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Abstract

The deepest arithmetic invariants attached to an algebraic variety defined over
a number field F are conjecturally captured by the integral part of its motivic
cohomology. There are essentially two ways of defining it when X is a smooth
projective variety: one is via the K-theory of a regular model, the other is
through its `-adic realization. Both approaches are conjectured to coincide.

This paper initiates the study of motivic cohomology for global fields of
positive characteristic, hereafter named A-motivic cohomology, where classical
mixed motives are replaced by mixed Anderson A-motives. Our main objective
is to set the definitions of the model version and the `-adic version of the integral
part of A-motivic cohomology, using Gardeyn’s notion of maximal models of A-
motives as the analogue of regular models of varieties. Our main result states
that the model version is contained in the `-adic version. As opposed to what
is expected in the number field setting, we show that the two approaches do not
match in general.

We conclude this work by introducing the submodule of regulated extensions
of mixed Anderson A-motives, for which we expect the two approaches to match,
and solve some particular cases of this expectation.
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1 Introduction

1.1 The number field picture
The idea of mixed motives and motivic cohomology has been gradually formu-
lated by Deligne, Beilinson and Lichtenbaum and aims to extend Grothendieck’s
philosophy of pure motives. Before discussing the function fields side, subject of
the paper, let us first present the classical setting to derive some motivations.

The theory, mostly conjectural, starts with a number field F . The hypothet-
ical landscape portrays a Q-linear Tannakian categoryMMF of mixed motives
over F , equipped with several realization functors havingMMF as source (see
[Del, §1]). Among them, the `-adic realization functor V`, for a prime number `,
takes values in the category of continuous `-adic representations of the absolute
Galois group GF of F .

It is expected that reasonable cohomology theories factor through the cat-
egory MMF . For instance, the `-adic realization should recover the étale co-
homology of algebraic varieties with coefficients in Q` in the following way: for
all integer i, one foresees the existence of a functor hi, from the category of
algebraic varieties over F toMMF , making the following diagram of categories
commute:

{Varieties/F} MMF

RepQ`(GF )

hi

X 7→Hiét(X×FF
s,Q`)

V`

According to Deligne [Del, §1.3], the category MMF should admit a weight
filtration in the sense of Jannsen [Jan, Def 6.3], which would coincide with the
classical weight filtration of varieties. The weights of a mixed motive M would
then be defined as the breaks of its weight filtration.

From the Tannakian formalism,MMF admits a tensor operation, extending
the fiber product on varieties, and we fix 1 a neutral object. Let M be a mixed
motive over F . According to Beilinson [Bei1, §0.3] (see also [Andr, Def 17.2.11]),
the motivic cohomology of M is defined as the complex

RHomMMF
(1,M)

in the derived category of Q-vector spaces. Its ith cohomology is the Q-vector
space ExtiMMF

(1,M), the ith Yoneda extension space of 1 by M in MMF .
We quote from [Sch, §2] and [Del, §1.3] respectively:

Conjecture. We expect that:

(C1) for i 6∈ {0, 1}, ExtiMMF
(1,M) = 0,

(C2) if the weights of M are non-negative, Ext1
MMF

(1,M) = 0.

We focus on the first Yoneda extension Q-vector space Ext1
MMF

(1,M). A
subspace thereof of fundamental importance is the space of extensions having
everywhere good reduction. Let us first describe its local version.

Let Fp be the local field of F at a finite place p, and let Mp be a mixed
motive over Fp. To define the p-integral part of the motivic cohomology of Mp,
we encounter two approaches, which are believed to meet.
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Via the `-adic realization: Let Gp be the absolute Galois group of Fp, and
let Ip be its inertia subgroup. Given a prime number ` from which p is not above,
one predicts that the `-adic realization V` is an exact functor. This allows to
construct a Q-linear morphism, called the `-adic realization map of Mp,

rM,`,p : Ext1
MMFp

(1p,Mp) −→ H1(Gp, V`Mp)

which maps the class of an exact sequence [Ep] : 0 → Mp → Ep → 1p → 0
in MMFp

to the class of the continuous cocycle c : Gp → V`Mp associated to
the class of the exact sequence [V`Ep] : 0 → V`Mp → V`Ep → V`1p → 0 in
RepQ`(Gp).

Following Scholl [Sch], we define the p-integral part of the motivic coho-
mology as follows. It is said that [Ep] ∈ Ext1

MMFp
(1,M) has good reduc-

tion if rM,`,p([Ep]) splits as a representation of Ip (that is, [V`Ep] is zero in
H1(Ip, V`Mp)). We define Ext1

good(1,Mp)` as the subspace of Ext1
MMF

(1,Mp)
consisting of extensions having good reduction. In [Sch, §2 Rmk], Scholl conjec-
tures:

Conjecture. We expect that:

(C3) The property that [Ep] has good reduction is independent of the prime `.

Via the K-theory of regular models: In the case where Mp = hi−1(X)(n)
for a smooth projective variety X over Fp and two integers n, i ≥ 1, there is
another conjectural way of defining the p-integral part of the motivic cohomology
of Mp. Following Beilinson [Bei1], there should be an isomorphism (see loc. cit.
for details):

Ext1
MMFp

(1,Mp)
∼−→ (K2n−i(X)⊗Z Q)(n). (1.1)

Assume that X has a regular model X over Op (i.e. X is regular over SpecOp

and X ×SpecOp
SpecFp = X). Then, we define Ext1

Op
(1,Mp) to be the inverse

image of

image
(

(K2n−i(X )⊗Z Q)(n) −→ (K2n−i(X)⊗Z Q)(n)
)
,

which does not depend on X [Bei1, Lem. 8.3.1], through (1.1). The next
conjecture supersedes (C3):

Conjecture. We expect that

(C4) For any prime ` from which p is not above, Ext1
Op

(1,Mp) = Ext1
good(1,Mp)`.

The global version of the integral part of the motivic cohomology of a mixed
motive M over F is recovered as follows. The motive M induces a motive
Mp over Fp by localization. Admitting (C3), we say that an extension [E] ∈
Ext1

MMF
(1,M) has everywhere good reduction if, for all p, [Ep] belongs to

Ext1
MMFp

(1p,Mp)` for some prime `. We denote by Ext1
good(1,M) the subspace

of Ext1
MMF

(1,M) consisting of extensions having everywhere good reduction.
Similarly, in the case where M = hi−1(X)(n) for a smooth projective variety

X over F , we let Ext1
OF (1,M) be the subspace of extensions [E] such that [Ep]

belongs to Ext1
Op

(1p,Mp) for all finite places p of F . In virtue of the previous
conjectures, we should have:

Ext1
good(1,M) = Ext1

OF (1,M) ∼= (K2n−i(X )⊗Z Q)(n),

where X is a regular model of X over OF . The above space is at the heart of
Beilinson’s conjectures, which begin by the next expectation:

Conjecture. We expect that

(C5) The space Ext1
OF (1,M) has finite dimension over Q.
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1.2 The function field picture
Despite its intrisic obscurities, Motivic cohomology remains a difficult subject
also because its definition sits on a completely conjectural framework. The
present paper grew out as an attempt to understand the analogous picture in
function fields arithmetic. There, the theory looks more promising using Ander-
son A-motives, instead of classical motives, whose definition is well-established.
This parallele has been drawn by many authors and led to celebrated achieve-
ments. The analogue of the Tate conjecture [Tag] [Tam], of Grothendieck’s
periods conjecture [Pap] and of the Hodge conjecture [HarJu] are now theorems
on the function fields side. The recent volume [tMo] records some of these feats.
Counterparts of Motivic cohomology in function fields arithmetic have not been
studied yet, although recent works of Taelman [Tae2] [Tae4] and Mornev [Mo1]
strongly suggest the pertinence of such a project.

The setting

Let F be a finite field, q its number of elements, and let (C,OC) be a geometri-
cally irreducible smooth projective curve over F. The curve C is determined up
to F-isomorphism by its function field K := F(C). Let ∞ be a closed point on
C with associated valuation v∞ and consider the ring

A := Γ(C \ {∞},OC)

whose fraction field is K. We let K∞ be its completion with respect to v∞, and
let Ks

∞ be the separable closure of K∞. We let G∞ = Gal(Ks
∞|K∞) be the

absolute Galois group of K∞. The analogy with number fields that should guide
us in this text is:

Number fields: Z ⊂ Q ⊂ R ⊂ C Gal(C|R)
o o o o o

Function fields: A ⊂ K ⊂ K∞ ⊂ Ks
∞ G∞

Let F be a finite extension of K (that is, a global function field over K) and let
OF denote the integral closure of A in F .

The analogy with number fields disappears when one considers the tensor
product A ⊗ F , which is at the heart of the definition of Anderson A-motives
(unlabeled fiber and tensor products are over F). We consider the ring endo-
morphism τ of A⊗F which acts as the identity on A and as the q-Frobenius on
F . A⊗F is a Dedekind domain, and we let j be its maximal ideal generated by
the set {a⊗ 1− 1⊗ a|a ∈ A}.

Following [And], an Anderson A-motive M over F is a pair (M, τM ) where
M designates a finite locally free A ⊗ F -module of constant rank, and where
τM : (τ∗M)[j−1]→M [j−1] is an (A⊗F )[j−1]-linear isomorphism (see Definition
2.1). We let MF denote the category of Anderson A-motives with obvious
morphisms. MF is known to be A-linear, rigid monoidal, and is exact in the
sense of Quillen but not abelian ([HarJu, §2.3] or Section 2.1). Let 1 inMF be
a neutral object for the tensor operation.

Extensions of A-motives

The category MF , or rather full subcategories of it, will play the role of the
category of Grothendieck’s motives. Guided by this, the next theorem already
describes the analogue of motivic cohomology in an explicit manner, and is the
starting point of our research (see Theorem 2.13). Let M be an A-motive over
F .
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Theorem A. The complex
[
M

id−τM−→ M [j−1]
]
of A-modules placed in degree 0

and 1 represents the complex RHomMF
(1,M).

We immediately deduce that ExtiMF
(1,M) is zero for i > 1. For i = 1, one

obtains a surjective morphism

ι : M [j−1] −→ Ext1
MF

(1,M) (1.2)

whose kernel is the A-module (id−τM )(M). (1.2) is explicitly described by
mapping a representative m ∈ M [j−1] to the class of the extension of 1 by M
given by [M ⊕ (A⊗ F ), ( τM m

0 1 )] (Section 2.2).
Remark. Extension groups in the full subcategory ofMF consisting of effective
A-motives (see Definition 2.3) were already determined in the existing literature
(see e.g. [Tae3], [Tae4], [PapRa]). The novelty of Theorem A is to consider the
whole categoryMF .

To pursue the analogy with number fields, we now present the notion of
mixedness and weights for AndersonA-motives. In the caseA = F[t] or deg(∞) =
1 over a complete algebraically closed base field, the corresponding definitions
were carried out respectively by Taelman [Tae1] and Hartl-Juschka [HarJu]. We
completed this picture in the most general way (over any A-field and without
any restriction on deg(∞)).

To an Anderson A-motive M over F , we attach an isocrystal I∞(M) over F
at∞ (in the sense of [Mor2]). The term isocrystal is borrowed from p-adic Hodge
theory, where the function field setting allows to apply the non-archimedean
theory at the infinite point ∞ of C as well. In Section 3, we prove that the
isocrystal I∞(M) carries a uniquely determined slope filtration (see Definition
3.8):

0 = I∞(M)µ0 ( I∞(M)µ1 ( I∞(M)µ2 ( · · · ( I∞(M)µs = I∞(M) (1.3)

for uniquely determined rational numbers µ1 < ... < µs called the weights of
M . We say that M is mixed if there exists an increasing filtration (WµiM)1≤i≤s
of M by subobjects in MF whose associated filtration (I∞(WµiM))1≤i≤s of
I∞(M) by subisocrystals matches with (1.3) (Definition 3.20). We let MMF

be the full subcategory of MF whose objects are mixed Anderson A-motives
over F (Section 3). The main results of Section 3 are condensed in:

Theorem B. Let M be an object of MMF . If all the weights of M are non-
positive, then every extension of 1 by M is mixed, that is:

Ext1
MMF

(1,M) = Ext1
MF

(1,M).

If all the weights of M are positive, then an extension of 1 by M is mixed if and
only if its class is torsion, that is:

Ext1
MMF

(1,M) = Ext1
MF

(1,M)tors.

Furthermore, for i > 1, ExtiMMF
(1,M) is a torsion module for all M .

Remark. Although the category of classical mixed motives is expected to be
Q-linear, the category MMF of mixed Anderson A-motives over F is only
A-linear. To obtain a K-linear category, it might be convenient to introduce
MMiso

F whose objects are the ones ofMMF and whose Hom-spaces are given
by HomMMF

(−,−) ⊗A K. In the literature, MMiso
F is called the category of

mixed A-motives over F up to isogenies [Har3], [HarJu]. Theorem B implies
that ExtiMMiso

F
(1,M) = 0 for i > 1 and Ext1

MMiso
F

(1,M) = 0 if the weights of
M are positive. This reveals that the analogue of the number fields conjecture
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(C1) and (C2) are true for function fields. Note, however, that contrary to
what is expected for number fields, the full subcategory of pure A-motives is not
semi-simple. Hence, we cannot expect any 1-fold Yoneda extension of two pure
A-motives to split, even if they have the same weight.

Integral part: the `-adic version

Let p be a finite place of F (i.e. not above ∞), Fp the associated local field,
F sp a separable closure and Gp = Gal(F sp |Fp) the absolute Galois group of Fp

equipped with the profinite topology. Given a maximal ideal ` in A from which
p is not above, there is an `-adic realization functor fromMFp

to the category
of continuous O`-linear representations of Gp. For Mp = (Mp, τM ) an object of
MFp

, it is given by the O`-module

T`Mp = lim←−
n

{m ∈ (Mp ⊗Fp
F sp )/`n(Mp ⊗Fp

F sp ) | m = τM (τ∗m)}

where Gp acts compatibly on the right of the tensorMp⊗Fp
F sp (Definition 2.16).

We prove in Corollary 2.20 that T` is exact.

This paves the way for introducing extensions with good reduction, as Scholl
did in the number fields setting. Let Ip ⊂ Gp be the inertia subgroup. We
consider the `-adic realization map restricted to Ip:

rM,`,p : Ext1
MFp

(1p,Mp) −→ H1(Ip, T`Mp) (1.4)

(we refer to Subsection 2.3). Mimicking Scholl’s approach, we say that an ex-
tension [Ep] of 1p by Mp has good reduction if [Ep] lies in the kernel of (1.4),
and we let Ext1

good(1p,Mp)` denote the kernel of rM,`,p (Definition 2.22). As in
the number field setting, we expect this definition to be independent of `.

Integral part: the model version

Gardeyn in [Gar2] has introduced a notion of maximal models for τ -sheaves.
Inspired by Gardeyn’s work, we developed the notion of maximal integral models
of A-motives (Section 4). They form the function field analogue of Néron models
of abelian varieties, or more generally, of regular models of varieties. Let Op be
the valuation ring of Fp.

Definition (Definition 4.16). Let Mp and M be A-motives over Fp and F
respectively.

1. AnOp-model forMp is a finite sub-A⊗Op-module L ofMp which generates
Mp over Fp, and such that τM (τ∗L) ⊂ L[j−1].

2. An OF -model forM is a finite sub-A⊗OF -module L ofM which generates
M over F , and such that τM (τ∗L) ⊂ L[j−1].

We say that L is maximal if L is not strictly contained in any other models.

As opposed to [Gar2, Def 2.1 & 2.3], we do not ask for an Op-model (resp.
OF -model) to be locally free. We show that this is implicit for maximal ones
using Bourbaki’s flatness criterion (Proposition 4.43). Compared to Gardeyn,
our exposition is therefore simplified and avoids the use of a technical lemma due
to L. Lafforgue [Gar2, §2.2]. Our next result should be compared with [Gar2,
Prop 2.13] (see Propositions 4.41, 4.43 in the text).

Proposition. A maximal Op-model MOp
for Mp (resp. OF -model MO for M)

exists and is unique. It is locally free over A⊗Op (resp. A⊗OF ).
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We let Ext1
Op

(1p,Mp) be the image of MOp
[j−1] through ι (1.2) (Definition

4.46). Our main result (repeated from Theorem 4.48) is the next:

Theorem C. Let Mp be an A-motive over Fp and let ` be a maximal ideal
of A from which p is not above. Then, Ext1

Op
(1p,Mp) is a sub-A-module of

Ext1
good(1p,Mp)`.

Surprisingly enough, we cannot claim equality in general. In Subsection 5.1,
in the simplest case of the neutral A-motive, we construct for some ` and p an
explicit extension in Ext1

good(1p,1p)` which does not belong to Ext1
OF (1p,1p).

In Subsection 4.4, we define the global version of the above. Namely, let M
be an A-motive over F . The A-motive M defines an A-motive Mp over Fp by
extending the base field. We let:

Ext1
OF (1,M)

def
=
⋂
p

{
[E] ∈ Ext1

MF
(1,M) | [Ep] ∈ Ext1

Op
(1p,Mp)

}
where the intersection is indexed over all the finite places of F . Our second main
result (repeated from Theorem 4.49) is the following:

Theorem D. The A-module Ext1
OF (1,M) equals the image ofMOF [j−1] through

ι. In addition, ι induces a natural isomorphism of A-modules:

MO[j−1]

(id−τM )(MO)

∼−→ Ext1
O(1,M).

Regulated A-motives

We are facing two main issues to pursue our analogy: the counterpart of Con-
jecture (C4) does not hold true, and more seriously, neither is the counterpart of
(C5): the A-module Ext1

OF (1,M) is typically not finitely generated. Those facts
suggest that the categoryMF – evenMMF – is too huge to held a convincing
motivic cohomology theory. We end this text by presenting a conjectural picture
aiming to answer the analogue of (C4) and (C5).

Definition (c.f. 5.2 for details). Let 0 → M → E → N → 0 be an exact
sequence of A-motives over Fp. We say that [E] is regulated if the Hodge polygon
of the Hodge-Pink structure attached to M ⊕N matches the one of E (see [Pin,
§6]). We denote by Ext1,reg the submodule of regulated extensions.

We took inspiration for this definition from the work of Pink, more precisely
from his notion of Hodge additivity [Pin, §. 6]. The above definition is motivated
by the observation that Ext1

OF (1,M) is non finitely generated whenever M is
non zero. One reason, consequence of Theorem D, stems from the fact that
elements of MOF [j−1] – hence the resulting extensions of 1 by M obtained from
ι – might have an arbitrary large pole at j. The notion of regulated extensions
exactly prevents this to happen: in Corollary 5.10, we prove that ι induces an
isomorphism of A-modules:

M + τM (τ∗M)

(id−τM )(M)

∼−→ Ext1,reg
MFp

(1,M).

We strongly expect the following to hold for a large class of A-motives Mp:

Hope. Let ` be a maximal ideal of A from which p is not above. Then,

Ext1,reg
Op

(1p,Mp) = Ext1,reg
good (1p,Mp)`.

In particular, the module Ext1,reg
good (1p,Mp)` would not depend on `.

7
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We conclude this text by solving some particular cases of the above Hope
(Subsection 5.3). The general case, however, remains open.

While Ext1,reg
OF (1,M) is still not finitely generated over A in general, a version

of Conjecture (C5) involving the infinite places holds. This will be the subject
of another work.

Acknowledgment: This text consists of the first half of the author’s PhD
thesis. To that extent, I wish to reiterate my profound gratitude to Professors
Gebhard Böckle and Urs Hartl, and my advisor Professor Federico Pellarin. I am
also grateful to Max Planck Institute for Mathematics in Bonn for its hospitality
and financial support.

1.3 Plan of the paper
The paper is organized as follow.

In the begining of Section 2, Subsection 2.1, we review the usual set up (nota-
tions, definitions, basic properties) of A-motives over an arbitrary A-algebra or
field. We follow [HarJu] and [Har3] as a guideline, though the former reference is
concerned with the particular choice of a closed point ∞ of degree one and over
a complete algebraically closed field. Most of the results on A-motives extend
without changes to our larger setting. In Subsection 2.2, A-Motivic cohomology
in MF is introduced. We describe the extension modules in MF and obtain
Theorem A as Theorem 2.13 in the text. In Subsection 2.3, we recall the defi-
nition and main properties of the `-adic realization functor for A-motives, and
introduce extensions having good reduction with respect to ` in Definition 2.22.

