≤ λ∗1(Gβ) and

λ1(Gγ) ≤ λ∗1(Gγ), we have

P∗
∑̀
i=1

k∑
j=1

v̄2
i,j ≥ 1

 ≤ Cxk`−2 exp(−(x− λ∗1(Gβ))(x− λ∗1(Gγ))/2),

which further yields the bound (36) by the assumption λ∗1(Gβ) ≤ 1 or λ∗1(Gγ) ≤ 1.
Condition 2: max{|λi(Gβ)| , 2 ≤ i ≤ `} > |λ1(Gβ)| /2 or max{|λi(Gγ)| , 2 ≤ i ≤ k} >

|λ1(Gγ)| /2. If condition 1 fails (i.e., λ∗1(Gβ) > 1 and λ∗1(Gγ) > 1) and condition 2 holds (say,
max{|λi(Gβ)| , 2 ≤ i ≤ `} > |λ1(Gβ)| /2), then we have

λ∗1(Gβ)− λ1(Gβ) =

∑`
i=2 λ

2
i (Gβ)

2(λ∗1(Gβ) + λ1(Gβ))
≥ C(λ∗1(Gβ))2

4λ∗1(Gβ)
= C ′λ∗1(Gβ).
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In this case, on Ω we have

(x− λ∗1(Gβ))(x− λ∗1(Gγ)) ≤ (x− λ1(Gβ))(x− λ∗1(Gγ))− (λ∗1(Gβ)− λ1(Gβ))δx

≤ (x− λ1(Gβ))(x− λ1(Gγ))− C ′λ∗1(Gβ)δx

≤ (x− λ1(Gβ))(x− λ1(Gγ))− C ′δx.
(42)

Using (41), we have

P∗(λ1(Gα) > x) ≤ Cxk`−2 exp(−(x− λ∗1(Gβ))(x− λ∗1(Gγ))/2) exp(−C ′δx).

This can be further bounded from above by

Cx−1
( x

1 + λ∗1(Gβ)
+

x

1 + λ∗1(Gγ)

)k`−1

exp(−(x− λ∗1(Gβ))(x− λ∗1(Gγ))/2),

this is because on Ω it holds

exp(−C ′δx) ≤ C
( 1

1 + (1− δ)x

)k`−1

≤ C
( 1

1 + λ∗1(Gβ)
+

1

1 + λ∗1(Gγ)

)k`−1

for x > 1 by choosing C large enough. Note that the constant C > 0 only depends on m and δ,
and does not depend on (the conditional) λ∗1(Gβ) and λ∗1(Gγ).

As a summary, we have verified (36) when either of the two conditions is satisfied. Now we
assume that both conditions fail so that λ∗1(Gβ) > 1, λ∗1(Gγ) > 1, max{|λi(Gβ)| , 2 ≤ i ≤ `} ≤
|λ1(Gβ)| /2 and max{|λi(Gγ)| , 2 ≤ i ≤ k} ≤ |λ1(Gγ)| /2. Then there exists a constant c > 0 such
that

λ1(Gβ)− λ2(Gβ) ≥ cλ∗1(Gβ) ≥ c and λ1(Gγ)− λ2(Gγ) ≥ cλ∗1(Gγ) ≥ c.
Therefore, by definition of κ, (40) and the assumptions λ∗1(Gβ) > 1, λ∗1(Gγ) > 1, we have

(43) 1 > cδ ≥ κ ≥ cmin
{ λ∗1(Gβ)

x− λ2(Gβ)
,

λ∗1(Gγ)

x− λ2(Gγ)

}
≥ c

2
min

{λ∗1(Gβ) + 1

x− λ2(Gβ)
,
λ∗1(Gγ) + 1

x− λ2(Gγ)

}
.

By the fact that 0 < δx ≤ x− λ2(Gβ), x− λ2(Gγ) ≤ x+
√

2(1− δ)x on Ω, we further have

(44) cδ ≥ κ ≥ Cδ min
{λ∗1(Gβ) + 1

x
,
λ∗1(Gγ) + 1

x

}
,

which implies

(45)
1

κ
≤ Cx

(
1

λ∗1(Gβ) + 1
+

1

λ∗1(Gγ) + 1

)
for some constant C > 0 that depends on m and δ. Note that the probability density function
p(t) for v2

11 is exp(−t/2)/
√

2πt, recall (41), we have

P∗
∑̀
i=1

k∑
j=1

v̄2
ij ≥ 1


≤P∗

v2
11 + (1− κ)

∑
(i,j) 6=(1,1)

v2
ij > z11


=

∫ z11

0

exp(−(z11 − t)/2)√
2π(z11 − t)

P∗
(1− κ)

