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GENERALIZED PUNCTUAL HILBERT SCHEMES AND
g-COMPLEX STRUCTURES

ALEXANDER THOMAS

Abstract. We define and analyze various generalizations of the punctual Hilbert
scheme of the plane, associated to complex or real Lie algebras. Out of these, we
construct new geometric structures on surfaces whose moduli spaces share multiple
properties with Hitchin components, and which are conjecturally homeomorphic
to them. For simple complex Lie algebras, this generalizes the higher complex
structure from [FT19]. For real Lie algebras, this should give an alternative de-
scription of the Hitchin-Kostant-Rallis section defined in [GPR18].

Introduction

Motivation. The main motivation for this paper is to get a geometric approach
to Hitchin components. These components were constructed by Nigel Hitchin in his
famous paper [Hi92] using analytic methods (Higgs bundles). Hitchin components
are connected components of the character variety Hom(π1(Σ),G)/G where Σ is a
smooth surface, closed and without boundary and G is a adjoint group of a split
real form of a complex simple Lie group (for example PSLn(R)).

For the group G = PSL2(R), the Hitchin component is nothing but Teichmüller
space, which has various geometric descriptions, for example as the moduli space of
complex structures on Σ.

For G = PSLn(R), Vladimir Fock and the author defined in [FT19] a new geo-
metric structure, called the higher complex structure, whose moduli space shares
various properties with Hitchin’s component for PSLn(R). In [Th20], the author
proved several steps towards a canonical diffeomorphism between the moduli space
of higher complex structures and the PSLn(R)-Hitchin component, which stays a
conjecture despite the progress. The main ingredient to construct the higher com-
plex structure is the punctual Hilbert scheme of the plane and its zero-fiber.

In this article, we pursue these ideas by defining a g-complex structure, for a
complex simple Lie algebra g, using a generalization of the punctual Hilbert scheme.
This should give a geometric approach to Hitchin components for any split real group
G.

Our strategy to define these new objects is twofold: on the one hand we use the
various descriptions of the punctual Hilbert scheme, especially the description as
variety of commuting matrices, in order to generalize to an arbitrary g. On the
other, we got inspiration from Hitchin’s original paper [Hi92] (section 5) where he
starts with a principal nilpotent element and deforms it into an element of a principal
slice (a generalized companion matrix). Instead of deforming the principal nilpotent
element, we add an element which commutes with it. This has the same number of
degrees of freedom as the deformation.

One might also ask what happens for real groups which are not split. In the theory
of Higgs bundles, there is the notion of a GR-Higgs bundle (or just G-Higgs bundle),
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which was used in [GPR18] to define a generalization of the Hitchin section, called
Hitchin-Kostant-Rallis section. A GR-Higgs bundle canonically gives a connection
with monodromy in GR (through the non-ablian Hodge correspondence). In the
split real case, the Hitchin-Kostant-Rallis section can be identified with Hitchin’s
component, but in general, it does not give a component.

We give a counterpart of GR-Higgs bundles in our language of punctual Hilbert
schemes using the theory of Kostant-Rallis [KR71] and we introduce the notion of
a gR-complex structure.

Results. The punctual Hilbert scheme of the plane allows a description in terms
of commuting matrices. Imitating this description, we define, for a simple complex
Lie algebra g, the g-Hilbert scheme by

Hilb(g) = {(A,B) ∈ g2 ∣ [A,B] = 0 + generic condition}/G
where the generic condition is described below in Definition 1.1. Its zero-fiber
Hilb0(g) are those pairs of matrices which are nilpotent. The regular part are
those pairs, for which at least one element is regular. The first result of the paper
describes the regular part of the zero-fiber (see Corollary 1.11):

Theorem. The regular part of Hilb0(g) is an affine space of dimension rkg.

We obtain several results in analogy with the classical theory for punctual Hilbert
scheme, for example the existence of a Chow map Hilb(g)→ h2/W and a description
of Hilb(g) as a space of ideals.

Further, the functorial behavior of Hilb(g) is analyzed. In particular, we construct
an inclusion Hilb(sl2)↪ Hilb(g) and a sort of inverse on the level of the regular zero-
fiber:

(0.1) µ ∶ Hilbreg0 (g)→ Hilb0(sl2).

Using the generalized Hilbert scheme, we define a g-complex structure on a
surface Σ to be a G-gauge class of elements of the form

Φ1(z)dz +Φ2(z)dz̄ ∈ Ω1(Σ,g) = Ω1(Σ,C)⊗ g

such that
[(Φ1(z),Φ2(z))] ∈ Hilbreg0 (g)

for all z ∈ Σ and some generic constraint (see Definition 3.1).
For g = sl2, we recover the complex structure. For classical g, a g-complex struc-

ture is described by higher Beltrami differentials. Using the map µ from Equation
(0.1) above, we get a first result for g-complex structures (see Proposition 3.2):

Proposition. A g-complex structure induces a complex structure on Σ.

Using a representation g ↪ slm, we define the notion of a higher diffeomorphism
of type g. We consider g-complex structures modulo these transformations. For g
of classical type, the local theory is described by Theorem 4.4:

Theorem. For g of type An, Bn or Cn, any two g-complex structures are locally
equivalent under higher diffeomorphism of type g.

For g of type Dn, all g-complex structures with non-vanishing higher Beltrami
differential σn are equivalent under higher diffeomorphisms. However, the zero locus
of σn is an invariant.
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The moduli space of g-complex structures, denoted by T̂g enjoys the following
properties (see Theorem 4.7):

Theorem. For g of classical type, the moduli space T̂g is a contractible manifold
of complex dimension (g − 1)dimg. Further, there is a copy of Teichmüller space

inside T̂g. Along this copy of Teichmüller space, the cotangent space at any point I
is given by

T ∗
I T̂g =

r

⊕
m=1

H0(Kmi+1)

where (m1, ...,mr) are the exponents of g and r = rkg denotes the rank of g.

Note the appearance of the Hitchin base, which serves as parametrization for the
Hitchin component. This explains why we think that the moduli space should be
canonically homeomorphic to Hitchin’s component.

To a point in the cotangent bundle T ∗T̂g, we can associate a spectral curve, living
in T ∗CΣ. We recover the spectral data of [Hi87] in our setting.

For a real Lie algebra gR, using the theory of Kostant-Rallis [KR71], we define
a punctual Hilbert scheme associated to gR, denoted by Hilb(gR). The link to the
complex case is given by (see Theorem 5.3):

Theorem. For any gR, there is a map Hilb(gR) → Hilb(g). In the case of the split
real form, this is an isomorphism on the regular parts.

In the same vein as for a complex Lie algebra, we define a gR-complex structure
and its moduli space. For the split real form, we recover T̂g.

Perspectives. We wish to give a larger conjectural picture describing the link be-
tween Hitchin’s component and the moduli space of g-complex structures T̂g. This
motivates the definition of the g-Hilbert scheme. In the case of g = sln, parts of this
large picture are proven in [Th20].

Hitchin’s original construction in [Hi92] of components in character varieties uses
Higgs bundles and the hyperkähler structure of its moduli space MH . In one com-
plex structure, say I,MH has the complex structure from Higgs bundles. In all com-
binations of J and K, it is the moduli space of flat GC-connections. The non-abelian
Hodge correspondence is equivalent to the twistor description of this hyperkähler
manifold. Hitchin constructs a fibration of MH over a space of holomorphic differ-
entials, whose fibers via the non-abelian Hodge correspondence give flat connections
with monodromy in the split real group G.

There is a similar conjectural picture for g-complex structures: a hyperkähler
manifold M, which in complex structure I is the cotangent space to the moduli
space of g-complex structures T ∗T̂g and in all combinations of J and K is the mod-
uli space of flat GC-connections. The analogue of Hitchin’s fibration is simply the
projection π ∶ T ∗T̂g → T̂g. One has to prove an analogue of the non-abelian Hodge
correspondence, i.e. a deformation of a pair (g-complex structure, set of holomor-
phic differentials) to flat connections, and that the monodromy of the fibers of the
projection π lies in the split real group G.

The conception behind this analogy is the following: In Hitchin’s case, we have a
fixed complex structure on Σ and a holomorphic Higgs field Φ ∈ H(1,0)(Σ,g) which
gives a flat connection A(λ) = λΦ+A+λ−1Φ∗. To get the Hitchin section, we choose
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a principal nilpotent element f in the Lie algebra g and deform it into an element
of the principal slice f + Z(e) where e is the nilpotent element of g which together
with f forms a principal sl2-triple and Z(e) denotes its centralizer.

To avoid fixing a complex structure, we start with Φ = Φ1dz+Φ2dz̄. The flatness of
A(λ) gives that Φ1 and Φ2 commute. We further impose Φ1 and Φ2 to be nilpotent.
More specifically, we take Φ1 to be the principal nilpotent element f and we choose
Φ2 ∈ Z(f). Thus we have the same number of degrees of freedom as in the Higgs
bundle setting. A pair of commuting nilpotent matrices of this form is precisely a
point in Hilbreg0 (g) which we used to construct g-complex structures.

Structure. The outline of the paper is the following:

● Section 1 treats the definition and properties of the g-Hilbert scheme. In
particular we describe its regular part, define a Chow morphism, a map to a
space of ideals and we invest its topology.

● Section 2 gives explicit descriptions of the g-Hilbert scheme for classical g.
● Section 3 is devoted to the construction of g-complex structures and basic

properties.
● Section 4 analyzes the moduli space of g-complex structures. In particular,

we define a notion of higher diffeomorphisms, study the local theory and give
a construction of a spectral curve.

● Section 5 generalizes both punctual Hilbert schemes and complex structures
to the case of a real Lie algbra gR. For the split real form we recover the
g-complex structure.

● Appendix A reviews the main properties of the punctual Hilbert scheme of
the plane.

● Appendix B gathers all properties we need in the paper of regular elements
in semisimple Lie algebras.

● Appendix C presents Haiman’s coordinates on the Hilbert scheme and an
apparently new result on its symplectic structure.