Section 3 is concerned with mixed A-motives. In the beginning of Subsection
3.1 we recall, and add some new material, to the theory of function fields isocrys-
tals in the steps of [Mor2]. The main ingredient, used later on in Subsection 3.1
to define the category of mixed A-motives, is the existence and uniqueness of
the slope filtration (extending [Har2, Prop. 1.5.10] to general coefficient rings
A). We focus on extension modules in the category MMF in Subsection 3.2
where we deduce Theorem B from Propositions 3.31, 3.33 and Theorem 3.37.

In Section 4, we develop the notion of maximal integral models of A-motives
over local and global function fields. It splits into four subsections. In Subsec-
tion 4.1, we present integral models of Frobenius spaces over local function fields.
The theory is much easier than the one for A-motives, introduced over a local
function field in Subsection 4.2 and over a global function field in Subsection 4.3.
Although our definition of integral model is inspired by Gardeyn’s work in the
context of τ -sheaves [Gar2], our presentation is simpler as we removed the locally
free assumption. That maximal integral models are locally free is automatic, as
we show in Propositions 4.26 and 4.43. The chief aim of this section, however, is
Subsection 4.4 where we use the results of the previous ones to prove Theorems
C and D (respectively Theorems 4.48 and 4.49 in the text).

In our last Section 5, we introduce the notion of regulated extensions of A-
motives with an eye toward understanding the lack of equality in Theorem C,
highlighted in Subsection 5.1. We recall the definitions of Hodge-Pink structures
and Hodge polygon, as introduced in [Pin], in Subsection 5.2. Those are used to
define regulated extensions in Definition 5.7. We conclude this text by Subsection
5.3, where we present a general hope that Ext1,reg

Op
(1p,Mp) and Ext1,reg

good(1p,Mp)`
match. We then prove some particular cases of this expectation, namely when

8
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M is effective, pure of weight 0 and has good reduction (Theorem 5.13), or when
M is a p-tensor power of Carlitz’s twist A(1) (Theorem 5.17).

2 Anderson A-motives and their extension mod-
ules

Let F be a finite field of cardinality q. By convention, throughout this text
unlabeled tensor products and fiber products are over F. Let (C,OC) be a
geometrically irreducible smooth projective curve over F, and fix a closed point
∞ on C. Let A := Γ(C \ {∞},OC) be the ring of regular functions on C \ {∞}
and let K be the function field of C.

2.1 Definition of A-motives
This subsection is devoted to define and recall the main properties of Anderson
A-motives. We begin with a paragraph of notations.

Let R be a commutative F-algebra and let κ : A → R be an F-algebra
morphism. R will be referred to as the base algebra and κ as the characteristic
morphism. The kernel of κ is called the characteristic of (R, κ). We consider
the ideal j = jκ of A ⊗ R generated by the set {a ⊗ 1 − 1 ⊗ κ(a)|a ∈ A}; j is
equivalently defined as the kernel of A ⊗ R → R, a ⊗ f 7→ κ(a)f . The ideal j
is maximal if and only if R is a field, and is a prime ideal if and only if R is a
domain.

Let Quot(A⊗R) be the localization of A⊗R at its non-zero-divisors (if A⊗R
is an integral domain, Quot(A⊗R) is the field of fractions of A⊗R).

Let M be an A⊗ R-module. For n ∈ Z, we denote j−nM the submodule of
M⊗A⊗RQuot(A⊗R) consisting of elementsm for which (a⊗1−1⊗κ(a))nm ∈M
for all a ∈ A \ F. We then set

M [j−1] :=
⋃
n≥0

j−nM.

Let τ : A⊗R→ A⊗R be the A-linear morphism given by a⊗ r 7→ a⊗ rq on
elementary tensors. Let τ∗M denotes the pull-back of M by τ ([Bou, A.II.§5]).
That is, τ∗M is the A⊗R-module

(A⊗R)⊗τ,A⊗RM

where the subscript τ signifies that the relation (a⊗τ bm) = (aτ(b)⊗τ m) holds
for a, b ∈ A⊗R, and where the A⊗R-module structure on τ∗M corresponds to
b · (a ⊗τ m) := (ba ⊗τ m). We let 1 : τ∗(A ⊗ R) → A ⊗ R be the A ⊗ R-linear
morphism which maps (a⊗ r)⊗τ (b⊗ s) ∈ τ∗(A⊗R) := (A⊗R)τ,A⊗R(A⊗R)
to ab⊗ rsq ∈ A⊗R.

The next definition takes its roots in the work of Anderson [And], though
this version is borrowed from [Har3, Def. 2.1]:

Definition 2.1. An Anderson A-motive M (over R) is a pair (M, τM ) where
M is a locally free A ⊗ R-module of finite constant rank and where τM :
(τ∗M)[j−1]→M [j−1] is an isomorphism of (A⊗R)[j−1]-modules.
In all the following, we shall more simply write A-motive instead of Anderson
A-motive. The rank of M is the (constant) rank of M over A⊗R.
A morphism (M, τM )→ (N, τN ) of A-motives (over R) is an A⊗R-linear mor-
phism f : M → N such that f ◦ τM = τN ◦ τ∗f . We let MR be the A-linear
category of A-motives over R.

9
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Remark 2.2. A-motives as in Definition 2.1 are called abelian A-motives by
several authors (see e.g. [BroPa]). The word abelian refers to the assumption
that the underlying A⊗R-module is finite locally free. Dropping this assumption
is not a good strategy in our work, as too many analogies with number fields
motives would fail to hold.

Definition 2.3. An A-motive M = (M, τM ) (over R) is called effective if
τM (τ∗M) ⊂ M . We let Meff

R be the full subcategory of MR whose objects
are effective A-motives.

Let 1 be the unit A-motive over R defined as (A ⊗ R,1). The biproduct of
two A-motives M and N , denoted M ⊕N , is defined to be the A-motive whose
underlying A ⊗ R-module is M ⊕N and whose τ -linear morphism is τM ⊕ τN .
Their tensor product, denoted M ⊗N , is defined to be (M ⊗A⊗R N, τM ⊗ τN ).
The tensor operation admits 1 as a neutral object. The dual of M is defined to
be the A-motive whose underlying A⊗R-module is M∨ := HomA⊗R(M,A⊗R)
and where τM∨ is defined as

τM∨ : (τ∗M∨)[j−1] = (τ∗M)∨[j−1]
∼−→M∨[j−1], h 7−→ h ◦ τ−1

M

(we refer to [HarJu, §.2.3] for more details). Given S an R-algebra, there is
a base-change functor MR → MS mapping M = (M, τM ) to MS := (M ⊗R
S, τM ⊗R idS). The restriction functor ResS/R :MS →MR maps an A-motive
M over S to M seen as an A-motive over R. Given two A-motives M and N
over R and S respectively, we have

HomMR
(M,ResS/RN) = HomMS

(MS , N).

In other words, the base-change functor is left-adjoint to the restriction functor.

Example 2.4 (Carlitz’s motive). Let C = P1
F be the projective line over F

and let ∞ be the closed point of coordinates [0 : 1]. If t is any element in
Γ(P1

F \ {∞},OP1) whose order of vanishing at ∞ is 1, we have an identification
A = F[t]. For an F-algebra R, the tensor product A⊗ R is identified with R[t].
The morphism τ acts on p(t) ∈ R[t] by raising its coefficients to the qth-power.
It is rather common to denote by p(t)(1) the polynomial τ(p(t)). Let κ : A→ R
be an injective F-algebra morphism and let θ = κ(t). The ideal j ⊂ R[t] is
principal, generated by (t− θ).

The Carlitz F[t]-motive C over R is defined by the couple (R[t], τC) where τC
maps τ∗p(t) to (t− θ)p(t)(1). Its nth tensor power Cn := C⊗n is isomorphic to
the F[t]-motive whose underlying module is R[t] and where τCn maps τ∗p(t) to
(t− θ)np(t)(1). We let A(n) := C−n = (Cn)∨.

For A = F[t], A(1) plays the role of the number fields’ Tate motive Z(1) and,
more generally, A(n) plays the role of Z(n).

The categoryMR of A-motives over R is generally not abelian, even if R = F
is a field. This comes from the fact that a morphism in MF might not admit
a cokernel. However, there is a notion of exact sequences in the category MR

which we borrow from [HarJu, Rmk. 2.3.5(b)]:

Definition 2.5. We say that a sequence 0 → M ′ → M → M ′′ → 0 in MR is
exact if its underlying sequence of A⊗R-modules is exact.

The next proposition appears and is discussed in [HarJu, Rmk. 2.3.5(b)] and
will allow us to consider extension modules (Subsection 3.2). Although stated in
the case where R is a particular A-algebra and deg(∞) = 1, it extends without
changes to our setting:

10
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Proposition 2.6. The categoryMR together with the notion of exact sequences
as in Definition 2.5 is exact in the sense of Quillen [Qui1, §2].

To remedy to the non-abelian feature, we shall introduce next the category
Miso

R of A-motives up to isogeny (over R) (see Definition 2.9), which is abelian
when R = F is a field. We first discuss the notion of saturation.

Definition 2.7. Let M = (M, τM ) be an Anderson A-motive over R. A submo-
tive of M is an A-motive N = (N, τN ) such that N ⊂M and τN = τM |τ∗N [j−1].

We set N sat to be the submotive of M whose underlying A⊗R-module is

N sat := {n ∈M | ∃a ∈ A⊗R, an ∈ N}

and call it the saturation of N in M . We say that N is saturated in M if
N = N sat.

Following [Har3, Def. 5.5, Thm. 5.12], we have the next:

Definition 2.8. A morphism f : M → N in MR is an isogeny if one of the
following equivalent conditions is satisfied.

(a) f is injective and coker(f : M → N) is a finite locally free R-module,

(b) M and N have the same rank and coker f is finite locally free over R,

(c) M and N have the same rank and f is injective,

(d) there exists 0 6= a ∈ A such that f induces an isomorphism of (A⊗R)[a−1]-
modules M [a−1]

∼→ N [a−1],

(e) there exists 0 6= a ∈ A and g : N →M inMR such that f ◦ g = a idN and
g ◦ f = a idM .

If an isogeny between M and N exists, M and N are said to beisogenous.

As a consequence of those equivalent definitions, a submotive of an A-motive
M is isogenous to its saturation in M . This motivates the definition of the
category of A-motives up to isogeny (see [HarJu, Def. 2.3.1]).

Definition 2.9. LetMiso
R be the K-linear category whose objects are those of

MR and where the hom-sets of two objects M and N is given by the K-vector
space

HomMiso
R

(M,N) := HomMR
(M,N)⊗A K.

We call the objects ofMiso
R the A-motives over R up to isogeny.

An isogeny in MR then becomes an isomorphism in Miso
R . According to

[HarJu, Prop. 2.3.4], the categoryMiso
F is abelian.

2.2 Extension modules in MR

In this subsection, we are concerned with the computation of extension modules
in the categoryMF . Theorem A of the introduction is proved below (Theorem
2.13).

Let R be an F-algebra and let M and N be two A-motives over R. The
morphisms from N to M in MR are precisely the A ⊗ R-linear map of the
underlying modules f : N → M such that τM ◦ τ∗f = f ◦ τN . The module of
0-fold extensions is described by the homomorphisms:

Ext0
MR

(N,M) = HomMR
(N,M) = {f ∈ HomA⊗R(N,M) | τM ◦ τ∗f = f ◦ τN}.

11
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As we saw in Proposition 2.6, MR possesses exact sequences in the sense of
Quillen which turns it into an A-linear exact category. It allows us to consider
higher Yoneda extension A-modules ExtiMR

(N,M) (for i ≥ 0) of two A-motives
M and N . The next proposition computes the first extension group.

Proposition 2.10. Let M and N be A-motives over R. There is a surjective
morphism of A-modules, functorial in both N and M ,

HomA⊗R(τ∗N,M)[j−1] � Ext1
MR

(N,M)

whose kernel is {f ◦ τN − τM ◦ τ∗f | f ∈ HomA⊗R(N,M)}. It is given by map-
ping a morphism u ∈ HomA⊗R(τ∗N,M)[j−1] to the class of the extension [M ⊕
N, (

τM u
0 τN )] in Ext1

MR
(N,M).

Proof. Let [E] : 0 → M
ι→ E

π→ N → 0 be an exact sequence in MR, that is
an exact sequence of the underlying A ⊗ R-modules with commuting τ -action.
Because N is a projective module, there exists s : N → E a section of the
underlying short exact sequence ofA⊗R-modules. We let ξ := ι⊕s : M⊕N → E.
We have an equivalence:

0 M E N 0

0 M (M ⊕N, ξ−1 ◦ τE ◦ ξ) N 0

ι π

id ξ id

Because ξ−1 ◦ τM ◦ ξ is an isomorphism from τ∗M [j−1]⊕ τ∗N [j−1] to M [j−1]⊕
N [j−1] which restricts to τM on the left and to τN on the right, there exists
u ∈ HomA⊗R(τ∗N [j−1],M [j−1]) = HomA⊗R(τ∗N,M)[j−1] such that ξ−1 ◦ τE ◦
ξ = (

τM u
0 τN ). We have just shown that the map

ι : HomA⊗R(τ∗N,M)[j−1]→ Ext1
MR

(N,M), u 7→ [M ⊕N, ( τM u
0 τN )]

is onto. Note that ι(0) corresponds to the class of the split extension. Further,
ι(u + v) corresponds to the Baer sum of ι(u) and ι(v). In addition, given the
exact sequence [E] and a ∈ A, the pullback of multiplication by a on N and π
gives another extension which defines a · [E]. If [E] = ι(u), it is formal to check
that a · [E] = ι(au). As such, ι is a surjective A-module morphism. To find its
kernel, it suffices to determine whenever ι(u) is equivalent to the split extension.
This happens if and only if there is a commutative diagram inMR of the form

0 M M ⊕N N 0

0 M [M ⊕N, ( τM u
0 τN )] N 0

idM h idN

where h is a morphism inMR. Since the diagram commutes in the category of
A ⊗ R-modules, it follows that h is of the form

(
idM f

0 idN

)
for an A ⊗ R-linear

map f : N →M . Because it is a diagram inMR, it further requires commuting
τ -action, that is:(

τM u
0 τN

)
τ∗
(

idM f
0 idN

)
=

(
idM f

0 idN

)(
τM 0
0 τN

)
.

The above equation amounts to u = f ◦ τN − τM ◦ τ∗f , and hence

ker(ι) = {f ◦ τN − τM ◦ τ∗f | f ∈ HomA⊗R(N,M)} .

This concludes.

12
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Corollary 2.11. Suppose that R is Noetherian. Let N be an A-motive over R
and let f : M → M ′′ be an epimorphism morphism in MR. Then, the induced
map Ext1

MR
(N,M)→ Ext1

MR
(N,M ′′) is onto.

Proof. As R is Noetherian, so is A ⊗ R. Because τ∗N is finite locally-free over
A ⊗ R, it is projective. That f is an epimorphism means that f is a surjective
morphism of the underlying modules. The induced morphism

HomA⊗R(τ∗N,M)[j−1]→ HomA⊗R(τ∗N,M ′′)[j−1]

is therefore surjective, and we conclude by Proposition 2.10.

Let N be an A-motive over R. The functor HomMR
(N,−) from the cate-

goryMR to the category ModA of A-modules is left-exact and therefore right-
derivable. Because MR is an exact category, the higher extensions modules
ExtiMR

(N,M) are computed by the cohomology of RHomMR
(N,M). This im-

plies that, given a short exact sequence inMR

0 −→M ′ −→M −→M ′′ −→ 0,

we derive a long-exact sequence of A-modules:

HomMR
(N,M ′) ↪→ HomMR

(N,M)→ HomMR
(N,M ′′)→ Ext1

MR
(N,M ′)→ ...

We deduce the following from Corollary 2.11.

Proposition 2.12. Suppose that R is Noetherian. The modules ExtiMR
(N,M)

vanish for i > 1. In particular, the cohomology of RHomMR
(N,M) is repre-

sented by the complex of A-modules[
HomA⊗R(N,M)

τ∨N−τM−→ HomA⊗R(τ∗N,M)[j−1]

]
(2.1)

placed in degree 0 and 1.

Proof. Let C be the complex (2.1). We have

Ext0
MR

(N,M) = HomMR
(N,M) = {f ∈ EndA⊗R(M,N) | f ◦ τN = τM ◦ τ∗f}

= ker(τ∨N − τM ) = H0(C).

By Proposition 2.10, Ext1
MR

(N,M) ∼= H1(C) and, by Corollary 2.11, the functor
Ext1

MR
(N,−) is right-exact. It follows that ExtiMR

(N,M) ∼= Hi(C) = 0 for
i ≥ 2 ([PetSt][Lem. A.33]).

Let N be an nonzero A-motive over R. The canonical morphism of A-motives

1N : 1→ N ⊗N∨ = Hom(N,N), a 7−→ a · idN

induces functorial isomorphisms for all i ≥ 0:

ExtiMR
(N,M)

∼−→ ExtiMR
(1,M ⊗N∨). (2.2)

In particular, there is no loss of generality in considering extension modules of
the form ExtiMR

(1,M). From now on, we will be interested mainly in extension
modules of the latter form. We shall restate the main results of this section in
this case (repeated from Theorem A of the introduction in the case of a global
function field).

13
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Theorem 2.13. Suppose that R is Noetherian, and let M be an A-motive over
R. The cohomology of RHomMR

(1,M) is computed by the cohomology of the
complex of A-modules [

M
id−τM−→ M [j−1]

]
placed in degree 0 and 1. Further, there is an A-linear surjective natural mor-
phism

ι : M [j−1] � Ext1
MR

(1,M)

whose kernel is (id−τM )(M), and which is given explicitly by mapping m ∈
M [j−1] to the class of the extension

0→M →
[
M ⊕ (A⊗R),

(
τM m·1
0 1

)]
→ 1→ 0.

Remark 2.14. From HomMiso
R

(−,−) = HomMR
(−,−)⊗AK (c.f. Definition 2.9),

the extension spaces of 1 by M in the K-linear categoryMiso
R are computed by

the complex [
M ⊗A K

id−τM−→ M [j−1]⊗A K
]
.

2.3 Extensions having good reduction
We now introduce the function field analogue of the `-adic realization functor
(Definition 2.16), and show that it is exact (Proposition 2.19). It will allow us
to define extensions with good reduction next (Definition 2.22).

For the rest of this section, let ` be a maximal ideal of A, and denote by
O` the completed local ring of A at `. We let F be a field containing K and
let κ : A → F be the inclusion. Let F s be a separable closure of F and denote
by GF = Gal(F s|F ) the absolute Galois group of F equipped with the profinite
topology. The group GF acts A-linearly on the left-hand side of the tensor
A ⊗ F s, and this action extends by continuity to an O`-linear action of the
algebra

A`(F s) := (A⊗̂F s)` = lim←−
n

(A⊗ F s)/`n(A⊗ F s)

leaving A`(F ) := (A⊗̂F )` invariant. If F` denotes the residue field of O` and π
a uniformizer, we have an identification A`(F ) = (F` ⊗ F )[[π]].

Remark 2.15. In the function field/number field dictionary, the assignment R 7→
A(R) is akin to the Witt-vector construction R 7→W (R) (e.g. [Har1, §1.1]). In
this analogy, R 7→ B(R) would be akin to R 7→W (R)[p−1].

Let M = (M, τM ) be an A-motive over F of rank r. Let MF s = (MF s , τM )
be the A-motive over F s obtained from M by base-change. GF acts O`-linearly
on:

(̂MF s)` := lim←−
n

(M ⊗F F s)/`n(M ⊗F F s) = M ⊗A⊗F A`(F s)

and leaves the submodule M̂` = M ⊗A⊗F A`(F ) invariant. Following [HarJu,
§2.3.5], we define:

Definition 2.16. The `-adic realization T`M of M consists of the O`-module

T`M :=
{
m ∈ (̂MF s)` | m = τM (τ∗m)

}
together with the compatible action of GF it inherits as a submodule of (̂MF s)`.