∑
(i,j)6=(1,1)

v2
ij > t

 dt+ P∗(v2
11 > z11)

≤C exp(−z11/2)

 1
√
z11

+

∫ z11

0

exp(t/2)√
z11 − t

P∗
(1− κ)

∑
(i,j)6=(1,1)

v2
ij > t

 dt

 ,
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where we have used P∗(v2
11 > z11) ≤ Ce−z11/2

√
z11

by (31). By (31) again, we have

P∗
(1− κ)

∑
(i,j) 6=(1,1)

v2
i,j > t

 ≤ C ( t

1− κ

)(k`−1)/2−1

exp

(
− t

2(1− κ)

)

≤ Ct(k`−1)/2−1 exp

(
− t

2(1− κ)

)
,

where in the last inequality we used the fact that 1− κ ≥ 1− cδ > 0 by (40). It follows that

P∗
∑̀
i=1

k∑
j=1

v̄2
ij ≥ 1


≤C exp(−z11/2)

(
1
√
z11

+

∫ z11

0

t(k`−3)/2

√
z11 − t

exp

(
t

2
− t

2(1− κ)

)
dt

)
≤C ′ exp(−z11/2)

(
1
√
z11

+
1
√
z11

∫ z11/2

0

t(k`−3)/2 exp

(
− κt

2(1− κ)

)
dt

+z
(k`−3)/2
11 exp

(
− κz11

4(1− κ)

)∫ z11

z11/2

1√
z11 − t

dt

)

≤C ′ exp(−z11/2)
√
z11

(
1 +

(
1

κ

)(k`−1)/2 ∫ ∞
0

s(k`−3)/2 exp(−s)ds

+ z
(k`−1)/2
11 exp

(
− κz11

4

))
.

Note that the integration of s(k`−3)/2 exp(−s) converges since k` ≥ 2, and thus the second term
can be bounded from above by c(1/κ)(k`−1)/2. For the third term, the global maxima of the
function x(k`−1)/2e−κx/4 is obtained at the point x = c′/κ, here c′ depends on k, `, and thus
the third term can be bounded from above by C(1/κ)(k`−1)/2, where C depends on δ and m.
Therefore, on Ω we have

P∗
∑̀
i=1

k∑
j=1

v̄2
ij ≥ 1


≤C ′ exp(−z11/2)

√
z11

(
1 + c(1/κ)(k`−1)/2 + C(1/κ)(k`−1)/2

)
≤C ′ exp(−z11/2)

√
z11

(
(1/κ)(k`−1)/2 + c(1/κ)(k`−1)/2 + C(1/κ)(k`−1)/2

)
[since 1 < 1/κ]

=C
exp(−z11/2)
√
z11

(1/κ)(k`−1)/2

≤C exp(−z11/2)
√
z11

(1/κ)k`−1

≤Cx−1

(
x

λ∗1(Gβ) + 1
+

x

λ∗1(Gγ) + 1

)k`−1

exp(−(x− λ∗1(Gβ))(x− λ∗1(Gγ))/2)) [by (38), (45)].

This proves (36), and thus we complete the proof of (16).
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We now prove (17) using (11) and (16). By convexity of the function s→ sk(m−k)−1 for s > 0,
we have

x−1(x/(λ∗1(Gβ) + 1) + x/(λ∗1(Gγ) + 1))k(m−k)−1e−(x−λ∗1(Gβ))(x−λ∗1(Gγ))/2

≤Cx−1(x/(λ∗1(Gβ) + 1))k(m−k)−1e−(x−λ∗1(Gβ))(x−λ∗1(Gγ))/2

+ Cx−1(x/(λ∗1(Gγ) + 1))k(m−k)−1e−(x−λ∗1(Gβ))(x−λ∗1(Gγ))/2

:=I3 + I4.

(46)

Let Ē be the conditional expectation with respect to Gγ and ` := m− k as before, and we define

f(t) = x−1(x/(t+ 1))k`−1 exp(−(x− t)(x− λ∗1(Gγ))/2)

and

h(t) = x−1(x/(λ∗1(Gγ) + 1))k`−1 exp(−(x− t)(x− λ∗1(Gγ))/2).

