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MULTIPLICATIVE FUNCTIONS IN SHORT ARITHMETIC

PROGRESSIONS

OLEKSIY KLURMAN, ALEXANDER P. MANGEREL, AND JONI TERÄVÄINEN

Abstract. We study for bounded multiplicative functions f sums of the form∑
n≤x

n≡a (mod q)

f(n),

establishing a theorem stating that their variance over residue classes a (mod q) is small as
soon as q = o(x), for almost all moduli q, with a nearly power-saving exceptional set of q. This
improves and generalizes previous results of Hooley on Barban–Davenport–Halberstam-type
theorems for such f , and moreover our exceptional set is essentially optimal unless one is able
to make progress on certain well-known conjectures. We are nevertheless able to prove stronger
bounds for the number of the exceptional moduli q in the cases where q is restricted to be either
smooth or prime, and conditionally on GRH we show that our variance estimate is valid for
every q.

These results are special cases of a ”hybrid result” that we establish that works for sums of
f(n) over almost all short intervals and arithmetic progressions simultaneously, thus generalizing
the Matomäki–Radziwi l l theorem on multiplicative functions in short intervals.

We also consider the maximal deviation of f(n) over all residue classes a (mod q) in the

square root range q ≤ x1/2−ε, and show that it is small for ”smooth-supported” f , again apart
from a nearly power-saving set of exceptional q, thus providing a smaller exceptional set than
what follows from Bombieri–Vinogradov-type theorems.

As an application of our methods, we consider Linnik-type problems for products of exactly
three primes, and in particular prove a ternary approximation to a conjecture of Erdős on
representing every element of the multiplicative group Z×p as the product of two primes less
than p.

To the memory of Christopher Hooley
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1. Main theorems

Let U := {z ∈ C : |z| ≤ 1} denote the unit disc of the complex plane, and let f : N→ U be
a 1-bounded multiplicative function. In this paper we study sums of the form∑

n≤x
n≡a (mod q)

f(n)(1)

with (a, q) = 1 and with the modulus 1 ≤ q ≤ x being very large as a function of x. We call such
arithmetic progressions short, since the number of terms is ∼ x/q, which is assumed to grow
slowly with x.

Our main results concern the deviation of multiplicative functions f : N → U in residue
classes in the square-root range q ≤ x1/2−ε, as well as their variance in residue classes in the
full range q = o(x). Here by deviation we mean

max
a∈Z×q

∣∣∣ ∑
n≤x

n≡a (mod q)

f(n)− χ1(a)

φ(q)

∑
n≤x

f(n)χ1(n)
∣∣∣,(2)

where Z×q the set of invertible residue classes (mod q), and by variance we mean∑∗

a (mod q)

∣∣∣ ∑
n≤x

n≡a (mod q)

f(n)− χ1(a)

φ(q)

∑
n≤x

f(n)χ1(n)
∣∣∣2,(3)

with χ1 the character (mod q) maximizing χ 7→
∑

n≤x f(n)χ(n) and with
∑∗

a(q) denoting a sum

over reduced residue classes (mod q). Comparing the sum (1) to the main term χ1(a)/ϕ(q) ·∑
n≤x f(n)χ1(n) is natural, since if f “correlates” with a Dirichlet character χ, then we expect∑

n≤x
n≡a (mod q)

f(n) ≈ χ(a)

φ(q)

∑
n≤x

f(n)χ(n).

We develop a systematic approach to estimating weighted character sums
∑

n≤x f(n)χ(n)nit

for the wide range of parameters t, q = O(x) and deduce numerous consequences related to (2)
and (3).

1.1. Results for prime moduli. For many problems on well-distribution in arithmetic pro-
gressions one can obtain stronger results by restricting to prime moduli (see, for example, [12],
[6]); the same is true in our setting.

Our first main result concerns the variance (3) in the range where x/q tends to infinity
very slowly. It is motivated by the groundbreaking work of Matomäki and Radziwi l l [30], which
produces a comparable result for multiplicative functions in short intervals.

In the statements of our theorems, for f : N → U and x, q ≥ 1, we will use the pretentious
distance function

Dq(f, g;x) :=
(∑
p≤x
p-q

1− Re(f(p)g(p))

p

)1/2
(4)

of Granville and Soundararajan (see, e.g., [2, p. 3]).
All the constants in this paper implied by the � notation will be absolute unless otherwise

indicated.
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Corollary 1.1. Let 1 ≤ Q ≤ x/10 and (log(x/Q))−1/200 ≤ ε ≤ 1. Then there exists a set

[1, xε
200

] ∩ Z ⊂ Qx,ε ⊂ [1, x] ∩ Z with |[1, Q] \ Qx,ε| � (log x)ε
−200

, and such that the following
holds.

Let p ∈ Qx,ε ∩ [1, Q] be a prime. Let f : N → U be a multiplicative function. Let χ1 be the
character (mod p) minimizing the distance inf |t|≤log xDp(f, χ(n)nit;x). Then we have∑∗

a (mod p)

∣∣∣ ∑
n≤x

n≡a (mod p)

f(n)− χ1(a)

φ(p)

∑
n≤x

f(n)χ1(n)
∣∣∣2 � ε

x2

p
.(5)

Moreover, assuming GRH, the above estimate holds for all p ∈ [1, Q].

Remark 1.1. Applying Halász’s theorem, we see that in Corollary 1.1 (as well as in our other re-
sults that follow) the main term (χ1(a))/φ(q)·

∑
n≤x f(n)χ1(n) can be deleted from the variance,

unless

inf
|t|≤log x

Dp(f, χ1(n)nit : x)2 ≤ 2 log 1/ε.(6)

In particular, if GRH holds, then by the pretentious triangle inequality we see that (6) can only
hold if χ1 is induced by χ′, where χ′ is the primitive character of conductor ≤ Q that minimizes
inf |t|≤log xD(f, χ(n)nit;x) (without assuming GRH, the situation is somewhat more complicated;
cf. Subsection 3.3).

We refer to Section 3 for a discussion of the strength of this theorem, as well as that of our
other theorems.

1.2. Smooth-supported functions in the square root range. We are also able to obtain
a result on the distribution of multiplicative functions in arithmetic progressions to all residue
classes (mod q) in the middle range q ≤ x1/2−o(1). This supports the well-known analogy

between results for all moduli in the middle range q ≤ x1/2−o(1) and almost all moduli in the
large range x1−ε ≤ q ≤ x1−o(1) (an example of this analogy is provided by the theorems of
Bombieri–Vinogradov and Barban–Davenport–Halberstam).

As in [30], transferring results from the almost all case to the case of all arithmetic progres-
sions requires a bilinear structure in our sums. In our case, we introduce this bilinear structure
by considering multiplicative functions f supported on smooth (friable) numbers.

Theorem 1.2. Let x ≥ 10, (log x)−1/200 ≤ ε ≤ 1, η > 0, and Q ≤ x1/2−100η. There is a set

[1, xε
200

] ∩ Z ⊂ Qx,ε ⊂ [1, x] ∩ Z with |[1, Q] \ Qx,ε| � Qx−ε
200

such that the following holds.
Let q ∈ Qx,ε ∩ [1, Q] be a prime. Let f : N→ U be a multiplicative function supported on xη-

smooth numbers. Let χ1 be the character (mod q) minimizing the distance inf |t|≤log xD(f, χ(n)nit;x).
Then we have

max
a∈Z×q

∣∣∣ ∑
n≤x

n≡a (mod q)

f(n)− χ1(a)

φ(q)

∑
n≤x

f(n)χ1(n)
∣∣∣�η ε

x

q
.(7)

Moreover, if Q′ is any subset of [1, Q] whose elements are pairwise coprime, then we have the

bound |Q′ \ Qx,ε| � (log x)ε
−200

. Moreover, assuming GRH, (7) holds for all q ∈ [1, Q].

1.3. Results for smooth moduli. In the context of smooth moduli, our proof methods work
better than in the case of prime moduli (see [43], [33] for other works leveraging the smoothness

of moduli). Here by smooth moduli we mean those q that are qε
′
-smooth. For such q, we are

able to unconditionally remove the exceptional set of moduli from Theorem 1.4. When working
with composite moduli q with x/q very slowly growing, we need, however, to restrict to moduli
that do not have abnormally many small prime divisors. To this end, we make the following
definition.
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Definition 1.1. We say that an integer q ≥ 1 is y-typical if∑
p|q
p≤z

1 ≤ 1

100
π(z) for all z ≥ y.

We can now state our result for smooth moduli using the concept of (x/Q)ε
2
-typical num-

bers. A simple argument (see Section 9) shows that all q ≤ x are such numbers if Q =

o(x/(log x)1/ε2), and otherwise the number of q ≤ Q that are not (x/Q)ε
2
-typical is bounded by

� Q exp(−(1/1000 + o(1))(x/Q)ε
2
).

Theorem 1.3. Let 1 ≤ Q ≤ x/10, (log(x/Q))−1/200 ≤ ε ≤ 1, and ε′ = exp(−ε−4). Let q ≤ Q

be qε
′
-smooth and (x/Q)ε

2
-typical. Let f : N → U be a multiplicative function. Let χ1 (mod q)

be the character minimizing the distance inf |t|≤log xDq(f, χ(n)nit;x). Then we have∑∗

a (mod q)

∣∣∣ ∑
n≤x

n≡a (mod q)

f(n)− χ1(a)

ϕ(q)

∑
n≤x

f(n)χ1(n)
∣∣∣2 � εφ(q)

(x
q

)2
.

We note that the need to restrict to typical moduli arises naturally in our proof and is
present also in other works (slightly differently formulated), e.g. [27], [10]. See Subsection 3.4
for a discussion of the necessity of this assumption.

We can also generalize Corollary 1.1 from prime moduli to any set of coprime moduli, pro-
vided that we restrict to typical moduli (see Theorem 9.4 for a precise statement).

1.4. General moduli. We then proceed to state a result for moduli q that are not required to
be prime or smooth. In this case we obtain the desired bound for the variance (3) for all typical
moduli outside a nearly power-saving exceptional set.

Theorem 1.4. Let 1 ≤ Q ≤ x/10 and (log(x/Q))−1/200 ≤ ε ≤ 1. Then there exists a set

[1, xε
200

] ∩ Z ⊂ Qx,ε ⊂ [1, x] ∩ Z with |[1, Q] \ Qx,ε| � Qx−ε
200

such that the following holds.

Let q ∈ Qx,ε ∩ [1, Q] be (x/Q)ε
2
-typical. Let f : N → U be a multiplicative function. Let χ1

be the character (mod q) minimizing the distance inf |t|≤log xDq(f, χ(n)nit;x). Then we have∑∗

a(q)

∣∣∣ ∑
n≤x
n≡a(q)

f(n)− χ1(a)

φ(q)

∑
n≤x

f(n)χ1(n)
∣∣∣2 � εφ(q)

(x
q

)2
.(8)

Moreover, assuming GRH, (8) holds for all (x/Q)ε
2
-typical q ∈ [1, Q].

1.5. Hybrid results. As already mentioned, our results are motivated by the following theorem
from [30].

Theorem A (Matomäki–Radziwi l l). Let 10 ≤ h ≤ X, and let f : N→ [−1, 1] be multiplicative.
Then we have∫ 2X

X

∣∣∣ ∑
x≤n≤x+h

f(n)− h

X

∑
X≤n≤2X

f(n)
∣∣∣2 dx� (( log log h

log h

)2
+ (logX)−1/50

)
Xh2.

This was generalized to functions f : N → U that are not nit-pretentious for any t by
Matomäki–Radziwi l l–Tao [31]. Our next theorem is a hybrid result that allows us to ”interpo-
late” between Theorem A (in the complex-valued case) and our Theorem 1.4 on multiplicative
functions in short arithmetic progressions, thus generalizing both results. This theorem applies
to sums of the form ∑

x≤n≤x+H
n≡a (mod q)

f(n)



MULTIPLICATIVE FUNCTIONS IN SHORT ARITHMETIC PROGRESSIONS 5

over short intervals and arithmetic progressions, with averaging over x ∈ [X, 2X] and a ∈ Z×q ,
as soon as H/q →∞.

Theorem 1.5 (A Hybrid theorem). Let X ≥ h ≥ 10 and 1 ≤ Q ≤ h/10. Let (log(h/Q))−1/200 ≤
ε ≤ 1. Then there is a set [1, Xε200

] ∩ Z ⊂ QX,ε ⊂ [1, X] ∩ Z satisfying |[1, Q]\QX,ε| � QX−ε
200

such that the following holds.

Let q ∈ QX,ε ∩ [1, Q] be (h/Q)ε
2
-typical. Let f : N → U be multiplicative. Let χ1 be the

character (mod q) minimizing the distance inf |t|≤X Dq(f, χ(n)nit;X), and let tχ ∈ [−X,X] be

the point that minimizes1 Dq(f, χ(n)nit;X) for each χ. Then we have∫ 2X

X

∑∗

a (mod q)

∣∣∣ ∑
x<n≤x+h

n≡a (mod q)

f(n)− χ1(a)

φ(q)

(∫ x+h

x
vitχ1dv

)
1

X

∑
X<n≤2X

f(n)χ1(n)n−itχ1

∣∣∣2dx(9)

� εφ(q)X
(h
q

)2
.

Moreover, assuming GRH, the result holds for all (h/Q)ε
2
-typical q ∈ [1, Q].

We note that, for h ≤ ε2X, one can Taylor expand the integral above to write it as∫ x+h

x
vitχ1 dv =


O(εh), |tχ1 | > ε−1X/h,

hxitχ1 +O(εh), |tχ1 | < εX/h,

hxitχ1
eiτ−1
iτ +O(εh), τ := |tχ1 |h/X ∈ (ε, ε−1).

In the case of real-valued multiplicative functions f : N→ [−1, 1], we have a simpler formu-
lation of the result as follows.

Corollary 1.6. Let the notation be as in Theorem 1.5, and assume additionally that f is real-

valued. Then for all q ∈ QX,ε ∩ [1, Q] that are (h/Q)ε
2
-typical we have∫ 2X

X

∑∗

a (mod q)

∣∣∣ ∑
x<n≤x+h

n≡a (mod q)

f(n)− χ1(a)

φ(q)

h

X

∑
X≤n≤2X

f(n)χ1(n)
∣∣∣2 dx� εφ(q)X

(h
q

)2
.(10)

Moreover, we can take χ1 to be a real character (mod q). Again, assuming GRH, the result

holds for all (h/Q)ε
2
-typical q ∈ [1, Q].

Taking q = 1 and h tending to infinity slowly with X, we recover Theorem A (with a smaller
power of logarithm), and obtain a form that works for any 1-bounded f , whether it be nit-
pretentious or not. Taking in turn Q = o(h) and h = X, we arrive at a slightly weaker form of
our variance result, Theorem 1.4, where we now need to average over x ∈ [X, 2X].

We can also specialize Corollary 1.6 to f = µ and to the smaller range q ≤ xε200
to obtain a

clean statement, which has recently been used in [41] to obtain applications to ergodic theory.

Corollary 1.7. Let A ≥ 1, ε > 0, X �A 1, 1 ≤ h ≤ Xε200
and let q be (h/q)ε

2
-typical. Then

we have ∫ 2X

X

∑∗

a (mod q)

∣∣∣ ∑
x<n≤x+h

n≡a (mod q)

µ(n)
∣∣∣2 dx� εϕ(q)X

(
h

q

)2

,

except possibly if q is a multiple of a single number q0 ≥ (logX)A depending only on A and X.

The exclusion of the multiples of a single modulus is necessary if Siegel zeros exist, as they
bias the distribution of µ in residue classes.

1If there are several such tχ, pick any one of them.
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2. Applications

A celebrated theorem of Linnik states that the least prime p ≡ a (mod q) is � qL for some
absolute constant L and uniformly for a ∈ Z×q and q ≥ 1. The record value to date is L = 5,

due to Xylouris [42]. For qδ−smooth moduli (with δ = δ(ε)), a better bound of � q12/5+ε is
available, this being a result of Chang [3, Corollary 11]. Under GRH, we would have L = 2+o(1)
in place of L = 5, and assuming a conjecture of Cramér-type, L = 1+o(1) would be the optimal
exponent.

We apply the techniques used to prove our main results to make progress on the analogue
of Linnik’s theorem for E3 numbers, that is, numbers that are the product of exactly 3 primes.
We seek bounds on the quantity

L3(q) := max
a∈Z×q

min{n ∈ N : n ≡ a (mod q) : n ∈ E3}.

One can show that under GRH one has L3(q)� q2+o(1). The E3 numbers, just like the primes,
are subject to the parity problem, and hence one cannot use sieve methods to tackle the problem
of bounding L3(q) (in contrast, for products of at most two primes ≤ x, it is known that one

can find them in every reduced residue class (mod q) for q ≤ x1/2+δ for some δ > 0 by a result
of Heath-Brown [15] proved using sieve methods).

We show unconditionally that L3(q) � q2+o(1) for all smooth moduli and for all but a few
prime moduli.

Theorem 2.1. Let ε > 0, and let ε′ > 0 be small enough in terms of ε.

(i) For any integer q ≥ 1 all of whose prime factors are ≤ qε′, for any a ∈ Z×q , there exists

some q-smoooth n ∈ E3 such that n� q2+ε and n ≡ a (mod q). Thus, L3(q)� q2+ε.

(ii) Let Q ≥ 2. Then for all but �ε 1 primes q ∈ [Q1/2, Q], for any a ∈ Z×q , there exists

some q-smoooth n ∈ E3 such that n� q2+ε and n ≡ a (mod q). Thus, L3(q)� q2+ε.

This will be proved in Section 12. Since all the E3 numbers we detect are q-smooth, our
results are connected to the question of representing every element of the multiplicative group
Z×q by using only a bounded number of small primes. This problem was introduced by Erdős,

Odlyzko and Sárközy in [5], and there Erdős conjectured that every residue class in Z×q , with q
a large prime, has a representative of the form p1p2 with p1, p2 ≤ q primes. As is noted in [40],
this remains open, even under GRH. The weaker ”Schnirelmann-type” question of representing
every residue class in Z×q as the product of at most k primes in [1, q] was studied by Walker [40],

who showed2 that k = 6 suffices for all large primes q, and moreover k = 48 suffices if we consider
products of exactly k primes. Shparlinski [36] then improved on the latter by showing that at
most 5 primes suffice for every large integer q. From Theorem 2.1 we deduce the following.

Corollary 2.2 (Ternary version of Erdős’s conjecture with bounded exceptional set). There

exists C > 0 such that the following holds. For all Q ≥ 2 and all primes q ∈ [Q1/2, Q], apart
from ≤ C exceptions, every element of the multiplicative group Z×q can be represented as the
product of exactly three primes from [1, q].

We also consider the analogue of Linnik’s theorem for the Möbius function. Thus, we aim to
bound

Lµ(q) := max
a∈Z×q

min{n ∈ N : n ≡ a (mod q) : µ(n) = −1}.

2Both in [40] and [36] a stronger result was shown, namely that one can restrict to primes in [1, q1−η] for
explicitly given values of η > 0. An inspection of the proof of our Corollary 2.2 shows that there also we could
restrict to primes bounded by q1−η, with η > 0 small enough.
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Since the theorems above give L3(q)� q2+o(1) for smooth q and all but a few primes q (and since

the E3 numbers we detect are typically squarefree), for such q we clearly have Lµ(q)� q2+o(1)

as well. However, in the case of the Möbius function, we are able to obtain lower bounds of the
correct order of magnitude as opposed to just showing the existence of such n.

Proposition 2.3. Let ε > 0, Q ≥ 2 Then, for all but �ε 1 primes q ∈ [Q1/2, Q], we have

min
a∈Z×q

∑
n≤x

n≡a (mod q)

1µ(n)=−1 �ε
x

q

for all x ≥ q2+ε. The same holds with 1µ(n)=+1 in place of 1µ(n)=−1.

Proposition 2.3 is in a sense an arithmetic progression analogue of a short interval result
from [30, Corollary 5]. The Linnik-type problem considered above is however more difficult than
its short interval analogue, since the current knowledge on zero-free regions of L-functions cor-
responding to characters of large conductor is somewhat poor. Indeed, unconditionally proving
the estimate L3(q) � q2+o(1) for every q seems out of reach, due to connections between this
problem and Vinogradov’s conjecture (see Subsection 3.3).

3. Optimality of theorems and previous work

3.1. Previous results. The study of the deviations (2) and (3) of f in arithmetic progressions
can roughly speaking be divided into three different regimes: the small moduli q ≤ xε, the middle
moduli xε ≤ q ≤ x1−ε, and the large moduli x1−ε ≤ q = o(x).

In the regime of small moduli, we have Linnik’s theorem, which in its quantitative form [25,
Theorem 18.6] gives the expected asymptotic formula for the average of µ (or Λ) over a (mod q),
valid for all q ≤ xε, a ∈ Z×q , apart from possibly multiples of a single number q0 (a Siegel
modulus). A far-reaching generalization of this to arbitrary 1-bounded multiplicative functions
f was achieved by Balog, Granville and Soundararajan [2]. See also the work [7] of Granville,
Harper and Soundararajan for related results.

3.1.1. Middle moduli. The middle regime q = xθ with ε ≤ θ ≤ 1 − ε (and typically with θ
near 1/2) is arguably the most well-studied one. It includes the celebrated Bombieri–Vinogradov
theorem, which for f = µ (or f = Λ) can be interpreted as providing cancellation in the deviation

(2) for almost all q ≤ x1/2−ε and all a ∈ Z×q . A complete generalization of the Bombieri–
Vinogradov theorem to arbitrary 1-bounded multiplicative functions was recently achieved by
Granville and Shao [8, Theorem 1.2].

The result of Granville and Shao in particular implies the following almost-all result: for all

but ≤ Q/(log x)
1− 1√

2
−2ε

choices of q ∈ [Q, 2Q] ⊂ [1, x1/2−ε], we have

max
a∈Z×q

∣∣∣ ∑
n≤x

n≡a (mod q)

f(n)− χ1(a)

φ(q)

∑
n≤x

f(n)χ1(n)
∣∣∣ = o

(x
q

)
.(11)

In Theorem 1.2, we demonstrated that if f is supported on xη-smooth numbers, then the size
of the exceptional set of q ≤ x1/2−ε in (11) can be reduced to an almost power-saving bound,
or even to a power of logarithm in the case of prime moduli. This may be compared with a
recent result of Baker [1], which gives an analogous result for f = Λ, but in the smaller range

q ≤ x9/40−ε.
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3.1.2. Large moduli. In the large regime x1−ε ≤ q = o(x), one aims for estimates valid for almost
all q and for almost all a ∈ Z×q ; results of this shape arise from upper bounds for the variance
(3). The most classical theorem of this type is the Barban–Davenport–Halberstam theorem [25,
Chapter 17], which states that

∑
q≤x/(log x)B

∑
a∈Z×q

∣∣∣ ∑
n≤x

n≡a (mod q)

µ(n)
∣∣∣2 �A

x2

(log x)A
,(12)

with B = B(A) explicit (and this result of course has an analogue where µ is replaced with Λ).
The Barban–Davenport–Halberstam theorem was extensively studied by Hooley in a seminal

series of publications titled “On the Barban–Davenport–Halberstam theorem”, spanning 19 pa-
pers. In this series, he significantly improved and generalized the Barban–Davenport–Halberstam
bound, and among other things produced an asymptotic formula for the left-hand side of (12),
and also with µ replaced by any bounded sequence satisfying a Siegel–Walfisz type assumption.
Of this series of papers, the ones related to the aims of the present paper are [18], [19], [20],
[21], [22]. In particular, from [18] (where Hooley considers the variance summed over all moduli
q ≤ Q) one can extract the following almost-all result (see also [39] for a related result, proved
using the circle method).

Theorem B (Hooley). Let ε > 0 and A ≥ 1 be fixed, let 1 ≤ Q ≤ x, and let f : N → U be
an arbitrary function satisfying the Siegel–Walfisz condition3. Denote H := x/Q. Then, for all
1 ≤ q ≤ Q apart from � Q((logH)/H + (log x)−A) exceptions we have

∑∗

a (mod q)

∣∣∣ ∑
n≤x

n≡a (mod q)

f(n)− χ0(a)

φ(q)

∑
n≤x

f(n)χ0(n)
∣∣∣2 ≤ εϕ(q)

(
x

q

)2

,(13)

where, for each q ≤ Q, the character χ0 is principal modulo q.

By Theorem 1.4, and the fact that the number of moduli q ≤ Q that are not Hε2-typical is

� Q exp(−(1/1000 + o(1))Hε2), the size of the exceptional set here for multiplicative f reduces

to � Q exp(−c0H
ε2). We can at the same time remove the Siegel–Walfisz assumption on f

(by replacing χ0 by another character (mod q)). By Theorem 1.4, we can further say that the

number of exceptional q that are Hε2-typical is� Qx−ε
200

. This essentially power-saving bound
was not, according to our knowledge, previously available even for f = µ.

We note though that if one is interested in quantitative savings on the right-hand side of
Theorem (B), then Hooley’s result gives better error terms.

We now discuss some of the key features of Theorem 1.4 when it comes to the strength and
optimality of the results.