Remark 2.17. In [Mor2], Mornev extended this construction to the situation
where ` is the closed point ∞.

14
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The next lemma is well-known in the case of τ -sheaves (e.g. [TagWa, Prop.6.1]).

Lemma 2.18. The map T`M ⊗O` A`(F s) → (̂MF s)`, ω ⊗ f 7→ ω · f is an
isomorphism of A`(F s)-modules. In particular, the O`-module T`M is free of
rank r and the action of GF on T`M is continuous.

Proof. Let n ≥ 1. In the ring A⊗F , the ideals `n and j are coprime. Hence, the
following composition of A⊗ F -linear map is a well-defined isomorphism:

ϕn : τ∗(M/`nM) ∼=
(τ∗M)

`n(τ∗M)
∼=

(τ∗M)[j−1]

`n(τ∗M)[j−1]

τM−→ M [j−1]

`nM [j−1]
∼= M/`nM.

The data of ϕn induces a semi-simple q-linear map1 (in the sense of [Kat1, §1])
on the finite dimensional F s-vector space:

(M ⊗F F s)/`n(M ⊗F F s) = (̂MF s)`/`
n(̂MF s)`.

By [Kat1, Prop. 1.1], the multiplication map

{m ∈ (̂MF s)`/`
n(̂MF s)` | τM (τ∗m) = m} ⊗F F

s → (̂MF s)`/`
n(̂MF s)` (2.3)

is an isomorphism. Taking the inverse limit of (2.3) over all n yields the desired
isomorphism.

As (̂MF s)` is free of rank r overA`(F s), the same is true for (̂MF s)`/`
n(̂MF s)`

over (A/`n)⊗ F s. The isomorphism (2.3) implies that the A/`n-module

[(̂MF s)`/`
n(̂MF s)`]

τM=1 := {m ∈ (̂MF s)` | τM (τ∗m) = m}

is free of rank r over A/`n. Their projective limit T`M is thus a free O`-module
of rank r.

By definition, the action of GF on T`M is continuous if, and only if, the
induced action of GF on T`M/`nT`M factors through a finite quotient for all n.
Let t = {t1, ..., ts} be a basis of the finite dimensional F -vector space M̂`/`

nM̂`.
Let FM be the matrix of τM written in the basis τ∗t and t. Let ω = {ω1, ..., ωs}
be a basis of T`M/`nT`M over F. By (2.3), ω is a basis of (̂MF s)`/`

n(̂MF s)`
over F s, and we let wij ∈ F s be the coefficients of ω expressed in t, that is, for
i ∈ {1, ..., s}, ωi =

∑
wijtj . We let En denote the Galois closure of the finite

separable extension F (wij |(i, j) ∈ {1, ..., s}2) of F in F s. Then,

T`M/`nT`M = {m ∈ (M ⊗F En)/`n(M ⊗F En) | τM (τ∗m) = m}.

That is, the action of GF factors through Gal(En|F ) = GF /Gal(F s|En), as
desired.

Proposition 2.19. The following sequence of O`[GF ]-modules is exact

0→ T`M −→ (̂MF s)`
id−τM−→ (̂MF s)` −→ 0.

Proof. Everything is clear but the surjectivity of id−τM . Let π be a uniformizer
of O` and let F` be its residue field. Let f =

∑
n≥0 anπ

n be a series in A`(F s) =
(F`⊗F s)[[π]]. Let bn ∈ F`⊗F s be such that [idF` ⊗(id−Frobq)](bn) = an (which
exists as F s is separably closed), and let g be the series

∑
n≥0 bnπ

n in A`(F s).
For ω ∈ T`M , we have

(id−τM ) (ω · g) = ω · f.

It follows that any element in (̂MF s)` = M ⊗A⊗F A`(F s) of the form ω · f is in
the image of id−τM . By the first part of Lemma 2.18, those elements generates
(̂MF s)`. We conclude that id−τM is surjective.

1For k a field containing F and V a k-vector space, an F-linear endomorphism f of V is
q-linear if f(rv) = rqf(v) for all r ∈ k and v ∈ V .
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We obtain the following:

Corollary 2.20. The functor M 7→ T`M , from MF to the category of contin-
uous O`-linear GF -representations, is exact.

Proof. Let S : 0 → M ′ → M → M ′′ → 0 be an exact sequence in MF . The
underlying sequence of A⊗F -modules is exact, and because A`(F s) is flat over
A⊗ F , the sequence of A`(F s)-modules (̂SF s)` is exact. In particular, the next
commutative diagram of O`-modules has exact rows:

0 (̂M ′F s)` (̂MF s)` (̂M ′′F s)` 0

0 (̂M ′F s)` (̂MF s)` (̂M ′′F s)` 0

id−τM′ id−τM id−τM′′

and the Snake Lemma together with Proposition 2.19 yields that T`S is exact.

Let M be an A-motive over F . From Corollary 2.20, the functor T` induces
an A-linear morphism:

Ext1
MF

(1,M) −→ H1(GF , T`M) (2.4)

into the first continuous cohomology group of GF with values in T`M . The next
paragraph is devoted to the explicit determination of (2.4).

Let [E] : 0→M → E → 1→ 0 be a class in Ext1
MF

(1,M) of the form ι(m)
for some m ∈ M [j−1] (Theorem 2.13). The `-adic realization T`E of E is the
O`[GF ]-module consisting of solutions ξ⊕ a ∈ (̂MF s)`⊕A`(F s) of the equation(

τM m · 1
0 1

)(
τ∗ξ
τ∗a

)
=

(
ξ
a

)
(see Definition 2.16). The above equality amounts to a ∈ O` and ξ− τM (τ∗ξ) =
am. A splitting of [T`E] as a sequence of O`-modules corresponds to the choice
of a particular solution ξm ∈ (̂MF s)` of ξ − τM (τ∗ξ) = m (whose existence is
provided by Proposition 2.19). We then have

T`M ⊕O`
∼−→ T`E, (ω, a) 7−→ (ω + aξm, a).

It follows that the morphism (2.4) maps [E] to the class of the cocycle (σ 7→
ξσm− ξm), where ξm is any solution in (̂MF s)` of the equation ξ− τM (τ∗ξ) = m.
In other words, we have almost proved:

Proposition 2.21. There is a commutative diagram of A-modules:

Ext1
MF

(1,M) H1(GF , T`M)

M [j−1]

(id−τM )(M)

M̂`

(id−τM )(M̂`)

(2.4)

ι o o

where the right vertical morphism maps the class of f ∈ M̂` to the class of the
cocycle σ 7→ ξ − σξ, ξ begin any solution in (̂MF s)` of f = ξ − τM (τ∗ξ).

16
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Proof. The only remaining fact to check is that the right vertical morphism is an
isomorphism. Applying the functor of GF -invariants to the short exact sequence
of Proposition 2.19, we obtain a long exact sequence of cohomology:

M̂`
id−τM−→ M̂` −→ H1(GF , T`M) −→ H1(GF , (̂MF s)`).

Therefore, it is sufficient to prove that H1(GF , (̂MF s)`) vanishes. We have
(̂MF s)` = M ⊗A⊗F A`(F s), GF acting on the right-hand side of the tensor.
Hence, it is enough to prove that H1(GF ,A`(F s)) vanishes. The latter stems
easily from the identification A`(F s) = (F` ⊗ F s)[[π]].

For the remaining of this section, let us assume that F = Fp is a local
function field with valuation ring Op and maximal ideal p. Let F ur

p be the
maximal unramified extension of Fp in F sp . Let Ip be the inertia subgroup of
Gp = GFp

.

Definition 2.22. Let M be an A-motive over Fp, and let ` be a maximal ideal
in A. We say that an extension [E] of 1 by M has good reduction with respect
to ` if [E] stands in the kernel of Ext1

MF
(1,M)→ H1(Ip, T`M).

From Proposition 2.21 together with the fact that Ip = Gal(F sp |F ur
p ), we

easily derive:

Proposition 2.23. Let m ∈M [j−1]. The following are equivalent:

(a) The extension ι(m) has good reduction with respect to `,

(b) The equation ξ − τM (τ∗ξ) = m admits a solution ξ in ̂(MFur
p

)
`
.

Remark 2.24. If κ(A) ⊂ Op, then Definition 2.22 should presumably be inde-
pendent of `, as long as κ(`)Op = Op. The analogous statement is a conjecture
in the number field setting (c.f. [Sch, §2 Rmk]). So far, I have no clue on how
to prove this statement.

3 Mixed A-motives and their extension modules
We discuss here the notion of mixedness for Anderson A-motives in our setting.
In the A = F[t]-case, the definition of pure t-motives is traced back to the work
of Anderson [And, 1.9], but the definition of mixed t-motives appeared only some
decades later in the work of Taelman [Tae1]. It was extended to more general
coefficients ring A by Hartl and Juschka in [HarJu, §3], under the assumption
that deg(∞) = 1 and that the base field is algebraically closed and complete.
Our presentation deals with the case of general A (that is, without assumption
on deg(∞)) and R = F a field.

3.1 Mixed Anderson A-motives
Isocrystals over a field

In this subsection, we introduce function fields isocrystals following [Mor2]. Our
objective is to prove existence and uniqueness of the slope filtration with pure
subquotients. The general theory has been developed in [Andr], and the results
of interest for us appear in [Har2]. The new account of this subsection is the
adaptation of [Har2, Prop 1.5.10] to our slightly more general setting (see Theo-
rem 3.9). This result will allow us to define mixedness and weights in Subsection
3.1.

17
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We begin with some general notations. Let R be a Noetherian F-algebra,
and let k be a finite field extension of F. Let E be the field of Laurent series over
k in the formal variable π, O the subring of E consisting of power series over k
and m the maximal ideal of O. Explicitly E = k((π)), O = k[[π]] and m = πO.
In the sequel, E will correspond to the local field of (C,OC) at a closed point of
C.

Extending the notation introduced in Subsection 2.3 in the context of the
`-adic realization functor, we denote by A(R) the completion of the ring O⊗R
at its ideal m⊗R, that is

A(R) = lim←−
n

(O ⊗R)/(mn ⊗R)

and we let B(R) be the tensor product E ⊗O A(R). Throughout the previous
identifications, we readily check that A(R) = (k⊗R)[[π]] and B(R) = (k⊗R)((π)).
Since O⊗R is Noetherian, A(R) is flat over O⊗R ([Bou, AC.III.§4,Thm 3(iii)]).
It follows that B(R) is flat over K ⊗R.

Let τ : O ⊗ R → O ⊗ R, be the O-linear map induced by a ⊗ r 7→ a ⊗ rq.
We shall denote by τ also its continuous extension to A(R) or B(R). Similarly,
we denote by 1 the canonical A ⊗ R-linear morphisms τ∗A(R) → A(R) and
τ∗B(R)→ B(R).

For the remaining of this subsection, we assume that R = F is a field.

Definition 3.1. An isocrystal D over F is a pair (D,ϕD) where D is a free
B(F )-module of finite rank and ϕD : τ∗D → D is a B(F )-linear isomorphism.
A morphism (D,ϕD)→ (C,ϕC) of isocrystals is a B(F )-linear morphism of the
underlying modules f : B → C such that f ◦ ϕD = ϕC ◦ τ∗f . We let IF be the
category of isocrystals over F .

Remark 3.2. Pursuing the analogy of Remark 2.15, iscorystals are the analogue
of the eponymous object in p-adic Hodge theory (we refer to [Har1, §3.5]). In
both settings, such objects carry a slope filtration (see Theorem 3.9 for the
function fields one). For number fields, isocrystals are only defined at finite
places, whereas function fields isocrystals are defined regardless of the finiteness
of the place. In the next subsection, we use the slope filtration at ∞ in order to
define mixedness and weight filtrations.

We define the rank rkD of D to be the rank of D over B(F ). If D is nonzero,
let b be a basis of D and let U denote the matrix of ϕ expressed in τ∗b and b.
A different choice of basis b′ leads to a matrix U ′ such that U = τ(P )U ′P−1 for
a certain invertible matrix P with coefficients in B(F ). As such, the valuation of
detU in π is independent of b. We denote it by degD and we name it the degree
of D. We define the slope of D to be the rational number µ(D) = δ degD/ rkD,
where δ is the degree of k over F.

From [Mor2, Prop. 4.1.1], the category IF is abelian. We can therefore con-
sider exact sequences in IF which are simply exact sequences of the underlying
modules with commuting ϕ-action. The degree and rank are thus additive in
short exact sequences over the abelian category of isocrystals, and the associa-
tion D 7→ µ(D) defines a slope function for IF in the sense of [Andr, Def. 1.3.1].
The second point of the next definition should be compared with [Andr, Def.
1.3.6]:

Definition 3.3. Let D = (D,ϕ) be an isocrystal over F .

1. A subisocrystal of D is an isocrystal G = (G,ϕG) for which G ⊂ D,
ϕG = ϕD|τ∗G. The quotient of D by G is the pair (D/G,ϕD) (this is
indeed an isocrystal by [Mor2, Prop. 4.1.1]).

18
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2. The isocrystalD is semistable (resp. isoclinic) if, for any nonzero subisocrys-
tal D′ of D, µ(D′) ≤ µ(D) (resp. µ(D′) = µ(D)).

Semistability and isoclinicity are related to the notion of purity, borrowed
from [Mor2, Def. 3.4.6], that we next recall. We first define A(F )-lattices:

Definition 3.4. Let D be a free B(F )-module of finite rank. An A(F )-lattice
in D is a sub-A(F )-module of finite type of D which generates D over E.

Note that any A(F )-lattice L in D is free, and its rank is the rank of D over
B(F ). We denote by 〈ϕDL〉 the sub-A(F )-module ϕD(τ∗L) in D: it is again an
A(F )-lattice in D since ϕD is an isomorphism. W define 〈ϕnDL〉 inductively to
be the A(F )-lattice 〈ϕD〈ϕn−1

D L〉〉. To include the n = 0-case, we set 〈ϕ0
DL〉 = L.

Definition 3.5. A nonzero isocrystal (D,ϕD) over F is said to be pure of slope
µ if there exist an A(F )-lattice L in D and integers s and r > 0 such that
〈ϕrδDL〉 = πsL and µ = s/r. By convention, the zero isocrystal is pure with no
slope.

Example 3.6. Let D be the free B(F )-module of rank s ≥ 1 with basis
{e0, ..., es−1} and let ϕD : τ∗D → D be the unique linear map such that
ϕD(τ∗ei−1) = ei for 1 ≤ i < s and ϕD(τ∗es−1) = πre0. Then (D,ϕD) is a
pure isocrystal of slope rδ/s with A(F )e0 ⊕ · · · ⊕A(F )es−1 for A(F )-lattice.

The following lemma relates the definition of slopes from purity and from
slope functions:

Lemma 3.7. If D is a pure isocrystal of slope µ, then µ(D′) = µ for any nonzero
sub-isocrystal D′ of D. In particular, D is isoclinic (hence semistable).

Proof. Assume there exists an A(F )-lattice L in D such that 〈ϕrδL〉 = msL for
integers r > 0 and d such that µ = s/r. IfD′ = (D′, ϕ) is a nonzero subisocrystal
of D, then L′ = L ∩D′ is an A(F )-lattice in D′ such that 〈ϕrδL′〉 = msL′. As
L′ is nonzero, let {t1, ..., t`} be a basis of L′ over A(F ). We have

(detϕ)rδ(t1 ∧ · · · ∧ t`) = ms`(t1 ∧ · · · ∧ t`) in
∧̀
L′.

Hence rδ degD′ = s rkD′, which yields µ(D′) = µ.

Definition 3.8. A slope filtration for D is an increasing sequence of sub-isocrystals
of D

0 = D0 ( D1 ( · · · ( Ds = D,

satisfying:

(i) ∀i ∈ {1, ..., s}, Di/Di−1 is semi-stable,

(ii) we have µ(D1) > µ(D2/D1) > · · ·µ(Ds/Ds−1).

It follows from [Andr, Thm 1.4.7] applied to the slope function D 7→ µ(D)
on the abelian category IF , that a slope filtration for D exists and is unique (up
to unique isomorphism). A much stronger result holds: the quotients in (i) are
pure. This is the next theorem.

Theorem 3.9. Let D be an isocrystal over F . In the slope filtration for D

0 = D0 ( D1 ( · · · ( Ds = D, (3.1)

for all i ∈ {1, ..., s}, the quotients Di/Di−1 are pure isocrystals.
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Remark 3.10. It would be relevant to have a lemma stating the equivalence
between semi-stable and isoclinic, so that Theorem 3.9 would follow from André’s
theory. Yet, the only proof I know already uses [Har2, Prop. 1.5.10] and follows
from Theorem 3.9.

Proof of Theorem 3.9. If δ = 1, then A(F ) is identified with F [[π]] and Theorem
3.9 is proved in [Har2, Prop. 1.5.10]. We now explain how the general case
follows from the above. Let G be the finite field extension of F corresponding to

G := {f ∈ F̄ ∩ F | fq
δ

= f}.

Let φ : G → F denote the inclusion. This defines an embedding of G in k, the
residue field of E. Let Aφ(F ) be the completion of O⊗G F at the ideal m⊗G F .
In the theory of isocrystals over F with G in place of F, Aφ(F ) appears in place
of A(F ) and δ = 1. In [Mor2, §4.2], Mornev defines a functor

[φ]∗ : (A(F )− isocrystals) −→ (Aφ(F )− isocrystals)

By [Mor2, Prop 4.2.2] (see also [BorHa, Prop 8.5]), the functor [φ]∗ defines an
equivalence of categories such that [φ]∗(D) is a pure isocrystals of slope µ if D
is. Let

[φ]∗ : (Aφ(F )− isocrystals) −→ (A(F )− isocrystals)

be a quasi-inverse of [φ]∗ and let ` : [φ]∗[φ]∗
∼→ id be a natural transformation.

Let D be an A(F )-isocrystal. We only need to prove existence of (3.1) with
pure subquotients since uniqueness follows from [Andr, Thm 1.4.7]. By [Har2,
Prop. 1.5.10], there exists an increasing sequence of sub-Aφ(F )-isocrystals of
[φ]∗D:

0 = G0 ( G1 ( G2 ( · · · ( Gs = [φ]∗D

the subquotients Gi/Gi−1 being pure of slopes µi with µ1 > · · · > µs. Applying
[φ]∗ and then `, we obtain

0 = D0 ( D1 ( D2 ( · · · ( Ds = D (3.2)

with Di := `([φ]∗[φ]∗Di) for all i ∈ {0, 1, ..., s}. We claim that the isocrystals
Di/Di−1 are pure of slope µi. Indeed, we have

Di/Di−1
∼= [φ]∗Gi/[φ]∗Gi−1

∼= [φ]∗(Gi/Gi−1)

where the last isomorphism comes from the fact that [φ]∗ is an exact functor
(any equivalence of categories is exact). Because Gi/Gi−1 is pure of slope µi,
Di/Di−1 is also pure of slope µi. We conclude that (3.2) is the slope filtration
for D and satisfies the assumption of the theorem.

Theorem 3.9 allows us to define weights of isocrystals:

Definition 3.11. Let D be an isocrystal over F and let (Di)i∈{0,...,s} be its
slope filtration. The elements of the set {−µ(Di/Di−1) | 1 ≤ i ≤ s} are called
the weights of D. We call the weight filtration of D the increasing filtration
(Dλ)λ∈Q of D defined by

Dλ :=
⋃

µj≥−λ

Dj .

For λ ∈ Q, we let GrλD := Dλ/
⋃
λ′<λDλ′ .

Remark 3.12. The breaks of the weight filtration of D are the rational numbers
λ such that GrλD 6= 0. By definition, the set of breaks equals the set of weights.
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It follows from Theorem 3.9 that any semi-stable isocrystal is pure, and using
Lemma 3.7, that any semi-stable isocrystal is isoclinic. Restating [Andr, Thm
1.5.9] in our setting, we obtain:

Corollary 3.13. For all λ ∈ Q, the assignment IF → IF , D 7→ Dλ defines an
exact functor. Equivalently, any morphism f : D → C of isocrystals over F is
strict with respect to the weight filtration, that is:

∀λ ∈ Q, f(Dλ) = f(D) ∩ Cλ.

The weight filtration is not split in general. However it splits when the ground
field F is perfect.