We define the event

Ω′ = {λ∗1(Gγ) ≤ (1− δ′)x}.
Using (16) and (46), we have

P(λ1(Gα) > x, λ∗1(Gβ) ≤ (1− δ)x|Gγ)1{λ∗1(Gγ)≤(1−δ′)x}

=E[E
(
1{λ1(Gα)>x, λ∗1(Gβ)<(1−δ)x}|Gβ , Gγ

)
|Gγ ]1{λ∗1(Gγ)≤(1−δ′)x}

=E[E
(
1{λ1(Gα)>x}|Gβ , Gγ

)
1{λ∗1(Gβ)<(1−δ)x}1{λ∗1(Gγ)≤(1−δ′)x}|Gγ ]1{λ∗1(Gγ)≤(1−δ′)x}

≤CĒ
(
x−1(x/(λ∗1(Gβ) + 1) + x/(λ∗1(Gγ) + 1))k`−1

× exp
(
− (x− λ∗1(Gβ))(x− λ∗1(Gγ))/2

)
1{λ∗1(Gβ)≤(1−δ)x}

)
1

Ω′

≤CĒ(I31{λ∗1(Gβ)≤(1−δ)x})1Ω′ + CĒ(I41{λ∗1(Gβ)≤(1−δ)x})1Ω′

≤C
(
Ē(f(λ∗1(Gβ))1{λ∗1(Gβ)<(1−δ)x})1Ω′ + Ē(h(λ∗1(Gβ))1{λ∗1(Gβ)<(1−δ)x})1Ω′

)
.

(47)

Note that Gβ and Gγ are independent, therefore, λ∗1(Gβ) and λ∗1(Gγ) are independent as well.
Hence for any t > 0, P̄(λ∗1(Gβ) > t) is equal to unconditional probability P(λ∗1(Gβ) > t). Then
using integration by parts, we have

Ē(f(λ∗1(Gβ))1{λ∗1(Gβ)<(1−δ)x}) =

∫ (1−δ)x

0

f ′(t)P(λ∗1(Gβ) > t)dt

− f((1− δ)x)P(λ∗1(Gβ) > (1− δ)x) + f(0).

(48)

On the event Ω′ = {λ∗1(Gγ) ≤ (1− δ′)x}, one has

f ′(t) ≤ 1

2
(x/(t+ 1))k`−1 exp(−(x− t)(x− λ∗1(Gγ))/2).

Therefore, we have∫ 1

0

f ′(t)P(λ∗1(Gβ) > t)dt ≤ 1

2
xk`−1 exp(−(x− 1)(x− λ∗1(Gγ))/2)

=
1

2
xk`−1e1/4 exp((λ∗1(Gγ)2 − x2)/4) exp

(
− ((x− λ∗1(Gγ))− 1)2

4

)
.

(49)

On the event Ω′, we have x− λ∗1(Gγ) ≥ δ′x. Therefore, for C large enough, one has

(50) exp

(
− ((x− λ∗1(Gγ))− 1)2

4

)
≤ C exp(−δ′2x2/8).
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It further follows from (49) and (50) that for x > 1, there exists C large enough such that

(51)

∫ 1

0

f ′(t)P(λ∗1(Gβ) > t)dt ≤ Cx`−2 exp(((λ∗1(Gγ))2 − x2)/4).

If (1− δ)x ≤ 1, then we trivially have

(52)

∫ (1−δ)x

0

f ′(t)P(λ∗1(Gβ) > t)dt ≤
∫ 1

0

· · · ≤ Cx`−2 exp(((λ∗1(Gγ))2 − x2)/4).

Now we consider the case when (1− δ)x ≥ 1. Recall (11) in Lemma 2, we have

(53) P(λ∗1(Gβ) > t) ≤ Ct`−2 exp(−t2/4), t ≥ 1,

this implies that∫ (1−δ)x

1

f ′(t)P(λ∗1(Gβ) > t)dt ≤ Cx`−2 exp(((λ∗1(Gγ))2 − x2)/4)

×
∫ (1−δ)x

1

(x/(t+ 1))k`−1 exp(−(t− (x− λ∗1(Gγ)))2/4)dt,

(54)

where we have used the identity

− (x− t)(x− λ∗1(Gγ))/2− t2/4

=− (t− (x− λ∗1(Gγ)))2

4
+

(x− λ∗1(Gγ))2

4
− x(x− λ∗1(Gγ))

2

=− (t− (x− λ∗1(Gγ)))2

4
+

(λ∗1(Gγ))2 − x2

4
.

On Ω′, we have,∫ (1−δ)x

1

(x/(t+ 1))k`−1 exp(−(t− (x− λ∗1(Gγ)))2/4)dt

≤
∫ min{δ′x/2,(1−δ)x}

0

xk`−1 exp(−(δ′)2x2/16)dt

+

∫ (1−δ)x

min{δ′x/2,(1−δ)x}

( 2

δ′
+

1

1− δ

)k`−1

exp(−(t− (x− λ∗1(Gγ)))2/4)dt

≤Cxk` exp(−(δ′)2x2/16) + C ≤ C ′.

