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RAMANUJAN-STYLE CONGRUENCES FOR PRIME LEVEL

ARVIND KUMAR, MONI KUMARI, PIETER MOREE AND SUJEET KUMAR SINGH

Abstract. We establish Ramanujan-style congruences modulo certain primes ` between an Eisen-
stein series of weight k, prime level p and a cuspidal newform in the ε-eigenspace of the Atkin-Lehner
operator inside the space of cusp forms of weight k for Γ0(p). Under a mild assumption, this refines
a result of Gaba-Popa. We use these congruences and recent work of Ciolan, Languasco and the
third author on Euler-Kronecker constants, to quantify the non-divisibility of the Fourier coefficients
involved by `. The degree of the number field generated by these coefficients we investigate using
recent results on prime factors of shifted prime numbers.

1. Introduction

Let Ek be the Eisenstein series of even weight k ≥ 2 for the group SL2(Z), normalized so that

its Fourier series expansion is

Ek(z) = −Bk
2k

+
∞∑
n=1

σk−1(n)e2πinz,

where Bk is the kth Bernoulli number and σr(n) =
∑

d|n d
r is the r-th sum of divisors function.

The prototype of a Ramanujan congruence goes back to 1916 and asserts that

(1.1) τ(n) ≡ σ11(n) (mod 691),

for every positive integer n. This can be viewed as a (coefficient-wise) congruence between the

unique cusp form ∆(z) =
∑∞

n=1 τ(n)e2πinz of weight 12 and the Eisenstein series E12(z), namely

∆ ≡ E12 (mod 691). There are several well-known ways to prove, interpret, and generalize this.

For example, to higher weights eigenforms of level 1 by Datskovsky-Guerzhoy [DG96], to newforms

of weight k and prime level p by Billerey-Menares [BM16], and to Fourier coefficients of index

coprime to p by Dummigan-Fretwell [DF14]. The latter two authors were primarily motivated by an

interesting relation of these congruences with the Bloch-Kato conjecture for the partial Riemann zeta

function. Gaba-Popa [GP18] refined these results, by determining, under some technical conditions,

also the Atkin-Lehner eigenvalue of the involved newform, and thus obtained congruences for all

coefficients.

To make our statements more concrete, we first define for ε ∈ {±1} an Eisenstein series of even

weight k ≥ 2 and prime level p, namely

(1.2) Eεk,p(z) := Ek(z) + εEk|Wp(z) = Ek(z) + εpk/2Ek(pz),
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where Wp is the Atkin-Lehner operator. By M ε
k(p) (resp.Sεk(p)) we denote the ε-eigenspace of the

Atkin-Lehner operator Wp inside Mk(p) (resp.Sk(p)), the space of modular forms (resp. cusp forms)

of weight k and for the group Γ0(p). It is known that E−1
2,p ∈ M

−1
2 (p) and Eεk,p ∈ M ε

k(p) for k ≥ 4.

Using the Fourier series expansion of Ek, we obtain

Eεk,p(z) = −Bk
2k
ε(ε+ pk/2) +

∑
n≥1

(
σk−1(n) + εpk/2σk−1

(
n

p

))
e2πinz,

where σk−1

(
n
p

)
= 0 if p - n. We now recall the main result of Gaba-Popa, the proof of which relies

on the theory of period polynomials for congruence subgroups developed by Paşol and Popa [PP13].

Theorem 1.1. [GP18, Theorem 1] Let k ≥ 4 be an even integer, p a prime and ε ∈ {±1}. Let

` ≥ k + 2 be a prime such that

` | Bk2k (ε+ pk/2) and ` | (ε+ pk/2)(ε+ pk/2−1).

In case ` - (ε+ pk/2) we assume in addition that there exists an even integer n with 0 < n < k such

that ` - BnBk−n(pn−1− 1). Then, there exists a newform f ∈ Sεk(p) and a prime ideal λ lying above

` in the coefficient field of f such that

f ≡ Eεk,p (mod λ).

We remark that from the latter congruence it follows that if ρf,λ denotes the mod λ Galois

representation, then (up to semisimplification) ρf,λ ' 1 ⊕ χk−1
` , where χ` is the mod ` cyclotomic

character. Therefore, Theorem 1.1 gives a sufficient conditon on the prime ` such that the repre-

sentation 1⊕ χk−1
` arises from a newform in Sεk(p).

The purpose of this paper is to strengthen Theorem 1.1 and, on a somewhat different note,

to quantify the non-divisibility of the Fourier coefficients of Eεk,p. The corresponding results are

presented in the next section, respectively in Section 1.2.

1.1. Strengthening of Theorem 1.1. We sharpen Theorem 1.1 in the next two theorems.

Theorem 1.2. Let k ≥ 2 be an even integer, p a prime and ε ∈ {±1}. If k = 2, we also assume

that ε = −1. Let ` ≥ max{5, k − 1} be a prime such that p 6≡ −1 (mod `). Then the following are

equivalent:

(1) ` | Bk2k (ε+ pk/2) and ` | (ε+ pk/2)(ε+ pk/2−1);

(2) the existence of a newform f ∈ Sεk(p) and a prime ideal λ lying above ` in the coefficient

field of f such that

f ≡ Eεk,p (mod λ).

This result improves on Theorem 1.1 in three different aspects.

(a) Instead of ` > k+1, now also ` = k±1 is allowed. Gaba-Popa [GP18] pointed out that, based

on several numerical examples, they expect that their result should hold even for ` = k± 1,

although their method breaks down for these values of `. Therefore, it is reasonable to
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expect that [BM16, Conjecture 3.2] and [GP18, Conjecture on p. 53] should also hold for

` = k ± 1.

(b) Taking k = 2 is allowed and hence this recovers an earlier result of Mazur [Maz77, Proposi-

tion 5.12 (ii)].

(c) There is no condition on BnBk−n(pn−1 − 1) anymore in case ` - (ε+ pk/2).

Comparing Theorem 1.2 with Theorem 1.1, we see that there is now the extra condition p 6≡
−1 (mod `) (redundant for k = 2). In some special cases we remove this condition, together with

the assumption ` ≥ k − 1, by proving the following variant of Theorem 1.2.

Theorem 1.3. Let k ≥ 2 be even integer, ` ≥ 5 and p be primes and ε ∈ {±1}. If k = 2, we also

assume that ε = −1. Suppose that ` | Bk2k (ε+ pk/2). We further assume that k 6≡ 0 (mod `− 1) and

` - Bk2k . Then there exists a newform f ∈ Sεk(p) and a prime ideal λ over ` in the coefficient field of

f such that

f ≡ Eεk,p (mod λ).

Our proof of the above theorems uses some classical results from the theory of mod ` modular

forms and Deligne’s theorem on Galois representations attached to eigenforms. Further, it is based

on the ideas used in [DF14], is quite classical in nature, and completely avoids the use of period

polynomials. More precisely, we first prove that the assumptions on ` ensure that the reduction of

Eεk,p modulo ` is a cuspidal eigenform in characteristic `, and then using the Deligne-Serre lifting

lemma we lift it to an eigenform in characteristic zero. In the final step we apply the Diamond-Ribet

level raising theorem and a result of Langlands to obtain the desired newform.

Next using some elementary ideas, we establish the following result in which the resulting cusp

form may not be an eigenform as before, but it will always have rational Fourier coefficients.

Theorem 1.4. Let k ≥ 2 be an even integer, p a prime and ε ∈ {±1}. If k = 2, we also assume

that ε = −1. Let N ε
k,p be the reduced numerator of Bk

2k (ε+ pk/2). Suppose that at least one of the

following conditions hold:

(a) p ∈ {2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 41, 47, 59, 71}.
(b) k ≥ 8, k ≡ 1− ε (mod 4) and N−1

k,p is coprime to p− 1.