Theorem 3.14. If F is perfect, the weight filtration of D splits, i.e. D decom-
poses along a direct sum

D ∼=
⊕
λ∈Q

Grλ(D).

Remark 3.15. The proof is similar to the argument given for Theorem 3.9: the
corresponding result for δ = 1 is proven in [Har2, Prop 1.5.10] and the general
δ-case is easily deduced from [Mor2, Prop 4.2.2].
Remark 3.16. The above theorem is the Dieudonné-Manin decomposition for
isocrystals. When F is algebraically closed, given µ ∈ Q there exists a unique
(up to isomorphisms) simple and pure isocrystal Sµ of slope µ (see [Mor2, Prop
4.3.4]). Any pure isocrystal of slope µ decomposes as a direct sum of Sµ (see
[Mor2, Prop 4.3.7]) and together with Theorem 3.14 yields the Dieudonné-Manin
classification (see [Lau]). It does not hold for any F , even separably closed, as
noticed by Mornev in [Mor2, Rmk 4.3.5].

Isocrystals attached to A-motives

We now explain how to attach isocrystals to A-motives over fields. This con-
struction (Definition 3.18) is required next in the definition of mixed A-motives
(Definition 3.20). In the rest of this subsection, we deal with the classical prop-
erties of the category of mixed A-motives and its objects, in order to be used in
the sequel.

Let R be a Noetherian F-algebra and let κ : A → R be an F-algebra mor-
phism.

We chose the rings A(R) and B(R) of subsection 3.1 in the following way.
Given a closed point λ on C, we let Oλ ⊂ K be the associated discrete valuation
ring of maximal ideal mλ. We denote Oλ the completion of Oλ and Kλ the
completion of K. We let Fλ denote the residue field of λ (of finite dimension
over F, its dimension being the degree of λ). We let Aλ(R) and Bλ(R) be the
completions of Oλ ⊗R and Kλ ⊗R for the mλ-adic topology.

Recall that jκ is the ideal of A⊗R generated by {a⊗ 1− 1⊗ κ(a) | a ∈ A}.
A weak version of the next lemma was already used in the proof of Lemma 2.18.

Lemma 3.17. We have jκB∞(R) = B∞(R). For λ a closed point of C distinct
from ∞ such that κ(mλ)R = R, then jκAλ(R) = Aλ(R).

Proof. We prove the first assertion. let a be a non constant element of A so that
a−1 ∈ m∞. Then a⊗ 1− 1⊗ κ(a) ∈ j is invertible with −

∑
n≥0 a

−(n+1) ⊗ κ(a)n

as inverse, where the infinite sum converges in A∞(R) ⊂ B∞(R).
To prove the second assertion, let ` ∈ mλ be such that κ(`) is invertible in R.

Then ` ⊗ 1 − 1 ⊗ κ(`) ∈ j is invertible with −
∑
n≥0 `

n ⊗ κ(`)−(n+1) as inverse,
where the infinite sum converges in Aλ(R).
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In order to use the results of the previous subsection, we now assume that
R = F is a field.

Definition 3.18. Let M = (M, τM ) be an A-motive over F and let λ be a
closed point of C. We let Iλ(M) be the Bλ(F )-module M ⊗A⊗R Bλ(F ). Let
Iλ(M) be the pair (Iλ(M), τM ⊗ 1).

Proposition 3.19. Let M = (M, τM ) be a nonzero A-motive over F . Let λ be
a closed point of C distinct from kerκ.

(i) Iλ(M) is an isocrystal over F .

(ii) If λ 6=∞, Iλ(M) is pure of slope 0.

Proof. BecauseM is locally free of constant rank and Bλ(F ) is a finite product of
fields, Iλ(M) is a free Bλ(F )-module. Thus, point (i) follows from Lemma 3.17.
To prove (ii), it suffices to note that L = M ⊗A⊗F Aλ(F ) is an Aλ(F )-lattice
in M ⊗A⊗F Bλ(F ) such that 〈τML〉 = L.

We now choose λ = ∞. Let M be an A-motive over F . The isocrystal
I∞(M) admits a weight filtration (Definition 3.11) denoted (I∞(M)µ)µ∈Q:

0 = I∞(M)µ0
( I∞(M)µ1

( I∞(M)µ2
( · · · ( I∞(M)µs = I∞(M)

where µ1 < µ2 < ... < µs are the rational numbers such that I∞(M)µi/I∞(M)µi−1

is a pure isocrystal of slope −µi. For µ ∈ Q, we write I∞(M)µ = (I∞(M)µ, τM ).

Definition 3.20. Let M be a nonzero A-motive over F .

(a) The elements of the set w(M) := {µ1, ..., µs} are called the weights of
M . We agree that w(0) is the empty set, and call M pure of weight w if
{µ1, ..., µs} = {w}.

(b) We call M mixed if there exists an increasing filtration (Mµi
)i∈Q of M by

sub-A-motives such that (I∞(Mµi
))i∈Q coincides with the weight filtration

of I∞(M). In particular, a pure A-motive is mixed.

Remark 3.21. If M is an A-motive over F of weights {µ1, ..., µs} and F ′ is a
field extension of F , then MF ′ also has weights {µ1, ..., µs}. This follows from
the uniqueness of the slope filtration (Theorem 3.9). If M is mixed, then so is
MF ′ .
Remark 3.22. In [HarJu, Ex. 2.3.13], the authors constructed an A-motive which
is not mixed. The latter is constructed starting from an extension of a pure
Anderson A-motive of weight 2 by another pure of weight 1.

If a filtration as in (b) exists, it might not be unique. However, if we impose
that the filtration is composed with saturated sub-A-motives of M , then it is
unique. This follows from the next lemma.

Lemma 3.23. Let M be an A-motive over F and let P be a sub-A-motive of
M . Then I∞(P ) = I∞(P sat). If Q is a sub-A-motive of M such that I∞(P ) =

I∞(Q) inside I∞(M), then P sat = Qsat.

Proof. The inclusion P ⊂ P sat is an isogeny and therefore its cokernel is A-
torsion (see [Har3, Thm. 5.12]). Consequently, I∞(P ) = I∞(P sat).
We prove the second part. The A⊗F -modules P , P sat, Q, Qsat and (P ∩Q)sat =
P sat ∩ Qsat are locally-free of the same rank, as they become equal once I∞ is
applied. Note that (P ∩Q)sat = P sat ∩Qsat is again endowed with an A-motive
structure and hence so is the quotient A ⊗ F -module P sat/(P ∩ Q)sat. The
underlying A ⊗ F -module is locally-free and has rank 0; hence it is zero. The
inclusion P sat ∩ Qsat → P sat is therefore an isomorphism which yields P sat ⊂
Qsat. We conclude by exchanging the roles of P and Q in the above argument
to obtain the converse inclusion.
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We deduce at once:

Proposition-Definition 3.24. Any mixed A-motiveM over F admits a unique
increasing filtration by saturated sub-A-motives (WµiM)i∈{1,...,s} such that the
family of isocrystals (I∞(WµiM))i coincides with the weight filtration of I∞(M)
(Definition 3.11).

(i) We call (WµiM)i the weight filtration of M .

(ii) For all i ∈ {1, ..., s}, we let WµiM be the underlying module of WµiM .

(iii) For all µ ∈ Q, we set

WµM :=
⋃
µi≤µ

WµiM, WµM := (WµM, τM ),

W<µM :=
⋃
µi<µ

WµiM, W<µM := (W<µM, τM ),

and GrµM := WµM/W<µM . Both GrµM and WµM , as well as W<µM ,
define mixed A-motives over F for all µ ∈ Q.

(iv) We letMMF (resp. MMiso
F ) be the full subcategory ofMF (resp. Miso

F )
whose objects are mixed.

The next lemma shows how to recover the weight filtration of a mixed A-
motive from its isocrystal:

Proposition 3.25. Let M be a mixed A-motive over F . For µ ∈ Q, we have
WµM = I∞(M)µ ∩M , where the intersection is taken inside M ⊗A⊗F B∞(F ).

Proof. By definition, the following sequence of inclusions hold:

(WµM)⊗A K ⊂ I∞(M)µ ∩ (M ⊗A K) ⊂ I∞(M)µ.

Note that the left-hand side forms a dense subset of the right-hand side for the
∞-adic topology. Hence, the first inclusion is an inclusion of a dense subset.
Taking the completion, we obtain I∞(WµM) = I∞(I∞(M)µ ∩M). As both
WµM and I∞(M)µ ∩ M are saturated submodules of M , the lemma follows
from Lemma 3.23.

When M is non mixed, I∞(M)µ ∩ (M ⊗AK) is generally not a dense subset
of I∞(M)µ, preventing WµM from being defined by the mean of I∞(M)µ ∩M .
In general, we have the following:

Proposition 3.26. Let M be an A-motive over F . For all µ ∈ Q, we have

rankA⊗F (I∞(M)µ ∩M) ≤ rank I∞(M)µ

with equality for all µ ∈ Q if and only if M is mixed.

Proof. First note that, for all µ, the couple Mµ := (I∞(M)µ ∩M, τM ) defines
a saturated sub-A-motive of M . Furthermore, since the underlying module of
I∞(Mµ) corresponds to the completion of I∞(M)µ ∩ (M ⊗AK) for the ∞-adic
topology, I∞(Mµ) defines a subisocrystal of I∞(M)µ. The rank being additive
in short exact sequences in IF , we get:

rankA⊗F (I∞(M)µ ∩M) = rankMµ = rank I∞(Mµ) ≤ rank I∞(M)µ.

If M is mixed then, by Proposition 3.25, the above is an equality for all µ.
Conversely, if this is an equality for all µ, then I∞(Mµ) ⊆ I∞(M)µ is an
inclusion of isocrystals of the same rank. Hence they are equal.
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Remark 3.27. We end this subsection by describing how weights behave under
linear algebra type operations. Proofs are presented in [HarJu, Prop. 2.3.11] and
extend without change to our larger setting. First note that 1 is a pure A-motive
over F of weight 0. Given two mixed A-motivesM andN , their biproductM⊕N
is again mixed with weight filtrationWµ(M⊕N) = WµM⊕WµN (µ ∈ Q). Their
tensor product M ⊗N is also mixed, with λ-part of its weight filtration being:

Wλ(M ⊗N) =

 ∑
µ+ν=λ

WµM ⊗WνN

sat

.

We took the saturation A-motive to ensure that the above is a saturated sub-A-
motive of M ⊗N . The dual M∨ is mixed, and the µ-part of its weight filtration
WµM has for underlying module WµM

∨ = {m ∈ M∨|∀λ < −µ : m(WλM) =
0}sat. In general, given M and N two A-motives over F (without regarding
whether M or N are mixed) and an exact sequence 0 → M ′ → M → M ′′ → 0
inMF , we have

w(0) = ∅
w(M∨) = −w(M)
w(M ⊕N) = w(M) ∪ w(N)
w(M) = w(M ′) ∪ w(M ′′)
w(M ⊗N) = {w + v | w ∈ w(M), v ∈ w(N)}

3.2 Extension modules of mixed A-motives
As before, let F be a field containing F and consider an F-algebra morphism
κ : A→ F . In this subsection, we are concerned with extension modules in the
categoryMMF . The next proposition shows that they are well-defined.

Proposition 3.28. The categoryMMF is an exact subcategory ofMF .

Proposition 3.28 follows from the next Lemma 3.29, which follows closely
[HarJu, Prop 2.3.11(c)], and [HarJu, Rmk 2.3.12].

Lemma 3.29. Any sub-A-motive M ′ ↪→ M and any quotient A-motive M �
M ′′ of mixed A-motives M is itself mixed.

Proof. Let f denotes the morphism M �M ′′ inMF . For µ ∈ Q, let WµM :=
WµM ∩M ′ and WµM

′′ := f(WµM)sat ∩M ′′. Both are saturated modules in
M ′ and M ′′ respectively. They are also canonically endowed with an A-motive
structure. Since B∞(F ) is flat over A ⊗ F , [Bou, §I.2, Prop. 6] implies that
−⊗A⊗F B∞(F ) commutes with finite intersections:

I∞(WµM
′) = (WµM

′)⊗A⊗F B∞(F )

= (WµM ∩M)⊗A⊗F B∞(F )

= I∞(M)µ ∩ I∞(M ′)

= I∞(M ′)µ

where the last equality follows from Theorem 3.9. Similarly,

I∞(WµM
′′) = (WµM

′′)⊗A⊗F B∞(F )

= (f(WµM)sat ∩M ′′)⊗A⊗F B∞(F )

= f(I∞(M)µ) ∩ I∞(M ′′)

= I∞(M ′′)µ.

This shows that M ′ and M ′′ are both mixed with respective weight filtrations
(WµM

′)µ∈Q and (WµM
′′)µ∈Q.
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As a consequence, we record:

Proposition 3.30. Any morphism of mixed A-motives preserves the weight
filtration, that is, given a morphism f : M → N inMF ,

∀µ ∈ Q, f(WµM) ⊂WµN.

In particular, for all µ ∈ Q, the assignation M 7→ WµM is functorial over
MMF . OverMMiso

F , this assignment defines an exact functor.

Proof. Let f : M → N be a morphism of mixed Anderson A-motives over F . In
the category of isocrystals, f induces a morphism from I∞(M) to I∞(N). We
have

I∞(f(WµM)) = f(I∞(WµM)) = f(I∞(M)µ)

and, by flatness of B∞(F ) over A⊗ F ,

I∞(f(M) ∩WµN) = I∞(f(M)) ∩ I∞(WµN) = f(I∞(M)) ∩ I∞(N)µ

= f(I∞(M)µ) (3.3)

where the last equality follows from Theorem 3.9. By Lemma 3.23 applied to
(3.3),

f(WµM) ⊂ f(WµM)sat = f(τ∗M)sat ∩WµN ⊂WµN. (3.4)

To conclude that Wµ is exact overMMiso
F , it suffices to note that all inclusions

in (3.4) defines isogenies of A-motives over F .

Thanks to Proposition 3.28, we can consider Yoneda’s extension modules of
two mixed A-motives inMMF . By Proposition 3.30, we have an equality

Ext0
MMF

(M,N) = Ext0
MF

(M,N),

but this is not true for higher extension modules. Ext1
MMF

(M,N) can be in-
terpreted as a submodule of ExtiMF

(M,N), but in general ExtiMMF
is not even

a submodule of ExtiMF
(i > 1). To that regard, we show that Ext2

MMF
(1,M)

does not vanish in general.

Proposition 3.31. Let 0 → M ′ → M
p→ M ′′ → 0 be an exact sequence of

A-motives inMF .

1. If M is mixed, so are M ′ and M ′′.

2. If M ′ and M ′′ are mixed, and if the smallest weight of M ′′ is bigger than
the biggest weight of M ′, then M is mixed.

Proof. Point 1 is a reformulation of Lemma 3.29.
We move to point 2. By Proposition 2.10, there exists u ∈ HomA⊗F (τ∗M ′′,M ′)[j−1]
and a diagram

0 M ′ M M ′′ 0

0 M ′ (M ′ ⊕M ′′,
( τM′ u

0 τM′′

)
) M ′′ 0

ι p

id ξ id

which commutes in MF . From the the weight assumption on M ′ and M ′′, u
automatically respects the weight filtration. That is, for all µ,

Mµ := ξ

(
WµM

′ ⊕WµM
′′,

(
τM ′ u
0 τM ′′

))
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defines a sub-A-motive of M inserting in a short exact sequence inMF :

0 −→WµM
′ −→Mµ −→WµM

′′ −→ 0. (3.5)

We obtain a commutative diagram of isocrystals:

0 I∞(M ′)µ I∞(M)µ I∞(M ′′)µ 0

0 I∞(WµM
′) I∞(Mµ) I∞(WµM

′′) 0

= =

where the first row is exact by Corollary 3.13, and the second row is exact as
(3.5) is exact. The extremal vertical map are equalities, and hence so is the
middle one. To conclude, we have found a family of sub-A-motives (Mµ)µ of M
which specializes to (I∞(M)µ)µ when applying the functor I∞. Therefore M is
mixed.

Remark 3.32. Contrary to the number fields situation, the full subcategory of
MMF consisting of pure A-motives over F is not semi-simple. This follows
easily from the equality Ext1

MMF
(N,M) = Ext1

MF
(N,M) for two pure motives

of the same weight.

Proposition 3.31 implies that Ext1
MF

(M ′′,M ′) = Ext1
MMF

(M ′′,M ′) when
the weights of M ′′ are bigger than the biggest weight of M ′. In general this is
not true. In this direction we record:

Proposition 3.33. Let 0 → M ′ → M → M ′′ → 0 be an exact sequence of
A-motives where M ′ and M ′′ are mixed. We assume that all the weights of M ′′

are strictly smaller than the smallest weight ofM ′. Then, the sequence is torsion
in Ext1

MF
(M ′′,M ′) if, and only if, M is mixed.

Proof of Proposition 3.33. Taking N := M ′ ⊗ (M ′′)∨, we can assume that the
exact sequence is of the form (S) : 0 → N → E → 1 → 0, N having positive
weights. In view of Theorem 2.13, we may assume that E is of the form ι(u) for
some u ∈M [j−1]. Note that 0 is a weight of E, the smallest.

If E is mixed, then E contains a sub-A-motive L = (L, τM ) of weight 0 which
is isomorphic to 1. Let (m⊕ a) ∈M ⊕ (A⊗F ) be a generator of L over A⊗F .
We have (

τM u
0 1

)(
τ∗m
τ∗a

)
=

(
m
a

)
.

This amounts to a ∈ A and au ∈ im(id−τM ), and then that a[E] = 0 in
Ext1

MF
(1, N). Conversely, if there exists a nonzero a ∈ A such that a[E] is split,

Theorem 2.13 implies that there exists m ∈ N such that au = m − τM (τ∗m).
The nonzero A ⊗ F -module L generated by m ⊕ a together with τM defines a
sub-A-module of E isomorphic to 1. For all µ ∈ Q, we define the A⊗F -module

WµE := WµM + 1µ≥0L

where (WµM)µ∈Q is the weight filtration of M . It is easy to see that WµE :=
(WµE, τM ) defines a sub-A-motive of E and that (I∞(WµM))µ∈Q coincides with
the slope filtration of I∞(E). Hence, E is mixed.

Remark 3.34. Under the same hypothesis, Proposition 3.33 can be rephrased
into

Ext1
MF

(M ′′,M ′)tors = Ext1
MMF

(M ′′,M ′).

In particular, the K-vector space Ext1
MMiso

F
(M ′′,M ′) vanishes. The latter is

only conjectured to be true in the number fields setting ([Del, §1.3]).
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Remark 3.35. Nevertheless, Ext1
MMF

(1,M) is generally non zero for M having
positive weights. In the notations of Example 2.4, let n be a positive integer
that is a power of the characteristic p, and consider the A-motive A(−n) over a
field extension F of K that contains a (q − 1)-st root η of (−1/θ)n. We claim
that Ext1

MMF
(1, A(−n)) is non zero, i.e. Ext1

MF
(1, A(−n)) has non zero torsion

(A(−n) is pure of weight n). Indeed, let [E] := ι(ηq). Then,

−tn · [E] = ι(−tnηq) = ι(η − (t− θ)nηq) = 0.

On the other-hand, [E] is non zero: for degree reasons, there does not exist
p(t) ∈ F [t] such that ηq = p(t)− (t− θ)np(t)(1).
Remark 3.36. A variation of the above argument shows that Ext2

MMF
(1, A(−1))

is non zero for certain fields F . Assume that:

1. F contains a (q − 1)-st root η of (−1/θ)p,

2. F does not contain of (q − 1)-st root of −1/θ

3. there exists β ∈ F for which the polynomial θXq + X + β does not split
over F .

For η, β ∈ F as above, let α := β/ηq ∈ F . Consider the extension M of A(−p)
by A(−1) given by

M =

[
F [t]2,

(
(t− θ)1 α1

0 (t− θ)p1

)]
.