(55)

Combining (51), (54) and (55), for (1− δ)x > 1, we have

(56)

∫ (1−δ)x

0

f ′(t)P(λ∗1(Gβ) > t)dt =

∫ 1

0

· · ·+
∫ (1−δ)x

1

· · · ≤ Cx`−2 exp(((λ∗1(Gγ))2 − x2)/4).

By (52), the above estimate is actually true for all x > 1 on Ω′. We also have

(57) f(0) = xk`−2 exp(−x(x− λ∗1(Gγ))/2) ≤ Cx`−2 exp(((λ∗1(Gγ))2 − x2)/4)

for C large enough, this is because on Ω′ we have

−x(x− λ∗1(Gγ))/2− ((λ∗1(Gγ))2 − x2)/4 = −(x− λ∗1(Gγ))2/4 ≤ −δ′2x2.

Combining (48), (56) and (57), on Ω′ we get

(58) Ē(f(λ∗1(Gβ))1{λ∗1(Gβ)<(1−δ)x}) ≤ C ′x`−2 exp(((λ∗1(Gγ))2 − x2)/4).

On Ω′, for x > 1, it holds that x/(λ∗1(Gγ) + 1) ≥ x/((1 − δ′)x + 1) ≥ 1/(2 − δ′), therefore, we
further have the upper bound,

(59) Ē(f(λ∗1(Gβ))1{λ∗1(Gβ)<(1−δ)x}) ≤ C ′x`−2(x/(λ∗1(Gγ) + 1))k`−1 exp(((λ∗1(Gγ))2 − x2)/4).
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We can similarly control the conditional expectation of h(λ∗1(Gβ))1{λ∗1(Gβ)≤(1−δ)x}. Analo-
gously to (48), we have

Ē(h(λ∗1(Gβ))1{λ∗1(Gβ)<(1−δ)x}) =

∫ (1−δ)x

0

h′(t)P(λ∗1(Gβ) > t)dt

− h((1− δ)x)P(λ∗1(Gβ) > (1− δ)x) + h(0).

(60)

On the event Ω′ = {λ∗1(Gγ) ≤ (1− δ′)x}, one has

h′(t) ≤ 1

2
(x/(λ∗1(Gγ) + 1))k`−1 exp(−(x− t)(x− λ∗1(Gγ))/2).

We basically repeat the proofs of (56) and (57) to get

Ē(h(λ∗1(Gβ))1{λ∗1(Gβ)<(1−δ)x}) ≤ Cx`−2(x/(λ∗1(Gγ) + 1))k`−1 exp(((λ∗1(Gγ))2 − x2)/4).(61)

Then (17) follows from (47), (59) and (61) (recall that ` = m− k). �

3.3. Proof of Lemma 4.

Proof. By the definition of Aα in (7) with α = {1, 2, ...,m}, we have

P(A{1,2,...,m})

=P(λ1(Gα) > ym; λ∗1(Gβ) ≤ yk, ∀ 1 ≤ k < m, β ⊂ α, |β| = k)

=P(λ1(Gα) > ym)P(λ∗1(Gβ) ≤ yk, ∀ 1 ≤ k < m, β ⊂ α, |β| = k|λ1(Gα) > ym).

(62)

Lemma 4 follows from the following two limits,

lim
n→+∞

P(λ1(Gα) > ym)/[m2−(1+m)/2/Γ(1 +m/2) · ym−2
m e−y

2
m/4] = 1(63)

and

(64) lim
n→+∞

P(λ∗1(Gβ) ≤ yk, ∀ 1 ≤ k < m, β ⊂ α, |β| = k|λ1(Gα) > ym) = Km,

where Km is the constant defined in Theorem 1. Indeed, (62), (63), (64) and the definition of
ym imply that

lim
n→+∞

tn = lim
n→+∞

(
n

m

)
P(A{1,··· ,m})

= lim
n→+∞

nm/m!
(
m2−(1+m)/2/Γ(1 +m/2) · ym−2

m e−y
2
m/4
)
Km

= lim
n→+∞

ym−2
m (lnn)−(m−2)/2Km

(m− 1)!2
m+1

2 Γ(1 +m/2)
e−y/4

=
(2m)(m−2)/2Km

(m− 1)!23/2Γ(1 +m/2)
e−y/4,

as desired.
We first prove (63). By formula (1) for Gα where |α| = m, we have

P(λ1(Gα) > ym)

=
1

Zm

∫
λ1>···>λm;λ1>ym

e
−

m∑
i=1

λ2
i /4 ∏

1≤i<j≤m

|λi − λj |dλ1 · · · dλm

=
1

Zm

∫
λ1>ym

e−λ
2
1/4g(λ1)dλ1,

(65)
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where we denote

g(λ1) =

∫
λ1>···>λm

e
−

m∑
i=2

λ2
i /4 ∏

1≤i<j≤m

|λi − λj |dλ2 · · · dλm.