3.2. The description and size of the exceptional set. The set ([1, x] ∩ Z) \ Qx,ε of ex-
ceptional moduli present in our main theorems turns out to be completely independent of the
function f that we consider, a feature that is not present in the almost-all versions of the Barban–
Davenport–Halberstam theorem or Hooley’s Theorem B. In fact, we have an explicit description

3We say that f satisfies the Siegel–Walfisz condition if for all 1 ≤ q ≤ x, (a, q) = 1 we have∑
n≤x,n≡a (mod q) f(n) = 1

φ(q)

∑
n≤x,(n,q)=1 f(n) + OA(x/(log x)A); in [20], Hooley works with a slightly more

flexible version of this assumption.
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of Qx,ε in terms of zeros of L-functions (mod q) as

Qx,ε :=
{
q ≤ x :

∏
χ (mod q)

cond(χ)>xε
200

L(s, χ) 6= 0 for Re(s) ≥ 1− ε−100(log log x)

log x
, |Im(s)| ≤ 3x

}
;

(14)

see Proposition 9.1 and Lemma 8.2 for this. Hence, if GRH (or even a weak version of it) holds,
then Qx,ε is all of [1, x] ∩ Z. From the description (14) and zero density estimates, it is not
difficult to see that we have a structural description of the exceptional moduli as being multiples

of a subset Ex ⊂ [xε
200
, x] of integers of size O((log x)ε

−200
). This also explains why for prime

moduli (Corollary 1.1) we were able to obtain such a strong bound for the exceptional set.

3.3. Connection to Vinogradov’s conjecture and character sums. For any fixed ε >
0, Theorem 1.4 gives a power-saving bound for the number of exceptional moduli (with the
exponent of the saving approaching 0 as ε → 0). This is essentially best possible, in the sense

that replacing the bound Qx−ε
200

by Qx−η0 for η0 > 0 fixed would lead to the proof of some
form of Vinogradov’s conjecture4 (which is known under GRH but not unconditionally).

Indeed, assuming the negation of Vinogradov’s conjecture, there exists η > 0 and infinitely
many x ≥ 10 such that for some prime xη−o(1) ≤ q0 ≤ xη we have 1P+(n)≤qη0 ·χreal(n) = 1P+(n)≤qη0
for all n, with χreal the primitive quadratic character (mod q0) and with P+(n) the largest prime
factor of n. Now, for fη(n) := 1P+(n)≤qη0 , by the classical asymptotic formula for smooth numbers

(and the fact that q0 is prime), we have∑
n≤x

fη(n)χ0(n) = (ρ(η−2) + o(1))x

∑
n≤x

fη(n)χreal(n) = (ρ(η−2) + o(1))x,
(15)

with χ0 the principal character (mod q0) and ρ(·) the Dickman function (see Section 5 for its
definition), so certainly

1

φ(q0)

∑
χ (mod q0)
χ 6=χ1

∣∣∣∑
n≤x

fη(n)χ(n)
∣∣∣2 �η

x2

q0
,(16)

for any choice of χ1. However, by Parseval’s identity (in the form of Lemma 7.1), (16) equals to
the left-hand side of (8) (with f = fη), and thus q0 6∈ Qx,ε if ε is small in terms of η.

Note that if Q = x/ log x and r = q0p with p ∈ [log x,Q/q0] a prime, then the same argument
as above (with χ0(n) and χreal(n) replaced by χ0(n)1(n,r)=1 and χreal(n)1(n,r)=1 in (15)) shows

that also r 6∈ Qx,ε, meaning that there are � Qx−η+o(1) exceptional q ≤ Q (again with ε small
enough in terms of η). Taking η < η0, this shows that the number of exceptional moduli is in
fact not bounded by � Qx−η0 . Thus one cannot generally improve on the exceptional set in
Theorem 1.4 without settling Vinogradov’s conjecture at the same time.

One could also adapt the argument above to show more strongly that improving the excep-
tional set would lead to cancellation in smooth character sums. Using arguments from [11], it
should further be possible to say that this implies bounds for zeros of L-functions near 1 (and
is therefore out of reach).

Similar conclusions apply to the size of the exceptional set in our other main theorems.

4Vinogradov’s conjecture on the least quadratic nonresidue states that for every η > 0 and for any prime
q > q0(η) there is a quadratic nonresidue (mod q) on the interval [1, qη].
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3.4. The restriction to typical moduli. We now discuss the importance of working with
typical moduli in Theorems 1.4 and 1.5. In our proofs, as in the work [30], it is important for us
to be able to discard those n ≤ x, n ≡ a (mod q) from the sum (8) that have no prime factors
from certain long intervals [Pi, Qi] (with Qi ≤ h/Q). However, if q is divisible by all (or most)
primes in [Pi, Qi], then we cannot discard the contribution of such integers. This would then
prevent us from factorizing our character sums in the desired way.

While Theorem 1.4 may remain valid for all moduli q ≤ Q (under GRH), there seem to be
some serious obstacles to proving this. Indeed, Granville and Soundararajan [10] proved a very
general uncertainty principle for arithmetic sequences, which roughly speaking says that “mul-
tiplicatively interesting” sequences cannot be perfectly distributed in arithmetic progressions.
For example, if f(n) = 1(n,r)=1 with r having too many small prime factors in the sense that∑

p|r,p≤log x log p/p � log log x, then for each C > 0 there exists y ∈ (x/4, x) and a progression

a (mod q) with (a, q) = 1 and q ≤ x/(log x)C and P−(q)� log log x such that the mean value of
f over n ≤ y, n ≡ a (mod q) does not obey the anticipated asymptotic formula. Note that such
an f(n) can be = 1 for a positive proportion of n ≤ x, for example if r =

∏
(log x)1−η≤p≤log x p.

Similarly, if for example f is the indicator of sums of two squares, then the results of [10]
imply that f is poorly distributed in some residue classes a (mod q) with q ≤ x/(log x)C .

3.5. Remarks on improvements. We finally list a few small improvements to our main the-
orems that could be obtained with only slight modifications to the proofs.

• In Theorem 1.5, we obtain a quantitative upper bound of the form (log(h/Q))−cφ(q)(x/q)2

for small c > 0 by choosing ε = (log(h/Q))−0.002, say. Thus our savings are comparable to
those in [30, Theorem 3], and one cannot get larger savings than ((log log(h/Q))/ log(h/Q))2,
since in the proof one restricts to integers having certain typical factorizations. However,
if one specializes to the case f = µ in our main theorems, one can easily adapt the proof
to yield savings of the form� (log(h/Q))−2+o(1) by applying the Siegel–Walfisz theorem
in place of Hálasz-type estimates. We leave the details to the interested reader.
• As in the work of Granville and Shao [8] on the Bombieri–Vinogradov theorem for

multiplicative functions, we could obtain stronger bounds for (8) if we subtracted the
contribution of more than one character from the sum of f over an arithmetic progression.
Moreover, it follows directly from our proof that if we subtracted the contribution of
� (log x)C(ε) characters, then there would be no exceptional q at all in the theorem. We
leave these modifications to the interested reader.

4. Proof ideas

We shall briefly outline some of the ideas that go into the proofs of our main results.

4.0.1. Proof ideas for the variance results. We start by discussing the proof of the hybrid re-
sult, Theorem 1.5; the proof of our result on multiplicative functions in short progressions,
Theorem 1.4, is similar but slightly easier in some aspects.

As in the groundbreaking work of Matomäki–Radziwi l l [30], we begin by applying a suitable
version of Parseval’s indentity to transfer the problem to estimating an L2-average of partial
sums of f twisted by characters from a family. Of course, since we are working with both intervals
and arithmetic progressions, the right family of characters to employ are the twisted characters
{χ(n)nit}χ (mod q),|t|≤X/h; we reduce to obtaining cancellation in∑

χ (mod q)

∫
t∈Tχ

∣∣∣ ∑
X≤n≤2X

f(n)χ(n)n−it
∣∣∣2 dt,

with Tχ = [−X/h,X/h] if χ 6= χ1 and Tχ1 = [−X/h,X/h] \ [tχ1 − ε−10, tχ1 + ε−10], with χ1 and
tχ1 as in the theorem (so (χ, t) 7→ inf |t|≤X Dq(f, χ, nit) for χ (mod q) and |t| ≤ X is minimized
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at (χ1, tχ1)); this deleted segment of the integral corresponding to the character χ1 accounts for
our main term.

We make crucial use of the Ramaré identity, thus obtaining a factorization5∑
X≤n≤2X

f(n)χ(n)n−it ≈
∑

Pj≤p≤Qj

f(p)χ(p)p−it
∑

X/p≤m≤2X/p

f(m)am,Pj ,Qjχ(m)m−it,

with the parameters Pj , Qj at our disposal, and the approximation being accurate in an L2-sense
(after splitting the p variable into short intervals). Here am,Pj ,Qj := 1

1+ω[Pj,Qj ](m) is a well-behaved

sequence, behaving essentially like the constant 1 for the purposes of our argument. After having
obtained this bilinear structure, we split the “spectrum” {χ (mod q)}× [−X/h,X/h] into parts
depending on which of the sums

∑
Pj≤p≤Qj f(p)χ(p)p−it with j ≤ J (if any) exhibits cancellation.

Different parts of the spectrum are bounded differently by establishing various mean and large
values estimates for twisted character sums (see Section 7), in analogy with [30, Section 4] for
Dirichlet polynomials.

The outcome of all of this is that we can reduce to the case where the longest of our twisted
character sums,

∑
PJ≤p≤QJ f(p)χ(p)p−it, has (essentially) no cancellation at all. It is this large

spectrum case where we significantly deviate from [30]; in that work, the large spectrum is not
the most difficult case to deal with, thanks to the Vinogradov–Korobov zero-free region for the
Riemann zeta-function. In our setting, in turn, we encounter L-functions L(s, χ) with χ having
very large conductor, and for these L-functions the known zero-free regions are very poor (the
best region being the Landau–Page zero-free region σ > 1− c0

log(q(|t|+1)) , valid apart from possible

Siegel zeros). Thus, our task is to establish a bound essentially of the form

sup
χ (mod q)

sup
|t|≤X

χ=χ1=⇒|t−tχ1 |≥ε
−10

∣∣∣ ∑
X≤n≤2X

f(n)χ(n)n−it
∣∣∣� ε

φ(q)

q
X(17)

for the sup norm of the twisted character sums involved, as well as a proof that the large
spectrum set under consideration is extremely small6, that is,

sup
P∈[Xε,X]

∣∣∣{(χ, t) ∈ {χ (mod q)} × T : |
∑

P≤p≤2P

f(p)χ(p)p−it| ≥ εP

logP

}∣∣∣� ε−2,(18)

with T ⊂ [−X,X] well-spaced. These two bounds are our two key Propositions 8.3 and 8.5 for
the proof of the hybrid theorem. We need full uniformity in |t|, q ≤ X, and this makes the proofs
somewhat involved: in particular, we need to make use of the work of Koukoulopoulos [29,
Lemma 4.2], and the Granville–Harper–Soundararajan pretentious large sieve for the primes
[7, Corollary 1.13] (as well as results of Chang [3, Theorem 5] for Theorem 1.3 on smooth
moduli) to be able to prove these results. Of course, we cannot prove (17) or (18) for all q ≤ x
(see Subsection 3.3). What we instead establish is that (17) and (18) are valid whenever the
functions L(s, χ) for every χ (mod q) (of large conductor) enjoy a suitable zero-free region (see
Proposition 9.2 and Lemma 8.2 for the definition of the region involved). We can then make use
of the log-free zero-density estimate for L-functions (Lemma 8.1) to bound the number of bad

5Due to the restriction to reduced residue classes a (mod q) in our theorems, we have desirable factorizations
for typical integers only if q is not divisible by an atypically large number of small primes, e.g. by almost all of
the primes up to (h/Q)0.01. This is what results in the need in our main theorems to restrict to typical moduli.
This issue of course does not arise in the short interval setting of [30].

6One could use moment estimates (e.g. Lemma 7.5) to show that the large values set is � (logX)Oε(1) in
size; however, in our case that would be a fatal loss, since the saving we get in (17) is at best 1/ logX and
is therefore not enough to compensate this. In [30], a Halász–Montgomery-type estimate for prime-supported
Dirichlet polynomials is established to deal with the large spectrum; our Proposition 8.5 essentially establishes a
hybrid version of this, but in a very different regime.



12 OLEKSIY KLURMAN, ALEXANDER P. MANGEREL, AND JONI TERÄVÄINEN

q (and in the case of pairwise coprime moduli, as in Corollary 1.1, the bound is much better
thanks to there being no effect from a single bad character inducing many others).

4.0.2. Proof Ideas for the case of all moduli in the square-root range. The starting point of the
proof of Theorem 1.2 is the simple Lemma 11.4 that allows us to conveniently decompose any
xη-smooth number into a product n = dm with an appropriate choice of d,m ∈ [x1/2−η, x1/2+η].
However, the decoupling of the d and m variables here is somewhat delicate and requires some
smooth number estimates. After decoupling the variables (and extracting a further small prime
factor), we have introduced a trilinear structure with two variables of almost equal length, which
(by Cauchy–Schwarz) means that we can employ the techniques from previous sections to bound
mean squares of the resulting character sums.

4.0.3. Proof Ideas for the Linnik-type results. For the proof of our Linnik-type results, Theo-
rems 2.1(i)–(ii), we use similar ideas as for Theorem 1.2, with a couple of additions. Since we
only need a positive lower bound for the number of n ≡ a (mod q) that are E3 numbers, we
can impose the requirement that these n have prime factors from any intervals that we choose.
Thanks to this flexibility in the sizes of the prime factors, we can get good bounds for the tri-
linear sums that arise. A key maneuver here is to count suitable n with the logarithmic weight
1/n, so that we will be able to utilize a modification of the ”Rodosskii bound” from the works of
Soundararajan [37] and Harper [14], which establishes cancellation in logarithmically averaged
character sums over primes assuming only a very narrow zero-free region. For smooth moduli,
we have a suitable zero-free region by a result of Chang [3, Theorem 5], whereas for prime q we
apply the log-free zero-density estimate to obtain a suitable region apart from a few bad moduli.

Future work

The arithmetic progression analogue of the Matomäki–Radziwi l l method that forms the basis
of this paper is rather flexible, and in particular in a subsequent paper [28] we applied a variant of
it over function fields to establish the Matomäki–Radziwi l l theorem for multiplicative functions
f : Fq[T ]→ [−1, 1] (which in turn was used to prove the logarithmic two-point Elliott conjecture
over function fields). Our methods are not limited to bounded multiplicative functions either,
and in a subsequent work we will prove an analogue of Theorem 1.4 for multiplicative functions
that are only assumed to be bounded by a k-fold divisor function.

Structure of the paper

We will present the proofs of Theorems 1.4 and 1.5 (as well as Corollary 1.1) in Subsections 9.4
and 9.2, respectively. The necessary lemmas for proving these results are presented in Sections 6
and 7. Section 8 in turn contains two propositions that are key ingredients in the proofs of the
main theorems. In Section 10 we prove Theorem 1.3 on smooth moduli. Our result on smooth-
supported functions in the square-root range is proved in Section 11. Section 12 in turn contains
the proofs of the applications to Linnik-type theorems. We remark that Sections 9, 11 and 12
can all be read independently of each other, but they depend on the work in Section 8.

5. Notation

We use the usual Vinogradov and Landau asymptotic notation �,�, �, O(·), o(·), with
the implied constants being absolute unless otherwise stated. If we write �ε,�ε or Oε(·), this
signifies that the implied constant depends on the parameter ε.

We write 1S(n) for the indicator function of the set S. The functions Λ, φ and τk are the usual
von Mangoldt, Euler phi and k-fold divisor functions, and π(x) is the prime-counting function.
The symbol ρ : (0,∞) → [0, 1] in turn denotes the Dickman function, the unique solution to
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the delayed differential equation ρ(u− 1) = uρ′(u) for u > 1, with the initial data ρ(u) = 1 for
0 < u ≤ 1; see [17] for further properties of this function.

The symbol p is reserved for primes, whereas j, k,m, n, q are positive integers.
Below we list for the reader’s convenience the notation we introduce in later sections.

Nomenclature∑∗

a(q)
A sum over the invertible residue classes (mod q)∑∗

χ(q)
A sum over the primitive characters (mod q)

χ0 The principal character
χ∗ The primitive character inducing the character χ
cond(χ) The conductor of the character χ
Z×q The set of invertible residue classes (mod q)
Ω[P,Q](n), ω[P,Q](n) The number of prime factors of n from [P,Q], with and

without multiplicities
P+(n), P−(n) The largest and smallest prime factor of n, respectively
e(x) The complex exponential e2πix

∆(q, Z) Equation (46)
Ψq(X,Y ) Equation (79)
Dq(f, g;x) Equation (4)
D(f, g;Y,X) Equation (23)
F (χ) Equation (67)
Ly(s, χ) Equation (20)
Mq(T ) Equation (21)
N(σ, T, χ) Equation (32)
Qx,ε,M Equation (33)
Vt Equation (19)

6. Lemmas on multiplicative functions

Throughout this section, given t ∈ R we set

Vt := exp
(

log(3 + |t|)2/3 log log(3 + |t|)1/3
)
.(19)

For y ≥ 2, Re(s) > 1 and a multiplicative function f : N → U, we define the truncated Euler
product

Ly(s, χ) :=
∏
p>y

∑
k≥0

χ(p)k

pks
.(20)

Also recall the definition of the Dq distance from (4), and let D := D1.

Important note. In what follows, we will seek to make all of our estimates as sharp as possible
as a function of q, in particular obtaining factors of φ(q)/q in our estimates wherever possible.
While this increases the lengths of some proofs, it is critical in order for us to state our main
variance estimates with no loss. We also remark that for the purposes of proving Theorem 1.4
our estimates only require uniformity in the t-aspect for |t| ≤ log x; however, in order to prove
Theorem 1.5 we will need full uniformity in the much larger range |t| � x.
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6.1. General Estimates for Partial Sums of Multiplicative Functions.

Lemma 6.1 (A Halász-type inequality). Let x ≥ 10 and 1 ≤ q, T ≤ 10x. Let f : N → U be a
multiplicative function. Then

1

x

∑
n≤x

(n,q)=1

f(n)� φ(q)

q

(
(Mq(T ) + 1)e−Mq(T ) +

1√
T

+ (log x)−1/13
)
,

where

Mq(T ) = Mq(f ;x, T ) := inf
|t|≤T

Dq(f, nit;x)2.(21)

Proof. We may assume that T ≤
√

log x, since otherwise we can use Mq(T ) ≤ Mq(
√

log x) and
the fact that y 7→ (y+1)e−y is decreasing. But then the claim follows7 from [2, Corollary 2.2]. �

We also need a version of Halász’s inequality that is sharp for sums that are restricted to
rough numbers (i.e., integers n having only large prime factors). This will be employed in the
proof of Lemma 6.6.

Lemma 6.2 (Halász over rough numbers). Let 2 ≤ y ≤ x, and let f : N→ U be multiplicative.
Then

1

x

∑
n≤x

P−(n)>y

f(n)�
(1 +M(f ; (y, x], log x

log y ))e
−M(f ;(y,x], log x

log y
)

log y
+

1

log x
,

where M(f ; (y, x], T ) is defined for T ≥ 0 by

M(f ; (y, x], T ) := inf
|t|≤T

D(f, nit; y, x)2(22)

with

D(f, g; y, x) :=
( ∑
y<p≤x

1− Re(f(p)g(p))

p

)1/2
.(23)

Proof. Without loss of generality, we may assume that f(pk) = 0 for all primes p ≤ y and all

k ≥ 1. We may also assume that y ≤ x1/2, since otherwise the estimate follows trivially from
the prime number theorem.

A consequence of [7, Proposition 7.1] (see in particular formula (7.3) there) implies that∑
n≤x

f(n)� (1 +M)e−M
x

log y
+

x

log x
,

where M is defined implicitly via

sup
|t|≤ log x

log y

∣∣∣F (1 + 1/ log x+ it)

1 + 1/ log x+ it

∣∣∣ = e−M
log x

log y
,

where F (s) :=
∏
p≤x

∑
k≥0 f(pk)/pks for Re(s) > 1. On the other hand, note that for any t ∈ R

by the assumption f(pk) = 0 for p ≤ y we have

|F (1 + 1/ log x+ it)| log y

log x
� exp

(
−
∑
y<p≤x

1− Re(f(p)p−it)

p

)
= e−D

2(f,nit;y,x),

7In [2, Corollary 2.2], it is assumed that q ≤
√
x, but the same proof works for q ≤ 10x.
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so that

e−M � sup
|t|≤ log x

log y

e−D
2(f,nit;y,x)

|1 + 1/ log x+ it|
� e

−M(f ;(y,x], log x
log y

)
.

In particular, M(f ; (y, x], log x
log y ) ≤M +O(1). Since t 7→ (1 + t)e−t is decreasing, it follows that∑

n≤x
f(n)� (1 +M(f ; (y, x],

log x

log y
))e
−M(f ;(y,x], log x

log y
) x

log y
+

x

log x
,

as claimed. �

In the proof of Theorem 1.5, we will also need the following lemmas.

Lemma 6.3 (Lipschitz Bounds for Multiplicative Functions). Let f : N→ U be multiplicative.

Let 1 ≤ w ≤ x1/3, and let t0 ∈ [− log x, log x] be chosen to minimize t 7→ D(f, nit;x). Then∣∣∣∣∣∣wx
∑

n≤x/w

f(n)n−it0 − 1

x

∑
n≤x

f(n)n−it0

∣∣∣∣∣∣�
(

logw + (log log x)2

log x

)1− 2
π

log

(
log x

log(ew)

)
.

In particular, we have

2w

x

∑
x/(2w)<n≤x/w

f(n)n−it0 =
2

x

∑
n≤x/2

f(n)n−it0 +O

((
log(ew)

log x

)−1+2/π+o(1)
)
.

Proof. The first statement is precisely [7, Thm. 1.5]. The second statement follows quickly from
two applications of the first. �

Lemma 6.4 (Twisting by nit). Let f : N→ U be multiplicative. Let α be any real number. Then
for any x ≥ 3,

1

x

∑
n≤x

f(n)niα =
xiα

1 + iα

1

x

∑
n≤x

f(n) +O

(
log(2 + |α|)

log x
exp

(
D(f, 1;x)

√
(2 + o(1)) log log x

))
.

Proof. This follows from [9, Lemma 7.1], combined with

∑
p≤x

|1− f(p)|
p

≤ (log log x+O(1))
1
2

∑
p≤x

|1− f(p)|2

p

 1
2

= (log log x+O(1))
1
2

2
∑
p≤x

1− Re(f(p))

p

 1
2

,

where we applied the Cauchy–Schwarz inequality. �

6.2. Bounds on Prime Sums of Twisted Dirichlet Characters.

Lemma 6.5 (A pretentious distance bound). Let x ≥ 10, 1 ≤ q ≤ x, and let χ be any non-
principal Dirichlet character modulo q induced by a primitive character χ∗ modulo q∗. Then

inf
|t|≤10x

D(χ, nit;x)2 ≥ 1

4
log
( log x

log(2q∗)

)
+ log(q/φ(q)) +O(1).

Proof. We may assume that x is larger than any fixed absolute constant, since otherwise the
bound is trivial upon choosing the term O(1) appropriately (since D(χ, nit;x)2 ≥

∑
p|q

1
p). Let

t0 ∈ [−10x, 10x] be such that t 7→ D(χ, nit;x) is minimized at this point. We split the proof into
a few cases.

Case 1. If |t0| ≤ (log x)10, then the claim follows directly from [2, Lemma 3.4].
Case 2. If in turn |t0| > (log x)10, q∗ ≤ V10x, then we have

D(χ, nit0 ;x)2 ≥
(1

3
+ o(1)

)
log log x−O(1) ≥ 1

4
log log x+ log

q

φ(q)
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by the fact that the zeros of L(s, χ) with |Im(s)| ≤ 100x all lie in the region Re(s) ≤ 1 −
c/(log V100x) (for real zeros corresponding to real characters this follows from Siegel’s theorem,
whereas for all other zeros this follows from the Vinogradov–Korobov bound).

Case 3. Lastly, assume that q∗ > V10x ≥ Vt0 , |t0| > (log x)10. Let us write χ(n) =
χ∗(n)1(n,r)=1, where χ∗ (mod q∗) induces χ and (r, q∗) = 1. Let y := q∗Vt0 ; by our assump-

tions we have V10x ≤ y ≤ (q∗)2.
We now observe that, since q∗ < y, we have

D(χ, nit0 ;x)2 ≥
∑
p|q∗r

1

p
+ Re

( ∑
y<p≤x

1− χ∗(p)p−it0
p

)
−O(1)−O

(∑
p|r
p≥y

1

p

)

= log
( log x

log y

)
− log |Ly(1 + 1/ log x+ it0, χ

∗)|+ log
q

φ(q)
−O(1),

where on the last line we used [29, Lemma 3.2] of Koukoulopoulos and the crude estimate
ω(r)� log r � log x = o(y).

As |t0| ≥ (log x)10, from [29, Lemma 4.2], we see that |Ly(1 + 1/ log x+ it, χ∗)| � 1 uniformly
for |t| ≤ x, given our choice of y. It follows that

D(χ, nit0 ;x)2 ≥ log
( log x

log y

)
+ log

q

φ(q)
−O(1),

and recalling that y ≤ (q∗)2 the claim follows. �

The following pointwise bound for twisted character sums over primes will be needed in the
proof of Proposition 8.5.

Lemma 6.6. Let x ≥ 10, X = x(log x)0.01
, and 1 ≤ q ≤ x. Let h be a smooth function supported

on [1/2, 4]. Then, for ε ∈ (0, 1) and for any character χ (mod q) with cond(χ) ≤ xε, uniformly
in the range |t| ≤ X we have∣∣∣∑

n

Λ(n)χ(n)n−ith
(n
x

)∣∣∣�h xε log3 1

ε
+

x

(log x)0.3
+

x

t2 + 1
.(24)

Moreover, the x
t2+1

term can be deleted for all but possibly one non-principal χ (mod q), which
has to be real.