(c) k ≥ 10 and k ≡ 1− ε (mod 10), and N ε
k,p is coprime to (p+ ε)p(p+ 1).

Then there exists a non-zero cusp form f ∈ Sεk(p) with rational Fourier coefficients such that

f ≡ Eεk,p (mod N ε
k,p).

Remark 1.5. The primes p in (a) are exactly those for which the genus of the Fricke group of level p

is zero. They are also precisely the prime factors of 246·320·59·76·112·133·17·19·23·29·31·41·47·59·71,

the order of the Monster group. That is not a coincidence! For more details, see, e.g., Gannon

[GaA06, GaB06].
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Using Theorem 1.4 one can prove Theorem 1.6, which gives congruences even for small primes,

namely for ` = 2 and 3. The proof is completely patterned after the proof of [DG96, Lemma 2.1,

Theorem 2] and so we omit it here. It rests on the fact that the set

B := {f + εf |Wp : f ∈ Sk(1) is a normalized eigenform} ∪ {g : g ∈ Sεk(p) newform}

forms a basis of Sεk(p) consisting of normalized Hecke eigenfunctions for all Tq for q 6= p.

Theorem 1.6. Suppose at least one of the conditions (a), (b), (c) of Theorem 1.4 holds. Let B
be a basis of Sεk(p) of normalized Hecke eigenfunctions for all Tq for q 6= p. Suppose some prime

ideal λ divides N ε
k,p in the coefficient field Q(af (q) : f ∈ B, q 6= p). Then there exists a cusp form

f =
∑

n≥1 af (n)e2πinz ∈ B, such that for all integers n coprime to p, we have

af (n) ≡ σk−1(n) (mod λ).

As an application of our results (especially of Theorem 4.1), we give a non-trivial lower bound of

the degree of the number field generated by all normalized eigenforms (and newforms) in the space

Sk(p), see Section 8. These bounds improve a similar result of [BM16] and are valid in a subset of

the primes with natural density close to one.

1.2. Quantification of Fourier coefficient non-divisibility. The second goal of this article is to

quantify how often ` - a(n) for certain prime numbers ` and Fourier coefficients a(n). This problem

was first considered by Ramanujan for his tau function (in [BO01] that remained unpublished for

many years). He made various claims of the form

(1.3)
∑

n≤x, `-τ(n)

1 = C`

∫ x

2

dt

(log t)δ`
+O

(
x

(log x)r

)
,

that he thought to be valid for arbitrary r. For example, he claimed (1.3) for ` = 691 and δ` = 1/690.

Partial integration gives

(1.4) C`

∫ x

2

dt

(log t)1/δ`
=

C` x

(log x)1/δ`

(
1 +

1

δ` log x
+O`

(
1

(log x)2

))
.

The functions
C` x

(log x)1/δ`
and C`

∫ x

2

dt

(log t)1/δ`
,

are now called the Landau approximation, respectively Ramanujan approximation of the counting

function in (1.3), the true behavior of which is, see Serre [Ser76],

(1.5)
∑

n≤x, `-τ(n)

1 =
C` x

(log x)1/δ`

(
1 +

1− γτ ;`

δ` log x
+O`

(
1

(log x)2

))
,

with γτ ;` a constant sometimes called Euler-Kronecker constant. Note that if γτ ;` > 1/2 the Landau

approximation asymptotically gives a better approximation to T`(x) than the Ramanujan approx-

imation, and that if γτ ;` < 1/2 it is the other way around. Comparing (1.4) and (1.5) we see that

Ramanujan’s claim (1.3) entails γτ ;` = 0. For ` = 3, 5, 7, 23 and 691 this was disproved by Moree

[Mor04]. For the true value of these numerical constants see Table 1 (data taken from [CLM21]).
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Table 1: Euler-Kronecker constants γτ ;`

` γτ ;` winner

3 +0.534921 . . . Landau
5 +0.399547 . . . Ramanujan
7 +0.231640 . . . Ramanujan
23 +0.216691 . . . Ramanujan
691 +0.571714 . . . Landau

Let ` be an odd prime. An arithmetic function f assuming integer values has a refined `-non-

divisibility asymptotic with Euler-Kronecker constant γf;` if there exist positive constants C` and h1

such that

(1.6)
∑

n≤x, `-f(n)

1 =
C` x

(log x)1/h1

(
1 +

1− γf;`
h1 log x

+ of

(
1

log x

))
,

where the implicit constant in the error term may depend on f.

Theorem 1.7. Let f be an integer valued multiplicative function. If

(1.7) #{p1 ≤ x : p1 prime and ` | f(p1)} = δ
∑
p1≤x

1 +Of

(
x

(log x)2+ρ

)
,

for some real numbers ρ > 0 and 0 < δ < 1, then (1.6) holds with h1 = 1/δ for some positive

constant C`.

Corollary 1.8. Let m ≥ 1 be an integer and ` an odd prime such that h2 := (` − 1)/(` − 1,m) is

even. Then the m-th sum of divisors function σm has a refined `-non-divisibility asymptotic with

h1 = h2 for some positive constant C`.

The proof of the corollary is left as an exercise, cf. [CLM21]. We remark that in case h2 is odd,

(1.6) takes a more trivial form.

Theorem 1.9. Let k ≥ 4 be an even integer, p a prime and ε ∈ {±1}. Let ` ≥ 5 be a prime such

that εpk/2 ≡ −1 (mod `). Set r = gcd(` − 1, k − 1). Let g1 be the multiplicative order of pr modulo

`. Put µp = ` if g1 = 1 and µp = g1 otherwise. Then f(n) = σk−1(n) + εpk/2σk−1(n/p) has a refined

`-non-divisibility asymptotic (1.6) with h1 = (`− 1)/r, and Euler-Kronecker constant

(1.8) γf;` = γσk−1;` +

(
µp

pµp − 1
− (µp − 1)

pµp−1 − 1

)
log p,

provided that h1 is even.

This result reduces the study of γf;` to that of γσk−1;`, which was studied in extenso by Ciolan et

al. [CLM21]. They gave a (long and involved) formula for this Euler-Kronecker constant that allows

one to evaluate it with a certified accuracy of several decimals. The relevant computer programs

are made available at www.math.unipd.it/~languasc/CLM.html.

www.math.unipd.it/~languasc/CLM.html
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1.3. Plan for the remainder of the article. In Section 2 we revisit some basic preliminaries

needed to prove Theorem 1.2, such as Hecke operators, Artin-Lehner newforms theory, mod `

modular forms and `-adic Galois representations associated to modular forms. In Section 3 we give

a proof of Theorem 1.2 by assuming Theorem 4.1 (proven in Section 4 along with a variant of it). In

Section 5, we prove Theorem 1.4 followed by a discussion of several interesting numerical examples

in Section 6. In Section 8, as an application of our results, we give a non-trivial lower bound for the

degree of the field of coefficients of any normalized eigenform of fixed weight and level, with Section

7 recalling some relevant results on large prime factors of shifted primes. Finally, in Section 9, we

prove Theorem 1.9.

2. Required Preliminaries

2.1. Notation. The letters p, p1, q and ` will denote prime numbers throughout, except in Section

6, where q = e2πiz. For a rational number m
n , by ` | mn , we mean that ` divides the reduced numerator

of m
n . Given a newform f we denote its n-th Fourier coefficient by af (n) and its coefficient field

Q(af (n) : n ≥ 1) by Kf . We say two forms f and g are congruent mod ` or mod λ if af (n) is

congruent to ag(n) for every integer n. For notational convenience, we also abbreviate M±1
k (p),

S±1
k (p) and E±1

k,p by M±k (p), S±k (p) and E±k,p, respectively.