We claim that

lim
λ1→+∞

g(λ1)/(λm−1
1 Zm−1) = 1.(66)

Dividing into two cases λm > −
√
λ1 and λm < −

√
λ1, g(λ1) is bounded from above by∫

λ2>···>λm>−
√
λ1

(λ1 +
√
λ1)m−1

∏
2≤i<j≤m

(λi − λj)e−
∑m
i=2 λ

2
i /4dλ2 · · · dλm

+

∫
λ2>···>λm,λm<−

√
λ1

∏
1≤i<j≤m

(λi − λj)e−
∑m
i=2 λ

2
i /4dλ2 · · · dλm

:= I5 + I6.

(67)

Note that I5 is further bounded from above by (λ1 +
√
λ1)m−1Zm−1. For I6, we note that∏

1≤i<j≤m

(λi − λj) ≤
∏

1≤i<j≤m

(|λi|+ 1)(|λj |+ 1) ≤
m∏
i=1

(|λi|+ 1)m−1.

Therefore, we can bound I6 from above by

(|λ1|+ 1)m−1

∫
λm<−

√
λ1

(|λm|+ 1)m−1 exp(−λ2
m/4)dλm

×
(∫

R
(|λ2|+ 1)m−1 exp(−λ2

2/4)dλ2

)m−2

.

(68)

For λ1 large enough, (68) can be further bounded from above by (using (30))

Cλm−1
1

√
λ1

m−2
exp(−λ1/4) ≤ C ′λm−2

1 .

Combining the estimates for I5 and I6 we get

g(λ1) ≤ Zm−1(λ1 +
√
λ1)m−1 + Cλm−2

1

for λ1 large enough. It follows that

lim sup
λ1→+∞

g(λ1)

λm−1
1

≤ Zm−1.

For the lower bound, for all λ1 > 1 we have

g(λ1) ≥ (λ1 −
√
λ1)m−1

∫
√
λ1≥λ2>···>λm

e
−

m∑
i=2

λ2
i /4 ∏

2≤i<j≤m

|λi − λj |dλ2 · · · dλm.

It follows that

lim inf
λ1→+∞

g(λ1)

λm−1
1

≥ lim inf
λ1→+∞

∫
√
λ1≥λ2>···>λm

e
−

m∑
i=2

λ2
i /4 ∏

2≤i<j≤m

|λi − λj |dλ2 · · · dλm = Zm−1.

Then (66) follows from the upper and lower bounds.
Therefore, as n→ +∞, i.e., ym → +∞, we have

(69)

∫
λ1>ym

e−λ
2
1/4g(λ1)dλ1 ∼ Zm−1

∫
λ1>ym

e−λ
2
1/4λm−1

1 dλ1.
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Standard results for the upper incomplete Gamma function imply∫
λ1>ym

e−λ
2
1/4λm−1

1 dλ1 =

∫
s≥y2

m/4

e−s2m−1s(m−2)/2ds

∼ 2m−1e−y
2
m/4(y2

m/4)(m−2)/2

= 2e−y
2
m/4ym−2

m .

(70)

Combining (65), (69) and (70) we get

P(λ1(Gα) > ym)

∼Zm−1

Zm

∫
λ1>ym

e−λ
2
1/4λm−1

1 dλ1

∼(Zm−1/Zm)2ym−2
m e−y

2
m/4

=m(2π)−1/2Γ(3/2)/Γ(1 +m/2) · 21−m/2ym−2
m e−y

2
m/4

=m2−(1+m)/2/Γ(1 +m/2) · ym−2
m e−y

2
m/4.

(71)

This completes the proof of (63).
Now we prove (64). We define the following two auxiliary events:

Bα :=
{
ym < λ1(Gα) < ym + 1, λ2(Gα) <

√
log log n, λm(Gα) > −

√
log log n

}
and

Dα :=
{
ym < λ1(Gα) < ym + 1

}
.

Then it holds that

Bα ⊂ Dα ⊂
{
λ1(Gα) > ym

}
.

We first show that

(72) lim
n→+∞

P(Bα|λ1(Gα) > ym) = 1.

Note that (72) follows if we can prove the following two limits,

(73) lim
n→+∞

P(Dα|λ1(Gα) > ym) = 1

and

(74) lim
n→+∞

P(Bα|Dα) = 1.

