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Quentin Gazda*

Abstract

The deepest arithmetic invariants attached to an algebraic variety defined over
a number field F' are conjecturally captured by the integral part of its motivic
cohomology. There are essentially two ways of defining it when X is a smooth
projective variety: one is via the K-theory of a regular model, the other is
through its f-adic realization. Both approaches are conjectured to coincide.

This paper initiates the study of motivic cohomology for global fields of
positive characteristic, hereafter named A-motivic cohomology, where classical
mixed motives are replaced by mixed Anderson A-motives. Our main objective
is to set the definitions of the model version and the ¢-adic version of the integral
part of A-motivic cohomology, using Gardeyn’s notion of mazximal models of A-
motives as the analogue of regular models of varieties. Our main result states
that the model version is contained in the £-adic version. As opposed to what
is expected in the number field setting, we show that the two approaches do not
match in general.

We conclude this work by introducing the submodule of regulated extensions
of mixed Anderson A-motives, for which we expect the two approaches to match,
and solve some particular cases of this expectation.
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1 Introduction

1.1 The number field picture

The idea of mized motives and motivic cohomology has been gradually formu-
lated by Deligne, Beilinson and Lichtenbaum and aims to extend Grothendieck’s
philosophy of pure motives. Before discussing the function fields side, subject of
the paper, let us first present the classical setting to derive some motivations.

The theory, mostly conjectural, starts with a number field F'. The hypothet-
ical landscape portrays a Q-linear Tannakian category MM g of mized motives
over F, equipped with several realization functors having MM as source (see
[Del, §1]). Among them, the ¢-adic realization functor Vg, for a prime number £,
takes values in the category of continuous /-adic representations of the absolute
Galois group G of F.

It is expected that reasonable cohomology theories factor through the cat-
egory MMp. For instance, the f-adic realization should recover the étale co-
homology of algebraic varieties with coefficients in Q@ in the following way: for
all integer i, one foresees the existence of a functor h?, from the category of
algebraic varieties over F' to MM g, making the following diagram of categories
commute:

{Varieties/F'} o, MMp

X'—)Hélt(XXFF&7@g)

Repg, (GF)

According to Deligne [Del, §1.3], the category MM should admit a weight
filtration in the sense of Jannsen [Janl, Def 6.3], which would coincide with the
classical weight filtration of varieties. The weights of a mixed motive M would
then be defined as the breaks of its weight filtration.

From the Tannakian formalism, MM g admits a tensor operation, extending
the fiber product on varieties, and we fix 1 a neutral object. Let M be a mixed
motive over F. According to Beilinson [Beill §0.3] (see also [Andyl Def 17.2.11]),
the motivic cohomology of M is defined as the complex

RHOmMMF(]l,M)

in the derived category of Q-vector spaces. Its ith cohomology is the Q-vector
space Ext'y (. (1, M), the ith Yoneda extension space of 1 by M in MMp.
We quote from [Schl §2] and [Dell, §1.3] respectively:

Conjecture. We expect that:
(C1) for i & {0,1}, Ext’y . (1, M) =0,
(C2) if the weights of M are non-negative, Ext}\AMF(]l, M)=0.

We focus on the first Yoneda extension Q-vector space Ext}\,l Mp (L, M), A
subspace thereof of fundamental importance is the space of extensions having
everywhere good reduction. Let us first describe its local version.

Let F, be the local field of F' at a finite place p, and let M, be a mixed
motive over F,. To define the p-integral part of the motivic cohomology of M,,
we encounter two approaches, which are believed to meet.
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Via the /-adic realization: Let G, be the absolute Galois group of F}, and
let I, be its inertia subgroup. Given a prime number ¢ from which p is not above,
one predicts that the f-adic realization V; is an exact functor. This allows to
construct a Q-linear morphism, called the ¢-adic realization map of M,,

rarep  Bxtiy,, (Lp, My) — H'(Gy, VeM,)

which maps the class of an exact sequence [Ep] : 0 - M, — E, — 1, = 0
in MM F, to the class of the continuous cocycle ¢ : G, — Vy M, associated to
the class of the exact sequence [ViE,] : 0 — V,M, — V;E, — V;1, — 0 in
Repg, (Gy)-

Following Scholl [Sch], we define the p-integral part of the motivic coho-
mology as follows. It is said that [E,] € Extj FP(]l,M ) has good reduc-
tion if rarep([Ep]) splits as a representation of I, (that is, [VyE,] is zero in
HY(I,,V,M,)). We define Extéood(l,Mp)g as the subspace of Ext}VIMF(]l,Mp)
consisting of extensions having good reduction. In [Schl §2 Rmk]|, Scholl conjec-
tures:

Conjecture. We expect that:
(C3) The property that [E,] has good reduction is independent of the prime £.

Via the K-theory of regular models: In the case where M, = hi=1(X)(n)
for a smooth projective variety X over F, and two integers n, ¢ > 1, there is
another conjectural way of defining the p-integral part of the motivic cohomology
of M,. Following Beilinson [Beil], there should be an isomorphism (see loc. cit.
for details):

Extigu, (1, Mp) = (Kan—i(X) @7 Q)™. (1.1)

Assume that X has a regular model 2" over O, (i.e. £ is regular over Spec O,
and 2" Xgpec 0, Spec F, = X). Then, we define EXt}Qp (1, M) to be the inverse
image of

image ((Kgn,i(%) @72 Q)™ — (Kon_i(X) ® @>(n)) )

which does not depend on 2" [Beill, Lem. 8.3.1], through (1.1). The next
conjecture supersedes [(C3)|

Conjecture. We expect that

(C4) For any prime £ from which p is not above, Exté‘u (1,M,) = Extéood(]l, M,),.

The global version of the integral part of the motivic cohomology of a mixed
motive M over F' is recovered as follows. The motive M induces a motive
M, over F, by localization. Admitting we say that an extension [E] €
EXt}\AMF(]l,M) has everywhere good reduction if, for all p, [E,] belongs to

Ext}MMFp (1,, My), for some prime £. We denote by Extéood(]l, M) the subspace

of Ext}\/t My (1, M) consisting of extensions having everywhere good reduction.

Similarly, in the case where M = h*~!(X)(n) for a smooth projective variety
X over F, we let Ext}QF(]l, M) be the subspace of extensions [E] such that [E,]
belongs to ExtéF (1,, M,) for all finite places p of F. In virtue of the previous
conjectures, we should have:

Extlooq(1, M) = Exty, (1, M) = (Kop—i(Z) @2 Q)™

good

where 2 is a regular model of X over Op. The above space is at the heart of
Beilinson’s conjectures, which begin by the next expectation:

Conjecture. We expect that
(C5) The space Exty, (1, M) has finite dimension over Q.
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1.2 The function field picture

Despite its intrisic obscurities, Motivic cohomology remains a difficult subject
also because its definition sits on a completely conjectural framework. The
present paper grew out as an attempt to understand the analogous picture in
function fields arithmetic. There, the theory looks more promising using Ander-
son A-motives, instead of classical motives, whose definition is well-established.
This parallele has been drawn by many authors and led to celebrated achieve-
ments. The analogue of the Tate conjecture |[Tag] [Tam|, of Grothendieck’s
periods conjecture [Pap| and of the Hodge conjecture [HarJu| are now theorems
on the function fields side. The recent volume [tMo] records some of these feats.
Counterparts of Motivic cohomology in function fields arithmetic have not been
studied yet, although recent works of Taelman [Tae2| [Taed] and Mornev [Mol]
strongly suggest the pertinence of such a project.

The setting

Let F be a finite field, ¢ its number of elements, and let (C, O¢) be a geometri-
cally irreducible smooth projective curve over F. The curve C is determined up
to F-isomorphism by its function field K := F(C'). Let oo be a closed point on
C with associated valuation v, and consider the ring

A:=T(C\ {o0},0¢)

whose fraction field is K. We let K, be its completion with respect to v, and
let K2 be the separable closure of Ko. We let Goo = Gal(K2 |K) be the
absolute Galois group of K,. The analogy with number fields that should guide
us in this text is:

Number fields: Z < Q < R < C Gal(C|R)

{ ! { l l
Function fieldss A C K C Ko C K5 Goo

Let F be a finite extension of K (that is, a global function field over K) and let
Op denote the integral closure of A in F.

The analogy with number fields disappears when one considers the tensor
product A ® F, which is at the heart of the definition of Anderson A-motives
(unlabeled fiber and tensor products are over F). We consider the ring endo-
morphism 7 of A® F which acts as the identity on A and as the ¢g-Frobenius on
F. A® F is a Dedekind domain, and we let j be its maximal ideal generated by
the set {a®1—1®ala € A}.

Following [And|, an Anderson A-motive M over F is a pair (M, 7ys) where
M designates a finite locally free A ® F-module of constant rank, and where
Tar (M7 — M[i71] is an (A ® F)[j!]-linear isomorphism (see Definition
. We let Mg denote the category of Anderson A-motives with obvious
morphisms. Mg is known to be A-linear, rigid monoidal, and is exact in the
sense of Quillen but not abelian ([HarJul §2.3] or Section [2.1). Let 1 in M be
a neutral object for the tensor operation.

Extensions of A-motives

The category Mg, or rather full subcategories of it, will play the role of the
category of Grothendieck’s motives. Guided by this, the next theorem already
describes the analogue of motivic cohomology in an explicit manner, and is the
starting point of our research (see Theorem . Let M be an A-motive over
F.
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id —TM

Theorem A. The complex {M — M[jfl]] of A-modules placed in degree 0
and 1 represents the complex RHompy,, (1, M).

We immediately deduce that Extf\AF(]l,M) is zero for ¢ > 1. For i = 1, one
obtains a surjective morphism

v MY — Bxthy, (1, M) (1.2)

whose kernel is the A-module (id —7p7)(M). (1.2) is explicitly described by
mapping a representative m € M[j~!] to the class of the extension of 1 by M
given by [M & (A F), (") T)] (Section [2.2)).

Remark. Extension groups in the full subcategory of Mg consisting of effective
A-motives (see Deﬁnition were already determined in the existing literature
(see e.g. |Taed], [Taed], [PapRa]). The novelty of Theorem A is to consider the
whole category M p.

To pursue the analogy with number fields, we now present the notion of
mizedness and weights for Anderson A-motives. In the case A = F[t] or deg(o0) =
1 over a complete algebraically closed base field, the corresponding definitions
were carried out respectively by Taelman [Tael| and Hartl-Juschka [HarJu]. We
completed this picture in the most general way (over any A-field and without
any restriction on deg(c0)).

To an Anderson A-motive M over F', we attach an isocrystal Zoo(M) over F'
at co (in the sense of [Mor2]). The term isocrystal is borrowed from p-adic Hodge
theory, where the function field setting allows to apply the non-archimedean
theory at the infinite point co of C' as well. In Section |3| we prove that the
isocrystal Zo, (M) carries a uniquely determined slope filtration (see Definition

3.8):
0= IOO(M)#O - IOO(M)IH - IOO(M>,U2 c--C IOO(M)# = IOO(M) (1~3)

s

for uniquely determined rational numbers p; < ... < pg called the weights of
M. We say that M is mized if there exists an increasing filtration (W, M Ji<i<s
of M by subobjects in Mg whose associated filtration (Zoo (W, M))1<i<s of
Z.(M) by subisocrystals matches with (Definition [3.20). We let MM p
be the full subcategory of Mg whose objects are mixed Anderson A-motives
over I (Section [3). The main results of Section [3] are condensed in:

Theorem B. Let M be an object of MMp. If all the weights of M are non-
positive, then every extension of 1 by M is mixed, that is:

Extjyu, (1, M) = Ext)y, (1, M).

If all the weights of M are positive, then an extension of 1 by M is mized if and
only if its class is torsion, that is:

Ext i, (1, M) = Extl,, (1, M)"".

Furthermore, fori > 1, Exti\/[MF(]l,M) is a torsion module for all M.

Remark. Although the category of classical mixed motives is expected to be
Q-linear, the category MM g of mixed Anderson A-motives over F is only
A-linear. To obtain a K-linear category, it might be convenient to introduce
MME° whose objects are the ones of MM and whose Hom-spaces are given
by Hompaqm, (—, —) ®4 K. In the literature, MM is called the category of
mixed A-motives over F up to isogenies [Har3|, [HarJu]. Theorem B implies
that ExtﬁwM;;O(]l,M) =0 for ¢ > 1 and Ext}\,tMi;o(LM) = 0 if the weights of
M are positive. This reveals that the analogue of the number fields conjecture
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and are true for function fields. Note, however, that contrary to
what is expected for number fields, the full subcategory of pure A-motives is not
semi-simple. Hence, we cannot expect any 1-fold Yoneda extension of two pure
A-motives to split, even if they have the same weight.

Integral part: the /-adic version

Let p be a finite place of F' (i.e. not above o), F}, the associated local field,
Fy a separable closure and Gy = Gal(F/|F}) the absolute Galois group of F
equipped with the profinite topology. Given a maximal ideal £ in A from which
p is not above, there is an (-adic realization functor from Mp, to the category
of continuous Oy-linear representations of G,. For M, p = (M,, Tar) an object of
ME,, it is given by the Oy-module

TgMp = m{m c (Mp ®Fp Fps)/gn(Mp ®Fp F;) | m = TM(T*m)}

where G, acts compatibly on the right of the tensor M, ®p, Fyy' (Definition [2.16]).
We prove in Corollary [2:20] that T} is exact.

This paves the way for introducing extensions with good reduction, as Scholl
did in the number fields setting. Let I, C G} be the inertia subgroup. We
consider the ¢-adic realization map restricted to I,:

rarep s Extiy, (Lp, M) — H' (I, T,M,,) (1.4)

(we refer to Subsection [2.3)). Mimicking Scholl’s approach, we say that an ex-

tension [E,] of 1, by M, has good reduction if [E,] lies in the kernel of (1.4),
and we let Extlooq(1p, M), denote the kernel of rps ¢, (Definition 2.22). As in

good
the number field setting, we expect this definition to be independent of /.

Integral part: the model version

Gardeyn in [Gar2| has introduced a notion of mazimal models for T-sheaves.
Inspired by Gardeyn’s work, we developed the notion of mazimal integral models
of A-motives (Section . They form the function field analogue of Néron models
of abelian varieties, or more generally, of regular models of varieties. Let O, be
the valuation ring of Fj.

Definition (Definition 4.16). Let M , and M be A-motives over Fj, and F
respectively.

1. An Op-model for M, is a finite sub- A® Op-module L of M), which generates
M, over Fy, and such that 7/ (7*L) C L[j™].

2. An Op-model for M is a finite sub-A® O p-module L of M which generates
M over F, and such that 73;(7*L) C L[i~].

We say that L is maximal if L is not strictly contained in any other models.

As opposed to [Gar2| Def 2.1 & 2.3|, we do not ask for an Op-model (resp.
Op-model) to be locally free. We show that this is implicit for maximal ones
using Bourbaki’s flatness criterion (Proposition . Compared to Gardeyn,
our exposition is therefore simplified and avoids the use of a technical lemma due
to L. Lafforgue [Gar2, §2.2]. Our next result should be compared with [Gar2

Prop 2.13| (see Propositions in the text).

Proposition. A mazimal Op-model Mo, for M, (resp. Op-model Mo for M)
exists and is unique. It is locally free over A® O, (resp. A® OF).
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We let Exto (Ly, M,) be the image of Mo, [j~ ] through ¢ (1.2)) (Definition
- Our main result (repeated from Theorem is the next:

Theorem C. Let Mp be an A-motive over F, and let £ be a mazimal ideal
of A from which p is not above. Then, Extbp (Ly, M) is a sub-A-module of
Ext good(]]'PaM )Z

Surprisingly enough, we cannot claim equality in general. In Subsection [5.1}
in the simplest case of the neutral A-motive, we construct for some ¢ and p an
explicit extension in Extgood(]lp, 1,)¢ which does not belong to Ext}QF(]lp, 1,).

In Subsection [£:4] we define the global version of the above. Namely, let M
be an A-motive over F'. The A-motive M defines an A-motive M p over F, by
extending the base field. We let:

Extb, (L.10) “ () {[E] € Exthy, (1.00) | [E,] € Extb, (L, M,) }
p

where the intersection is indexed over all the finite places of F'. Our second main
result (repeated from Theorem 4.49) is the following:

Theorem D. The A-module Exty,, (1, M) equals the image of Mo, [i~}] through
t. In addition, ¢ induces a natural isomorphism of A-modules:

m 5 Bxty (1, M).

Regulated A-motives

We are facing two main issues to pursue our analogy: the counterpart of Con-
jecture [(C4) m does not hold true, and more seriously, neither is the counterpart of
m the A-module Exto (1, M) is typically not finitely generated. Those facts
suggest that the category Mp —even MM p —is too huge to held a convincing
motivic cohomology theory. We end this text by presenting a conjectural picture

aiming to answer the analogue of and |(C5)|

Definition (c.f. for details). Let 0 - M — E — N — 0 be an exact
sequence of A-motives over F},. We say that [E] is regulated if the Hodge polygon
of the Hodge-Pink structure attached to M @ N matches the one of E (see [Pinl
§6]). We denote by Ext'"® the submodule of regulated extensions.

We took inspiration for this definition from the work of Pink, more precisely
from his notion of Hodge additivity |Pinl, §. 6]. The above definition is motivated
by the observation that Exté)F(]l, M) is non finitely generated whenever M is
non zero. One reason, consequence of Theorem D, stems from the fact that
elements of Mo, [j~!] — hence the resulting extensions of 1 by M obtained from
¢ — might have an arbitrary large pole at j. The notion of regulated extensions
exactly prevents this to happen: in Corollary we prove that ¢ induces an
isomorphism of A-modules:

M+ mp (7 M)

= Extr8 (1, M).
Ga—mn(n) s (04D

We strongly expect the following to hold for a large class of A-motives M,,:
Hope. Let ¢ be a mazimal ideal of A from which p is not above. Then,

good

Extg ™ (Lp, M) = Ext 81y, My),.

In particular, the module Extzozef(ll M,)¢ would not depend on (.
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We conclude this text by solving some particular cases of the above Hope
(Subsection [5.3)). The general case, however, remains open.