2.2. Atkin-Lehner operators and newform theory. Let Mk(N) and Sk(N) be the C-vector

space of modular forms and cusp forms, respectively of even weight k ≥ 2 and level N with respect

to Γ0(N) of trivial nebentypus. These spaces have actions of the Hecke operators T1, T2, . . . which

satisfy the following relations: T1 = 1, Tmn = TmTn if (m,n) = 1 and for prime powers qr with

q - N we have the recurrence

Tqr = TqTqr−1 − qk−1Tqr−2 .

For a prime p | N , the action of Tp (we will denote it by Up) on f ∈ Mk(N) is given by aTpf (n) =

af (np) and such an operator Tp is generally called an Up operator. Next, we recall some newform

theory from [AL70]. A modular form f ∈Mk(N) is called a Hecke eigenform if it is an eigenfunction

for all the Hecke operators Tq for (q,N) = 1 and Up for all p | N . It is a well-known result that if f

is a Hecke cusp eigenform, then af (1) 6= 0. We say such f is normalized if af (1) = 1.

Suppose that p | N, but p2 - N. Then there are two ways to embed Sk(N/p) inside Sk(N); one

by the identity and the other f(z) 7→ f(pz) which give rise to a map

Sk(N/p)⊕ Sk(N/p)→ Sk(N) defined by (f, g) 7→ f(z) + g(pz).

The image of this map is called the space of p-oldforms in Sk(N), and is denoted by Sk(N)p−old.

The orthogonal complement of Sk(N)p−old in Sk(N) with respect to the Petersson inner product

is called the space of p-newforms, and denoted by Sk(N)p−new. Finally, in case N is squarefree,

we define the space of newforms Sk(N)new as the intersection
⋂
p|N

Sk(N)p−new. A normalized Hecke

eigenform f in Sk(N)new is called a newform.
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Let Wp be the Atkin-Lehner operator on Mk(p) defined by

f |Wp(z) = p−k/2z−kf
(−1

pz

)
.

It preserves the space Mk(p) and Sk(p) and also since it is an involution its eigenvalue ε is in {±1}.
Next we state some standard facts about the operators Tq (q 6= p), Up, and Wp and newforms for

the space Sk(p) that can be, for example, found in [AL70, Lemma 17, Theorem 5].

Lemma 2.1. We have the following.

(1) Both {Tq, Up : q 6= p} and {Tq,Wp : q 6= p} are commutating families of operators.

(2) f ∈ Sk(p) is a newform if and only if it is an eigenfunction for all Tq (q 6= p), Up and Wp.

(3) If f ∈ Sk(p)new is a newform with Atkin-Lehner eigenvalue ε, then af (p) = −εpk/2−1.

2.3. Modular forms with coefficients in a ring A. Let Mk(N,Z) ⊂ Z[[q]] denote the set of

elements of Mk(N) having integer Fourier coefficients at the cusp infinity. For a commutative ring

A, we define

Mk(N,A) = Mk(N,Z)⊗Z A.

By the q-expansion principle, the map Mk(N,A) → A[[q]] is injective, so we may view Mk(N,A)

as a submodule of A[[q]]. Note that Sk(N,Z) = Mk(N,Z) ∩ Sk(N). Hence we can define Sk(N,A)

similarly, and we identify it with an A-submodule of Mk(N,A).

The Hecke operators Tn defined earlier also act on the space Mk(N,A) with the small modification

that the action of T` on Mk(N,A) coincides with the action of U` if A is a domain of positive

characteristic r and ` | r.

2.4. Mod ` modular forms. For a prime `, let F` denote an algebraic closure of the finite field

F`, with ` elements. In this section we recall the notion of modular forms with coefficients in F`
(see [Ser87, Section 3.1]).

Fix an embedding ι` : Q ↪→ Q` in particular we have Z ↪→ Z`. Therefore the ring Z` has a natural

reduction map to its residue field F` and we obtain a homomorphism

Z` → F` defined by a 7→ a.

For k ≥ 2 and an integer N , coprime to `, we define the space of modular forms of type (N, k) with

coefficients in F`, denoted by Mk(N,F`), consisting of formal power series

F (z) =
∑
n≥1

Ane
2πinz, An ∈ F`,

for which there exists a modular form f(z) =
∑

n≥1 ane
2πinz ∈Mk(N), an ∈ Z, such that an = An

for all n ≥ 1. The space Sk(N,F`) is defined analogously.

As mentioned in Section 2.3, we have the action of the Hecke algebra generated by the operators

Tq, q - `N and Up, p | `N on the space Mk(N,F`), they also preserve Sk(N,F`). Observe that by
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the Deligne-Serre lifting lemma if F ∈ Sk(N,F`) is a non-zero normalized Hecke eigenform then F

is the reduction mod ` of some normalized Hecke eigenform f ∈ Sk(N,Z`).
We say F ∈ Sk(N,F`) is an eigenfunction for the Atkin-Lehner operator WN with eigenvalue ε

if it is a reduction of f ∈ Sk(N,Z`) which is an eigenfunction for WN with eigenvalue ε. Notice

that this is a well-defined operator on Mk(N,F`) as we know that if f and f ′ are characteristic zero

modular forms of the same weight and level N that are congruent modulo ` then WNf and WNf
′

are congruent modulo ` as well.

2.5. Galois representations attached to modular forms. In this section, we briefly recall

some standard facts about 2-dimensional Galois representations of Gal(Q/Q) associated to Hecke

eigenforms.

Let f(z) =
∑

n≥1 af (n)e2πinz be a normalized Hecke eigenform of weight k and level N . It is

well-known that the Fourier coefficients af (n) belong to the ring of integers OKf of a finite extension

field Kf of Q. For a given prime `, due to a theorem of Deligne, corresponding to such an eigenform

f and a prime ideal λ above ` in Kf , there is a continuous `-adic Galois representation

ρf,λ : Gal(Q/Q)→ GL(2,Kf,λ),

where Kf,λ is the completion of Kf at the place λ. The representation ρf,λ is irreducible, unique

up to isomorphism and it is unramified outside the primes dividing N and the norm of λ, and has

the following properties:

tr(ρf,λ(Frobq)) = af (q) and det(ρf,λ(Frobq)) = qk−1,

where Frobq ∈ Gal(Q/Q) is the Frobenius element at the prime q. Conjugating by a matrix in

GL(2,Kf,λ), one can assume that the image of ρf,λ lands inside GL(2,OKf,λ). Reducing this

representation with values in GL(2,OKf,λ) modulo λ, we get a mod-` representation of Gal(Q/Q)

ρf,λ : Gal(Q/Q)→ GL(2,OKf /λ).

The representation ρf,λ is well defined up to semi-simplification and depends only on the cusp form

f modulo λ.

2.6. Diamond-Ribet level raising theorem and a refinement. We now recall the following

celebrated result of Ribet [Rib90] (for weight two and trivial character) and Diamond [Dia91] (for

higher weight and non-trivial characters), called level raising theorem, which gives a criterion for

the existence of a congruence between two newforms of the same weight, but of different level. This

plays an important role in the proof of our results.