By (63), we find that

lim
n→+∞

P(λ1(Gα) > ym + 1)

P(λ1(Gα) > ym)
= 0,

which implies (73). We now prove (74) by finding a sequence of numbers εn → 0 such that for n
large enough it holds that

(75)
P(λ2(Gα) >

√
log log n or λm(Gα) < −

√
log log n|Dα)

P(λ2(Gα) < 1, λm(Gα) > 0|Dα)
≤ εn.

Indeed, (75) implies that

(76) P(λ2(Gα) >
√

log log n or λm(Gα) < −
√

log log n|Dα) ≤ εn
εn + 1

,
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which converges to 0 as n → +∞, and thus this yields (74). To prove (75), we divide the set{
λ2(Gα) >

√
log log n or λm(Gα) < −

√
log log n

}
as the union of two disjoint subsets S1 ∪S2 as

follows. On the subset S1 :=
{
λm(Gα) ≤ −

√
log log n

}
, if we condition on Dα, we have∏

1≤i<j≤m

(λi − λj)

≤C(λ1 + |λm|)m−1(|λ2|+ |λm|)(m−1)(m−2)/2

≤Cλm−1
1 |λm|m−1

(|λ2|+ 1)(m−1)(m−2)/2 |λm|(m−1)(m−2)/2

=Cλm−1
1 |λm|(m−1)m/2

(|λ2|+ 1)(m−1)(m−2)/2.

(77)

On the subset S2 :=
{
λ2(Gα) >

√
log log n, λm(Gα) > −

√
log log n

}
, if we condition on Dα

where λ1(Gα) ∼ 2
√
m log n, then we easily have the upper bound∏

1≤i<j≤m

(λi − λj) ≤ Cλm−1
1 λ

(m−1)(m−2)/2
2 .

It follows that the left hand side of (75) can be bounded from above by the summation of

C[
∫ ym+1

ym
λm−1

1 e−λ
2
1/4dλ1]

∫
λm<−

√
log logn

|λm|(m−1)m/2
(|λ2|+ 1)(m−1)(m−2)/2e−

∑m
i=2 λ

2
i /4dλ2 · · · dλm

[
∫ ym+1

ym
(λ1 − 1)m−1e−λ

2
1/4dλ1]

∫
1>λ2>···>λm>0

∏
2≤i<j≤m(λi − λj)e−

∑m
i=2 λ

2
i /4dλ2 · · · dλm

and

C[
∫ ym+1

ym
λm−1

1 e−λ
2
1/4dλ1]

∫
λ2>
√

log logn,λm>−
√

log logn
λ

(m−2)(m−1)/2
2 e−

∑m
i=2 λ

2
i /4dλ2 · · · dλm

[
∫ ym+1

ym
(λ1 − 1)m−1e−λ

2
1/4dλ1]

∫
1>λ2>···>λm>0

∏
2≤i<j≤m(λi − λj)e−

∑m
i=2 λ

2
i /4dλ2 · · · dλm

.

The above summation can be further bounded from above by

C
(∫

λm<−
√

log logn

|λm|(m−1)m/2
exp(−λ2

m/4)dλm

+

∫
λ2>
√

log logn

λ
(m−1)(m−2)/2
2 exp(−λ2

2/4)dλ2

)
:= εn

as n large enough. Clearly it holds that εn → 0 since
√

log log n → +∞. This completes the
proof of (75) and thus the proof of (72).

Now we are ready to prove (64). We define the event

Hα =
{
λ∗1(Gβ) ≤ yk, ∀ 1 ≤ k < m, β ⊂ α, |β| = k

}
.

Using (72), we see that (64) is equivalent to

(78) lim
n→+∞

P(Hα|Bα) = Km.

To prove (78) we need to use the fact that

Gα
d
= UT diag(λ1, · · · , λm)U

where |α| = m and

U
d
= U(O(m))
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is sampled from the uniform measure on the orthogonal group O(m) which is independent of
(λ1, · · · , λm) and

(λ1, · · · , λm)
d
= (λ1(Gα), · · · , λm(Gα)).

Given any

X := UT diag(λ1, · · · , λm)U, U ∈ O(m), λ1 ≥ · · · ≥ λm,
by definition it holds

λ1(X) = λ1, λ
∗
1(X)2 = λ2

1 +

m∑
k=2

λ2
k/2.

Let λ−1 (X) :=
√∑m

k=2 λ
2
k =

√
|X|2 − λ2

1(X), X1 := UT diag(λ1, 0, · · · , 0)U, X2 := X − X1,

then we have |X2|(=
√

Tr(X2
2)) = λ−1 (X). For β ⊂ α = {1, · · · ,m} we have

(79) |λ∗1(Xβ)− λ∗1((X1)β)| ≤ |(X2)β | ≤ |X2| = λ−1 (X).

