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ASSOCIATOR DEPENDENT ALGEBRAS AND KOSZUL DUALITY

MURRAY BREMNER AND VLADIMIR DOTSENKO

To the memory of Erwin Kleinfeld (1927-2022)

ABSTRACT. We resolve a ten year old open question of Loday of describing
Koszul operads that act on the algebra of octonions. In fact, we obtain the
answer by solving a more general classification problem: we find all Koszul
operads among those encoding associator dependent algebras.

1. INTRODUCTION

In the context of nonassociative algebras, many interesting classes of alge-
bras arise when one imposes linear dependency conditions for the associators
(a1, a2, a3) = (a1a2)a3−a1(a2a3) of six permutations of the given three elements,
that is ∑

σ∈S3

xσ(aσ(1), aσ(2), aσ(3)) = 0

for certain coefficients xσ, σ ∈ S3. Various celebrated classes of nonassociative
algebras, such as right-symmetric algebras, alternative algebras, flexible alge-
bras, Lie-admissible algebras and power-associative algebras are examples of
that sort. In the language of varieties of algebras, these are identities of degree
three. However, from the equivalent point of view of the operad theory, these
identities are quadratic (since the product operation is used twice), and as such
are within the scope of the Koszul duality theory. In this paper we classify those
of operads of associator dependent algebras that are Koszul, meaning that they
have particularly nice homological properties, and the deformation complexes
of algebras over these operads admit simple descriptions. Our original moti-
vation came from a slightly more narrow classification problem. In [26], Jean-
Louis Loday formulated a question of finding a “small” Koszul operad that acts
on the algebra of octonions. That algebra is the only nonassociative normed di-
vision algebra over the real numbers (by a theorem of Hurwitz [18], the others,
up to isomorphism, are two fields R and C, and the noncommutative algebra of
quaternionsH). For octonions, the associator is antisymmetric in its arguments,
in other words, they form an alternative algebra. However, Dzhumadildaev and
Zusmanovich established in [12] that the operad of alternative algebras is not
Koszul, so the only immediate candidate is the rather uninteresting and “big”
magmatic operad, hence the question of Loday. Our classification result leads
to a complete answer to that question.

Our strategy is to reduce this classification problem to the same problem for
the Koszul dual operads. For each operad of associator dependent algebras, its
Koszul dual operad is a quotient of the associative operad by the operadic ideal
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generated by several ternary operations. In a more classical language, those op-
erads describe varieties of associative PI-algebras satisfying identities of degree
three. Those quotient operads are easy to work with (in fact, a lot of them de-
scribe algebras whose identities include nilpotence of certain index, so the cor-
responding operads are supported at a finite number of possible arities), allow-
ing us to apply various known methods for proving and disproving the Koszul
property. Most of them are relatively easy to handle, with one notable exception
that requires a really intricate argument, see Proposition 3.13. In that case, an
interesting by-product is the following combinatorial statement that we believe
to be extremely hard to establish by classical methods of varieties of algebras:
for each value of the parameter (α : β) ∈P1, the multilinear part of the relatively
free n-generated algebra in the variety determined by the identity

β((a1, a2, a3)+ (a2, a1, a3))+ (α−β)((a1, a3, a2)+ (a2, a3, a1))

−α((a3, a1, a2)+ (a3, a2, a1)) = 0

is of dimension 2 ·5 · · · (3n −4).

The main results of the paper may be summarized as follows.

Theorem (Th. 4.1,Th. 4.4). An operad of associator dependent algebras is Koszul
if and only if it is one of the operads from the following list:

• The associative operad, in which all associators vanish.
• The operad of right pre-Lie algebras, which is the quotient by the ideal

generated by

(a1, a2, a3)− (a1, a3, a2),

and the isomorphic operad of left pre-Lie algebras, which is the quotient
by the ideal generated by

(a1, a2, a3)− (a2, a1, a3),

• The operad of Lie-admissible algebras, which is the quotient by the ideal
generated by

(a1, a2, a3)+ (a2, a3, a1)+ (a3, a1, a2)− (a1, a3, a2)− (a2, a1, a3)− (a3, a2, a1),

• The operad of third power associative algebras, which is the quotient by
the ideal generated by

(a1, a2, a3)+ (a2, a3, a1)+ (a3, a1, a2)+ (a1, a3, a2)+ (a2, a1, a3)+ (a3, a2, a1),

• Each operad in the parametric family of quotients by ideals depending on
the parameter (α :β) ∈P1 generated by

β((a1, a2, a3)+ (a2, a1, a3))+ (α−β)((a1, a3, a2)+ (a2, a3, a1))

−α((a3, a1, a2)+ (a3, a2, a1)),

• The magmatic operad of absolutely free nonassociative algebras; it has no
relations.

In this list, the last three entries give an exhaustive list of Koszul operads generated
by one binary operation for which the octonions form an algebra. In particular,
the smallest Koszul operads that act on octonions are the operads of the paramet-
ric family.
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The classes of algebras arising in our classification are well known. Left pre-
Lie algebras were discovered independently by Vinberg [39] and Koszul [25] in
the geometric context, while right pre-Lie algebras were discovered by Gersten-
haber [13] in the context of deformation theory. The notions of a Lie-admissible
algebra and of a third power associative algebra were extensively studied by Al-
bert [1, 2]. Most of occurrences of the parametric family in the existing literature
appear when those identities are combined with the third power associativity,
see, for example, [22, 24]. When α=β, the corresponding algebras are known as
nearly antiflexible, see [37]; other classes corresponding to individual values of
the parameter do not seem to have been named. The earliest relevant reference
that we came across is the paper [41] by Max Zorn where, strikingly enough,
four different identities from the above classification (the third power associa-
tivity identity, the Lie admissible identity, and the identities from the parametric
family with α=β and α=−β) appear on the same footing.

It would be interesting to determine the deformations of octonions in the
classes of algebras listed above. We note that such deformations in some un-
conventional classes of algebras have already emerged in the physics literature;
the celebrated Okubo algebra [31, 32] is an instance of that sort. An investiga-
tion of this matter will appear elsewhere. Another interesting direction post-
poned to a future paper is to advance in understanding the non-Koszul operads
of associator-dependent algebras, especially the famous classes of alternative
algebras, flexible algebras, various associator dependent algebras in the sense
of Kleinfeld (necessarily including the third power associativity) etc.