Notations. Throughout the paper, we denote by g a complex simple Lie algebra,
by h a Cartan subalgebra, by W its Weyl group and by G its adjoint group (the
unique Lie group G with Lie algebra g with trivial center). For A ∈ g, we denote
by Z(A) its centralizer, i.e. the elements commuting with A. Whenever we speak
about real objects (Section 5), we explicitly put an index, for example gR for a real
Lie algebra. Similarly, we write sl2 for sl2(C), but for the real Lie algebra, we will
always write sl2(R).

Σ denotes a smooth surface, closed, without boundary and orientable. A refer-
ence complex coordinate system on Σ is denoted by (z, z̄), and the induced linear
coordinates on T ∗CΣ are denoted by (p, p̄). The equivalence class of an element A
will be written [A].

Acknowledgments. I wish to express my gratitude towards Vladimir Fock and
Oscar Garc̀ıa-Prada for all the fruitful insights. I also thank Loren Spice and Mykola
Matviichuk for helpful comments. Most of this paper is part of my PhD thesis which
I accomplished at the University of Strasbourg. The last section was done during
my stay at the Max-Planck-Institute for Mathematics in Bonn.
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1. Generalized punctual Hilbert scheme

In this section, we generalize the punctual Hilbert scheme to a g-Hilbert scheme
and explore the properties of the new object. In particular we define a Chow map,
and give a description as space of ideals. The reader not familiar with punctual
Hilbert schemes should consult Appendix A.

1.1. Definitions and first properties. The punctual Hilbert scheme Hilbn(C2)
has several descriptions:

● as a space of ideals (the idealic viewpoint)
● as a desingularization of the configuration space h2/W for g = gln
● as a space of commuting matrices (the matrix viewpoint).

It is the matrix viewpoint which will be generalized. So let us recall it quickly here:

Hilbn(C2) ≅ {(A,B) ∈ gl2n ∣ [A,B] = 0, (A,B) admits a cyclic vector}/GLn.
The main difficulty is to find an intrinsic condition which generalizes the existence

of a cyclic vector. Here is our proposal:

Definition 1.1. The generalized punctual Hilbert scheme, or g-Hilbert scheme,
denoted by Hilb(g), is defined by

Hilb(g) = {(A,B) ∈ g2 ∣ [A,B] = 0,dimZ(A,B) = rkg}/G
where Z(A,B) denotes the common centralizer of A and B, i.e. the set of elements
C ∈ g which commute with A and B.

The condition on the dimension of the common centralizer does not come from
nowhere: Proposition B.9 of Appendix B shows that rkg is the minimal possible
dimension for the centralizer of a commuting pair. Define the commuting variety by
Comm(g) = {(A,B) ∈ g2 ∣ [A,B] = 0}. The g-Hilbert scheme is the set of all regular
points of Comm(g) modulo G.

Remark. Ginzburg has defined the notion of a principal nilpotent pair in [Gi99],
which is more restrictive than ours. He calls “nil-pairs” elements of our g-Hilbert
scheme, but he does not investigate them.

Let us give two examples of elements in the g-Hilbert scheme:

Example 1.2. Let A ∈ g be a regular element. Then by a theorem of Kostant (see
B.6), its centralizer Z(A) is abelian. So for any B ∈ Z(A), we have Z(A) ⊂ Z(B),
thus Z(A,B) = Z(A) ∩ Z(B) = Z(A) is of dimension rkg. Therefore [(A,B)] ∈
Hilb(g).

If A is principal nilpotent, then B ∈ Z(A) is also nilpotent. So [(A,B)] ∈ Hilb0(g),
the zero-fiber defined below.

If B = 0 then [(A,0)] is in Hilb(g) iff A is regular.

Example 1.3. Let (A,B) be a commuting pair of matrices in sln admitting a cyclic
vector, i.e. an element of the reduced Hilbert scheme. One way to get such a pair
is the following construction: take a Young diagram (our convention is to put the
origin in the upper left corner as for matrices) with n boxes (see Figure 1). Associate
to each box a vector of a basis of Cn. Define A to be the matrix which translates to
the right, i.e. sends a vector to the vector in the box to the right or to 0 if there is
none. Let B be the matrix which translates to the bottom. Then A and B clearly
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commute and are nilpotent. In Proposition 1.5 below, we show that Z(A,B) is of
minimal dimension in that case.

Figure 1. Young diagram and commuting nilpotent matrices

Guided by these examples, we define several subsets of the g-Hilbert scheme and
explore their relations. First, we define the zero-fiber and the regular part which will
both play a mayor role in the definition of a g-complex structure. We also define the
cyclic part, which is not intrinsically defined since it uses a representation of g. The
cyclic part will be used to define a map to a space of ideals, getting a generalization
of the original description of the punctual Hilbert scheme.

Definition 1.4. The zero-fiber of the g-Hilbert scheme is defined by

Hilb0(g) = {[(A,B)] ∈ Hilb(g) ∣ A and B nilpotent}.
We define the regular part of the g-Hilbert scheme, denoted by Hilbreg(g), to be

those conjugacy classes [(A,B)] in which A or B is a regular element of g.
Finally for classical g, let ρ denote the natural representation of g (i.e. sln ⊂

gln, son ⊂ gln and sp2n ⊂ gl2n). Define the cyclic part of the g-Hilbert scheme by

Hilbcycl(g) = {(A,B) ∈ g2 ∣ [A,B] = 0, (ρ(A), ρ(B)) admits a cyclic vector}/G.
Remark. In the definition of the cyclic part, it would be more natural to consider
the adjoint representation, but even in the case of sl2, this would give a map to a
space of ideals, which is not the one of Hilb2

red(C2).
Instead of the standard representation, one could also use a non-trivial representa-

tion of minimal dimension, which is defined for all g. For classical g, this is always
the standard representation, apart from type D3 and D4.

The first relation between the various Hilbert schemes is the inclusion of the cyclic
part in the g-Hilbert scheme, which justifies the name “cyclic part”:

Proposition 1.5. For g of classical type, we have Hilbcycl(g) ⊂ Hilb(g).

Proof. Recall ρ, the natural representation of g on Cm. For simplicity, we write A
instead of ρ(A) here.

Let (A,B) ∈ g2 admitting a cyclic vector v. Let C ∈ Z(A,B). Then C is a
polynomial in A and B. Indeed, there is P ∈ C[x, y] such that Cv = P (A,B)v. Since
C commutes with A and B, we then get for any polynomial Q that CQ(A,B)v =
Q(A,B)Cv = Q(A,B)P (A,B)v = P (A,B)Q(A,B)v, so C = P (A,B).

Therefore the common centralizer of (A,B) in glm is C[A,B]/I where I = {P ∈
C[x, y] ∣ P (A,B) = 0}. We know from Appendix A that I is of codimension m since
(A,B) admits a cyclic vector. We have Z(A,B) = Zglm(A,B) ∩ g. One can easily
check that for g of type An, a polynomial P (A,B) is in g iff its constant term has a
specific form, given by the other coefficients (to ensure trace zero). For type Bn,Cn
and Dn, P (A,B) is in g iff P is odd. One checks in each case that the dimension of
Z(A,B) equals the rank of g. �
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In general, the inclusion of the cyclic Hilbert scheme is strict as shows the following
example:

Example 1.6. Consider A = ( 0 1 0
0 0 0
0 0 0

) and B = ( 0 0 1
0 0 0
0 0 0

) in sl3. One easily checks that

the pair (A,B) does not admit any cyclic vector, but that their common centralizer
is of dimension 2. So [(A,B)] ∈ Hilb(sl3)/Hilbcycl(sl3).

This example will be used in Subsection 1.5 to show that Hilb(g) is not Hausdorff.
In general, there is no link between regular and cyclic part. Example 1.3 shows

that cyclic elements are not always regular and the following example shows that
regular element are not always cyclic:

Example 1.7. For g of type Dn, let f be a principal nilpotent element. Then one
checks that [(f,0)] ∈ Hilb(so2n) is regular but not cyclic (see also Subsection 2.4).

Let us turn to the regular part. It turns out that if one fixes a principal slice
f +Z(e) in g (see Appendix B), there is a preferred representative for regular classes:

Proposition 1.8. Any class [(A,B)] ∈ Hilbreg(g) where A is regular can uniquely
be conjugated to (A ∈ f +Z(e),B ∈ Z(A)).

Proof. By the property of the principal slice, there is a unique conjugate of A which
is in the principal slice f + Z(e). Denote still by A and B these conjugates. The
only thing to show is that B is unique which is done in the next lemma. �

Lemma 1.9. If A ∈ g is regular, g ∈ G such that Adg(A) = A and B ∈ Z(A), then
Adg(B) = B.

Proof. By Kostant’s theorem B.6, we know that Z(A) is abelian. So the infinitesimal
version of the lemma is true. We conclude by the connectedness of the stabilizer of
A, given by the next lemma. �

Lemma 1.10. For a regular element A ∈ g, its stabilizer Stab(A) = {g ∈ G ∣
Adg(A) = A} in the adjoint group G is connected.

Proof. Decompose A into Jordan form: A = As+An with As semisimple, An nilpotent
and [As,An] = 0. So An ∈ Z(As). The structure of the centralizer Z(As) is well-
known: it is a direct sum of a Cartan h containing As with all root spaces gα where
α is a root such that α(As) = 0. It is also known that Z(As) is reductive, so a direct
sum Z(As) = c⊕ gs where c is the center and gs is the semisimple part of Z(As). In
particular the center c is included in h. So An ∈ gs since An is nilpotent. Denote by
Gs the Lie group with trivial center with Lie algebra gs.

We know that A is regular is equivalent to An being regular nilpotent in gs (see
[Ko63], proposition 0.4). We also know that the G-equivariant fundamental group
of the orbit of A (which is the space of connected components of Stab(A)) is the
same as the Stab(As)-equivariant fundamental group of the Stab(As)-orbit of An
(see Proposition 6.1.8. of [CM93] adapted to the adjoint group). In other words,
the connected components of StabG(A) are the same as the connected components
of StabGs(An) since the Stab(As)-orbit of An is equal to the Gs-orbit of An.