Here, by the Lipschitz continuity of eigenvalues for symmetric matrices (see Corollary A.6 in [1]),
we can further derive the fact that

|λ∗1(A)− λ∗1(B)| ≤ |A−B|.
Since (X1)β is a matrix of rank at most 1, we have

(80) λ∗1((X1)β) = (Tr((X1)2
β))1/2 = |λ1|

∑
k∈β

u2
k,

here u = (u1, · · · , um) is the first row of U . Note that u has the uniform distribution on the unit
sphere Sm−1. By (79) and (80), we have

(81)
∣∣∣λ∗1(Xβ)− |λ1|

∑
k∈β

u2
k

∣∣∣ ≤ λ−1 (X).

Now we replace X by Gα. On the event Bα we have

λ−1 (Gα) ≤
√
m log log n and ym < λ1 < ym + 1,

which together with (81) imply

(82) ym
∑
k∈β

u2
k −

√
m log log n ≤ λ∗1(Gβ) ≤ (ym + 1)

∑
k∈β

u2
k +

√
m log log n

for all β ⊂ α.
By (82) and the fact that the first row u of the orthogonal group are independent of the

eigenvalues λi(Gα), 1 ≤ i ≤ m, we have

P

∑
k∈β

u2
k ≤

yk −
√
m log log n

ym + 1
,∀β ⊂ α, |β| = k


≤P(Hα|Bα)

≤P

∑
k∈β

u2
k ≤

yk +
√
m log log n

ym
,∀β ⊂ α, |β| = k

 .

(83)

This together with the facts that yk ∼ 2
√
k log n and ym ∼ 2

√
m log n as n→ +∞ imply

lim
n→+∞

P(Hα|Bα) = P

∑
k∈β

u2
k ≤

√
k/m,∀β ∈ α, |β| = k

 ,
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which is exactly the definition of Km. This proves (78), and hence (64). Therefore, we complete
the proof of Lemma 4. �

4. Proof of Theorem 2

Now we prove Theorem 2. As before, for G = (gij)1≤i≤j≤n sampled from GOE, we denote
Gα = (gij)i,j∈α as the principal minor of size m ×m for α ⊂ {1, ..., n} with |α| = m and Im is
the collection of all such α. Let v1(Gα) be the eigenvector of the largest eigenvalue of Gα and
v∗ ∈ Sm−1 be the eigenvector of the largest eigenvalue of the principal sub-matrix that attains
the maximal eigenvalue Tm,n, i.e., we have

α∗ := argmaxα∈Imλ1(Gα)

and

(84) v∗ = v1(Gα∗).

As in §3.3, we recall the definition of the event

(85) Hα := {λ∗1(Gβ) ≤ yk, ∀1 ≤ k < m, β ⊂ α, |β| = k}.

We define the random variable α̂ as follows. If the event ∪α∈ImHα holds, then we set

α̂ := argmaxα∈Im, Hα holdsλ1(Gα).

Otherwise, we set α̂ to be {1, . . . ,m}. We now set

(86) v̂ := λ1(Gα̂).

In other words, v̂ is the eigenvector of the largest eigenvalue of the principal sub-matrix Gα that
achieves the maximal eigenvalue under the constraint that Hα is true. By (8) and (12), we have

lim
n→+∞

P(∩α∈ImHα) = 1.

On the event ∩α∈ImHα we clearly have α̂ = α∗ and v̂ = v∗ since the constraint for α̂ doesn’t have
any effect. Recall the definition of Aα in (7) where Aα = Hα ∩ {λ1(Gα) > ym}, on ∩α∈ImHα,
the two events {Tm,n ≥ ym} and ∪α∈ImAα coincide. In other words, for symmetric Q, we have

(∩α∈ImHα) ∩ {TG,m,n ≥ ym, v∗ ∈ Q} = (∩α∈ImHα) ∩ {∪α∈ImAα, v̂ ∈ Q} .(87)

It follows that

|P(Tm,n ≥ ym, v∗ ∈ Q)− P(∪α∈ImAα, v̂ ∈ Q)|
= |P ((∩α∈ImHα)

c ∩ {Tm,n ≥ ym, v∗ ∈ Q})− P ((∩α∈ImHα)
c ∩ (∪α∈ImAα, v̂ ∈ Q))|

≤2P ((∩α∈ImHα)
c
) ,

(88)

which converges to 0 as n→ +∞. Hence, (4) is equivalent to the limit

(89) P(∪α∈ImAα, v̂ ∈ Q)→ (1− FY (y))ν(Q).