Acknowledgements. To the best of our knowledge, the first person to have stud-
ied the class of associator-dependent algebras as a whole was Erwin Kleinfeld
who passed away in January 2022. His work on various classes of nonassociative
algebras has been influencing researchers for many decades, and we wish to
dedicate this paper to his memory. We thank Fatemeh Bagherzadeh for suggest-
ing this problem to us, and for her involvement in this project at its early stages.
The second author is grateful to Ivan Pavlovich Shestakov for several interesting
discussions of some aspects of this project. We thank Frederic Chapoton, Dmitri
Piontkovski, and Pedro Tamaroff for comments on a preliminary version of the
article.
The first author was supported by the NSERC grant “Algebraic Operads”. The
second author was supported by Institut Universitaire de France, by the Uni-
versity of Strasbourg Institute for Advanced Study (USIAS) through the Fellow-
ship USIAS-2021-061 within the French national program “Investment for the
future” (IdEx-Unistra), and by the French national research agency project ANR-
20-CE40-0016. Some of the final breakthroughs in the main result of the paper
were made during the second author’s stay at Max Planck Institute for Mathe-
matics in Bonn, and he wishes to express his gratitude to that institution for the
financial support and excellent working conditions.

2. CONVENTIONS AND PRELIMINARY RESULTS

All vector spaces and chain complexes are considered over a ground field k of
zero characteristic. We refer the reader to [27] for general information on alge-
braic operads and Koszul duality theory, and to [5] for information on operadic
Gröbner bases and rewriting systems.
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As far as the associator dependent algebras are concerned, we shall extend
the original terminology of Kleinfeld [23] as follows.

Definition 2.1. A vector space V is called an associator dependent algebra if it
is equipped with a binary product V ⊗V →V , a ⊗b 7→ ab, satisfying an identity

(1)
∑
σ∈S3

xσ(aσ(1), aσ(2), aσ(3)) = 0.

The original definition of Kleinfeld requires that, additionally, the algebra V is
third power associative, that is (xx)x = x(xx) for all x ∈V , the identity first stud-
ied by Albert [2]. Under our assumption char(k) = 0, this identity is equivalent
to the identity ∑

σ∈S3

(aσ(1), aσ(2), aσ(3)) = 0,

and in the context of classification of the corresponding operads, there is no
particular reason to insist on inclusion of that identity: we shall also consider
associator dependencies that do not imply third power associativity.

In this paper, we are concerned with the Koszul property of our operads. Let
us briefly recall what this means, assuming, like above, that our operads are gen-
erated by a single binary operation. To each operad P , one may associate its
bar complex, the cofree cooperad co-generated by the homological shift sP and
the differential arising from the operad structure on P . An operad is said to be
Koszul if the homology of the bar complex is concentrated on the “diagonal”: for
each nontrivial homology class, its degree is one less than its arity. In particular,
this implies that the operadP has only quadratic relations. For each operad with
quadratic relations, the diagonal part of the bar complex has a cooperad struc-
ture which is quite easy to describe directly; that cooperad is called the Koszul
dual cooperad, and is denoted P ¡. Tensoring the linear dual operad of P ¡ with
the endomorphism operad of the homological shift s−1k of the ground field, one
obtains the classical Koszul dual operad P ! of Ginzburg and Kapranov, defined
as the operad whose relations annihilate the relations of P in the certain sense,
see [14] and [27, Sec. 7.6]. Finally, it is useful to keep in mind that each quadratic
operad P has its associated Koszul complex P ¡ ◦P whose homology is k if and
only if P is Koszul.

In the language of operads, once we choose a particular identity of the form
(1), we may consider the operad controlling all algebras satisfying that identity.
Let us make a simple but crucial observation.

Proposition 2.2. Let O be a quotient of the magmatic operad by the two-sided
operadic ideal generated by some linear combinations of the associators of the
magmatic product. The Koszul dual O! is a quotient of the associative operad by
an ideal generated by certain ternary operations.

Proof. For a quadratic operad generated by binary operations, all defining rela-
tions of the Koszul dual operad are ternary operations, so we only need to prove
that the associative relations are among them. This follows from the well known
fact that the associative operad is Koszul self-dual, so the on the dual level the
S3-module generated by the associativity relation annihilates any linear combi-
nation of associators, that is the associativity relations are among the relations
of the Koszul dual operad. �
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Since an operad and its Koszul dual are either both Koszul or both non-Koszul,
this proposition implies, that for the purposes of studying Koszulness one may
switch freely between operads of associator dependent algebras and quotients
of the associative operad. The advantage of this observation is that quotients
of the associative operad by ideals generated by ternary operations are “small”,
and it is possible to explicitly compute, for each arity, the basis, dimension, and
even the symmetric group action on the corresponding component, and to use
that data in order to determine whether the corresponding operad is Koszul.

The easiest and most general known way to prove the Koszul property uses
Gröbner bases. More precisely, Gröbner bases for operads with symmetries are
impossible to define, but it is possible to associate to each operad P a “shuffle
operad” whose Koszul property is equivalent to the Koszul property of P ; for
shuffle operads, a theory of Gröbner bases is available [5, Sec. 5.4.3]. For exam-
ple, if we take the associative operad, as a symmetric operad it is generated by a
single operation a1, a2 7→ a1a2 subject to the single relation (a1a2)a3 = a1(a2a3).
In the universe of shuffle operads, one has to forget the symmetric groups ac-
tions, and write linear bases both for generators and for relations in terms of
shuffle tree monomials [5, Sec. 5.3], [27, Sec. 8.2], which of course gives two gen-
erators and six relations in the case of the associative operad. A shuffle operad
that has a quadratic Gröbner basis is known to be Koszul [5, Sec. 6.4]. More-
over, the same argument can be used to show that an operad presented by a
convergent quadratic rewriting system [5, Sec. 2.6] is Koszul. Finding a suit-
able rewriting system is sometimes a matter of luck, as it heavily depends on the
choice of a presentation by generators and relations. For operads generated by
one binary operation, there is a useful “polarization trick” [29] allowing some-
times to find a better presentation: it amounts to considering the generators
a1 · a2 = a1a2 + a2a1 and [a1, a2] = a1a2 − a2a1. In particular, for the associa-
tive operad, the polarized presentation exhibits it as the quotient by the ideal
generated by the elements

(a1 ·a2) ·a3 −a1 · (a2 ·a3)+ [[a1, a3], a2],

[a1 ·a2, a3]− [a1, a3] ·a2 −a1 · [a2, a3].