While Exté’reg(]l, M) is still not finitely generated over A in general, a version
of Conjecture involving the infinite places holds. This will be the subject
of another work.

Acknowledgment: This text consists of the first half of the author’s PhD
thesis. To that extent, I wish to reiterate my profound gratitude to Professors
Gebhard Bockle and Urs Hartl, and my advisor Professor Federico Pellarin. I am
also grateful to Max Planck Institute for Mathematics in Bonn for its hospitality
and financial support.

1.3 Plan of the paper

The paper is organized as follow.

In the begining of Section Subsection we review the usual set up (nota-
tions, definitions, basic properties) of A-motives over an arbitrary A-algebra or
field. We follow [HarJu| and [Har3] as a guideline, though the former reference is
concerned with the particular choice of a closed point oo of degree one and over
a complete algebraically closed field. Most of the results on A-motives extend
without changes to our larger setting. In Subsection A-Motivic cohomology
in Mp is introduced. We describe the extension modules in Mg and obtain
Theorem A as Theorem in the text. In Subsection [2:3] we recall the defi-
nition and main properties of the (-adic realization functor for A-motives, and
introduce extensions having good reduction with respect to £ in Definition [2.22

Section [3]is concerned with mixed A-motives. In the beginning of Subsection
[3:1] we recall, and add some new material, to the theory of function fields isocrys-
tals in the steps of [Mor2]. The main ingredient, used later on in Subsection
to define the category of mixed A-motives, is the existence and uniqueness of
the slope filtration (extending [Har2, Prop. 1.5.10] to general coefficient rings
A). We focus on extension modules in the category MM in Subsection
where we deduce Theorem B from Propositions and Theorem

In Section [ we develop the notion of mazimal integral models of A-motives
over local and global function fields. It splits into four subsections. In Subsec-
tion[4.1] we present integral models of Frobenius spaces over local function fields.
The theory is much easier than the one for A-motives, introduced over a local
function field in Subsection[f.2]and over a global function field in Subsection [.3]
Although our definition of integral model is inspired by Gardeyn’s work in the
context of 7-sheaves [Gar2|, our presentation is simpler as we removed the locally
free assumption. That maximal integral models are locally free is automatic, as
we show in Propositions and The chief aim of this section, however, is
Subsection [£.4] where we use the results of the previous ones to prove Theorems
C and D (respectively Theorems and in the text).

In our last Section [5} we introduce the notion of regulated extensions of A-
motives with an eye toward understanding the lack of equality in Theorem C,
highlighted in Subsection[5.1] We recall the definitions of Hodge-Pink structures
and Hodge polygon, as introduced in [Pin], in Subsection Those are used to
define regulated extensions in Definition[5.7 We conclude this text by Subsection
5.3, where we present a general hope that Ext}g’ieg(ﬂp, M,) and Extégsg(]lp, M)
match. We then prove some particular cases of this expectation, namely when
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M is effective, pure of weight 0 and has good reduction (Theorem [5.13)), or when
M is a p-tensor power of Carlitz’s twist A(1) (Theorem [5.17]).

2 Anderson A-motives and their extension mod-
ules

Let F be a finite field of cardinality q. By convention, throughout this text
unlabeled tensor products and fiber products are over F. Let (C,O¢) be a
geometrically irreducible smooth projective curve over IF, and fix a closed point
oo on C. Let A:=T(C\ {o0}, O¢) be the ring of regular functions on C'\ {oo}
and let K be the function field of C.

2.1 Definition of A-motives

This subsection is devoted to define and recall the main properties of Anderson
A-motives. We begin with a paragraph of notations.

Let R be a commutative F-algebra and let x : A — R be an F-algebra
morphism. R will be referred to as the base algebra and x as the characteristic
morphism. The kernel of k is called the characteristic of (R,k). We consider
the ideal j = j,, of A ® R generated by the set {a ® 1 — 1 ® k(a)la € A}; j is
equivalently defined as the kernel of A® R — R, a ® f — k(a)f. The ideal j
is maximal if and only if R is a field, and is a prime ideal if and only if R is a
domain.

Let Quot(A® R) be the localization of A® R at its non-zero-divisors (if A® R
is an integral domain, Quot(A ® R) is the field of fractions of A ® R).

Let M be an A ® R-module. For n € Z, we denote j~" M the submodule of
M ® s rQuot(A® R) consisting of elements m for which (a®1-1®k(a))"m € M
for all a € A\ F. We then set

M~ =i M

n>0

Let 7: AQ R — A® R be the A-linear morphism given by a ®r — a®r? on
elementary tensors. Let 7*M denotes the pull-back of M by 7 ([Boul, A.IL§5]).
That is, 7*M is the A ® R-module

(A®R) ®r.a9r M

where the subscript 7 signifies that the relation (a ®, bm) = (a7(b) ®, m) holds
for a,b € A® R, and where the A ® R-module structure on 7*M corresponds to
b-(a®;m):= (ba®,m). Welet 1: 7*(A® R) - A® R be the A ® R-linear
morphism which maps (e ®7r) @, (b®s) € T"(A®R) := (A® R)r agr(A® R)
toab®rs? € A® R.

The next definition takes its roots in the work of Anderson [And|, though
this version is borrowed from [Har3| Def. 2.1]:

Definition 2.1. An Anderson A-motive M (over R) is a pair (M, y;) where
M is a locally free A ® R-module of finite constant rank and where 7/ :
(r*M)[j~1] — MJ[j~!] is an isomorphism of (A ® R)[j~!]-modules.

In all the following, we shall more simply write A-motive instead of Anderson
A-motive. The rank of M is the (constant) rank of M over A ® R.

A morphism (M, 7ps) — (N, 7n) of A-motives (over R) is an A ® R-linear mor-
phism f : M — N such that fory =7y o7*f. We let Mg be the A-linear
category of A-motives over R.
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Remark 2.2. A-motives as in Definition [2.1] are called abelian A-motives by
several authors (see e.g. [BroPa]). The word abelian refers to the assumption
that the underlying A® R-module is finite locally free. Dropping this assumption
is not a good strategy in our work, as too many analogies with number fields
motives would fail to hold.

Definition 2.3. An A-motive M = (M, 7)) (over R) is called effective if
m(T*M) € M. We let M be the full subcategory of Mz whose objects
are effective A-motives.

Let 1 be the unit A-motive over R defined as (A ® R,1). The biproduct of
two A-motives M and N, denoted M & N, is defined to be the A-motive whose
underlying A ® R-module is M & N and whose 7-linear morphism is 7p; ® 7.
Their tensor product, denoted M ® N, is defined to be (M Q@ agr N, Tp @ 7n).
The tensor operation admits 1 as a neutral object. The dual of M is defined to
be the A-motive whose underlying A ® R-module is MV := Homagr(M, A® R)
and where 757v is defined as

TMV (T*MV)[jfl] = (T*M)V[jfl] AR ]\/[V[j*l}7 h— hOT];Il

(we refer to [HarJul §.2.3] for more details). Given S an R-algebra, there is
a base-change functor Mpr — Mg mapping M = (M,7y) to Mg := (M ®p
S, v ®ridg). The restriction functor Resg/p : Mg — Mp maps an A-motive
M over S to M seen as an A-motive over R. Given two A-motives M and N
over R and S respectively, we have

Hom g, (M, Resg/r N) = Hompy, (Mg, N).
In other words, the base-change functor is left-adjoint to the restriction functor.

Example 2.4 (Carlitz’s motive). Let C = PL be the projective line over F
and let co be the closed point of coordinates [0 : 1]. If ¢ is any element in
(P} \ {oc}, Op1) whose order of vanishing at oo is 1, we have an identification
A =TF[t]. For an F-algebra R, the tensor product A ® R is identified with R[t].
The morphism 7 acts on p(t) € R[t] by raising its coefficients to the gth-power.
It is rather common to denote by p(t)(") the polynomial 7(p(t)). Let x: A — R
be an injective F-algebra morphism and let § = k(t). The ideal j C RJt] is
principal, generated by (¢t — 6).

The Carlitz F[t]-motive C over R is defined by the couple (R[t], 7c) where 7¢
maps 7*p(t) to (t — 0)p(t)V). Its nth tensor power C™ := C®" is isomorphic to
the F[t]-motive whose underlying module is R[t] and where T¢» maps 7*p(t) to
(t—60)"p(t)D). We let A(n) :=C ™ = (C™).

For A =F[t], A(1) plays the role of the number fields’ Tate motive Z(1) and,
more generally, A(n) plays the role of Z(n).

The category M g of A-motives over R is generally not abelian, even if R = F
is a field. This comes from the fact that a morphism in M g might not admit
a cokernel. However, there is a notion of exact sequences in the category Mpg
which we borrow from [HarJu, Rmk. 2.3.5(b)]:

Definition 2.5. We say that a sequence 0 = M’ — M — M” — 0 in Mg is
ezact if its underlying sequence of A ® R-modules is exact.

The next proposition appears and is discussed in [HarJul Rmk. 2.3.5(b)] and
will allow us to consider extension modules (Subsection . Although stated in
the case where R is a particular A-algebra and deg(co) = 1, it extends without
changes to our setting:

10
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Proposition 2.6. The category M g together with the notion of exact sequences
as in Deﬁmtion is exact in the sense of Quillen [Quill, §2/.

To remedy to the non-abelian feature, we shall introduce next the category
M of A-motives up to isogeny (over R) (see Definition [2.9)), which is abelian
when R = F is a field. We first discuss the notion of saturation.

Definition 2.7. Let M = (M, ) be an Anderson A-motive over R. A submo-
tive of M is an A-motive N = (N, 7y) such that N C M and 7y = 7'M|T*N[rl}-
We set N to be the submotive of M whose underlying A ® R-module is

N¥':={neM|Jac€ AR, an € N}

and call it the saturation of N in M. We say that N is saturated in M if
M —_ Msat'

Following [Har3, Def. 5.5, Thm. 5.12], we have the next:

Definition 2.8. A morphism f : M — N in Mg is an isogeny if one of the
following equivalent conditions is satisfied.

(a) f is injective and coker(f : M — N) is a finite locally free R-module,

b) M and N have the same rank and coker f is finite locally free over R,

(b)
(¢) M and N have the same rank and f is injective,
(d)

d) there exists 0 # a € A such that f induces an isomorphism of (A® R)[a™1]-
modules M[a~1] & N[a~1],

(e) there exists 0 #a € Aand g: N — M in Mg such that fog = aidy and
go f=aidy.

If an isogeny between M and N exists, M and N are said to beisogenous.

As a consequence of those equivalent definitions, a submotive of an A-motive
M is isogenous to its saturation in M. This motivates the definition of the
category of A-motives up to isogeny (see [HarJul, Def. 2.3.1]).

Definition 2.9. Let ./\/liﬁ0 be the K-linear category whose objects are those of
Mg and where the hom-sets of two objects M and N is given by the K-vector
space

HomMﬁo(M,ﬂ) :=Homp,,(M,N)®4 K.

We call the objects of /\/lil?éO the A-motives over R up to isogeny.

An isogeny in Mg then becomes an isomorphism in ./\/liﬁo. According to

iso

[HarJul, Prop. 2.3.4], the category M is abelian.

2.2 Extension modules in Mp

In this subsection, we are concerned with the computation of extension modules
in the category M. Theorem A of the introduction is proved below (Theorem
2.13).

Let R be an F-algebra and let M and N be two A-motives over R. The
morphisms from N to M in Mpg are precisely the A ® R-linear map of the
underlying modules f : N — M such that 7p; o 7*f = f o 7y. The module of
0-fold extensions is described by the homomorphisms:

ExtQy,, (N, M) = Homug,, (N, M) = {f € Homagr(N, M) | por* f = forn}.

11
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As we saw in Proposition Mg possesses exact sequences in the sense of
Quillen which turns it into an A-linear exact category. It allows us to consider
higher Yoneda extension A-modules ExtﬁvtR(ﬁ , M) (for i > 0) of two A-motives
M and N. The next proposition computes the first extension group.

Proposition 2.10. Let M and N be A-motives over R. There is a surjective
morphism of A-modules, functorial in both N and M,

Homagr(T*N, M)[i~"] - Ext),, (N, M)

whose kernel is {f oty — a0 7*f | f € Homagr(N, M)}. It is given by map-
ping a morphism u € Homagr(7*N, M)[i71] to the class of the extension [M &
N, (787 5] in Bxtly, (N, M).

N

Proof. Let [E] : 0 — M 4 E 5 N — 0 be an exact sequence in Mg, that is
an exact sequence of the underlying A ® R-modules with commuting 7-action.
Because N is a projective module, there exists s : N — E a section of the
underlying short exact sequence of A® R-modules. We let £ := t®s: MON — E.
We have an equivalence:

0 M L E ™

o q i

0 —— M —— (M®N,(torgpol) ——

=
e

Q.
—

— 0

=

Because €71 o 77 o € is an isomorphism from 7*M[j~ & 7*N[71] to M[i~!] &
N[j7'] which restricts to 7a; on the left and to 7n on the right, there exists
u € Homagr(T* N[, M[71]) = Homagr(7*N, M)[i~!] such that ¢! o7g o
€= ("4" ). We have just shown that the map

™™~

v Homagr(T* N, M)[i~'] = Extj,, (N, M), u~ [Ma&N, (7§ )]

TN

is onto. Note that ¢(0) corresponds to the class of the split extension. Further,
t(u + v) corresponds to the Baer sum of ((u) and ¢(v). In addition, given the
exact sequence [E] and a € A, the pullback of multiplication by a on N and 7
gives another extension which defines a - [E]. If [E] = t(u), it is formal to check
that a - [E] = t(au). As such, ¢ is a surjective A-module morphism. To find its
kernel, it suffices to determine whenever +(u) is equivalent to the split extension.
This happens if and only if there is a commutative diagram in M g of the form

0 M Mo N N 0

b b e

0—— M —— MaN,( %) —— N —0

TN

where h is a morphism in M g. Since the diagram commutes in the category of

A ® R-modules, it follows that h is of the form (idOM ; di> for an A ®@ R-linear

map f: N — M. Because it is a diagram in Mg, it further requires commuting
T-action, that is:

TM u T* ldM f _ id]u f TM 0
0 TN 0 idN - 0 idN 0 TN ’
The above equation amounts to u = f o 7y — 7ay o 7* f, and hence

ker(t) = {fory —Tamor"f | f € Homagr(N,M)}.

This concludes. O

12
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Corollary 2.11. Suppose that R is Noetherian. Let N be an A-motive over R
and let f: M — M" be an epimorphism morphism in Mpg. Then, the induced
map Ext}vtR(ﬁ, M) — Ext}wR(ﬁ, M") is onto.

Proof. As R is Noetherian, so is A ® R. Because 7*N is finite locally-free over
A ® R, it is projective. That f is an epimorphism means that f is a surjective
morphism of the underlying modules. The induced morphism

Homagr(T*N, M)[™'] = Homagr(T*N, M")[j7]
is therefore surjective, and we conclude by Proposition [2.10] O

Let N be an A-motive over R. The functor Homay, (N, —) from the cate-
gory Mg to the category Mod4 of A-modules is left-exact and therefore right-
derivable. Because Mg is an exact category, the higher extensions modules
Extly, (N, M) are computed by the cohomology of RHom (N, M). This im-
plies that, given a short exact sequence in Mg

0— M —M-—M'—0,
we derive a long-exact sequence of A-modules:
Hom vy, (N, M") < Hom g, (N, M) — Hom g, (N, M") — Extly,, (N, M') — ...
We deduce the following from Corollary

Proposition 2.12. Suppose that R s Noetherian. The modules Exti\,lR(ﬁ7 M)
vanish for i > 1. In particular, the cohomology of RHomay, (N, M) is repre-
sented by the complex of A-modules

Homagr(N, M) =" Homagr(m* N, M)[~!] (2.1)

placed in degree O and 1.

Proof. Let C be the complex (2.1)). We have

Ext{,, (N, M) = Homp, (N, M) = {f € Endagr(M,N) | fory =71y 07" f}
= ker(1y — i) = H°(O).

By Propositionm Ext}\,tR(ﬂ, M) = H'(C) and, by Corollary the functor
Ext}MR(N, —) is right-exact. It follows that Extj\,lR(ﬁ, M) = HY(C) = 0 for
i > 2 (|PetSt][Lem. A.33]). O

Let N be an nonzero A-motive over R. The canonical morphism of A-motives
1y:1 = N®NY=Hom(N,N), ar— a-idy
induces functorial isomorphisms for all ¢ > 0:
Ext/y, (N, M) = Ext’y, (1, M @ NV). (2.2)

In particular, there is no loss of generality in considering extension modules of
the form Exti\/l (1, M). From now on, we will be interested mainly in extension
modules of the latter form. We shall restate the main results of this section in
this case (repeated from Theorem A of the introduction in the case of a global
function field).

13
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Theorem 2.13. Suppose that R is Noetherian, and let M be an A-motive over
R. The cohomology of RHom, (1, M) is computed by the cohomology of the
complex of A-modules

MR MY

placed in degree 0 and 1. Further, there is an A-linear surjective natural mor-
phism
v M = Extyy, (1, M)

whose kernel is (id —1ar)(M), and which is given explicitly by mapping m €
MT[i—1] to the class of the extension

0>M— [M®A®R), (T ™) =10

Remark 2.14. From Hom yiz (—, —) = Homp, (=, =) @4 K (c.f. Deﬁnition,

the extension spaces of 1 by M in the K-linear category M3 are computed by
the complex

[M 4 K T M @4 K} .

2.3 Extensions having good reduction

We now introduce the function field analogue of the ¢-adic realization functor
(Definition [2.16]), and show that it is exact (Proposition [2.19)). It will allow us
to define extensions with good reduction next (Definition [2.22)).

For the rest of this section, let ¢ be a maximal ideal of A, and denote by
Oy the completed local ring of A at /. We let F' be a field containing K and
let k : A — F be the inclusion. Let F'® be a separable closure of F' and denote
by Gr = Gal(F*|F) the absolute Galois group of F' equipped with the profinite
topology. The group Gp acts A-linearly on the left-hand side of the tensor
A ® F*, and this action extends by continuity to an Oj-linear action of the
algebra

A(F*) = (ABF"), = lim (A® F*)/"(A@ F)

n

leaving Ay (F) := (A®F), invariant. If F, denotes the residue field of Oy and 7
a uniformizer, we have an identification A,(F) = (F, ® F)[n].