Theorem 2.2 (Diamond-Ribet level raising theorem). Let g ∈ Sk(N) be a newform of weight k ≥ 2

and let p and ` be distinct primes not dividing N with ` - 1
2ϕ(N)Np(k− 2)!. Let λ be a prime ideal

above ` in the field generated by the eigenvalues of all eigenforms in Sk(Np) and Sk(N). Then the

following are equivalent:

(1) ag(p)
2 ≡ pk−2(1 + p)2 (mod λ).
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(2) There exists a p-newform f ∈ Sk(Np) such that for every prime q coprime to pN,

af (q) ≡ ag(q) (mod λ).

In [GP18, Theorem 2], Gaba-Popa obtained a refinement of Diamond’s level raising theorem and

their proof is (loosely speaking) a part of the proof of their main result. In the same vein, we record

the following refinement of the above theorem which also strengthens [GP18, Theorem 2] under a

mild assumption.

Theorem 2.3. Let k ≥ 2 be an even integer, p a prime, N a positive integer coprime to p and

ε ∈ {±1}. If k = 2 we assume furthermore that ε = −1. Suppose g(z) =
∑

n≥1 ag(n)e2πinz ∈ Sk(N)

is a newform. Let ` ≥ k − 1 be a prime such that p 6≡ −1 (mod `) and ` - Nφ(N) and let λ be a

prime ideal above ` in the field generated by the eigenvalues of all eigenforms in Sk(Np) and Sk(N).

Then the following are equivalent:

(1) ag(p) ≡ −εpk/2−1(1 + p) (mod λ).

(2) There exists an eigenform f ∈ Sεk(Np) which is new at p such that

f(z) ≡ g(z) + εpk/2g(pz) (mod λ).

Proof. We omit the proof because for N = 1 its proof is the content of the second half of the proof

of Theorem 1.2 (c.f. (3.4)), and for general N the same arguments apply. �

3. Proof of Theorem 1.2

We give a proof of Theorem 1.2 using Theorem 4.1 (the proof of which is given in the next

section). We first prove that (1) implies (2). The assumptions on `, in view of Theorem 4.1, ensure

that there is a normalized eigenform h(z) =
∑

n≥1 ah(n)e2πinz ∈ Sk(p) and a prime ideal λ above `

in Kh such that

(3.1) h ≡ Eεk,p (mod λ).

We now prove that this eigenform h can be replaced by a newform under our assumptions on ` and

k. We distinguish between two cases:

Case (i) The eigenform h is a newform. We will show that the Wp-eigenvalue of h is ε. Writing

h|Wp = δh with δ ∈ {±1}, we obtain ah(p) = −δpk/2−1 by Lemma 2.1. Now by considering the p-th

Fourier coefficients of both functions appearing in (3.1), and using the fact that ` | (ε + pk/2)(ε +

pk/2−1), we obtain

−δpk/2−1 ≡ 1 + pk−1 + εpk/2 ≡ −εpk/2−1 (mod `).

Since the prime ` is odd and different from p, this proves that h ∈ Sεk(p).
Case (ii) The eigenform h is not a newform. Then there is a level 1 eigenform g such that the

corresponding `-adic Galois representations ρh,Λ and ρg,Λ are the same, where Λ is a prime ideal

above ` in the compositum of coefficient fields of all normalized eigenforms in Sk(p) and Sk(1). By
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(3.1), we have ah(q) ≡ 1 + qk−1 (mod Λ) for all q 6= p. A standard application of the Chebotarev

density theorem then shows that ρ̄h,Λ is isomorphic to 1 ⊕ χk−1
` , where χ` denotes the mod `

cyclotomic character. Thus, we conclude that

(3.2) ρ̄g,Λ ' 1⊕ χk−1
` .

Because g is of level 1, the representation ρ̄g,Λ is unramified outside `. In particular, ρ̄g,Λ and χ`

are unramified at the prime p. Taking the trace of the image of Frobp on both sides of (3.2) yields

(3.3) ag(p) ≡ 1 + pk−1 (mod Λ).

Now using that ` divides 1 + pk−1 + εpk/2 + εpk/2−1, we infer that

(3.4) ag(p) ≡ −εpk/2−1(1 + p) (mod Λ),

which gives

ag(p)
2 ≡ pk−2(1 + p)2 (mod Λ).

Hence, by apply Theorem 2.2 and using the hypothesis ` > k − 2, we obtain a newform f ∈ Sk(p)
for which

af (q) ≡ ag(q) (mod Λ), for all q 6= p.

Taken together with (3.3) this results in

(3.5) af (q) ≡ 1 + qk−1 (mod Λ), for all q 6= p.

Let δ be the Wp-eigenvalue of f and so af (p) = −δpk/2−1, from Lemma 2.1. In order to complete

the proof of Theorem 1.2, we only need to show that δ = ε. The reason is that if δ = ε, then

af (p) = −εpk/2−1 ≡ 1 + pk−1 + εpk/2 (mod Λ). Combining this with (3.5) and using that Eεk,p mod

` is an eigenform, which has been established in the course of the proof of Theorem 4.1, gives that

f ≡ Eεk,p (mod Λ), thus completing the proof (note that we can restrict Λ to Kf to get the required

prime ideal above ` in Kf ).

Let Gp denote the decomposition group of the absolute Galois group Gal(Q/Q) at a place over

p. Denote, for any algebraic integer α, the unique unramified character Gp → F×` sending the

arithmetic Frobenius Frobp to α mod ` by µα. It follows from the work of Langlands [Lan73] (see

also [LW12, Proposition 2.8 (2)]) that the restriction of ρ̄f,Λ to Gp is given by

ρ̄f,Λ|Gp '

(
χ
k/2
` ∗

χ
k/2−1
`

)
⊗ µaf (p)/pk/2−1 .

Since µα and χ` are unramified at p, one can consider the trace of Frobp on the right hand side

and hence tr(ρ̄f,Λ(Frobp)) is well-defined. Since ρ̄f,Λ ' ρ̄g,Λ (up to semisimplification), we have

ρ̄f,Λ|Gp ' ρ̄g,Λ|Gp . Taking the trace of the image of Frobp yields(
pk/2 + pk/2−1

) af (p)

pk/2−1
≡ ag(p) (mod Λ).
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The congruence (3.3) together with af (p) = −δpk/2−1 gives

−δ(pk/2 + pk/2−1) ≡ 1 + pk−1 ≡ −ε(pk/2 + pk/2−1) (mod Λ),

which yields ` | (δ − ε)pk/2−1(p+ 1). Since by assumption (`, p(p+ 1)) = 1, we infer from this that

δ = ε, and so (1) implies (2).

It remains to show that (2) implies (1). Let ` ≥ 5 be a prime for which there exists a newform

f(z) =
∑

n≥1 af (n)e2πinz ∈ Sεk(p) such that

(3.6) f ≡ Eεk,p (mod λ),

for some prime ideal λ above ` in Kf . Since the constant term of f is zero and the norm of λ is a

power of `, we get ` | Bk2k (ε+ pk/2). The fact that f is a newform with Wp-eigenvalue ε, along with

Lemma 2.1 yields af (p) = −εpk/2−1. Taken together with the congruence (3.6) at the prime p, this

leads to −εpk/2−1 ≡ 1 + pk−1 + εpk/2 (mod λ). Since λ is a prime ideal above `, this completes the

proof. �

4. Variants of Theorem 1.2 and proof of Theorem 1.3

As promised in the previous section, we now give a proof of Theorem 4.1. This result may be

of independent interest because of the limited assumptions on ` when compared with Theorem 1.2.

Recall that the proof of Theorem 1.3 is an immediate consequence of Theorem 4.1. We also remind

the reader that by “eigenform” we mean an eigenfunction of all the Hecke operators Tn, n ≥ 1.