As A(−p) and A(−1) are pure of weight p and 1 respectively, M is mixed by
Proposition 3.31, with weights {1, p}. We claim that the A-linear morphism

Ext1
MMF

(1, f) : Ext1
MMF

(1,M) −→ Ext1
MMF

(1, A(−p)), (3.6)

induced by the epimorphism f : M → A(−p), is not surjective. By the long-exact
sequence of Ext-modules, it implies that Ext2

MMF
(1, kerf) = Ext2

MMF
(1, A(−1))

is non zero.
Because M has positive weights, by Proposition 3.33, (3.6) can be rewritten

as: (
F [t, (t− θ)−1]⊕2

(id−τM )(F [t]⊕2)

)tors

−→
(

F [t, (t− θ)−1]

(id−(t− θ)pτ)(F [t])

)tors

. (3.7)

In Remark 3.34, we showed that the class of ηq defines a nonzero element in
the right-hand side of (3.7). If the latter was surjective, there would exist x ∈
F [t, (t − θ)−1] such that the class of (x, ηq) belongs to the right-hand side of
(3.7). That is, there exist a ∈ A = F[t] nonzero and (f, g) ∈ F [t]⊕2 such that

a ·
(
x
ηq

)
=

(
f
g

)
−
(

(t− θ) α
0 (t− θ)p

)(
f (1)

g(1)

)
. (3.8)

As −tpηq = η− (t− θ)pηq, we obtain from the bottom row that tp divides a and
that g = −(a/tp)ηq. Evaluating the top row at t = 0, we get:

0 = f(0) + θf(0)q + α · sηq (3.9)

where s ∈ F is the evaluation of a/tp at t = 0. If s = 0, then g(0) = 0 and
f(0) = 0 by 2. Hence, dividing (3.8) by the correct power of t, we can assume
without loss that s 6= 0. Yet, dividing (3.9) by s and using that αηq = β, we
obtain a root of θXq +X + β in F . This contradicts our assumption 3.

Although Ext2
MMF

(1,M) might be non zero, we prove next that it is always
torsion:

27



On the integral part of A-Motivic cohomology Q. Gazda

Theorem 3.37. For i > 1, the A-module ExtiMMF
(1,M) is torsion.

Proof. We begin with a very general remark. Given three objects A, B and C
in an abelian category A, Yoneda’s cup product:

∪ : Ext1
A(A,B)× Ext1

A(B,C) −→ Ext2
A(A,C) (3.10)

admits the following two descriptions:

1. Given e = [0→ B
i→ E → A→ 0] ∈ Ext1

A(A,B) and f = [0→ C → F
j→

B → 0] ∈ Ext1
A(B,C), we obtain e ∪ f ∈ Ext2

A(A,C) as the class of the
long-exact sequence:

0→ C → F
i◦j→ E → A→ 0.

2. Applying the functor Ext1
A(A,−) to a short exact sequence associated to

e, we obtain a connecting homomorphism:

δe : Ext1
A(A,B) −→ Ext2

A(A,C).

Then, e ∪ f = δe(f).

It follows from 1 that for any element g in Ext2
A(A,C), there exists an object

B in A such that g = e ∪ f for e ∈ Ext1
A(A,B) and f ∈ Ext1

A(B,C). It follows
from 2 that if the functor Ext1

A(A,−) is right-exact, the image of (3.10) is zero.
Combining both description, we obtain: if the functor Ext1

A(A,−) is right-exact,
then Ext2

A(A,X) is zero for any object X in A.
Back to the situation of the Theorem, let us first treat the case where M

only has non positive weights. Let A be the K-linear abelian categoryMMiso
F

and let A0 be the full subcategory of A consisting of objects whose weights are
all non positive. For M ∈ A0, note that

Ext1
A0

(1,M) = Ext1
A(1,M) = Ext1

Miso
F

(1,M)

where the last equality follows from Proposition 3.31. From Corollary 2.11, we
deduce that the functor Ext1

A0
(1,−) is right-exact on A0. From the above obser-

vation, Ext2
A0

(1,M) = (0). Now, from the exactness of W0 over A (Proposition
3.30), given any e ∈ Ext2

A(1,M) we have a commutative diagram in A:

e : 0 M E1 E2 1 0

W0e : 0 M W0E1 W0E2 1 0

id id

from which we deduce Ext2
A0

(1,M) = Ext2
A(1,M). This amounts to:

Ext2
MMF

(1,M)⊗A K = Ext2
A(1,M) = (0).

as desired. Now, let M have arbitrary weights. Applying Ext1
A(1,−) to the

exact sequence:

0 −→W0M −→M −→M/W0M −→ 0,

we obtain from Proposition 3.33 that the natural map:

Ext1
A(1,W0M) −→ Ext1

A(1,M)
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is surjective. Given an epimorphism f : M → N in A, we obtain a commutative
square:

Ext1
A(1,W0M) Ext1

A(1,M)

Ext1
A(1,W0N) Ext1

A(1, N).

The left vertical arrow is surjective: indeed, W0f : W0M → W0N is an epi-
morphism by Proposition 3.30, and we already proved that over A0 the functor
Ext1

A(1,−) = Ext1
A0

(1,−) is right-exact. Hence, the right vertical arrow is sur-
jective and the functor Ext1

A(1,−) is right-exact onA. By the above observation,
this implies:

Ext2
MMF

(1,M)⊗A K = Ext2
A(1,M) = (0).

That ExtiMMF
(1,M) is torsion for all i > 1 follows from ExtiA(1,M) = (0).

4 Models and the integral part of A-motivic co-
homology

In this section we illustrate the notion of maximal integral models. For A-
motives, maximal integral models are understood as an analogue of Néron mod-
els of abelian varieties. The notion dates back to Gardeyn’s work on models
of τ -sheaves [Gar2] and their reduction [Gar1], where he proved a Néron-Ogg-
Shafarevič type criterion (see Proposition 4.39 in our context). However our
setting differs by the fact that, in opposition to τ -sheaves, A-motives might not
be effective. We also removed Gardeyn’s assumption for an integral model to be
locally free. We will show in Propositions 4.26 and 4.43 that this is implicit for
maximal ones over local and global function fields. Our presentation thus allows
to avoid the use of a technical lemma due to Lafforgue in Gardeyn’s exposition
[Gar2, §2]. In that sense, the content of this chapter is original.

In practice, to make maximal integral models of A-motives explicit is a dif-
ficult task. In section 4.1, we consider the easier problem of finding maximal
integral models of Frobenius spaces. Those are pairs (V, ϕ) where V is a finite
dimensional vector space over a local field E containing F and ϕ is a q-linear
endomorphism of V . We show in Proposition 4.2 that there exists a unique
OE-lattice in V stable by ϕ and which is maximal for this property. We end this
section by the review of Katz’s equivalence of categories, and its application to
study maximal integral models.

In Sections 4.2 and 4.3, we shall be concerned with integral models of A-
motives. Given R ⊂ S an inclusion of F-algebras and an A-motiveM = (M, τM )
over S, an R-model for M is a finite sub-A ⊗ R-module of M stable by τM
(Definition 4.16).

We study the case where M is an A-motive over a local function field S = E
and where R = OE is its valuation ring in Section 4.2. In Proposition 4.24, we
prove existence and uniqueness of integral OE-models which are maximal for
the inclusion, and we prove that they are locally free in Proposition 4.26. We
show that, given a well-chosen maximal ideal ` ⊂ A and a positive integer n, the
data of (M/`nM, τM ) defines a Frobenius space over E. Theorem 4.31, our main
result of this section, describes how to recover the maximal integral model of M
in terms of the data of the maximal integral model of (M/`nM, τM ) for all n.
The latter is of fundamental importance in the proof of Theorem C, and permits
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to obtain the Néron-Ogg-Shafarevič type criterion for A-motives (Proposition
4.39).

In Section 4.3, we treat the case where M is an A-motive over a global
function field S = F where R is a Dedekind domain whose fraction field is F .
If p is a non zero prime ideal of R, we obtain an A-motive MFp

by base field
extension from F to its completion Fp. Our Proposition 4.41 explain how to
recover the maximal integral model of M from the data of the maximal integral
models of MFp

for all p.
The full force of this section is used in Subsection 4.4 to prove Theorems C

and D of the introduction (respectively Theorems 4.48 and 4.49 in the text).

4.1 Models of Frobenius spaces
In this subsection we work with notations that are slightly more general to
what we need in the sequel. We let k be a perfect field containing F and let
E = k(($)) be the field of Laurent series over F in the the variable $. We let
σ : E → E denote the q-Frobenius Frobq on E (it fixes F), vE be the valuation
of E, OE = k[[$]] be its valuation ring with maximal ideal p = ($). We fix a
separable closure Es of E and denote byGE the absolute Galois group Gal(Es|E)
of E. Let also IE ⊂ GE be the inertia subgroup.

Our object of study are pairs (V, ϕ) where V is a finite dimensional E-vector
space and ϕ : σ∗V → V is an E-linear isomorphism. In the existing literature,
there are generally referred to as étale finite F-shtukas over E (e.g. [Har3, §4]).
We prefer here the shorter name Frobenius spaces. By an OE-lattice in V we
mean a finitely generated sub-OE-module L of V which generates V over E. A
sub-OE-module L is stable by ϕ if ϕ(σ∗L) ⊂ L.

Definition 4.1. We say that L is an integral model for (V, ϕ) if L is an OE-
lattice in V stable by ϕ. We say that L is maximal if it is not strictly included
in another integral model for (V, ϕ).

Proposition 4.2. A maximal integral model for (V, ϕ) exists and is unique.

Proof. Our proof follows closely [Gar2, Prop. 2.2, 2.13]. First note that there
exists an integral model. Indeed, let T ′ be an arbitrary OE-lattice in V . There
exists a positive integer k such that ϕ(σ∗T ′) ⊂ $−kT ′. We let T := $kT ′ so
that

ϕ(σ∗T ) = $qkϕ(σ∗T ′) ⊂ $(q−1)kT ′ = $(q−2)kT ⊂ T.

Hence, the OE-module T is an OE-lattice in V stable by ϕ.
We turn to the existence and uniqueness of the maximal integral model. If

L′ ⊂ L is an inclusion of integral models. We have:

lengthOE (ϕ(σ∗L)/ϕ(σ∗L′)) = q · lengthOE (L/L′) .

We define the discriminant of L to be the non-negative integer

∆(L) := lengthOE (L/ϕ(σ∗L)) .

Since we have:

∆(L′)−∆(L) = lengthOE (L′/ϕ(σ∗L′))− lengthOE (L/ϕ(σ∗L))

= lengthOE (ϕ(σ∗L)/ϕ(σ∗L′))− lengthOE (L/L′)

= (q − 1) · lengthOE (L′/L) , (4.1)

then ∆(L′) > ∆(L) whenever the inclusion L′ ⊂ L is strict.
Now let L be an integral model with minimal discriminant. We claim that L

equals the union of all integral models of (V, ϕ), which proves both existence and
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uniqueness of the maximal integral model. Indeed, if L′ is another integral model
for (V, ϕ) not contained in L, then the inclusion L ⊂ L + L′ is strict. But this
contradicts the minimality assumption as we would have ∆(L) > ∆(L+L′).

Example 4.3. Suppose V := E, f ∈ OE a nonzero element and ϕ is the
morphism corresponding to x 7→ fxq. Write f = u$khq−1 where u ∈ O×E ,
0 ≤ k < q − 1 is an integer and h ∈ OE . Then, the maximal integral model of
(V, ϕ) is given by h−1OE . This is because ∆(h−1OE) = k together with (4.1).

Let T be an integral model for (V, ϕ) and let r be its rank as a free OE-
module. The cokernel of the inclusion ϕ(σ∗T ) ⊂ T is a torsion OE-module of
finite type and there exists elements g1,...,gr in OE with vE(gi) ≤ vE(gi+1) such
that

T/ϕ(σ∗T ) ∼= OE/(g1)⊕OE/(g2)⊕ · · · ⊕OE/(gr).

Equivalently, there exists a basis (v1, ..., vr) of T over OE such that

ϕ(σ∗T ) = (g1)v1 ⊕ (g2)v2 ⊕ · · · ⊕ (gr)vr.

The elements g1,...,gr are unique up to multiplication by units and are called the
elementary divisors relative to the inclusion of OE-lattices ϕ(σ∗T ) ⊂ T .

Lemma 4.4. Let t be a basis of T over OE and let F be the matrix of ϕ
written in the bases σ∗t and t. The elementary divisors relative to the inclusion
ϕ(σ∗T ) ⊂ T are the elementary divisors of the matrix F , up to units in OE.

Proof. If (f1, ..., fr) denotes the elementary divisors of F , the Smith’s normal
form Theorem implies that there exists U, V ∈ GLr(OE) such that UF =
diag(f1, ..., fr)V . If we let v = (v1, ..., vr) be the basis of T corresponding to
V · t, this relation reads

ϕ(σ∗T ) = (f1)v1 ⊕ (f2)v2 ⊕ · · · ⊕ (fr)vr.

By uniqueness of the ideals (g1), ..., (gr), we conclude that (fi) = (gi) for all
i ∈ {1, ..., r}.

Definition 4.5. We let the type of T be the sequence (e1, ..., er) of the valuations
of the elementary divisors relative to the inclusion ϕ(σ∗T ) ⊂ T ordered such that
e1 ≤ e2 ≤ ... ≤ er. We define the range rT of T to be the integer er.

Remark 4.6. We have ∆(T ) = e1 + ...+er so that r ≤ ∆(T ) ≤ r ·rT where ∆(T )
denotes the discriminant of T . It follows that the range of T is a finer invariant
than its discriminant.

We should denote by VO the maximal integral model of (V, ϕ). The following
proposition enables us to say how far an integral lattice is from being maximal
given its range.

Proposition 4.7. Let T be an OE-lattice in V stable by ϕ. Let s be a non-
negative integer. If the range of T satisfies rT ≤ s(q − 1), then VO ⊂ $−sT .

We start by a lemma:

Lemma 4.8. Let U be an OE-lattice in V such that U ⊂ ϕ(σ∗U). Then VO ⊂ U .

Proof. For n ≥ 0, we let σn∗ := (σn)∗ and denote by ϕn : σn∗V → V the
E-linear morphism given by the composition

σn∗V
σ(n−1)∗ϕ−→ σ(n−1)∗V −→ · · · −→ σ∗V

ϕ−→ V.
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We consider the following sub-OE-module of V :

VO ∩

( ∞⋃
n=0

ϕn(σn∗U)

)
. (4.2)

It is stable by ϕ, finitely generated because contained in VO, and generates V over
E because contains the OE-lattice VO ∩U . By maximality, (4.2) equals VO and
we deduce that there exists a non-negative integerm such that VO ⊂ ϕm(σm∗U).
Because ϕ(σ∗VO) ⊂ VO, we have σ∗VO ⊂ ϕ−1(VO) and by immediate recursion
one gets σm∗VO ⊂ ϕ−m(VO) ⊂ σm∗U . We conclude that VO ⊂ U because
σ : OE → OE is faithfully flat.

Proof of Proposition 4.7. Let (e1, ..., er) be the type of T . Recall that m = mE
denotes the maximal ideal of OE . There exists a basis (t1, ..., tr) of T such that
ϕ(σ∗T ) = me1t1 ⊕me2t2 ⊕ · · · ⊕mer tr. By assumption, e1, ..., er ≤ s(q − 1) and
thus

$−sT ⊂ $−s
(
me1−s(q−1)t1 ⊕me2−s(q−1)t2 ⊕ · · · ⊕mer−s(q−1)tr

)
= me1−sqt1 ⊕me2−sqt2 ⊕ · · · ⊕mer−sqtr

= $−qsϕ(σ∗T )

= ϕ(σ∗($−sT )).

Hence, U := $−sT satisfies U ⊂ ϕ(σ∗U) and we deduce that VO ⊂ U by Lemma
4.8.

Akin to integral models, there is also a notion of good models.

Definition 4.9. Let L be a finitely generated OE-submodule of V . We say that
L is a good model for (V, ϕ) if ϕ(σ∗L) = L. We say that L is maximal if it is not
strictly included in another good model of (V, ϕ).

Proposition 4.10. A maximal good model for (V, ϕ) exists and is unique.

Proof. First note that any good model L for (V, ϕ) is contained in VO: indeed,
L+VO is again an integral model, hence included in VO. The union U of all good
model for (V, ϕ) exists (it is non-empty as the zero module is a good model) and
therefore included in VO. Because OE is Noetherian, U is a finitely generated
OE-module. We also have ϕ(σ∗U) = U . We deduce that U is maximal and
unique.

We should denote by Vgood the maximal good model of (V, ϕ).

Definition 4.11. We say that (V, ϕ) has good reduction if Vgood = VO. The
rank of Vgood is called the non-degenerate rank of (V, ϕ).

Maximal good models have an interpretation in terms of Frobenius sheaves
that we now recall. Let X be a smooth connected scheme over F, and let π(X)
be its étale fundamental group. We still denote by σ the Frobenius on X. Let
F(X) be the category whose objects are pairs (V , ϕ) where V is a locally-free
OX -module of finite rank and ϕ : σ∗V → V is an isomorphism of OX -modules.
Morphisms in this category are morphisms of the underlying OX -modules with
commuting ϕ-action.

Example 4.12. Objects of F(SpecE) are Frobenius spaces over E, and objects
of F(SpecOE) are pairs (V, ϕ) where V is a finite free OE-module, and where
ϕ : σ∗V → V is an OE-linear isomorphism.

The following result is due to Katz in [Kat2, Prop. 4.1.1].
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Theorem 4.13. There is a rank-preserving equivalence of categories from F(X)
to the category of F-linear continuous representation of π(X), which commutes
with base change. For X = SpecE, it is explicitly given by

V = (V, ϕ) 7−→ TV = {x ∈ V ⊗E Es | x = ϕ(σ∗x)}

where π(SpecE) is identified with Gal(Es|E), and acts on the right-hand side
of V ⊗E Es.

The following proposition is almost immediate from Katz’s equivalence:

Proposition 4.14. Let V be a Frobenius space over E. The non-degenerate
rank of (V, ϕ) equals the rank of (TV )IE . In particular, V has good reduction if
and only if TV is unramified.

Proof. As π(SpecOE) ∼= GE/IE , the representation (TV )IE is the maximal sub-
object of TV which comes from an object in F(SpecOE) by Katz’s equivalence.
Yet, elements in F(SpecOE) which specialize to subobjects of V by base change
to E are exactly the good models of V .

We end this subsection by the next result, which will be the main ingredient
to obtain Theorem C of the introduction.

Proposition 4.15. Let V = (V, ϕ) be a Frobenius space over E, and let x ∈ V .
The following are equivalent:

(i) There exists y ∈ V ⊗E Eur such that x = y − ϕ(τ∗y),

(ii) x ∈ Vgood + (idV −ϕ)(V ),

(iii) x ∈ VO + (idV −ϕ)(V ).

Proof. We first prove the equivalence between (i) and (ii). Let 1 : σ∗E → E
be the canonical E-linear isomorphism and let 1 be the neutral Frobenius space
(E,1) over E . Let also Ext1(1, V ) be the F-vector space of Yoneda extensions
of 1 by V in the category F(SpecE). We have a isomorphism of F-vector spaces,
natural in V ,

V

(id−ϕ)(V )

∼−→ Ext1(1, V ) (4.3)

mapping a representative v ∈ V to the class of the extension of 1 by V whose
underlying module is V ⊕ E and whose Frobenius action is given by

(
ϕ v·1
0 1

)
.

Katz’s equivalence leads to a commutative square

Vgood
(idV −ϕ)(Vgood)

H1(π(SpecOE), (TV )IE )

V

(idV −ϕ)(V )
H1(GE , TV )

∼

∼

where, by diagram chasing, the bottom row is given as follows: for v ∈ V , let
w ∈ V ⊗E Es be such that v = w − ϕ(τ∗w), then cv : ρ 7→ w − ρw defines a
cocycle cv : GE → TV whose class does not depend on the choice of w. The
bottom row maps v to cv. Hence, (i) holds if and only if cx comes from a cocycle
in H1(π(SpecOE), (TV )IE ), that is, if and only if (ii) holds.

It remains to prove that (ii) and (iii) are equivalent. Let p be the maximal
ideal of OE . For n ≥ 1, VO/pnVO defines a finite dimensional k-vector space
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equipped with a q-linear action induced by ϕ (as σ(pn) ⊂ pqn ⊂ pn). We denote
it (Vn, ϕn). As k is perfect, there is a unique decomposition:

Vn = An ⊕Bn

by k-subspaces such that ϕn is an automorphism on An and nilpotent on Bn.
By uniqueness and since ϕn is q-linear, those decompositions are compatible for
all n and with the OE/pn-module structure. Taking projective limits, we obtain
a decomposition of OE-modules:

VO = A⊕B

such that ϕ(σ∗A) = A and (idV −ϕ)(B) = B. Hence B ⊂ (idV −ϕ)(V ) and
A ⊂ Vgood. It follows that VO ⊂ Vgood + (id−ϕ)(V ), as desired.