So we are reduced to the principal nilpotent case. Using the classification of simple
Lie algebras, one can check explicitly in Collingwood-McGovern’s book [CM93] the
tables 6.1.6. for classical g and the tables at the end of chapter 8 for exceptional g
that the stabilizer of a principal nilpotent element is always connected. �
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Remark. It is surprising that the last lemma has never been stated (at least not to
our knowledge). It would be interesting to find a direct argument, without using the
classification of simple Lie algebras.

Corollary 1.11. The regular zero-fiber Hilbreg0 (g) = Hilbreg(g)∩Hilb0(g) is an affine
space of dimension rkg.

Proof. This follows directly from the previous proposition using the fact that A ∈
f +Z(e) is nilpotent iff A = f . So Hilbreg0 (g) is described by Z(f) which is a vector
space of dimension rkg. �

We know that both the regular and the cyclic part are in general strictly included
in the g-Hilbert scheme. But they are dense subspaces:

Proposition 1.12. The regular part Hilbreg(g) is dense in Hilb(g). For classical
g, the cyclic part is also dense in Hilb(g).

Proof. By a theorem of Richardson (see B.8), the set of semisimple commuting
pairs is dense in the commuting variety Comm(g). So the set of semisimple regular
elements is also dense in Comm(g). Passing to the quotient by G, we get that the
classes of semisimple regular pairs are dense in Hilb(g) since Hilb(g) ⊂ Comm(g)/G
and all semisimple regular pairs are in Hilb(g). Since the semisimple regular pairs
are in the regular part, we get the density of Hilbreg(g) in Hilb(g).

For classical g, we have the same argument for the cyclic part since semisimple
regular pairs are cyclic. �

To end the section, we state an analogue of Kostant’s theorem about abelian
subalgebras of centralizers:

Proposition 1.13. For any commuting pair (A,B) ∈ Comm(g), there is an abelian
subspace of dimension rkg in the common centralizer Z(A,B).

Proof. The proof is completely analogous to Kostant’s proof for Theorem B.6: we use
a limit argument. Let (An,Bn) be a sequence of regular semisimple pairs converging
to (A,B) (exists since regular semisimple pairs are dense). We know that Z(An,Bn)
is a rkg-dimensional abelian subspace of g. Since the Grassmannian Gr(rkg,dimg)
is compact, there is a subsequence of Z(An,Bn) which converges. It is easy to prove
that the limit is included in Z(A,B) and is commutative. �

Corollary 1.14. For [(A,B)] ∈ Hilb(g), the common centralizer Z(A,B) is abelian.

Remark. For classical g, the corollary is easy for the cyclic part since Z(A,B) =
C[x, y]/I ∩ g which is abelian since C[x, y] is.

In the following sections, we generalize as far as possible the other viewpoints of
the usual Hilbert scheme (resolution of configuration space and idealic viewpoint)
to our setting.

1.2. Chow map. We want to generalize the Chow map, which goes from Hilbn(C2)
to the configuration space (see A.2).

Fix a Cartan subalgebra h in g. Recall the Jordan decomposition in a semisimple
Lie algebra: for x ∈ g, there is a unique pair (xs, xn) with x = xs +xn, xs semisimple,
xn nilpotent and [xs, xn] = 0. For a semisimple element x, denote by x∗ a conjugate
in the Cartan h (unique up to W -action).
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The Chow map ch ∶ Hilb(g)→ h2/W is defined by

ch([(A,B)]) = [(A∗
s ,B

∗
s )]

where the brackets [.] denotes the equivalence class. For semisimple regular pairs,
this map corresponds to a simultaneous diagonalization.

Proposition 1.15. The Chow map ch is well-defined and continuous.

Proof. Since [A,B] = 0, we also have [As,Bs] = 0 by a simultaneous Jordan decom-
position in a faithful representation. Hence there is a conjugate of the pair (As,Bs)
which lies in h2. Since the adjoint action of G on g restricts to the W -action on h,
the map ch is well-defined.

The map x↦ x∗s is continuous which simply follows from the continuity of eigen-
values. Hence the Chow map is continuous as well. �

Remark. The Jordan decomposition x ↦ (xs, xn) is not continuous at all, since
semisimple elements are dense in g for which we have xn = 0 and for all non-
semisimple elements we have xn ≠ 0. But the map x↦ xs is continuous.

This map permits to think of a generic element of Hilb(g) as a point in h2/W , or
via a representation of g on Cm, as a set of m points in C2 with a certain symmetry.
For g = sln for example, these are n points with barycenter 0.

Since Hilb(g) is even not Hausdorff (see Subsection 1.5), it cannot be a non-
singular variety. Nevertheless we conjecture the following:

Conjecture 1.16. There is a modified version of Hilb(g), identifying some points,
which is a smooth projective variety such that the Chow morphism is a resolution of
singularities.

1.3. Idealic map. In this subsection, g is a classical Lie algebra. In that case we
can associate to any regular element of the g-Hilbert scheme an ideal, which we call
idealic map. Recall the standard representation ρ of g on Cm (see Definition 1.4).
We will write A instead of ρ(A).

We wish to define a map like in A.2:

(1.1) [(A,B)]↦ I(A,B) = {P ∈ C[x, y] ∣ P (A,B) = 0}.
If [(A,B)] ∈ Hilbcycl(g) is cyclic, this ideal is of codimension m. But if the pair is
not cyclic, there is no reason why the codimension should be m. In fact, there are
examples for g of type Dn where the codimension is smaller.

We wish the idealic map to be continuous, so I has to be of constant codimension.
A strategy would be to define the idealic map I on the cyclic part Hilbcycl(g) (which
is dense by Proposition 1.12) and to extend it by continuity. Unfortunately, the map
can not be extended in a continuous way as shown in the following example:

Example 1.17. Take g of type Dn. Denote by f a principal nilpotent element.
The pair [(f,0)] ∈ Hilb(so2n) is not cyclic (seen in Example 1.7). Using the matrix
S defined in Equation (2.2), we can approach (f,0) by (f, tS) or by (f + tS⊺,0)
for t ∈ C× going to 0. These pairs are all cyclic. In the first case, the ideal is
I = ⟨x2n−1, xy, y2 = t2x2n−2⟩ which converges as t goes to 0 to ⟨x2n−1, xy, y2⟩. In the
second case, the ideal is I = ⟨x2n + t2, y⟩ converging to ⟨x2n, y⟩.

Because of this difficulty, our strategy is to define a space of ideals Ig(C2), then

a map Hilbcycl(g) → Ig(C2) and to extent it over the regular part Hilbreg(g) (in a
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non-continuous way). The last step is only necessary for g of type Dn since for the
other classical types the regular part is included in the cyclic part as we will see in
the sequel. The extension for Dn will be defined ad hoc in Subsection 2.4.

The previous section taught us to think of a generic element of Hilb(g) as a m-
tuple of points in C2 invariant under the Weyl group W . For type An this means
that the barycenter of the points is the origin. For the other classical types, this
means that the set of points is symmetric with respect to the origin. Thus the
defining ideal of these points is also invariant under the action of W . Hence the
following definition.

Definition 1.18. We define the space of ideals of type g, denoted by Ig(C2), to
be the set of ideals in C[x, y] which are of codimension m and W -invariant. For
type Bn,Cn and Dn this means that I is invariant under (x, y)↦ (−x,−y).

The map I ∶ Hilbcycl(g) → Ig(C2) given by Equation (1.1) above is well-defined.
Indeed, the codimension is m by cyclicity and the ideal is W -invariant since this is
a closed condition and it is true on the dense subset of regular semisimple pairs.

Notice that Ig(C2) is the same for g of type Cn or Dn. But we will see that the
idealic map I has not the same image in the two cases. We will also see that for
g of type An,Bn or Cn the idealic map is injective. But for type Dn it is not (it
is generically 2 to 1). This comes from the fact that the Weyl group acting on the
generic 2n points, coming in n pairs (Pi, Pi+1 = −Pi), cannot exchange P1 and P2

while leaving all other points fixed.
As for the usual Hilbert scheme, there is a direct link between the idealic map

and the Chow morphism:

Proposition 1.19. The Chow map ch is the composition of the idealic map with
the map which associates to an ideal its support, seen as an element of h2/W :

ch([(A,B)]) = supp I(A,B).
Proof. The statement is true on regular semisimple pairs which is a dense subset.
For g of type An, Bn and Cn, it follows by continuity of both the Chow map and the
idealic map. For Dn, our definition of the idealic map is to pick one of the various
possible limits. In particular, the support of the ideal is still given by the Chow
map. �

1.4. Morphisms. In this subsection, we analyze the functorial behavior of the g-
Hilbert scheme. In particular we construct two maps linked to the zero-fiber of the
Hilbert scheme of sl2 which will lead in the construction of the moduli space T̂gΣ of
g-complex structures to maps from and to Teichmüller space.

Let ψ ∶ g1 → g2 be a morphism of Lie algebras. For [(A,B)] ∈ Hilb(g1), we can
associate [(ψ(A), ψ(B))] which is a well-defined map to Comm(g2)/G2. But there
is no reason why dimZ(ψ(A), ψ(B)) should be minimal.

If we accept Conjecture 1.16, that there is a modified version of the g-Hilbert
scheme which is a resolution of h2/W , we have a functorial behavior:

Proposition 1.20. Assuming Conjecture 1.16, there is an induced map Hilb(g1)→
Hilb(g2).