All of the rest is to prove this convergence. Now we define four quantities

k1(α) = P(Aα, v1(Gα) ∈ Q;∀α′ 6= α,Aα′ fails or λ1(Gα′) < λ1(Gα)),

k2(α) = P(Aα, v1(Gα) ∈ Q;∀α′ ∩ α = ∅, Aα′ fails or λ1(Gα′) < λ1(Gα)),

k3(α) = P(Aα;∀α′ 6= α,Aα′ fails or λ1(Gα′) < λ1(Gα)),

k4(α) = P(Aα;∀α′ ∩ α = ∅, Aα′ fails or λ1(Gα′) < λ1(Gα)).

(90)
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We note that

P (∪α∈ImAα, v̂ ∈ Q)

=
∑
α∈Im

P(Aα, v1(Gα) ∈ Q;∀α′ 6= α,Aα′ fails or λ1(Gα′) < λ1(Gα))

=
∑
α∈Im

k1(α).

(91)

In fact k1(α), . . . , k4(α) don’t depend on the specific choice of α. Recall the definition of bn,2
and (27), we have

(92) lim
n→+∞

∑
α,α′∈Im;α∩α′ 6=∅

P(Aα ∩Aα′) = lim
n→+∞

bn,2 = 0.

By the definition of k1(α) and k2(α) together with the union bound we have

(93)
∑
α∈Im

|k1(α)− k2(α)| ≤
∑
α∈Im

P
(
Aα ∩

(
∪α′∩α 6=∅Aα′

))
≤

∑
α,α′∈Im;α∩α′ 6=∅

P(Aα ∩Aα′).

Combining (91), (92) and (93) we see that

(94) lim
n→+∞

∣∣∣∣∣P(∪α∈ImAα, v̂ ∈ Q)−
∑
α∈Im

k2(α)

∣∣∣∣∣ = 0.

We can similarly show that

lim
n→+∞

∣∣∣∣∣P(∪α∈ImAα)−
∑
α∈Im

k4(α)

∣∣∣∣∣ ≤ lim
n→+∞

∑
α∈Im

|k3(α)− k4(α)| = 0.(95)

Recall that we have already shown

(96) P(∪α∈ImAα)→ 1− FY (y)

in the proof of Theorem 1 as n→ +∞. Hence, combining (95) and (96) we have

(97) lim
n→+∞

∑
α∈Im

k4(α) = 1− FY (y).

The advantage of introducing k2(α) is that, we have the conditional probability

P(v1(Gα) ∈ Q|Aα;∀α′ ∩ α = ∅, Aα′ fails or λ1(Gα′) < λ1(Gα))

=P(v1(Gα) ∈ Q|Aα),
(98)

since Gα is independent of {Gα′ : α′ ∩ α = ∅}. Consequently, we have

k2(α) =P(Aα;∀α′ ∩ α = ∅, Aα′ fails or λ1(Gα′) < λ1(Gα))

× P(v1(Gα) ∈ Q|Aα;∀α′ ∩ α = ∅, Aα′ fails or λ1(Gα′) < λ1(Gα))

=P(v1(Gα) ∈ Q|Aα)k4(α).

(99)

Clearly the term P(v1(Gα) ∈ Q|Aα) is the same for all α ∈ Im. Let α1 = {1, . . . ,m}. Then we
have

(100)
∑
α∈Im

k2(α) =
∑
α∈Im

P(v1(Gα) ∈ Q|Aα)k4(α) = P(v1(Gα1
) ∈ Q|Aα1

)
∑
α∈Im

k4(α).

Let u be sampled from the uniform distribution on the unit sphere Sm−1. Inspecting the
proof of (64) in §3.3, especially (72) and (83), we have

(101) lim
n→+∞

P(Hα, v1(Gα) ∈ Q|λ1(Gα) > ym) = P(u ∈ Sm ∩Q),
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where Sm has been defined in (3).
By the fact Aα = Hα ∩ {λ1(Gα) > ym}, we have

lim
n→+∞

P(v1(Gα1
) ∈ Q|Aα1

)

= lim
n→+∞

P(Hα, v1(Gα) ∈ Q|λ1(Gα) > ym)

P(Hα|λ1(Gα) > ym)

=
P(u ∈ Sm ∩Q)

P(u ∈ Sm)

=ν(Q),

(102)

where ν is the uniform distribution on the set Sm.
Combining (94), (97), (100) and (102) we get

lim
n→+∞

P (∪α∈ImAα, v̂ ∈ Q)

= lim
n→+∞

∑
α∈Im

k2(α)

= lim
n→+∞

P(v1(Gα1
) ∈ Q|Aα1

)
∑
α∈Im

k4(α)

=ν(Q)(1− FY (y)).

(103)

This proves (89), and thus the proof of Theorem 2.
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