4.2 Models of A-motives over a local function field
General theory

Let R be a commutative F-algebra given together with an F-algebra morphism
κ : A→ R. Let S be a commutative F-algebra containing R. Let M = (M, τM )
be an A-motive over S (with characteristic morphism κ : A→ S).

Definition 4.16. We define an R-integral model L for M to be a sub-A ⊗ R-
module of M of finite type such that

(i) L generates M over A⊗ S,

(ii) τM (τ∗L) ⊂ L[j−1].

We say that L is maximal if it is not strictly contained in any other R-integral
model of M .

Lemma 4.17. A maximal R-integral model for M contains all the R-integral
models for M . In particular, if it exists it is unique.

Proof. Given L1 and L2 two R-integral models, their sum L1 +L2 again defines
an R-integral model. Hence, if L1 is maximal, the inclusion L1 ⊆ L1 +L2 is not
strict: we deduce L1 + L2 = L1, then L2 ⊂ L1.

The next proposition is inspired by [Gar2, Prop. 2.2]:

Proposition 4.18. If S is obtained from R by localization, an R-model for M
exists.

Proof. Let (m1, ...,ms) be generators of M as an A ⊗ S-module, and let L0 be
the sub-A⊗R-module of M generated by (m1, ...,ms). Let d ∈ R be such that
τM (τ∗L0) ⊂ d−1L0[j−1], and set L := dL0. We have

τM (τ∗L) = dqτM (τ∗L0) ⊂ dq−1L0[j−1] = dq−2L[j−1] ⊂ L[j−1].

Thus L is an R-model.

Similarly:

Definition 4.19. We define an R-good model L forM to be a sub-A⊗R-module
of M of finite type such that τM (τ∗L)[j−1] = L[j−1]. We say that L is maximal
if it is not strictly contained in any other R-good model of M .

From the argument given in the proof of Proposition 4.10, we easily deduce
the next lemma.
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Lemma 4.20. Assume that there exists a maximal R-integral model for M .
Then, a maximal R-good model for M exists and is unique.

We continue this section by recording additional properties of maximal R-
models. Those will eventually by useful in Subsection 4.4 for the proof of The-
orem D (Theorem 4.49 in the text).

Let M be an A-motive over S which admits a maximal integral R-integral
models denoted MR.

Proposition 4.21. Let N be a finitely generated sub-A⊗R-module of M such
that τM (τ∗N) ⊂ N [j−1]. Then, N ⊂ MR. In particular, any element m ∈ M
such that τM (τ∗m) = m belongs to MR.

Proof. It suffices to notice that the module L generated byMR and N over A⊗R
is an R-model for M , and hence N ⊂ L ⊂MR.

Corollary 4.22. We have (id−τM )(MR) = (id−τM )(M) ∩MR[j−1].

Proof. The inclusion (id−τM )(MR) ⊂ (id−τM )(M) ∩MR[j−1] is clear. Con-
versely, let m ∈ MR[j−1] and let n ∈ M be such that m = n − τM (τ∗n). The
sub-A⊗R-module 〈MR, n〉 of M generated by elements of MR together with n
over A⊗R is an R-model for M . In particular, 〈MR, n〉 ⊂MR and n ∈MR.

We end this chapter with a remark on the assignment M 7→ MR. Assume
that S is such that every object inMS admits a maximal R-integral model (this
is the case when R ⊂ S is the inclusion of a Dedekind domain into its field of
fractions, as shown in Proposition 4.41 below).

Corollary 4.23. Let f : M → N be a morphism in MS. Then f(MR) ⊂ NR.
In particular, the assignment M 7→MR is functorial.

Existence and first properties

Let E be a local field containing F, let O = OE be its ring of integers and let
k = kE be its residue field. In this subsection, we shall be concerned with the
case where S = E and R = OE , where the characteristic morphism κ : A→ OE
is an F-linear morphism. Let M be an A-motive over E of characteristic κ.

Proposition 4.24. A maximal OE-model for M exists and is unique. In par-
ticular, a maximal OE-good model for M exists and is unique.

Proof. It is enough to show existence of a maximal integral model. Let U be the
A⊗OE-module given by the union of all the OE-models for M . We claim that
U is the maximal OE-model of M . As U is non-empty by Proposition 4.18, it
generates M over E. We also have τM (τ∗U) ⊂ U [j−1]. So our task is to show
that U is finitely generated.

Let T be an OE-model for M and let t = {t1, ..., ts} be a set of generators of
T over A⊗OE . Let m be a basis ofM⊗A⊗EQuot(A⊗E) as a vector space over
Quot(A⊗ E), and let FM ∈ GLr(Quot(A⊗ E)) be the matrix of τM written in
the bases τ∗m and m. Let P ∈Ms,r(A⊗ E) be the matrix expressing t in m.
Because of points (ii) in Definition 4.16, there exists N ∈Ms(A⊗OE [j−1]) such
that P (1)FM = NP . If v denotes the valuation in Quot(A ⊗ E) at the special
fiber C × Spec kE of C × SpecOE , and extend it to matrices over Quot(A⊗E)
by taking the minimal valuation of its coefficients. Then v(N) ≥ 0, and

qv(P ) = v(P (1)) = v(NPF−1
M ) ≥ v(N) + v(P ) + v(F−1

M ) ≥ v(P ) + v(F−1
M ).
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Hence, v(P ) ≥ v(F−1
M )/(q− 1). We conclude that T is contained in the A⊗OE-

module

U0 :=

{
a1m1 ⊕ ...⊕ armr | ai ∈ A⊗ E, v(ai) ≥

v(F−1
M )

q − 1

}
. (4.4)

In particular, U is contained in U0. The latter being a finitely generated module
over the Noetherian ring A⊗OE , the former is finitely generated.

Definition 4.25. We denote by MO the unique maximal OE-integral model of
M , and by Mgood the maximal OE-good model of M .

We have the next:

Proposition 4.26. Both MO and Mgood are locally free over A⊗OE.

The proofs being similar, we solely explicit it in the case of MO. We start
with a useful lemma.

Lemma 4.27. Let a ⊂ A be an ideal. Then MO ∩ aM = aMO.

Proof. The inclusion ⊃ is clear. We assume a 6= 0 and consider the sub-A-motive
(aM, τM ) ofM . If T is anOE-model for (aM, τM ), then a−1T is anOE-model for
M and we have a−1T ⊂MO. This implies that aMO is the maximal OE-model
of (aM, τM ) so that (aM)O = a(MO). Therefore, the inclusionMO∩aM ⊂ aMO
follows from the fact that MO ∩ aM is an OE-model for (aM, τM ).

Proof of Proposition 4.26. Because A⊗OE is a Noetherian domain and MO is
finitely generated, it is enough to show that MO is flat. We use Bourbaki’s local
criterion of flatness. Let m ⊂ A be a maximal ideal and let Fm be its residue
field. Note that

TorA⊗OE1 (A/m⊗OE ,MO) = {m ∈MO | ∀r ∈ m, (r ⊗ 1)m = 0} = 0.

Hence, by [Bou, AC §III.5.2 Thm. 1], the flatness ofMO overA⊗OE is equivalent
to that of MO/mMO over Fm ⊗OE . The ring Fm ⊗OE is a product of discrete
valuation rings and thus MO/mMO is flat (and then locally free) if and only if
it is OE-torsion free. The latter condition is easily seen to be equivalent to the
equality:

mMO = MO ∩mM

which follows from Lemma 4.27.

Remark 4.28. Let M and N be two A-motives over E, and let MO and NO be
their respective integral models. While the maximal integral model of M ⊕N is
easily shown to be MO ⊕NO, it is not true in general that the maximal integral
model ofM⊗N is the image ofMO⊗A⊗OENO inM⊗A⊗EN . To find a counter-
example, we assume q > 2 and consider $ ∈ OE a uniformizer. We consider the
A-motive M over E where M = A ⊗ E and where τM = $ · 1. The maximal
integral model of M is MO = A⊗OE . However, M⊗(q−1) has $−1M

⊗(q−1)
O for

maximal integral model.

Comparison with Frobenius spaces

As in Section 4.1, let E = k(($)) for a perfect field k containing F, let OE = k[[$]]
be its valuation ring and let p = ($) be the maximal ideal of OE . Let ` be a
maximal ideal of A. Note that j(A/`n⊗E) = A/`n⊗E for all positive integers n.
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Let M be an A-motive over E. We have canonical isomorphisms

∀n ≥ 1 : M/`nM ∼= M [j−1]/`nM [j−1]. (4.5)

In particular, for all n ≥ 1, τM defines an A⊗E-linear morphism τ∗(M/`nM)→
M/`nM through the composition

τ∗(M/`nM)
τM−→M [j−1]/`nM [j−1]

(4.5)−→ M/`nM

which we still denote by τM . The pair (M/`nM, τM ) defines a Frobenius space
over E in the sense of Section 4.1. Let Ln ⊂ M/`nM be its maximal integral
model.

Remark 4.29. In general, we cannot claim equality between (MO + `nM)/`nM
and Ln. Here is a counter-example.

Suppose that A = F[t], so that A ⊗ OE is identified with OE [t], and let
` = (t). Let κ : A → OE be the F-algebra morphism which maps t to $. In
this setting, j is the principal ideal of OE [t] generated by (t−$). Consider the
A-motive M := (E[t], f ·1) over E where f = $q−1−$q−2t. We claim that the
maximal integral model of M is OE [t]. Clearly, OE [t] is an integral model for
M so that OE [t] ⊂MO. Conversely, by [Qui2, Thm. 4], MO is free of rank one
over OE [t]. If h generates MO, there exists b ∈ OE [t] such that fh(1) = bh. For
p ∈ E[t], let v(p) be the infinimum of the valuations of the coefficients of p. We
have

v(h) ≥ − v(f)

q − 1
= −q − 2

q − 1
> −1

and h ∈ OE [t]. We get MO ⊂ OE [t].
On the other-hand, the Frobenius space (M/`M, τM ) is isomorphic to the

pair (OE , $q−11), whose maximal integral model is $−1OE , not OE .
If one wants to compare MO with (Ln)n≥1, then one wishes that (MO +

`nM)/`nM defines an integral model for (M/`nM, τM ) for all n ≥ 1. This is
the case in Remark 4.29, although it is not maximal, because the considered
A-motive M is effective. In general, this is not true2. From now on, we assume

(C`) The ideal ` ⊂ A is such that κ(`) contains a unit in OE , that is,

κ(`)OE = OE .

The above assumption ensures that j(A/`n ⊗ OE) = A/`n ⊗ OE for all n ≥ 1
(e.g. the proof Proposition 3.19), and thus that (MO+ `nM)/`nM is an integral
model for (M/`nM, τM ).

Remark 4.30. Note that there always exists a maximal ideal ` in A satisfying
(C`): it suffices to take a maximal ideal ` in A coprime to κ−1(p).

Even though we cannot claim always equality between (MO + `nM)/`nM
and Ln, the data of Ln for all n ≥ 1 is enough to recover MO as we show in the
next theorem.

Theorem 4.31. Let Ln be the maximal integral model of the Frobenius space
(M/`nM, τM ). Let m ∈M . Then m ∈MO if and only if m+ `nM ∈ Ln for all
large enough positive integers n.

We start with some lemmas:

Lemma 4.32. The OE-module Ln is an A/`n ⊗OE-module.
2For instance, consider the t-motive (E[t], (t−$)−11) over E, whose maximal OE-model

is OE [t], together with ` = (t).
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Proof. For an elementary tensor r⊗f in A/`n⊗OE , the OE-module (r⊗f)Ln is
stable by τM . Indeed, we have τM (τ∗(r⊗f)Ln) = (r⊗fq)τM (τ∗Ln) ⊂ (r⊗f)Ln.
By maximality of Ln, we have (r ⊗ f)Ln ⊂ Ln.

Lemma 4.33. Let rn be the range of the OE-lattice (MO + `nM)/`nM in
M/`nM . Then (rn)n≥1 is bounded.

Proof. Note that MO is a finite projective A⊗OE-module by Proposition 4.26.
Let P be a finitely generated A ⊗ OE-module such that N := MO ⊕ P is free
of finite rank. Let r′ be the rank of N and let n be a basis of N . Let also
τN : τ∗N [j−1]→ N [j−1] be the morphism τM ⊕ 0, and denote by

FN = (bij)ij ∈Mr′(A⊗OE [j−1])

the matrix of τN written in the bases τ∗n and n.
For n ≥ 1, let tn be a basis of A/`n over F. For i, j ∈ {1, ..., r′}, let Bnij

be the matrix with coefficients in OE representing the multiplication by bij on
A/`n⊗OE in the basis tn⊗ 1. Then, the matrix of τN : τ∗(N/`nN)→ N/`nN ,
seen as an OE-linear map, and written in the bases τ∗(tn⊗n) and tn⊗n, takes
the form of the block matrix:

FnN := (Bnij)ij ∈Mr′dn(OE)

where dn is the dimension of A/`n over F. One verifies that v(Bnij) equals the
infinimum of the valuation of the coefficients of bij (mod `n) in OE written in
tn. Thus, for large values of n, we have

∀ i, j ∈ {1, ..., r′} : v(Bnij) = v(bij) (n large enough). (4.6)

For all n ≥ 1, note that (MO + `nM)/`nM ∼= MO/`
nMO by Lemma 4.27.

Because MO/`nMO is a direct factor in N/`nN , the range of (MO+ `nM)/`nM
equals the maximal valuation of the (nonzero) elementary divisors relative to
the inclusion of OE-modules

τN (τ∗(N/`nN)) ⊂ N/`nN. (4.7)

The elementary divisors relative to (4.7) coincide, up to units of OE , to those
appearing in the Smith normal form of the matrix FnN ∈Mr′dn(OE).

By (4.6), the valuations of the coefficients of FnN are stationary. The range
of (MO + `nM)/`nM in M/`nM is thus stationary and hence bounded.

For n ≥ 1, let L̃n be the inverse image in M of Ln ⊂M/`nM .

Proof of Theorem 4.31. The statement is equivalent to the equality

MO =

∞⋂
n=D

(L̃n + `nM)

for all positive integer D ≥ 1. The sequence of subsets (L̃n+ `nM)n≥1 decreases
for the inclusion: for n ≥ 1, we have L̃n+1 + `n+1M ⊂ L̃n+1 + `nM and, because
(L̃n+1 + `nM)/`nM defines an integral model for (M/`nM, τM ), we also have
L̃n+1 + `nM ⊂ L̃n + `nM . Consequently, it suffices to treat the case D = 1.

Consider

L :=

∞⋂
n=1

(L̃n + `nM).

By Lemma 4.32, L is an A⊗OE-module. The inclusionMO ⊂ L follows from the
fact that, for all n, (MO+`nM)/`nM is an integral model for (M/`nM, τM ). To
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prove the converse inclusion, we show that L is an integral model for M . From
MO ⊂ L, one deduces that L generatesM over E. Because τM (τ∗(L̃n+`nM)) ⊂
L̃n + `nM [j−1], we also have τM (τ∗L) ⊂ L[j−1]. The theorem follows once we
have proved that L is finitely generated.

Assume that L is not finitely generated. From the Noetherianity of A ⊗
OE , for all s ≥ 0, it follows that L 6⊂ $−sMO. Equivalently, there exists
an unbounded increasing sequence (sn)n≥0 of non-negative integers such that
$snLn 6⊂ (MO+`nM)/`nM . By Proposition 4.7, the range of (MO+`nM)/`nM
is > sn(q − 1). But this contradicts Lemma 4.33.

We record two useful Corollaries from Theorem 4.31.

Corollary 4.34. Let Tn be the maximal good model of the Frobenius space
(M/`nM, τM ). Let m ∈ M . Then m ∈ Mgood if and only if m + `nM ∈ Tn
for all large enough positive integers n.

Proof. For n ≥ 1, let T̃n be the inverse image in M of Tn ⊂M/`nM . Let D be
a positive integer. By Theorem 4.31, the sub-A⊗OE-module of M :

T :=
⋂
n≥D

(T̃n + `nM)

is a submodule of MO, hence is finitely generated. For all n ≥ 1, we have
τM (τ∗(L̃n + `nM)[j−1]) = (L̃n + `nM)[j−1] so that T satisfies τM (τ∗T )[j−1] =
T [j−1]. In particular, T is a good model for M . It is further maximal: as
(Mgood + `nM)/`nM ⊂ Tn for all n, we have Mgood ⊂ T .

Corollary 4.35. Let N = (N, τN ) be an A-motive over OE and NE its base
change to E. Then, N = (NE)O = (NE)good.

For the next section, we shall not only be interested in how to recover MO
from Ln, but also in how to recover MO + (id−τM )(M). While we do not give
a complete answer, we at least show next how to recover its `-adic closure in
M [j−1]. We continue with some finer technicalities.

Even if we do not have equality between L̃n + `nM and MO + `nM , the
former is a good approximation of the latter as we show next.

Lemma 4.36. Let n ≥ 1. The sequence (L̃m + `nM)m≥n is decreasing for the
inclusion, stationary and converges to MO + `nM .

Proof. Let m ≥ 1. (L̃m+1 + `mM)/`mM is an OE-lattice stable by τM in
M/`mM so that L̃m+1 + `mM ⊂ L̃m + `mM . If m ≥ n, we have L̃m+1 + `nM ⊂
L̃m + `nM which shows that (L̃m + `m)m≥n decreases. Similarly, MO + `nM ⊂
L̃m+`nM for allm ≥ n. Because the set of OE-lattices Λ such thatMO+`nM ⊆
Λ ⊆ L̃n + `nM is finite, the sequence (L̃m + `nM)m≥n is stationary. We denote
by Ln its limit. By Theorem 4.31, we have

Ln =

∞⋂
m=n

(L̃m + `nM) =

∞⋂
m=n

(L̃m + `mM) + `nM = MO + `nM.

This concludes the proof.

Lemma 4.37. There exists an unbounded and increasing sequence (kn)n≥1 of
non-negative integers such that, L̃n + `nM ⊂MO + `knM (typically, kn ≤ n for
all n).
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Proof. For m ≥ 1, let Im be the set of non-negative integers k such that L̃m +
`mM ⊂ MO + `kM . Im is nonempty as it contains 0. Im is further bounded:
otherwise we would have

L̃m + `mM ⊂
⋂
k

(MO + `kM) = MO (4.8)

which is impossible (L̃m + `mM is an A ⊗ OE-module which is not of finite
type). Hence Im has a maximal element, which we denote by km. Because
L̃m+1 + `m+1M ⊂ L̃m + `mM , we have km+1 ≥ km. This shows that (km)m≥1

increases. We show that it is unbounded. Let n ≥ 1. By Lemma 4.36, there
exists m ≥ n such that MO + `n = L̃m + `nM . Thus L̃m + `mM ⊂MO + `nM .
In particular, there exists m ≥ n such that km ≥ n.

Proposition 4.38. Assume that M is effective, and let m ∈M . The following
are equivalent:

(i) m belongs to the `-adic closure of MO + (id−τM )(M) in M ,

(ii) for all n ≥ 1, m ∈ L̃n + (id−τM )(M) + `nM .

Proof. By Theorem 4.31, the inclusion

MO + (id−τM )(M) ⊂
∞⋂
n=1

[
L̃n + (id−τM )(M) + `nM

]
holds as subsets of M , and the right-hand side is `-adically complete. Hence (i)
implies (ii). The converse follows from Lemma 4.37:

∞⋂
n=1

[
L̃n + (id−τM )(M) + `nM

]
⊂
∞⋂
n=1

[
MO + (id−τM )(M) + `knM

]
where the right-hand side is identified with the `-adic completion of MO +
(id−τM )(M).

Néron-Ogg-Shafarevič-type criterion

This paragraph is an aparté offering a good reduction criterion, very much in
the spirit of Gardeyn’s Néron-Ogg-Shafarevič-type criterion [Gar1, Thm. 1.1].
The results of this subsection are not needed in the sequel, although they are
useful in examples to compute maximal models.