Remark 2.15. In the function field /number field dictionary, the assignment R +—
A(R) is akin to the Witt-vector construction R — W(R) (e.g. [Harll §1.1]). In
this analogy, R — B(R) would be akin to R — W (R)[p~'].

Let M = (M, 1)) be an A-motive over F of rank r. Let M p. = (Mps, Tar)
be the A-motive over F** obtained from M by base-change. G acts Oy-linearly
on:

—

(Mp:), = lim (M @p F°)/{"(M @ F*) = M @agr Ac(F®)

n

and leaves the submodule ]\/4\4 = M ®@agr A¢(F) invariant. Following [HarJul
§2.3.5], we define:

Definition 2.16. The ¢-adic realization TyM of M consists of the Op-module

ToM = {m € (ﬂp\s)e | m = TM(T*m)}

o —

together with the compatible action of G it inherits as a submodule of (Mp-),.

Remark 2.17. In [Mor2], Mornev extended this construction to the situation
where /¢ is the closed point co.

14
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The next lemma is well-known in the case of 7-sheaves (e.g. [TagWal, Prop.6.1]).

—

Lemma 2.18. The map TyM ®0, A¢(F*®) = (Mps),, w® f = w- f is an
isomorphism of Ag(F*)-modules. In particular, the Op-module TyM is free of
rank r and the action of Gg on TyM is continuous.

Proof. Let n > 1. In the ring A® F, the ideals ¢ and j are coprime. Hence, the
following composition of A ® F-linear map is a well-defined isomorphism:
(7" M) (T M)[~"] M~

Lo n ~ ~ ™ o~ n
oo MM ey = weang ] marg M

The data of ¢,, induces a semi-simple g-linear malﬂ (in the sense of [Katll, §1])
on the finite dimensional F*-vector space:

—_—

(M @p F?) /UM (M @ F°) = (Mps),/0"(Mps),.
By [Katll Prop. 1.1], the multiplication map

—_— —

{m e (Mp2),/0"(Mp=), | Tar(r*m) = m} @p F* — (Mp2), /0" (Mp), (2.3)

is an isomorphism. Taking the inverse limit of (2.3]) over all n yields the desired
isomorphism.

- — —_—

As (MFps), is free of rank r over Ay (F'*®), the same is true for (Mps),/0™(Mps),
over (A/¢") ® F*. The isomorphism (2.3) implies that the A/¢™-module

[(Mpe)y /0" (Mpe) )= i= {m € (Mp2), | Tas (7%m) = m}

is free of rank r over A/¢™. Their projective limit T, M is thus a free Op-module
of rank r.

By definition, the action of G on Ty M is continuous if, and only if, the
induced action of Gg on TyM /€Ty M factors through a finite quotient for all n.
Let t = {t1,...,ts} be a basis of the finite dimensional F-vector space ]\/4\5/6"]/\/[\@.
Let Fj; be the matrix of 7j; written in the basis 7*t and t. Let w = {w1, ..., ws}

be a basis of T,M /("T;M over F. By (2.3), w is a basis of U\J/F\S)K/E”(Mps)é
over F'*, and we let w;; € F'® be the coefficients of w expressed in t, that is, for
i€ {l,...,s}, w; = Y wit;. We let E, denote the Galois closure of the finite
separable extension F(w;;|(i,j) € {1,...,5}?) of F in F'*. Then,

T M/ Ty M = {m €(Mer En)/en(M ®rF En) | Tm(T"m) = m}

That is, the action of Gp factors through Gal(E,|F) = Gr/Gal(F*|E,), as
desired. O

Proposition 2.19. The following sequence of O¢[GF]-modules is exact

— id —7s —

0—TyM — (Mp:), —" (Mp:), — 0.

Proof. Everything is clear but the surjectivity of id —7;;. Let 7 be a uniformizer
of Oy and let Fy be its residue field. Let f =", ., a,7" be a series in Ay (F*) =
(Fe@F*)[x]. Let b,, € Fy® F* be such that [idr, ®(id — Frob,)](b,) = a,, (which
exists as F*® is separably closed), and let g be the series Y~ b,7" in A, (F*).
For w € Ty M, we have

(id —7p) (W g) =w- f.

—

It follows that any element in (Mps), = M @ agr Ae(F*) of the form w - f is in
the image of id —7js. By the first part of Lemma [2.18] those elements generates

o

(Mps),. We conclude that id —7y/ is surjective. O

IFor k a field containing F and V a k-vector space, an F-linear endomorphism f of V is
g-linear if f(rv) =rif(v) forallr € k and v € V.

15
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We obtain the following:

Corollary 2.20. The functor M — TyM, from Mp to the category of contin-
wous Op-linear G g-representations, is exact.

Proof. Let S : 0 = M’ — M — M" — 0 be an exact sequence in Mp. The
underlying sequence of A ® F-modules is exact, and because Ay (F*®) is flat over

A ® F, the sequence of Ay(F*)-modules (Sp), is exact. In particular, the next
commutative diagram of Oy-modules has exact rows:

—_— -

0 —— (Mp.), — (Mp<), — (Mp.), —— 0

lid — Tt lid —T™m lid —Tm!

—

0 —— (Mp.), — (Mp), — (Mp.), — 0

and the Snake Lemma together with Proposition [2.19] yields that 73S is exact.
L

Let M be an A-motive over F. From Corollary [2:20] the functor T, induces
an A-linear morphism:

Extjy, (1, M) — H'(Gp, Ty M) (2.4)

into the first continuous cohomology group of G with values in Ty M. The next
paragraph is devoted to the explicit determination of .

Let [E]:0 - M — E — 1 — 0 be a class in Ext}MF(]l,M) of the form ¢(m)
for some m € M[j™!] (Theorem . The ¢-adic realization TyE of E is the

O¢[Gr]-module consisting of solutions { ®a € (Mps), ® A,(F*) of the equation

™ m-1 TN (€

0 1 T*a)  \a
(see Definition [2.16). The above equality amounts to a € Oy and & — 72 (7%¢) =
am. A splitting of [T E] as a sequence of Op-modules corresponds to the choice

—

of a particular solution &, € (Mps), of & — Tar(7*¢) = m (whose existence is
provided by Proposition [2.19). We then have

TiM @Oy " TE, (w,a)— (w+ aén,a).

It follows that the morphism (2.4) maps [E] to the class of the cocycle (o —
&7, —&m), where &, is any solution in (Mps), of the equation £ — a7 (7€) = m.
In other words, we have almost proved:

Proposition 2.21. There is a commutative diagram of A-modules:

Ext), (1, M) HY(Gp,T,M)

M~ M,
(id —7ar) (M) (id —77) (My)

where the right vertical morphism maps the class of f € Z/\/l\g to the class of the
cocycle o +— § — 7€, & begin any solution in (Mps), of f =& — mar(77E).

16
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Proof. The only remaining fact to check is that the right vertical morphism is an
isomorphism. Applying the functor of G p-invariants to the short exact sequence
of Proposition we obtain a long exact sequence of cohomology:

-

]/\4\@ id =7 ]\7@ — HI(GF,TZM) — Hl(GFv (Mp:),).

—

Therefore, it is sufficient to prove that H'(Gp,(Mps),) vanishes. We have

—

(Mps), = M ®@agr Ae(F*), Gr acting on the right-hand side of the tensor.
Hence, it is enough to prove that H!'(Gr, A;(F*)) vanishes. The latter stems
easily from the identification Ay (F?®) = (F, ® F*)[nx]. O

For the remaining of this section, let us assume that F' = F} is a local
function field with valuation ring O, and maximal ideal p. Let F," be the
maximal unramified extension of Fj, in F;. Let Iy be the inertia subgroup of
Gp - GFP .

Definition 2.22. Let M be an A-motive over F}, and let £ be a maximal ideal
in A. We say that an extension [E] of 1 by M has good reduction with respect

to ¢ if [E] stands in the kernel of Ext}, (1, M) — H*(I,, T,M).

From Proposition together with the fact that I, = Gal(Fy|Fy"), we
easily derive:

Proposition 2.23. Let m € M[j~']. The following are equivalent:

(a) The extension t(m) has good reduction with respect to ¢,

—

(b) The equation & — Tp(7*€) = m admits a solution & in (MF;W)[

Remark 2.24. If k(A) C O,, then Definition should presumably be inde-
pendent of £, as long as k(¢)O, = O,. The analogous statement is a conjecture
in the number field setting (c.f. [Schl §2 Rmk]). So far, I have no clue on how
to prove this statement.

3 Mixed A-motives and their extension modules

We discuss here the notion of mixedness for Anderson A-motives in our setting.
In the A = F[t]-case, the definition of pure t-motives is traced back to the work
of Anderson [Andl 1.9], but the definition of mized t-motives appeared only some
decades later in the work of Taelman [Tael]. It was extended to more general
coefficients ring A by Hartl and Juschka in [HarJul §3], under the assumption
that deg(oco) = 1 and that the base field is algebraically closed and complete.
Our presentation deals with the case of general A (that is, without assumption
on deg(oo)) and R = F' a field.

3.1 Mixed Anderson A-motives
Isocrystals over a field

In this subsection, we introduce function fields isocrystals following [Mor2]. Our
objective is to prove existence and uniqueness of the slope filtration with pure
subquotients. The general theory has been developed in [Andr]|, and the results
of interest for us appear in [Har2]. The new account of this subsection is the
adaptation of [Har2, Prop 1.5.10] to our slightly more general setting (see Theo-
rem(3.9). This result will allow us to define mixedness and weights in Subsection
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We begin with some general notations. Let R be a Noetherian F-algebra,
and let k be a finite field extension of F. Let E be the field of Laurent series over
k in the formal variable 7w, O the subring of E consisting of power series over k
and m the maximal ideal of O. Explicitly E = k((«7)), O = k[r] and m = 7O.
In the sequel, F will correspond to the local field of (C, O¢) at a closed point of
C.

Extending the notation introduced in Subsection [2.3] in the context of the
l-adic realization functor, we denote by A(R) the completion of the ring O ® R
at its ideal m ® R, that is

A(R) =1im(0 ® R)/(m" ® R)

and we let B(R) be the tensor product F ®o A(R). Throughout the previous
identifications, we readily check that A(R) = (k®R)[r] and B(R) = (k®R)((x)).
Since O® R is Noetherian, A(R) is flat over O® R ([Bou, AC.III.§4, Thm 3(iii)]).
It follows that B(R) is flat over K ® R.

Let 7: O® R - O ® R, be the O-linear map induced by a ® r — a ® r9.
We shall denote by 7 also its continuous extension to A(R) or B(R). Similarly,
we denote by 1 the canonical A ® R-linear morphisms 7*A(R) — A(R) and
T*B(R) — B(R).

For the remaining of this subsection, we assume that R = F' is a field.

Definition 3.1. An isocrystal D over F is a pair (D, p) where D is a free
B(F)-module of finite rank and ¢p : 7D — D is a B(F')-linear isomorphism.
A morphism (D, pp) = (C,¢c) of isocrystals is a B(F')-linear morphism of the
underlying modules f : B — C such that fopp =¢co7*f. We let Zp be the
category of isocrystals over F'.

Remark 3.2. Pursuing the analogy of Remark iscorystals are the analogue
of the eponymous object in p-adic Hodge theory (we refer to [Harll §3.5]). In
both settings, such objects carry a slope filtration (see Theorem for the
function fields one). For number fields, isocrystals are only defined at finite
places, whereas function fields isocrystals are defined regardless of the finiteness
of the place. In the next subsection, we use the slope filtration at co in order to
define mixedness and weight filtrations.

We define the rank rk D of D to be the rank of D over B(F'). If D is nonzero,
let b be a basis of D and let U denote the matrix of ¢ expressed in 7*b and b.
A different choice of basis b’ leads to a matrix U’ such that U = 7(P)U’' P~ for
a certain invertible matrix P with coefficients in B(F). As such, the valuation of
det U in 7 is independent of b. We denote it by deg D and we name it the degree
of D. We define the slope of D to be the rational number u(D) = §deg D/rk D,
where § is the degree of k over F.

From [Mor2, Prop. 4.1.1], the category Zp is abelian. We can therefore con-
sider exact sequences in Zp which are simply exact sequences of the underlying
modules with commuting @p-action. The degree and rank are thus additive in
short exact sequences over the abelian category of isocrystals, and the associa-
tion D + pu(D) defines a slope function for Zr in the sense of [Andr] Def. 1.3.1].
The second point of the next definition should be compared with [Andr, Def.
1.3.6]:

Definition 3.3. Let D = (D, ¢) be an isocrystal over F.

1. A subisocrystal of D is an isocrystal G = (G, pqg) for which G C D,
va = ¢pl|r+a. The quotient of D by G is the pair (D/G,pp) (this is
indeed an isocrystal by [Mor2, Prop. 4.1.1]).
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2. Theisocrystal D is semistable (resp. isoclinic) if, for any nonzero subisocrys-
tal D' of D, p(D') < p(D) (resp. u(D') = p(D)).

Semistability and isoclinicity are related to the notion of purity, borrowed
from [Mor2l Def. 3.4.6], that we next recall. We first define A(F')-lattices:

Definition 3.4. Let D be a free B(F')-module of finite rank. An A(F)-lattice
in D is a sub-A(F)-module of finite type of D which generates D over E.

Note that any A(F)-lattice L in D is free, and its rank is the rank of D over
B(F). We denote by (¢ppL) the sub-A(F)-module pp(7*L) in D: it is again an
A(F)-lattice in D since ¢p is an isomorphism. W define (¢’ L) inductively to
be the A(F)-lattice (¢p (@7 'L)). To include the n = O-case, we set (¢ L) = L.

Definition 3.5. A nonzero isocrystal (D, ¢p) over F is said to be pure of slope
w if there exist an A(F)-lattice L in D and integers s and r» > 0 such that
(¢WL) = 7°L and pu = s/r. By convention, the zero isocrystal is pure with no
slope.

Example 3.6. Let D be the free B(F)-module of rank s > 1 with basis
{e0,...;es—1} and let ¢p : 7D — D be the unique linear map such that
op(t*e;—1) = e; for 1 < i < s and pp(7*es—1) = 7"eg. Then (D,pp) is a
pure isocrystal of slope rd/s with A(F)eq @ - -+ @ A(F)e,—; for A(F)-lattice.

The following lemma relates the definition of slopes from purity and from
slope functions:

Lemma 3.7. If D is a pure isocrystal of slope i, then u(D') = u for any nonzero
sub-isocrystal D' of D. In particular, D is isoclinic (hence semistable).

Proof. Assume there exists an A(F)-lattice L in D such that (" L) = m*L for
integers r > 0 and d such that u = s/r. If D' = (D', ¢) is a nonzero subisocrystal
of D, then L' = LN D' is an A(F)-lattice in D’ such that (¢"™0L’) = m*L’. As
L' is nonzero, let {t1,...,t¢} be a basis of L’ over A(F). We have

4
(det @) (tr A-- Aty) =m™(ty A== Atg) in \ L.

Hence 76 deg D' = stk D', which yields u(D') = p. O

Definition 3.8. A slope filtration for D is an increasing sequence of sub-isocrystals
of D
0=D, D, C---C D, =D,

satisfying:
(1) Yie{l,...,s}, D;/D,_4 is semi-stable,
(i) we have pu(Dy) > p(Dy/Dy) > -~ p(Dy/ D)

It follows from [Andr, Thm 1.4.7] applied to the slope function D — p(D)
on the abelian category Zp, that a slope filtration for D exists and is unique (up
to unique isomorphism). A much stronger result holds: the quotients in are
pure. This is the next theorem.

Theorem 3.9. Let D be an isocrystal over F. In the slope filtration for D
0=Dy&CD; C---CD, =D, 3.1)

or alli € {1,...,s}, the quotients D,/D, | are pure isocrystals.
7 i—1
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Remark 3.10. It would be relevant to have a lemma stating the equivalence
between semi-stable and isoclinic, so that Theorem 3.9 would follow from André’s
theory. Yet, the only proof I know already uses [Har2, Prop. 1.5.10] and follows
from Theorem [3.91

Proof of Theorem[3.9 If § = 1, then A(F) is identified with F[r] and Theorem
is proved in [Har2, Prop. 1.5.10]. We now explain how the general case
follows from the above. Let G be the finite field extension of F corresponding to

G:={feFnF|f’ =f}

Let ¢ : G — F denote the inclusion. This defines an embedding of G in k, the
residue field of E. Let A, (F') be the completion of O ®g F' at the ideal m ®@g F.
In the theory of isocrystals over F with G in place of F, A4 (F') appears in place
of A(F) and § = 1. In [Mor2, §4.2], Mornev defines a functor

(@] : (A(F') — isocrystals) — (A, (F') — isocrystals)

By [Mor2, Prop 4.2.2] (see also [BorHa, Prop 8.5]), the functor [¢]* defines an
equivalence of categories such that [¢]*(D) is a pure isocrystals of slope u if D
is. Let

(6]« : (Ag(F) — isocrystals) — (A(F) — isocrystals)

be a quasi-inverse of [¢]* and let £ : [¢].[¢]* = id be a natural transformation.
Let D be an A(F)-isocrystal. We only need to prove existence of with

pure subquotients since uniqueness follows from [Andr, Thm 1.4.7]. By [Har2l

Prop. 1.5.10|, there exists an increasing sequence of sub-Ag4(F)-isocrystals of

(6] D:
0=Gy GG GG -GG, =[d]'D

the subquotients G,/G,_; being pure of slopes u; with gy > -+ > ps. Applying
[¢]« and then ¢, we obtain

0=DyGCD, CDy G- C Dy =D (32)

with D, := {([¢]«[¢]*D;) for all i € {0,1,...,s}. We claim that the isocrystals
D,/D,_, are pure of slope p;. Indeed, we have

where the last isomorphism comes from the fact that [¢]. is an exact functor
(any equivalence of categories is exact). Because G,/G,_; is pure of slope p;,
D,/D,_, is also pure of slope y;. We conclude that is the slope filtration
for D and satisfies the assumption of the theorem. O

Theorem allows us to define weights of isocrystals:

Definition 3.11. Let D be an isocrystal over F' and let (D;);cqo,... s} be its
slope filtration. The elements of the set {—u(D,/D; 1) | 1 < i < s} are called
the weights of D. We call the weight filtration of D the increasing filtration

(D))req of D defined by
QA = U Qj.