Theorem 4.1. Let k ≥ 2 be even integer, ` ≥ 5 and p be primes and ε ∈ {±1}. If k = 2, we also

assume that ε = −1. Suppose that ` divides both Bk
2k (ε+pk/2) and (ε+pk/2)(ε+pk/2−1). Then there

exists a normalized eigenform h ∈ Sk(p) and a prime ideal λ over ` in the coefficient field of h such

that

h ≡ Eεk,p (mod λ).

Moreover, if k = 2, then h ∈ S−2 (p) is a newform.

Proof. We observe that Eεk,p|Wp = εEεk,p and that Wp interchanges both the cusps of Γ0(p), which

implies that the constant term of Eεk,p at both the cusps is −Bk
2k ε(ε+ pk/2), up to a sign and powers

of p. Since ` | Bk2k (ε + pk/2), it follows from the q-expansion principle (here q = e2πiz) that the

reduction of Eεk,p modulo ` gives rise to an element E
ε
k,p ∈ Sεk(p,F`) ⊂ Sk(p,F`). As Ek is an

eigenfunction for all the Hecke operators Tq (q 6= p), all of which commute with Wp, we see that

Eεk,p, hence E
ε
k,p is a common eigenfunction of all Tq (q 6= p). We next claim that the assumptions

on the prime ` ensure that E
ε
k,p is also an eigenfunction of the operators Up. For k = 2, it is easy to

see that UpE
−
2,p = E−2,p which shows that E−2,p, and so in particular E

−
2,p, is an eigenfunction for Up

with eigenvalue 1. For k ≥ 4, a simple computation gives that if a(n) and b(n) are the nth Fourier
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coefficients of Eεk,p(z), respectively UpE
ε
k,p(z), then

b(n) =


a(0) if n = 0;

(1 + pk−1 + εpk/2)a(n) if p - n;

(1 + pk−1 + εpk/2)a(n)− εσk−1(n/p)pk/2(ε+ pk/2)(ε+ pk/2−1) otherwise.

It shows that Eεk,p is not an eigenfunction of Up, but since by assumption ` | Bk2k (ε + pk/2) and

` | (ε+ pk/2)(ε+ pk/2−1), it follows that

(4.1) UpE
ε
k,p(z) ≡ (1 + pk−1 + εpk/2)Eεk,p(z) (mod `).

In other words, E
ε
k,p is an eigenfunction of Up with eigenvalue 1 + pk−1 + εpk/2 and this proves our

claim.

The reduction map from Sk(p, Z̄`) to Sk(p,F`) is surjective by Carayol’s lemma [Edi97, Proposi-

tion 1.10]. Hence, there exists an element in Sk(p,OK) having E
ε
k,p as mod ` reduction, where OK

is the ring of integers of some finite extension K of Q`. In other words, E
ε
k,p is the reduction of a

characteristic 0 cusp form, which may not be an eigenfunction for the Hecke operators. Now we use

the Deligne-Serre lifting lemma [DS74, Lemma 6.11] guaranteeing the existence of an h′ ∈ Sk(p,OL)

that is a normalized common eigenfunction for every element of {Tq, Up : q 6= p}, such that

h′ ≡ Eεk,p (mod λ′),

for some prime ideal λ′ lying above ` in OL. Here L ⊇ K is a finite extension of Q` which is

a completion of some number field at a prime over `. Moreover, such an h′ arises from some

h(z) =
∑

n≥1 ah(n)e2πinz ∈ Sk(p) via the embedding of Kh into L, and hence there exists a prime

ideal λ above ` in Kh such that

h ≡ Eεk,p (mod λ).

This proves the first part of Theorem 4.1. Next, if k = 2, then we know that S2(1) = 0, and therefore

there are no oldforms in S2(p), and hence h must be a newform. Let δ be the Wp-eigenvalue of h.

Then by Lemma 2.1 we have ah(p) = −δ, whereas the p-th Fourier coefficient of E−1
2,p is 1. This

gives rise to −δ ≡ 1 (mod λ), and hence h ∈ S−2 (p), as ` (the characteristic of λ) is odd. �

The next result refines [DF14, Theorem 1] and it is a direct consequence of Theorem 4.1 and

[DG96, Theorem 1].

Corollary 4.2. Let k ≥ 2 be an even integer, p a prime and ε ∈ {±1}. If k = 2, we also assume that

ε = −1. Let ` ≥ 5 be a prime divisor of Bk
2k (ε+ pk/2). Then there exists a normalized eigenfunction

f ∈ Sεk(p) for all Tq with q 6= p, and a prime ideal λ over ` in the coefficient field of f such that

f ≡ Eεk,p (mod λ).

Proof. If ` | Bk2k , applying [DG96, Theorem 1] gives a normalized eigenform g ∈ Sk(1) and a prime

ideal λ above ` such that g ≡ Ek (mod λ). In this case, the form f := g + εg|Wp is a desired

eigenfunction. We now assume that ` - Bk2k , which implies ` | (ε+ pk/2). Then, by Theorem 4.1, we
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obtain a normalized eigenform h ∈ Sk(p) and a prime ideal λ above ` in the coefficient field of h such

that h ≡ Eεk,p (mod λ). If h is a newform, then Case (i) in the proof of Theorem 1.2 gives h ∈ Sεk(p)
and hence we are done. Whereas, if h is not a newform, then following the arguments in Case

(ii) and by (3.3), we have a normalized eigenform g ∈ Sk(1) of level 1 such that g ≡ Ek (mod λ),

where λ is a prime ideal above ` in the coefficient field of g. As before, f := g + εg|Wp serves our

purpose. �

Proof of Theorem 1.3. The proof uses Theorem 4.1 and some ideas used in the proof of Theo-

rem 1.2. So we only give a sketch here. We first notice that ` | (ε+pk/2) and hence from Theorem 4.1

we have an eigenform h ∈ Sk(p) such that h ≡ Eεk,p (mod λ). We now claim that because of the

conditions ` - Bk2k and k 6≡ 0 (mod `− 1), the eigenform h has to be a newform with Wp-eigenvalue

ε, i.e., the Case (ii) in the proof of Theorem 1.2 does not occur at all. Suppose it does occur, then

by (3.3) we have an eigenform g of level 1 such that g ≡ Ek (mod Λ). Since g has integral Fourier

coefficients in its coefficient field and k 6≡ 0 (mod `− 1), applying [Lan76, Chapter X, Theorem 8.4]

gives ` | Bk2k , which is a contradiction.

5. Proof of Theorem 1.4

The main idea of the proof is to construct, in each of the three cases, a modular form g ∈M ε
k(p)

with integral Fourier coefficients and having non-zero constant term ag(0), coprime to N ε
k,p, such

that if one would define

(5.1) f := Eεk,p +
Bk
2k
ε(ε+ pk/2)

g

ag(0)
,

then such f should be a non-zero cusp form. The existence of such g then ensures that the corre-

sponding f has rational Fourier coefficients and, moreover,

f ≡ Eεk,p (mod N ε
k,p).

5.1. Case (a). Let dimM ε
k(p) = d + 1. From [CK13] for ε = +1 and [CKL19] for ε = −1, we

know that for such choices of primes p there exists a basis {f0, f1, · · · , fd} of M ε
k(p), known as

Victor-Miller basis, such that all the Fourier coefficients of the fj are integers and have Fourier

series expansion of the form

fj(z) = e2πijz +O(e2πi(d+1)z) for 0 ≤ j ≤ d.

So, the obvious choice for g in this case is f0, completing the proof.