Proposition 4.39. Let M be an A-motive over E, and let ` be a maximal ideal
of A such that κ(`)OE = OE. The following statements are equivalent:

(i) There exists an A-motive N over OE such that NE is isomorphic to M .

(ii) The inclusion Mgood ⊂MO is an equality.

(iii) The representation T`M is unramified.

Proof. The equivalence between (i) and (ii) follows from Theorem 4.31 and
Corollary 4.34. LetMn denote the Frobenius space (M/`nM, τM ) of the previous
section, and let Ln and Tn be its maximal integral and good model respectively.
The equivalence between (ii) and (iii) follows from the following sequence of
equivalent statements:

T`M is unramified⇐⇒ ∀n ≥ 1, TMn is unramified (notations of Thm. 4.13)

⇐⇒ ∀n ≥ 1, Tn = Ln (by Prop. 4.14)

⇐⇒Mgood = MO (by Thm. 4.31 and Cor. 4.34).
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Definition 4.40. We say that M has good reduction if one of the equivalent
points of Proposition 4.39 is satisfied.

4.3 Models of A-motives over a global function field
We go back to Definition 4.16, where now S = F is a global function field that
contains F, and R is a sub-F-algebra of F which, as a ring, is a Dedekind domain
whose fraction field is F . Given a maximal ideal p in R, we denote by Rp the
completion of R at p and we let Fp be the fraction field of Rp. Let κ : A → F
be an F-algebra morphism.

Let M = (M, τM ) be an A-motive over F of rank r, and let Mp = MFp
be

the A-motive over Fp of rank r obtained from M by base change from F to Fp.
We let MRp

denote the maximal Rp-model of Mp.

Proposition 4.41. There exists a unique maximal R-model for M . It equals
the intersection

⋂
p(M ∩MRp

) for p running over the maximal ideals of R. We
denote it MR.

Proof. From Lemma 4.17, uniqueness is automatic. Let N be an R-model for
M (whose existence is ensured by Proposition 4.18). For any maximal ideal
p of R, we have N ⊂ N ⊗R Rp ⊂ MRp

by maximality of MRp
. Therefore

N ⊂
⋂

p(M ∩MRp
). Hence, it is sufficient to show that

⋂
p(M ∩MRp

) is an
R-model. First note that it is a sub-A ⊗ R-module of M which, as it contains
N , generatesM over F . To show stability by τM , let e be a large enough integer
such that τM (τ∗M) ⊂ j−eM . One easily checks that:

τM

(
τ∗
⋂
p

(M ∩MRp
)

)
⊂
⋂
p

j−e(M ∩MRp
) ⊂

(⋂
p

M ∩MRp

)
[j−1].

It remains to show that
⋂

p(M ∩MRp
) is finitely generated over A⊗R. Letm :=

(m1, ...,mr) and a be respectively a family of elements in M ⊗A⊗F Quot(A⊗F )
and a nonzero ideal of A⊗F such thatM = (A⊗F )m1⊕· · ·⊕(A⊗F )mr−1⊕amr.
Let FM ∈ GLr(Quot(A ⊗ F )) be the matrix of τM written in τ∗m and m. By
Proposition 4.24 and its proof, the A⊗R-module:{

a1m1 + ...+ armr|∀i,∀p ∈ SpmR : ai ∈ A⊗ F, vp(ai) ≥
vp(F−1

M )

q − 1

}
contains

⋂
p(M ∩MRp

) and is finitely generated (compare with (4.4)). Because
A⊗R is Noetherian,

⋂
p(M∩MRp

) is finitely generated, and hence is the maximal
model of M .

From Lemma 4.20, we obtain:

Corollary 4.42. The maximal good model Mgood of M exists and is unique.

We now state the global version of Lemma 4.27 and Proposition 4.26 (with
R in place of Rp). The argument is similar, so we omit proofs.

Proposition 4.43. Both MR and Mgood are locally-free over A⊗R.

Remark 4.44. Note, however, that an integral model for M , when not maximal,
is not necessarily locally-free. For instance, the F[t]-motive 1 = (F[t](θ),1) over
F(θ) admits L := tF[t, θ] + θF[t, θ] as F[θ]-model. But it is well-known that L
is not a flat F[t, θ]-module. A short way to see this consists in considering the
element ∆ := (t⊗ θ − θ ⊗ t) ∈ L⊗F[t,θ] L. ∆ is nonzero in L⊗F[t,θ] L, but

θ ·∆ = (θt)⊗ θ − θ ⊗ (θt) = (θt)⊗ θ − (θt)⊗ θ = 0.

Then L is not flat because L⊗F[t,θ] L has non trivial torsion.
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Definition 4.45. We say that M has good reduction at p if Mp has good re-
duction. We say that M has everywhere good reduction if M has good reduction
at p for all maximal ideals p of R.

4.4 The integral part of A-motivic cohomology
Over local function fields

Let Fp be a local function field with valuation ring Op and maximal ideal p.
Let F ur

p be the maximal unramified extension of Fp in F sp . Let Ip be the inertia
subgroup of Gp = GFp

. Let κ : A→ Op be the characteristic morphism.

Let M be an A-motive over Fp and let MOp
be its integral model.

Definition 4.46. We define Ext1
Op

(1,M) as the sub-A-module of Ext1
MFp

(1,M)

given by the image of MOp
[j−1] through ι (Theorem 2.13).

From Corollary 4.22, ι induces an isomorphism of A-modules:

MOp
[j−1]

(id−τM )(MOp
)

∼−→ Ext1
Op

(1,M).

Remark 4.47. An important remark is that the assignment M 7→ Ext1
Op

(1,M)
is functorial, thanks to Corollary 4.23.

Our main result is the following:

Theorem 4.48. Let ` be a maximal ideal in A such that κ(`)Op = Op. Then,
Ext1

Op
(1,M) ⊂ Ext1

good(1,M)`.

Proof. Let [E] ∈ Ext1
Op

(1,M). By definition, there exists m ∈ MOp
[j−1] such

that [E] = ι(m). If L̃n denotes a lift in M of the maximal integral model of
the Frobenius space (M/`nM, τM ), we obtain m ∈ L̃n + `nM for all n. By
Proposition 4.15, there exists yn ∈M ⊗Fp

⊗F nr
p such that

m ≡ yn − τM (τ∗yn) (mod `n). (4.9)

Note that, for each n, there are only finitely many such yn (mod `n). We next
show that we can choose compatibly yn for all n (that is yn+1 ≡ yn (mod `n)).
Let us define a tree T indexed by n ≥ 1 whose nodes at the height n are
the solutions yn of (4.9) in (M ⊗Fp

F ur
p )/`n(M ⊗Fp

F ur
p ). There is an edge

between zn and zn+1 if and only if zn+1 coincides with zn modulo `n. The tree
has finitely many nodes at each height and it is infinite from the fact that a
solution of (4.9) exists for all n. By König’s Lemma, there exists an infinite
branch on T . This branch corresponds to a converging sequence (yn)n≥1 whose
limit y in (M⊗̂Fp

F ur
p )` satisfies m = y − τM (τ∗y). Therefore, we conclude that

[E] ∈ Ext1
good(1,M)` thanks to Proposition 2.23.

Over global function fields

Let F be a finite field extension of K and let OF be the integral closure of A in
F . We let κ : A → OF denote the inclusion. We fix S to be a set of nonzero
prime ideals of OF and consider the subring R := OF [S−1] of F . The ring R is
a Dedekind domain whose fraction field is F .

Let M = (M, τM ) be an Anderson A-motive over F . Given a maximal ideal
p ⊂ R, we let Mp be the A-motive over Fp obtained from M by base-change
from F to Fp. Given an extension [E] ∈ Ext1

MF
(1,M), the exactness of the base
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change functor defines an extension [Ep] ∈ Ext1
MFp

(1p,Mp). This allows us to
define the following submodule of Ext1

MF
(1,M):

Ext1
R(1,M) =

⋂
p⊂R

maximal

{
[E] ∈ Ext1

MF
(1,M) | [Ep] ∈ Ext1

Rp
(1p,Mp)

}
.

Our second main result consists of the next theorem.

Theorem 4.49. Let MR denote the maximal integral R-model of M . The A-
module Ext1

R(1,M) equals the image ofMR[j−1] through ι. In addition, ι induces
a natural isomorphism of A-modules:

MR[j−1]

(id−τM )(MR)

∼−→ Ext1
R(1,M).

The proof of the above theorem will result after a sequence of lemmas.

Lemma 4.50. Let MRp
be the maximal integral model of Mp = (Mp, τM ).

Inside M [j−1], we have:

M [j−1] ∩
(
MRp

[j−1] + (id−τM )(Mp)
)

= M [j−1] ∩MRp
[j−1] + (id−τM )(M).

Proof. The inclusion ⊃ is clear. Since M is generated over F by elements in
M ∩MRp

and as Fp = F +Rp, we haveMp = M+MRp
. Let m be an element in

the left-hand side. We can write m as mp +np− τM (τ∗np) +n− τM (τ∗n) where
mp ∈ MRp

[j−1], np ∈ MRp
and n ∈ M . In particular, mp + np − τM (τ∗np)

belongs to M [j−1] ∩ MRp
[j−1] which implies that m ∈ M [j−1] ∩ MRp

[j−1] +
(id−τM )(M).

Lemma 4.51. Let m ∈ M . Then m ∈ MRp
for almost all maximal ideals p of

R.

Proof. There exists a nonzero element d ∈ R such that dm ∈MR. Let {q1, ..., qs}
be the finite set of maximal ideals in R that contain (d). By Proposition 4.41,
m ∈MRp

for all p not in {q1, ..., qs}.

Let N be a finite dimensional vector space over F (resp. Fp). By a lattice in
N we mean a finitely generated module over R (resp. Rp) in N that contains a
basis of N .

Lemma 4.52 (Strong approximation). Let N be a finite dimensional F -vector
space and, for all maximal ideals p of R, let NRp

be an Rp-lattice in Np :=
N ⊗R Fp such that the intersection

⋂
p

(
N ∩NRp

)
, over all maximal ideals p of

R, is an R-lattice in N . Let T be a finite set of maximal ideals in R and, for
q ∈ T , let nq ∈ Nq. Then, there exists n ∈ N such that n − nq ∈ NRq

for all
q ∈ T and n ∈ NRp

for all p not in T .

Proof. Let NR denote the intersection
⋂

p

(
N ∩NRp

)
over all maximal ideals p of

R. By the structure Theorem for finitely generated modules over the Dedekind
domain R, there exists a nonzero ideal a ⊂ R and elements {b1, ..., br} ⊂M such
that

NR = Rb1 ⊕ · · · ⊕Rbr−1 ⊕ abr.

Because NR⊗RRp ⊂ NRp
for p ⊂ R, we have Rpb1⊕· · ·⊕pvp(a)Rpbr ⊂ NRp

. For
q ∈ T , let us write nq =

∑
i fq,ibi with fq,i ∈ Fq. By the strong approximation

Theorem [Ros, Thm. 6.13], for all i ∈ {1, ..., r}, there exists fi ∈ F such that

1. for q ∈ T and i ∈ {1, ..., r − 1}, vq(fi − fq,i) ≥ 0,
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2. for q ∈ T , vq(fr − fq,r) ≥ vq(a),

3. for p /∈ T and i ∈ {1, ..., r − 1}, vp(fi) ≥ 0,

4. for p /∈ T , vp(fr) ≥ vp(a).

The element n =
∑
i fibi ∈ N satisfies the assumption of the lemma.

Lemma 4.53. We have⋂
p⊂R

(
M [j−1] ∩MRp

[j−1] + (id−τM )(M)
)

= MR[j−1] + (id−τM )(M)

where the intersection is indexed over the maximal ideals of R.

Proof. The inclusion ⊃ follows from Proposition 4.41. Conversely, let m be an
element of

⋂
p⊂R

(
M [j−1] ∩MRp

[j−1] + (id−τM )(M)
)
. By Lemma 4.51, there

exists a finite subset T of maximal ideals of R such that m ∈ MRp
[j−1] for

p /∈ T . For q ∈ T , there exists nq ∈ M and mq ∈ M [j−1] ∩MRq
[j−1] such that

m = mq + nq − τM (τ∗nq).
Let N be a finite dimensional sub-F -vector space of M that contains m and

nq for all q ∈ T . For a maximal ideal p of R, let NRp
:= MRp

∩ (N ⊗F Fp). We
have NR :=

⋂
p(N ∩NRp

) = N ∩MR. The latter is an R-lattice in N and hence
we are in the situation of Lemma 4.52: there exists n ∈ N such that n−nq ∈ NRq

for all q ∈ T and n ∈ NRp
for all p not in T . Then m+n−τM (τ∗n) ∈ NR ⊂MR,

which ends the proof.

Proof of Theorem 4.49. Let [E] ∈ Ext1
MF

(1,M) and let m ∈ M [j−1] be such
that [E] = ι(m). The proof of Theorem 4.49 is achieved via the sequence of
equivalence:

[E] ∈ Ext1
R(1,M)⇐⇒ ∀p ∈ SpmR : [Ep] ∈ Ext1

Rp
(1p,Mp)

⇐⇒ ∀p ∈ SpmR : m ∈M [j−1] ∩ [MRp
[j−1] + (id−τM )(Mp)]

⇐⇒ ∀p ∈ SpmR : m ∈M [j−1] ∩MRp
[j−1] + (id−τM )(M)

⇐⇒ m ∈MR[j−1] + (id−τM )(M)

⇐⇒ [E] ∈ ι(MR[j−1])

where the second equivalence stems from Definition 4.16, the third from Lemma
4.50 and the fourth from Lemma 4.53. The second assertion follows from Corol-
lary 4.22.

5 Regulated extensions
Let Fp be a local function field with valuation ring Op and maximal ideal p. Let
κ : A → Op be the characteristic morphism, and consider an A-motive M over
Op. In the previous section, we proved that for a maximal ideal ` in A satisfying
κ(`)Op = Op, there is an inclusion:

Ext1
Op

(1,M) ⊂ Ext1
good(1,M) (5.1)

as sub-A-modules of Ext1
MFp

(1,M). Surprisingly, this is almost never an equal-
ity. In Subsection 5.1, we construct explicitly a class in the right-hand side of
(5.1) which does not belong the left-hand side. In the remaining part of this
text, we offer a conjectural framework which we expect to solve the default of
(5.1) to be an equality.
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5.1 A particular extension of 1 by itself
We consider the case where A = F[t] and consider the maximal ideal ` = (t) in
A. Let E be the local function field F((π)), O = F[[π]], with structure morphism
κ : A→ O defined by κ(t) = 1 + π (that is, π = θ− 1 where θ = κ(t)). We have
κ(`)O = (1 + π)F[[π]] = O so κ(`)O = O. Let M = 1 over E.

By Proposition 2.21 enriched with Proposition 4.15, there is a commutative
square of A-modules:

Ext1
ME

(1,1) H1(IE , T(t)1)

E[t, 1
t−θ ]

(id−τ)(E[t])

Eur[[t]]

O[[t]] + (id−τ)(E[[t]])

o ι o

where the bottom arrow is induced by the inclusion of E[t, (t− θ)−1] in E[[t]].

Hereafter, we construct an element m in E[t, (t− θ)−1] of the form

m =
mk

(t− θ)k
+ · · ·+ m1

(t− θ)

for some m1, ...,mk in E, not all in O, such that m belongs to (id−τ)(E[[t]]).
Then, ι(m) has good reduction with respect to (t) (in the sense of Definition
2.22) but does not belong to O[t, (t− θ)−1] + (id−τ)(E[t]).

Let k = q2 where q is the number of elements of F, and for i ∈ {0, ..., k− 1},
define n′i as θi(π−1 − π−q) in E. For all c ≥ 0, let fck be a root in E of the
polynomial:

Xq −X + θ−ckn′0.

Such a root exists in E as θ−k ≡ 1 (mod πq
2

). For l ≥ 0, we define fl ∈ E by
fl := fck where l = ck + r for c ≥ 0 and 0 ≤ r < k. Then, we have

∀l ≥ 0 : θ−ln′l̄ = fl − fql (5.2)

where l ∈ {0, ..., k − 1} denotes the rest of the euclidean division of l by k.

For l ≥ 0, let Sk(l) be the Pascal matrix whose ith row-jth column entry is
the binomial coefficient

(
i+j+l
i+l

)
(0 ≤ i, j < k). The following claims are easily

proven:

(i) The determinant of Sk(0) is 1.

(ii) Let p be the characteristic of F. For l ≥ 0, we have the formula

Sk(l + 1) ≡


1

1
. . .

1
1

Sk(l) (mod p)

(iii) The application l 7→ Sk(l) is k-periodic modulo p.
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We now define m′i ∈ E for i ∈ {0, ..., k − 1} by mean of the formula:

Sk(0)


m′0
m′1
...

m′k−1

 =


n′0
n′1
...

n′k−1


Since the ni’s have negative valuation, at least one of the mi’s has negative
valuation (by (i)). From (ii), we have

∀l ≥ 0 : Sk(l)


m′0
m′1
...

m′k−1

 =


n′
l̄

n′
l+1
...

n′
l+k−1


From (5.2), we obtain:

∀l ≥ 0 : θ−l

(
k−1∑
i=0

m′i

(
i+ l

l

))
= fl − fql . (5.3)

Finally, for i ∈ {1, ..., k}, let mi := (−θ)im′i−1. Formula (5.3) amounts to:

m :=
mk

(t− θ)k
+ ...+

m1

(t− θ)
= f − f (1)

where f :=
∑
l≥0 flt

l. Therefore ι(m) has good reduction, although m does not
belong to O[t, (t− θ)−1] + (id−τ)(E[t]).

5.2 Hodge poylgons of A-motives
We recognize in the extension ι(m), constructed in the previous subsection, that
m has a large pole at j = (t − θ). We now introduce the notion of regulated
extensions which naturally prevent the poles of extensions of being too large.

We first recall some materials on Hodge-Pink structures. Let Fp be a local
function field with valuation ring Op and maximal ideal p. Let κ : A → Fp be
the characteristic morphism (we do not require it to have values in Op). We
denote by Fp[[j]] the discrete valuation ring obtained by taking the completion of
A⊗ Fp along powers of j. We denote by Fp((j)) its field of fractions.

Let m be the maximal ideal of A given by κ−1(p), and denote by Km the
local field of (C,OC) at m. We have the following:

Lemma 5.1. The ring morphism ν : A 7→ A⊗ Fp, a 7→ a⊗ 1 extends uniquely
to a ring morphism ν : Km → Fp[[j]] such that the composition of ν followed by
reduction mod j coincide with the canonical inclusion Km ↪→ Fp[[j]]/j ∼= Fp.

Proof. Uniqueness is clear. We proceed in three steps for the existence. The
first step is to extend ν to K. Let a ∈ A. We have a ⊗ 1 ∼= 1 ⊗ a (mod j).
Additionally, Fp[[j]] is a discrete valuation ring with maximal ideal j and residue
field Fp. Hence, if a is nonzero, a⊗ 1 is invertible because a is invertible in Fp.
This extends ν to K.

Let πm ∈ K be a uniformizing parameter for Km and let a, b 6= 0 be elements
of A such that πm = a/b. We have the identification Km = Fm((πm)) where Fm
is the residue field of Km. Let L be the subfield L := F((πm)) of Km. Our second
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step is to extend ν to L. Following Pink’s observation [Pin, Prop. 3.1], we unfold
the formal computation

L 3
∑
k

(fkπ
k
m ⊗ 1) =

∑
k

fk(1⊗ πm + πm ⊗ 1− 1⊗ πm)k

=
∑
k

fk

(
1⊗ πm +

a⊗ b− b⊗ a
b⊗ b

)k
=
∑
k

fk
∑
`≥0

(
k

l

)(
a⊗ b− b⊗ a

b⊗ b

)`
(1⊗ πm)k−`

=
∑
`≥0

(
1⊗

∑
k

fk

(
l

k

)
πk−`m

)(
a⊗ b− b⊗ a

b⊗ b

)`
where the inner sum converges in Km. We then set

ν

(∑
k

fkπ
k
m

)
:=
∑
`≥0

(
1⊗

∑
k

fk

(
l

k

)
πk−`m

)(
a⊗ b− b⊗ a

b⊗ b

)`
∈ Fp[[j]].