Hj>—A
For A € Q, we let Gra D := Dy /Uy o\ Dy

Remark 3.12. The breaks of the weight filtration of D are the rational numbers
A such that Gry D # 0. By definition, the set of breaks equals the set of weights.
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It follows from Theorem [3.9]that any semi-stable isocrystal is pure, and using
Lemma that any semi-stable isocrystal is isoclinic. Restating [Andr, Thm
1.5.9] in our setting, we obtain:

Corollary 3.13. For all A € Q, the assignment Zp — Lp, D — D, defines an
exact functor. Equivalently, any morphism f : D — C of isocrystals over F is
strict with respect to the weight filtration, that is:

VAEQ, [f(Dx)=/f(D)NCh.

The weight filtration is not split in general. However it splits when the ground
field F' is perfect.

Theorem 3.14. If F' is perfect, the weight filtration of D splits, i.e. D decom-
poses along a direct sum

D= GCry(D).

Remark 3.15. The proof is similar to the argument given for Theorem [3.9} the
corresponding result for § = 1 is proven in [Har2, Prop 1.5.10] and the general
0-case is easily deduced from [Mor2l, Prop 4.2.2].

Remark 3.16. The above theorem is the Dieudonné-Manin decomposition for
isocrystals. When F' is algebraically closed, given p € Q there exists a unique
(up to isomorphisms) simple and pure isocrystal S, of slope u (see [Mor2, Prop
4.3.4]). Any pure isocrystal of slope i decomposes as a direct sum of S, (see
[Mor2, Prop 4.3.7]) and together with Theorem [3.14]yields the Dieudonné-Manin
classification (see [Laul]). It does not hold for any F, even separably closed, as
noticed by Mornev in [Mor2, Rmk 4.3.5].

Isocrystals attached to A-motives

We now explain how to attach isocrystals to A-motives over fields. This con-
struction (Definition is required next in the definition of mixed A-motives
(Definition [3.20)). In the rest of this subsection, we deal with the classical prop-
erties of the category of mixed A-motives and its objects, in order to be used in
the sequel.

Let R be a Noetherian F-algebra and let k : A — R be an F-algebra mor-
phism.

We chose the rings A(R) and B(R) of subsection in the following way.
Given a closed point A on C, we let Oy C K be the associated discrete valuation
ring of maximal ideal m). We denote O, the completion of O, and K, the
completion of K. We let F) denote the residue field of A (of finite dimension
over F, its dimension being the degree of \). We let Ax(R) and By (R) be the
completions of Oy ® R and K) ® R for the my-adic topology.

Recall that j, is the ideal of A ® R generated by {a ® 1 —1® k(a) | a € A}.
A weak version of the next lemma was already used in the proof of Lemma [2.18

Lemma 3.17. We have j.Bso(R) = Boo(R). For X a closed point of C distinct
from oo such that k(my)R = R, then j, Ax(R) = Ar(R).

Proof. We prove the first assertion. let a be a non constant element of A so that
a~! €my. Then a®1—1®k(a) € j is invertible with — >, o a~ "+ @ k(a)"
as inverse, where the infinite sum converges in A, (R) C Boo(R).

To prove the second assertion, let £ € my be such that x(¢) is invertible in R.
Then £ ® 1 — 1 ® k(¢) € j is invertible with — >, o €" ® x(£)~("*Y as inverse,
where the infinite sum converges in Ay (R). B O
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In order to use the results of the previous subsection, we now assume that
R = F is a field.

Definition 3.18. Let M = (M, 7)) be an A-motive over F' and let A be a
closed point of C. We let Z(M) be the By(F)-module M @ agr BA(F). Let
Zx(M) be the pair (Zy(M),Tar ® 1).

Proposition 3.19. Let M = (M, Tpr) be a nonzero A-motive over F. Let X be
a closed point of C' distinct from ker k.

(i) IZx(M) is an isocrystal over F.
(i) If A # o0, Ix(M) is pure of slope 0.

Proof. Because M is locally free of constant rank and B (F') is a finite product of
fields, Zx(M) is a free By (F)-module. Thus, point |(z)| follows from Lemma
To prove it suffices to note that L = M ®gr A(F) is an Ay (F)-lattice
in M RAgF B)\(F) such that <T]V[L> = L. O

We now choose A\ = oco. Let M be an A-motive over F. The isocrystal
Too (M) admits a weight filtration (Definition [3.11)) denoted (Zoo (M) ) pecq:

O:IOO(M) 140 QIOO(M) p1 QIM(M) we & QIOO(M)M :IOO<M)

where 117 < p12 < ... < s are the rational numbers such that Zoo (M) ., /Zoo (M) 4.,
is a pure 1socrystal of slope — ;. For i € Q, we write Zoo (M), = (Ioo (M), ™).

Definition 3.20. Let M be a nonzero A-motive over F.

(a) The elements of the set w(M) := {p1,..., us} are called the weights of
M. We agree that w(0) is the empty set, and call M pure of weight w if

{h1s e s} = {w}.

(b) We call M mized if there exists an increasing filtration (M. )icq of M by
sub-A-motives such that (Zoo (M, ))ieq coincides with the welght filtration
of Zoo(M). In particular, a pure A-motive is mixed.

Remark 3.21. If M is an A-motive over F' of weights {pu1,...,us} and F’ is a
field extension of F', then M ., also has weights {1, ..., us}. This follows from
the uniqueness of the slope filtration (Theorem . If M is mixed, then so is
M.

Remark 3.22. In [HarJul Ex. 2.3.13], the authors constructed an A-motive which
is not mixed. The latter is constructed starting from an extension of a pure
Anderson A-motive of weight 2 by another pure of weight 1.

If a filtration as in @ exists, it might not be unique. However, if we impose
that the filtration is composed with saturated sub-A-motives of M, then it is
unique. This follows from the next lemma.

Lemma 3.23. Let M be an A-motive over F and let P be a sub-A-motive of
M. Then Too(P) = oo (P*™). If Q is a sub-A-motive of M such that To(P) =
Too(Q) inside Too (M), then P*** = Q**.

Proof. The inclusion P C P*' is an isogeny and therefore its cokernel is A-
torsion (see [Har3, Thm. 5.12]). Consequently, Zo.(P) = Zo. (P*).

We prove the second part. The A® F-modules P, P5*  Q, Q%" and (PNQ)%** =
P33t N Q%3 are locally-free of the same rank, as they become equal once Z, is
applied. Note that (PN Q)% = P N Q% is again endowed with an A-motive
structure and hence so is the quotient A ® F-module P%**/(P N Q)%**. The
underlying A ® F-module is locally-free and has rank 0; hence it is zero. The
inclusion Ps3* N Q%3 — P53t i therefore an isomorphism which yields P53t C
Q3. We conclude by exchanging the roles of P and @Q in the above argument
to obtain the converse inclusion. O
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We deduce at once:

Proposition-Definition 3.24. Any mixed A-motive M over F' admits a unique
increasing filtration by saturated sub-A-motives (W,, M);c(1,....sy such that the
family of isocrystals (Zo (W,,,M)); coincides with the weight filtration of Zo (M)

(Definition (3.11]).
(1) We call (W,,M); the weight filtration of M.

i) For all ¢ € {1,..., s}, we let W,. M be the underlying module of W, M.
1227 Yy g Hi

(#4i) For all p € Q, we set

WM = | W, M, W,M :=(W,M,7y),
Hi<p

WeuM = | ) WM, We,M:=(We,M, ),
Hi <po

and Gr, M := W, M /W, M. Both Gr, M and W, M, as well as W, M,
define mixed A-motives over F' for all u € Q.

(iv) Welet MM p (resp. MM°) be the full subcategory of Mg (resp. M°)
whose objects are mixed.

The next lemma shows how to recover the weight filtration of a mixed A-
motive from its isocrystal:

Proposition 3.25. Let M be a mized A-motive over F. For p € Q, we have
WM =1 (M), N M, where the intersection is taken inside M ® agr Boo (F).

Proof. By definition, the following sequence of inclusions hold:
(WuM)®4 K CZLoo(M),N(M®4 K) CZoo(M),.

Note that the left-hand side forms a dense subset of the right-hand side for the
oo-adic topology. Hence, the first inclusion is an inclusion of a dense subset.
Taking the completion, we obtain Zoo(W, M) = Zoo(Zoo(M), N M). As both
W,M and Zoo(M), N M are saturated submodules of M, the lemma follows
from Lemma [3.23 O

When M is non mixed, Zo (M), N (M ®4 K) is generally not a dense subset
of Too (M), preventing W, M from being defined by the mean of Z (M), N M.
In general, we have the following:

Proposition 3.26. Let M be an A-motive over F. For all 4 € Q, we have
rank g (Zoo (M), N M) < rankZ.. (M),
with equality for all p € Q if and only if M is mized.

Proof. First note that, for all 4, the couple M, := (Zoo(M), N M, 7ar) defines
a saturated sub-A-motive of M. Furthermore, since the underlying module of
Z(M,,) corresponds to the completion of Zo, (M), N (M ® K) for the co-adic
topology, Zo.(M,,) defines a subisocrystal of Z.(M),. The rank being additive
in short exact sequences in Zp, we get:

rankagr(Zoo (M), N M) =rank M, = rank Z (M ,) < rank Z(M),.

If M is mixed then, by Proposition [3.25] the above is an equality for all p.
Conversely, if this is an equality for all u, then Zo(M,,) C Zoo(M), is an
inclusion of isocrystals of the same rank. Hence they are equal. O
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Remark 3.27. We end this subsection by describing how weights behave under
linear algebra type operations. Proofs are presented in [HarJul, Prop. 2.3.11] and
extend without change to our larger setting. First note that 1 is a pure A-motive
over F of weight 0. Given two mixed A-motives M and IV, their biproduct M &N
is again mixed with weight filtration W,(M@&N) = W, M&W,N (1 € Q). Their
tensor product M ® N is also mixed, with A-part of its weight filtration being:

sat

WaMeN)=[ Y W.MeW,N
ptrv=XA

We took the saturation A-motive to ensure that the above is a saturated sub-A-
motive of M @ N. The dual M" is mixed, and the p-part of its weight filtration
W, M has for underlying module W, M"Y = {m € MY|VA < —p: m(W M) =
0}%2*. In general, given M and N two A-motives over F (without regarding
whether M or N are mixed) and an exact sequence 0 -+ M' — M — M" — 0
in Mg, we have

w(0) = 0

w(MY) = —w(M)

wMeN) = wM)Uwl)

w(M) w(M') Uw(M")

wMeN) = {wt+v|wewM), vewN)}

3.2 Extension modules of mixed A-motives

As before, let I’ be a field containing F and consider an F-algebra morphism
k : A — F. In this subsection, we are concerned with extension modules in the
category MM . The next proposition shows that they are well-defined.

Proposition 3.28. The category MM g is an exact subcategory of Mp.

Proposition [3.2§ follows from the next Lemma [3.29] which follows closely
[HarJul, Prop 2.3.11(c)|, and [HarJul Rmk 2.3.12].

Lemma 3.29. Any sub-A-motive M’ — M and any quotient A-motive M —»
M" of mized A-motives M is itself mized.

Proof. Let f denotes the morphism M — M" in Mp. For u € Q, let W, M :=
W, MNM and W,M" := f(W,M)** N M". Both are saturated modules in
M’ and M" respectively. They are also canonically endowed with an A-motive
structure. Since By (F) is flat over A ® F, [Boul, §1.2, Prop. 6] implies that
— ®agF Boo(F) commutes with finite intersections:

IOO(WMMI) = (WMM/) XDAgF BOO(F)
= (WM NM)®@asr Bo(F)
=Zoo(M)u N Loo (M)
= IDO(M/)/A
where the last equality follows from Theorem [3.9] Similarly,

Ioo(WuMH) = (WP«M”) ®agF Boo(F)
= (WM™ N M") @agr Boo(F)
= [(Zoo (M) 1) N Lo (M")
= IOO(MH)M-

This shows that M’ and M” are both mixed with respective weight filtrations
(W.M')yeq and (W,M"),eq- [
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As a consequence, we record:

Proposition 3.30. Any morphism of mixed A-motives preserves the weight
filtration, that is, given a morphism f: M — N in Mg,

In particular, for all p € Q, the assignation M — W, M is functorial over
MMp. Over MM, this assignment defines an exact functor.

Proof. Let f: M — N be a morphism of mixed Anderson A-motives over F. In
the category of isocrystals, f induces a morphism from Z.,(M) to Zo.(N). We
have

LZoo(f(WuM)) = f(Zoo(WuM)) = f(Zoo(M)y)

and, by flatness of Boo(F) over A® F,

Too(F(M) AW N) = Zoo(f(M) N Too (W N) = f(Too(M)) N Lo (N ),
= [(Toe(M),) 3:3)

where the last equality follows from Theorem [3.9 By Lemma [3.23] applied to

(3-3),

fW,M) C f(W,M)* = f(r*M)***NW,N C W,N. (3.4)
To conclude that W, is exact over MM, it suffices to note that all inclusions
in (3.4) defines isogenies of A-motives over F'. O

Thanks to Proposition [3.28 we can consider Yoneda’s extension modules of
two mixed A-motives in MMp. By Proposition [3.30} we have an equality

ExtQ v, (M, N) = ExtS,, (M, N),

but this is not true for higher extension modules. Ext}, My (M, N) can be in-
terpreted as a submodule of Exty, (M, N), but in general Ext’y,,. is not even
a submodule of Exty, (i > 1). To that regard, we show that Ext3, (1, M)
does not vanish in general.

Proposition 3.31. Let 0 — M’ — M % M" — 0 be an ezact sequence of
A-motives in Mp.

1. If M is mized, so are M’ and M" .

2. If M' and M" are mized, and if the smallest weight of M" is bigger than
the biggest weight of M’, then M 1is mized.

Proof. Point [I]is a reformulation of Lemma [3:29]
We move to point[2] By Proposition there exists u € Hom g (7*M", M')[i71]
and a diagram

0 M, L M p M// 0
idT ET idT
0 —— M —— MaoM" (Y .0))) M" 0

which commutes in M p. From the the weight assumption on M’ and M”, u
automatically respects the weight filtration. That is, for all u,

TM! u
M, =¢ <W#M’ oW, M", ( 15’ )>

TM//
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defines a sub-A-motive of M inserting in a short exact sequence in M p:
OHWMM'HMMHW#M"—)O. (3.5)

We obtain a commutative diagram of isocrystals:

0 —— Zoo(M"),, —— Too(M), — Zoo(M"), —— 0

7T

0 — Z.(W,M") — Too(M,) — T (W,M") —— 0

where the first row is exact by Corollary and the second row is exact as
is exact. The extremal vertical map are equalities, and hence so is the
middle one. To conclude, we have found a family of sub-A-motives (M), of M
which specializes to (Zoo(M),), when applying the functor Zo,. Therefore M is
mixed. O

Remark 3.32. Contrary to the number fields situation, the full subcategory of
MM consisting of pure A-motives over F' is not semi-simple. This follows
casily from the equality Ext (N, M) = Ext (N, M) for two pure motives
of the same weight.

Proposition [3.31] implies that Ext),, (M", M') = Extl, (M, M') when
the weights of M are bigger than the biggest weight of M’. In general this is
not true. In this direction we record:

Proposition 3.33. Let 0 — M’ — M — M" — 0 be an exact sequence of
A-motives where M’ and M" are mized. We assume that all the weights of M"
are strictly smaller than the smallest weight of M'. Then, the sequence is torsion
n EXt}MF(MN,M/) if, and only if, M is mized.

Proof of Proposition[3.33 Taking N := M’ ® (M")V, we can assume that the
exact sequence is of the form (S): 0 - N — E — 1 — 0, N having positive
weights. In view of Theorem we may assume that E is of the form ¢(u) for
some u € M[j—!]. Note that 0 is a weight of E, the smallest.

If F is mixed, then E contains a sub-A-motive L = (L, 75s) of weight 0 which
is isomorphic to 1. Let (m@®a) € M & (A® F) be a generator of L over A® F.

‘We have
™ u\ (T'm\ _ [m
0 1 ™a ) \a)’

This amounts to a € A and au € im(id —7ps), and then that a[E] = 0 in
Ext}MF (1, N). Conversely, if there exists a nonzero a € A such that a[E] is split,
Theorem implies that there exists m € N such that au = m — 7 (7*m).
The nonzero A ® F-module L generated by m @ a together with 75, defines a
sub-A-module of E isomorphic to 1. For all u € Q, we define the A ® F-module

WHE = WMM + 1HZOL

where (W, M),cq is the weight filtration of M. It is easy to see that W, E :=
(W,E, Tan) defines a sub-A-motive of E and that (Zoo (W, M)),cq coincides with
the slope filtration of Z.(E). Hence, E is mixed. O

Remark 3.34. Under the same hypothesis, Proposition [3.33] can be rephrased
into
EXt}\/lp (MN, M/)tors _ EXt}\/tMp (M”yM/)'

In particular, the K-vector space Ext), Migo (M",M'") vanishes. The latter is
only conjectured to be true in the number fields setting ([Del, §1.3]).
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Remark 3.35. Nevertheless, Ext}w M (1, M) is generally non zero for M having
positive weights. In the notations of Example 2:4] let n be a positive integer
that is a power of the characteristic p, and consider the A-motive A(—n) over a
field extension F' of K that contains a (¢ — 1)-st root n of (—1/6)™. We claim
that EX‘C}MMF (1, A(—n)) is non zero, i.e. Ext}vtp (1, A(—n)) has non zero torsion
(A(—n) is pure of weight n). Indeed, let [E] := ¢(n?). Then,

—t" - [E] = «(=t"n?) = 1(n — (t = 0)"n?) = 0.

On the other-hand, [E] is non zero: for degree reasons, there does not exist

p(t) € F[t] such that n? = p(t) — (t — 0)"p(t)™D).