There are also criteria of (non-)Koszulness using the Poincaré series, that is
the exponential generating functions of the Euler characteristics of components.
For an operad P concentrated in homological degree zero, the Poincaré series
coincides with the Hilbert series

fP (t ) = ∑
n≥1

dimO(n)

n!
t n .

By a direct inspection, one sees that the Poincaré series of the Koszul complex of
a quadratic operad generated by binary operations of homological degree zero
is equal to − fP ! (− fP (t )). Since the Euler characteristics of a chain complex and
its homology are equal, this implies that for a Koszul operad P , one has

− fP ! (− fP (t )) = t ,

so the series fP (t ) and − fP ! (−t ) are compositional inverses of one another. This
leads to a useful positivity test of Ginzburg and Kapranov [14].

Proposition 2.3 (Positivity test). LetP be a quadratic operad generated by binary
operations of homological degree zero. Denote by an the coefficient of t n in the
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compositional inverse of the Poincaré series of that operad. If the operad P is
Koszul, then (−1)n−1an ≥ 0 for all n ≥ 1.

There is also a useful sufficient condition of Koszulness in terms of Poincaré
series; an analogous result for associative algebras is established in [33, Cor. 2.4].

Proposition 2.4. Let P be a quadratic operad generated by binary operations of
homological degree zero. Suppose that P (n) = 0 for n ≥ 4, and that

− fP ! (− fP (t )) = t .

Then the operad P is Koszul.

Proof. Because of the condition on the operad P , the Koszul complex of the op-
erad P ! is concentrated in homological degrees 0, 1, and 2. For any quadratic
operad, the homology of its Koszul complex is isomorphic to k in homological
degree 0 and vanishes in homological degree 1, so the relationship between the
Poincaré series implies that the homology in degree 2 also vanishes. �

We note that in general neither the correct sign pattern in the coefficients
of the compositional inverse nor the relationship − fP ! (− fP (t )) = t imply the
Koszul property, see [7, 9].

3. KOSZUL QUOTIENTS OF THE ASSOCIATIVE OPERAD

3.1. Classification of relations. The first step in understanding quotients of the
associative operad by an ideal generated by ternary operations is to classify the
possible ideals, that is, possible S3-submodules of the arity three component
of the associative operad and their consequences of higher arities. Such ideals
have been studied rather extensively. To the best of our knowledge, the first clas-
sification result (classification of generators with respect to the S3-action) was
given by Malcev [28]. As far as the higher arity consequences are concerned, the
first general study of that question was undertaken by Klein [21], who came very
close to a full description of all quotients by such ideals. A complete classifica-
tion was accomplished by Vladimirova and Drenski in [40] some years later, rely-
ing crucially on previous work of Anan’in and Kemer [3]. Some previous results
for particular cases of modules of relations are contained in works of Dubnov
and Ivanov [10], Nagata [30], Higman [17], Regev [35] and James [19], listed here
chronologically.

The arity three component of the associative operad is isomorphic to the
regular S3-module, so it decomposes as the direct sum of a copy of the one-
dimensional trivial module spanned by the element

a1a2a3 +a1a3a2 +a2a3a1 +a2a1a3 +a3a1a2 +a3a2a1,

one copy of the one-dimensional sign module spanned by the element

a1a2a3 −a1a3a2 +a2a3a1 −a2a1a3 +a3a1a2 −a3a2a1,

and two copies of the two-dimensional irreducible module. Informed by the ap-
proach of Anan’in and Kemer [3] and of Vladimirova and Drenski [40], we choose
these two copies to be

k([a1, a2]a3 + [a3, a2]a1, [a1, a3]a2 + [a2, a3]a1),(2)

k(a1[a2, a3]+a3[a2, a1], a1[a3, a2]+a2[a3, a1]),(3)
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where [a1, a2] = a1a2−a2a1 is the usual Lie bracket. Moreover, every irreducible
two-dimensional S3-submodule is generated by an element of the form

(4) α([a1, a2]a3 + [a3, a2]a1)+β(a1[a3, a2]+a3[a1, a2])

for some (α :β) ∈P1.

3.2. Case-by-case study of quotients of the associative operad. In this section,
we study the Koszul property of quotients of the associative operad case by case.
Since the kernel of the quotient map is generated by an S3-submodule of the
arity three component, there are twelve cases to consider: the multiplicity of the
trivial module may be equal to 0 or 1, the multiplicity of the irreducible two-
dimensional module may be equal to 0, 1, or 2, and the multiplicity of the sign
module may be equal to 0 or 1.

Proposition 3.1 (Multiplicities (0,0,0)). The quotient of the associative operad by
the zero ideal is Koszul.

Proof. This is well known, see, for example, [27, Sec. 9.1] or [5, Sec. 5.6]. �

Proposition 3.2 (Multiplicities (0,0,1)). The quotient of the associative operad by
the ideal generated by

a1a2a3 −a1a3a2 +a2a3a1 −a2a1a3 +a3a1a2 −a3a2a1

is not Koszul.

Proof. According to [40, Prop. 3.1], the dimension of the arity n component of
this operad is equal to 9 for n = 4 and to 2n −1 for n ≥ 5, so the Poincaré series
of the corresponding quotient is given by

t + t 2 + 5

6
t 3 + 3

8
t 4 + 3

40
t 5 + 11

720
t 6 +O(t 7).

Its compositional inverse has positive coefficient 271
360 at t 6. By Proposition 2.3,

our operad is not Koszul. �

Proposition 3.3 (Multiplicities (0,1,0)). For any (α : β) ∈ P1, the quotient of the
associative operad by the ideal generated by

α([a1, a2]a3 + [a3, a2]a1)+β(a1[a3, a2]+a3[a1, a2])

is not Koszul.

Proof. Forαβ(α−β)(α+β) 6= 0, [40, Prop. 2.1.1] implies that the dimension of the
arity n component of this operad is equal to 1 for n ≥ 4, so the Poincaré series of
our operad is given by

t + t 2 + 2

3
t 3 + ∑

k≥4

t k

k !
.

Its compositional inverse has positive coefficient 461
720 at t 6. By Proposition 2.3,

this operad is not Koszul.
For αβ= 0, [40, Prop. 2.2.1] implies that the dimension of the arity n compo-

nent of this operad is equal to n for n ≥ 4, so the Poincaré series of our operad is
given by

t + t 2 + 2

3
t 3 + ∑

k≥4

t k

(k −1)!
.
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Its compositional inverse has a negative coefficient −473
720 at t 7. By Proposition

2.3, this operad is not Koszul.
For α = β, [40, Prop. 2.3.1] implies that the dimension of the arity n compo-

nent of this operad is equal to 3 for n = 4 and to 1 for n ≥ 5, so the Poincaré series
of our operad is given by

t + t 2 + 2

3
t 3 + 1

8
t 4 + ∑

k≥5

t k

k !
.