Proof. Choose Cartan subalgebras h1 and h2 such that ψ(h1) = h2. Consider the
composition h2

1 → h2
2 → h2

2/W2 using ψ for the first arrow. Since ψ induces a homo-
morphism between the Weyl groups, we can factor the composition to get a map
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h2
1/W1 → h2

2/W2. Finally, consider the composition Hilb(g1) → h2
1/W1 → h2

2/W2

where the first arrow comes from the minimal resolution. This is a continuous map
and by the universal property of a minimal resolution, the map lifts to Hilb(g1) →
Hilb(g2). �

Let us study this induced map in the case of the reduced Hilbert scheme, which
is a minimal resolution (see Appendix A). Take ψ ∶ slm → sln inducing a map
Hilbmred(C2) → Hilbnred(C2). In the matrix viewpoint, this map is not given by
[(ψ(A), ψ(B))]. Consider for example the map ψ ∶ sl2 → sl4 given on the stan-
dard generators (e, f, h) of sl2 by

ψ(e) = (
0 1

0
0

0
) , ψ(f) = (

0
0

0
1 0

) and ψ(h) = (
1

0
0 −1

) .

The element [(h,0)] ∈ Hilb2
red(C2) corresponds to the ideal I = ⟨x2 − 1, y⟩ which

through ψ goes to ⟨x4 − x2, y⟩ which in turn gives the matrices [(M,0)] where

M = (
1

0 1
0 0 −1

). This is not [(ψ(h), ψ(0))]. It would be interesting to describe the

induced map in the matrix viewpoint.

Despite this complication, there are two cases where a map between g-Hilbert
schemes naturally exists.

The first one is linked to the principal map ψ ∶ sl2 → g which induces a map

(1.2) Hilb(sl2)→ Hilbreg(g).
Indeed, any non-zero element of sl2 is regular and cyclic. So if [(A,B)] ∈ Hilb(sl2)
such that A is non-zero, there is by Proposition 1.8 a unique representative (f+te,B ∈
Z(e + tf)) where (e, f, h) denotes the standard generators of sl2 and t ∈ C. So the
image is [(ψ(f) + tψ(e), ψ(B))]. Since (ψ(e), ψ(f), ψ(h)) is a principal sl2-triple
(property of the principal map), we know that ψ(f)+ tψ(e) is in the principal slice,
thus it is regular, so we land in Hilbreg(g).

The second one is a sort of inverse map to the first one, but only on the level of
the zero-fiber. Given [(A,B)] ∈ Hilbreg0 (g) where A is regular, there is a principal
sl2-subalgebra S with A as nilpotent element. There is no reason why B should be
in S but there is a “best approximation” in the following sens:

Proposition 1.21. Let A be a principal nilpotent element and B ∈ Z(A). Then
there is a unique µ2 ∈ C such that B − µ2A is not regular.

Proof. The strategy of the proof is to use Proposition B.5 of the appendix which
characterizes principal nilpotent elements x as those nilpotent elements whose coef-
ficients xα in the root vector basis (eα) are non-zero for all simple roots α.

Let R be a root system in h∗ and denote by R+ and Rs the positive and respectively
the simple roots. We can conjugate A to the element given by ∑α∈Rs

eα. The
proposition is then equivalent to the statement that Bα = Bα′ for all simple roots α
and α′.

For two simple roots α and α′ such that α + α′ ∈ R, using [A,B] = 0 and A =
∑α∈Rs

eα we get:

0 = [A,B]α+α′ = AαBα′ −Aα′Bα = Bα′ −Bα.

Since g is simple, its Dynkin diagram is connected, so Bα = Bα′ for all simple
roots. The common value µ2 gives the unique complex number such that B − µ2A
is not regular. �
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With this proposition, we can now define a map

(1.3) µ ∶ Hilbreg0 (g)→ Hilb0(sl2)
given by µ([(A,B)]) = [(e, µ2e)] or [(µ2e, e)] depending whether A or B is regular.

An equivalent way to define the map µ is the following: we can use the previous
proposition 1.21 to show that the centralizer Z(A) of a principal nilpotent element
is a direct product

Z(A) = Span(A) ×Z(A)irreg
where Z(A)irreg denotes the irregular elements of Z(A). The map µ is nothing but
the projection to the first factor.

Remark. We can describe the regular part of the g-Hilbert scheme Hilbreg(g) as
those classes [(A,B)] such that Span(A,B) intersects the regular part greg non-
trivially. This description is more symmetric since it does not prefer A or B. From
Proposition 1.21 we see that the intersection of Span(A,B) with greg is the whole
two-dimensional Span(A,B) from which we have to take out a line. Hence, the
intersection has two components.

1.5. Topology of g-Hilbert schemes. It is clear that Hilb(g) is a topological
space, as a quotient of a subset of g2. In this section, we explore this topology of
Hilb(g), especially for g = sln. We then formulate some conjectures on its general
structure.

For g = sl2, every non-zero element A ∈ g is regular and cyclic. Since the centralizer
of the pair (0,0) is all of sl2, this pair is not in Hilb(sl2). Thus we have Hilb(sl2) =
Hilbcycl(sl2) = Hilb2

red(C2) which is a smooth projective variety.
For g = sl3, a detailed analysis, putting A into Jordan normal form, shows that

(A,B) has minimal centralizer and is not cyclic iff it is conjugated to a pair P1(b) ∶=
(( 0 1 0

0 0 0
0 0 0

) , ( 0 b 1
0 0 0
0 0 0

)). So

Hilb(sl3) = Hilb3
red(C2) ∪ {P1(b) ∣ b ∈ C}.

At first sight, the topology seems to be a smooth variety (the reduced Hilbert
scheme) and a complex line. But a closer look shows that each point of the extra
line is infinitesimally close to a point in the variety, meaning that these two points
cannot be separated by open sets, infringing the Hausdorff property. The pair P1(b)
is infinitesimally close to P2(b) ∶= (( 0 1 0

0 0 0
0 0 0

) , ( 0 b 0
0 0 0
0 1 0

)). Indeed any neighborhood of the

first pair P1(b) contains (( 0 1 0
0 0 0
0 0 0

) , ( 0 b 1
0 0 0
0 s 0

)) for some small s ∈ C which is conjugated

to (( 0 1 0
0 0 0
0 0 0

) , ( 0 b s
0 0 0
0 1 0

)) which lies in a neighborhood of the second pairP2(b). Since the

idealic map is continuous and for sln injective on the cyclic part, there cannot be
another point of the cyclic part which is infinitesimally close to the first pair P1(b).
Finally, two elements of the extra line can be separated by open sets. Hence, the
space Hilb(sl3) is obtained from a smooth variety by adding “double points” (here
in the sens of infinitesimally close points) along a complex line.

Since the idealic map is injective on the cyclic part Hilbcycl(sln), the same analysis
holds for sln, i.e. Hilb(sln) is obtained from a smooth variety (the reduced Hilbert
scheme) by adding double points.

There should exist a procedure, like a GIT quotient, giving a modified g-Hilbert
scheme which is a Hausdorff space. The GIT quotient does not apply here since
{(A,B) ∈ g2 ∣ [A,B] = 0,dimZ(A,B) = rkg} is not a closed variety. In the language
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of GIT quotients, the pairs P1 and P2 above are both semistable, but there is no
polystable element in their closure.

To give a feeling on what happens, consider the action of R>0 on R2/{(0,0)} given
by λ.(x1, x2) = (λx1, λ−1x2). The orbits are drawn in Figure 2. The quotient space
is a set of two lines L1 and L2 with origins O1 and O2 together with two extra
points O3 and O4 such that the pairs (O1,O3), (O1,O4), (O2,O3) and (O2,O4) are
infinitesimally close points (the four points Oi correspond to the four half-axis).
In the figure, the dashed lines indicate infinitesimally close points. From the GIT
perspective, all points are semistable (take the constant function 1), the four half-
axis are semistable and all other orbits are stable. The orbits of the half-axis are
closed in R2/{(0,0)} so they should be polystable, but in the quotient the points
are still infinitesimally close.

o3

o2

o4

o1

Figure 2. Non-Hausdorff quotient

We conjecture the following:

Conjecture 1.22. There is a generalized GIT quotient procedure identifying in-
finitesimally close points in Hilb(g), giving a modified g-Hilbert scheme which is
Hausdorff, and even smooth.

In particular one should find the reduced Hilbert scheme for g = sln. See also
Conjecture 1.16 for a modified g-Hilbert scheme as a resolution of h2/W .

Assume a smooth version of the g-Hilbert scheme exists. In the sln-case the re-
duced Hilbert scheme is covered by charts parametrized by partitions of n, which
also parametrizes nilpotent orbits of sln. For g of classical type, the nilpotent or-
bits are parametrized by special partitions (see [CM93], chapter 5). In general, we
conjecture the following for the g-Hilbert scheme:

Conjecture 1.23. The smooth version of Hilb(g) is covered by charts parametrized
by nilpotent orbits and all these charts are necessary.

In particular for classical g, we conjecture that the modified version of Hilb0(g)
is isomorphic to the space of ideals of C[x, y] which are of codimension m, W -
invariant, supported at 0 and which lie in a chart associated to a partition of type
g.

In particular, for every nilpotent A ∈ g, there has to be an element in Hilb(g)
containing the conjugacy class of A. More precisely, we conjecture:

Conjecture 1.24. Let g be of rank at least 3. For a nilpotent element A ∈ g, there
is B ∈ Z(A) nilpotent such that dimZ(A,B) = rkg, i.e. [(A,B)] ∈ Hilb0(g). This
should be true for a generic element B ∈ Z(A).
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For sln the conjecture is true: we can associate to a nilpotent element A a parti-
tion ν. To the transpose partition ν⊺ (using the transpose of the Young diagram)
correspond a nilpotent element B which satisfies the requirements since (A,B) is
cyclic. An equivalent way is to use Example 1.3 to produce B.

For g = sp4 of type C2, there is the following counterexample. That is why we
formulate the conjecture only for Lie algebras of rank at least 3. Take the nilpotent
element

A = ( 0 id
0 0

) .

Its centralizer is given by

Z(A) =
⎛
⎜⎜⎜
⎝

0 b x y
−b 0 y z
0 0 0 b
0 0 −b 0

⎞
⎟⎟⎟
⎠
.