5.2. Case (b). For any even integer α ≥ 4 observe that Gα(z)Gα(pz) ∈ M+
2α(p), where Gα is the

Eisenstein series of weight α defined by

Gα(z) = 1− 2α

Bα

∑
n≥1

σα−1(n)e2πinz.
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We first consider the situation when ε = +1 and k ≥ 8 with k ≡ 0 (mod 4). Such k can be written

as k = 8a+ 12b = 4β for some non-negative integers a, b and β ≥ 2, and so

g(z) := (G4(z)G4(pz))a(G6(z)G6(pz))b ∈M+
4β(p)

has integer Fourier coefficients (as G4 and G6 have integer Fourier coefficients) with constant term

1. Next we claim that the corresponding function f defined by (5.1) is non-zero by showing that

its e2πiz coefficient is non-zero, i.e.,

1 + (30a− 63b)
B4β(1 + p2β)

β
6= 0.

For that, we write
B4β

8β
=
m

n
, wherem ∈ N, n ∈ Z and (m,n) = 1 and hence 1 + (30a− 63b)

B4β(1 + p2β)

β
is zero if and only if n = 8(−30a + 60b)(1 + p2β) and m = 1. But one can easily check that

n 6= −8(30a− 60b)(1 + p2β) for β = 2 and m > 1 for β ≥ 3.

For ε = −1 and k ≥ 8 with k ≡ 2 (mod 4), we write k = 2 + 8a+ 12b = 2 + 4β. Define

g(z) = G−2,p(z)(G4(z)G4(pz))a(G6(z)G6(pz))b ∈M−2+4β(p),

where G−2,p(z) = G2(z) − pG2(pz) ∈ M−2 (p). This g has integer Fourier coefficients and constant

term 1− p. The first Fourier coefficient of the corresponding f is

1 + (240a− 504b− 24)
B2+4β(p1+2β − 1)

2(2 + 4β)
,

and as before one can verify that it is non-zero.

5.3. Case (c). For ε = +1, write k = 10α with α > 0. Define

g(z) := (p2G4(pz)G6(z) + p3G4(z)G6(pz))α.

Observe that p2G4(pz)G6(z) + p3G4(z)G6(pz) ∈ M+
10(p) and hence g ∈ M+

k (p). Further, g has

integer Fourier coefficients and constant term (p2 + p3)α. Since by assumption, p(p + 1) does not

divide N+
k,p, it follows that the corresponding f defined by (5.1) satisfies

f ≡ Eεk,p (mod N ε
k,p).

To show that f is non zero we prove that its e2πiz coefficient is non-zero, i.e.,

1 +
(240p2 − 504p3)α(p2 + p3)B10α(1 + p5α)

20α(p2 + p3)α
6= 0.

First suppose that α > 1. Write

B10α(1 + p5α)

20α(p2 + p3)α−1
=
m

n
with (m,n) = 1.

Then one checks that m is always greater than 1, and therefore the coefficient can not be equal to

zero. If α = 1 we write B10(1 + p5)/20 = m/n with (m,n) = 1. Again the coefficient is zero if and

only if n = −(240p2 − 504p3)m. Since (m,n) = 1, we must have m = 1. But for α = 1, we have

B10(1+p5)/20 = (1+p5)/264, i.e., if p ≥ 5 then it can be easily seen that m > 1. For the remaining

two primes we have n 6= −(240p2 − 504p3).
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Finally we assume that ε = −1 and k = 2 + 10α, for some α, integer. Define

g(z) := G−2,p(z)(p
2G4(pz)G6(z) + p3G4(z)G6(pz))α.

This g has all the required properties and the corresponding f , defined by (5.1), has e2πiz coefficient

1 +
(α(240p2 − 504p3)(p2 + p3)− 24)B2+10α(1 + p1+5α)

2(1 + 10α)(p2 + p3)α
.

As before, one can easily check that this coefficient is non-zero and hence we are done. �

6. Numerical Examples

In this section, we give several numerical examples of Ramanujan-style congruences and will

write q for e2πiz. We first recall some basic facts that will be used. To prove that two normalized

eigenforms of weight k and level p are congruent, it is enough to check that their first k(p+ 1)/12

Fourier coefficients at prime indices are congruent (this is due to the Sturm bound). Moreover,

if f(z) =
∑

n≥1 af (n)qn is a newform and σ ∈ Gal(Q/Q), then its Galois conjugate fσ(z) :=∑
n≥1 σ(af (n))qn is a newform. In fact, it is easy to see that if two modular forms f and g are

congruent modulo some prime ideal λ above ` and σ ∈ Gal(Q/Q), then σ(λ) is a prime ideal above

` and

(6.1) fσ ≡ gσ (mod σ(λ)).

To simplify the notation in this section, we put

N ε
k,p := the reduced numerator of Bk

2k (ε+ pk/2) and M ε
k,p := (ε+ pk/2)(ε+ pk/2−1).

Example 6.1. Take p = 11 and k = 6. For ε = −1, we easily see that N−6,11 = 5 · 19 and both the

primes 5 and 19 divide M−6,11, so ` = 5 or 19. We see that S−6 (11) is 3-dimensional, spanned by the

newforms

g(z) = q + aq2 − (1/6a2 + 5/3a− 64/3)q3 + (a2 − 32)q4 − (3/2a2 + 7a− 98)q5

− (5/3a2 − 19/3a− 94/3)q6 +O(q7),

where a is any root of the polynomial x3 − 90x + 188. Because any two newforms in S−6 (11) are

Galois conjugates, in view of (6.1), Theorem 1.2 ensures the existence of a congruence between

the newform g and E−6,11 modulo some prime in Q(a) above 5 (resp. for 19) which we verify now.

Factoring the ideals (5) and (19) in the ring of integers of Q(a) gives 5 = λλ′ and 19 = ββ′2, where

λ = (5,−1/6a2 + 1/3a + 28/3), λ′ = (5, 1/6a2 + 2/3a − 28/3), β = (19, 1/6a2 + 2/3a − 31/3) and

β′ = (19, 1/6a2 + 2/3a− 58/3). We then check that

(6.2) g ≡ E−6,11 (mod λ′) and g ≡ E−6,11 (mod β)

We emphasize the fact that the congruence (6.2) for the prime above ` = 5 = 6 − 1 is new and

corresponds to the non-covered case ` = k − 1 in [GP18].
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For ε = +1, we have N+
6,11 = 37 and 37 | M+

6,11. As S+
6 (11) is 1-dimensional and spanned by the

newform

f(z) = q − 4q2 − 15q3 − 16q4 − 19q5 + 60q6 +O(q7),

Theorem 1.2 guarantees the congruence

f ≡ E+
6,11 (mod 37).

As 113 ≡ −1 (mod 37), the conditions of Theorem 1.9 are satisfied with ` = 37, p = 11, k = 6

and ε = 1. On using that γ1,37 = 0.47464 . . . , we conclude that f has a refined `-non-divisibility

asymptotic (1.6) with h1 = 36, and Euler-Kronecker constant

γf ;37 = γ1,37 +
6

116 − 1
− 5

115 − 1
= 0.47464 . . .− 0.000027 . . . = 0.47461 . . .

Hence, in this case the Ramanujan approximation is better than the Landau one.