It is formal to check that this defines a ring homomorphism L → Fp[[j]] which
extends ν.

Finally, we extend ν to Km. Let α ∈ Km and let pα(X) be the minimal
polynomial of α over L. As Km/L is a separable extension, pα(X) ∈ L[X] is
separable. We consider pα(X) as a polynomial in Fp[[j]][X] via ν : L → Fp[[j]].
It admits the image of α through Km ↪→ Fp

∼= Fp[[j]]/j as a root modulo j. By
Hensel’s Lemma, pα(X) admits a unique root α̃ in Fp[[j]] which lifts α. Setting
ν(α) = α̃ extends ν to Km → Fp[[j]] in a morphism which verifies the assumption
of the lemma.

Definition 5.2. A p-adic Hodge-Pink structure Ĥ is a pair (H, qH) where H
is a Km-vector space and qH is an Fp[[j]]-lattice inside H ⊗Km,ν Fp((j)). We call
pH := H ⊗Km,ν Fp[[j]] the tautological lattice and qH the Hodge-Pink lattice.

A p-adic Hodge-Pink structure induces a (separated and exhaustive) decreas-
ing filtration Fil on the Fp-vector space HFp

:= H⊗Km
Fp as follows. For p ∈ Z,

FilpHFp
is defined as the image of pH ∩ jpqH through

pH = H ⊗Km,ν Fp[[j]]
(mod j)−→ H ⊗Km

Fp = HFp
.

The Hodge polygon of H is defined as the Hodge polygon of Fil = (FilpHFp
)p∈Z.

Let M be an A-motive over Km. We attach to M a p-adic Hodge-Pink
structure Ĥ := Ĥp(M) as follows. Its underlying Km-vector space is H :=

(τ∗M)/j(τ∗M) and its Hodge-Pink lattice is qH := τ−1
M (M)⊗A⊗Km,ν⊗id Fp[[j]].

Lemma 5.3. Let M be an A-motive over K and let F be a finite extension of
K. For a finite place p of F , let m = p ∩ A, and let Mm be the A-motive over
Km obtained from M by base change. Then, the Hodge polygon of the p-adic
Hodge-Pink structure Ĥp(Mm) does not depend on p.

Proof. Given e a large enough integer for which jeτM (τ∗M) ⊂M , we have

M/jeτM (τ∗M) ∼=
r⊕
i=1

(A⊗K)/je+wi
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for some integers w1 ≤ · · · ≤ wr independent of e nor of the isomorphism. If
(FilpHFp

)p is the induced Hodge filtration of Ĥp(Mm), we have

∀p ∈ Z, dimFp
(FilpHFp

) = #{i ∈ {1, ..., r} | wi ≥ p}.

In particular, the associated Hodge polygon only depends on the numbers w1 ≤
· · · ≤ wr.

Remark 5.4. The fact that the Hodge polygon is independent on the place also
have strong connections with expectations in p-adic Hodge theory. Following
[Har1, §2.9], Fontaine’s Qp-algebra B+

dR would be our analogue of Fp[[j]] seen
as a Km-algebra via ν. The independence of p in the number fields setting
would follow from p-adic comparison theorems: for X a variety over Q, the
independence of the Hodge-Tate polygon would be a consequence of Fontaine’s
conjecture, stating that there is an isomorphism of BdR-vector spaces:

BdR ⊗Qp H
i
ét(XQ̄p ,Qp)

∼−→ BdR ⊗Q H
i
dR(X)

given naturally in X, and compatible with the filtrations on both sides.
Therefore, the next notion is well-defined.

Definition 5.5. Let L be one of the fields Km, K, F a finite extension of K or
Fp for p above m, and let M be an A-motive over L. Depending on L, we define
successively the Hodge polygon of M to be:

(a) if L = Km, the Hodge polygon of Ĥp(M),

(b) if L = Fp, the Hodge polygon of Ĥp(ResFp/Km
M),

(c) if L = K, the Hodge polygon of Ĥp(Mp) for some finite place p of F ,

(d) if L = F , the Hodge polygon of ResF/K(M).

Remark 5.6. In the classical situation, it is expected that given an exact sequence
0 → N → M → P → 0 of mixed motives over Q, the Hodge polygon of N ⊕ P
coincides with that of M . It is not true in our situation and this motivates what
comes next.

Definition 5.7. We call an exact sequence 0 → N → M → P → 0 in ML

regulated if the Hodge polygon of N ⊕ P coincide with that of M .

Remark 5.8. We have chosen the naming regulated to allude to the notion of
regulators of A-motives, to be introduced in an upcoming work.

The next proposition allows to compute regulated extensions in the category
ML.

Proposition 5.9. Let M and N be two objects in ML. Denote by [E] the
extension of M by N given by ιN,M (u) where u ∈ HomA⊗L(τ∗N,M)[j−1]. Then,
[E] is regulated if and only if there exists f : HomA⊗L(τ∗N, τ∗M) and g ∈
HomA⊗L(N,M) such that u = g ◦ τN − τM ◦ f .

Proof. The A-motives E and M ⊕N have the same Hodge-Polygons if and only
if for all large enough integer e, the j-torsion A⊗ L-modules

M ⊕N�
je
(
τM 0
0 τN

)
(τ∗M)⊕ (τ∗N)

, M ⊕N�
je
(
τM u
0 τN

)
(τ∗M)⊕ (τ∗N)

are isomorphic. This is the case if and only if there exists F ∈ AutA⊗L(τ∗M ⊕
τ∗N) and G ∈ AutA⊗L(M ⊕N) such that G

(
τM 0
0 τN

)
= (

τM u
0 τN )F . By identi-

fying G with
(
a0 g

′

0 b0

)
and F with

(
a1 f

′

0 b1

)
for some automorphisms a0, b0, a1, b1
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of M , N , τ∗M and τ∗N respectively, and A⊗ L-linear morphisms g′ : N →M
and f ′ : τ∗N → τ∗M , the proposition follows by setting g := g′ ◦ b−1

0 and
f := f ′ ◦ b−1

1 .

It follows from the above proposition that if [E] and [E′] are equivalent
extensions, then [E] is regulated if and only if so is [E′]. In particular, the
subset Ext1,reg

ML
(N,M) of regulated extensions of N by M is well-defined. It is

also a sub-A-module of Ext1
ML

(N,M). We have:

Corollary 5.10. LetM be an A-motive over L. Then, ι induces an isomorphism
of A-modules:

M + τM (τ∗M)

(id−τM )(M)

∼−→ Ext1,reg
ML

(1,M).

Remark 5.11. In particular, the extension of 1 by itself constructed in Subsection
5.1 is not regulated.

5.3 Regulated extensions having good reduction
Let F be a finite extension of K, let p be a finite place of F . Hereafter, κ is the
inclusion of A into F , and OF is the integral closure of A in F . By the field
L (resp. the ring OL) we shall mean either F or Fp (resp. OF or Op). Let
m = p ∩A and let ` be a maximal ideal in A distinct from m.

Definition 5.12. We let Ext1,reg
OL (1,M) be the submodule of Ext1

OL(1,M) con-
sisting of regulated extensions. Similarly, by Ext1,reg

good(1,M)` we designate the
submodule of Ext1

good(1,M)` consisting of regulated extensions in the category
ML.

Let M be an A-motive over Fp. By Theorem C (Theorem 4.49), there is an
inclusion of A-modules:

Ext1,reg
Op

(1,M) ⊆ Ext1,reg
good(1,M)`. (5.4)

We strongly expect this to be an equality for a large class of A-motives. For the
remaining of this section, we present some evidences for this expectation.

Theorem 5.13. Assume that N is effective, pure of weight 0 and has good
reduction. Then, (5.4) is an equality. In particular, Ext1,reg

good (1, N)` does not
depend on `.

The above will result as a sequence of lemmas:

Lemma 5.14. Let N be a pure of weight 0 effective A-motive of rank r ≥ 1
over a separably closed field H. Then, there exists a non zero ideal a ⊂ A such
that N ∼= 1

⊕(r−1) ⊕ a, where a is the A-motive (a⊗H,1).

Proof. We first claim that τN (τ∗N) = N . By purity, let Λ be an A∞(H)-lattice
in N ⊗A⊗H B∞(H) such that τnN (τn∗Λ) = Λ for some n ≥ 1. Up to replacing Λ
by the lattice Λ ∩ τN (τ∗Λ) ∩ · · · ∩ τn−1

N (τ (n−1)∗Λ), we can assume that n = 1.
By the Beauville-Laszlo Theorem [BeaLa], we glue Λ and N to obtain a

locally-free sheaf N on C ×H together with a homomorphism τN : τ∗N → N
extending τN . Let D be the divisor on C×H associated to the invertible OC×H -
module detN . Taking the determinant of τN yields:

O(τ∗D + (det τN )) = O(−d · V (j) +D)

where d is the dimension of N/τN (τ∗N) over H. Comparing degrees, we obtain
d = 0. Therefore, N = τN (τ∗N).
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For n ∈ Z, letNn := π−n∞ Λ∩N . The sequence (Nn)n∈Z is an increasing family
of finite dimensionalH-vector spaces whose union isN , and we have τN (τ∗Nn) =
Nn. Since H is separably closed, it follows from [Kat1] that NτN=1

n ⊗H ∼= Nn.
Hence, we have

NτN=1 ⊗H ∼−→ N. (5.5)

Now, NτN=1 is torsion-free and finitely generated over the Dedekind domain A,
hence it is projective of rank r. Thus, there exists a non zero ideal a ⊂ A such
that NτN=1 ∼= A⊕(r−1) ⊕ a. We conclude by (5.5).

Lemma 5.15. Assume A = F[t], and let N be a pure of weight 0 effective A-
motive over a field L. There exists an A∞(L)-lattice Λ in N ⊗A⊗L B∞(L) such
that:

1. τN (τ∗Λ) = Λ,

2. As L-vector spaces, N ⊗A⊗L B∞(L) = N ⊕ Λ.

Proof. From Lemma 5.14, and because A = F[t], the result is easily proven for
NLs where Ls is a separable closure of L. As such, there exists an A∞(Ls)-
lattice in N ⊗A⊗L B∞(Ls) such that τN (τ∗Λs) = Λs and N ⊗A⊗L B∞(Ls) =
(N ⊗L Ls)⊕ Λs.

The Galois groupGL = Gal(Ls|L) acts onN⊗A⊗LB∞(Ls) through the right-
hand side, leaving N⊗A⊗LB∞(L) invariant. We claim that Λs is stable through
the action of GL. Indeed, let Λ0 be an A∞(L)-lattice inside N ⊗A⊗L B∞(L),
and assume without loss that

Λs ⊂ Λ0 ⊗A∞(L) A∞(Ls).

Then, by the elementary divisor Theorem for the discrete valuation ringA∞(Ls),
there exists a basis (λ1, ..., λr) of Λ0 ⊗A∞(L) A∞(Ls) and non-negative integers
(s1, ..., sr) such that

Λs = πs1∞A∞(Ls) · λ1 + ...+ πsr∞A∞(Ls) · λr.

It follows that Λs is stable by GL. We let:

Λ := ΛGLs = {λ ∈ Λs | ∀σ ∈ GL, σ(λ) = λ},

so that both τN (τ∗Λ) = Λ and N⊗A⊗LB∞(L) = N⊕Λ. From this last equality,
it easily follows that Λ is an A∞(L)-lattice in N ⊗A⊗L B∞(L).

Lemma 5.16. Let ` be a maximal ideal of A and let N be a pure of weight 0
effective A-motive over Fp having good reduction. Then NOp

+ (id−τN )(N) is
`-adically closed in N .

Proof. Without loss of generality, we may assume that A = F[t]. Let Λ be as
in Lemma 5.15. For n ≥ 0, let Nn be the finite dimensional Fp-vector space
`nΛ ∩N . (Nn)n defines an increasing sequence of subspaces of N and we both
have

⋃
n≥0Nn = N and N = Nn ⊕ `nN . We also claim that:

NOp
∩N = (NOp

∩Nn)⊕ `n(NOp
∩N).

To see this, note that since N has good reduction, the image of NO∩Nn through
N → N/`nN equals the maximal integral model of (N/`nN, τM ). Hence NOp

∩
N ⊂ (NOp

∩Nn)⊕ `nN and the claim follows.
Letm ∈ N be such that there exists a sequence (mn)n≥0 inNOp

+(id−τN )(N)
which converges `-adically to m. We have m ∈ Nd for a large enough inte-
ger d. If pd denotes the projection onto Nd orthogonaly to `dN , we obtain
m = pd(m) = pd(md) ∈ (NOp

∩Nd) + (id−τN )(Nd) as desired.
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Proof of Theorem 5.13. Let [E] = ι(m) be an extension in Ext1,reg
good(1, N)`. By

definition, m ∈ N , and by Proposition 2.3, there exists ξ ∈ (N⊗̂Fp
F ur
p )` such

that
m = ξ − τN (τ∗ξ). (5.6)

Reducing (5.6) modulo `n for all n ≥ 1, we obtain from Proposition 4.15, applied
to the Frobenius space (N/`nN, τN ), that

∀n ≥ 1 : m ∈ L̃n + (id−τN )(N) + `nN

where L̃n is a lift in N of a maximal integral model for (N/`nN, τN ). It follows
from Proposition 4.38 thatm belongs to the `-adic closure of NOp

+(id−τN )(N).
But the later is already closed by Lemma 5.16. It follows that m ∈ NOp

+

(id−τN )(N), which amounts to [E] ∈ Ext1,reg
Op

(1, N) as desired.

Let now A be F[t], and let A(n) be the nth twist of the Carlitz motive over
Fp (see the notations of Example 2.4). Let ` 6= m be a maximal ideal of A.

Theorem 5.17. The inclusion (5.4) is an equality for M = A(pk), where
p is the characteristic of F and k is a non negative integer. In particular,
Ext1,reg

good (1, A(pk))` is independent of `.

The rest of the text is devoted to the proof of Theorem 5.17. We start
by stating lemma which holds for general A(n), n > 0. The proof is an easy
computation which is left to the reader.

Lemma 5.18. Let m(t) ∈ Fp[t]. There exists ε(t) ∈ Fp[t] of degree < n and
p(t) ∈ Fp[t] such that

m(t)

(t− θ)n
=

ε(t)

(t− θ)n
+ p(t)− p(t)(1)

(t− θ)n
.

Proof of Theorem 5.17. Write n for pk, and let M = A(n). Let m ∈ M +
τM (τ∗M) be such that there exists f ∈ (M⊗̂Fp

F ur
p )` for which f−τM (τ∗f) = m.

That is, m ∈ Fp[t]/(t − θ)n and f ∈ F̂ ur
p [t]

`
. By Lemma 5.18, we can assume

that m is of the form ε(t)/(t− θ)n for some ε(t) ∈ Fp[t] of degree < n. Because
n is a power of the characteristic, we may rewrite f − τM (τ∗f) = m as:

tnf − ε(t) = θnf + f (1). (5.7)

Let v : Fp → Z ∪ {∞} be the valuation on Fp, which we canonically extends to
F sp → Q ∪ {∞}. The assumption that m 6= ` implies that v(θ) = 0.

We should derive a contradiction by assuming that ε(t) = ε0 + ε1t + ... +
εn−1t

n−1 does not belong toOp[t]. To wit, for some 0 ≤ i < n, we have v(εi) < 0.
We let c ≥ 0 be the maximal integer such that there exixts j ∈ {0, ..., n− 1} for
which both v(εj) < 0 and qc|v(εj).

Let N be a multiple of n greater than n(c + 1)/d, where d is the degree
of `. We aim to rewrite (5.7) coefficient-wise in the basis (1, t, ..., tdN−1) of
F̂ ur
p [t]

`
/`N F̂ ur

p [t]
`

= F ur
p [t]/`NF ur

p [t] seen as a F ur
p -vector space. To proceed, for

i ∈ {0, ..., Nd− 1}, we denote by xi ∈ F ur
p be the ti-coefficient of f (mod `n) so

that
f ≡ x0 + x1t+ ...+ xNd−1t

dN−1 (mod `N ).

For 1 ≤ j ≤ n, we also write tn · tdN−j ≡
dN−1∑
i=0

aijt
i (mod `N ) for coefficients
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aij ∈ F. It yields:

tnf ≡ (a01xdN−1 + ...+ a0nxdN−n)

+ (a11xdN−1 + ...+ a1nxdN−n)t

+ · · ·
+ [x0 + (an1xdN−1 + ...+ annxdN−n)]tn

+ · · ·
+ [xdN−n−1 + (adN−1,1xdN−1 + ...+ adN−1,nxdN−n)]tdN−1

Equations (5.7) modulo `N is then reformulated by the following systems of
equations, numbered (E1), (E2), ..., (EdN/n):

System (E1) (coefficients of (5.7) in (1, ..., tn−1)):

(a01xdN−1 + ...+ a0nxdN−n)− ε0 = θnx0 + xq0
(a11xdN−1 + ...+ a1nxdN−n)− ε1 = θnx1 + xq1

...
(an−1,1xdN−1 + ...+ an−1,nxdN−n)− εn−1 = θnxn−1 + xqn−1

System (E2) (coefficients of (5.7) in (tn, ..., t2n−1)):

x0 + (an1xdN−1 + ...+ annxdN−n) = θnxn + xqn

x1 + (an+1,1xdN−1 + ...+ an+1,nxdN−n) = θnxn+1 + xqn+1

...
xn−1 + (a2n−1,1xdN−1 + ...+ a2n−1,nxdN−n) = θnx2n−1 + xq2n−1

and so on, until the two last systems:

System (EdN/n−1) (coefficients of (5.7) in (tdN−2n, ..., tdN−n−1)):

xdN−3n + (adN−2n,1xdN−1 + ...+ adN−2n,nxdN−n) = θnxdN−2n + xqdN−2n

xdN−3n+1 + (adN−2n+1,1xdN−1 + ...+ adN−2n+1,nxdN−n) = θnxdN−2n+1 + xqdN−2n+1

...
xdN−2n−1 + (adN−n−1,1xdN−1 + ...+ adN−n−1,nxdN−n) = θnxdN−n−1 + xqdN−n−1

System (EdN/n) (coefficients of (5.7) in (tdN−n, ..., tdN−1)):

xdN−2n + (adN−n,1xdN−1 + ...+ adN−n,nxdN−n) = θnxdN−n + xqdN−n

xdN−2n+1 + (adN−n+1,1xdN−1 + ...+ adN−n+1,nxdN−n) = θnxdN−n+1 + xqdN−n+1

...
xdN−n−1 + (adN−1,1xdN−1 + ...+ adN−1,nxdN−n) = θnxdN−1 + xqdN−1

There are two situations:

(A) xdN−1, ..., xdN−n all have positive valuations. Then, it follows from (E1)
that v(xi) < 0 and that qv(xi) = v(εi). From (E2), v(xi+n) < 0 and
qv(xi+n) = v(xi). By immediate recursion from (Ek), 1 ≤ k ≤ dN/n, we
obtain qv(xi+kn) = v(xi+(k−1)n). Hence, v(εi) = qdN/nv(xdN−n+i). As
xdN−n+i ∈ F ur

p , its valuation is an integer and qdN/n divides v(εi). Yet,
this contradicts the maximality of c.
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(B) Therefore, at least one of xdN−1, ..., xdN−n has negative valuation. Let
xdN−j , for some j ∈ {1, ..., n}, be the one with the smallest (negative)
valuation. From (EdN/n), we obtain v(xdN−n−j) < 0 and v(xdN−n−j) =
qv(xdN−j). From (EdN/n−1), we have v(xdN−2n−j) < 0 and v(xdN−2n−j) =
qv(xdN−n−j). Going backward in recursion, we obtain v(xdN−kn−j) =
qv(xdN−(k−1)n−j) so that v(εj) = qdN/nv(xdN−j) which, once again, con-
tradicts the maximality of c as v(xdN−j) is an integer.

We conclude that ε(t) ∈ Op[t], as desired. Then, the theorem follows from
Proposition 2.21.

Remark 5.19. We believe the general case of A(n) for n > 0 would follows from
a similar argument, but the computations are too involved to be gently written.
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