An element B of the centralizer is nilpotent iff b = 0. In that case the common
centralizer Z(A,B) is at least of dimension 3, so [(A,B)] is not in Hilb0(sp4).

In general, we cannot hope to find B ∈ Z(A) such that (A,B) is cyclic. For
example take g = sp16 and A a nilpotent element corresponding to the partition
[7,5,3,1] of 16. If there is B ∈ Z(A) nilpotent and such that (A,B) is cyclic, there
would be an ideal I of codimension 16 whose associated matrices are A and B (see
Example 1.3). Using A, we see that I has to be of the form

I = ⟨x4, x3y, x2y3, xy5, y7 = Q(x, y)⟩
where Q is a polynomial with monomial terms in the Young diagram D. A partition
of type Cn has all odd parts with even multiplicity and one can check that for all
choices of the polynomial Q, the ideal I is never in a chart with all odd parts with
even multiplicity.

2. Hilbert schemes for classical Lie algebras

In this section, we study the regular part Hilbreg(g) and its zero-fiber case by case
for classical g.

2.1. Case An. Consider g = sln (of type An−1). We describe first Hilbreg0 (sln), its
idealic map and then Hilbreg(sln) using Proposition 1.8.

Fix the following principal nilpotent element (with 1 on the diagonal line just
under the main diagonal):

f =
⎛
⎜⎜⎜
⎝

1
⋱

1

⎞
⎟⎟⎟
⎠
.

This element f is cyclic, so we know from 1.5 that the centralizer is given by
polynomials: Z(f) = {µ2f +µ3f 2+ ...+µnfn−1}. So an element of Hilbreg0 (sln) can be
represented by (f,Q(f)) where Q is a polynomial without constant term of degree
at most n − 1. The coefficients µi are called higher Beltrami coefficients.

Since here we have Hilbreg0 (sln) ⊂ Hilbcycl(sln) (already f is cyclic), the idealic
map is given by

I(f,Q(f)) = {P ∈ C[x, y] ∣ P (f,Q(f)) = 0} = ⟨xn,−y +Q(x)⟩.



GENERALIZED PUNCTUAL HILBERT SCHEMES AND g-COMPLEX STRUCTURES 15

We recognize the big cell of the zero-fiber of the punctual Hilbert scheme.
To describe the whole regular part Hilbreg(sln), we take the following principal

slice given by companion matrices:

⎛
⎜⎜⎜
⎝

tn
1 ⋮

⋱ t2
1

⎞
⎟⎟⎟
⎠
.

Let A be a matrix of companion type. Notice that the characteristic polynomial
of a companion matrix is given by xn + t2xn−2 + ... + tn. Since A is still cyclic, its
centralizer consists of polynomials in A with constant term determined by the other
coefficients (in order to ensure trace zero). Thus, a representative of Hilbreg(sln) is
given by (A,B = Q(A)).

The idealic map is thus given by

I(A,B) = ⟨xn + t2xn−2 + ... + tn,−y + µ1 + µ2x + ... + µnxn−1⟩
where µ1 is given by µ1 = ∑n−1

k=2
k
ntkµk+1 mod t2. One recognizes the big cell of the

reduced punctual Hilbert scheme. Notice that the idealic map is injective here.

2.2. Case Bn. Consider g = so2n+1. Represent g on C2n+1 using the metric given

by g(ei, ej) = δi,n−j (where ei are standard vectors), i.e. g = ( 1⋰
1

). A matrix A

is in g iff σ(A) = −A where σ is the involution consisting in a reflection along the
anti-diagonal. In other words A ∈ g iff Ai,j = −An+1−j,n+1−i for all i, j.

We fix the following principal nilpotent element:

f =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

1
⋱

1
−1

⋱
−1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

.

This element is cyclic, so its centralizer by 1.5 consists of all odd polynomials:
Z(f) = {µ2f + µ4f 3 + ... + µ2nf 2n−1}. A representative of Hilbreg0 (g) is thus given by
(f,Q(f)) where Q is an odd polynomial of degree at most 2n − 1. The coefficients
µ2i are called the higher Beltrami coefficients for Bn.

A principal slice is given by

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

t2n
1 ⋰ −t2n

⋱ t2 ⋰
1 −t2

−1
⋱

−1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

.

Let A be a matrix of this type. Its characteristic polynomial is given by x2n+1 −
2t2x2n−1+2t4x2n−3± ...+(−1)n×2t2nx. So we can really think of the principal slice as
a generalized companion matrix. Changing slightly t2i we can get rid of signs and
the factor 2 in the characteristic polynomial, which we will do in the sequel.
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The matrix A is still cyclic, so we have the inclusion Hilbreg(g) ⊂ Hilbcycl(g).
A representative of Hilbreg(g) is given by (A,B = Q(A)) where Q is still an odd
polynomial of degree at most 2n − 1. The idealic map is then given by

I(A,B) = ⟨x2n+1 + t2x2n−1 + t4x2n−3 + ... + t2nx,−y + µ2x + µ4x
3 + ... + µ2nx

2n−1⟩.
This ideal is invariant under the map (x, y)↦ (−x,−y). This is not surprising since
a generic element of the so2n+1-Hilbert scheme is a pair of two diagonal matrices
with entries (x1, ..., xn,0,−xn, ...,−x1) and (y1, ..., yn,0,−yn, ...,−y1). So they can be
thought of as 2n + 1 points in C2 with one point being the origin and the other
points being symmetric with respect to the origin. This set is invariant under the
map − id, so is its defining ideal.

The next type, Cn, is quite similar to Bn.

2.3. Case Cn. Let g = sp2n. We use the symplectic structure ω = ∑i ei ∧ en+i of C2n

to represent g. So a matrix

( A B
C D

)

is in g iff D = −A⊺ and B and C are symmetric matrices.
Fix the principal nilpotent by

f =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

1
⋱

1
−1

⋱
−1

1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

This element is cyclic, so its centralizer is given by odd polynomials: Z(f) =
{µ2f + µ4f 3 + ... + µ2nf 2n−1}. As for Bn we call the µ2i higher Beltrami coefficients.

A principal slice is given by

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

t2n
1 t2n−2

⋱ ⋱
1 t2

−1
⋱

−1
1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

Let A be an element of this form. Its characteristic polynomial is given by x2n −
t2x2n−2 + t4x2n−4 ± ...+ (−1)nt2n. By changing signs in the t2i we can omit the minus
signs in the characteristic polynomial.

The matrix A is still cyclic so a representative of Hilbreg(sp2n) is given by (A,B =
Q(A)) where Q is an odd polynomial of degree at most 2n − 1.

The idealic map is given by

I(A,B) = ⟨x2n + t2x2n−2 + t4x2n−4 + ... + t2n,−y + µ2x + µ4x
3 + ... + µ2nx

2n−1⟩.
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As for Bn, this ideal is invariant under − id which comes from the fact that two
diagonal matrices in sp2n give 2n points in C2 which are symmetric with respect to
the origin.

The last classical type, Dn, has some surprises.

2.4. Case Dn. Let g = so2n. We use the same representation as for Bn.
Fix the following principal nilpotent element:

(2.1) f =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

1
⋱

1
1 0

−1 −1
⋱

−1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

.

This elements is not cyclic, since f 2n−1 = 0. A direct computation shows that
Z(f) = {µ2f + µ4f 3 + ... + µ2n−2f 2n−3} ∪ {σnS} where S is the matrix

(2.2) S =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜
⎝

1
−1

1 −1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟
⎠

We can give an intrinsic definition of the matrix S: let R be a root system and vα
be a root vector in g for the root α ∈ R. Choose a base α1, ..., αn of R (the simple
roots) such that αn−1 and αn correspond to the two non-adjacent vertices in the
Dynkin diagram of Dn (see Figure 3). We can choose f to be ∑i vαi

. The matrix S
is then given by

S = vα1+...+αn−1 ± vα1+...+αn−2+αn

where the sign depends on the choice of the root vectors.

1 2 n-3 n-2

n-1

n
Figure 3. Dynkin diagram for Dn

A representative of Hilbreg0 (so2n) is given by (A = f,B = Q(f) + σnS) where Q is
an odd polynomial of degree at most 2n − 3. Such a pair is cyclic iff σn ≠ 0.

Let us compute the ideal in the cyclic case. One checks easily that fS = Sf and
that S2 = 2f 2n−2. Hence for B = µ2f + ... + µ2n−2f 2n−2 + σnS, we get AB = fB =
µ2f 2+ ...+µ2n−2f 2n−2 and B2 = (µ2f + ...+µ2n−2f 2n−3)2+2σ2

nf
2n−2. Hence, the idealic

map is given by

I(A,B) = ⟨x2n−1, xy = µ2x
2 + µ4x

4 + ... + µ2n−2x
2n−2, y2 = ν2x

2 + ν4x
4 + ... + ν2n−2x

2n−2⟩
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where ν2k = ∑ki=1 µ2iµ2k+2−2i for k = 1, ..., n− 2 and ν2n−2 = 2σ2
n +∑n−1

i=1 µ2iµ2n−2i. So we
see that (µ2, µ4, ..., µ2n−2, ν2n−2) is a set of independent variables which we call higher
Beltrami differentials for Dn. We will also call σn a higher Beltrami differential. If
σn = 0, we define the idealic map to be the continuous extension of the above ideal
which is still of the same form.

Remark. We have seen in Example 1.17 that inside Hilbcycl(g) there is no well-
defined continuous extension of the idealic map. But inside the zero-fiber, the limit
is unique.

The Hilbert scheme is covered by charts indexed by partitions (see [Ha98]). The
chart in which I is written corresponds to the partition 2n = (2n − 1) + 1 which we
write also [2n − 1,1]. In fact, this is the highest partition of 2n of type Dn (see
[CM93], chapter 5 for special types of partitions).

A principal slice is given by

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

τn −τn t2n−2

1 ⋰ −t2n−2

⋱ t2 t2 ⋰
1 −t2 τn
1 0 −t2 −τn

−1 −1
⋱

−1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

.