Example 6.2. Although Theorem 1.2 holds for ` > k − 2, we have checked several numerical

examples for the case ` ≤ k − 2 and in all those cases, we find that the assertion of Theorem 1.2

is true. We give one such example here. Take k = 12 and p = 7. Then the space of newforms in

S+
12(7) is 3-dimensional and spanned by the newforms

f(z) = q + aq2 − (11/21a2 − 103/7a− 33758/21)q3 + (a2 − 2048)q4 + (59/7a2 − 517/7a− 203864/7)q5

+ (−538/21a2 + 788/7a+ 2476144/21)q6 +O(q7),

where a is any root of the polynomial x3 − 77x2 − 2854x + 225104. Here N+
12,7 = 5 · 181 · 691 and

5 · 181 |M+
12,7. Therefore, by using the same reasoning used in the previous example, Theorem 1.2

guarantees the existence of the congruence of f with E+
12,7 modulo a prime ideal above 181 in Q(a),

something we have verified by direct computation. Note that Theorem 1.2 is not applicable for the

prime ` = 5, as ` < k − 1 = 11. But factoring the ideal (5) in the ring of integers of Q(a) gives

5 = λλ′, where λ = (5,−1/14a2 + 23/14a+ 1628/7) and λ′ = (5, 1/42a2− 3/14a− 1775/21) and we

check that

f ≡ E+
12,7 (mod λ′).

Example 6.3. The dimension of S+
k (p) turns out to be 1 for p = 2, 3, 5, 7, 11 and for certain finite

values of k, and the unique newforms have integer Fourier coefficients. In these cases, Theorem 1.4

gives a suitable congruence modulo N+
k,p. For example if p = 2 and k = 8, then one easily check

that N+
8,2 = 17. Then S+

8 (2) is 1-dimensional and spanned by the newform

∆8,2(z) := η8(z)η8(2z) ∈ S+
8 (2).

Theorem 1.4 gives that a constant multiple of f and E+
8,2 are same modulo 17. By comparing the

Fourier coefficients, we see that the constant must be 1 and hence ∆8,2 ≡ E+
8,2 (mod 17).



RAMANUJAN CONGRUENCES 17

Example 6.4. This example, which falls outside the scope of Theorem 1.2, gives a congruence

modulo 6 using Theorem 1.4. Take k = 4 and p = 17, and hence N−4,17 = 6. The space S−4 (17) is

1-dimensional, spanned by the newform

f(z) = q − 3q2 − 8q3 + q4 + 6q5 + 24q6 − 28q7 + 21q8 + 37q9 +O(q10).

Theorem 1.4 guarantees a congruence between a constant multiple of f and E−4,17 modulo 6. An

easy computation shows that the first 6 Fourier coefficients of f and E−4,17 are the same modulo 6.

Hence, invoking the Sturm bound,

f ≡ E−4,17 (mod 6).

We end this section by making some comments on Examples 5.6 and 5.7 considered in [DF14].

These involve congruences between the coefficients of a newform in Sk(p) and Ek away from the

level p. More precisely, in those examples, it is shown that if ` | Bk2k (1 − pk) and ` ≥ 5, then there

exists a newform f ∈ Sk(p) such that, for all primes q 6= p, modulo a prime ideal λ above ` we

have af (q) ≡ 1 + qk−1 (mod λ). On using Theorem 1.2 more can be said. For both examples the

prime ` divides Bk
2k (ε + pk/2) and (ε + pk/2)(ε + pk/2−1), for some ε ∈ {±1} and also satisfies the

further requirements of Theorem 1.2, which then yields that the Wp-eigenvalue of f is ε and that

af (p) ≡ 1 + pk−1 + εpk/2 (mod λ).

7. Intermezzo: Anatomy of integers

This section is a preamble for the next one.

Let P+(n) denote the largest prime divisor of an integer n > 2. Put P+(1) = 1. A number n

is said to be y-friable1 if P+(n) 6 y. The number of integers 1 6 n 6 x such that P+(n) 6 y is

denoted by Ψ(x, y). The study of the smoothness of integers was dubbed psixyology by the third

author in his PhD thesis, but is currently called the anatomy of integers (thus the focus shifted

from the mind of numbers to their body...).

In 1930, Dickman [Dic30] proved that

(7.1) lim
x→∞

Ψ(x, x1/u)

x
= ρ(u),

where the Dickman function ρ(u) is defined by

(7.2) ρ(u) =

{
1 for 0 6 u 6 1;
1
u

∫ 1
0 ρ(u− t)dt for u > 1.

We have 0 < ρ(u) < 1/Γ(u + 1), where Γ is the Gamma function. Thus ρ is rapidly decreasing.

Dickman’s result also remains true if we ask for the proportion of integers n ≤ x such that P+(n) ≤
n1/u. Thus if p is a prime number and p − 1 would behave like a typical integer, then one would

expect that P+(p− 1) ≤ p1/u with probability ρ(u). The following known result partially confirms

this.

1Some authors use y-smooth. Friable is an adjective meaning easily crumbled or broken.
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Theorem 7.1. Let s be any fixed non-zero integer. The set {p : P+(p + s) ≥ p1/u} has density

1−ρ(u) under the Elliott-Halberstam conjecture and unconditionally a lower density at least 1−4ρ(u)

for u > u1, where u1 ∈ (2.677, 2.678) is the unique solution of the equation 4u1ρ(u1) = 1.

Proof. A detailed proof of the first assertion was given by Lamzouri [Lam07] and, independently,

by Wang [Wan18]. The second assertion is due to Feng-Wu [FW18] and Liu-Wu-Xi [LWX20]. �

Unconditionally the set considered in Theorem 7.1 is not known to have a density, and therefore

we work with the notion of lower and upper density.

Interestingly, (7.1) was already known to Ramanujan, for details and more about the behaviour

of the Dickman function, see, e.g., Moree [Mor13].

8. Application to the degree of the coefficient field

Let Kf be the coefficient field of a normalized eigenform f ∈ Sk(p). Put

dnew
k (p) := max{[Kf : Q] : f ∈ Sk(p), f newform}

and

dk(p) := max{[Kf : Q] : f ∈ Sk(p), f normalized eigenform}.

Billerey-Menares [BM16] showed that for every even integer k ≥ 2 and every prime p ≥ (k + 1)4

with P+(p− 1) ≥ 5 one has

(8.1) dnew
k (p) ≥ 5 log(P+(p− 1))

2k
.

(Actually the original result has the factor log(1 + 2(k−1)/2) in the denominator, which we prefer

to replace by the upper bound k/5.) In 2015, Luca et al. [LMP15] showed that there exists a set of

primes of natural density at least 3/4 such that P+(p− 1) ≥ p1/4. This result in combination with

inequality (8.1), then yields that

(8.2) dnew
k (p) ≥ 5 log p

8k

for a set of primes of density at least 3/4. If one wants a lower bound valid for all large enough

primes p, we still cannot do better than Bettin et al. [BPR21] who showed that

dnew
k (p)�k log log p, p→∞.

On combining Theorem 7.1 and inequality (8.1), we obtain the following improvement of (8.2).

Theorem 8.1. Let k ≥ 2 be an even integer and u > 1 any real number. Under the Elliott-

Halberstam conjecture the set of primes p for which

dnew
k (p) ≥ 5 log p

2uk

has lower density at least 1− ρ(u). Unconditionally this set has at least lower density 1− 4ρ(u) for

u > 2.678.
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Corollary 8.2. The set of primes p for which (8.2) holds has lower density at least 1−4ρ(4) ≥ 0.98.

In the same spirit and as an application of Proposition 4.1, we establish analogues for dk(p) of

the latter theorem and corollary, by following the ideas used in the proof of [BM16, Theorem 2].

Theorem 8.3. If k ≥ 4 is an even integer and p any prime, then

dk(p) ≥
5 log(P+(p2 − 1))

2k
.