Remark 3.36. A variation of the above argument shows that ExthMF (1,A(-1))
is non zero for certain fields F'. Assume that:

1. F contains a (g — 1)-st root n of (—1/6)P,
2. F does not contain of (¢ — 1)-st root of —1/6

3. there exists § € F for which the polynomial 6 X? + X 4 S does not split
over F.

For 0,8 € F as above, let a := 8/n? € F. Consider the extension M of A(—p)

by A(—1) given by
M= [F[tF, <(t _09)1 (t fg)”l)] '

As A(—p) and A(—1) are pure of weight p and 1 respectively, M is mixed by
Proposition with weights {1,p}. We claim that the A-linear morphism

Ext g, (1, f) 0 Exth, (1, M) — Exthyu, (1, A(=p)), (3.6)

induced by the epimorphism f : M — A(—p), is not surjective. By the long-exact
sequence of Ext-modules, it implies that EXt?leF (1, kerf) = Extf\,lMF (1, A(-1))
is non zero.

Because M has positive weights, by Proposition (3.6) can be rewritten

as:
Flt, (t — 0)~1]®2\ " Flt, (t—6)! rors
AN U2 R SO
(id —7ar) (F'[]92) (id —(t — 0)P7)(Ft)

In Remark we showed that the class of n? defines a nonzero element in

the right-hand side of (3.7). If the latter was surjective, there would exist x €

Ft,(t — 0)7!] such that the class of (z,77) belongs to the right-hand side of
(3.7). That is, there exist a € A = F[t] nonzero and (f, g) € F[t]®? such that

GO )

As —tPn? = n— (t — 0)Pn?, we obtain from the bottom row that ¢? divides a and
that ¢ = —(a/t?)n9. Evaluating the top row at ¢ = 0, we get:

0=f(0)4+0f(0)? + - sn? (3.9)

where s € F is the evaluation of a/t? at t = 0. If s = 0, then g(0) = 0 and
f(0) = 0 by Rl Hence, dividing by the correct power of ¢, we can assume
without loss that s £ 0. Yet, dividing by s and using that an? = 3, we
obtain a root of 6X?+ X + g in F. This contradicts our assumption

Although Extf\,l M, (1, M) might be non zero, we prove next that it is always
torsion:
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Theorem 3.37. Fori > 1, the A-module Exti\,lMF(IL,M) is torsion.

Proof. We begin with a very general remark. Given three objects A, B and C
in an abelian category A, Yoneda’s cup product:

U: ExtYy (4, B) x Ext}(B,C) — Ext%(4,C) (3.10)
admits the following two descriptions:

1. Givene=[0 B3 E— A— 0 €Exty(A,B)and f=[0>C > F %
B — 0] € Exty(B,C), we obtain e U f € Ext}(A4,C) as the class of the
long-exact sequence:

OHC%FgE%A%O.

2. Applying the functor Ext}4(A, —) to a short exact sequence associated to
e, we obtain a connecting homomorphism:

Se : Exty (4, B) — Ext}(A,C).
Then, eU f = §.(f).

It follows from (1| that for any element g in Ext%(A, C), there exists an object
B in A such that g = eU f for e € ExtY(A, B) and f € Ext(B,C). Tt follows
from |2| that if the functor Extil(A, —) is right-exact, the image of is zero.
Combining both description, we obtain: if the functor Ext}4(A, —) is right-exact,
then Ext% (A, X) is zero for any object X in A.

Back to the situation of the Theorem, let us first treat the case where M
only has non positive weights. Let A be the K-linear abelian category MM
and let Ag be the full subcategory of A consisting of objects whose weights are
all non positive. For M € Ay, note that

Extly, (1, M) = Ext}y(1, M) = Ext 0 (1, M)

where the last equality follows from Proposition [3.31] From Corollary we
deduce that the functor Ext}% (1, —) is right-exact on 4. From the above obser-

vation, Extio(]l,M) = (0). Now, from the exactness of Wy over A (Proposition
3.30), given any e € Ext%(1, M) we have a commutative diagram in A:

e: 0 M E, E, 1 0
idT T T idT
Woe : 0 — M — WoE, — Wy — 1 —— 0

from which we deduce Extio(]l,M) = Ext? (1, M). This amounts to:
Ext}u, (1, M) ®4 K = Ext%(1, M) = (0).

as desired. Now, let M have arbitrary weights. Applying Exth(ll, —) to the
exact sequence:

0 — WoM — M — M/WoM — 0,
we obtain from Proposition [3.33] that the natural map:

ExtY (1, WoM) — ExtY (1, M)
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is surjective. Given an epimorphism f : M — N in A, we obtain a commutative
square:

ExtYy (1, WoM) —» Extly (1, M)

| |

ExtYy (1, WoN) — ExtY(1, N).

The left vertical arrow is surjective: indeed, Wy f : WoM — WyN is an epi-
morphism by Proposition and we already proved that over Ay the functor
Exth(]l, )= Ext}%(]l, —) is right-exact. Hence, the right vertical arrow is sur-
jective and the functor Exth(l, —) is right-exact on A. By the above observation,
this implies:

Ext3u, (1, M) ®4 K = Ext? (1, M) = (0).

That Ext’y, (1, M) is torsion for all i > 1 follows from Ext’y(1, M) = (0). O

4 Models and the integral part of A-motivic co-
homology

In this section we illustrate the notion of maximal integral models. For A-
motives, maximal integral models are understood as an analogue of Néron mod-
els of abelian varieties. The notion dates back to Gardeyn’s work on models
of T-sheaves |Gar2| and their reduction [Garl], where he proved a Néron-Ogg-
Shafarevi¢ type criterion (see Proposition in our context). However our
setting differs by the fact that, in opposition to T-sheaves, A-motives might not
be effective. We also removed Gardeyn’s assumption for an integral model to be
locally free. We will show in Propositions [£.26] and [£.43] that this is implicit for
maximal ones over local and global function fields. Our presentation thus allows
to avoid the use of a technical lemma due to Lafforgue in Gardeyn’s exposition
[Gar2, §2]. In that sense, the content of this chapter is original.

In practice, to make maximal integral models of A-motives explicit is a dif-
ficult task. In section we consider the easier problem of finding maximal
integral models of Frobenius spaces. Those are pairs (V, ) where V is a finite
dimensional vector space over a local field F containing F and ¢ is a g-linear
endomorphism of V. We show in Proposition [I.2] that there exists a unique
Og-lattice in V stable by ¢ and which is maximal for this property. We end this
section by the review of Katz’s equivalence of categories, and its application to
study maximal integral models.

In Sections [1.2] and [£:3] we shall be concerned with integral models of A-
motives. Given R C S an inclusion of F-algebras and an A-motive M = (M, 7pr)
over S, an R-model for M is a finite sub-A ® R-module of M stable by Tps
(Definition [4.16]).

We study the case where M is an A-motive over a local function field S = F
and where R = Op is its valuation ring in Section In Proposition we
prove existence and uniqueness of integral Og-models which are maximal for
the inclusion, and we prove that they are locally free in Proposition [£.26] We
show that, given a well-chosen maximal ideal ¢ C A and a positive integer n, the
data of (M /0" M, 7r) defines a Frobenius space over E. Theorem [{.31] our main
result of this section, describes how to recover the maximal integral model of M
in terms of the data of the maximal integral model of (M/¢"M, 1)) for all n.
The latter is of fundamental importance in the proof of Theorem C, and permits
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to obtain the Néron-Ogg-Shafarevi¢ type criterion for A-motives (Proposition
4.39).

In Section we treat the case where M is an A-motive over a global
function field S = F where R is a Dedekind domain whose fraction field is F.
If p is a non zero prime ideal of R, we obtain an A-motive M F, by base field
extension from F' to its completion Fy,. Our Proposition [£.41] explain how to
recover the maximal integral model of M from the data of the maximal integral
models of My, for all p.

The full force of this section is used in Subsection [£.4] to prove Theorems C

and D of the introduction (respectively Theorems and in the text).

4.1 Models of Frobenius spaces

In this subsection we work with notations that are slightly more general to
what we need in the sequel. We let k be a perfect field containing F and let
E = Ek((w)) be the ficld of Laurent series over F in the the variable w. We let
0 : E — E denote the ¢-Frobenius Froby on E (it fixes F), vg be the valuation
of E, O = k[w] be its valuation ring with maximal ideal p = (w). We fix a
separable closure E*® of E and denote by G the absolute Galois group Gal(E*|E)
of E. Let also I C Gg be the inertia subgroup.

Our object of study are pairs (V, ¢) where V' is a finite dimensional E-vector
space and ¢ : ¢*V — V is an E-linear isomorphism. In the existing literature,
there are generally referred to as étale finite F-shtukas over E (e.g. [Har3, §4]).
We prefer here the shorter name Frobenius spaces. By an Og-lattice in V we
mean a finitely generated sub-Og-module L of V' which generates V over E. A
sub-Og-module L is stable by ¢ if ¢(c*L) C L.

Definition 4.1. We say that L is an integral model for (V,p) if L is an Op-
lattice in V stable by ¢. We say that L is mazximal if it is not strictly included
in another integral model for (V, ).

Proposition 4.2. A mazimal integral model for (V, ) exists and is unique.

Proof. Our proof follows closely [Gar2, Prop. 2.2, 2.13|. First note that there
exists an integral model. Indeed, let 77 be an arbitrary Og-lattice in V. There
exists a positive integer k such that ¢(o*T") C @ *T'. We let T := w*T’ so
that

o(0*T) = wl(c*T") € w T VET = a2k T,

Hence, the Og-module T is an Og-lattice in V stable by .
We turn to the existence and uniqueness of the maximal integral model. If
L' C L is an inclusion of integral models. We have:

lengtho, ((o" L) /(0" L')) = ¢ - lengthe, (L/L').
We define the discriminant of L to be the non-negative integer
A(L) := lengthy, (L/@o(c"L)).
Since we have:
A(L") = A(L) = lengthy (L'/@(0*L")) — lengthy (L/¢(c* L))

— lengtho, (¢(0° L) /p(o" I')) — lengtho, (L/I)
= (g — 1) - lengthy, (L'/L), (4.1)

then A(L’") > A(L) whenever the inclusion L' C L is strict.
Now let L be an integral model with minimal discriminant. We claim that L
equals the union of all integral models of (V, ¢), which proves both existence and
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uniqueness of the maximal integral model. Indeed, if L’ is another integral model
for (V, ) not contained in L, then the inclusion L C L + L' is strict. But this
contradicts the minimality assumption as we would have A(L) > A(L+L'). O

Example 4.3. Suppose V := E, f € Og a nonzero element and ¢ is the
morphism corresponding to = + fx?. Write f = uwFhi™! where u € OF.,
0 <k < q—1is an integer and h € Og. Then, the maximal integral model of
(V, ) is given by h=*Op. This is because A(h~*Of) = k together with (4.I).

Let T be an integral model for (V,¢) and let r be its rank as a free Op-
module. The cokernel of the inclusion ¢(¢*T) C T is a torsion Og-module of
finite type and there exists elements g1,...,9, in O with vg(g;) < vg(gi+1) such
that

T/p(c™T) = Op/(91) ® Or/(g2) ® - & Or/(gr).

Equivalently, there exists a basis (v1,...,v,.) of T over O such that

©(0™T) = (g1)v1 ® (g2)v2 & - - ® (gr) vy

The elements ¢1,...,g, are unique up to multiplication by units and are called the
elementary divisors relative to the inclusion of Og-lattices p(c*T) C T.

Lemma 4.4. Let t be a basis of T over Og and let F be the matriz of ¢
written in the bases c*t and t. The elementary divisors relative to the inclusion
o(c*T) C T are the elementary divisors of the matriz F, up to units in OF.

Proof. If (f1,..., frr) denotes the elementary divisors of F', the Smith’s normal
form Theorem implies that there exists U,V € GL,(Og) such that UF =
diag(f1, ..., fr)V. If we let v = (v1,...,v,.) be the basis of T' corresponding to
V - t, this relation reads

o(a*T) = (f1)v1 @ (f2)v2 @ -+ © (fr)vr

By uniqueness of the ideals (g1), ..., (g.), we conclude that (f;) = (g;) for all
ie{l,..,r} O

Definition 4.5. We let the type of T be the sequence (eq, ..., €,) of the valuations
of the elementary divisors relative to the inclusion p(o*T) C T ordered such that
e1 < ey <...<e.. We define the range rr of T to be the integer e,..

Remark 4.6. We have A(T) = e; +...+e, so that r < A(T) < r-rp where A(T)
denotes the discriminant of 7. It follows that the range of T is a finer invariant
than its discriminant.

We should denote by Vi the maximal integral model of (V). The following
proposition enables us to say how far an integral lattice is from being maximal
given its range.

Proposition 4.7. Let T be an Og-lattice in V stable by ¢. Let s be a non-
negative integer. If the range of T satisfies rr < s(q — 1), then Vo C w™*T.

We start by a lemma:
Lemma 4.8. Let U be an Og-lattice in V such that U C p(c*U). Then Vo C U.

Proof. For n > 0, we let 0™ := (¢”)* and denote by ¢" : 6™V — V the
FE-linear morphism given by the composition

U(n—l)*

oV — ey . sV S
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We consider the following sub-O g-module of V:

Vo N (U (p"((f”*U)) : (4.2)

n=0

It is stable by ¢, finitely generated because contained in V, and generates V over
E because contains the Og-lattice Vo NU. By maximality, (4.2)) equals Vi and
we deduce that there exists a non-negative integer m such that Voo C ™ (c™*U).
Because p(0*Vp) C Vo, we have 0*Vp C ¢~ }(Vp) and by immediate recursion
one gets c™Vp C ¢ ™ (Vo) C o™ U. We conclude that Vp C U because
o : Op — Og is faithfully flat. O

Proof of Proposition[{.7 Let (e1,...,e,) be the type of T. Recall that m = mp
denotes the maximal ideal of Og. There exists a basis (¢1,...,¢,) of T such that
o(o*T) = met; G m2ty - -- G mt,.. By assumption, ey, ...,e, < s(¢ — 1) and
thus

w T Cw * (mel_s(q_l)tl © me2_s(q_1)t2 DD me’"_s(q_l)t,)
_ melfsqtl e megfsth BB me,.fsqtr
=w Pp(c*T)
= (o™ (@°T)).

Hence, U := w™*T satisfies U C p(c*U) and we deduce that Vo C U by Lemma
43 O

Akin to integral models, there is also a notion of good models.

Definition 4.9. Let L be a finitely generated O g-submodule of V.. We say that
L is a good model for (V,p) if p(c*L) = L. We say that L is mazimal if it is not
strictly included in another good model of (V).

Proposition 4.10. A mazximal good model for (V, ) exists and is unique.

Proof. First note that any good model L for (V) is contained in Vp: indeed,
L+Vp is again an integral model, hence included in V. The union U of all good
model for (V, ¢) exists (it is non-empty as the zero module is a good model) and
therefore included in Vpp. Because Op is Noetherian, U is a finitely generated
Opg-module. We also have ¢(c*U) = U. We deduce that U is maximal and
unique. O

We should denote by Viooa the maximal good model of (V).

Definition 4.11. We say that (V, ) has good reduction if Vgooa = Vo. The
rank of Viood is called the non-degenerate rank of (V, ¢).

Maximal good models have an interpretation in terms of Frobenius sheaves
that we now recall. Let X be a smooth connected scheme over F, and let 7 (X)
be its étale fundamental group. We still denote by o the Frobenius on X. Let
F(X) be the category whose objects are pairs (V, ) where V is a locally-free
Ox-module of finite rank and ¢ : *V — V is an isomorphism of O x-modules.
Morphisms in this category are morphisms of the underlying O x-modules with
commuting y-action.

Example 4.12. Objects of F(Spec E) are Frobenius spaces over F, and objects
of F(Spec Og) are pairs (V, ) where V is a finite free Og-module, and where
@ :0*V — V is an Og-linear isomorphism.

The following result is due to Katz in [Kat2, Prop. 4.1.1].
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Theorem 4.13. There is a rank-preserving equivalence of categories from F(X)
to the category of F-linear continuous representation of w(X), which commutes
with base change. For X = Spec E, it is explicitly given by

V=V,p)—TV ={2€VgE’|z=yp(c*2)}

where w(Spec E) is identified with Gal(E®|E), and acts on the right-hand side
of V@5 E°.

The following proposition is almost immediate from Katz’s equivalence:

Proposition 4.14. Let V be a Frobenius space over E. The non-degenerate
rank of (V,¢) equals the rank of (TV)'E. In particular, V has good reduction if
and only if TV is unramified.

Proof. As m(Spec Of) & G /I, the representation (TV )% is the maximal sub-
object of TV which comes from an object in F(Spec Of) by Katz’s equivalence.
Yet, elements in F(Spec Og) which specialize to subobjects of V by base change
to E are exactly the good models of V. O

We end this subsection by the next result, which will be the main ingredient
to obtain Theorem C of the introduction.

Proposition 4.15. Let V. = (V, ) be a Frobenius space over E, and let x € V.
The following are equivalent:

(i) There exists y € V @p E*" such that x =y — p(7*y),
(ZZ) T e Vgood + (1dV 790)(‘/)’
(iii) @ € Vo + (idy —¢)(V).

Proof. We first prove the equivalence between and Let 1: 0*E - F
be the canonical E-linear isomorphism and let 1 be the neutral Frobenius space
(E,1) over E . Let also Ext'(1,V) be the F-vector space of Yoneda extensions
of 1 by V in the category F(Spec E). We have a isomorphism of F-vector spaces,
natural in V,

v
(id—¢)(V)
mapping a representative v € V to the class of the extension of 1 by V whose

underlying module is V' @ E and whose Frobenius action is given by (“g ”il).
Katz’s equivalence leads to a commutative square

- BExt'(1,V) (4.3)

Vgood ~ 1 In
(idv —¢) (Vigood) H(m(Spec Op), (TV)¥)

| |

14 ~ 1
() (V) G T

where, by diagram chasing, the bottom row is given as follows: for v € V, let
w € V ®g E° be such that v = w — ¢(7*w), then ¢, : p = w — Pw defines a
cocycle ¢, : Gg — TV whose class does not depend on the choice of w. The
bottom row maps v to ¢,. Hence, holds if and only if ¢, comes from a cocycle
in H(7(Spec Og), (TV)!#), that is, if and only if |(i7)| holds.