Remark 6.1. Without introducing a smooth weight, one could prove (24) with x/(|t| + 1) in
place of x/(t2 + 1). We will however need the 1/(t2 + 1) decay when we apply Lemma 6.6 in
the proof of Proposition 8.5 to ensure that when (24) is summed over a well-spaced set of t the
resulting bound is not too large.

Proof. We will split into cases cases depending on the sizes of q and t.
Without loss of generality, we may assume that x is larger than any given constant, ε ≥

(log x)−0.4 and ε is smaller than any fixed constant. If χ is induced by χ∗ (mod q∗), we have∑
n

Λ(n)χ(n)n−ith
(n
x

)
=
∑
n

Λ(n)χ∗(n)n−ith
(n
x

)
+Oh((log x)2),

and as the error term is small, may assume that χ is primitive and q = q∗.
If χ is the principal character, then χ is identically 1, and in that case (24) follows directly

from Perron’s formula in the form∑
n

Λ(n)n−ith
(n
x

)
= − 1

2πi

∫ c+i∞

c−i∞

ζ ′

ζ
(s+ it)h̃(s)xs ds

and the Vinogradov–Korobov zero-free region (since the Mellin transform h̃ of h obeys |h̃(s)| �h

1/(1 + |s|10) for Re(s) ∈ [−100, 100] by the smoothness of h).
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If we have 2 ≤ q∗, |t| ≤ (log x)10, then (24) follows straightforwardly from partial summation
and the Siegel–Walfisz theorem (with a better bound of �h x(log x)−100).

If in turn q∗ > (log x)10, |t| ≤ (log x)10, we may argue as follows. We apply the explicit
formula (proven similarly to [25, Proposition 5.25])∑

n

Λ(n)χ∗(n)n−ith
(n
x

)
= −

∑
ρ=β+iγ:
L(ρ,χ∗)=0
|γ−it|≤T
0≤β≤1

xρ−ith̃(ρ− it) +Oh

( x
T

(log3(qx(|t|+ 2)))
)
,

where we choose T = (log x)100 to make the error term small.
Note that by the Landau–Page theorem [38, Theorem II.8.25] we have the zero-free region

L(s, χ∗) 6= 0 for Re(s) ≥ 1− c0/((log xε(|t|+ 2))) for some constant c0 > 0, apart from possibly
one zero ρ = β, which has to be real and simple; additionally, such an exceptional zero can only
exist for at most one character χ∗ of conductor ≤ xε, which has to be real and non-principal.

Since h̃(s) � 1/(1 + |s|10) for Re(s) ∈ [−100, 100] by the smoothness of h, the contribution of
ρ = β to this sum is bounded by

�h
x

t2 + 1
,(25)

which is an admissible contribution. Then, following the analysis in [25, Chapter 18] verbatim
(inserting the fact that the contribution of the possible exceptional zero β is bounded by (25)),
we deduce ∣∣∣∑

n

Λ(n)χ∗(n)n−ith
(n
x

)∣∣∣�h x
1−c1/ log(q∗(|t|+2)) + x

log q∗

q∗
+

x

|t|2 + 1
,(26)

and the last term can be deleted except possibly for one choice of χ∗ 6= χ0. Since we assumed
|t| ≤ (log x)10 ≤ q∗ ≤ xε, we have exp(−c1

log x
log(xε(|t|+2))) � ε100 and (log q∗)/q∗ � (log x)−9, so

(26) results in a good enough bound.8

We may assume henceforth that |t| > (log x)10. Further, we may assume that 2 ≤ q∗ ≤
x1/50000. Since t is large, we no longer need the smoothing factor h(n/x), and in fact by partial
summation (and the fact that h′(u) �h 1/(1 + u10)) we see that (24) in the regime under
consideration follows once we prove∣∣∣ ∑

n≤x′
Λ(n)χ(n)n−it

∣∣∣� ε log3(1/ε)x′ +
x′

(log x)0.3
(27)

for x′ ∈ [x/2, 4x]. In what follows, for the sake of notation we denote x′ by x.

Put y = (q∗)4V 100
X , so that for q∗ ≤ x1/50000 we have y ≤ x1/10000. We define

µy(n) := µ(m)1P−(m)>y,

logym := (logm)1P−(m)>y,

and as in [7, Section 7] we make use of the convolution identity

Λ(n)1P−(n)>y = µy ? logy(n), n > y.

8Note that in the case q = xε, t = X, then arguments based on the proof of Linnik’s theorem would only give a

bound of x1−ε−1/ log x(logX) for (26). This is too weak when ε = o(1/ log log x), and therefore we need a different
argument to handle this case.
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By the prime number theorem, we then see that for any t ∈ R we have∑
n≤x

Λ(n)χ(n)n−it =
∑

y2<n≤x

Λ(n)χ(n)n−it +O(y2)

=
∑

y2<md≤x

µy(m)χ(m)m−it logy(d)χ(d)d−it +O(y2 + x1/3).

Let y ≤ M,D ≤ x be parameters that satisfy MD = x, with D ≤ x1/2. Using the hyperbola
method, we have ∑

y2<n≤x

Λ(n)χ(n)n−it = T1 + T2,

T1 :=
∑
m≤M

µy(m)χ(m)m−it
∑

y2/m<d≤x/m

logy(d)χ(d)d−it

T2 :=
∑
d≤D

logy(d)χ(d)d−it
∑

y2/d<m≤x/d
m>M

µy(m)χ(m)m−it.

We first deal with T2. By Halász’s theorem over rough numbers (Lemma 6.2), for each d ≤ D
the inner sum is

� x

d

( 1

log y
(N + 1)e−N +

1

logM

)
+
y2

d
,

where we have defined

N := inf
|u|≤log x

∑
y<p≤M

1− Re(µy(p)χ(p)p−i(t+u))

p
.

As D ≤ x1/2, M ≥ x1/2 and µy(p) = −1p>y, it follows (as in the proof of Lemma 6.5) that

N ≥ inf
|u|≤log x

∑
y<p≤x

1 + Re(χ(p)p−i(t+u))

p
+O(1)

≥ log
log x

log y
+ inf
|u|≤log x

log |Ly(1 + 1/ log x+ i(t+ u), χ)|+O(1).(28)

Now since y > q∗V2X , [29, Lemma 4.2] shows that

|Ly(1 + 1/ log x+ iw, χ)| � 1.(29)

for χ complex and |w| ≤ 2X, or for χ real and 1 ≤ |w| ≤ 2X. Note that since |t| ≥ (log x)10 in
(28) by assumption, we have |t + u| ≥ 1 there, and thus (29) holds in any case for w = t + u,
|u| ≤ log x.

The above implies that N ≥ log((log x)/(log y))−O(1), and hence by partial summation and
the Selberg sieve we have

T2 �
x log log x

log y

log x

∑
d≤D

P−(d)>y

log d

d
+ y2 log x

�
x log log x

log y

log x

( logD

log y
+

∫ D

y

( ∑
d≤u

P−(d)>y

1
)

log(u/e)
du

u2

)
+ y2 log x

� x
(logD)2 log log x

log y

(log x)(log y)
+ y2 log x,
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for all non-principal characters χ modulo q.
We next estimate T1. By partial summation, the inner sum in T1, for each m ≤M , is∣∣∣ ∑

y2/m<d≤x/m
P−(d)>y

(log d)χ(d)d−it
∣∣∣� (log x) max

y≤u1≤u2≤x/m

∣∣∣ ∑
u1≤d≤u2

P−(d)>y

χ(d)d−it
∣∣∣ := R(m).

Recalling that y = (q∗)4V 100
X , we apply [29, Lemma 2.4] to the R(m) terms, obtaining

R(m)� log x

log y

(
(x/m)1−1/(30 log y) + (x/m)1−1/(100 log Vt)

)
,

and since y ≥ V 100
t , the second term can be ignored.

Summing over m ≤ M , and using Selberg’s sieve to bound the number of integers with
P−(m) > y, we conclude that T1 is bounded by∑

m≤M
P−(m)>y

|R(m)| � x
log x

log y
x−1/(30 log y)

∑
m≤M

P−(m)>y

m−1+1/(30 log y)

� x
( log x

log y

)2( x
M

)−1/30 log y
.

Putting this all together and recalling |t| ≤ X, we find that

T1 � x
( log x

log y

)2( x
M

)−1/30 log y
,

T2 � x
(log(x/M))2 log log x

log y

(log x)(log y)
+ y2 log x.

We select M = x/y1000 log(log x/ log y) ∈ [x1/2, x] (so in particular y ≤ x/M = D ≤ x1/2, as

required). Then log(x/M) = 1000 log y log
(

log x
log y

)
and thus, as q∗ ≤ x1/10, we have

T1 + T2 � x
( log y

log x

)30
+ x

log y

log x
log3

( log x

log y

)
+ (q∗)8V 200

X log x.

If q∗ ≤ VX then log y ≤ (log x)0.68 for large enough x, and hence the bound reduces to �
x/(log x)0.3. On the other hand, if VX < q∗ ≤ x1/50000 then the above bound becomes �
x log q∗

log x log3
(

log x
log q∗

)
� ε log3(1/ε)x. This completes the proof. �

7. Mean and large values estimates

We begin this section with several standard L2-bounds for sums twisted by Dirichlet charac-
ters, analogous to the mean value theorem for Dirichlet polynomials ([25, Theorem 9.1]), where
one twists by the Archimedean characters nit instead. In our statements, care is made to obtain
the sharpest possible dependence on q in the upper bounds, in particular in obtaining factors
φ(q)
q wherever relevant, as these will be important in the proofs of the main theorems.

Lemma 7.1. Let q,M,N ≥ 1, and let (an)n be any complex numbers. Then∑
χ (mod q)

∣∣∣ ∑
M<n≤M+N

anχ(n)
∣∣∣2 � (

φ(q) +
φ(q)

q
N
) ∑
M<n≤M+N

(n,q)=1

|an|2.

Proof. This is [32, Theorem 6.2]. �
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Lemma 7.2 (L2 integral large sieve for characters). Let T,N, q ≥ 1. Then∑
χ (mod q)

∫ T

0

∣∣∣ ∑
n≤N

anχ(n)nit
∣∣∣2dt� (φ(q)T +

φ(q)

q
N)

∑
n≤N

(n,q)=1

|an|2.

Proof. This is a slight sharpening of [32, Theorem 6.4] (more precisely, see (6.14) there). �

For the proof of Lemma 7.5, we will also need a discrete version of the large sieve estimate,
in which we sum over well-spaced sets. We say that a set T ⊂ R is well-spaced if t, u ∈ T , t 6= u
implies |t− u| ≥ 1.

Lemma 7.3 (Discrete large sieve for characters). Let T,N, q ≥ 1, and let T ⊂ [−T, T ] be a
well-spaced set. Then∑

χ (mod q)

∑
t∈T

∣∣∣ ∑
n≤N

anχ(n)nit
∣∣∣2 � (

φ(q)T +
φ(q)

q
N
)

log(3N)
∑
n≤N

(n,q)=1

|an|2.

Proof. This result, which is a slight sharpening of [32, Theorem 7.4] (taking δ = 1 there), is
proved in a standard way by combining Gallagher’s Sobolev-type lemma [25, Lemma 9.3] with
Lemma 7.2; we leave the details to the reader. �

Lemma 7.4 (Halász–Montgomery large values estimate). Let T ≥ 1, q ≥ 2 and let E ⊂
{χ (mod q)} × [−T, T ] be such that (χ, t), (χ, u) ∈ E implies |t− u| ≥ 1 or t = u. Then∑

(χ,t)∈E

∣∣∣ ∑
n≤N

anχ(n)nit
∣∣∣2 � (φ(q)

q
N + |E|(qT )1/2 log(2qT )

) ∑
n≤N

(n,q)=1

|an|2.

Proof. This is a slight sharpening (paying attention to coprimality with q) of [32, Theorem 8.3]
(see especially (8.16), taking δ = 1 and σ0 = 0), and is proven much in the same way. We leave
the details to the interested reader. �

When it comes to estimating the size of the large values set of a short twisted character sum
supported on the primes, the following hybrid version of [30, Lemma 8] will be important.

Lemma 7.5 (Basic large values estimate – prime support). Let P, T ≥ 2. Let T ⊂ [−T, T ] be
well-spaced. Let

Pχ(s) :=
∑

P<p≤2P

apχ(p)p−s,

where |ap| ≤ 1 for all p ≤ P . Then for any α ∈ [0, 1] we have

|{(χ, t) ∈ {χ (mod q)} × T : |Pχ(it)| ≥ P 1−α}| � (qT )2α
(
P 2α + exp

(
100

log(qT )

logP
log log(qT )

))
.

Proof. Without loss of generality, we may assume that P and T are larger than any given
constant. Let N be the number of pairs (χ, t) in question and V := P 1−α; then

N ≤ V −2k
∑

χ (mod q)

∑
t∈T
|Pχ(it)|2k

for any k ≥ 1. We pick k = d log(qT )
logP e. Expanding out, we see that

Bχ(s) := Pχ(s)k =
∑

Pk<n≤(2P )k

b(n)χ(n)n−s, where b(n) =
∑

p1···pk=n
pj∈[P,2P ] ∀j

ap1 · · · apk .
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By the discrete large sieve (Lemma 7.3), we have∑
χ (mod q)

∑
t∈T
|Pχ(it)|2k =

∑
χ (mod q)

∑
t∈T
|Bχ(it)|2

� (φ(q)T + (2P )k) logP
∑

Pk≤n≤(2P )k

|b(n)|2.

We can then compute the mean square over n as∑
Pk≤n≤(2P )k

|b(n)|2 ≤
∑

p1,...,pk=q1···qk
P≤pj ,qj≤2P

1 ≤ k!
( ∑
P<p≤2P

1
)k
≤
( 2P

logP

)k
k!.

This gives the bound∑
χ∈Ξ

∑
t∈T
|Pχ(it)|2k � k!(φ(q)T + (2P )k) logP

( 2P

logP

)k
= k! logP

(
1 +

φ(q)T

(2P )k

)( 4P 2

logP

)k
.

Multiplying this by V −2k and recalling the choices of V and k, this becomes

� (qT )2αP 2α
( 8k

logP

)k−1
.

We certainly have either logP ≥ 8k or logP < 8k, and in the first case we obtain � (qT )2αP 2α

and in the second case we obtain � (qT )2α(e20k)k (since P is large enough), so the claim
follows. �

The proofs of the next two lemmas are almost identical to the proofs of the corresponding
results in [30] with the following small modifications: one applies Lemma 7.2, rather than the
mean value theorem for Dirichlet polynomials; the corresponding Dirichlet polynomials are con-
sidered on the zero line rather than the one line; the coefficients are supported on the integers
(n, q) = 1 which accounts for the extra factor φ(q)/q. We give the proof of one of them to
illustrate the changes needed.

Lemma 7.6. Let q, T ≥ 1, 2 ≤ Y1 ≤ Y2 and ` :=
⌈

log Y2

log Y1

⌉
. For am, cp 1-bounded complex

numbers, define

Q(χ, s) :=
∑

Y1≤p≤2Y1

cpχ(p)p−s and A(χ, s) :=
∑

X/Y2≤m≤2X/Y2

amχ(m)m−s.

Then ∑
χ (mod q)

∫ T

−T
|Q(χ, it)`A(χ, it)|2dt� φ(q)

q
XY12`

(
φ(q)T +

φ(q)

q
XY12`

)
(`+ 1)!2.

Moreover, we have the same bound for∑
χ (mod q)

|Q(χ, 0)`A(χ, 0)|2

when we put T = 1 on the right-hand side.

Proof. This is analogous to [30, Lemma 13]. The Dirichlet polynomial Q(χ, s)`A(χ, s) has its
coefficients supported on the interval

[Y `
1 ·X/Y2, (2Y1)` · 2X/Y2] ⊂ [X, 2`+1Y1X].
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We now apply Lemma 7.2 to arrive at∑
χ (mod q)

∫ T

−T
|Q(χ, it)`A(χ, it)|2dt� (φ(q)T +

φ(q)

q
2`Y1X)

∑
X≤n≤2`+1Y1X

(n,q)=1

( ∑
n=mp1...p`

Y1≤p1...p`≤2Y1,
X/Y2≤m≤2X/Y2

1
)2
.

We note that, for each n in the outer sum, we have∑
n=mp1...p`

Y1≤p1...p`≤2Y1,
X/Y2≤m≤2X/Y2

1 ≤ `! ·
∑
n=mr

p|r=⇒Y1≤p≤2Y1

1 := `!g(n)

where g(n) is a multiplicative function defined by g(pk) = k+ 1 for Y1 ≤ p ≤ 2Y1 and g(pk) = 1
otherwise. Consequently,

(30)
∑

χ (mod q)

∫ T

−T
|Q(χ, it)`A(χ, it)|2dt� (φ(q)T +

φ(q)

q
2`Y1X)(`!)2

∑
X≤n≤2`+1Y1X

(n,q)=1

g(n)2.

Shiu’s bound [35, Theorem 1] in dyadic ranges yields

(31)
∑

Y≤n≤2Y
(n,q)=1

g(n)2 � Y
φ(q)

q

∏
p≤Y
p-q

(
1 +
|g(p)|2 − 1

p

)
� Y

φ(q)

q
.

We now split the right-hand side of (30) into dyadic ranges, apply (31) to each of them and sum
the results up to finish the proof. �

Lemma 7.7. Let X ≥ H ≥ 1, Q ≥ P ≥ 1. Let am, bm, cp be bounded sequences with amp = bmcp
whenever p - m and P ≤ p ≤ Q. Let Ξ be a collection of Dirichlet characters modulo q ≥ 1. Let

Qv,H(χ, s) :=
∑

P≤p≤Q
ev/H≤p≤e(v+1)/H

cpχ(p)p−s,

and

Rv,H(χ, s) :=
∑

Xe−v/H≤m≤2Xe−v/H

bmχ(m)m−s · 1

1 + ω[P,Q](m)
,

for each χ ∈ Ξ and v ≥ 0. Let T ⊂ [−T, T ] be measurable, and I := {j ∈ Z : bH logP c ≤ j ≤
H logQ}. Then∑

χ∈Ξ

∫
T

∣∣∣ ∑
n≤X

anχ(n)n−it
∣∣∣2dt� H log(Q/P )

∑
j∈I

∑
χ∈Ξ

∫
T

∣∣∣Qj,H(χ, it)Rj,H(χ, it)
∣∣∣2dt

+
φ(q)

q
X
(
φ(q)T +

φ(q)

q
X
)( 1

H
+

1

P

)
+
φ(q)

q
X
( ∑

n≤X
(n,q)=1

|an|21(n,P)=1

)
,

where P :=
∏
P≤p≤Q p.

Moreover, the same bound holds for∑
χ∈Ξ

∣∣∣ ∑
n≤X

anχ(n)
∣∣∣2

when we put t = 0, T = 1 and remove the integration on the right-hand side.
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Proof. The proof is almost identical to the proof of [30, Lemma 12] (in particular, one uses the
Ramaré identity), the only slight difference being that after splitting the sum involving an into
short sums, one estimates the error terms applying Lemma 7.2, rather than the mean value
theorem for Dirichlet polynomials. �

8. Key propositions

The goal of this section is to prove two key propositions, namely Propositions 8.3 and 8.5. For
the proofs of both of these propositions, we will need good bounds on the number of Dirichlet
characters whose L-functions have a bad zero-free region.

Define the count of zeros of an L-function L(s, χ) in the rectangle [σ, 1] × [−T, T ] of the
complex plane by

N(σ, T, χ) :=
∑

ρ: L(ρ,χ)=0
Re(ρ)≥σ
|Im(ρ)|≤T

1,(32)

with multiple zeros counted according to their multiplicities. We will make use of the following
bound for N(σ, T, χ).

Lemma 8.1 (Log-free zero-density estimate). For Q,T ≥ 1, 1
2 ≤ σ ≤ 1 and ε > 0, we have∑

q≤Q

∑∗

χ (mod q)

N(σ, T, χ)�ε (Q2T )( 12
5

+ε)(1−σ).

Proof. This is well-known (see ’Zeros Result 1 (iv)’ in [13]). For 1
2 ≤ σ ≤ 4/5, say, the lemma

follows from the work of Huxley [23], whereas in the complementary region we can apply Jutila’s
log-free zero-density estimate [26] (with 12/5 + ε replaced with the better exponent 2 + ε). �

The log-free zero density estimate is easily employed to obtain the following.

Lemma 8.2. Let x ≥ 10, ε ∈ ((log x)−0.04, 1), and 1/(log log x) ≤ M ≤ ε20 log x/(20 log log x),
and define the set

Qx,ε,M :=
{
q ≤ x :

∏
χ (mod q)

cond(χ)>xε
20

L(s, χ) 6= 0 for Re(s) ≥ 1− M(log log x)

log x
, |Im(s)| ≤ 3x

}
.

(33)

Then for 1 ≤ Q ≤ x we have |[1, Q] \Qx,ε,M | � Qx−ε
20/2. Moreover, there exists a set Bx,ε,M ⊂

[xε
20
, x] of size � (log x)10M such that every element of [1, x] \ Qx,ε,M is a multiple of some

element of Bx,ε,M .

Proof. If q ≤ Q ≤ xε20
, then trivially [1, Q] ⊆ Qx,ε,M , so there is nothing to be proved. We may

thus assume that Q > xε
20

.
Let

Bx,ε,M :=
{
q ≤ x :

∏
χ (mod q)
χ primitive

L(s, χ) 6= 0 for Re(s) ≥ 1− M log log x

log x
, |Im(s)| ≤ 3x

}
.

(34)

By the log-free zero density estimate provided by Lemma 8.1, we have

|Bx,ε,M | � (x3)(12/5+0.1)M log log x/ log x � (log x)10M .
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Since L(s, χ) and L(s, χ′) have the same zeros if χ and χ′ are induced by the same character,

we see that every q ≤ x with q 6∈ Qx,ε,M is a multiple of some element of Bx,ε,M ∩ [xε
20
, x], and

each such element has ≤ Qx−ε20
+ 1 multiples up to Q. Thus

|[1, Q] \ Qx,Q,ε| � (log x)10MQx−ε
20 � Qx−ε

20/2,

since M ≤ ε20(log x)/(20 log log x), ε > (log x)−0.04, and Q > xε
20

. �

Proposition 8.3 (Sup norm bound for twisted sums of a multiplicative function). Let x ≥ 10

and (log x)−1/13 ≤ ε ≤ 1. Let f : N → U be a multiplicative function. Let (χ1, tχ1) be a point
minimizing the map (χ, t) 7→ Dq(f, χ(n)nit;x) among χ (mod q) and |t| ≤ x. Then, with the
notation of Lemma 8.2, for all q ∈ Qx,ε,ε−6 we have

sup
χ (mod q)
χ 6=χ1

sup
|t|≤x

sup
y∈[x0.1,x]

∣∣∣1
y

∑
n≤y

f(n)χ(n)n−it
∣∣∣� ε

φ(q)

q
.(35)

In addition, for all 1 ≤ Z ≤ x and 1 ≤ q ≤ x we have

sup
|t|≤x/2
|t−tχ1 |≥Z

sup
y∈[x0.1,x]

∣∣∣1
y

∑
n≤y

f(n)χ1(n)n−it
∣∣∣� φ(q)

q

(
(log x)−1/13 +

1√
Z

)
.(36)

Remark 8.1. For the proofs of Theorem 1.4 and 1.2, we need a version of this proposition where
the infimum over t is over the range [−1

2 log x, 1
2 log x], and (χ1, tχ1) is taken be a minimizing

point of (χ, t) 7→ Dq(f, χ(n)nit;x) with |t| ≤ log x. The same proof applies to this case, and we
can obtain a similar variant of Corollary 8.4 as well.

Remark 8.2. The same arguments as in Subsection 3.3 show that we cannot prove (35) for
all q ≤ x without settling Vinogradov’s conjecture at the same time. However, in the smaller

regime of q ≤ xε
20

(which is not the primary concern for our main theorems) the exceptional
set of moduli in Proposition 8.3 becomes empty; cf. [2, Lemma 3.4] for a similar result in this
smaller range.

Proof. We begin with the first claim. We may assume that x is larger than any fixed absolute
constant and that ε is smaller than any fixed absolute constant in what follows.

We now suppose there is a character χ 6= χ1 (mod q) and a real number t ∈ [−x, x] for which∣∣∣∑
n≤y

f(n)χ(n)n−it
∣∣∣ ≥ εφ(q)

q
y

for some y ∈ [x0.1, x]. Owing to ε > (log x)−1/13 and the fact that
∑

y≤p≤x
1
p � 1, Lemma 6.1

implies that there is a v ∈ [−1
2 log x, 1

2 log x] for which

Dq(f, χ(n)ni(t+v);x)2 ≤ 1.1 log(1/ε) +O(1).

According to the definition of χ1, we also have Dq(f, χ1(n)nitχ1 ;x)2 ≤ 1.1 log(1/ε) +O(1) with
tχ1 ∈ [−x, x]. As such, the triangle inequality implies that

Dq(χ1(n)nitχ1 , χ(n)ni(t+v);x)2 ≤ 4.4 log(1/ε) +O(1),

so

D(χ1(n)nitχ1 , χ(n)ni(t+v);x)2 ≤ 4.4 log(1/ε) + log(q/φ(q)) +O(1).