Its compositional inverse has negative coefficient−6899
2520 at t 7. By Proposition 2.3,

this operad is not Koszul.
For α=−β, [40, Prop. 2.3.1] implies that the dimension of the arity n compo-

nent of this operad is equal to 2n−1 for n ≥ 2, so its Poincaré series is given by
1
2 (e2t − 1), its inverse is 1

2 log(1+ 2t ), and so this operad does not fail the posi-
tivity test. To show that it is nevertheless not Koszul, we shall use the polarized
presentation, which for this operad is

(a1 ·a2) ·a3 = a1 · (a2 ·a3),

[[a1, a2], a3] = 0,

[a1 ·a2, a3] = [a1, a3] ·a2 +a1 · [a2, a3].

The advantage of this presentation is that it is homogeneous with respect to the
weight grading w(− ·−) = 0, w([−,−]) = 1, so our operad inherits that weight
grading. It is immediate to check that [a1, a2] · [a3, a4] = [a1, a3] · [a2, a4] follows
from the defining relations, and so our operad is spanned by the elements

ai1 · · · ·ais · [a j1 , a j2 ] · · · · · [a j2k−1 , a j2k ]

with {i1, · · · , is}t { j1, . . . , j2k } = {1, . . . ,n}, which, up to a sign, depend only on the
subset { j1, . . . , j2k } of even cardinality, see [40, Th. 2.4.2]. This means that the
space of elements of O(n) of weight k has dimension

( n
2k

)
. We may now con-

sider the weight graded version of the Poincaré series, associating to an op-

erad an element of Q[u][[t ]] for which the coefficient at ui t n

n! is the dimension
of the weight i part of the arity n component. For weight graded operads with
finite-dimensional graded components whose weights in each given arity are
bounded, a version of Proposition 2.3 holds: if an(u) is the coefficient of the
compositional inverse of the Poincaré series of the given operad, and that op-
erad is Koszul, then (−1)n−1an(u) is a polynomial in u with non-negative coeffi-
cients for all n ≥ 1. For our operad, the corresponding series is

t + (1+u)

2
t 2 + 1+3u

6
t 3 + ∑

k≥4

(1+u)k + (1−u)k

2

t k

k !
.

A direct calculation shows that the coefficient at t 15 of the compositional inverse
has a negative coefficient −53844181

26127360 at u7, so our operad is not Koszul. �

Remark 3.4. Note that in the case α=−β, the polarized relations of the operad
suggest that it is obtained from operads of commutative associative algebras and
two-step nilpotent Lie algebras by a distributive law. This is not the case, as one
can check by a direct computation, see [27, Exercise 8.10.12]. Our result show
that the operad is not Koszul either, which is not a priori clear.
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Proposition 3.5 (Multiplicities (0,1,1)). For (α :β) ∈P1, the quotient of the asso-
ciative operad by the ideal generated by

α([a1, a2]a3 + [a3, a2]a1)+β(a1[a3, a2]+a3[a1, a2]),

a1a2a3 −a1a3a2 +a2a3a1 −a2a1a3 +a3a1a2 −a3a2a1

is not Koszul if αβ 6= 0 and is Koszul if αβ= 0.

Proof. For αβ 6= 0, it follows from [40, Th. 2.1.2, 2.3.2, 2.4.2] that including the
sign submodule does not bring new higher arity consequences, so the Poincaré
series of our operad is given by

t + t 2 + 1

2
t 3 + ∑

k≥4

t k

k !
.

Its compositional inverse has negative coefficient −802543633
39916800 at t 11. By Proposi-

tion 2.3, this operad is not Koszul.
For αβ = 0, the corresponding operad is the operad of permutative algebras

(associative algebras satisfying a1a2a3 = a1a3a2 for α = 0 and a1a2a3 = a2a1a3

for β= 0); to show that it is Koszul, one may argue that it is the Koszul dual of the
operad of pre-Lie algebras which is shown to be Koszul in [6]. �

Proposition 3.6 (Multiplicities (0,2,0)). The quotient of the associative operad by
the ideal generated by the elements [a1, a2]a3+[a3, a2]a1 and a1[a3, a2]+a3[a1, a2]
is not Koszul.

Proof. According to [40, Th. 2.1.2], the Poincaré series of our operad is given by

t + t 2 + 1

3
t 3 + ∑

k≥4

t k

k !
.

The first 1000 coefficients of its compositional inverse have “good” signs, making
one suspect that this operad may be Koszul. We shall however show that it is not
Koszul. Like in Proposition 3.3, we shall the polarized presentation , which for
this operad is

(a1 ·a2) ·a3 = a1 · (a2 ·a3),

[[a1, a2], a3] = 0,

[a1 ·a2, a3] = [a1 ·a3, a2] = [a1, a2 ·a3] = 0,

[a1, a2] ·a3 =−[a1, a3] ·a2 = a1 · [a2, a3].

Once again, for the weight grading w(− ·−) = 0, w([−,−]) = 1, the relations are
homogeneous, and so our operad inherits a weight grading. Clearly, the weighted
Poincaré series of this operad is

t + (1+u)

2
t 2 + 1+u

6
t 3 + ∑

k≥4

t k

k !
.

For the compositional inverse of this power series, the coefficient at t 20 has a
positive coefficient 14119421138089

17322439680000 at u2, so our operad is not Koszul. �

Remark 3.7. This operad was considered in [15], but the non-Koszulness claim
there is based on an erroneous calculations of Poincaré series, so the question
of its Koszulness remained open.
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Proposition 3.8 (Multiplicities (0,2,1)). The quotient of the associative operad by
the ideal generated by

[a1, a2]a3 + [a3, a2]a1, a1[a3, a2]+a3[a1, a2],

a1a2a3 −a1a3a2 +a2a3a1 −a2a1a3 +a3a1a2 −a3a2a1

is Koszul.