It remains to prove that and are equivalent. Let p be the maximal
ideal of Op. For n > 1, Vp/p" Vo defines a finite dimensional k-vector space
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equipped with a g-linear action induced by ¢ (as o(p™) C p?™ C p™). We denote
it (Vo,, pn). As k is perfect, there is a unique decomposition:

V,=A,® B,

by k-subspaces such that ¢,, is an automorphism on A,, and nilpotent on B,,.
By uniqueness and since ¢, is g-linear, those decompositions are compatible for
all n and with the O /p™-module structure. Taking projective limits, we obtain
a decomposition of Og-modules:

Vo=A&B
such that p(c*A) = A and (idy —¢)(B) = B. Hence B C (idy —¢)(V) and
A C Vgooa. It follows that Vo C Viood + (id —¢)(V), as desired. O
4.2 Models of A-motives over a local function field

General theory

Let R be a commutative F-algebra given together with an F-algebra morphism
k:A— R. Let S be a commutative F-algebra containing R. Let M = (M, 1p)
be an A-motive over S (with characteristic morphism x: A — 5).

Definition 4.16. We define an R-integral model L for M to be a sub-A ® R-
module of M of finite type such that

(i) L generates M over A® S,
(ZZ) TM(T*L) - L[jf ]

We say that L is maximal if it is not strictly contained in any other R-integral
model of M.

Lemma 4.17. A mazimal R-integral model for M contains all the R-integral
models for M. In particular, if it exists it is unique.

Proof. Given L; and Lo two R-integral models, their sum L; + Lo again defines
an R-integral model. Hence, if L, is maximal, the inclusion L; C Lq 4 Lo is not
strict: we deduce L1 + Lo = Ly, then Ly C Lq. O

The next proposition is inspired by |[Gar2, Prop. 2.2]:

Proposition 4.18. If S is obtained from R by localization, an R-model for M
exists.

Proof. Let (mq,...,ms) be generators of M as an A ® S-module, and let Ly be
the sub-A ® R-module of M generated by (mq,...,ms). Let d € R be such that
Tar (7% Lo) C d~1Lo[i7!], and set L := dLo. We have

Tar(T*L) = dérpr (7% Lo) € d9 Y Lo[i7Y = d9 2L < LY.
Thus L is an R-model. O
Similarly:

Definition 4.19. We define an R-good model L for M to be a sub-A® R-module
of M of finite type such that 7p;(7*L)[j~!] = L[j~!]. We say that L is maximal
if it is not strictly contained in any other R-good model of M.

From the argument given in the proof of Proposition [£.10, we easily deduce
the next lemma.
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Lemma 4.20. Assume that there exists a mazximal R-integral model for M.
Then, a maximal R-good model for M exists and is unique.

We continue this section by recording additional properties of maximal R-
models. Those will eventually by useful in Subsection for the proof of The-
orem D (Theorem in the text).

Let M be an A-motive over S which admits a maximal integral R-integral
models denoted Mg.

Proposition 4.21. Let N be a finitely generated sub-A @ R-module of M such
that Tpf(7*N) C N[j7']. Then, N C Mg. In particular, any element m € M
such that Tpr(T*m) = m belongs to Mpg.

Proof. Tt suffices to notice that the module L generated by M and N over AQ R
is an R-model for M, and hence N C L C Mpg. O

Corollary 4.22. We have (id —7a;)(Mg) = (id —77) (M) N Mg[i~1].

Proof. The inclusion (id —7ar)(Mg) C (id —7ar)(M) N Mg[i~'] is clear. Con-
versely, let m € Mg[j~!] and let n € M be such that m = n — 7ps(7*n). The
sub-A ® R-module (Mg, n) of M generated by elements of Mg together with n
over A® R is an R-model for M. In particular, (Mg,n) C Mg andn € Mg. O

We end this chapter with a remark on the assignment M +— Mpg. Assume
that S is such that every object in Mg admits a maximal R-integral model (this
is the case when R C S is the inclusion of a Dedekind domain into its field of
fractions, as shown in Proposition below).

Corollary 4.23. Let f : M — N be a morphism in Mg. Then f(Mpg) C Ng.
In particular, the assignment M — Mpg is functorial.

Existence and first properties

Let E be a local field containing F, let O = O be its ring of integers and let
k = kg be its residue field. In this subsection, we shall be concerned with the
case where S = F and R = Op, where the characteristic morphism x : A — Og
is an F-linear morphism. Let M be an A-motive over E of characteristic k.

Proposition 4.24. A mazximal Og-model for M exists and is unique. In par-
ticular, a mazimal Og-good model for M exists and is unique.

Proof. 1t is enough to show existence of a maximal integral model. Let U be the
A ® Og-module given by the union of all the Og-models for M. We claim that
U is the maximal Og-model of M. As U is non-empty by Proposition it
generates M over E. We also have 7)/(7*U) C U[j~']. So our task is to show
that U is finitely generated.

Let T be an Og-model for M and let t = {t1,...,ts} be a set of generators of
T over AQ Op. Let m be a basis of M @ sgr Quot(A® E) as a vector space over
Quot(A ® E), and let Fiy € GL,(Quot(A ® E)) be the matrix of 7ay written in
the bases 7*m and m. Let P € M, ,(A ® E) be the matrix expressing t in m.
Because of pointsin Deﬁnition there exists N € M (A®Ogli~!]) such
that PMFy, = NP. If v denotes the valuation in Quot(A ® E) at the special
fiber C' x Speckg of C x Spec O, and extend it to matrices over Quot(A ® E)
by taking the minimal valuation of its coefficients. Then v(N) > 0, and

qu(P) = v(PW) = v(NPFy") > v(N) + v(P) + v(Fy;') > v(P) + v(Fy;').
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Hence, v(P) > v(F;;")/(¢—1). We conclude that T is contained in the A® Op-
module

v(Fy')
Up:=<a1mi & ... daym, | a; € A® E, v(a;) > T (@4
q—
In particular, U is contained in Uy. The latter being a finitely generated module
over the Noetherian ring A ® O, the former is finitely generated. O

Definition 4.25. We denote by M the unique maximal Og-integral model of
M, and by Mgooaq the maximal Og-good model of M.

We have the next:
Proposition 4.26. Both Mo and My.0q are locally free over A ® OF.

The proofs being similar, we solely explicit it in the case of Mp. We start
with a useful lemma.

Lemma 4.27. Let a C A be an ideal. Then Mp NaM = aMp.

Proof. The inclusion D is clear. We assume a # 0 and consider the sub-A-motive
(aM,7pr) of M. If T is an O g-model for (aM, 7as), then a= 1T is an O g-model for
M and we have a='T C Mp. This implies that aMp is the maximal Og-model
of (aM, 7pr) so that (aM)p = a(Mp). Therefore, the inclusion MpNaM C aMp
follows from the fact that Mo N aM is an Og-model for (aM, 7). O

Proof of Proposition[{.26 Because A ® Op is a Noetherian domain and Mo is
finitely generated, it is enough to show that My is flat. We use Bourbaki’s local
criterion of flatness. Let m C A be a maximal ideal and let F,, be its residue
field. Note that

Tor{®92(A/m @ Op, Mo) = {m € My | Vr em, (r®1)m =0} = 0.

Hence, by [Boul, AC §II1.5.2 Thm. 1], the flatness of My over AQOp is equivalent
to that of Mp/mMp over F,, ® Op. The ring Fy, ® Op is a product of discrete
valuation rings and thus Mo/mMp is flat (and then locally free) if and only if
it is Og-torsion free. The latter condition is easily seen to be equivalent to the
equality:

mMo = Mo NmM

which follows from Lemma [4.27 O

Remark 4.28. Let M and N be two A-motives over E, and let My and Np be
their respective integral models. While the maximal integral model of M & N is
easily shown to be Mp & Np, it is not true in general that the maximal integral
model of M ® N is the image of Mo ®ag0, No in M ® agr N. To find a counter-
example, we assume ¢ > 2 and consider @ € O a uniformizer. We consider the
A-motive M over E where M = A® E and where 7y = @w - 1. The maximal
integral model of M is Mp = A® Og. However, M@= hag w_lMg(qfl) for
maximal integral model.

Comparison with Frobenius spaces

As in Section[d.1] let E = k((ww)) for a perfect field k containing F, let O = k[w]
be its valuation ring and let p = (w) be the maximal ideal of Op. Let £ be a
maximal ideal of A. Note that j(A/{"QF) = A/¢"®E for all positive integers n.
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Let M be an A-motive over . We have canonical isomorphisms
Vn>1: MMM =M™/ MG™Y. (4.5)

In particular, for all n > 1, 75; defines an A® E-linear morphism 7* (M /{" M) —
M /€™M through the composition

/e ) 25 M e B2 e

which we still denote by 7as. The pair (M /0" M, 7)) defines a Frobenius space
over E in the sense of Section Let L, C M/¢™M be its maximal integral
model.

Remark 4.29. In general, we cannot claim equality between (Mo + ¢"M) /"M
and L,. Here is a counter-example.

Suppose that A = F[t], so that A ® O is identified with Oglt], and let
£ =(t). Let k : A — Og be the F-algebra morphism which maps ¢t to @. In
this setting, j is the principal ideal of Og|t] generated by (¢t — w). Consider the
A-motive M := (E[t], f-1) over E where f = w91 — wi=2t. We claim that the
maximal integral model of M is Oglt]. Clearly, Og[t] is an integral model for
M so that Og[t] C Mp. Conversely, by [Qui2, Thm. 4], Mp is free of rank one
over Oglt]. If h generates Mo, there exists b € Ol[t] such that fh(Y) = bh. For
p € Et], let v(p) be the infinimum of the valuations of the coefficients of p. We

have
o(f)  g-—2

_q—l__q—l

v(h) =

and h € Oglt]. We get Mp C Oglt].
On the other-hand, the Frobenius space (M/¢M,Tp) is isomorphic to the
pair (Op,@w? 1), whose maximal integral model is w 'Og, not Of.

If one wants to compare My with (L,)n>1, then one wishes that (Mo +
M) /"M defines an integral model for (M /"M, 1p) for all n > 1. This is
the case in Remark [£:29] although it is not maximal, because the considered
A-motive M is effective. In general, this is not trueﬂ From now on, we assume

(Cy) The ideal ¢ C A is such that x(¢) contains a unit in O, that is,

K(0)Op = Op.

The above assumption ensures that j(A/{" ® Og) = A/{" @ O for all n > 1
(e.g. the proof Proposition [3.19)), and thus that (Mo +¢"M)/¢™" M is an integral
model for (M/0"M, Tpr).

Remark 4.30. Note that there always exists a maximal ideal ¢ in A satisfying
it suffices to take a maximal ideal £ in A coprime to £~ (p).

Even though we cannot claim always equality between (Mo + (™M) /"M
and L, the data of L,, for all n > 1 is enough to recover My as we show in the
next theorem.

Theorem 4.31. Let L, be the maximal integral model of the Frobenius space
(M/0*M,Tr). Let m € M. Then m € Mo if and only if m+ "M € L,, for all
large enough positive integers n.

We start with some lemmas:

Lemma 4.32. The Og-module L, is an A/{™ @ Og-module.

2For instance, consider the t-motive (E[t], (t — @) '1) over E, whose maximal O g-model
is Oglt], together with £ = (¢).
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Proof. For an elementary tensor r® f in A/{"®@Op, the Og-module (r& f)L,, is
stable by Tas. Indeed, we have Tp; (7*(r® f)Ly) = (r& f)mas (7" L) C (r& f) L.
By maximality of L,, we have (r ® f)L,, C L. O

Lemma 4.33. Let r, be the range of the Og-lattice (Mo + £"M)/{"M in
M/e"M. Then (ry)n>1 is bounded.

Proof. Note that M is a finite projective A ® Og-module by Proposition 4.2
Let P be a finitely generated A ® Og-module such that N := My @ P is free
of finite rank. Let 7’ be the rank of N and let n be a basis of N. Let also
7~ : 7*N[i71] = N[i7!] be the morphism 75, @ 0, and denote by

Fy = (bij)ij; € My (A® Opl[i~'])

the matrix of 7)y written in the bases 7*n and n.

For n > 1, let t,, be a basis of A/¢™ over F. For i,j € {1,....,7'}, let Bl
be the matrix with coefficients in O representing the multiplication by b;; on
A/l" ® Og in the basis t, ® 1. Then, the matrix of 75 : 7*(N/¢{"N) — N/{™N,
seen as an Og-linear map, and written in the bases 7*(t,, ® n) and t,, ® n, takes
the form of the block matrix:

FY = (BY)y € Mya, (Op)

where d,, is the dimension of A/¢" over F. One verifies that v(B};) equals the
infinimum of the valuation of the coefficients of b;; (mod ¢") in Op written in
t,. Thus, for large values of n, we have

Vi, je{l,..r'} s o(Bjj) =wv(bi) (n large enough). (4.6)

For all n > 1, note that (Mo + ("M)/{"M = Mp/{"Mp by Lemma
Because Mo /" Mp is a direct factor in N/¢™ N, the range of (Mo +¢"M) /™M
equals the maximal valuation of the (nonzero) elementary divisors relative to
the inclusion of O g-modules

TN (T*(N/E"N)) C N/¢"N. (4.7)

The elementary divisors relative to coincide, up to units of O, to those
appearing in the Smith normal form of the matrix Fy € M4 (Og).

By , the valuations of the coefficients of F}; are stationary. The range
of (Mo +¢"M)/¢™"M in M/¢™M is thus stationary and hence bounded. O

For n > 1, let L,, be the inverse image in M of L, C M/ M.

Proof of Theorem[{.31 The statement is equivalent to the equality

Mo = (] (Ln+€"M)
n=D

for all positive integer D > 1. The sequence of subsets (L, +¢"M),>1 decreases
for the inclusion: for n > 1, we have Ly, + /"' M C L, 1 +¢"M and, because

(Lny1 + €M) /"M defines an integral model for (M /€™M, 7yr), we also have

Ly +0"M C L,+("M. Consequently, it suffices to treat the case D = 1.
Consider

(L, + " M).

DX

L=
n=1

By Lemma L is an AQ Og-module. The inclusion My C L follows from the

fact that, for all n, (Mo +¢"M)/¢™ M is an integral model for (M /"M, ). To
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prove the converse inclusion, we show that L is an integral model for M. From
Mo C L, one deduces that L generates M over E. Because 7ar(7*(Ly, +£"M)) C
Ly, + ¢"M[j~'], we also have 7p;(7*L) C L[j~!]. The theorem follows once we
have proved that L is finitely generated.

Assume that L is not finitely generated. From the Noetherianity of A ®
Og, for all s > 0, it follows that L ¢ w *Mp. Equivalently, there exists
an unbounded increasing sequence (sy),>0 of non-negative integers such that
w* L, ¢ (Mo+¢"M)/¢"M. By Proposition the range of (Mo +¢"M) /("M
is > s,(¢ — 1). But this contradicts Lemma O

We record two useful Corollaries from Theorem [.31]

Corollary 4.34. Let T, be the mazimal good model of the Frobenius space
(M/e"M,Tp). Let m € M. Then m € Mgyooq if and only if m + "M € T,
for all large enough positive integers n.

Proof. For n > 1, let T}, be the inverse image in M of T, C M/ M. Let D be
a positive integer. By Theorem the sub-A ® Og-module of M:

T:= () (Tn+("M)
n>D

is a submodule of Mo, hence is finitely generated. For all n > 1, we have
T (75 (L, + 0P M)[i7Y])) = (L, + £"M)[j~] so that T satisfies 7 (7*T)[[7}] =
T[i7']. In particular, T is a good model for M. It is further maximal: as

(Mgoodq + €M) /¢" M C T, for all n, we have Mgooq C T O

Corollary 4.35. Let N = (N,7n) be an A-motive over O and Ny its base
change to E. Then, N = (Ng)o = (NE)good-

For the next section, we shall not only be interested in how to recover Mo
from Ly, but also in how to recover Mo + (id —7a7)(M). While we do not give
a complete answer, we at least show next how to recover its ¢-adic closure in
M[i—']. We continue with some finer technicalities.

Even if we do not have equality between L,, + ¢"M and Mo + ¢"M, the
former is a good approximation of the latter as we show next.

Lemma 4.36. Let n > 1. The sequence (Ly, + (" M)pm>y is decreasing for the
inclusion, stationary and converges to Mo + €™ M.

Proof. Let m > 1. (Lpyy1 + 0™M)/™M is an Og-lattice stable by 73/ in
M /™M so that .Z/m+1 + 0" M C Ly, +0™M. If m > n, we have f/m+1 +4"M C
L, + "M which shows that (im + ™) >n decreases. Similarly, Mo + ("M C
Lo +0"M for all m > n. Because the set of O g-lattices A such that Mo+¢"M C
AC L, +0Mis finite, the sequence (I:m + 0" M) > is stationary. We denote
by %, its limit. By Theorem we have

(oo} (oo}
Ln= () L +£"M) = () (L + £"M) + "M = Mo + " M.
This concludes the proof. O

Lemma 4.37. There exists an unbounded and increasing sequence (kp)n>1 of
non-negative integers such that, L, + "M C Mo + (%M (typically, k, < n for
allm).
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Proof. For m > 1, let I,, be the set of non-negative integers k such that L., +
™M C Mo+ (M. I, is nonempty as it contains 0. I,, is further bounded:
otherwise we would have

Ly + 0" M C ﬂ(MO + (M) = Mp (4.8)

E

which is impossible (Zm +4mM is an A ® Og-module which is not of finite
type). Hence I, has a maximal element, which we denote by k,,. Because
imﬂ + ¢m M C L, + ™M, we have Em+1 > km. This shows that (kn)m>1
increases. We show that it is unbounded. Let n > 1. By Lemma [£.36] there
exists m > n such that Mo + ™ = Zm + " M. Thus L,L +4{mM C Mo + " M.
In particular, there exists m > n such that k,, > n. O

Proposition 4.38. Assume that M is effective, and let m € M. The following
are equivalent:

(1) m belongs to the L-adic closure of Mo + (id —71ar) (M) in M,

(i) for allm > 1, m € Ly, + (id —7a)(M) 4 £" M.
Proof. By Theorem the inclusion

Mo + (id —mr) (M) € ) [E,L+(id—TM)(M)+£”M}
n=1

holds as subsets of M, and the right-hand side is ¢-adically complete. Hence
implies The converse follows from Lemma W

ﬁ [EnJr(id—TM)(M) +4”M] c ﬁ [Mo + (id —7ar) (M) + €5 M ]

n=1

where the right-hand side is identified with the ¢-adic completion of My +
(id —7ar)(M). O

Néron-Ogg-Shafarevié-type criterion

This paragraph is an aparté offering a good reduction criterion, very much in
the spirit of Gardeyn’s Néron-Ogg-Shafarevi¢-type criterion [Garll, Thm. 1.1].
The results of this subsection are not needed in the sequel, although they are
useful in examples to compute maximal models.