Lemma 6.5 gives

D(χ1(n)nitχ1 , χ(n)ni(t+v);x)2 ≥ 1

4
log
( log x

log(2q∗)

)
+ log(q/φ(q)) +O(1).
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where q∗ = cond(χ1χ), so we may assume that q∗ > xε
20

.
To get a contradiction from this, it is enough to show that for all q ∈ Qx,ε,ε−6 and for all

ξ (mod q) of conductor ∈ [xε
20
, x] we have

sup
|u|≤1.1x

∣∣∣ ∑
xε5≤p≤x

ξ(p)

p1+iu

∣∣∣ = o(1).(37)

Indeed, once we have this, we deduce

D(χ1(n)nitχ1 , χ(n)ni(t+v);x)2 ≥
∑

xε5≤p≤x

1− Re(χ1χ(p)pi(tχ1−t−v))

p
+ log(q/φ(q)) +O(1)

≥ 5 log(1/ε) + log(q/φ(q)) +O(1),

since cond(χ1χ) ∈ [xε
20
, x] and

∑
p|q,p>xε5 1/p� 1, which contradicts the earlier upper bound.

Note that then by partial summation (37) certainly follows once we show that for q ∈ Qx,ε,ε−6

we have

sup
|u|≤2.1x

sup
xε5≤P≤x

∣∣∣ ∑
n≤P

Λ(n)ξ(n)n−iu
∣∣∣� P

(logP )100
.(38)

By Perron’s formula, we have∑
n≤P

Λ(n)ξ(n)n−iu = − 1

2πi

∫ 1+1/ log x+iT

1+1/ log x−iT

L′

L
(s+ iu, ξ)

P s

s
ds+O

( P

(logP )100

)
(39)

where T := (log x)1000. Recall that by the definition of Qx,ε,ε−6 the function L(s, ξ) has the

zero-free region Re(s) ≥ 1 − σ0 := 1 − ε−6(log log x)/(log x), |Im(s)| ≤ 3x. Utilizing the fact
that |L′/L(s, χ)| � log2(q(|t| + 2)) whenever the distance from s to the nearest zero of L(·, χ)
is ≥ 1

log(q(|t|+2)) , and shifting contours to Re(s) ≥ 1 − σ0/2 and recalling that we may assume

ε < 0.001, we indeed obtain for (39) the bound

� P 1−σ0/2(log x)3 � P

(logP )100
,

as wanted.
Next, we proceed to the second claim. Suppose |t − tχ1 | ≥ Z and |t| ≤ x. Let |u| ≤ Z/2, so

that |t+ u− tχ1 | ≥ Z/2, and |t+ u− tχ1 | ≤ 3x. By definition of tχ1 and the triangle inequality,
we have

2Dq(f, χ1(n)ni(t+u);x) ≥ Dq(f, χ1(n)ni(t+u);x) + Dq(f, χ1(n)nitχ1 ;x)

≥ Dq(ni(t+u−tχ1 ), 1;x)−O(log
q

φ(q)
).

As in the proof of Lemma 6.1, we conclude that

Dq(f, χ1(n)ni(t+u);x)2 ≥ (
1

12
− 10ε) log log x.

Applying the Halász-type bound of Lemma 6.1 with T = Z/2, we derive∣∣∣∑
n≤y

f(n)χ1(n)n−it
∣∣∣� φ(q)

q

(
(log x)−1/13 +

1√
Z

)
y,

for every |t| ≤ x satisfying |t− tχ1 | ≥ Z, as claimed. �

In addition to a sup norm bound for twisted character sums, we need a variant of the bound
that works with an additional 1/(1 + ω[P,Q](m)) weight coming from Lemma 7.7.



26 OLEKSIY KLURMAN, ALEXANDER P. MANGEREL, AND JONI TERÄVÄINEN

Corollary 8.4. Let x ≥ R ≥ 10, ε ∈ ((log x)−1/13, 1) and (log x)−0.1 < α < β < 1. Set P = xα,
Q = xβ, and for f : N→ U multiplicative consider the twisted character sum

R(χ, s) :=
∑

R≤m≤2R

f(m)χ(m)m−s

1 + ω[P,Q](m)
.

Let (χ1, tχ1) be a point minimizing the map (χ, t) 7→ Dq(f, χ(n)nit;x) for χ (mod q) and |t| ≤ x.
Then, with the notation of Lemma 8.2, for q ∈ Qx,ε,ε−6 we have

sup
χ (mod q)
χ 6=χ1

sup
|t|≤x/2

sup
R∈[x1/2,x]

1

R
|R(χ, it)| �

((β
α

)2
ε+ (20β log

β

α
)

1
20β

)φ(q)

q
.(40)

Furthermore, for 1 ≤ Z ≤ (log x)1/10 we have

sup
Z≤|t−tχ1 |≤x

sup
R∈[x1/2,x]

1

R
|R(χ1, it)| �

((β
α

)2 1√
Z

+ (20β log
β

α
)

1
20β

)φ(q)

q
.

Remark 8.3. In the proofs of the main theorems, we will eventually assume q ∈ Qx,ε6,ε−100 and

choose α = ε2, β = ε, so that the bound above becomes � ε5φ(q)/q · x.

Proof. We start with the first claim. We may assume that 1/(20β) > log(βα), since otherwise the
bound offered by the corollary is worse than trivial. For the same reason, we may assume that
β ≤ 0.01.

We use the hyperbola method, as in [30, Lemma 3]. Write m ∈ [R, 2R] uniquely as m =
m1m2, where p | m1 =⇒ p ∈ [P,Q] and (m2, [P,Q]) = 1 (meaning that (m, r)=1 for all
primes r ∈ [P,Q]). We use Möbius inversion on the m2 variable in the form 1(m2,[P,Q]) =∑

p|d=⇒p∈[P,Q] µ(d)1d|m2
to obtain

|R(χ, it)|

�
∣∣∣ ∑

m1≤x0.3

p|m1=⇒p∈[P,Q]

f(m1)χ(m1)m−it1

1 + ω[P,Q](m1)

∑
p|d=⇒p∈[P,Q]

d≤x0.1

µ(d)f(d)χ(d)d−it
∑

R
dm1
≤m′2≤

2R
dm1

f(m′2)χ(m′2)(m′2)−it
∣∣∣

+
∑

m2≤2R/x0.3

(m2,[P,Q])=1
(m2,q)=1

∑
x0.3<m1≤2R/m2

p|m1=⇒p∈[P,Q]
(m1,q)=1

1 +
∑

p|m1d=⇒p∈[P,Q]
x0.1<d≤R
(m1d,q)=1

R

m1d
.

(41)

Put Ψ(X,Y ) to denote the number of n ≤ X that are Y -smooth. By partial summation the
third sum can be bounded by

�
( ∑
p|m1=⇒p∈[P,Q]

(m1,q)=1

R

m1

)(Ψ(R, xβ)

xβ
− Ψ(x0.1, xβ)

x0.1
+

∫ R

x0.1

Ψ(u, xβ)

u

du

u

)

� R
∏

P≤p≤Q
p-q

(
1− 1

p

)−1
max

x0.1≤y≤R

Ψ(y, xβ)

y
� φ(q)

q
R log(β/α) max

x0.1≤y≤R

Ψ(y, xβ)

y
.

Set u := log y
logQ ≥ 1/(10β). Then inserting the standard upper bound Ψ(y, xβ) � yu−u/2 �

yβ1/(20β) to the estimate above, we conclude that the contribution of the third sum in (41) is
acceptable.
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The second sum can be treated similarly. Indeed, after swapping the orders of summation
and dropping the condition (m2, [P,Q]) = 1, this sum is

≤
∑

x0.3<m1≤2R
P+(m1)≤Q
(m1,q)=1

∑
m2≤2R/m1

1�
∑

x0.3<m1≤2R
P+(m1)≤Q
(m1,q)=1

R

m1
,

which is O
(
φ(q)
q Rβ

3
20β

)
using the argument above (with x0.3 in place of x0.1). This is also an

acceptable error term.
It remains to estimate the triple sum in absolute values in (41). Note that R/(dm1) ≥ x0.1

for all d ≤ x0.1. Since ε > (log x)−1/13, from Proposition 8.3 we see that the inner sum over
m′2 ∈ [R/(dm1), 2R/(dm1)] is � εφ(q)/q ·R/(dm1) whenever q ∈ Qx,ε,ε−6 and χ 6= χ1. Thus the
sum on the first line of (41) is

� ε
φ(q)

q
R
( ∑

m1≤x0.3

p|m1=⇒p∈[P,Q]

1

m1

)( ∑
p|d=⇒p∈[P,Q]

1

d

)

� ε
φ(q)

q
R

∏
P≤p≤Q

(
1− 1

p

)−2
� ε

(β
α

)2φ(q)

q
R

by Mertens’ theorem. The first claim is thus established.
The second claim is proved almost verbatim with the same argument; the only difference is

that the pointwise estimate (36), rather than (35), must be used in this case. �

Proposition 8.5 (Sharp large values bound for weighted sums of twisted characters). Let
x ≥ 10, (log x)−0.05 ≤ η ≤ 1 and (log x)−0.05 < ε ≤ δ ≤ 1/2. Let (ap)p be 1-bounded complex
numbers, let T ⊂ [−x, x] be a well-spaced set, and let S := {(χ, t) : χ (mod q), t ∈ T }. Define

Nq,S := sup
xη≤P≤x

∣∣∣{(χ, t) ∈ S :
∣∣∣ logP

δP

∑
P≤p≤(1+δ)P

apχ(p)p−it
∣∣∣ ≥ ε}∣∣∣.

Then, with the notation of Lemma 8.2, for q ∈ Qx,η1/20ε,1000η−1 we have Nq,S � ε−2δ−1, with
the implied constant being absolute.

Moreover, for 1 ≤ Q ≤ x we have |[1, Q] \ Qx,η1/20ε,1000η−1 | � Qx−ηε
20/2.

Remark 8.4. For proving Theorem 1.4, we only need to establish the result in the special,
simpler case that T = {0}. In contrast, for Theorem 1.5 we will need the full power of this
proposition.

Proof. The part of the proposition involving the size of Qx,η1/20ε,1000η−1 follows directly from
Lemma 8.2. It thus suffices to prove the bound for Nq,S .

We may assume without loss of generality that ε > 0 is smaller than any fixed constant. Let
P ∈ [xη, x] yield the set of largest cardinality that is counted by Nq,S , and let Bq,S denote the
set of pairs (χ, t) yielding the large values counted by Nq,S . We have

εδP

logP
Nq,S ≤

∑
(χ,t)∈Bq,S

∣∣∣ ∑
P≤p≤(1+δ)P

apχ(p)p−it
∣∣∣ =

∑
(χ,t)∈Bq,S

cχ,t
∑

P≤p≤(1+δ)P

apχ(p)p−it

=
∑

P≤p≤(1+δ)P

ap
∑

(χ,t)∈Bq,S

cχ,tχ(p)p−it,
(42)
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for suitable unimodular numbers cχ,t. Applying the Cauchy–Schwarz and Brun–Titchmarsh
inequalities, an upper bound for this is

�
( δP

logP

)1/2( ∑
P≤p≤(1+δ)P

∣∣∣ ∑
(χ,t)∈Bq,S

cχ,tχ(p)p−it
∣∣∣2)1/2

≤
( δP

logP

)1/2( ∑
P≤n≤(1+δ)P

Λ(n)

logP

∣∣∣ ∑
(χ,t)∈Bq,S

cχ,tχ(n)n−it
∣∣∣2)1/2

(43)

Let h be a smooth function supported on [1/2, 2] with h(u) = 1 for u ∈ [1, 3/2], and 0 ≤ h(u) ≤ 1
for all u. We add the weight h(n/P ) to the second sum over p above. Expanding out the square,
we see that (43) is

�
( δP

(logP )2

)1/2( ∑
(χ1,t1)∈Bq,S

∑
(χ2,t2)∈Bq,S

∣∣∣∑
n

Λ(n)χ1χ2(n)n−i(t1−t2)h
( n
P

)∣∣∣)1/2

:=
( δP

(logP )2

)1/2
(S1 + S2)1/2,

(44)

where S1 is the sum over the pairs with cond(χ1χ2) ≤ xε
20

and S2 is over those pairs with

cond(χ1χ2) > xε
20

.
Lemma 6.6 tells us that there is some character ξ1 (mod q) such that whenever cond(χ1χ2) ≤

xε
20

we have

∣∣∣∑
n

Λ(n)χ1χ2(n)n−i(t1−t2)h
( n
P

)∣∣∣� Pε20 log3
(1

ε

)
+

P

(logP )0.3
+

P

|t1 − t2|2 + 1
1χ1χ2∈{χ0,ξ1},

(45)

with χ0 (mod q) the principal character.
Since |Bq,S | = Nq,S and ε5 ≥ (logP )−0.3, summing (45) over ((χ1, t1), (χ2, t2)) ∈ B2

q,S shows
that the contribution of the characters with small conductor obeys the bound

S1 � ε5N2
q,SP +

∑
χ1 (mod q)

∑
χ2 (mod q)

∑
t1,t2∈T

P

|t1 − t2|2 + 1
1χ1χ2∈{χ0,ξ1}1(χ1,t1),(χ2,t2))∈B2

q,S

� ε5N2
q,SP +Nq,SP

∑
k∈Z

1

k2 + 1

� (ε5N2
q,S +Nq,S)P,

since for any k the number of pairs ((χ1, t1), (χ2, t2)) ∈ B2
q,S with χ1χ2 ∈ {χ0, ξ1} and t1 − t2 ∈

[k, k+1) is ≤ 2Nq,S (once (χ1, t1) has been chosen, there are at most two possibilities for (χ2, t2),
since T is well-spaced).

We then consider the contribution of S2. In this case, it follows similarly to the proof of
Proposition 8.3 (cf. the deduction after equation (38)) that for q ∈ Qx,η1/20ε,1000η−1 we have

sup
χ (mod q)

cond(χ)>P ε
20

sup
|t|≤x

∣∣∣∑
n

Λ(n)χ(n)n−ith
( n
P

)∣∣∣� P

(logP )100
.

We have ε5 > (logP )−100, so we find that

S2 � ε5N2
q,SP.

Combining the bounds on S1 and S2 with (42) and (43), we see that

εδP

logP
Nq,S �

δ1/2P

logP
(ε5/2Nq,S +N

1/2
q,S ),
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and since ε ≤ δ and ε > 0 is small enough, we deduce from this that Nq,S � ε−2δ−1, which was
to be shown. �

Remark 8.5. From Lemma 8.2, it is clear that if we restrict to a set Q′ ⊂ [1, x] of pairwise
coprime moduli q, then the sizes of the sets of exceptional q ≤ x in the two propositions are �
(log x)10ε−6

and � (log x)10000η−1
, respectively. Moreover, under GRH there are no exceptional

moduli.

9. Variance in progressions and short intervals

9.1. Typical number of prime factors. Let ω[P,Q](n) := |{p | n : p ∈ [P,Q]}| denote the
number of prime factors of n belonging to the interval [P,Q]. Moreover, given Z ≥ 1, define

∆(q, Z) := max
y≥Z

ω[y,2y](q)

y/ log y
,(46)

which gives the maximal relative density of prime divisors of q on a dyadic interval ⊂ [Z,∞).
Clearly, if q is Z-typical in the sense of Definition 1.1, then ∆(q, Z) ≤ 1/50 + o(1), and if
∆(q, Z) ≤ 1/100, then q is Z-typical.

Note that since ω(q) ≤ (1 + o(1))(log q)/(log log q), we have

∆(q, Z) < 1/100 if Z ≥ 200(log q),(47)

and note that 0 ≤ ∆(q, Z)� 1 always.
Moreover, for any fixed c > 0 we have

|{q ≤ Q : ∆(q, Z) > c}| � Q exp(−(c/10 + o(1))Z).(48)

Indeed, for any set P ⊂ P ∩ [y, 2y] of size ≥ αy/ log y, we have

|{n ≤ Q :
∏
p∈P

p | n}| ≤ Q∏
p∈P p

� xe−(α+o(1))y,

and there are ≤ 2(1+o(1))y/ log y such subsets P for large y, so by the union bound

|{q ≤ Q : ∆(q, Z) > c}| ≤
∑

2j≥Z

|{n ≤ Q : ω[2j−1,2j ](n) ≥ c · 2j

10 log(2j)
}| �

∑
2j≥Z

Qe−(c/10+o(1))2j ,

and this is � Qe−(c/10+o(1))Z . This bound is in fact optimal up to a multiplicative factor in the
exponential.9

From (47) and (48), we deduce the claims made before Theorem 1.3 that all q ≤ x are (x/Q)ε
2
-

typical if Q = o(x/(log x)1/ε2), and otherwise the number of q ≤ x that are not (x/Q)ε
2
-typical

is � exp(−(1/1000 + o(1))(x/Q)ε
2
).

9.2. Parseval-type bounds. We will reduce the proofs of Corollary 1.1 and Theorems 9.4, 1.4
and 1.5 to the following L2 bounds for (twisted) character sums.

Proposition 9.1. Let 1 ≤ Q ≤ x/10 and (log(x/Q))−1/181 ≤ ε ≤ 1, and let f : N→ U be mul-
tiplicative. Let χ1 be the character (mod q) minimizing the distance inf |t|≤log xDq(f, χ(n)nit;x).
Then, with the notation of Lemma 8.2, for q ∈ Qx,ε6,ε−100 ∩ [1, Q] we have∑

χ (mod q)
χ 6=χ1

∣∣∣∑
n≤x

f(n)χ(n)
∣∣∣2 � ε1−3∆(q,(x/Q)ε)

(φ(q)

q
x
)2
.(49)

9Indeed, if c ∈ (0, 1) is fixed and Z ≤ 1
2

logQ, we get a lower bound of � Q exp(−(2c+ o(1))Z) for the count

of such q by considering those q ≤ Q that are divisible by
∏
Z≤p≤(1+2c)Z p.
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Moreover, conditionally on GRH, we have Qx,ε = [1, x] ∩ Z, that is, (49) holds without any
exceptional q.

Deduction of Corollary 1.1 and Theorems 9.4, 1.4 from Proposition 9.1. We apply Proposition

9.1 with ε1.1 in place of ε. Note that ∆(q, (x/Q)ε
1.1

) ≤ 1/50 + o(1) by the assumption that q is

(X/Q)ε
2
-typical. Therefore, (ε1.1)1−3∆(q,(x/Q)ε

1.1
) � ε1.1·(1−3/50+o(1)) � ε.

Observe the Parseval-type identity

1

ϕ(q)

∑
χ (mod q)

χ 6∈Ξ

∣∣∣∑
n≤x

f(n)χ(n)
∣∣∣2 =

∑∗

a(q)

∣∣∣ ∑
n≤x
n≡a(q)

f(n)−
∑
χ∈Ξ

χ(a)

φ(q)

∑
n≤x

f(n)χ(n)
∣∣∣2,

valid for Ξ ⊂ {χ (mod q)}. The claim follows from this, since from Lemma 8.2 (see also Re-

mark 8.5) we have the size bounds |[1, Q]\Qx,(ε1.1)6,(ε1.1)−100 | � Qx−ε
200

and |Q′\Qx,(ε1.1)6,(ε1.1)−100 | �
(log x)ε

−200
for any 1 ≤ Q ≤ x and any set Q′ ⊂ [1, x] of pairwise coprime numbers, and moreover

under GRH we have Qx,(ε1.1)6,(ε1.1)−100 = [1, x] ∩ Z. �

Proposition 9.2. Let 1 ≤ Q ≤ h/10 and (log(h/Q))−1/181 ≤ ε ≤ 1, and let f : N→ U be mul-
tiplicative. Let χ1 be the character (mod q) minimizing the distance inf |t|≤X Dq(f, χ(n)nit;X),

and let tχ1 ∈ [−X,X] be a point that minimizes Dq(f, χ1(n)nit;X). Let Zχ1 = ε−10 and Zχ = 0
for χ 6= χ1. Then, with the notation of Lemma 8.2, for all q ∈ QX,ε6,ε−100 ∩ [1, Q] and for

T = X/h · (h/Q)0.01ε, we have∑
χ (mod q)

∫
|t−tχ|≥Zχ
|t|≤T

∣∣∣ ∑
X≤n≤2X

f(n)χ1(n)n−it
∣∣∣2 dt� ε1−3∆(q,(h/Q)ε)

(φ(q)

q
X
)2
.(50)

Moreover, assuming either the GRH or that Q ≤ Xε150
, the exceptional set of q vanishes.

Theorem 1.5 will be deduced from Proposition 9.2, together with the following lemma.

Lemma 9.3. Let X,Z ≥ 10, with 1 ≤ Z ≤ (logX)1/20. Let 1 ≤ h ≤ X, and let 1 ≤ q ≤ h/10.
Let g : N→ U be multiplicative, and let t0 be the minimizer of t 7→ D(g, nit;X) on |t| ≤ X. Then

for every X < x < 2X with [x, x+ h] ∩ [2X(1− Z−1/2), 2X(1 + Z−1/2)] = ∅, we have

1

2πih

∫ t0+Z

t0−Z

( ∑
X<n≤2X
(n,q)=1

g(n)n−it
)(x+ h)it − xit

t
dt

= 1(X,2X)(x+ h)
( 1

X

∑
X<n≤2X
(n,q)=1

g(n)n−it0
)
· 1

h

∫ x+h

x
vit0dv +O

( φ(q)

qZ1/2
+ (logX)−1/5

)
.

Proof. We note that (x+h)it−xit
it =

∫ x+h
x v−1+itdv, for each t ∈ [t0−Z, t0 +Z]. Inserting this into

the left-hand side in the statement, swapping the orders of integration and making the change
of variables u := t− t0, we obtain

(51)
1

2πh

∫ x+h

x
v−1+it0

(∫ Z

−Z
viu

∑
X<n≤2X
(n,q)=1

g(n)n−it0−iu du
)
dv.

Let M := min|u|≤ 1
2

logX Dq(g, ni(t0+u);X)2. By Halász’ theorem, if M ≥ 0.27 log logX, then

sup
|u|≤Z

∣∣∣ ∑
X<n≤2X
(n,q)=1

g(n)n−it0−iu
∣∣∣� X(1 +M)e−M +X/(logX)1−o(1) � X(logX)−0.27+o(1),
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in which case the expression (51) can be bounded by

� h

hx
· ZX(logX)−0.27+o(1) � (logX)−1/5

for X sufficiently large, given that 0.27− 1/20 > 1/5. The claim follows in this case, so we may
assume in the sequel that M < 0.27 log logX.

Put gt0(n) := g(n)n−it0 . Since |u| ≤ Z, Lemma 6.4 yields∑
X<n≤2X
(n,q)=1

gt0(n)n−iu =
(2X)−iu

1− iu
∑
n≤2X

(n,q)=1

gt0(n)− X−iu

1− iu
∑
n≤X

(n,q)=1

gt0(n) +O
(X(log(2Z))

logX
e
√

(2+o(1))M log logX
)

=
(2X)−iu

1− iu
∑
n≤2X

gt0(n)− X−iu

1− iu
∑
n≤X

gt0(n) +O
( X

(logX)0.265−o(1)

)
,

as
√

27/50− 1 < −0.265. Furthermore, 0.265− 1/20 > 1/5, so upon inserting this estimate into
(51) we obtain
(52)( ∑
n≤2X

(n,q)=1

g(n)n−it0
)∫ x+h

x
v−1+it0 I(v; 2X)

h
dv−

( ∑
n≤X

(n,q)=1

g(n)n−it0
)∫ x+h

x
v−1+it0 I(v;X)

h
dv+O

( 1

(logX)1/5

)
,

where for y ≥ 1 we have defined

I(v; y) :=
1

2π

∫ Z

−Z
viu

y−iu

1− iu
du,

Using a standard, truncated version of Perron’s formula (e.g., [25, Proposition 5.54], if y 6= v
then

I(v; y) =
v

y

( 1

2πi

∫
Re(s)=1

(y/v)s

s
ds+O

( y/v

Z| log(y/v)|

))
=
v

y

(
1y>v +

1

2
1y=v

)
+O

( 1

Z| log(y/v)|

)
.

If X < x < x+ h < 2X, then recalling [x, x+ h] ∩ [2X(1− Z−1/2), 2X(1 + Z−1/2)] = ∅ formula
(52) becomes

(2hX)−1
( ∑
n≤2X

(n,q)=1

g(n)n−it0
)∫ x+h

x
vit0dv +O

(φ(q)

qhZ

∫ x+h

x

dv

| log(2X/v)|

)

= (2hX)−1
( ∑
n≤2X

(n,q)=1

g(n)n−it0
)∫ x+h

x
vit0dv +O

( φ(q)

qZ1/2

)
;

on the other hand, if 2X − h < x ≤ 2X then I(v; 2X) = O(1/Z) for all x ≤ v ≤ x + h, and so
the main term above is dropped in this case.

Finally, by Lemma 6.3 we have

(2X)−1
( ∑
n≤2X

(n,q)=1

g(n)n−it0
)

= X−1
∑

X<n≤2X
(n,q)=1

g(n)n−it0 +O
(

(logX)−1+2/π+o(1)
)
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and thus our main term is

1(X,2X)(x+ h)(hX)−1
( ∑
X<n≤2X
(n,q)=1

g(n)n−it0
)∫ x+h

x
vit0dv +O

( φ(q)

qZ1/2
+ (logX)−1/5

)
,

as claimed. �

Deduction of Theorem 1.5 from Proposition 9.2. We use Proposition 9.2 with ε1.1 in place of ε.
Again by Lemma 8.2, the size of QX,ε6.6,ε−110 fulfills the required bounds (and additionally if

q ≤ Xε200
, then automatically q ∈ Qx,ε6.6,ε−110). Let I := [2X(1− ε11/2), 2X] ∪ [2X(1− ε11/2)−

h, 2X(1 + ε11/2) − h]. Using the triangle inequality, we can crudely bound the contribution of
x ∈ I to the integral in (9) to bound it by∑∗

a (mod q)

∫
[X,2X]\I

∣∣∣ ∑
x<n≤x+h
n≡a (mod q)

f(n)− χ1(a)

φ(q)

(∫ x+h

x
vitχ1dv

) ∑
X<n≤2X

f(n)χ1(n)n−itχ1

∣∣∣2dx(53)

+O
(
ε11/2Xφ(q)

(h
q

)2)
.