Proof. We note that this operad is the quotient of the associative operad by the
ideal generated by the elements

aσ(1)aσ(2)aσ(3) −a1a2a3

for each σ ∈ S3, and the arity n component of this operad is one-dimensional
in each arity from three onwards. If one considers the polarized presentation of
this operad, one finds that the operation (−·−) is associative, the operation [−,−]
is two-step nilpotent, and all compositions of these operations with one another
vanish. This means that we are dealing with the connected sum of the operad of
commutative associative algebras and the operad of anticommutative two-step
nilpotent algebras. These two operads are well known to be Koszul, and so their
connected sum is Koszul too (it follows from the fact that the bar complex of the
connected sum is the coproduct of bar complexes). �

Remark 3.9. This proof is essentially the Koszul dual of the proof explained in
[29], where it is noticed that the Koszul dual operad of Lie-admissible algebras
is the coproduct of the Lie operad and the commutative magmatic operad, and
therefore Koszul.

Proposition 3.10 (Multiplicities (1,0,0)). The quotient of the associative operad
by the ideal generated by

a1a2a3 +a1a3a2 +a2a3a1 +a2a1a3 +a3a1a2 +a3a2a1

is not Koszul.

Proof. This operad is the Koszul dual of the operad of alternative algebras, and
so the theorem follows from the main result of [12]. �

Proposition 3.11 (Multiplicities (1,0,1)). The quotient of the associative operad
by the ideal generated by

a1a2a3 +a1a3a2 +a2a3a1 +a2a1a3 +a3a1a2 +a3a2a1,

a1a2a3 −a1a3a2 +a2a3a1 −a2a1a3 +a3a1a2 −a3a2a1.

is not Koszul.

Proof. According to [40, Th. 3.1], the Poincaré series of this operad is given by
t + t 2+ 2

3 t 3. Its compositional inverse has positive coefficient 14
9 at t 6. By Propo-

sition 2.3, our operad is not Koszul. �

Proposition 3.12 (Multiplicities (1,1,0)). For any (α : β) ∈P1, the quotient of the
associative operad by the ideal generated by

α([a1, a2]a3 + [a3, a2]a1)+β(a1[a3, a2]+a3[a1, a2]),

a1a2a3 +a1a3a2 +a2a3a1 +a2a1a3 +a3a1a2 +a3a2a1

is not Koszul.
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Proof. For α 6= −β, it follows from [40, Th. 2.1.2, Th. 2.2.2, Th. 2.3.2] that the
Poincaré series of our operad is given by t + t 2 + 1

2 t 3. Its compositional inverse
has a positive coefficient 715

16 at t 10. By Proposition 2.3, this operad is not Koszul.
Forα=−β, it follows from [40, Th. 2.4.2] that the Poincaré series of our operad

is given by t + t 2 + 1
2 t 3 + 1

24 t 4. Its compositional inverse has positive coefficient
488735

3072 at t 12. By Proposition 2.3, this operad is not Koszul. �

Proposition 3.13 (Multiplicities (1,1,1)). For any (α : β) ∈P1, the quotient of the
associative operad by the ideal generated by

a1a2a3 +a1a3a2 +a2a3a1 +a2a1a3 +a3a1a2 +a3a2a1,

a1a2a3 −a1a3a2 +a2a3a1 −a2a1a3 +a3a1a2 −a3a2a1,

α([a1, a2]a3 + [a3, a2]a1)+β(a1[a3, a2]+a3[a1, a2])

is Koszul.

Proof. Throughout the proof, we shall denote this operad Oα,β. It follows from
[40, Th. 2.1.2, Th. 2.2.2, Th. 2.3.2, Th. 2.4.2] that the Poincaré series of the operad
Oα,β does not depend on (α : β) and is given by t + t 2 + 1

3 t 3. In the polarized
presentation, the generators of the ideal of relations of our operad are

(a1 ·a2) ·a3 −a1 · (a2 ·a3)+ [[a1, a3], a2],

[a1 ·a2, a3]− [a1, a3] ·a2 −a1 · [a2, a3],

(a1 ·a2) ·a3 + (a3 ·a1) ·a2 + (a2 ·a3) ·a1,

[a1, a2] ·a3 + [a3, a1] ·a2 +a1 · [a2, a3],

(α−β)([[a1, a2]a3]+ [[a3, a2]a1])+ (α+β)(a1 · [a3, a2]+a3 · [a1, a2]).

The proof of the Koszul property depends on (α : β). Suppose first that α=−β.
In this case, the polarized presentation of the operad Oα,β may be simplified to

(a1 ·a2) ·a3 = [[a1, a2], a3] = 0,

[a1 ·a2, a3]− [a1, a3] ·a2 − [a2, a3] ·a1,

a1 · [a2, a3]+a2 · [a3, a1]+a3 · [a1, a2].

The associated shuffle operad may be determined by a convergent quadratic
rewriting system

(a1 ·a2) ·a3 → 0, [[a1, a2], a3] → 0,

(a1 ·a3) ·a2 → 0, [[a1, a3], a2] → 0,

a1 · (a2 ·a3) → 0, [a1, [a2, a3]] → 0,

[a1 ·a2, a3] → [a1, a3] ·a2 +a1 · [a2, a3],

[a1 ·a3, a2] → [a1, a2] ·a3 −a1 · [a2, a3],

[a1, a2 ·a3] → [a1, a2] ·a3 + [a1, a3] ·a2,

a1 · [a2, a3] → [a1, a3] ·a2 − [a1, a2] ·a3.

Termination follows from the fact that with each application of the rewriting rule
we either rewrite elements into zero, or put the operation (−·−) closer to the root
of the tree, or increase the associated path sequence (the number of shuffle tree
monomials of the given arity is finite, so increasing is as good as decreasing).
Confluence follows from the fact that the ternary normal forms are [a1, a3] · a2

and [a1, a2] ·a3, so there are no normal forms of higher arities, and we have the
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expected dimensions of the components of the operad. Consequently, our op-
erad is Koszul.

For other values of the parameter, there is no convergent quadratic rewriting
system for our operad, and the argument will be more intricate: we shall study
the Koszul dual operad, and show that Proposition 2.4 is applicable. The Koszul
dual operad O!

α,β describes algebras with the following relation between associ-
ators:

β((a1, a2, a3)+ (a2, a1, a3))+ (α−β)((a1, a3, a2)+ (a2, a3, a1))

−α((a3, a1, a2)+ (a3, a2, a1)) = 0.