Notice that the matrix for τn is S⊺. Let A be a matrix of this type. Its charac-
teristic polynomial is given by

χ(A) = x2n − 4t2x
2n−2 + 4t4x

2n−4 ± ... + (−1)n−1 × 4t2n−2x
2 + (−1)nτ 2

n.

By changing signs and factors in t2i and τn, we can omit signs and the factor 4 in
the characteristic polynomial.

One can compute that the minimal polynomial of A is equal to the characteristic
polynomial iff τn ≠ 0. So A is cyclic iff τn ≠ 0 (by Proposition B.3). In that case, the
centralizer consists of all odd polynomials in A of degree at most 2n − 1. If τn = 0,
the centralizer is given by

Z(A) = {µ2A + µ4A
3 + ... + µ2n−2A

2n−3} ∪ {σnSt}
where the matrix St is given by St = S + t2n−2S⊺. The minimal polynomial is given
by χ(x)/x (which is a polynomial since τn = 0).

The pair (A,B) is cyclic iff either τn ≠ 0 or τn = 0 and σn ≠ 0. In the first case,
the idealic map is given by

I = ⟨x2n + t2x2n−2 + t4x2n−4 + ... + t2n−2x
2 + τ 2

n,−y + µ2x + µ4x
3 + ... + µ2nx

2n−1⟩.
In the second case, we need three generators for the ideal, like for the zero-fiber. We
can compute that

I(A,B) = ⟨x2n−1 = u2x + u4x
3 + ... + u2n−2x

2n−3 + uy,
xy = v0 + v2x

2 + ... + v2n−2x
2n−2,

y2 = w0 +w2x
2 + ... +w2n−2x

2n−2⟩
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where the coordinates can be chosen to be (u2, u4, ..., u2n−2, u, v2, ..., v2n−2,w2n−2), i.e.
all the other variables are functions of these. For a unified way to get coordinates
in Hilbert schemes, see Appendix C or directly Haiman’s paper [Ha98].

The second ideal is in the chart corresponding to the partition [2n−1,1] whereas
the first corresponds to the trivial partition [2n]. If u ≠ 0 we can write the second
ideal in the first chart, i.e. perform a coordinate change in the Hilbert scheme. The
link between the coordinates is given by

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

τ 2
n = uv0

µ2n = 1
u

µ2k = −u2ku for 1 ≤ k < n
t2k = u2n−2k + uv2n−2k for 1 ≤ k ≤ n − 1

A regular pair [(A,B)] which is not cyclic has both τn and σn equal to 0. In that
case, we define the idealic map I(A,B) to be the limit of I(A,B+ tSt) for t ∈ C goes
to 0. So we stay in a chart associated to the partition [2n − 1,1].

Notice that the map from Hilbreg(g) to the space of ideals Ig(C2) is not injective,
since for τn and −τn we get the same ideal. Even in the zero-fiber the map is not
injective, since σn and −σn give the same ideal. In addition, the map is not surjective
neither. Indeed the ideal I = ⟨x5 − y, xy, y2⟩ ∈ Ig(C2) is not in the image since with
the notations above we have v0 = 0 and u ≠ 0. Changing the chart, we can compute
that τ 2

n = uv0 = 0. But for a matrix in Hilbreg(g) with τn = 0 we get u = 0.

Remark. In the usual Hilbert scheme, there is only one cell of maximal dimension.
Comparing type Cn and type Dn, we see that the zero-fiber of

{I ideal of C[x, y] ∣ codim I = 2n, I invariant under − id}
has two components of maximal dimension, those corresponding to the zero-fibers
Hilbreg0 (sp2n) and Hilbreg0 (so2n).

Remark. We notice the following analogy to Higgs bundles: the pair [(f,0)] ∈
Hilb(so2n) should correspond to the Higgs field given by Φ = f on the bundle V =
K2⊕K⊕K0⊕K−2⊕K−1⊕K0. This Higgs bundle (V,Φ) is not stable, only polystable.
This could explain why the idealic map can not be continuously extended to [(f,0)].
The link between Higgs bundles and higher complex structures remains mysterious,
see the perspectives in the introduction.

3. g-complex structures

Using the g-Hilbert scheme we are able to construct a geometric structure on
a smooth surface, generalizing both complex and higher complex structures. The
construction and methods are inspired by those used for higher complex structures
in [FT19]. We recall the ideas of constructing higher complex structures before
defining the g-complex structure.

3.1. Complex and higher complex structures. A complex structure on a sur-
face Σ is completely encoded in the Beltrami differential.

This goes as follows: For surfaces, a complex structure is equivalent to an almost
complex structure, i.e. an endomorphism J(z) in T ∗

z Σ such that J2 = − id and
varying smoothly with z ∈ Σ (J imitates the multiplication by i). We can diagonalize
J by complexifying the cotangent bundle. We get a decomposition into eigenspaces

T ∗CΣ = T ∗(1,0)Σ⊕ T ∗(0,1)Σ.
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In addition T ∗(1,0)Σ is the complex conjugate of T ∗(0,1)Σ, so one determines the
other. Hence, the complex structure is completely encoded in a direction in each
complexified cotangent space, i.e. in a section s of P(T ∗CΣ) which is nowhere real
(meaning s and s̄ are linear independent). The projectivization can also be obtained
by the zero-fiber of the punctual Hilbert scheme of length 2:

Hilb2
0(C2) ≅ P(C2).

In coordinates, we can write T
∗(0,1)
z Σ = Span(p̄−µ2(z)p) where p and p̄ are linear co-

ordinates on T ∗CΣ. The coefficient µ2(z) is the Beltrami differential. The condition
that the section s is nowhere real translates to µ2(z)µ̄2(z) ≠ 1 for all z ∈ Σ.

Generalizing this idea, we defined in [FT19] the higher complex structure as a
section I of Hilbn0(T ∗CΣ) satisfying I(z) + Ī(z) = ⟨p, p̄⟩ at every point z ∈ Σ. Here p
and p̄ are linear coordinates on T ∗CΣ. The condition on I generalizes the condition
above of a nowhere real section. We call it the non-reality constraint.

We use exclusively the idealic viewpoint of the punctual Hilbert scheme in this
definition. Since the g-Hilbert scheme uses the matrix viewpoint, we have to rewrite
the definition of higher complex structure in that picture. So we replace the ideal
I(z) by a conjugacy class of commuting matrices A(z) and B(z). We can put
them together in a gauge class of a sln-valued 1-form Φ(z) = A(a)dz +B(z)dz̄. The
commutativity of A and B translates to the fact that Φ satisfies Φ ∧Φ = 0.

It is not surprising to use 1-forms since a generic point of the Hilbert scheme
gives n distinct points in each fiber T ∗C

z Σ which can be put together to n sections
of T ∗CΣ, i.e. a n-tuple of complex 1-forms. Going to the zero-fiber of the Hilbert
scheme means that all these 1-forms are collapsed to the zero-section Σ ⊂ T ∗CΣ.

3.2. Definition. We are now ready to give the definition of a g-complex structure,
but one difficulty stays: we have to incorporate the non-reality constraint in the
matrix viewpoint. Recall the map µ2 ∶ Hilbreg0 (g) → C associating to [(A,B)] the
unique µ2 ∈ C such that B − µ2A is irregular (Equation (1.3)).

Definition 3.1. A g-complex structure is a G-gauge class of elements locally of
the form

Φ1(z)dz +Φ2(z)dz̄ ∈ Ω1(Σ,g) = Ω1(Σ,C)⊗ g

such that
[(Φ1(z),Φ2(z))] ∈ Hilbreg0 (g)

and µ2(z)µ̄2(z) ≠ 1 for all z ∈ Σ.

Notice that for complex structures, the map µ2(z) is nothing but the Beltrami
differential. In particular, for g = sl2, we get a usual complex structure.

Remark. An equivalent definition, which uses only global objects, goes as follows:
A g-complex structure is a pair (V,Φ) where V is a trivial G-bundle and Φ ∈
Ω1(Σ,ad(V )) satisfying

(1) Commutativity: Φ ∧Φ = 0.
(2) Nilpotency: Φ(z).X(z) is nilpotent ∀z ∈ Σ and ∀X(z) ∈ T ∗C

z Σ.
(3) Regularity: Φ(z).X(z) is regular ∀X(z) ∈ T ∗C

z Σ/L(z) where L(z) is a one-
dimensional subspace of T ∗C

z Σ.
(4) Non-reality: L(z) ∩ L̄(z) = {0} ∀z ∈ Σ.

The direction given by L corresponds to Span(Φ1 − µ2Φ2), the direction in which Φ
is not principal nilpotent.
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Using this line-subbundle L, we get the following link between g-complex structure
and complex structures:

Proposition 3.2. A g-complex structure induces a complex structure on Σ.

Proof. Recall the map µ ∶ Hilbreg0 (g) → Hilb0(sl2) given by µ([(A,B)]) = [(e, µ2e)]
or [(µ2e, e)] depending on whether A or B is regular (see Equation (1.3)). Since
a sl2-complex structure is a complex structure, the map µ induces a map from
g-complex structures to complex structures. �

Remark. To define the map µ in 1.4, we really need g to be simple. For a semisimple
(non-simple) g, a g-complex structure would induce several complex structures.

In the definition of a higher complex structure in [FT19], we use the zero-fiber
Hilbn0(C2), without imposing to be in the regular part. The fact that we actually
are in the regular part follows from the non-reality constraint I + Ī = ⟨p, p̄⟩. The
same can be obtained for g of classical type, where we can reformulate the definition
of g-complex structures in a nicer way using the idealic map.

3.3. Idealic viewpoint. Recall the space of ideals Ig(C2) constructed in 1.3. De-
note by Ig,0(C2) the set of those ideals of Ig(C2) which are supported at the origin
(the zero-fiber). We can rewrite the definition of a g-complex structure in the fol-
lowing way:

Definition 3.3. For g of classical type, a g-complex structure is a section I of
Ig,0(T ∗CΣ) such that

I(z) + Ī(z) = { ⟨p, p̄⟩ if g of type An,Bn,Cn
⟨p, p̄⟩2 if g of type Dn.