By Lemma 9.3, for x ∈ [X, 2X] \ I the second term inside the square in (53) is

=
χ1(a)

φ(q)
· 1

2π

∫ tχ1+ε−11

tχ1−ε−11

( ∑
X≤n≤2X

f(n)χ1(n)n−it
)(x+ h)it − xit

it
dt+O(ε

(h
q

)2
).

Let us call the main term here M(X;x, q, a).
By the triangle inequality, this implies that (53) is

�
∑∗

a (mod q)

∫ 2X

X

∣∣∣ ∑
x<n≤x+h
n≡a (mod q)

f(n)−M(X;x, q, a)
∣∣∣2dx+ εXφ(q)

(h
q

)2
.

We will now show that the following Parseval-type bound holds: for 1 ≤ q ≤ h ≤ X, we have

∑∗

a (mod q)

∫ 2X

X

∣∣∣ ∑
x<n≤x+h
n≡a (mod q)

f(n)−M(X;x, q, a)
∣∣∣2dx� max

T≥X/h

h

Tφ(q)

∑
χ (mod q)

∫
|t−tχ|≥Zχ
|t|≤T

|Pfχ(it)|2dt,

(54)

where Pg(s) :=
∑

X≤n≤2X g(n)n−s and Zχ = ε−11 if χ = χ1 and Zχ = 0 otherwise.

Once we have this, the case where the maximum in (54) is attained with T ≥ X/h ·
(h/Q)0.01ε1.1 can be bounded using Lemma 7.2 as

� h2(h/Q)−0.01ε1.1

φ(q)X

(φ(q)

q
X
)2
� ε

φ(q)

q2
Xh2,

since (log h/Q)−1/181 ≤ ε1.1 certainly implies (h/Q)−0.01ε1.1 � ε. This contribution is small

enough for Theorem 1.5. If instead T ∈ [X/h,X/h · (h/Q)0.01ε1.1 ], we have h/(Tφ(q))� h2

φ(q)X ,

so the bound of Proposition 9.2 (with ε1.1 in place of ε) suffices for (54).
The proof of (54) follows closely that of [30, Lemma 14] (here we choose to work on the 0-line

rather than on the 1-line for convenience, though). Let us write Iχ := (tχ − Zχ, tχ + Zχ], where
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Zχ is as above. We note first of all that10∑
x<n≤x+h
n≡a (mod q)

f(n)−M(X;x, q, a)

=
∑

χ (mod q)

χ(a)

φ(q)

( ∑
x<n≤x+h

f(n)χ(n)− 1

2π

∫
Iχ
Pfχ(it)

(x+ h)it − xit

it
dt
)
,

so that by Parseval’s identity we find∑∗

a (mod q)

∣∣∣ ∑
x<n≤x+h
n≡a (mod q)

f(n)−M(X;x, q, a)
∣∣∣2

=
1

φ(q)

∑
χ (mod q)

∣∣∣ ∑
x<n≤x+h

f(n)χ(n)− 1

2πi

∫
Iχ
Pfχ(it)

(x+ h)it − xit

t
dt
∣∣∣2.

Now, by Perron’s formula, whenever x, x+ h are not integers, for each χ we have∑
x<n≤x+h

f(n)χ(n) =
1

2πi

∫ ∞
−∞

Pfχ(it)
(x+ h)it − xit

t
dt,

so that, if L is the expression on the left-hand side of (54), we have

L =
1

φ(q)

∑
χ (mod q)

∫ 2X

X

∣∣∣ 1

2πi

∫
R\Iχ

Pfχ(it)
(x+ h)it − xit

t
dt
∣∣∣2dx.

Repeating the trick at the bottom of page 22 of [30], we can find some point u ∈ [−h/X, h/X]
for which

L � 1

φ(q)

∑
χ (mod q)

∫ 2X

X

∣∣∣ ∫
R\Iχ

Pfχ(it)xit
(1 + u)it − 1

t
dt
∣∣∣2dx.

The rest of the proof then follows [30, Lemma 14] almost verbatim (adding a smooth weight to
the x integral, expanding the square and swapping the order of integration).

�

9.3. Proof of hybrid theorem. We may of course assume in what follows that h is larger
than any given absolute constant and ε > 0 is smaller than any given positive constant.

We have shown that it is enough to prove Proposition 9.2, so what we need to show is that∑
χ (mod q)

∫
|t−tχ|≥Zχ
|t|≤T

|F (χ, it)|2dt� ε1−3∆(q,(h/q)ε)
(φ(q)

q
X
)2
.(55)

for T = X/h · (h/Q)0.01ε, where

F (χ, s) :=
∑

X≤n≤2X

f(n)χ(n)n−s.

10Here the integral over an empty set is interpreted as zero.
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As in [30], we restrict to integers with typical factorization. Define the ”well-factorable” set

S as follows. For 1 ≤ Q ≤ h/10, ε ∈ ((log h
Q)−1/181, 1) and 2 ≤ j ≤ J − 1, we define

P1 = (h/Q)ε, Q1 = (h/Q)1−0.01ε,

Pj = exp
(
j4j(logQ1)j−1 logP1

)
, Qj = exp

(
j4j(logQ1)j

)
,

PJ = Xε2 , QJ = Xε,

with J being chosen minimally subject to the constraint J4J+2(logQ1)J > (logX)1/2. (If J = 2,
only use the definitions of P1, Q1, PJ , QJ . If J = 1, only use the definitions of PJ , QJ .)

Then let

S := {n ≤ x : ω[Pi,Qi](n) ≥ 1 ∀i ≤ J}.
One sees that for 2 ≤ j ≤ J the inequalities

log logQj
logPj−1 − 1

≤ η

4j2
,

η

j2
logPj ≥ 8 logQj−1 + 16 log j(56)

hold for fixed η ∈ (0, 1) and large enough x (the j = 2 case follows from the assumption
log(h/Q) > ε−100, and for the j = J case it is helpful to note that J � log logX and PJ−1 �
exp((log logX)10) if J ≥ 3), and thus the Pj , Qj satisfy all the same requirements as in [30]. A
simple sieve upper bound shows that

|[X, 2X] \ S| �
∑
j≤J

X
logPj
logQj

� εX.

We next define

Qv,Hj (χ, s) :=
∑

ev/Hj≤p<e(v+1)/Hj

f(p)χ(p)p−s(57)

Rv,Hj (χ, s) :=
∑

Xe−v/Hj≤m≤2Xe−v/Hj

f(m)χ(m)m−s

1 + ω[Pj ,Qj ](m)
;

H1 = HJ = H := bε−1c, Hj := j2P 0.1
1 for 2 ≤ j ≤ J − 1;

Ij := [bHj logPjc, Hj logQj ].

We split the set

E := {(χ, t) ∈ {χ (mod q)} × [−X,X] : |t− tχ| ≥ Zχ, |t| ≤ T}
as E =

⋃
j≤J−1Xj ∪ U with

X1 = {(χ, t) ∈ E : |Qv,H1(χ, it)| ≤ e(1−α1)v/H1 ∀v ∈ I1},

Xj = {(χ, t) ∈ E : |Qv,Hj (χ, it)| ≤ e(1−αj)v/Hj ∀v ∈ Ij} \
⋃

i≤j−1

Xj ,

U = E \
⋃

j≤J−1

Xj ,

where we take

αj =
1

4
− η
(

1 +
1

2j

)
, η = 0.01.

We may of course write, for some sets Tj,χ ⊂ [−T, T ],

Xj =
⋃

χ (mod q)

{χ} × Tj,χ.
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By Lemma 7.7, for each 1 ≤ j ≤ J − 1 we have

∑
χ (mod q)

∫
Tj,χ

∣∣∣ ∑
X≤n≤2X

f(n)χ(n)n−it
∣∣∣2dt

� Hj log
Qj
Pj

∑
v∈Ij

∑
χ (mod q)

∫
Tj,χ
|Qv,Hj (χ, it)|2|Rv,Hj (χ, it)|2dt

+
(φ(q)

q
X
)2( 1

Hj
+

1

Pj
+

∏
Pj≤p≤Qj

p-q

(
1− 1

p

))
,

By our choices of Pj and Hj , the error terms involving 1/Hj or 1/Pj are � ε(φ(q)/q · X)2

when summed over j ≤ J − 1, since log(h/Q) ≥ ε−100 by our assumption on the size of ε. After
summing over j ≤ J − 1, the error term involving

∏
Pj≤p≤Qj

p-q
(1− 1

p) becomes

�
(φ(q)

q
X
)2 ∑

j≤J−1

logPj
logQj

∏
p|q

Pj≤p≤Qj

(
1 +

1

p

)
�
(φ(q)

q
X
)2 ∑

j≤J−1

ε

j2

∏
p|q

Pj≤p≤Qj

(
1 +

1

p

)
.

Using the ∆(·) function, for j ≤ J − 1 we have

∏
p|q

Pj≤p≤Qj

(
1 +

1

p

)
� exp

( ∑
p|q

Pj≤p≤Qj

1

p

)
� exp

( ∑
2k∈[Pj/2,Qj ]

∆(q, P1)

(log 2)k

)

�
( logQj

logPj

) 1
log 2

∆(q,P1)
� (j2ε−1)

1
log 2

∆(q,(h/Q)ε)
.

Hence, on multiplying by ε/j2 and summing over j ≤ J − 1, for ∆(q, (h/Q)ε) ≤ 1/3, we get

a contribution of � ε1−3∆(q,P1), as desired (since 2( 1
3 log 2 − 1) < −1 means that the j sum is

convergent). For ∆(q, (h/Q)ε) > 1/3, in turn, we simply use the triangle inequality to note that
the trivial bound� (φ(q)/q ·X)2 for (55) coming from Lemma 7.2 (after forgetting the condition
|t− tχ| ≥ Zχ) is good enough.

Making use of the assumption defining Xj , we have

Hj log
Qj
Pj

∑
v∈Ij

∑
χ (mod q)

∫
Tj,χ
|Qv,Hj (χ, it)|2|Rv,Hj (χ, it)|2dt

� Hj log
Qj
Pj

∑
v∈Ij

e(2−2αj)v/Hj
∑

χ (mod q)

∫
Tχ,j
|Rv,Hj (χ, it)|2dt =: Ej

We thus need to bound Ej as well as the contribution of the pairs (χ, t) ∈ U .
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Case of X1. For the pairs in X1 we crudely extend the t-integral to [−T, T ] and apply
Lemma 7.2 to arrive at

E1 � H1 log
Q1

P1

∑
v∈I1

e(2−2α1)v/H1

(φ(q)

q
Xe−v/H1 + φ(q)T

)φ(q)

q
·Xe−v/H1

�
(φ(q)

q
X
)2
P 0.01

1 H1 log
Q1

P1

∑
v∈I1

e−2α1v/H1

�
(φ(q)

q
X
)2
P 0.01

1 H1 logQ1 ·
1

P 2α1
1

· 1

1− e−2α1/H1

�
(φ(q)

q
X
)2
ε−1P−0.1

1 H2
1 ,

where on the second line we used Xe−v/H ≥ X/Q1 ≥ qTP 0.01
1 by the assumption T = X/h·P 0.01

1 .

We see that the contribution of E1 is small enough, since H1 � ε−1 and P−0.1
1 = (h/Q)−0.1ε �

ε10.

Case of Xj . Let 2 ≤ j ≤ J − 1. We partition

Xj =
⋃

r∈Ij−1

Xj,r

where Xj,r is the set of (χ, t) ∈ Xj such that r is the minimal index in Ij−1 with |Qr,Hj−1(χ, it)| >
e(1−αj−1)r/Hj−1 . Letting r0 ∈ Ij−1 and v0 ∈ Ij denote the choices of r and v, respectively, with
maximal contribution, we obtain

Ej � Hj(logQj)|Ij ||Ij−1|

·
∑

χ (mod q)

e(2−αj)v0/Hj

∫ T

−T

(
|Qr0,Hj−1(χ, it)|/e(1−αj−1)r0/Hj−1

)2`j,r0 |Rv0,Hj (χ, it)|2dt,

where `j,r0 := d v0/Hj
r0/Hj−1

e > 1.

Using |Ij−1| ≤ |Ij | � Hj logQj , this becomes

Ej �
(
Hj logQj

)3
e(2−2αj)v0/Hj−(2−2αj−1)`j,r0r0/Hj−1

·
∑

χ (mod q)

∫ T

−T
|Qr0,Hj−1(χ, it)`j,r0Rv0,Hj (χ, it)|2dt.

We apply Lemma 7.6 to conclude that∑
χ (mod q)

∫ T

−T
|Qr0,Hj−1(χ, it)`j,r0Rv0,Hj (χ, it)|2dt�

(φ(q)

q
Xer0/Hj−12`j,r0

)2
((`j,r0 + 1)!)2.

We have `j,r0 ≥
v0/Hj
r0/Hj−1

, whence using 2`(`+ 1)!� `` we get

Ej � (Hj logQj)
3
(φ(q)

q
Xer0/Hj−1

)2
e2(αj−1−αj)v0/Hj+2`j,r0 log `j,r0 .(58)

Since `j,r0 ≤
v0/Hj
r0/Hj−1

+ 1 and r0/Hj−1 ≥ logPj−1 − 1, v0/Hj ≤ logQj , we have

`j,r0 log `j,r0 ≤
v0

Hj

log logQj
logPj−1 − 1

+ log logQj + 1.
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Thus, (58) is

�
(φ(q)

q
Xer0/Hj−1

)2
H3
j (logQj)

5 exp
((

2
log logQj

logPj−1 − 1
+ 2(αj−1 − αj)

)
v0/Hj

)
.

By (56) and the choice of the αj , we have the inequalities

log logQj−1

logPj − 1
≤ η

4j2
, αj−1 − αj ≤ −

η

2j2
, logQj ≤ Q1/24

j−1 ,

so we get

Ej �
(φ(q)

q
X
)2
H3
j (logQj)

5Q2
j−1P

− η

2j2

j

�
(φ(q)

q
X
)2
j6P 0.3

1 Q
2+5/24
j−1 P

− η

2j2

j

�
(φ(q)

q
X
)2
j6Q3

j−1P
− η

2j2

j .

Again by (56), we have the inequality

η

j2
logPj ≥ 8 logQj−1 + 16 log j,

so

Ej �
(φ(q)

q
X
)2 1

j2Qj−1
�
(φ(q)

q
X
)2 1

j2P1
.

Summing over j gives ∑
2≤j≤J−1

Ej �
(φ(q)

q
X
)2
P−1

1 ,

and this is acceptable. It remains to deal with U .
Case of U . Let us write

U =
⋃

χ (mod q)

{χ} × Tχ.

By Lemma 7.7 and the definitions of PJ , QJ and H := HJ , we have

∑
χ (mod q)

∫
Tχ
|F (χ, it)|2dt� H log

QJ
PJ

∑
v∈IJ

∑
χ (mod q)

∫
Tχ
|Qv,H(χ, it)|2|Rv,H(χ, it)|2dt

+
(φ(q)

q
X
)2( 1

H
+

1

PJ
+ ε

∏
PJ≤p≤QJ

p|q

(
1 +

1

p

))
.

(59)
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Since H = bε−1c and
∏
PJ≤p≤QJ

p|q
(1 + 1

p) � ε−3∆(q,(h/Q)ε) (similarly to the Xj case), the second

term on the right of (59) is � ε1−3∆(q,(h/Q)ε)(φ(q)/q ·X)2. Thus we have∑
χ (mod q)

∫
Tχ
|F (χ, it)|2 � (H log

QJ
PJ

)2
∑

χ (mod q)

∫
Tχ
|Qv0,H(χ, it)|2|Rv0,H(χ, it)|2dt

+ ε1−3∆(q,(x/Q)ε)
(φ(q)

q
X
)2

� H2ε2(logX)2
∑

χ (mod q)

∫
Tχ
|Qv0,H(χ, it)|2|Rv0,H(χ, it)|2(60)

+ ε1−3∆(q,(x/Q)ε)
(φ(q)

q
X
)2

for some v0 ∈ [Hε2 logX − 1, Hε logX], with H = bε−1c.
We discretize the integral, so that the term on the right of (60) is bounded by

� H2ε2(logX)2
∑

χ (mod q)

∑
t∈T ′χ

|Qv0,H(χ, it)|2|Rv0,H(χ, it)|2

for some well-spaced set T ′χ ⊂ Tχ ⊂ [−T, T ]. Let us define the discrete version of U as

U ′ =
⋃

χ (mod q)

{χ} × T ′χ.

We consider separately the subsets

US : =
{

(χ, t) ∈ U ′ : |Qv0,H(χ, it)| ≤ ε2 e
v0/H

v0

}
,

UL : =
{

(χ, t) ∈ U ′ : |Qv0,H(χ, it)| > ε2 e
v0/H

v0

}
;

note that by the Brun–Titchmarsh inequality the trivial upper bound is |Qv0,H(χ, it)| � ev0/H/v0.
We start with the US case. Applying our large values estimate, Lemma 7.5, together with

the fact that qT � X1+o(1), we have

|US | � (qT )2αJ (X2ε + (logX)100ε−2
)� X0.49,(61)

since αJ ≤ 1/4− η and η = 0.01, so by the Halász–Montgomery inequality for twisted character
sums (Lemma 7.4), we have∑

(χ,t)∈US

|Qv0,H(χ, it)|2|Rv0,H(χ, it)|2 � ε4 e
2v0/H

v2
0

∑
(χ,t)∈US

|Rv0,H(χ, it)|2

� ε4 e
2v0/H

v2
0

(φ(q)

q
Xe−v0/H + (qT )1/2(log(2qT ))|US |

)φ(q)

q
Xe−v0/H

� ε4 e
2v0/H

v2
0

(φ(q)

q
Xe−v0/H

)2
� H−2 · (logX)−2

(φ(q)

q
X
)2
,

since φ(q)/q ·Xe−v/H � X0.999 and v0 � Hε2 logX. This bound is admissible after multiplying
by H2ε2(logX)2.

Now we turn to the UL case. We restrict to moduli q ∈ Qx,ε6,ε−100 and recall that ε7 >

(logX)−1/13.
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By Proposition 8.5 (with η = ε2 and δ = e1/H − 1 � 1/H and ε > 0 small enough), for
q ∈ Qx,ε8,ε−100 , we have |UL| � ε−4H � ε−5. In addition, by Corollary 8.4 (with ε → ε6,

α→ ε2, β → ε), for q ∈ Qx,ε6,ε−100 we have the pointwise bound

sup
χ (mod q)
χ 6=χ1

sup
|t|≤X

|Rv0(χ, it)|/(Xe−v0/H)� ε4φ(q)

q
.

Hence we can bound the contribution of the pairs (χ, t) with χ 6= χ1 by∑
(χ,t)∈UL
χ 6=χ1

|Qv0,H(χ, it)|2|Rv0,H(χ, it)|2 � |UL|
e2v0/H

v2
0

sup
χ (mod q)
χ 6=χ1

sup
|t|≤X

|Rv0,H(χ, it)|2

� ε−5+8

ε4H2(logX)2

(φ(q)

q
X
)2
,

and this multiplied by the factor H2ε2(logX)2 yields the required bound.

The contribution of χ = χ1, in turn, is bounded using Corollary 8.4 in the form that

sup
Z≤|t−tχ1 |≤x

|Rv0,H(χ1, it)|/(Xe−v0/H)� 1√
Z

φ(q)

q

for Z = ε−10 ≤ (logX)1/13 and for q as before. This yields∑
(χ1,t)∈UL

|Qv0,H(χ1, it)|2|Rv0,H(χ1, it)|2 � |UL|
e2v0/H

v2
0

sup
Z≤|t−tχ1 |≤X

|Rv0,H(χ1, it)|2

� ε−5+10

ε4H2(logX)2

(φ(q)

q
X
)2
.

This multiplied by H2ε2(logX)2 produces a good enough bound, finishing the proof of Propo-
sition 9.2, and hence of Theorem 1.5.

Proof of Corollary 1.6. We now briefly describe the modifications needed for obtaining a simpler
main term in the case of real-valued multiplicative f : N→ [−1, 1]. We work with the same set
of moduli q ∈ Qx,ε6,ε−100 as in Proposition 9.2. By the triangle inequality and Theorem 1.5, it
suffices to show that
(62)∫ 2X

X

∣∣∣ 1

X

∑
X<n≤2X

f(n)χ1(n)−
(1

h

∫ x+h

x
vitχdv

) 1

X

∑
X<n≤2X

f(n)χ1(n)n−itχ1

∣∣∣2 dx� εX
(φ(q)

q

)2
,

and that χ1 may be taken to be real.
If either χ1 is complex or ε ≤ |tχ1 | ≤ X then by Halász’ theorem and [31, Lemma C.1], we

immediately have

max
u∈{0,tχ1}

∣∣∣ 1

X

∑
X<n≤2X

f(n)χ1(n)n−iu
∣∣∣� (logX)−1/20+o(1),

which is sufficient. Moreover, the same bound holds if D(f, χ1n
itχ1 ;X) ≥ 1√

20
log logX. Thus,

we may assume that χ1 is real, |tχ1 | ≤ ε, and D(f, χ1n
itχ1 ;X) < 1√

20
log logX. In this case, we

observe that
1

h

∫ x+h

x
vitχ1dv =

xitχ1

1 + itχ1

· x
h

(
(1 + h/x)1+itχ1 − 1

)
.
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Combining this with Lemma 6.4 and the fact that (x/X)itχ1 = 1+O(ε), (x/(2X))itχ1 = 1+O(ε)
for x ∈ (X, 2X], we obtain

1

h

(∫ x+h

x
vitχ1dv

) 1

X

∑
X<n≤2X

f(n)χ1(n)n−itχ1

=
x

h

(
(1 + h/x)1+itχ1 − 1

) 1

X

∑
X<n≤2X

f(n)χ1(n) +O
(
ε
φ(q)

q
+ (logX)−1/10

)
.

The integral on the left-hand side of (62) is therefore

�
∣∣∣ 1

X

∑
X<n≤2X

f(n)χ1(n)
∣∣∣2 ∫ 2X

X

(x
h

)2∣∣∣((1 + h/x)1+itχ1 − 1
)
− h

x

∣∣∣2 dx+ ε
φ(q)

q
X

� |tχ1 |2X
(φ(q)

q

)2
+ ε

φ(q)

q
X

� εX
(φ(q)

q

)2
,

since |tχ1 | ≤ ε. �

Corollary 1.7 follows quickly from Corollary 1.6.

Proof of Corollary 1.7. We apply Corollary 1.6 with f = µ. Note that the set QX,ε in Corol-

lary 1.6 contains all positive integers ≤ Xε200
. Now, let c0 be a small enough absolute constant,

and let m ≤ Xε200
be a modulus for which L(s, χ) for some real character χ (mod m) has a real

zero > 1− c0/ log q (if it exists). By the Landau–Page theorem and Siegel’s theorem, all such m
are multiples of a single number q0 � (logX)A.

It then suffices to show that for q not divisible by q0 we have∣∣∣ ∑
n≤X

µ(n)χ(n)
∣∣∣� ε1/2ϕ(q)

q
X(63)

for all characters χ (mod q). By Halász’s theorem, we have (63) provided that

Dq(µ, χ;X)2 ≥ 0.6 log(1/ε),(64)

say. By Mertens’s theorem, we can lower bound

Dq(µ, χ;X)2 ≥
∑

q1/ε≤p≤X

1 + Re(χ(p))

p
= log

logX

ε−1 log q
+ Re

 ∑
q1/ε≤p≤X

χ(p)

p

−O(1).(65)

As q ≤ X1/ε200
, the first term on the right of (65) is ≥ 199 log(1/ε), say. By a quantitative form

of Linnik’s theorem [25, Theorem 18.6], for any q1/ε ≤ y ≤ X and q not divisible by q0 we have
the bound ∣∣∣∑

p≤y
χ(p)

∣∣∣� εy/ log y.(66)

Using (66) and partial summation, we conclude that the left-hand side of (65) is ≥ 198 log(1/ε),
say. Now we obtain (64) and hence (63). �
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9.4. The case of arithmetic progressions. As mentioned in the introduction, along with
Corollary 1.1, we shall establish a slightly more general result.

Theorem 9.4. Let Q′ ⊂ [1, Q] be any set of pairwise coprime numbers. Corollary 1.1 contin-

ues to hold if the moduli p are required to be (x/Q)ε
2
-typical elements of Q′ instead of being

prime numbers, with the modification that the right-hand side of (5) should be replaced with
εφ(p)(x/p)2.

Proof of Corollary 1.1 and Theorems 9.4, 1.4. It suffices to prove Proposition 9.1. In proving it,
we may plainly assume that x is larger than any fixed constant and ε > 0 is smaller than any
fixed positive constant.

The proof follows the same lines as that of Proposition 9.2, and we merely highlight the main
differences. For x ≥ 10, 1 ≤ Q ≤ x/100 and (log(x/Q))−1/181 ≤ ε ≤ 1 we let

P1 = (x/Q)ε, Q1 = x/Q

Pj = exp
(
j4j(logQ1)j−1 logP1

)
, Qj = exp

(
j4j+2(logQ1)j

)
, 2 ≤ j ≤ J − 1

PJ = xε
2
, QJ = xε,

where J ≥ 1 is the smallest integer with J4J+2(logQ1)J > (log x)1/2. (If J = 2 then only define
P1, Q1, P2, Q2 as above, and if J = 1 then just define P1, Q1 as above.)