To see that, we first note that, according to Proposition 2.2, the operad O!
α,β is

some operad of associator dependent algebras. Moreover, the annihilator of the
four-dimensional space of relations is two-dimensional, and it is clear that this
two-dimensional module is irreducible. Every two-dimensional submodule of
associator dependencies is generated by an element of the form

λ((a1, a2, a3)+ (a2, a1, a3))− (λ+µ)((a1, a3, a2)+ (a2, a3, a1))

+µ((a3, a1, a2)+ (a3, a2, a1)),

for some (λ :µ) ∈P1. Computing the pairing between this element and the defin-
ing relations of Oα,β, we get λα+βµ= 0, so (λ :µ) = (−β :α).

For the operad O!
α,β, we shall also make use of the polarized presentation, for

which the ideal of relations of the associated shuffle operad is generated by

(α+β)([[a1, a2], a3]+ [a1, [a2, a3]]− (a1 ·a2) ·a3 +2(a1 ·a3) ·a2 −a1(a2 ·a3))+
(α−β)(−[a1 ·a2, a3]+2[a1 ·a3, a2]+ [a1, a2 ·a3]−3[a1, a2] ·a3 +3a1 · [a2, a3])

and

(α+β)([[a1, a3], a2]− [a1, [a2, a3]]+2(a1 ·a2) ·a3 − (a1 ·a3) ·a2 −a1(a2 ·a3))+
(α−β)(2[a1 ·a2, a3]− [a1 ·a3, a2]+ [a1, a2 ·a3]−3[a1, a3] ·a2 −3a1 · [a2, a3]).

Suppose first that α=β, that is (α :β) = (1 : 1). In this case, the polarized pre-
sentation simplifies, and the ideal of relations of the associated shuffle operad is
generated by

[[a1, a2], a3]+ [a1, [a2, a3]]− (a1 ·a2) ·a3 +2(a1 ·a3) ·a2 −a1(a2 ·a3),(5)

[[a1, a3], a2]− [a1, [a2, a3]]+2(a1 ·a2) ·a3 − (a1 ·a3) ·a2 −a1(a2 ·a3).(6)

Let us consider the graded path-lexicographic ordering with [−,−] > (− ·−). It
turns out that for this ordering, the operad O!

1,1 has a finite Gröbner basis con-
sisting of the above quadratic elements with the leading terms [[a1, a2], a3] and
[[a1, a3], a2] and six cubic elements whose leading terms are [((a1 ·ai ) ·a j , ak ] for
all possible permutations (i , j ,k) of {2,3,4}. It follows from [8] that our operad
has a model (free resolution) whose generators correspond to overlaps of the
leading terms. For each arity n ≥ 4, there are (n − 1)! such generators that are
overlaps of the first two leading terms, and (n−1)! such generators that are over-
laps involving the other leading terms. These generators have opposite parities,
contributing zero to the Euler characteristics, so the Poincaré series of the space
of generators is equal to t − t 2 + 1

3 t 3. Since the Poincaré series of the space of
generators of a model of an operad is always equal to the compositional inverse
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of the Poincaré series of an operad, Proposition 2.4 means that the operad O1,1

is Koszul.
Let us now consider the case α 6= β. We shall show that the Poincaré series of

the operad O!
α,β is still equal to the compositional inverse of t − t 2 + 1

3 t 3, which,

comnbined with Proposition 2.4, will prove the Koszul property. However, the
proof is going to be more intricate, since for most values of parameter there is
no convergent quadratic rewriting system for the Koszul dual operad, and for
some values of parameter there is no known convergent rewriting system at all.
Thus, we shall show separately that the coefficients of the compositional inverse
give an upper and a lower bound for the dimensions of components.

Lower bound. Let us denote s = α+β
α−β . Recall that the operad O!

α,β is, up to

homological shifts and linear duality, the diagonal part of the bar complex of the
operad Oα,β, so for the purposes of estimating the dimensions of components,
we may focus on the latter chain complex. We know that for all values of (α :β),
all components of the operad Oα,β starting from the arity four vanish. Moreover,
a direct inspection of the polarized presentation of the operad Oα,β shows that
for α 6= β, the cosets of the elements [a1, a2] · a3 and [a1, a3] · a2 form a basis in
the component Oα,β(3), and the structure constants expressing compositions
of generators as combinations of these elements are polynomials in s. Let us fix
an arity n ≥ 1. What we just said implies that the arity n component of the bar
complex of that operad is a chain complex of flat k[s]-modules of finite rank,
hence the semicontinuity theorem [16, Sec. III.12] applies, and for each integer
k ≥ 0, the k-th homology of this chain complex is constant for generic s, and
may jump up for certain special values of s. Therefore,

• for generic values of (α : β), the homology of first n arities of the bar
complex of the operad Oα,β is concentrated on the diagonal (since the
off-diagonal homology groups vanish for one specialisation s = 0, corre-
sponding to α=−β, and since homology is semicontinuous),

• for generic values of (α : β), the first n coefficients of the Poincaré series
of the operad O!

α,β are equal to the first n coefficients of the composi-

tional inverse of t − t 2+ 1
3 t 3 (since the Poincaré series of the bar complex

of an operad is always equal to the compositional inverse of the Poincaré
series of that operad, and since we already know that for generic values,
the homology of the first n arities of the bar complex of the operad Oα,β

is concentrated on the diagonal),
• for each value of (α :β), the n-th coefficient of the Poincaré series of the

operad O!
α,β is greater than or equal to the n coefficient of the composi-

tional inverse of t − t 2 + 1
3 t 3 (since homology is semicontinuous),

so the compositional inverse of t − t 2 + 1
3 t 3 is a lower bound for all possible

Poincaré series.
Upper bound. We shall show that the shuffle tree monomials whose under-

lying planar trees are binary, whose vertices are labelled by the polarized opera-
tions (−·−) and [−,−], and whose quadratic divisors do not include [a1, a2] ·a3

and [a1, a3] ·a2 span the Koszul dual operad. Unfortunately, one can show that
there exists no convergent rewriting system with these monomials as normal
forms, so we shall use some sort of rewriting that converges but does not have
a direct meaning in terms of operads. Let us prove the spanning property as
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follows. Overall, we shall argue by induction on arity. For fixed arity, we shall
argue taking into account the label of the root vertex. Let T be any shuffle tree
monomial of arity n. If the root of T is labelled by [−,−], then, once we use the
induction hypothesis and represent the two trees grafted at the root of T as lin-
ear combinations of requested shuffle tree monomials, this immediately gives
such a representation of T . Suppose that the root of T is labelled by (− ·−), so
that it may have a left quadratic divisor at the root that is prohibited. Sinceα 6=β,
the two prohibited quadratic divisors appear (individually) in the two defining
relations of our operad, and we may replace the arising divisor by a linear combi-
nation of allowed quadratic monomials. In the result, we may forget the mono-
mials where the root is labelled by [−,−], since we already proved our statement
for such monomials. What are the other monomials that may appear? Among
them there are monomials which have fewer occurrences of [−,−], which we
may make another induction parameter, and monomials which have the same
number of occurrences of [−,−], but the arity of the left subtree of the root is
smaller, which we may make another induction parameter. This means that it is
possible to write T as a linear combination of requested shuffle tree monomials.
We already know that these monomials form a basis in the Koszul dual operad
for α=β, so the necessary upper bound is established.