Notice that the condition on the ideals does not depend on coordinates since ⟨p, p̄⟩
is the maximal ideal associated to the origin.

We prove the equivalence of both definitions. For that recall that to an ideal I
one can associate a class of commuting matrices [(A,B)] (see A.2).

Proposition 3.4. For classical g, the condition on I + Ī given in Definition 3.3 is
equivalent to [(A(z),B(z))] being in the regular part Hilbreg0 (g) and having µ2µ̄2 ≠ 1,
i.e. the condition in Definition 3.1.

Proof. The backwards direction is a direct computation using the preferred rep-
resentatives for Hilbreg0 (g) from Proposition 1.8. So we concentrate on the direct
implication.

Case An. The case g of type An has been treated in [FT19], Appendix 5.1. The
idea of the proof is similar to the case Dn below.

Case Bn. For g of type Bn the standard representation gives so2n+1 ↪ sl2n+1. By

virtue of the case An, we know that I + Ī = ⟨p, p̄⟩ implies µ2µ̄2 ≠ 1 and (A,B) regular
for sl2n+1, i.e.

I(A,B) = ⟨p2n+1,−p̄ + µ2p + µ3p
2 + ... + µ2np

2n⟩.
Since we know that in case Bn, the ideal I is invariant under the map − id, we
get µ2k+1 = 0 for all k = 1, ..., n − 1. So I corresponds to a pair (f,Q(f)) for Q
an odd polynomial of degree at most 2n − 1, which is precisely a representative of
Hilbreg0 (so2n+1) (see Subsection 2.2).

Case Cn. This case is exactly analogous to Bn via the injection sp2n ↪ sl2n.
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Case Dn. We imitate the strategy of the proof for case An in [FT19] appendix
5.1 with only difference that we have to go further in the analysis, needing some
computations. The main argument is an iteration process which always ends since
pkp̄l = 0 mod I for k + l ≥ 2n.

Put I1 = (I mod ⟨p, p̄⟩2), i.e. the set of all terms of degree at most 1 appearing
in I. If I1 is of dimension 2, then I = ⟨p, p̄⟩ since both p and p̄ can be expressed by
higher terms which by iteration become 0. If I1 is of dimension 1, then we have a
relation of the form p̄ = µ2p + p2R(p, p̄) where R is a polynomial, which gives p̄ as a
polynomial in p by iteration. We can then explicitly check that I + Ī is either ⟨p, p̄⟩
or ⟨p = p̄, pp̄, p2⟩. Hence I1 = {0}.

Put I2 = (I mod ⟨p, p̄⟩3). We have I2+ Ī2 = (I + Ī)2 = ⟨p2, pp̄, p̄2⟩ by assumption on
I. If I2 is of dimension 3, then all of p2, pp̄ and p̄2 can be expressed by higher terms.
By iteration, we get I = ⟨p2, pp̄, p̄2⟩ which is not of type Dn. If dim I2 ≤ 1, then we
also have dim Ī2 ≤ 1, so 2 ≥ dim I2 + dim Ī2 = dim⟨p2, pp̄, p̄2⟩2 = 3, a contradiction.
Hence dim I2 = 2.

There is a term containing pp̄ in I2 since if not, no such term would neither exist
in Ī2, so neither in I2 + Ī2 = ⟨p2, pp̄, p̄2⟩, a contradiction. Without loss of generality,
we can assume that there is another term containing p̄2 (if not change the role of I
and Ī).

So there exist α,β, γ, δ ∈ C such that

{ p̄2 = αp2 + βpp̄ mod I2

pp̄ = γp2 + δp̄2 mod I2

If βγ ≠ 1, we can simplify by substitution one into the other to

{ p̄2 = α′p2 mod I2

pp̄ = γ′p2 mod I2

If βγ = 1, we have p2 ∈ I2, so pp̄ = δp̄2 mod I2, so changing I to Ī we are in the
previous situation.

Iterating the substitution process we get that p̄2 and pp̄ are polynomials in p.
Using the invariance of I under − id, we see that these are polynomials in p2, i.e.
even polynomials. So the most generic ideal is given by

I = ⟨p2n−1, pp̄ = µ2p
2 + µ4p

4 + ... + µ2n−2p
2n−2, p̄2 = ν2p

2 + ν4p
4 + ... + ν2n−2p

2n−2⟩

which corresponds to a regular element of Hilbreg0 (so2n). One checks that I + Ī with
I of the form above equals ⟨p, p̄⟩2 iff µ2µ̄2 ≠ 1. �

To end this section, we determine the geometric nature of the various higher
Beltrami coefficients. Since p and p̄ are linear coordinates on T ∗CΣ, we can identify
p = ∂

∂z = ∂ and p̄ = ∂
∂z̄ = ∂̄. Denote by K the canonical bundle, i.e. K = T ∗(1,0)Σ, and

by Γ(B) the space of sections of a bundle B.
Analyzing the behavior under a coordinate change z ↦ w(z, z̄) analogous to the

computation in [FT19] section 3.1., we get

(3.1) µi ∈ Γ(K1−i ⊗ K̄) and ν2i ∈ Γ(K−2i ⊗ K̄2).

Since σ2
n has the same nature as ν2n−2, we get σn ∈ Γ(K1−n ⊗ K̄).
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4. Moduli space

In this section, we define the moduli space of g-complex structures and explore
its properties. In most of the section g is of classical type. We first have to define an
equivalence relation on g-complex structures, which is accomplished by the notion
of higher diffeomorphisms.

4.1. Higher diffeomorphisms. In order to get a finite-dimensional moduli space,
it is not sufficient to quotient by the diffeomorphisms of Σ isotopic to the identity,
as for Teichmüller space. The reason is that the g-complex structure is non-linear
in the cotangent spaces T ∗C

z Σ. Diffeomorphisms act linearly on the cotangent space,
so it cannot act much on g-complex structures.

For higher complex structures, in Section 3.2 in [FT19] higher diffeomorphisms
are defined to be Hamiltonian diffeomorphisms of T ∗Σ preserving the zero-section
Σ ⊂ T ∗Σ. This gives the higher diffeomorphisms for type An. We generalize this
idea to general g.

To this end, we need a faithful representation of g, i.e. an injection ρ ∶ g ↪ slm
for some m ∈ N∗. This always exists by Ado’s theorem. For classical g, we will take
the standard representation of g on Cm (i.e. sln ⊂ gln, son ⊂ gln and sp2n ⊂ gl2n).

As stated several times, one should think of a g-complex structure as a m-tuple
of 1-forms with some symmetry, which collapses all to the zero-section. In a given
fiber, these m points are given by the common eigenvalues of the two commuting
matrices. The extra symmetry expresses the fact that we deal will a subset of slm,
coming from a representation of g.

The space of higher diffeomorphisms which we are looking for has to preserve this
symmetry. To be more precise, we are interested in the eigenvalues of ρ(g) for g ∈ g.
Consider the setDρ of thosem-tuples (x1, ..., xm) ∈ Cm which appear as the spectrum
of some ρ(g). By the Jordan decomposition, we can restrict attention to semisimple
elements gs. Since regular semisimple elements are dense, and can be conjugated
to the Cartan h, the set Dρ is the image ρ(h), simultaneously diagonalized in some
basis of Cm. Hence Dρ is a vector subspace of Cm. An m-tuple of points in C2 with
coordinates (xi, yi)1≤i≤n is called ρ(g)-symmetric if both (x1, ..., xm) and (y1, ..., ym)
are in Dρ.

For example for sln, we have Dρ = {(x1, ..., xn ∣ ∑i xi = 0)}. So sln-symmetric
points are simply n points with barycenter the origin. That is why a higher diffeo-
morphisms has to preserve the zero-section. For g of type Bn,Cn or Dn, a set of
ρ(g)-symmetric points is symmetric with respect to the origin.

Definition 4.1. A higher diffeomorphism of type (g, ρ) is a Hamiltonian dif-
feomorphism of T ∗Σ whose extension to T ∗CΣ preserves the space of ρ(g)-symmetric
m-tuples. For classical g, we use the standard representation and omit ρ. The group
of all higher diffeomorphisms of type g is denoted by Symp(g,Σ).

For g of type Bn,Cn or Dn, a higher diffeomorphism is a Hamiltonian diffeo-
morphism of T ∗Σ invariant under the map (z, p, p̄) ↦ (z,−p,−p̄). In coordinates
a Hamiltonian diffeomorphism is generated by a function H(z, z̄, p, p̄) which can
be Taylor developed to ∑k,lwk,l(z, z̄)pkp̄l. The associated flow preserves the zero-
section iff w0,0 = 0. It is invariant under − id iff it has only odd terms, i.e. wk,l = 0
for all k + l even.
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4.2. Action on g-complex structures. We can now analyze how higher diffeo-
morphisms act on g-complex structures. From now on, we consider only g of classical
type.

Intuitively, Hamiltonian diffeomorphisms of T ∗Σ act on the space of 1-forms, so
also on m-tuples of them. The invariance condition implies that the symmetry of
the m 1-forms is preserved. This action persists at the limit when the m-tuple of
1-forms is collapsed to the zero-section.

To compute the action, it is better to work in the idealic viewpoint. We imitate
the steps from [FT19] section 3.2.

Let I be an ideal representing a g-complex structure. Write I with generators
⟨f1, ..., fr⟩. Each fk can be considered as a function on T ∗CΣ, so its variation under
a Hamiltonian H is given by the Poisson bracket {H,fk}. The tangent space at I in
the space of all ideals of codimension m is the set of all ring homomorphisms from I
to A/I. Thus a Hamiltonian H changes I to ⟨f1 + ε{H,f1} mod I, ..., fr + ε{H,fr}
mod I⟩.