In analogy to the definitions made in the proof of Proposition 9.1, we also define

F (χ) :=
∑
n≤x

f(n)χ(n),(67)

H1 = HJ = H :=
⌊
ε−1
⌋
, Hj := j2P 0.1 for 2 ≤ j ≤ J − 1,

Ij := [bHj logPjc, Hj logQj ] for 2 ≤ j ≤ J − 1,

Qv,Hj (χ) :=
∑

ev/Hj≤p<e(v+1)/Hj

f(p)χ(p),(68)

Rv,Hj (χ) :=
∑

xe−v/Hj≤m≤2xe−v/Hj

f(m)χ(m)

1 + ω[Pj ,Qj ](m)
for v ∈ Ij , 1 ≤ j ≤ J.

Finally, for q ≥ 1 and 2 ≤ j ≤ J − 1, let us write

X1 : = {χ 6= χ1 (mod q) : |Qv,H1(χ)| ≤ e(1−α1)v/H1 ∀ v ∈ I1},

Xj : = {χ 6= χ1 (mod q) : |Qv,Hj (χ)| ≤ e(1−αj)v/Hj ∀ v ∈ Ij} \
⋃

i≤j−1

Xi,

U : = {χ 6= χ1 (mod q)} \
⋃

i≤J−1

Xi,

where, as above, we put

αj :=
1

4
− η(1 + 1/(2j)) with η = 0.01,

for each 1 ≤ j ≤ J − 1. Similarly to the proof of Proposition 9.2, the proof of Proposition
9.1 (and hence of Theorem 1.4) splits into the cases χ ∈ X1, . . . ,XJ−1,U , depending on which
character sum is small or large.
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The introduction of the typical factorizations corresponding to the set S is handled using
Lemma 7.7, as above, which gives

∑
χ∈Xj

|F (χ)|2 � Hj log
Qj
Pj

∑
v∈Ij

∑
χ 6=χ1

|Qv,Hj (χ)Rv,Hj (χ)|2 +
(φ(q)

q
x
)2( 1

Hj
+

1

Pj
+

∏
Pj≤p≤Qj

p-q

(1− 1

p
)
)
.

(69)

When summed over 1 ≤ j ≤ J − 1, the error terms, in light of our parameter choices, are
bounded by(φ(q)

q
x
)2(

ε+
∑

1≤j≤J

logPj
logQj

exp
( ∑

p|q
Pj≤p≤Qj

1

p

))
� ε

(φ(q)

q
x
)2(

1 + ε
−∆(q,P1)

log 2

∑
1≤j≤J

j
− 2

log 2
(1−∆(q,P1))

)

� ε1−3∆(q,(x/Q)ε)
(φ(q)

q
x
)2
.

Letting Ej denote the main term in (69), we apply the same arguments, but with Lemma 7.1
in place of Lemma 7.2 for j = 1, and for 2 ≤ j ≤ J−1 we use the second statement of Lemma 7.6,
rather than the first. In this way we obtain

E1 �
(φ(q)

q
x
)2
ε−1H2

1P
−0.1
1 � ε

(φ(q)

q
x
)2

∑
2≤j≤J−1

Ej �
(φ(q)

q
x
)2 ∑

2≤j≤J−1

1

j2Qj−1
�
(φ(q)

q
x
)2
P−1

1 ,

which is sufficient.
In the case of U , we apply Lemma 7.7 once again with the choices PJ and QJ . As above, we

find a v0 ∈ IJ such that∑
χ∈U
|F (χ)|2 � H(logQJ)2

∑
χ∈U
|Qv0,H(χ)|2|Rv0,H(χ)|2 + ε1−3∆(q,(x/Q)ε)

(φ(q)

q
x
)2
,

estimating the error term as for the sets Xj , but invoking the specific choices of HJ , PJ and QJ .
As above, we split U further into the subsets

US :=

{
χ 6= χ1 : |Qv0,H(χ)| ≤ ε2 e

v0/H

v0

}
∩ U

UL :=

{
χ 6= χ1 : |Qv0,H(χ)| > ε2 e

v0/H

v0

}
∩ U .

We combine Lemma 7.5 (with T = {0} this time) with Lemma 7.4 (wherein E consists of points
(χ, 0)) this time, and arguing as in the proof of Proposition 9.2 we obtain that∑

χ∈US

|Qv0,H(χ)|2|Rv0,H(χ)|2 � (H log x)−2
(φ(q)

q
x
)2
,

which, when multiplied by H(logQJ)2 � ε(H log x)2 yields an acceptable bound.
We treat the UL case in essentially the same way as in the proof of Proposition 9.2, and in

fact the claim is simpler, as it suffices to combine Propositions 8.5 (with the same parameter
choices as in the previous proof) with Corollary 8.4 (taking Remark 8.1 into account). �
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10. The case of smooth moduli

In this section, we prove Theorem 1.3 on the variance in arithmetic progressions to all smooth
moduli. A key additional ingredient in the proof is the following estimate for short character
sums for characters of smooth conductor.

Lemma 10.1. Let q,N ≥ 1 with P+(q) ≤ N0.001 and N ≥ qC/(log log q) for a large constant
C > 0. Then, uniformly for any non-principal character χ (mod q) and for any M ≥ 1,∣∣∣ ∑

M≤n≤M+N

χ(n)
∣∣∣� N exp

(
− 1

4

√
logN

)
.(70)

Proof. We note that for N ≥ q, the estimate (70) follows directly from the Pólya–Vinogradov
inequality and thus we can assume that N < q. Moreover, (70) holds for primitive χ (mod q) (in a
wider range than stated above and with exp(−

√
logN) in place of exp(−1

4

√
logN)) by a result

of Chang [3, Theorem 5]. Indeed, Chang’s estimate holds in the regime logN > (log q)1−c +

C ′ log(2 log q
log q′ )

log q′

log q
log q

log log q for some c, C ′ > 0 and with q′ =
∏
p|q p, so by u log 2

u ≤ 1 for u ≤ 1

this works in the regime N > qC
′/ log log q. Let χ (mod q) be a non-principal character induced

by a primitive character χ′ (mod q′) with q′ | q. Then by Möbius inversion∑
M≤n≤M+N

χ(n) =
∑
d|q

µ(d)χ′(d)
∑

M/d≤m≤(M+N)/d

χ′(m).

Note that in our range
√
N ≥ q0.5C/(log log q) and

√
Nτ(q) � N0.9, thus taking C = 10C ′ and

using the slightly stronger version of (70) for the primitive character χ′ (mod q′), we arrive at∑
M≤n≤M+N

χ(n)�
∑
d|q

d≤
√
N

∣∣∣ ∑
M/d≤m≤(M+N)/d

χ′(m)
∣∣∣+

∑
d|q

d>
√
N

(N
d

+ 1
)

� N exp
(
− 1

2

√
logN

)∑
d|q

1

d
+
√
Nτ(q)

� N exp
(
−
(1

2
+ o(1)

)√
logN

)
,

and the result follows. �

Lemma 10.2 below, which uses Lemma 10.1 as an input, allows us to improve on Propo-
sition 8.5 for smooth moduli to obtain good bounds on the frequency of large character sums
(mod q) over primes without any exceptional smooth q.

Lemma 10.2. Let q ≥ P ≥ 1 be integers with P+(q) ≤ P 1/10000. Suppose also that q1/(log log q)0.9
<

P < q. Then for 1 ≥ δ ≥ exp(−(logP )0.49) and V ≥ exp(−(logP )0.49) and for any complex
numbers |ap| ≤ 1, we have∣∣∣{χ (mod q) :

∣∣∣ ∑
P≤p≤(1+δ)P

apχ(p)
∣∣∣ ≥ V δP

logP

}∣∣∣� (CV −1)6 log q/ logP ,(71)

with the implied constant and C > 1 being absolute.

Proof. We begin by noting that, under our assumptions, Lemma 10.1 implies∑
n∈I

χ(n)� δP exp(− 1

10

√
logP )(72)
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whenever χ (mod q) is non-principal, and I is an interval of length ∈ [P 0.2, P ].
Let R be the quantity on the left-hand side of (71). For any k ∈ N we have by Chebychev’s
inequality

R�
( logP

δP

)2k
V −2k

∑
χ (mod q)

∣∣∣ ∑
P≤p≤(1+δ)P

apχ(p)
∣∣∣2k

=
( logP

δP

)2k
V −2k

∑
P≤p1,...,p2k≤(1+δ)P

ap1 · · · apkapk+1
· · · ap2k

∑
χ (mod q)

χ(p1 · · · pk)χ(pk+1 · · · p2k)

≤
( logP

δP

)2k
V −2kϕ(q)

∑
P≤p1,...,p2k≤(1+δ)P

(p1···p2k,q)=1

1p1···pk≡pk+1···p2k (mod q).

We pick k = b3 log q
logP c, so that 3 ≤ k � log log q. Let ν(n) be the sieve majorant coming from

the linear sieve with sifting level D = P ρ and sifting parameter z = P ρ
2
, where ρ > 0 is a small

enough absolute constant (say ρ = 0.01). The sieve weight takes the form

ν(n) =
∑
d|n
d≤P ρ

λd

for some λd ∈ [−1, 1]. Then R is bounded by

R�
( logP

δP

)2k
V −2kϕ(q)

∑
P≤n1,...,n2k≤(1+δ)P

(n1···n2k,q)=1

ν(n1) · · · ν(n2k)1n1···nk≡nk+1···n2k (mod q)

=
( logP

δP

)2k
V −2k

∑
χ (mod q)

∣∣∣ ∑
P≤n≤(1+δ)P

ν(n)χ(n)
∣∣∣2k.(73)

The contribution of the principal character to the χ sum is

≤
( ∑
P≤n≤(1+δ)P

ν(n)
)2k
�
(ρ−2δP

logP

)2k

by the linear sieve, and this contribution is admissible by setting C = ρ−2 in the lemma.
Exchanging the order of summation and applying (72), we have the upper bound

∑
P≤n≤(1+δ)P

ν(n)χ(n) =
∑
d≤P ρ

λdχ(d)
∑

P/d≤m≤(1+δ)P/d

χ(m)� P (logP ) exp
(
− 1

10

√
logP

)
� P exp

(
− 1

15

√
logP

)
.

Hence the contribution of the non-principal characters to the χ sum in (73) is bounded by

� P 2 exp

(
− 2

15

√
logP

) ∑
χ (mod q)

∣∣∣ ∑
P≤n≤(1+δ)P

ν(n)χ(n)
∣∣∣2(k−1)

,
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and expanding out the moment again, this is

� P 2 exp
(
−
√

logP

15

)
φ(q)

∑
P≤n1,...,n2(k−1)≤(1+δ)P

(n1···n2(k−1),q)=1

ν(n1) · · · ν(n2(k−1))1n1···nk−1≡nk···n2(k−1) (mod q)

� P 2 exp
(
−
√

logP

15

)
φ(q)

∑
P≤n1,...,n2(k−1)≤(1+δ)P

(n1···n2(k−1),q)=1

τ(n1) · · · τ(n2(k−1))1n1···nk−1≡nk···n2(k−1) (mod q).

Merging variables, this becomes

� P 2 exp
(
−
√

logP

15

)
φ(q)

∑
m1,m2≤(2P )k−1

m1≡m2 (mod q)
(m1m2,q)=1

τ2(k−1)(m1)τ2(k−1)(m2)

= P 2 exp
(
−
√

logP

15

)
φ(q)

∑
m1≤(2P )k−1

(m1,q)=1

τ2(k−1)(m1)
∑

m2≤(2P )k−1

m2≡m1 (mod q)

τ2(k−1)(m2).

A theorem of Shiu [35] shows that the inner sum is� (2P )k−1

ϕ(q) (logP k)2(k−1)−1, as q ≤ (2P )0.9(k−1)

by our choice of k. Thus the whole expression above is

� P 2k exp
(
− 1

20

√
logP

)
,

since (k logP )2k � exp((logP )0.01). When we multiply this contribution by (logP/(δP ))2kV −2k

and recall the assumptions δ, V ≥ exp(−(logP )0.49) and the fact that k � log logP , we see that

R� (CV −1)2k + (δ−1V −1)2k exp
(
− 1

30

√
logP )

)
� (CV −1)2k + 1,

which, recalling our choice of k, is what was to be shown. �

Our next lemma improves on Proposition 8.3 for smooth moduli (apart from the t-aspect).

Lemma 10.3. Let x ≥ 10, κ > 0 and 2 ≤ P < Q ≤ x. Then for all q ≤ x satisfying

P+(q) ≤ qκ
100

and for any multiplicative function f : N → U, if χ1 (mod q) is defined as in
Theorem 1.4, we have

sup
χ (mod q)
χ 6=χ1

sup
y∈[xκ,x]

∣∣∣1
y

∑
n≤y

(n,[P,Q])=1

f(n)χ(n)
∣∣∣� κ

(
logQ

logP

)
φ(q)

q
.(74)

Remark 10.1. We cannot quite make use of zero-free regions corresponding to smooth moduli
to prove Lemma 10.3, since Chang’s zero-free region in 10.1 for such moduli only applies to non-
Siegel zeros (that is, zeros that are not real zeros of L-functions corresponding to non-principal
real characters). Instead, we prove the lemma by establishing bounds for |L(1 + it, χ)|, as in the
low conductor case of Proposition 8.3, and that will yield the asserted result.

Proof. We may assume in what follows that κ > 0 is small enough and fixed (adjusting the

implied constant if necessary). We may also assume qκ
100 ≥ 2, so κ� (log q)−0.01.

Noting that n 7→ 1(n,[P,Q])=1 is multiplicative, and that for any g1, g2 : N→ U and any y ≥ 2
we have

Dq(g11(·,[P,Q])=1, g2; y)2 ≥ Dq(g1, g2; y)2 −
∑

P≤p≤Q

1

p
= Dq(g1, g2; y)2 − log

(
logQ

logP

)
+O(1),
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following the beginning of the proof of Proposition 8.3 almost verbatim, we obtain the result
once we prove that

sup
|t|≤(log q)0.02

D(ξ, nit;xκ)2 ≥ 4.5 log
1

κ
+ log

q

φ(q)
+O(1)

for all non-principal characters ξ (mod q). From the proof of Lemma 6.5, it follows that

D(ξ, nit;xκ)2 ≥ log log xκ − log |L(1 + it, ξ)| −O(1),

so we need to show that

sup
|t|≤(log q)0.02

|L(1 + it, ξ)| � κ5.5φ(q)

q
log q

for all q ≤ x satisfying P+(q) ≤ qκ100
. Partial summation shows that

L(1 + it, ξ) =
∑

n≤q(|t|+1)

ξ(n)

n1+it
+O(1).

Let q′ = q10000κ100
. Then

|L(1 + it, ξ)| � φ(q)

q
log q′ +

∣∣∣ ∑
q′≤n≤q(|t|+1)

ξ(n)

n1+it

∣∣∣+ 1.

The first term on the right-hand side is acceptable. For the second term, we apply partial
summation to write it as∑

q′≤n≤q(|t|+1)

ξ(n)

n1+it
= S(q′, q(|t|+ 1))(q(|t|+ 1))−1−it + (1 + it)

∫ q(|t|+1)

q′
S(q′, u)u−2−it du,(75)

where

S(M,N) :=
∑

M≤n≤N
ξ(n).

We are now in a position to apply Lemma 10.1 (which is applicable, as P+(q) ≤ qκ
100 ≤

(q′)0.0001), and this allows us to bound the right-hand side of (75) by

� 1 + (1 + |t|)
∫ ∞
q′

1

u exp( 1
10

√
log u)

du� 1� κ10φ(q)

q
log q,

since φ(q)/q � 1/ log log q and κ ≥ (log q)−0.01. This concludes the proof. �

Corollary 10.4. Let x ≥ R ≥ 10, κ ∈ ((log x)−1/3, 1), and 10 ≤ P ≤ Q/2 ≤ x. Let the twisted
character sum R(χ, s), multiplicative function f : N → U and character χ1 (mod q) be defined

as in Corollary 8.4. Then for 2 ≤ q ≤ x satisfying P+(q) ≤ qκ100
we have

sup
χ (mod q)
χ 6=χ1

sup
R∈[x1/2,x]

1

R
|R(χ, 0)| � κ

( log x

logP

)3φ(q)

q
.

Proof. Applying the hyperbola method (similarly as in the proof of Corollary 8.4), we see that

|R(χ, 0)| �
∣∣∣ ∑

m1≤Rx−κ
p|m1=⇒p∈[P,Q]

f(m1)χ(m1)

1 + ω[P,Q](m1)

∑
R/m1≤m2≤2R/m1

(m2,[P,Q])=1

f(m2)χ(m2)
∣∣∣

+
∑

m2≤2xκ

(m2,[P,Q])=1
(m2,q)=1

∑
Rx−κ<m1≤2R/m2

p|m1=⇒p∈[P,Q]

1.
(76)
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Since R/m1 ≥ xκ holds in the first sum on the right, we can apply Lemma 10.3 to bound this
sum by

� κ
logQ

logP

φ(q)

q

( ∑
m1≤x

p|m1=⇒p∈[P,Q]

R

m1

)( ∑
d≤xκ

p|d=⇒p∈[P,Q]

1

d

)
� κ

logQ

logP

φ(q)

q
R

∏
P≤p≤Q

(
1− 1

p

)−2

� κ
φ(q)

q

( logQ

logP

)3
R.

The second sum on the right of (76), in turn, is bounded using Selberg’s sieve by

�
∑

m2≤2xκ

(m2,q)=1

R

m2 logP
� κ

log x

logP

φ(q)

q
R,

as wanted. �

Proof of Theorem 1.3. Inspecting the proof of Theorem 1.5, the result of that theorem holds for
any modulus q ≤ x satisfying, for H = bε−1c the bounds

sup
P∈[xε2 ,xε]

∣∣∣{χ (mod q) :
∣∣∣ ∑
P≤p≤Pe1/H

f(p)χ(p)
∣∣∣ ≥ ε2 P

H logP

}∣∣∣� K(ε),(77)

and for P = xε
2

and Q = xε,

sup
χ (mod q)
χ 6=χ1

∣∣∣ 1

R
sup

R∈[x1/2,x]

∑
R≤m≤2R

f(m)χ(m)

1 + ω[P,Q](m)

∣∣∣� ε

K(ε)1/2

ϕ(q)

q
(78)

for some function K(ε) ≥ 1. Indeed, it is only the UL case of the proof of Theorem 1.4 where we
need to assume something about the modulus q, and the assumptions that we need there are
precisely a large values estimate of the form (77) together with a pointwise bound of the type
(78).

We then establish (77) and (78). Let P+(q) ≤ qε
′

with ε′ = exp(−ε−3). Lemma 10.2 (where

we take V = ε2/10 and δ = e1/H − 1) readily provides (77) with K(ε) = ε−100ε−2
(assuming as

we may that ε > 0 is smaller than any fixed constant).

Corollary 10.4 in turn gives (78) (with the same K(ε) = ε−100ε−2
as above) when we take

κ = ε4K(ε)−1/2 there, which we can do since P+(q) ≤ qε′ ≤ qκ100
. This completes the proof. �

11. All moduli in the square-root range

11.1. Preliminary lemmas. For the proof of Theorem 1.2, we need a few estimates concerning
smooth and rough numbers to bound the error terms arising from exhibiting good factorizations
for smooth numbers in Lemmas 11.5 and 11.7.

Lemma 11.1. Let c ∈ (0, 1). Let 1 ≤ Y ≤ X and 1 ≤ q ≤ X1−c, and let X−c/2 ≤ δ ≤ 1. Then
for any reduced residue class a modulo q,∑

(1−δ)X<m≤X
P−(m)>Y,m≡a (mod q)

1� c−1 δX

φ(q) log Y
.

Proof. This follows immediately from Selberg’s sieve. �

Given 1 ≤ q, Y ≤ X, define the counting function of smooth numbers coprime to q as

Ψq(X,Y ) := |{n ≤ X : P+(n) ≤ Y, (n, q) = 1}|.(79)

We have the following estimate for Ψq(X,Y ) in short intervals.
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Lemma 11.2. Let 10 ≤ Y ≤ X and set u := logX/ log Y . Assume that Y ≥ exp((logX)0.99)

and exp(−(logX)0.01) ≤ δ ≤ 1. Finally, let 1 ≤ q ≤ eY 1/2
. Then

Ψq((1 + δ)X,Y )−Ψq(X,Y )� ρ(u)
φ(q)

q
δX.

Proof. By the sieve of Eratosthenes, we have

Ψq((1 + δ)X,Y )−Ψq(X,Y ) =
∑
d|q

P+(d)≤Y

µ(d)
∑

X
d
≤m≤(1+δ)X

d

P+(m)≤Y

1

Let S1 and S2 be parts of the sum with d ≤ exp(10(logX)1/2) and d > exp(10(logX)1/2),
respectively. For estimating S2, we crudely remove the smoothness condition from the m sum
and estimate the remaining sum using 1/d ≤ exp(−5(logX)1/2)/

√
d to obtain

S2 �
∑
d|q

d>exp(10(logX)1/2)

X

d
� X exp(−5(logX)1/2)

∏
p|q

(
1− 1
√
p

)−1

� X exp(−5(logX)1/2) exp(3
√
ω(q))

and using ω(q) = o(log q) this is certainly � δXρ(u)φ(q)
q exp(−1

2(logX)1/2) by u ≤ (logX)0.01

and the well-known estimate ρ(u) = u−(1+o(1))u.
For the S1 sum, we instead apply [17, Theorem 5.1] (noting that its hypothesis δX/d ≥

XY −5/12 is satisfied) so that we obtain

S1 =
∑
d|q

d≤exp(10(logX)1/2)
P+(d)≤Y

(
µ(d)

δX

d
ρ

(
u− log d

log Y

)(
1 +O

( log(u+ 1)

log Y

)))

=
∑
d|q

P+(d)≤Y

(
µ(d)

δX

d
ρ(u)

(
1 +O

( log(u+ 1)

log Y

)))

+O
(
δXρ(u− 10(logX)1/2/ log Y ) exp(−(logX)1/2) + δX

∑
d|q

d≤exp(10(logX)1/2)
P+(d)≤Y

|ρ(u)− ρ(u− log d
log Y )|

d

)
,

where we used the same bound as in the S2 case to extend the d sum to all d | q, P+(d) ≤ Y .
By the mean value theorem and the identity uρ′(u) = −ρ(u− 1), we have

|ρ(u− log d

log Y
)− ρ(u)| ≤ log d

log Y
max

u−10(logX)1/2/ log Y≤v≤u

ρ(v − 1)

v
� ρ(u− 2)

(logX)1/2

log Y
,(80)

and therefore the expression for S1 simplifies to

S1 = δρ(u)X
∏
p|q
p≤Y

(
1− 1

p

)(
1 +O

(∑
d|q

1

d
· log(u+ 1)

log Y
+
ρ(u− 2)

ρ(u)
(logX)−0.3

))
.

Now the proof is completed by recalling that u ≤ (logX)0.01 and noting that the product over

p | q is � φ(q)
q since Y ≥ log2 q and that ρ(u−2)� u3ρ(u) by [17, Formulas (2.8) and (2.4)]. �
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Corollary 11.3. Let 1 ≤ Y ≤ X1 < X2 and 1 ≤ q ≤ X2, with Y ≥ exp((logX1)0.99). Then∑
X1<n≤X2

P+(n)≤Y
(n,q)=1

1

n
� φ(q)

q
ρ(u1) log(2X2/X1),

where u1 := (logX1)/ log Y .

Proof. Decompose the interval (X1, X2] dyadically. Making use of Lemma 11.2, we find∑
X1<n≤2X2

P+(n)≤Y
(n,q)=1

1

n
�

∑
X1<2j≤4X2

2−j
∑

2j−1<n≤2j

P+(n)≤Y
(n,q)=1

1� φ(q)

q
ρ(u1)

∑
X1<2j≤4X2

1� φ(q)

q
ρ(u1) log(2X2/X1),

as claimed. �

11.2. Decoupling of variables. The proof of Theorem 1.2 is based on obtaining bilinear
structure in the sum, coming from the fact that the summation may be restricted to smooth
numbers. Certainly any xη-smooth number n ∈ [x1−η, x] can be written as n = dm with

d,m ∈ [x1/2−η, x1/2+η], but a typical smooth number has a lot of representations of the above
form, and therefore it appears difficult to decouple the d and m variables just from this. The fol-
lowing simple lemma however provides a more specific factorization that does allow decoupling
our variables.

Lemma 11.4. Let x ≥ 4, and let n ∈ [x1/2, x] be an integer. Then n can be written uniquely as

dm with d ∈ [x1/2/P−(m), x1/2) and P+(d) ≤ P−(m).

Proof. Let n = p1p2 · · · pk, where p1 ≤ p2 ≤ · · · ≤ pk are primes. Let r ≥ 1 be the smallest index
for which p1 · · · pr ≥ x1/2. Then d = p1 · · · pr−1, m = pr · · · pk works. We still need to show that
this is the only possible choice of d and m.

Let d and m be as in the lemma. Since dm = p1 · · · pk and P+(d) ≤ P−(m), there exists
r ≥ 1 such that d = p1 · · · pr−1, m = pr · · · pk, and by the condition on the size of d we must have
p1 · · · pr−1 < x1/2, p1 · · · pr−1 ≥ x1/2/pr. There is exactly one suitable r, namely the smallest r

with p1 · · · pr ≥ x1/2. �

We need to be able to control the size of the P−(m) variable, since if it is very small then so
is P+(d), leading to character sums over very sparse sets. The next lemma says that for typical
n ≤ x the corresponding P−(m) is reasonably large, even if n is restricted to an arithmetic
progression.