Proposition 4.39. Let M be an A-motive over E, and let £ be a mazximal ideal
of A such that k(£)Or = Og. The following statements are equivalent:

(i) There exists an A-motive N over Og such that N is isomorphic to M.
(13) The inclusion Mgooq C Mo is an equality.
(7i1) The representation TyM is unramified.

Proof. The equivalence between and follows from Theorem and
Corollary Let M,, denote the Frobenius space (M /¢™ M, Tar) of the previous
section, and let L,, and T}, be its maximal integral and good model respectively.
The equivalence between and follows from the following sequence of
equivalent statements:
TyM is unramified <= Vn > 1, TM,, is unramified (notations of Thm. 4.13])
<~ Vn>1, T,=1L, (by Prop.[4.14)
<= Mgooa = Mo (by Thm. and Cor. [£.34).
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Definition 4.40. We say that M has good reduction if one of the equivalent
points of Proposition .39 is satisfied.

4.3 Models of A-motives over a global function field

We go back to Definition where now S = F' is a global function field that
contains F, and R is a sub-F-algebra of F' which, as a ring, is a Dedekind domain
whose fraction field is . Given a maximal ideal p in R, we denote by R, the
completion of R at p and we let F}, be the fraction field of R,. Let x: A — F
be an F-algebra morphism.

Let M = (M, 7ar) be an A-motive over F' of rank r, and let M, = My be
the A-motive over Fj of rank r obtained from M by base change from Fto F,.
We let Mg, denote the maximal Ry-model of M

Proposition 4.41. There exists a unique maximal R-model for M. It equals
the intersection ﬂp(M N Mg,) forp running over the mazimal ideals of R. We
denote it Mg.

Proof. From Lemma [£.17 uniqueness is automatic. Let N be an R-model for
M (whose existence is ensured by Proposition . For any maximal ideal
p of R, we have N C N ®g R, C Mg, by maximality of Mg,. Therefore
N C (N,(M N Mpg,). Hence, it is sufficient to show that (),(M N Mg, ) is an
R-model. First note that it is a sub-A ® R-module of M which, as it contains
N, generates M over F'. To show stability by 7as, let e be a large enough integer
such that a7 (7*M) C j~°M. One easily checks that:

™ <T*ﬂ(MﬂMRp > ﬂJ (M N Mpg,) C (ﬂMﬂMR”>D1}'

p p

It remains to show that (), (M NMEg, ) is finitely generated over A® R. Let m :=
(mq,...,m,) and a be respectively a family of elements in M ® 4gr Quot(A® F)
and a nonzero ideal of AQ F such that M = (AQF)m1®- - -®(AQF)m,_1Ham,..
Let Fys € GL,(Quot(A ® F)) be the matrix of 7y written in 7*m and m. By
Proposition [.24] and its proof, the A ® R-module:

v (Far')
qg—1
contains ), (M N Mg, ) and is finitely generated (compare with (4.4)). Because

A®R is Noetherian, ﬂp (MNMpg,) is finitely generated, and hence is the maximal
model of M. O

{alml +...+am.|Vi,¥p € SpmR:a; € AR F, vy(a;) >

From Lemma [£:20, we obtain:
Corollary 4.42. The mazimal good model My,0q of M exists and is unique.

We now state the global version of Lemma and Proposition (with
R in place of Rp). The argument is similar, so we omit proofs.

Proposition 4.43. Both Mpr and Mg,0q are locally-free over A ® R.

Remark 4.44. Note, however, that an integral model for M, when not maximal,
is not necessarily locally-free. For instance, the F[t]-motive 1 = (F[t](6), 1) over
F(0) admits L := tF[t, 0] + 6F[t, 0] as F[f]-model. But it is well-known that L
is not a flat F[t, f]-module. A short way to see this consists in considering the
element A := (t®60 -0 ®1) € L ®p[y,9) L. A is nonzero in L Qg g) L, but

0-A=(01)®60—0(0t)=(01) 26— (0t) @60 = 0.

Then L is not flat because L ®py;,9) L has non trivial torsion.
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Definition 4.45. We say that M has good reduction at p if M, has good re-
duction. We say that M has everywhere good reduction if M has good reduction
at p for all maximal ideals p of R.

4.4 The integral part of A-motivic cohomology
Over local function fields

Let F}, be a local function field with valuation ring O, and maximal ideal p.
Let F'" be the maximal unramified extension of Fy in Fy. Let I, be the inertia
subgroup of G, = GF,. Let x : A — O, be the characteristic morphism.

Let M be an A-motive over Fj, and let Mo, be its integral model.

Definition 4.46. We define Extbp (1, M) as the sub- A-module of Ext}vtpp (1, M)
given by the image of Mo, [j~!] through ¢ (Theorem [2.13).

From Corollary ¢ induces an isomorphism of A-modules:

Mo, [i~"]

= " Exty (1, M).

(id —ma) (Mo, ) 0, (1. 1)

Remark 4.47. An important remark is that the assignment M — Extép (1,M)
is functorial, thanks to Corollary

Our main result is the following;:

Theorem 4.48. Let ¢ be a mazimal ideal in A such that k(£)Op = O,. Then,

Exto, (1, M) C Extg,oq(1, M),.

Proof. Let [E] € Ext}gp(]l,M). By definition, there exists m € Mo, [j~'] such

that [E] = «(m). If L, denotes a lift in M of the maximal integral model of
the Frobenius space (M/¢"M,1yr), we obtain m € L, + ¢"M for all n. By
Proposition there exists y, € M ®p, @F;" such that

m=yn, — 7 (77yn)  (mod 7). (4.9)

Note that, for each n, there are only finitely many such y,, (mod £™). We next
show that we can choose compatibly y, for all n (that is yp41 = yn (mod £7)).
Let us define a tree T indexed by n > 1 whose nodes at the height n are
the solutions y,, of in (M ®f, F,")/("(M ®F, F,"). There is an edge
between z, and z,4; if and only if 2,11 coincides with z, modulo ¢™. The tree
has finitely many nodes at each height and it is infinite from the fact that a
solution of exists for all n. By Konig’s Lemma, there exists an infinite
branch on 7. This branch corresponds to a converging sequence (yy),>1 Whose
limit y in (M&p, Fy)g satisties m = y — 7p(7*y). Therefore, we conclude that
|E] € Extl. 4(1, M), thanks to Proposition @ O

good

Over global function fields

Let F be a finite field extension of K and let O be the integral closure of A in
F. We let k : A — Op denote the inclusion. We fix S to be a set of nonzero
prime ideals of O and consider the subring R := Or[S~!] of F. The ring R is
a Dedekind domain whose fraction field is F.

Let M = (M, 7)) be an Anderson A-motive over F. Given a maximal ideal
p C R, we let M, be the A-motive over F}, obtained from M by base-change

from F to F}. Given an extension [E] € Ext}, (1, M), the exactness of the base
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change functor defines an extension [E,] € Ext}\,t v (Ly, M,). This allows us to
define the following submodule of Ext}\,lF (1, M):

Bxth(1,M) = () {[E] € Bxtly, (1,M) | [E,] € Exth, (1,,M,)}.
PCR

Our second main result consists of the next theorem.

Theorem 4.49. Let Mg denote the maximal integral R-model of M. The A-
module Ext};i(Il,M) equals the image of Mg[i~1] through v. In addition, ¢ induces
a natural isomorphism of A-modules:

Mg[i™']

Gd ) M) = Bxty(1, M).

The proof of the above theorem will result after a sequence of lemmas.

Lemma 4.50. Let Mg, be the mazimal integral model of M, = (My, o).
Inside M[i71], we have:

M= (Mg, [i71 + (id —7ar) (Mp)) = M0 Mg, [~ + (id —7ar) (M).

Proof. The inclusion D is clear. Since M is generated over F' by elements in
MNMpg, and as F, = F'+ Ry, we have M, = M + Mpg,. Let m be an element in
the left-hand side. We can write m as my +ny, — 7ar (7" ny) +n — 7as(7*n) where
my € Mg, (i1, ny € Mg, and n € M. In particular, my, + ny, — Tas(7"nyp)
belongs to M[i~'] N Mg, [j~!] which implies that m € M[~'] N Mg,[i~'] +
(id —7ar) (M). O

Lemma 4.51. Let m € M. Then m € Mg, for almost all mazimal ideals p of
R.

Proof. There exists a nonzero element d € R such that dm € Mg. Let {q1,...,qs}
be the finite set of maximal ideals in R that contain (d). By Proposition
m € Mg, for all p not in {q1,...,qs}. O

Let N be a finite dimensional vector space over F' (resp. Fy,). By a lattice in
N we mean a finitely generated module over R (resp. Ry) in IV that contains a
basis of V.

Lemma 4.52 (Strong approximation). Let N be a finite dimensional F-vector
space and, for all mazimal ideals p of R, let Ngr, be an Ry-lattice in N, =
N ®pr F,, such that the intersection ﬂp (N N NRU), over all maximal ideals p of
R, is an R-lattice in N. Let T be a finite set of maximal ideals in R and, for
q €T, let ng € Ny. Then, there exists n € N such that n —nq € Ng, for all
q€T and n € Ng, for all p not in T.

Proof. Let Ng denote the intersection 1, (N N N, ) over all maximal ideals p of
R. By the structure Theorem for finitely generated modules over the Dedekind
domain R, there exists a nonzero ideal a C R and elements {b1, ...,b.} C M such
that

Nr=Rby &---® Rb._1 G ab,.

Because Np®@gr Ry C Ng, for p C R, we have Ryb1®- - -@pvp(a)prr C Ng,. For
q €T, let us write ng = >, fq.:b; with fy; € Fy. By the strong approximation
Theorem |[Ros, Thm. 6.13], for all i € {1,...,7}, there exists f; € F such that

1. forqeT and i€ {1,..,7 — 1}, vq(fi — fq,i) >0,
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2. for q € T, vq(fr — fq.r) > vq(a),
3. forp¢ T andie {1,...,r— 1}, vy(fi) >0,

4. for p ¢ T, vy(fr) = vp(a).

The element n = )", f;b; € N satisfies the assumption of the lemma. O

Lemma 4.53. We have

() (MG Me, [+ (id—7a0) (M) = Me[~"] + (id —7a0) (M)
pCR

where the intersection is indexed over the mazimal ideals of R.

Proof. The inclusion D follows from Proposition [£.41] Conversely, let m be an
element of (), g (M~ N Mg, [[*] + (id —7ar)(M)). By Lemma m there
exists a finite subset 7' of maximal ideals of R such that m € Mg, [j'] for
p ¢ T. For q € T, there exists nq € M and mq € M[j~'] N Mg, [j~'] such that
m = mq + nq — Tm (7" Ngq).

Let N be a finite dimensional sub-F-vector space of M that contains m and
nq for all ¢ € T For a maximal ideal p of R, let N, := Mg, N (N ®F F,). We
have Ng :=(,(NNNg,) = NN Mg. The latter is an R-lattice in N and hence
we are in the situation of Lemma there exists n € N such that n—ng € Ng,
for all g € T'and n € Ng, for all p not in 7. Then m+n—7p(7"n) € Ngr C Mg,
which ends the proof. O

Proof of Theorem[[.{9 Let [E] € Extj,, (1,M) and let m € M[j~!] be such
that [E] = ¢(m). The proof of Theorem is achieved via the sequence of
equivalence:

[E] € Extp(1, M) <= Vp € SpmR: [E,] € Extp (1,,M,)
= VpeSpmR: me M N [Mg,[i~"]+ (id —7a) (M;)]
< VpeSpmR: me M[~'|NMg,[~"]+ (id —7ar) (M)
< m € Mp[i~ '] + (id —7ar) (M)
= [B] € (Mg[i™"])

where the second equivalence stems from Definition the third from Lemma
4501 and the fourth from Lemma .53l The second assertion follows from Corol-

lary [4:22] O

5 Regulated extensions

Let F}, be a local function field with valuation ring O, and maximal ideal p. Let
k: A — O, be the characteristic morphism, and consider an A-motive M over
O,. In the previous section, we proved that for a maximal ideal £ in A satisfying
k(£)O, = O,, there is an inclusion:

Exty, (1, M) C Extgooq(1, M) (5.1)
as sub-A-modules of Ext}\/l Fp (1, M). Surprisingly, this is almost never an equal-
ity. In Subsection [5.I] we construct explicitly a class in the right-hand side of
(5.1) which does not belong the left-hand side. In the remaining part of this
text, we offer a conjectural framework which we expect to solve the default of

(5.1) to be an equality.
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5.1 A particular extension of 1 by itself

We consider the case where A = F[t] and consider the maximal ideal ¢ = (¢) in
A. Let E be the local function field F((7)), O = F[x], with structure morphism
k: A — O defined by x(t) = 1+ 7 (that is, # = § — 1 where § = k(t)). We have
k(0O =1+ mF[r] = O so k(£)O = O. Let M =1 over E.

By Proposition [2.21| enriched with Proposition there is a commutative
square of A-modules:

Ext), (1,1) ——— H'(Ig,T(;1)

E[t, 4] BN
(id —7)(E[t]) O[t] + (id —7)(E[t])

where the bottom arrow is induced by the inclusion of E[t, (t — 6)~1] in E[t].

Hereafter, we construct an element m in E[t, (t — 6)~'] of the form

myg mi
) A )

m =

for some my,...,mg in E, not all in O, such that m belongs to (id —7)(E[t]).
Then, ¢(m) has good reduction with respect to (¢) (in the sense of Definition

but does not belong to O[t, (t — 8)~1] + (id —7)(E[t]).

Let k = ¢* where ¢ is the number of elements of F, and for i € {0, ...,k — 1},
define n} as @'(x~! — 779) in E. For all ¢ > 0, let f. be a root in E of the

polynomial:
X1 — X + 0= %n.

Such a root exists in E as =% = 1 (mod 7rq2). For [ > 0, we define f; € E by
fi := fer where I = ck +r for ¢ > 0 and 0 < r < k. Then, we have

VI>0: 0'ni=f—f (5.2)
where [ € {0, ...,k — 1} denotes the rest of the euclidean division of I by k.

For I > 0, let Sk(l) be the Pascal matriz whose ith row-jth column entry is
the binomial coefficient (Z‘:_]Jl) (0 <i,j < k). The following claims are easily
proven:

(¢) The determinant of S (0) is 1.

(73) Let p be the characteristic of F. For [ > 0, we have the formula

1

Sl +1) = | S (mod p)

(#4i) The application | — Sk (1) is k-periodic modulo p.
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We now define m} € E for i € {0, ...,k — 1} by mean of the formula:

mg g
/ /
m n
1 1
Sk (0) . = .
!
M1 N1

Since the n;’s have negative valuation, at least one of the m;’s has negative

valuation (by [()). From we have

’ ’
my 7/11
i
my "
Vi>0 Sk(l) . = .
! /
M1 L v

From ([5.2)), we obtain:

k—1 .
vi>0: 67! ( m (Z j l)) =f-f (5.3)
—~

Finally, for i € {1,...,k}, let m; := (—=6)'m._,. Formula (5.3) amounts to:

L my miq o o ()
m = (t—e)k+"'+(t—9)_f 4

where [ := leo fit!. Therefore (m) has good reduction, although m does not
belong to O[t, (t — 0) 7] + (id —7)(E[t]).

5.2 Hodge poylgons of A-motives

We recognize in the extension ¢(m), constructed in the previous subsection, that
m has a large pole at j = (t — 0). We now introduce the notion of requlated
extensions which naturally prevent the poles of extensions of being too large.

We first recall some materials on Hodge-Pink structures. Let F}, be a local
function field with valuation ring O, and maximal ideal p. Let x : A — F}, be
the characteristic morphism (we do not require it to have values in O0,). We
denote by F,[j] the discrete valuation ring obtained by taking the completion of
A ® F), along powers of j. We denote by F}((j)) its field of fractions.

Let m be the maximal ideal of A given by x~1(p), and denote by K, the
local field of (C, O¢) at m. We have the following:

Lemma 5.1. The ring morphism v : A— AR Fy, a — a® 1 extends uniquely
to a ring morphism v : Ky — F,[j] such that the composition of v followed by
reduction mod j coincide with the canonical inclusion Ky — Fy[j]/i = Fy.

Proof. Uniqueness is clear. We proceed in three steps for the existence. The
first step is to extend v to K. Let a € A. We have a ® 1 2 1 ® a (mod j).
Additionally, F,[j] is a discrete valuation ring with maximal ideal j and residue
field F},. Hence, if a is nonzero, a ® 1 is invertible because a is invertible in F},.
This extends v to K.

Let my € K be a uniformizing parameter for K, and let a, b # 0 be elements
of A such that myn = a/b. We have the identification Ky, = Fy (7)) where Fyy
is the residue field of K. Let L be the subfield L := F((my)) of K. Our second
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step is to extend v to L. Following Pink’s observation [Pinl Prop. 3.1], we unfold
the formal computation

L3Y (fmhel) =) fil@mm+mm@1— 1@ my)
k k
a®Rb—-bRa k
= 1 m _—
Ek fk< ® T + boh )

ey () () v

£>0

23 (m;fk(;)ﬂﬁ—f) (nehbeny

>0

where the inner sum converges in K. We then set

v (; m:;) =Y (1 ® zkjfk (,i)m’ffg) (W)l € B[

£>0

It is formal to check that this defines a ring homomorphism L — F,[j] which
extends v.