Proof. Define ` := P+(p2 − 1). First assume that ` ≥ 5. Then we can choose ε ∈ {±1} such that

` | (ε + pk/2). Applying Proposition 4.1 yields a normalized eigenform f =
∑

n≥1 af (n)qn ∈ Sεk(p)
and a prime ideal λ ⊂ OKf above ` such that

f ≡ Eεk,p (mod λ).

The coefficients of the eigenform f and those of any Galois conjugate of f all satisfy Deligne’s

estimate and hence the non-zero algebraic integer b := af (2)−1−2k−1 and all its Galois conjugates

have absolute value bounded above by (1 + 2(k−1)/2)2. Because of the above congruence, it is clear

that b ∈ λ and hence ` divides the absolute value of the norm of b, which is at most (1 + 2(k−1)/2)2d,

where d = [Kf : Q]. Therefore we conclude that

dk(p) ≥ d ≥
log `

2 log
(
1 + 2(k−1)/2

) ≥ 5 log `

2k
.

In the remaining case ` ≤ 3 we have 5(log `)/2k ≤ 5(log 3)/8 < 1 ≤ dk(p), and there is nothing to

prove. �

Combining this with Theorem 7.1 we obtain the following corollary.

Corollary 8.4. Let k ≥ 4 be even integer and u > 1 any real number. The set of primes p for

which

dk(p) ≥
5 log p

2uk
has lower density at least 1− 4ρ(u) for u > 2.678.

This can be sharpened if one solves the following problem.

Open problem 8.5. Show that the set of primes p for which P+(p2 − 1) < p1/u has an upper

density not exceeding 4ρ(u) for all u large enough.

By Theorem 7.1 under the Elliott-Halberstam conjecture each of the inequalities P+(p−1) < p1/u

and P+(p + 1) < p1/u is satisfied with probability ρ(u). Assuming independence of the two events

leads to the following conjecture on invoking Theorem 8.3.

Conjecture 8.6. Let k ≥ 4 be even integer and u > 1 any real number. The set of primes p for

which

dk(p) ≥
5 log p

2uk
,

has lower density at least 1− ρ(u)2.
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The independence assumption was already made by Erdős and Pomerance, see the two articles

by Wang [Wan18, Wan21], who also made partial progress in proving it.

Using elementary number theory it is easy to show that P+(p2 − 1) ≤ 3 if and only if p ∈
{2, 3, 5, 7, 17}. A much deeper result is the following trivial consequence of a celebrated result of

Evertse (where as usual we denote by π(x) the number of primes p ≤ x).

Proposition 8.7. Let x be a real number. The number of primes p for which P+(p2− 1) ≤ x is at

most 3 · 71+2π(x).

Proof. Put S := {p1, . . . , ps}. Integers of the form ±pe11 ·p
e1
2 · · · pess are called S-units. Evertse [Ev84,

Theorem 1] proved that the equation a + b = 1 has at most 3 · 71+2s solutions (a, b) with a and b

both S-units. If P+(p2−1) ≤ x, then both p−1 and p+1 are S-units, with S the set of consecutive

primes not excedding x, which has cardinality π(x). Taking the difference and dividing by two leads

to the S-unit equation a+ b = 1. �

Combining this result with Theorem 8.3, we obtain the following result.

Theorem 8.8. Let m ≥ 1 be an integer. Then, with the exception of at most

O(ee
2km/5

)

primes p, we have dk(p) ≥ m.

Proving a similar result for dnew
k (p) is an open problem.

9. Proof of Theorem 1.9

A set of natural numbers S is said to be multiplicative if its characteristic function is a multiplica-

tive function. The set B of natural numbers that can be written as a sum of two squares provides

an example (as already Fermat knew). One can wonder about the asymptotic behavior of S(x), the

number of positive integers n ≤ x that are in S. An important role in understanding S(x) is played

by the Dirichlet series

(9.1) LS(s) :=
∑
n∈S

n−s,

which converges for <(s) > 1. If the limit

(9.2) γS := lim
s→1+

(
L′S(s)

LS(s)
+

α

s− 1

)
exists for some α 6= 0, we say that the set S admits an Euler-Kronecker constant γS . A leisurely

account of the theory of Euler-Kronecker constants with plenty of examples is given in Moree

[Mor11].
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Proof of Theorem 1.9. We first consider the non-divisibility of σk−1(n) by `. Note that ` - σk−1(n)

if and only if ` - σr(n), where r = (k − 1, `− 1). Let gp1 be the multiplicative order of pr1 modulo `,

with p1 6= ` an arbitrary prime number. We let

(9.3) µp1 =

{
` if gp1 = 1,

gp1 if gp1 > 1.

Put S1 := {n : ` - σr(n)}. Rankin [Ran61] showed that

(9.4) LS1(s) =
1

1− `−s
∏
p1 6=`

1− p−(µp1−1)s
1

(1− p−s1 )(1− p−µp1s1 )
.

The proof of this is short and can also be found in [CLM21]. Set f(n) = σk−1(n) + εpk/2σk−1(n/p).

Write n = mpe, with m coprime to p. Note that f(m) = σk−1(m). Writing momentarily σ instead

of σk−1, we have

f(mpe) = σ(mpe) + εpk/2σ(mpe−1) = σ(m)σ(pe) + εpk/2σ(m)σ(pe−1) = f(m)f(pe),

and so f is a multiplicative function. Put S2(p) := {n : ` - f(n)}. The multiplicativity of f implies

that

LS2(p)(s) =
∏
p1

∑
a≥0
`-f(pa1)

1

pas1

has an Euler product, the sums being the Euler product factors. For the primes p1 6= p, we have

` - f(pa1) if and only if ` - σr(pa1) and we get the same Euler product factors as in (9.4). Since

εpk/2 = −1 (mod `) by assumption, we have

f(pa) ≡ σk−1(pa)− σk−1(pa−1) ≡ pa(k−1) 6≡ 0 (mod `),

and we conclude that the Euler product factor at p1 = p is (1− p−s)−1. We infer that

(9.5) LS2(p)(s) =
1

(1− `−s)
1

(1− p−s)
∏
p1 6=`
p1 6=p

1− p−(µp1−1)s
1

(1− p−s1 )(1− p−µp1s1 )
= LS1(s)

(1− p−µps)
1− p−(µp−1)s

.

Comparing the logarithmic derivative of LS2(p)(s) with that of LS1(s), we obtain

L′S2(p)(s)

LS2(p)(s)
=
L′S1

(s)

LS1(s)
+ log p

(
µp

pµps − 1
− (µp − 1)

p(µp−1)s − 1

)
.

The proof of (1.8) is then completed on invoking (9.2).

The prime counting functions #{p1 ≤ x : ` | σr(p1)} and #{p1 ≤ x : ` | f(p1)} differ by at most

one for every x. As the first counting function satisfies (1.7) with δ = r/(`− 1), so does the second,

and the proof is completed on account of Theorem 1.7. �
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[PP13] V. Paşol and A. A. Popa, Modular forms and period polynomials, Proc. Lond. Math. Soc. (3) 107 (2013),

713–743.
[Ram16] S. Ramanujan, On certain arithmetic functions, Trans. Cambridge Philos. Soc. 22 (1916), 159–184.
[Ran61] R. A. Rankin, The divisibility of divisor functions, Proc. Glasgow Math. Assoc. 5 (1961), 35–40.
[Rib90] K. A. Ribet, Raising the levels of modular representations, Séminaire de Théorie des Nombres, Paris 1987–88,

259–271, Progr. Math. 81, Birkhäuser Boston, Boston, MA, 1990.
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