Combining the two bounds that we found, we conclude that the Poincaré se-
ries of our operad is the compositional inverse of t − t 2 + 1

3 t 3, so according to
Proposition 2.4, our operad is Koszul. �

Remark 3.14. One can adapt the above proof for the case α = β to most cases:
for α2 −α+ 1 6= 0, the polarized presentation of the Koszul dual operad leads
to a convergent rewriting system with quadratic and cubic right hand sides, for
which there is the “correct” number of normal forms. However, the exceptional
caseα2−α+1 = 0, which, incidentally, corresponds to the rather elegant identity

(a1, a2, a3)+ω(a2, a3, a1)+ω2(a3, a1, a2) = 0,

where ω = −α is a primitive third root of unity, does not seem to admit a finite
operadic rewriting system, and so one has to resort to the strategy described
above, where an upper bound is obtained in a different way.

Proposition 3.15 (Multiplicities (1,2,0)). The quotient of the associative operad
by the ideal generated by

[a1, a2]a3 + [a3, a2]a1,

a1[a3, a2]+a3[a1, a2],

a1a2a3 +a1a3a2 +a2a3a1 +a2a1a3 +a3a1a2 +a3a2a1

is Koszul.

Proof. We note that this operad is the quotient of the associative operad by the
ideal generated by the elements

aσ(1)aσ(2)aσ(3) − (−1)σa1a2a3

for each σ ∈ S3. Thus, each coset of the basis elements of the associative operad
may be taken as a basis element of its ternary component, and all components
of arity at least four vanish. Once again, it is advantageous to use the polarized
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presentation which for our operad is

(a1 ·a2) ·a3 = [a1 ·a2, a3] = [[a1, a2], a3] = 0,

[a1, a2] ·a3 + [a1, a3] ·a2 = 0.

If we consider the graded path-lexicographic ordering (for any ordering of gen-
erators), the only normal form of arity 3 is the element a1 · [a2, a3], so there are
no normal forms of arity four, and the elements listed above form a quadratic
Gröbner basis. Consequently, our operad is Koszul. �

Remark 3.16. We note that this operad was considered in [36], where it is er-
roneusly claimed that it is not Koszul.

Proposition 3.17 (Multiplicities (1,2,1)). The quotient of the associative operad
by its arity three component is Koszul.

Proof. This is the operad of nilpotent algebras of index three which is well known
to be Koszul. �

Classification theorem. The results we obtained in Propositions 3.1–3.17 prove
the following result, which is one of the main classification results of this paper.

Theorem 3.18. Koszul quotients of the associative operad by an ideal generated
by ternary operations are precisely the operads from the following list:

• The associative operad, which is the quotient by the zero ideal.
• The operad of right permutative algebras, which is the quotient by the

ideal generated by

a1a2a3 −a1a3a2,

and the isomorphic operad of left permutative algebras, which is the quo-
tient by the ideal generated by

a1a2a3 −a2a1a3,

• The operad of bipermutative algebras, which is the quotient by the ideal
generated by

a1a2a3 −a1a3a2,

a1a2a3 −a2a1a3,

• The operad of biantipermutative algebras, which is the quotient by the
ideal generated by

a1a2a3 +a1a3a2,

a1a2a3 +a2a1a3

• Each operad in the parametric family of quotients by ideals depending on
the parameter (α :β) ∈P1 generated by

a1a2a3 +a2a3a1 +a3a1a2,

α([a1, a2]a3 + [a3, a2]a1)+β(a1[a3, a2]+a3[a1, a2]),

• The operad of associative algebras that are nilpotent of index three, which
is the quotient by the ideal generated by a1a2a3.
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Proof. Most of the claims of the theorem are proved above. The claim that the
ideals in the parametric family of operads are generated by

a1a2a3 +a2a3a1 +a3a1a2,

α([a1, a2]a3 + [a3, a2]a1)+β(a1[a3, a2]+a3[a1, a2])

follows from the fact that the submodule generated by a1a2a3+a2a3a1+a3a1a2

is precisely the sum of the trivial and the sign submodules. �

3.3. Koszul quotients by binary and ternary operations. If we consider arbi-
trary Koszul quotients of the associative operad, one must also look at the case
in which the kernel has a non-zero intersection with the two-dimensional regu-
lar S2-module of generators. In such case, there are several possible case. First,
the intersection of the kernel with the module of generators may be equal to the
whole module of generators, in which case the only quotient is the unit operad.
Next, the intersection of the kernel with the module of generators may coin-
cide with the sign module, in which case there are two quadratic quotients, the
operad of commutative associative algebras which is well known to be Koszul,
and the operad of two-step nilpotent commutative associative algebras which is
also Koszul (it is the Koszul dual of a free operad). Finally, the intersection of the
kernel with the module of generators may coincide with the trivial module, in
which case there are two quadratic quotients, the operad of anti-commutative
associative algebras which is well known to not be Koszul (for it fails the posi-
tivity test), and the operad of two-step nilpotent anti-commutative associative
algebras which is also Koszul (it is the Koszul dual of a free operad).

4. KOSZUL OPERADS OF ASSOCIATOR DEPENDENT ALGEBRAS

4.1. Main theorem. We are now ready to answer the original question. The fol-
lowing theorem is the main result of this paper.