Finally, we extend v to Ky. Let o € Ky and let po(X) be the minimal
polynomial of o over L. As K, /L is a separable extension, p,(X) € L[X] is
separable. We consider p,(X) as a polynomial in F,[j][X] via v : L — F,[j].
It admits the image of a through K — F, = F,[j]/j as a root modulo j. By
Hensel’s Lemma, p,(X) admits a unique root & in F}[j| which lifts a. Setting
v(a) = & extends v to Ky — F,[j] in a morphism which verifies the assumption
of the lemma. U

Definition 5.2. A p-adic Hodge-Pink structure H is a pair (H,qg) where H
is a Ky-vector space and qg is an Fy[j]-lattice inside H ®k,, » Fy((j)). We call
pu = H Qk,, » Fp[j] the tautological lattice and qp the Hodge-Pink lattice.

A p-adic Hodge-Pink structure induces a (separated and exhaustive) decreas-
ing filtration Fil on the Fy-vector space Hf, := H @k, I} as follows. For p € Z,
Fil” Hp, is defined as the image of py NjPqy through

. mod j
b =H ok, Bl "% Heok, F,=Hr,.

The Hodge polygon of H is defined as the Hodge polygon of Fil = (Fil” Hp, ),cz.

Let M Abe an AA—motive over K. We attach to M a p-adic Hodge-Pink
structure H := H,(M) as follows. Its underlying Ky-vector space is H :=

(7*M)/i(t* M) and its Hodge-Pink lattice is qm := 75, (M) ® a9 k., voia Fp[i]-

Lemma 5.3. Let M be an A-motive over K and let F' be a finite extension of
K. For a finite place p of F', let m = pN A, and let M, be the A-motive over
K. obtained from M by base change. Then, the Hodge polygon of the p-adic
Hodge-Pink structure Hp(Mm) does not depend on p.

Proof. Given e a large enough integer for which j°p,(7*M) C M, we have

T

M/ (M) = DA ® K) [+

i=1
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for some integers wy; < --- < w, independent of e nor of the isomorphism. If
(Fil” H, ), is the induced Hodge filtration of q p (M), we have

VpeZ, dimpg, (Fil” Hp,)=#{ic{1,..,r} | w; > p}.

In particular, the associated Hodge polygon only depends on the numbers w; <
- < wy. O

Remark 5.4. The fact that the Hodge polygon is independent on the place also
have strong connections with expectations in p-adic Hodge theory. Following
[Harll §2.9], Fontaine’s Q,-algebra Bl; would be our analogue of Fj[j] seen
as a Kpy-algebra via v. The independence of p in the number fields setting
would follow from p-adic comparison theorems: for X a variety over Q, the
independence of the Hodge-Tate polygon would be a consequence of Fontaine’s
conjecture, stating that there is an isomorphism of Bgygr-vector spaces:

Bar ®q, Hé(Xg,, Q) — Bar ®g Hig(X)
given naturally in X, and compatible with the filtrations on both sides.
Therefore, the next notion is well-defined.

Definition 5.5. Let L be one of the fields K., K, F a finite extension of K or
F, for p above m, and let M be an A-motive over L. Depending on L, we define
successively the Hodge polygon of M to be:

(a) if L = Ky, the Hodge polygon of Ep (M),
(b) if L = F,, the Hodge polygon of H (Resr, /K.,

M),

(¢) if L = K, the Hodge polygon of H. p (M) for some finite place p of F,

(d) if L = F, the Hodge polygon of Resp/x(M).

Remark 5.6. In the classical situation, it is expected that given an exact sequence
0— N — M — P — 0 of mixed motives over Q, the Hodge polygon of N & P
coincides with that of M. It is not true in our situation and this motivates what
comes next.

Definition 5.7. We call an exact sequence 0 - N — M — P — 0 in My,
requlated if the Hodge polygon of N & P coincide with that of M.

Remark 5.8. We have chosen the naming regulated to allude to the notion of
requlators of A-motives, to be introduced in an upcoming work.
The next proposition allows to compute regulated extensions in the category

My

Proposition 5.9. Let M and N be two objects in My. Denote by [E] the
extension of M by N given by .y a(u) where u € Homagr (7*N, M)[j~']. Then,
[E] is regulated if and only if there exists f : Homagr (7*N,7*M) and g €
Homagr (N, M) such that wu=goTn —Tapr 0 f.

Proof. The A-motives E and M @ N have the same Hodge-Polygons if and only
if for all large enough integer e, the j-torsion A ® L-modules

M®N Mo N
/ <T(J)M T?v) (T*M) @ (T*N)’ / (Tg[ 7};) (T*M)® (T*N)

are isomorphic. This is the case if and only if there exists F' € Autagr (7"M @&
7*N) and G € Autagr(M @& N) such that G (7' ° ) = ("§" /% ) F. By identi-

fying G with (“0 90) and F' with (’“ fl) for some automorphisms ag, bg, a1, by
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of M, N, 7*M and 7* N respectively, and A ® L-linear morphisms ¢’ : N — M
and f' : 7*N — 7*M, the proposition follows by setting g := ¢’ o by and
fi=flobrt O

It follows from the above proposition that if [E] and [E'] are equivalent
extensions, then [E] is regulated if and only if so is [E’]. In particular, the
subset Ext}\j‘zg(ﬁ , M) of regulated extensions of N by M is well-defined. It is

also a sub-A-module of Ext),, (N, M). We have:

Corollary 5.10. Let M be an A-motive over L. Then, ¢ induces an isomorphism

of A-modules:
M + Tm (T*M)

™y Extr(1, M).
Gd—m) M) xtyiq, (1, M)

Remark 5.11. In particular, the extension of 1 by itself constructed in Subsection
5.1] is not regulated.

5.3 Regulated extensions having good reduction

Let F' be a finite extension of K, let p be a finite place of F'. Hereafter, « is the
inclusion of A into F, and Op is the integral closure of A in F. By the field
L (resp. the ring Or) we shall mean either F' or F}, (resp. Op or Op). Let
m=pN A and let £ be a maximal ideal in A distinct from m.

Definition 5.12. We let Exté’ieg(l,M) be the submodule of Ext{, (1, M) con-

sisting of regulated extensions. Similarly, by Extégsfl(]l, M), we designate the
1

good (1, M) consisting of regulated extensions in the category

submodule of Ext

Mp.
Let M be an A-motive over F,,. By Theorem C (Theorem [4.49)), there is an
inclusion of A-modules:

Extg (1, M) C Ext, )5 (1, M),. (5.4)

ood

We strongly expect this to be an equality for a large class of A-motives. For the
remaining of this section, we present some evidences for this expectation.

Theorem 5.13. Assume that N is effective, pure of weight 0 and has good
reduction. Then, (5.4) is an equality. In particular, Ext;’(;eg(]l,ﬂ)g does not
depend on £.

The above will result as a sequence of lemmas:

Lemma 5.14. Let N be a pure of weight 0 effective A-motive of rank r > 1
over a separably closed field H. Then, there exists a mon zero ideal a C A such
that N = 1801 @ a, where a is the A-motive (a® H,1).

Proof. We first claim that 7y (7*N) = N. By purity, let A be an A (H)-lattice
in N ® agn Boo(H) such that 73 (7"*A) = A for some n > 1. Up to replacing A
by the lattice AN 7x(T*A) N --- N7 H(r(*~D*A), we can assume that n = 1.

By the Beauville-Laszlo Theorem [Bealal, we glue A and N to obtain a
locally-free sheaf ' on C' x H together with a homomorphism 7z : 7*AN — N
extending 7. Let D be the divisor on C' x H associated to the invertible O¢y g-
module det /. Taking the determinant of 7y yields:

O(1*D + (det 7)) = O(—=d - V(j) + D)

where d is the dimension of N/7n(7*N) over H. Comparing degrees, we obtain
d = 0. Therefore, N = 75 (7*N).
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Forn € Z, let N,, := 7;*ANN. The sequence (N, ) ez is an increasing family
of finite dimensional H-vector spaces whose union is NV, and we have 7y (7*N,,) =
N,,. Since H is separably closed, it follows from [Katl] that NJ¥=! @ H = N,,.
Hence, we have

N™~=le H =5 N. (5.5)

Now, N™~=! is torsion-free and finitely generated over the Dedekind domain A,
hence it is projective of rank r. Thus, there exists a non zero ideal a C A such
that N7v=1 = A®("—1) ¢ q. We conclude by (5.5). a

Lemma 5.15. Assume A = F[t], and let N be a pure of weight O effective A-
motive over a field L. There exists an Ao (L)-lattice A in N @ agr Boo(L) such
that:

1. T (T*A) = A,
2. As L-vector spaces, N @ agr, Boo(L) = N @ A.

Proof. From Lemma and because A = F[t], the result is easily proven for
N,. where L? is a separable closure of L. As such, there exists an Ao (L%)-
lattice in N @agr Boo(L®) such that 7y (7*As) = Ag and N Qagr Boo(L®) =
(N ®p L*) @ As.

The Galois group G, = Gal(L®|L) acts on N® agr Boo(L*®) through the right-
hand side, leaving N ® ag 1, Boo (L) invariant. We claim that A, is stable through
the action of Gr. Indeed, let Ay be an Ao (L)-lattice inside N @ agr Boo(L),
and assume without loss that

Ay C Ao ®a (1) Aco(LF).

Then, by the elementary divisor Theorem for the discrete valuation ring Ao (L*),
there exists a basis (Aq,..., Ar) of Ag ®4__ (1) Acc(L®) and non-negative integers
(s1,..., ) such that

Ay =732 AG(LY) - M+ o + T8 A (LP) - A
It follows that Ay is stable by G1,. We let:
A:=ASr ={Ne A, |YoeGyL, a(\) =)},

so that both 7y (7*A) = A and N ®agr Boo(L) = N @ A. From this last equality,
it easily follows that A is an A (L)-lattice in N ® agr, Boo(L). O

Lemma 5.16. Let ¢ be a mazimal ideal of A and let N be a pure of weight O
effective A-motive over F, having good reduction. Then No, + (id —7n)(N) is
{-adically closed in N.

Proof. Without loss of generality, we may assume that A = F[t]. Let A be as
in Lemma @ For n > 0, let IV,, be the finite dimensional Fj-vector space
AN N. (Ny,)n defines an increasing sequence of subspaces of N and we both
have (J,,»o Nn = N and N = N,, @ (" N. We also claim that:

No, "N = (No, N N,,) ® £"(No, N N).

To see this, note that since N has good reduction, the image of No N N,, through
N — N/{"N equals the maximal integral model of (N/£" N, 7ys). Hence No, N
N C (No, N Ny) @ {"N and the claim follows.

Let m € N be such that there exists a sequence (m, )n>0 in No, +(id —7x5) (V)
which converges f-adically to m. We have m € Ny for a large enough inte-
ger d. If pg denotes the projection onto N, orthogonaly to (N, we obtain
m = pa(m) = pa(mq) € (No, N Ng) + (id =7n5)(Ng) as desired. O
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Proof of Theorem[5.13 Let [E] = ¢(m) be an extension in Ext;;)r(fg(]l,ﬂ)g. By
definition, m € N, and by Proposition there exists & € (N®Fp Fy")e such
that

m =& — Tn(T%E). (5.6)

Reducing (5.6)) modulo ¢™ for all n > 1, we obtain from Proposition applied
to the Frobenius space (N/¢™N,7x), that

Vn>1: m€ Ly, + (id—7n)(N)+ "N

where L, is a lift in N of a maximal integral model for (N/£"N, 7y). Tt follows
from Proposition@that m belongs to the f-adic closure of No, + (id —7n) (V).
But the later is already closed by Lemma It follows that m € No, +
(id —7n)(N), which amounts to [E] € Exté’zeg(]l,ﬂ) as desired. O

Let now A be F[t], and let A(n) be the nth twist of the Carlitz motive over
F, (see the notations of Example . Let ¢ # m be a maximal ideal of A.

Theorem 5.17. The inclusion (5.4) is an equality for M = A(p*), where
p is the characteristic of F and k is a non negative integer. In particular,

Ext;"{;eg(]l,é(pk))g is independent of {.

The rest of the text is devoted to the proof of Theorem [5.17 We start
by stating lemma which holds for general A(n), n > 0. The proof is an easy
computation which is left to the reader.

Lemma 5.18. Let m(t) € Fy[t|. There exists e(t) € Fy[t] of degree < n and
p(t) € Fylt] such that

mt) ()
oy~ —op M

p(t)
(t—o)

Proof of Theorem [5.17, Write n for p¥, and let M = A(n). Let m € M +
7 (7% M) be such that there exists f € (M&p, Fy*), for which f—7 (7% f) = m.

That is, m € Fy[t]/(t — 0)" and f € P{;ﬁe. By Lemma we can assume
that m is of the form e(¢)/(t — 0)™ for some (t) € F},[t] of degree < n. Because
n is a power of the characteristic, we may rewrite f — 7p/(7*f) = m as:

tf—e(t)=0"f + fO. (5.7)

Let v : F, = Z U {oo} be the valuation on F}, which we canonically extends to
Fy — QU {oo}. The assumption that m # ¢ implies that v(¢) = 0.

We should derive a contradiction by assuming that £(t) = eo + e1t + ... +
en—1t" "1 does not belong to O,[t]. To wit, for some 0 < i < n, we have v(g;) < 0.
We let ¢ > 0 be the maximal integer such that there exixts j € {0,...,n — 1} for
which both v(e;) < 0 and ¢°lv(e; ).

Let N be a multiple of n greater than n(c + 1)/d, where d is the degree
of . We aim to rewrite coefficient-wise in the basis (1,t,...,t4V 1) of

—_—

Fyr [t]Z/ENF;r t], = 3" [t] /€N F[t] seen as a Fy-vector space. To proceed, for
i € {0,..., Nd — 1}, we denote by x; € Fi" be the t'-coefficient of f (mod ™) so
that
f=zo+z1t+ ...+ xng_1tN ! (mod EN).
dN—1

. tdN—j Z a,-jti (mod EN) for coefficients
i=0

For 1 < j < n, we also write t"
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a;; € F. It yields:

t"f = (ao1Tan—-1 + - + QonTdN—n)
+ (a11TaN—1 + - + A1pTan—n)t
J’- e
+ [zo + (@an1Tan—1 + - + GnnTan—n)]t"

+ [@aNn—n-1 + (@gN-11TaN-1 F ... adN—Lnde—n)]th_l

Equations (5.7) modulo ¢V is then reformulated by the following systems of
equations, numbered (E1), (E2), ..., (Eqn/n):

System (E;) (coefficients of (5.7) in (1,...,t""1)):

_ngn q
(a01ZaN—1 + ... + GopTaN—n) — €0 = 0" w0 + 2

_gn q
(a11zan—1 + ... + Q1nZaN—n) — €1 = 0" 21 + 2]

_ g a
(@p—1,1TaN-1+ .+ Q1 nTaN—n) — En—1 = 0"Tp_1 + 2} _;

System (FE3) (coefficients of (5.7)) in (t",...,t?"71)):

2o + (an1Tan—1+ ... + QppTan—n) = 0"y + T

_ q
21+ (Ang1,1ZdN—1 + o + Qg1 nTaN—n) = 0" Ty + 2}

_ q
Tn—1+ (@2n—1,1Tan—-1 + ... + Q2n—1 nTiN—n) = 0" Ton_1 + 3, 4

and so on, until the two last systems:

System (Eqn/n—1) (coefficients of (5.7) in (¢t4N—2" . ¢dN=n=1)):

_gn q
TaN—3n + (@dN—2n,1TdN—1 + ... + GaN—2n,nTdN—n) = 0" Tan—2n + ToNn o,

_ g q
TAN—3n+1 T (@dN—2n+1,1CdN-1 + . + QGdN—2n+1,0TdN—n) = 0" TaN—2n+1 + TGN _ont1
d n+

— q
TiN—2n—1 F (@dN—n—1,1TdN-1 + - + QAN —n—1,nTdN-n) = 0" TaN—n—1 + THn_,, 4

System (Eqn/y) (coefficients of (5.7) in (tAN=n L tdN=1):

_gn q
TaN—2n + (AAN—n1TdN—1 F . + QAN nTdN—n) = 0" Tan_—n + T)n_,

—_ pn q
TN —2n+1 + (GdN—n+1,1ZdN-1 + - + QAN —n+1,nTdN-n) = 0" TaN _nt1 + TyN —nt1

_Qn q
TaN—n—1 + (@an—11TaN—1 + .. + QaN—1,nTdN—n) = 0" Tan—1 + TIv_;
There are two situations:

(A) Tan—1,-., Tan—n all have positive valuations. Then, it follows from (E;)
that v(x;) < 0 and that qu(x;) = v(e;). From (Es), v(zi4n) < 0 and
qu(ziyn) = v(x;). By immediate recursion from (Ej), 1 < k < dN/n, we
obtain qu(2itxn) = v(Tiy(k-1)n). Hence, v(g;) = @ (xgN_nyi). As
TagN-n+i € F,T, its valuation is an integer and g™/ divides v(e;). Yet,
this contradicts the maximality of c.
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(B)

Therefore, at least one of xgn_1, ..., Lqn_n has negative valuation. Let
zgn—j, for some j € {1,...,n}, be the one with the smallest (negative)
valuation. From (Egn/y), we obtain v(zqn_—pn—j) < 0 and v(zan—n—j) =
qu(zan—j). From (Egn/p—1), we have v(2gn —2n—j) < 0and v(2gn—2n—j) =
qu(zgn—n—j;). Going backward in recursion, we obtain v(Tqn_gn—;) =
qu(TgN—(k—1)n—;) SO that v(e;) = qu/”v(de_j) which, once again, con-
tradicts the maximality of ¢ as v(zqn—;) is an integer.

We conclude that e(t) € O,[t], as desired. Then, the theorem follows from
Proposition O

Remark 5.19. We believe the general case of A(n) for n > 0 would follows from
a similar argument, but the computations are too involved to be gently written.
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