In what follows, set

θj := η(1− ε2)j for all j ≥ 0,(81)

and let

J := dε−2 log log(1/ε)e(82)

so that for small ε > 0 we have

θJ �η 1/ log(1/ε) and ρ(1/θJ)� (1/θJ)0.5/θJ � ε100.

We have J ≤ 2ε−2 log log(1/ε) as long as ε > 0 is small enough in terms of η.

Lemma 11.5 (Restricting to numbers with specific factorizations). Let x ≥ 10, η ∈ (0, 1/10)

and (log x)−1/100 ≤ ε ≤ 1. Let θj be given by (81) and J given by (82), and define

SJ :=
⋃

0≤j≤J
{n ≤ x : n = dm, d ∈ (x1/2−θj+1 , x1/2), P+(d) ≤ xθj+1 , P−(m) ∈ (xθj+1 , xθj ]}.
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Let q ≤ x1/2−100η. Then for (a, q) = 1 we have

∑
n≤x

n≡a (mod q)
P+(n)≤xη

(1− 1SJ (n))�η ε
x

q
.

Proof. We may assume that ε is smaller than any fixed function of η. In what follows, let n ≤ x,
P+(n) ≤ xη and n ≡ a (mod q) with (a, q) = 1.

Owing to Lemma 11.4, we know that we may write any n as above uniquely in the form
n = dm with P+(d) ≤ P−(m) and d ∈ [x1/2/P−(m), x1/2). Let us further denote by Tj the set

of n as above for which P−(m) ∈ (xθj+1 , xθj ], so that every n belongs to a unique set Tj with
j ≥ 0. We claim that n ∈ SJ unless one of the following holds:
(i) n has a divisor d ≥ x1/2−η with P+(d) ≤ xθJ and P−(n/d) ≥ P+(d);
(ii) There exist two (not necessarily distinct) primes p1, p2 > xθJ+1 with p1p2 | n and 1 ≤ p1/p2 ≤
xε

2
;

(iii) For some 0 ≤ j ≤ J , we can write n = rs with r ∈ [x1/2−θj , x1/2−θj+1 ], P+(r) ≤ xθj ,
P−(s) ∈ (xθj+1 , xθj ].
Indeed, if n ≤ x, P+(n) ≤ xη and none of (i), (ii), (iii) holds, then letting j be the index for
which n ∈ Tj , we have j ≤ J (by negation of (i)) and in the factorization n = dm of n we

have the conditions P−(m) ∈ (xθj+1 , xθj ], P+(d) ≤ xθj+1 (by negation of (ii) and the fact that

θj − θj+1 ≤ ε2), and d ∈ (x1/2−θj+1 , x1/2] (by negation of (iii)), so that n ∈ SJ .
Applying Lemma 11.1, the contribution of (i) is

�
∑

x1/2−η≤d≤x1/2

P+(d)≤xθJ
(d,q)=1

∑
m≤x/d

P−(m)≥P+(d)
m≡ad−1 (mod q)

1� η−1
∑

x1/2−η≤d≤x1/2

P+(d)≤xθJ
(d,q)=1

x/d

φ(q)(logP+(d))

�η

∑
k≥log(1/θJ )−1

e−k
∑

x1/2−η≤d≤x1/2

P+(d)∈[xe
−k−1

, xe
−k

]
(d,q)=1

1

d log x
· x

φ(q)
.

Set u0 := (log x)0.01. The contribution of the terms with ek ≤ u0 can be bounded using
Lemma 11.2, and ρ(u)� u−u (see [17, (2.6)]), yielding a contribution of

�
∑

k≥log(1/θJ )−1

e−kρ(ek/3)
x

q
�

∑
k≥log(1/θJ )−1

e−(k−log 3)e−k/3 � ε100x

q
,

since θJ �η log(1/ε). The remaining terms with ek > u0 can be estimated trivially using
Corollary 11.3, giving

� η−1
∑

k≥0.01 log log x

e−kρ(u0/3)
x

q
�η ε

x

q
.
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Denoting M = θJ+1ε
−2 and applying the prime number theorem, the contribution of (ii) in

turn is bounded by∑
M≤k≤ε−2

∑
p1,p2∈[x(k−1)ε2 ,x(k+1)ε2 ]

∑
n≤x

n≡a (mod q)
p1p2|n

1� x

q

∑
M≤k≤ε−2

( ∑
p∈[x(k−1)ε2 ,x(k+1)ε2 ]

1

p

)2

� x

q

∑
M≤k≤ε−2

(
log
(k + 1

k − 1

)
+ (log x)−100

)2

� x

q

∑
M≤k≤ε−2

( 1

k2
+ (log x)−100

)
� x

qM
,

and by the definition of M and the fact that θJ+1 �η 1/ log(1/ε), this is �η ε
x
q .

Lastly, by Lemma 11.1 and Corollary 11.3, for any fixed 0 ≤ j ≤ J , the contribution of (iii)
is ∑

x1/2−θj≤r≤x1/2−θj+1

P+(r)≤xθj
(r,q)=1

∑
s≤x/r

P−(s)∈[xθj+1 ,xθj ]
s≡ar−1 (mod q)

1 ≤
∑

x1/2−θj≤r≤x1/2−θj+1

P+(r)≤xθj
(r,q)=1

∑
p∈[xθj+1 ,xθj ]

p-q

∑
s′≤x/(pr)

P−(s′)≥xθj+1

s′≡a(pr)−1 (mod q)

1

� η−1
∑

x1/2−θj≤r≤x1/2−θj+1

P+(r)≤xθj
(r,q)=1

∑
p∈[xθj+1 ,xθj ]

x/(pr)

φ(q)θj+1(log x)

�η

∑
x1/2−θj≤r≤x1/2−θj+1

P+(r)≤xθj
(r,q)=1

x

φ(q)rθj+1(log x)

(
log

θj
θj+1

+ (log x)−100
)

�η
θj − θj+1

θj+1
log

θj
θj+1

ρ(3/θj)
x

q
+

x

q(log x)99
.

Here the second term is certainly small enough. Using ρ(u)� u−1, log(1 + v)� v and formulas
(81) and (82), the first term summed over 0 ≤ j ≤ J is crudely bounded by

�η

∑
0≤j≤J

(θj − θj+1)2x

q
�η Jε

4 �η ε
1.9x

q
.

Therefore we have proved the assertion of the lemma. �

We further wish to split the d and m variables into short intervals to dispose of the cross-
condition dm ≤ x on their product. This is achieved in the following lemma.

Lemma 11.6 (Separating variables). Let x ≥ 10, η ∈ (0, 1/10) and (log x)−1/100 ≤ ε ≤ 1. Let
θj be given by (81), and let H := bε−1.1c. For each 0 ≤ j ≤ J (with J given by (82)), write

Ij : = {u ∈ Z : Hθj+1 log x ≤ u ≤ Hθj log x− 1},

Kj : = {v ∈ Z : (1/2− θj+1)H log x ≤ v ≤ 1

2
H log x− 1}.

(83)
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Define the set

S ′J :=
⋃

0≤j≤J

⋃
u∈Ij ,v∈Kj

{n = pdm′, p ∈ (eu/H , e(u+1)/H ], d ∈ (ev/H , e(v+1)/H ], m′ ≤ xe−(u+v+2)/H ,

P+(d) ≤ xθj+1 , P−(m′) > xθj}.

Then we have ∑
n≤x

n≡a (mod q)
P+(n)≤xη

(1− 1S′J (n))�η ε
x

q
.

Proof. By Lemma 11.5, it suffices to prove the claim with 1SJ (n)−1S′J (n) in place of 1−1S′J (n).

We have S ′J ⊂ SJ , since for n ∈ SJ we have a unique way to write it, for some 0 ≤ j ≤ J , as

n = dm with P+(d) ≤ xθj+1 , P−(m) ∈ (xθj+1 , xθj ], and we may further write m = pm′, so that
p ∈ (xθj+1 , xθj ] and P−(m′) > p.

Now, if we define u
(1)
j , u

(2)
j as the endpoints of the discrete interval Ij , and similarly v

(1)
j , v

(2)
j

as the endpoints of Kj , we see that n ∈ SJ belongs for unique 0 ≤ j ≤ J , u ∈ Ij , v ∈ Kj to the
set in the definition of S ′J , unless one of the following holds for the factorization n = pdm′ of n:

(i) We have p ∈ [e(u
(i)
j −1)/H , e(u

(i)
j +1)/H ] or d ∈ [e(v

(k)
j −1)/H , e(v

(k)
j +1)/H ] for some i ∈ {1, 2} and

0 ≤ j ≤ J ;
(ii) We have p ∈ [eu/H , e(u+1)/H ], d ∈ [ev/H , e(v+1)/H ], m′ ∈ [xe−(u+v+2)/H , xe−(u+v)/H ] for some
u ∈ Ij , v ∈ Kj and 0 ≤ j ≤ J .

(iii) We have P−(m′) ∈ (xθj+1 , xθj ). Condition (iii) clearly leads to condition (ii) in the proof of
Lemma 11.5 holding, so its contribution is �η εx/q.

We are left with the contributions of (i) and (ii). They are bounded similarly, so we only
consider (ii).

For given j, u, v, Lemmas 11.1 and 11.2 tell us that the contribution of (ii) is∑
eu/H≤p≤e(u+1)/H

p-q

∑
ev/H≤d≤e(v+1)/H

P+(d)≤xθj+1

(d,q)=1

∑
xe−(u+v+2)/H≤m′≤xe−(u+v)/H

P−(m′)≥xθj+1

m′≡a(pd)−1 (mod q)

1

� η−1

H

∑
eu/H<p≤e(u+1)/H

∑
ev/H<d≤e(v+1)/H

P+(d)≤xθj+1

(d,q)=1

xe−(u+v)/H

φ(q)θj+1 log x

�η
1

H2θj+1
ρ
(1/2− η

θj+1

) x

uq log x
,

where the second 1/H factor arose from summation over d and the 1/u factor arose from the
summation over p. Summing this over u ∈ Ij , v ∈ Kj and 0 ≤ j ≤ J and recalling that
|Ij | � (θj − θj+1)H(log x), |Kj | � θjH log x and ρ(y)� y−2 yields a bound of

�η

∑
0≤j≤J

(θj − θj+1)θj(H log x)2 · 1

H2

1

H log2 x
· x
q
�η

ε2J

H
· x
q
�η ε

x

q

by the definitions of H and J . �
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Now that we have decoupled the variables, we may transfer to characters and obtain a
trilinear sum. For u ∈ Ij , v ∈ Kj and H = bε−1.1c, write

Pu(χ) =
∑

eu/H<p≤e(u+1)/H

f(p)χ(p)

Dv(χ) =
∑

ev/H<d≤e(v+1)/H

P+(d)≤xθj+1

f(d)χ(d),

Mu,v(χ) =
∑

m≤x/e(u+v+2)/H

P−(m)>xθj

f(m)χ(m).

(84)

Then we have the following.

Lemma 11.7. Let x ≥ 10, η ∈ (0, 1/10), ε ∈ ((log x)−1/200, 1), q ≤ x1/2−100η, and let f : N→ U
be a multiplicative function supported on xη-smooth numbers. Letting χ1 be as in Theorem 1.2,
and recall the definitions in (83). Then for (a, q) = 1 we have∣∣∣ ∑

n≤x
n≡a (mod q)

f(n)− χ1(a)

φ(q)

∑
n≤x

f(n)χ1(n)
∣∣∣

≤ 1

φ(q)

∑
χ 6=χ1 (mod q)

∑
0≤j≤J

∑
u∈Ij

∑
v∈Kj

|Pu(χ)||Dv(χ)||Mu,v(χ)|+Oη

(εx
q

)
.

Proof. Applying Lemma 11.6 to both f and fχ1 and observing that the union of sets in the
definition of S ′J is disjoint, we see that the left-hand side in the statement is∣∣∣ ∑

0≤j≤J

∑
u∈Ij
v∈Kj

∑
eu/H<p≤e(u+1)/H

∑
ev/H<d≤e(v+1)/H

P+(d)≤xθj+1

∑
m≤xe−(u+v+2)/H

P−(m)>xθj

f(p)f(d)f(m)ξq(mdp)
∣∣∣

+Oη

(εx
q

)
,

where

ξq(n) := 1n≡a (mod q) −
χ1(a)

φ(q)
χ1(n).

Making use of the orthogonality of characters, and then applying the triangle inequality, the
main term here is (omitting the summation ranges for brevity)∣∣∣ ∑

0≤j≤J

∑
u∈Ij
v∈Kj

∑
χ 6=χ1 (mod q)

χ(a)

φ(q)

(∑
p

f(p)χ(p)
)( ∑

d
P+(d)≤xθj+1

f(d)χ(d)
)( ∑

m
P−(m)>xθj

f(m)χ(m)
)∣∣∣

≤ 1

φ(q)

∑
0≤j≤J

∑
u∈Ij

∑
v∈Kj

∑
χ 6=χ1 (mod q)

|Pu(χ)||Dv(χ)||Mu,v(χ)|,

and the claim follows. �

11.3. The main proof. Let η > 0. Suppose henceforth that the multiplicative function f :
N → U is supported on xη-smooth integers. Our task is to prove Theorem 1.2, i.e., to obtain
cancellation in the deviation

max
a∈Z×q

∣∣∣ ∑
n≤x

n≡a (mod q)

f(n)− χ1(a)

φ(q)

∑
n≤x

f(n)χ1(n)
∣∣∣.
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In what follows, let (log x)−1/200 ≤ ε ≤ 1, and let θj and J be given by (81) and (82), and recall
the notation of (83) and (84).

According to Lemma 11.7, we can restrict ourselves to bounding the product of character
sums present in that lemma. Taking the maximum over (u, v) ∈ Ij × Kj there, it suffices to
prove that ∑

j≤J

(θj − θj+1)H2(log x)2

φ(q)

∑
χ 6=χ1 (mod q)

|Puj (χ)||Dvj (χ)||Muj ,vj (χ)| �η ε
x

q
,

where for each 0 ≤ j ≤ J the numbers uj ∈ Ij , vj ∈ Kj are chosen so that they give maximal
contribution.

In analogy with the proofs of Theorems 1.4 and 1.5, for each j ≤ J we define11 the sets X (j)

and U (j)
L by

X (j) := {χ 6= χ1 (mod q) : |Puj (χ)| ≤ ε3euj/H/uj}

U (j) := {χ 6= χ1 (mod q)}\X (j).

11.3.1. Case of X (j). For a given 0 ≤ j ≤ J , consider the contribution from X (j). Applying
Cauchy–Schwarz, we have

1

φ(q)

∑
χ∈X (j)

|Puj (χ)||Dvj (χ)||Muj ,vj (χ)|

≤
( 1

φ(q)

∑
χ∈X (j)

|Muj ,vj (χ)|2
)1/2( 1

φ(q)

∑
χ∈X (j)

|Puj (χ)|2|Dvj (χ)|2
)1/2

.

We begin by bounding the first bracketed sum. We do not use Lemma 7.1 directly for this,
since that would lose one factor of log x that comes from the sparsity of the m variable in the
definition of Muj ,vj (χ). Instead, we expand the square and apply orthogonality, which shows
that the first bracketed sum is bounded by( ∑

m1,m2≤xe−(uj+vj)/H

P−(m1),P−(m2)≥xθj
m1≡m2 (mod q)

1
)1/2

.

Taking the maximum over m1 and summing over the m2 variable, and applying Lemma 11.1
(recalling that xe−(uj+vj)/H/q � xη), this is

� η−1

θjφ(q)1/2 log x
xe−(uj+vj)/H .

To treat the remaining bracketed expression, we use the pointwise bound from the definition
of X (j), and then use Lemma 7.1 to Dvj (χ), giving( 1

φ(q)

∑
χ∈X (j)

|Puj (χ)|2|Dvj (χ)|2
)1/2

�
( ε6

φ(q)
e2uj/H/u2

j

∑
χ∈X (j)

|Dvj (χ)|2
)1/2

�
( ε6

φ(q)
e2uj/H/u2

j

(
φ(q) +

φ(q)

q
evj/H

)(
Ψq(e

(vj+1)/H , xθj+1)−Ψq(e
vj/H , xθj+1)

))1/2
.(85)

11We only need to split the χ spectrum into two sets here, as opposed to many sets in the proof of Theorem 1.4.
This is owing to the fact that Puj (χ) already has length� qε, and thus our large values estimates for it are effective.
The reason we are allowed to take Puj (χ) so long here (unlike in our previous proofs) is that we are assuming

q ≤ x1/2−100η. If we only assumed that q = o(x1/2), we would have to perform an iterative decomposition as in
the preceding sections.
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By Lemma 11.2,

Ψq(e
(vj+1)/H , xθj+1)−Ψq(e

vj/H , xθj+1)� ρ(1/3θj)
φ(q)

q
evj/H/H.

Inserting this into (85), and using evj/H/q ≥ 1 for any vj ∈ Kj , results in the bound

� ε3
(φ(q)

q2
ρ(1/3θj)H

−1
)1/2

e(uj+vj)/H/uj .

Combining this with the contribution from Muj ,vj (χ) yields the upper bound

1

φ(q)

∑
χ∈X (j)

|Puj (χ)||Dvj (χ)||Muj ,vj (χ)|

�η ε
3H−1/2 ρ(1/(3θj))

1/2

θj+1

x

uj(log x)q
.

Recalling H = bε−1.1c, ρ(u) � u−2 and θj − θj+1 � ε2 this expression multiplied by (θj −
θj+1)H2(log x)2 is

�η ε
3(θj − θj+1)H2(log x)2 ·H−1/2ρ(1/(3θj))

1/2 x

θj+1(log x)2q
�η ε

3.3x

q
.

Finally summing this over 0 ≤ j ≤ J , the bound we obtain is

�η Jε
3.3x

q
�η ε

1.2x

q
,

which is good enough.

11.3.2. Case of U (j). It remains to consider the contributions from U (j). We restrict to q ∈
Qx,ε9.5,ε−100 with the notation of Lemma 8.2. As in the proof of Theorem 1.4, that set satisfies

the desired size bound |[1, Q] \ Qx,ε9.5,ε−100 | � Qx−ε
200

(since 9.5 · 20 < 200), and for any set

Q′ ⊂ [1, x] of coprime integers the set Qx,ε9.5,ε−100 intersects it in � (log x)ε
−200

points (and
under GRH we have Qx,ε9.5,ε−100 = [1, x] ∩ Z). We also recall that in Theorem 1.2 the character

χ1 (mod q) is such that inf |t|≤xDq(f, χj(n)nit;x) is minimal.

By Proposition 8.5 (with δ := e1/H−1 � 1/H), for q as above we have |U (j)| � ε−6H � ε−7.1,
since Pu(χ) has length � xθJ and θJ �η 1/(log 1

ε ).
Furthermore, applying Proposition 8.3 (and Remark 8.1) to f(n)1

P+(n)≤xθj (and recalling

q ∈ Qx,ε9.5,ε−100), we see that12

|Dvj (χ)| =
∣∣∣ ∑
evj/H≤d≤e(vj+1)/H

f(d)χ(d)1
P+(d)≤xθj+1

∣∣∣� ε9.5φ(q)

q
evj/H(86)

for all χ ∈ U (j), except possibly for the χ = χ(j) that minimizes the pretentious distance
inf |t|≤log xDq(f, χ(n)1

P+(n)≤xθj+1n
it;x). We argue that χ(j) must be the character χ1 of Theo-

rem 1.2, in which case χ(j) 6∈ U (j) and we can ignore this character.
By applying Lemma 6.1, we see that either

inf
|t|≤log x

D2
q(f, χ

(j)(n)1
P+(n)≤xθj+1n

it;x) ≤ 1.01 log(1/ε9.5) +O(1)

12Note that the saving of ε9.5 is much better than the trivial saving (which we do not need to exploit here)
that comes from the fact that d is supported on xθj -smooth numbers. The trivial saving would only be better if
θj is roughly of size 1/ log(1/ε) or smaller, but as we shall see the contribution of these large values of the index
j is small in any case by trivial estimation.
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or else (86) holds without any exceptional characters. We may assume we are in the former case,
and then by θj+1 ≥ θJ+1 �η 1/(log(1/ε)) and trivial estimation we obtain

inf
|t|≤log x

D2
q(f, χ

(j)(n)nit;x) ≤ 1.1 log(1/ε9.5) +Oη(1).

But we have the same for χ1 in place of χ(j) by the minimality of χ1. Thus, assuming that
χ(j) 6= χ1 and following the argument of Proposition 8.3 verbatim, we obtain a contradiction.
This means that we may assume from now on that (86) holds for all χ ∈ U (j) and 0 ≤ j ≤ J .

Now we take the maximum over χ ∈ U (j) in the sum that we are considering and apply the
Brun–Titchmarsh inequality to Puj (χ) and Lemma 11.1 to Muj ,vj (χ) to bound

1

φ(q)

∑
χ∈U(j)

|Puj (χ)||Dvj (χ)||Muj ,vj (χ)| � ε−7.1+9.5

q
euj/H/uj · evj/Hxe−(uj+vj)/H

η−1

θj+1 log x

�η ε
2.4 x

qθ2
j+1H(log x)2

,

and this multiplied by (θj − θj+1)H2(log x)2 and summed over 0 ≤ j ≤ J (recalling that
θJ �η 1/ log(1/ε)) produces the bound

�η ε
2.4(log

1

ε
)2H

∑
0≤j≤J

(θj − θj+1)
x

q
�η ε

1.2x

q
.

This completes the proof of Theorem 1.2.

12. A Linnik-type result

In this section, we prove our Linnik-type theorems stated in Section 2. As in the proof of
Theorem 1.4, we employ the Matomäki–Radziwi l l method in arithmetic progressions.

Our main propositions for this section concern products of exactly three primes of the form

E∗3 := {n = p1p2p3 : P 1−ε
j ≤ pj ≤ Pj , j ∈ {1, 2, 3}}, P1 = q1000ε, P2 = P3 = q.(87)

Proposition 12.1 (E∗3 numbers in progressions to smooth moduli). For every small enough
ε > 0 there exists η(ε) > 0 such that the following holds.

Let q ≥ 2 with P+(q) ≤ qη(ε). There exists a real character ξ (mod q) such that for all a
coprime to q we have∑

n∈E∗3
n≡a (mod q)

1

n
=

1 +O(ε)

φ(q)

∑
P 1−ε

1 ≤p1≤P1

∑
P 1−ε

2 ≤p2≤P2

∑
P 1−ε

3 ≤p3≤P3

1

p1p2p3

+
ξ(a)

ϕ(q)

∑
P 1−ε

1 ≤p1≤P1

∑
P 1−ε

2 ≤p2≤P2

∑
P 1−ε

3 ≤p3≤P3

ξ(p1p2p3)

p1p2p3

(88)

with E∗3 , P1, P2, P3 as in (87).

Proposition 12.2 (E∗3 numbers in progressions to prime moduli). For every small enough ε > 0
there exists M(ε) > 0 such that the following holds.

Let q ≥ 2. Suppose that the product
∏
χ (mod q) L(s, χ) has the zero-free region Re(s) ≥

1− M(ε)
log q , |Im(s)| ≤ (log q)3. Then for all a coprime to q we have∑

n∈E∗3
n≡a (mod q)

1

n
=

1 +O(ε)

φ(q)

∑
P 1−ε

1 ≤p1≤P1

∑
P 1−ε

2 ≤p2≤P2

∑
P 1−ε

3 ≤p3≤P3

1

p1p2p3
(89)

with E∗3 , P1, P2, P3 as in (87).
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We shall Theorem 2.1(i)–(ii) from these two propositions at the end of the section.

12.1. Auxiliary Lemmas. In order to prove these propositions, we shall need a result of Chang
[3, Theorem 10], giving an improved zero-free region for L(s, χ) when the conductor of χ is
smooth.

Lemma 12.3 (Zero-free region for L-functions to smooth moduli). Suppose q ≥ 2 and P+(q) ≤
qκ with C/(log log(10q)) < κ < 0.001 for large enough C > 0. Then the product

∏
χ (mod q) L(s, χ)

obeys the zero-free region

Re(s) ≥ 1− cκ−1

log q
, |Im(s)| ≤ q

for some constant c > 0, apart from possibly a single zero β. If β exists, then it is real and simple
and corresponds to a unique real character (mod q).

Proof. This was proved by Chang in [3, Theorem 10], apart from possible Siegel zeros13. Indeed,
in that theorem it was shown that, apart from Siegel zeros, L(s, χ) has the zero-free region

Re(s) > 1− cmin

{
1

logP+(q)
,

log log d′

(log d′) log(2 log d
log d′ )

,
1

(log(dT ))1−c′

}
, |Im(s)| ≤ T,

where d is a modulus such that χ is induced by a primitive character (mod d) and d′ =
∏
p|d p.

We take T = q and note that the middle term in the minimum is � log log d
log d ≥

log log q
log q , and this

produces the zero-free region of the lemma apart from Siegel zeros.
What we still need to show is that there cannot exist two real zeros β1, β2 corresponding to

two distinct real characters χ1, χ2 (mod q) and violating our zero-free region. For this, we follow
the proof of [24, Lemma 12]. We may assume that q is larger than any given constant, since
otherwise the Vinogradov–Korobov zero-free region is good enough.