Theorem 4.1. An operad of associator dependent algebras is Koszul if and only if
it is one of the operads from the following list:

• The associative operad, in which all associators vanish.
• The operad of right pre-Lie algebras, which is the quotient by the ideal

generated by

(a1, a2, a3)− (a1, a3, a2),

and the isomorphic operad of left pre-Lie algebras, which is the quotient
by the ideal generated by

(a1, a2, a3)− (a2, a1, a3),

• The operad of Lie-admissible algebras, which is the quotient by the ideal
generated by

(a1, a2, a3)+ (a2, a3, a1)+ (a3, a1, a2)− (a1, a3, a2)− (a2, a1, a3)− (a3, a2, a1),

• The operad of third power associative algebras, which is the quotient by
the ideal generated by

(a1, a2, a3)+ (a2, a3, a1)+ (a3, a1, a2)+ (a1, a3, a2)+ (a2, a1, a3)+ (a3, a2, a1),
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• Each operad in the parametric family of quotients by ideals depending on
the parameter (α :β) ∈P1 generated by

β((a1, a2, a3)+ (a2, a1, a3))+ (α−β)((a1, a3, a2)+ (a2, a3, a1))

−α((a3, a1, a2)+ (a3, a2, a1)),

• The magmatic operad of absolutely free nonassociative algebras.

Proof. It is well known [6] that the operad of right pre-Lie algebras is the Koszul
dual of the operad of right permutative algebras, and same applies to the left ver-
sions of those operads, which control the opposite algebras. It is also known [15,
36] that the Koszul dual of the operad of Lie admissible algebras is the operad of
bipermutative algebras, and that the Koszul of the operad of third power asso-
ciative algebras is the operad of biantipermutative algebras. For the parametric
family, the Koszul dual was computed in the proof of Proposition 3.13. �

Let us use the Koszul property to obtain information on the Poincaré series of
operads of associator dependent algebras. In the case of the operad of pre-Lie
algebras, it is well known [6] that the arity n component is of dimension nn−1.
The Koszul property of the operads belonging to the parametric family implies
the following explicit formula, which it is amusing to compare with the dimen-
sion formula 1 · 2 · · ·n for the arity n component of the associative operad and
the dimension formula 2 ·6 · · · (4n −6) for the magmatic operad.

Corollary 4.2. For each operad in the parametric family of quotients by ideals
depending on the parameter (α :β) ∈P1 generated by

β((a1, a2, a3)+ (a2, a1, a3))+ (α−β)((a1, a3, a2)+ (a2, a3, a1))

−α((a3, a1, a2)+ (a3, a2, a1)),

the dimension of the arity n component is equal to

2 ·5 · · · (3n −4).

Proof. It follows from Proposition 3.13 that this operad is Koszul, and that the
Poincaré series of the Koszul dual operad is

f (t ) = t + t 2 + t 3

3
=−1

3
+ 1

3
(1+ t )3.

The compositional inverse of − f (−t ) is given by

1− (1−3t )1/3 = 1− ∑
n≥0

(−3t )n

(
1/3

n

)
=

1− ∑
n≥0

1(−2) · · · (1−3(n −1))

n!
(−t )n = t + ∑

n≥2

2 ·5 · · · (3n −4)

n!
t n ,

completing the proof. �

For the other Koszul operads of associator dependent algebras, there are no
closed formulas for dimensions of components. We record the following conse-
quences of their Koszulness.

Proposition 4.3.
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• The Poincaré series f (t ) of the operad of third power associative algebras
satisfies the equation

f (t )− f (t )2 + f (t )3

6
= t .

• The Poincaré series f (t ) of the operad of Lie-admissible algebras satisfies
the equation

1−e− f (t ) − f (t )2

2
= t .

We note that in the first case, the same equation is satisfied by the Koszul op-
erad of anti-Lie-admissible (alia) algebras [11]; this may be explained by observ-
ing that the corresponding shuffle operads have quadratic Gröbner bases [20],
and the combinatorics of leading monomials of the two Gröbner bases are the
same. The second statement was conjectured in [38].

4.2. Application to the question of Loday. From Theorem 4.1, we immediately
obtain the following result.

Theorem 4.4. A Koszul operad with one binary generator for which the octonions
form an algebra is one of the following operads:

• the operad of third power associative algebras,
• each operad in the parametric family of quotients by ideals depending on

the parameter (α :β) ∈P1 generated by

β((a1, a2, a3)+ (a2, a1, a3))+ (α−β)((a1, a3, a2)+ (a2, a3, a1))

−α((a3, a1, a2)+ (a3, a2, a1)),

• the magmatic operad.

In particular, the smallest Koszul operads that act on octonions are the operads of
the parametric family.

Proof. First, we note that the product of octonions is neither commutative nor
anticommutative, so a binary operad acting on the algebra of octonions is gener-
ated by an operation without any symmetries. Next, we recall that the algebra of
octonions is alternative, so the alternative operad should admit a map from the
operad we are interested in. Moreover, the product of octonions does not satisfy
identities of arity less than five that do not follow from alternativity [34], and a
Koszul operad is quadratic, so there are no further conditions. The S3-module
of the alternativity relations is a direct sum of one copy of the trivial module and
two copies of the two-dimensional irreducible module, so the only condition on
our operad is that its module of relation does not contain the sign module. Ex-
amining the classification result, we see that this rules out the associative, the
pre-Lie, and the Lie-admissible case. The last claim comes from examining the
Poincaré series computed above. �

One can extend the question of Loday as follows. In the chain of algebras R,
C,H, andO, each one is obtained from the previous one by the so called Cayley–
Dickson process. One may not stop at octonions, obtaining further an algebra
of the so called sedenions and further algebras that do not seem to have names;
these algebras will still be normed, but they will not be division algebras any-
more. The following result classifies Koszul operads that act on those algebras.
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Theorem 4.5. A Koszul operad with one binary generator that acts on all algebras
obtained from k by the Cayley–Dickson process is one of the following operads:

• the operad of third power associative algebras,
• the operad that is the quotient of the magmatic operad by the ideal gener-

ated by

(a1, a2, a3)+ (a2, a1, a3)−2(a1, a3, a2)−2(a2, a3, a1)+ (a3, a1, a2)+ (a3, a2, a1),

• the magmatic operad.

Proof. From the results of the first author and Hentzel [4], it follows that all
ternary identity of sedenions follow from the flexible law

(a1, a2, a3)+ (a3, a2, a1) = 0,

and that each such identity is satisfied by all the algebras obtained from the
Cayley–Dickson process if and only if it is satisfied by the sedenions. Thus, it
remains to determine which of the operads from the previous theorem map to
the operad of flexible algebras. The S3-module of the flexibility relations is a di-
rect sum of one copy of the trivial module and the two-dimensional irreducible
module, so the possible submodules are the zero module, the trivial module,
and the two-dimensional irreducible module (one particular choice, rather than
any one from the parametric family). These corresponds to the quotients being
the magmatic operad, the third power associative operad, and the particular op-
erad from the parametric family (corresponding to α=−β). �
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