By Lemma 10.1 (and our smoothness assumption on q), we have the twisted character sum
estimate ∣∣∣∑

n∈I
χ(n)n−it

∣∣∣� N exp
(
− 1

4

√
logN

)
(90)

for any interval I of length N ∈ [exp(C log q
log log q ), q) and for N > P+(q)1000. Applying partial

summation to the definition of L(s, χ), splitting this infinite sum into the ranges [1, q1000κ]
[q1000κ, q2] and (q2,∞) (cf. [24, Proof of Lemma 8]), and estimating the first range trivially, the
second range using (90) and the third range using Pólya–Vinogradov, we deduce

|L(s, χ)| < q10000κη, |Re(s)| ≥ 1− η, |Im(s)| ≤ q, η :=
1

(log q)1/2 log log q
;

note that the trivial bound is � qη, and it is crucial to beat this in what follows.

Let θ := 10−7κ−1

log q , and let σ0 := 1+5θ. Assume for the sake of contradiction that min{β1, β2} >
1 − θ. By comparing the L-function corresponding to the principal character χ0 (mod q) with
the Riemann zeta function (cf. [24, Proof of Lemma 11]), we find

L′

L
(σ0, χ0) ≥ 1

1− σ0
− 2 log log(3q).

Another observation is that χ3 := χ1χ2 is a real, non-principal character and 1+χ1(n)+χ2(n)+
χ3(n) = (1 + χ1(n))(1 + χ2(n)) ≥ 0 for all n.

13In [3], it was not fully specified what is meant by Siegel zeros, so we assume the weakest possible interpretation
that for every real, non-principal character (mod q) there can be one zero of the corresponding L-function that
violates the zero-free region, with these zeros being real and simple.



58 OLEKSIY KLURMAN, ALEXANDER P. MANGEREL, AND JONI TERÄVÄINEN

By [24, Lemma 10], this gives

0 < −
3∑
i=0

L′

L
(σ0, χi) ≤ 2 log log(3q) + 3 · 4

η
logM +

1

σ0 − 1
− 1

σ0 − β1
− 1

σ0 − β2
,(91)

where M is such that |L(s, χi)| ≤M |L(σ0, χi)| whenever |s− σ0| ≤ η, and additionally we need
to have σ0 − η/2 < 1− θ (which clearly holds in our case).

Note then that, as in [24, Proof of Lemma 11], a trivial triangle inequality estimate gives
|L(σ0, χ)−1| < 1

5θ , so we can take M := q10000κη/(5θ) ≤ q10001κη above. In particular, we have
(logM)/η ≤ 10001κ log q.

Inserting our bound on M and the lower bounds on β1, β2 into (91) and estimating log log(3q)
crudely results in

0 <
1

100θ
+

1

10θ
+

1

5θ
− 1

6θ
− 1

6θ
< 0,

which is a contradiction, as desired. �

We will also need the following mean value estimate for sums over small sets of characters.

Lemma 12.4 (Halász–Montgomery type estimate over primes). Let q ≥ 1 be an integer, and

let Ξ be a set of characters (mod q). Then for k ∈ {2, 3}, η > 0, 2 ≤ R <
√
N , and for any

complex numbers ap, we have the estimate∑
χ∈Ξ

∣∣∣ ∑
p≤N

apχ(p)
∣∣∣2 �k,η

( N

logR
+N1−1/kq(k+1)/4k2+η|Ξ|R2/k

)∑
p≤N
|ap|2.

Proof. This is a result of Schlage-Puchta [34, Theorem 3]. �

In the proof of Theorem 2.1(i)–(ii), we will need pointwise estimates for logarithmically
weighted character sums assuming only a narrow zero-free region. By a simple Perron’s formula
argument, we can obtain cancellation in ∑

P≤p≤P 1+κ

χ(p)

p
(92)

for χ 6= χ0 (mod q), κ > 0 fixed, and P ∈ [qε, q] if we assume a zero-free region of the form

Re(s) > 1 − 3 log log q
logP , |Im(s)| ≤ q for L(s, χ); the need for this zero-free region comes from

pointwise estimation of |L′L (s, χ)| � log2(q(|t|+ 2)) which costs us two logarithms (in the region

where we are � 1
log(q(|t|+1)) away from any zeros). However, here we must argue differently,

since we are only willing to assume a zero-free region of the form Re(s) > 1− M(ε)
logP , |Im(s)| ≤ q

(which we know for smooth moduli apart from Siegel zeros). To do so, we exploit the logarithmic
weight 1/p in the sum over P ≤ p ≤ P 1+κ, which allows us to insert a carefully chosen smoothing.
Variant of such an argument is known as a Rodosskii bound in the literature.

Lemma 12.5 (A Rodosskii-type bound). Let q ≥ 2, ε > 0, κ > 0, and let χ (mod q) be a

non-principal character. Suppose that L(s, χ) 6= 0 for Re(s) > 1− κ−2

log q , |Im(s)| ≤ (log q)3. Then,

provided that P ≥ qκ �κ 1, we have

sup
|t|≤(log q)3/2

∣∣∣ ∑
P≤p≤P 1+ε

χ(p)

p1+it

∣∣∣ ≤ C0κ(93)

with C0 > 0 an absolute constant.
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Proof. This is a slight modification of results proved by Soundararajan [37, Lemma 4.2] and
by Harper [14, Rodosskii Bound 1]; in those bounds there is the nonnegative function (1 −
Re(χ(p)p−it))/p in place of χ(p)/p1+it in (93), and consequently only lower bounds of the correct
order of magnitude are needed in those results. We will choose a more elaborate smoothing to
obtain asymptotics (up to O(κ)) for (93). Also note that our range of |t| is smaller than in the
works mentioned above, but correspondingly the zero-free region is assumed to a lower height.

We may assume without loss of generality that κ < ε/10 < 1/10, since otherwise the trivial
Mertens bound for (93) is good enough. By splitting the interval [P, P 1+ε] into � ε/κ intervals
of the form [y, y1+κ], it suffices to show that

sup
|t|≤(log q)3/2

∣∣∣ ∑
y≤p≤y1+κ

χ(p) log p

p1+it

∣∣∣� κ2 log y(94)

uniformly for y ∈ [P, P 2].
We introduce the continuous, nonnegative weight function

g(u) =


κ−2u, u ∈ [0, κ2]

1, u ∈ [κ2, κ− κ2]

κ−2(κ− u), u ∈ [κ− κ2, κ],

0, u 6∈ [0, κ];

in other words, g is a trapezoid function. We further define the weight function

W (p) = Wy,κ(p) = g
( log p

y

log y

)
log y.

Since W (p) = log y for p ∈ [y1+κ2
, y1+κ−κ2

], and 0 ≤ W (p) ≤ log y everywhere, by estimating

the contribution of p ∈ [y, y + y1+κ2
] ∪ [y1+κ−κ2

, y1+κ] trivially, it suffices to show that

sup
|t|≤(log q)3/2

∣∣∣∑
p

χ(p)W (p) log p

p1+it

∣∣∣� κ2 log2 y.(95)

Let χ∗ be the primitive character that induces χ. Since the contribution of p | q to the sum
in (95) is negligible, and we can replace log p with the von Mangoldt function, from Perron’s
formula we see that∑

p

χ(p)W (p) log p

p1+it
= − 1

2πi

∫ i∞

−i∞

L′

L
(1 + it+ s, χ∗)W̃ (s) ds+O(κ2 log y),

where

W̃ (s) :=

∫ ∞
0

W (x)xs−1 dx = κ−2 y
(1+κ)s − y(1+κ−κ2)s − y(1+κ2)s + ys

s2
(96)

is the Mellin transform of W .
Shifting the contours to the left, and noting that W̃ (s) is entire and |W̃ (s)| � κ−2

|s|2 for

Re(s) ≤ 0, we reach ∑
p

χ(p)W (p) log p

p1+it
= −

∑
ρ

W̃ (ρ− 1− it) +O(1),(97)

where the sum is taken over all nontrivial zeros of L(s, χ∗). Since |t| ≤ (log q)3

2 , we can truncate
the ρ sum to end up with∑

p

χ(p)W (p) log p

p1+it
= −

∑
|Im(ρ)|≤(log q)3

W̃ (ρ− 1− it) +O(1).
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Let A := κ−2. Thanks to our assumption on zero-free regions, we clearly have

|W̃ (ρ− 1− it)| � κ−2y
− A

log q

|ρ− 1− it|2
,

and consequently∣∣∣∑
p

χ(p)W (p) log p

p1+it

∣∣∣� κ−2y
− A

log q

∑
|Im(ρ)|≤(log q)3

1

|1 + it− ρ|2
+ 1.(98)

We now note that for any zero ρ = β + iγ, with |γ| ≤ (log q)3 we must have β ≤ 1 − A
log q ,

and so
1

|1 + it− ρ|2
� 1

|1 + 1/ log q + it− ρ|2
� log q

A
Re
( 1

1 + 1/ log q + it− ρ

)
.

Thus we can estimate∣∣∣∑
p

χ(p)W (p) log p

p1+it

∣∣∣� κ−2y
− A

log q · log q

A

∑
ρ

Re
( 1

1 + 1/ log q + it− ρ

)
+ 1.

Recall that y ≥ P ≥ q1/
√
A. We can use the Hadamard factorization theorem in the form given in

[4, Chapter 12] on the right-hand side of the above formula, and estimate |L′L (1+1/ log q)| � log q,
to see that ∣∣∣∑

p

χ(p)W (p) log p

p1+it

∣∣∣� κ−2e−
√
AA(log y)2 + 1� κ2 log2 y

by our choice of A. This finishes the proof of the lemma. �

12.2. Proof of Propositions 12.1 and 12.2.

Proof of Proposition 12.1. We may assume that ε > 0 is small enough and q is large enough
in terms of ε, since we must have qε

′ ≥ 2, and we are free to choose the dependence of ε′

on ε. We shall show that if q is such that we have the zero-free region L(s, χ) 6= 0 for Re(s) ≥
1−ε−100/ log q, |Im(s)| ≤ (log q)3 for all χ (mod q) apart from possibly one real character ξ, then

(88) holds14. This zero-free region is in particular satisfied for those q that satisfy P+(q) ≤ qη(ε)

with small enough η(ε) > 0.
By the orthogonality of characters, we have∑

n∈E∗3
n≡a (mod q)

1

n
=

∑
χ∈{χ0,ξ} (mod q)

χ(a)

φ(q)
P1(χ)P2(χ)P3(χ) +

∑
χ (mod q)
χ 6=χ0,ξ

χ(a)

φ(q)
P1(χ)P2(χ)P3(χ),

where we have defined

Pj(χ) :=
∑

P 1−ε
j ≤p≤Pj

χ(p)

p
, j ∈ {1, 2, 3}.

In the above expression, in the term corresponding to χ0 we can replace χ0 by 1 at the cost of
O((log q)/qε).

We employ the Matomäki–Radziwi l l method as in our other proofs. Let

X : = {χ 6= χ0, ξ (mod q) : |P1(χ)| ≤ P−0.01
1 },

US : = {χ 6= χ0, ξ (mod q)} \ X .
Unlike in the earlier sections, there is no UL case to analyze, owing to the fact that for χ ∈ US
we already have some cancellation in |P1(χ)| by Lemma 12.5 and our assumption on q.

14If this bad ξ does not exist, let ξ be any non-principal real character in what follows.
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The case of X is handled similarly to our other proofs. Indeed, by Cauchy–Schwarz, we have∑
χ∈X
|P1(χ)||P2(χ)||P3(χ)| � P−0.01

1

(∑
χ∈X
|P2(χ)|2

)1/2(∑
χ∈X
|P3(χ)|2

)1/2
.

By the mean value theorem for character sums (Lemma 7.1) and the fact that P1 = q1000ε,
P2 = P3 = q, this is

� q−10εφ(q)
( ∑
P 1−ε

2 ≤p2≤P2

1

p2
2

)1/2( ∑
P 1−ε

3 ≤p3≤P3

1

p2
3

)1/2
� q−ε,

say, since φ(q)/(P2P3)
1
2

(1−ε) � qε.
The remaining case to consider is that of US . Note that, combining the assumed zero-free

region for L(s, χ), χ 6= ξ (mod q) with Lemma 12.5 we see that |P1(χ)| � ε2 for all χ ∈ US .
From Lemma 7.5, which bounds the number of large values taken by a prime-supported

character sum, we have the size bound

|US | ≤ |{χ (mod q) : |P1(χ)| > P−0.01
1 }| � q0.05.

Introducing the dyadic sums

Pj,v(χ) :=
∑

ev≤p≤ev+1

P 1−ε
j ≤p≤Pj

χ(p)

p
, v ∈ Ij := [(1− ε) logPj , logPj ],

the upper bound on |P1(χ)| above and Cauchy–Schwarz give∑
χ∈US

|P1(χ)||P2(χ)||P3(χ)| � ε2
∑

v1,v2∈I2

∑
χ∈US

|P2,v1(χ)||P3,v2(χ)|

� ε2(ε log q)2
( ∑
χ∈US

|P2,v′1
(χ)|2

)1/2( ∑
χ∈US

|P3,v′2
(χ)|2

)1/2

for some v′1, v
′
2 ∈ I2 (since as P2 = P3 we have I2 = I3). It remains to be shown that∑

χ∈US

|Pj,v(χ)|2 � 1

log2 q

for j ∈ {2, 3}, since then we get a bound of � ε4 for the sum over χ ∈ US , and this (multiplied
by the 1/φ(q) factor) can be included in the error term in (88).

For this purpose, we apply Lemma 12.4, which is a sharp inequality of Halász–Montgomery-
type for character sums over primes15. We take N = ev+1, |Ξ| = |UL| � q0.05, k = 3, R =

N0.0001, ap = 1
p1p∈[ev ,ev+1]∩[P 1−ε

j ,Pj ]
in that lemma. Since the term N2/3q1/9|Ξ|R2/3 appearing in

Lemma 12.4 is smaller than the other term N
logR for our choice of parameters, we get a bound of

� ev/v · 1
vev �

1
log2 q

, as desired. This completes the analysis of the US case, so Proposition 12.1

follows. �

Proof of Proposition 12.2. The proof of Proposition 12.2 is similar to that of Proposition 12.1,
except that there are no exceptional characters arising. The proof of (88) goes through for any
q for which L(s, χ) 6= 0 whenever Re(s) > 1 − ε−100/q, |Im(s)| ≤ (log q)3 and χ 6= ξ (mod q).
Moreover, since under the assumption of Proposition 12.2 the exceptional character ξ does not
exist (that is, the above holds for all χ (mod q)), we can delete the term involving ξ from (88),
giving (89). This gives Proposition 12.2. �

15For this estimate to work, it is crucial that the character sums Pj,v(χ) are long enough in terms of q; in

particular, we need them to have length � q1/3+ε.
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12.3. Deductions of Linnik-type theorems. Corollary 2.2 is a direct consequence of Theo-
rem 2.1(i) (by fixing ε > 0 in its statement). Hence, it suffices to prove Theorem 2.1(i)–(ii).

Proof of Theorem 2.1(ii). It suffices to show that for all but �ε 1 primes q ∈ [Q1/2, Q] the
right-hand side of (89) is > 0; indeed, then the smallest q-smooth E3 number in the progression
a (mod q) is ≤ q2+1000ε (and since ε > 0 is arbitrarily small, this is good enough).

In view of Proposition 12.2, it suffices to show that
∏
χ (mod q) L(s, χ) obeys the zero-free

region Re(s) ≥ 1− M(ε)
log q , |Im(s)| ≤ (log q)3 required by that proposition.

Since q is a prime, all the characters (mod q) apart from the principal one are primitive.
Moreover, the zeros of the L-function corresponding to the principal character are the same as the
zeros of the Riemann zeta function, so we have the Vinogradov–Korobov zero-free region for this
L-function. It therefore suffices to consider the L-functions corresponding to primitive characters.
By the log-free zero density estimate (Lemma 8.1), we immediately see that

∏∗
χ (mod q) L(s, χ)

has the required zero-free region for all but � exp(100M(ε)) prime moduli q ∈ [Q1/2, Q], so we
have the claimed result. �

Proof of Theorem 2.1(i). Fixing δ > 0, we will show that if P+(q) ≤ qε
′

with ε′ very small in
terms of δ, then the least product of exactly three primes in every reduced residue class a (mod q)
is � q2+δ.

Let ε > 0 be very small in terms of δ. By Lemma 12.3, we have the zero-free region required
by Proposition 12.2 whenever P+(q) ≤ qη(ε) with η(ε) > 0 small enough, apart from possibly a
single zero β, which is real and simple and corresponds to a single real character (mod q).

If this exceptional zero β does not exist, then from Proposition 12.2 we obtain a positive
lower bound for the left-hand side of (88). Therefore, we can assume that β exists. This is a
real zero of an L-function (mod q), and we write the zero as β = 1 − c

log q with c > 0. By a

result of Heath-Brown [16, Corollary 2] on Linnik’s theorem and Siegel zeros, if c ≤ c0(δ) for a
suitably small function c0(δ), then the least prime in any arithmetic progression a (mod q) with

(a, q) = 1 is � q2+δ/2, and thus also the least n ≡ a (mod q) with exactly three prime factors
obeys the same bound (indeed, if p1, p2 � log2 q are chosen to be primes not dividing q and

p � q2+δ/2 is a prime ≡ a(p1p2)−1 (mod q), then p1p2p � q2+δ and p1p2p ≡ a (mod q)). Thus

we have proved the theorem if β ≥ 1− c0(δ)
log q , so henceforth we will assume we are in the opposite

case.
According to Proposition 12.1, it suffices to show that∣∣∣ ∑

P 1−ε
3 ≤p≤P3

ξ(p)

p

∣∣∣ ≤ (1−
√
ε)

∑
P 1−ε

3 ≤p≤P3

1

p
,

since then the left-hand side of (88) is > 0 for ε > 0 small enough.
Following the exact same argument as in the proof of Lemma 12.5, and introducing the same

weight function W = Wy,κ with y ∈ [P 1−ε
3 , P3] and κ = ε10 (and using (97)), it is enough to

show that ∣∣∣∑
ρ

W̃ (ρ− 1)
∣∣∣ ≤ (1− 10

√
ε)(log2 y)

∑
y1−κ≤p≤y

1

p
,

where the sum is over the nontrivial zeros of L(s, ξ). Just as in Lemma 12.5, the contribution

of all the zeros ρ 6= β is � ε(log2 y)
∑

y1−κ≤p≤y
1
p as long as P+(q) ≤ qη1(ε) with η1(ε) small

enough. What remains to be shown then is that

|W̃ (β − 1)| ≤ (1− 11
√
ε)(log2 y)

∑
y1−κ≤p≤y

1

p
.(99)
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We recall that β ≤ 1− c0(δ)
2 log y , and denote

F (u) := W̃ (− u

log y
) = κ−2 e

−au − e−bu − e−cu + e−u

u2
log2 y,

where a = 1 + κ, b = 1 + κ − κ2, c = 1 + κ2 and the value at u = 0 is interpeted as the

limit as u → 0. We compute using L’Hôpital’s rule that W̃ (0) = F (0) = κ(1 − κ) log2 y, and

differentiation shows that F is decreasing, so W̃ is increasing. Moreover, F ′ is increasing and
F ′(u) = (κ/2 ·(−2+κ+κ2)+O(κu)) log2 y for |u| ≤ 1. Thus, by the mean value theorem applied
to F we have

W̃ (β − 1) ≤ W̃ (− c0(δ)

2 log y
) = F (

c0(δ)

2
) ≤ F (0) +

c0(δ)

2
F ′(

c0(δ)

2
) ≤ κ(1− κ− c0(δ)/4) log2 y,

since δ > 0 is small. We further have 1−κ− c0(δ)/4 ≤ 1− 100
√
ε if ε > 0 (and hence κ) is small

enough in terms of δ, so that (99) holds by the Mertens bound. This completes the proof. �

Proof of Proposition 2.3. The proof of Proposition 2.3 follows along similar lines as those above,
so we merely sketch it, indicating the required modifications; we outline the lower bound for n
with µ(n) = −1; the corresponding estimate for µ(n) = +1 is proved in the analogous way.

When considering numbers n with µ(n) = −1, we restrict to those n that belong to the set

S := {n ∈ N : Ω[Pj ,Qj ](n) = 1, j ∈ {1, 2}}

with P1 = xε/10, Q1 = xε/5, P2 = x1/2−ε, Q2 = x1/2−ε/2; this introduces essentially the same
factorization patterns for our n as in the case of products of exactly three primes. By writing
1µ(n)=−1 = 1

2(µ2(n)− µ(n)), it suffices to bound∑
n≤x

n≡a (mod q)

µ2(n)1S(n)� ε
x

q
,

∣∣∣ ∑
n≤x

n≡a (mod q)

µ(n)1S(n)
∣∣∣� ε2x

q
.

We concentrate on the latter bound (the former is similar but easier). Write n = p1p2m with
pj ∈ [Pj , Qj ], m ≤ x

p1p2
. As in the previous sections,we can easily get rid of the cross condition on

the variables by splitting into short intervals, so applying orthogonality of characters it suffices
to show that

1

ϕ(q)

∑
χ (mod q)
χ 6=χ0

∣∣∣Qv1,H(χ)Qv2,H(χ)Rv1+v2,H(χ)
∣∣∣� ε2x

H3(logQ1)(logQ2)q
,(100)

uniformly for vi ∈ Ii, where we have defined

Qv,H(χ) :=
∑

ev/H≤p<e(v+1)/H

χ(p), Rv,H(χ) :=
∑

m≤x/ev/H
µ(m)χ(m)1T (m),

Ii = [H logPi, H logQi], H = bε−3c,
and T is the set of numbers coprime to all the primes in [Pj , Qj ] for j ∈ {1, 2}. We split our
considerations into the cases

X : = {χ 6= χ0 (mod q) : |Qv1,H(χ)| ≤ e0.99v1/H}

US : = {χ 6= χ0 (mod q) : |Qv1,H(χ)| ≤ ε20ev1/H/v1} \ X
UL : = {χ 6= χ0 (mod q)} \ (X ∪ US).

The case of X is easy and is handled just as in the proof of Proposition 12.1. The case of US
is also handled similarly as in that proposition, except that we also need a Halász–Montgomery
estimate for

∑
χ∈US |Rv1+v2,H(χ)|2. This bound takes the same form as Lemma 12.4, but is

proved simply by applying duality and the Burgess bound (since Rv1+v2,H(χ) is a sum over the
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integers rather than over the primes). Finally, the UL set is small in the sense that |UL| � ε−43

by Proposition 8.5 whenever we have a zero-free region of the form
∏
χ (mod q) L(s, χ) 6= 0 for

Re(s) > 1− M(ε)
log q , |Im(s)| ≤ 3q with M(ε) large enough. It thus suffices to prove that

sup
χ 6=χ0 (mod q)

|Rv1+v2,H(χ)| � ε60φ(q)

q
xe−v1−v2 ,

and by Lemma 6.1 this reduces to the bound

sup
χ (mod q)
χ 6=χ0

inf
|t|≤(log q)3/2

∑
p≤x
p-q

1 + Re(χ(p)p−it)

p
≥ 61 log(1/ε) +O(1).(101)

At first, a direct application of Lemma 6.1 reduces to proving (101) with χ(p)p−it1S(p) in place of
χ(p)p−it, but since logQj/ logPj � 1 by our choices, the contribution of those p with 1S(p) 6= 1
is negligible in (101).

Restricting the sum in (101) to p ∈ [xκ, x] with κ = ε61, we indeed obtain (101) from Lemma
12.5, as long as we have the zero-free region mentioned above. This zero-free region is indeed
available by Lemma 8.1 for all but �ε 1 primes q ∈ [Q1/2, Q]. �
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[6] É. Fouvry, E. Kowalski, and P. Michel. On the exponent of distribution of the ternary divisor function.
Mathematika, 61(1):121–144, 2015.

[7] A. Granville, A. J. Harper, and K. Soundararajan. A new proof of Halász’s theorem, and its consequences.
Compos. Math., 155(1):126–163, 2019.

[8] A. Granville and X. Shao. Bombieri-Vinogradov for multiplicative functions, and beyond the x1/2-barrier.
Adv. Math., 350:304–358, 2019.

[9] A. Granville and K. Soundararajan. Decay of mean values of multiplicative functions. Canad. J. Math.,
55(6):1191–1230, 2003.

[10] A. Granville and K. Soundararajan. An uncertainty principle for arithmetic sequences. Ann. of Math. (2),
165(2):593–635, 2007.

[11] A. Granville and K. Soundararajan. Large character sums: Burgess’s theorem and zeros of L-functions. J.
Eur. Math. Soc. (JEMS), 20(1):1–14, 2018.

[12] B. Green. A note on multiplicative functions on progressions to large moduli. Proc. Roy. Soc. Edinburgh Sect.
A, 148(1):63–77, 2018.



MULTIPLICATIVE FUNCTIONS IN SHORT ARITHMETIC PROGRESSIONS 65

[13] A. J. Harper. Bombieri–Vinogradov and Barban–Davenport–Halberstam type theorems for smooth numbers.
arXiv e-prints, Aug 2012.

[14] A. J. Harper. On a paper of K. Soundararajan on smooth numbers in arithmetic progressions. J. Number
Theory, 132(1):182–199, 2012.

[15] D. R. Heath-Brown. Almost-primes in arithmetic progressions and short intervals. Math. Proc. Cambridge
Philos. Soc., 83(3):357–375, 1978.

[16] D. R. Heath-Brown. Siegel zeros and the least prime in an arithmetic progression. Quart. J. Math. Oxford
Ser. (2), 41(164):405–418, 1990.

[17] A. Hildebrand and G. Tenenbaum. Integers without large prime factors. J. Théor. Nombres Bordeaux,
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