We restate a lemma from [FT19] (lemma 4) which allows to simplify H:

Lemma 4.2. Let I = ⟨f1, ..., fr⟩ be an ideal of C[z, z̄, p, p̄] such that {fi, fj} = 0
mod I for all i and j. Then for all polynomials H and all k ∈ {1, ..., r} we have
{H,fk} mod I = {H mod I, fk} mod I.

Proof. The only thing to show is that if we replace H by H+gfl for some polynomial
g and some l ∈ {1, ..., r}, the expression does not change. Indeed, {H + gfl, fk} =
{H,fk} + g{fl, fk} + {g, fk}fl = {H,fk} mod I using the assumption. �

Proposition 4.3. The ideals of Hilbreg0 (g) for g classical satisfy the condition of
the previous lemma.

Proof. For An, we have I = ⟨pn, p̄ = µ2p + ... +µnpn−1 = Q(p)⟩. We compute {pn,−p̄ +
Q(p)} = npn−1∂Q = 0 mod I since there is no constant term in Q.

The same argument holds for Bn and Cn since their ideals are special cases of the
ideal of type An.

For Dn, the ideal I is given by

⟨p2n−1, pp̄ = µ2p
2 + µ4p

4 + ... + µ2n−2p
2n−2 = Q(p) + µ2n−2p

2n−2,

p̄2 = ν2p
2 + ν4p

4 + ... + ν2n−2p
2n−2 = R(p) + ν2n−2p

2n−2⟩.

As before the Poisson brackets with the first generator p2n−1 vanishes modulo I
since Q and R have no constant terms. To compute the last Poisson bracket, define
Q̃ = Q/p. By the relations in I, we have R = Q̃2 + p2n−2R̃ for some polynomial
R̃ (see Subsection 2.4). Remark further that {a(z, z̄)pkp̄l, b(z, z̄)pk′ p̄l′} = 0 mod I
whenever k + l + k′ + l′ > n − 1 since any term of degree n − 1 in p and p̄ is in I and



GENERALIZED PUNCTUAL HILBERT SCHEMES AND g-COMPLEX STRUCTURES 25

the Poisson bracket lowers this degree by 1. With all this, we compute

{−pp̄ +Q + µ2n−2p
2n−2,−p̄2 +R + ν2n−2p

2n−2}
= {−pp̄ + pQ̃ + µ2n−2p

2n−2,−p̄2 + Q̃2 + p2n−2(R̃ + ν2n−2)}
= {−pp̄ + pQ̃,−p̄2 + Q̃2} by degree argument

= 2∂̄Q̃(pp̄ − pQ̃) − 2Q̃∂Q̃(p̄ − Q̃)

= 2(pp̄ −Q)(∂̄Q̃ − Q̃
p
∂Q̃)

= 2µ2n−2p
2n−2(∂̄Q̃ − Q̃

p
∂Q̃) mod I

= 0 mod I

where the last line comes from the fact that p divides the polynomial ∂̄Q̃− Q̃
p ∂Q̃. �

As a consequence, when computing the action of a Hamiltonian H on a g-complex
structure, we can reduce it modulo I. In particular if H mod I = 0, the higher
diffeomorphism generated by H does not act at all. For g of type An,Bn or Cn
we can reduce H to a polynomial in p, and for Dn we can reduce it to H = w−p̄ +
∑n−2
k=0 w2k+1p2k+1.

4.3. Local theory. Now, we can study the local theory of g-complex structures.
Let z0 be a point on Σ and take a small chart around it which sends to the unit disk
∆ in the complex plane (with z0 send to the origin).

Theorem 4.4. For g of type An, Bn or Cn, any two g-complex structures are locally
equivalent under higher diffeomorphism of type g.

For g of type Dn, all g-complex structures with non-vanishing σn on ∆ are equiv-
alent under higher diffeomorphisms. However, the zero locus of σn on ∆ is an
invariant.

Since we work locally, it is sufficient to show that we can send all higher Beltrami
differentials to 0 using higher diffeomorphisms.

Proof. The proof for g of type An was done in [FT19], Appendix 5.2, using a method
in the spirit of the proof of Darboux’s theorem in symplectic geometry.

If g is of type Bn or Cn, the standard representations realizes the g-complex
structure as a substructure of type An. Since the last is trivializable, so is the
g-complex structure in that case.

For g of type Dn, we use the same method as for type An by a Hamiltonian flow
argument. We start with an ideal I determined by higher Beltrami differentials
(µ2, µ4, ..., µ2n−2, ν2n−2). The action on µ2i is the same as for g = sl2n so we can
trivialize them using a Hamiltonian H which is a polynomial in p. So we are left
with

(4.1) I = ⟨p2n−1, pp̄,−p̄2 + ν2n−2p
2n−2⟩.

We have seen at the end of Subsection 4.2 that in the case Dn, any Hamiltonian can
be reduced to H = w−p̄ +∑n−2

k=0 w2k+1p2k+1. The only part of this Hamiltonian acting
on ν2n−2 is H = w−p̄, which also changes µ2n−2. So in order to assure that µ2n−2 stays
zero, we use

H = w−p̄ +w2n−3p
2n−3.
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We compute the action of this Hamiltonian on the ideal I. For the second gener-
ator of I we get:

{w−p̄ +w2n−3p
2n−3,−pp̄} = p2n−2(∂̄w2n−3 + ∂w−ν2n−2) mod I.

For the third generator of I we get

{w−p̄ +w2n−3p
2n−3,−p̄2 + ν2n−2p

2n−2} = p2n−2(w−∂̄ν2n−2 + 2∂̄w−ν2n−2) mod I.

Denote by µt2−2 and νt2n−2 the image of µ2n−2 and ν2n−2 under the flow generated by
H at time t. From the above computation we get

{
d
dtµ

t
2n−2 = ∂̄w2n−3 + ∂w−ν2n−2

d
dtν

t
2n−2 = (w−∂̄ + 2∂̄w−)ν2n−2

Instead of keeping ν2n−2, we work with the higher Beltrami differential σn. Since
all the µ2i are zero in I, we have ν2n−2 = σ2

n. Therefore we get from the second
equation above d

dt(σ2
n) = (w−∂̄ + 2∂̄w−)(σ2

n) which gives

(4.2)
d

dt
σtn = ∂̄(wt−σtn).

We wish to have d
dtµ

t
2n−2 = 0 to stay with µ2n−2 = 0. For σn, we show that we

can deform it to the constant function 1 on the unit disk, assuming σn vanishes
nowhere on ∆. We choose the path σtn = (1 − t)σ0

n + t from the initial σ0
n to the

constant function 1. If σtn = 0 for some t, we have to modify slightly the path. We
get d

dtσ
t
n = 1 − σ0

n.
Denote by T the local inverse of the ∂̄-operator, i.e. ∂̄(Tf) = f = T ∂̄f for all

f ∈ L2(∆). The operator T is a pseudo-differential operator given by

Tf(z) = 1

2πi ∫C
f(ζ)
ζ − zdζ ∧ dζ̄.

We can solve Equation (4.2) with T :

wt− =
1

σtn
T (1 − σ0

n).

Putting this solution into the equation for d
dtµ

t
2n−2, we can solve for w2n−3:

wt2n−3 = −T (∂wt−νt2n−2).
Finally, we multiply H by a bump function, a function on ∆ which is 1 in a

neighborhood of the origin and 0 outside a bigger neighborhood of the origin, which
ensures that the Hamiltonian vector field is compactly supported, so it can be in-
tegrated to all times. In particular for t = 1 we get σn(z) = 1 for all z near the
origin.

To show that the zero locus of σn can not be changed by a higher diffeomorphism,
consider the singularity defined by

f(p, p̄) = − ν2n−2

2n − 1
p2n−1 + pp̄2 = 0

which is a Kleinian singularity of type D2n if ν2n−2 ≠ 0. Its deformation ideal ⟨∂f∂p ,
∂f
∂p̄ ⟩

is directly linked to our ideal I from Equation (4.1) by

⟨∂f
∂p
,
∂f

∂p̄
⟩ + ⟨p, p̄⟩n−1 = ⟨p2n−1, pp̄,−p̄2 + ν2n−2p

2n−2⟩.



GENERALIZED PUNCTUAL HILBERT SCHEMES AND g-COMPLEX STRUCTURES 27

Since the type of a singularity is invariant under diffeomorphisms, so is its de-
formation ideal. This is why we cannot change ν2n−2 = 0 to ν2n−2 ≠ 0 by higher
diffeomorphisms. �

Remark. It is interesting to notice the appearance of Kleinian singularities, which
have an ADE-classification. The fact that for g of type Dn the singularity is of type
D2n is linked to the representation of so2n on C2n. There should be a more intrinsic
way to link g-complex structures to singularities of type g.

An idea in this direction is the following: the singularity of type g appears inside
the Lie algebra g, more precisely inside the nilpotent variety along the subregular
locus (see [St74]). A minimal resolution of this singularity is given by the Springer
resolution. There should be a link between g-Hilbert schemes and the Springer reso-
lution.

Since there are no local invariants for g-complex structures, only their global
geometry is non-trivial.

4.4. Definition of the moduli space. To define the moduli space of g-complex
structures, there is one more subtlety: in order to get one component, we have to
fix an orientation on Σ. We then call a complex structure compatible if the induced
orientation coincides with the given orientation on Σ. We call a g-complex structure
compatible if the induced complex structure is.

Definition 4.5. The moduli space T̂g is the space of all compatible g-complex struc-
tures modulo the action of higher diffeomorphisms of type g.

Notice that a g-complex structure is compatible iff µ2(z)µ̄2(z) < 1. Reverting

the orientation on Σ we get another copy of T̂g corresponding to those g-complex
structures with µ2(z)µ̄2(z) > 1.

Remark. One might define a moduli space of g-complex structures for general g
(not of classical type), by using a representation ρ ∶ g↪ slm. We conjecture that the
associated moduli space does not depend on the choice of the representation ρ.

For g = sl2 we get Teichmüller space since we can reduce any Hamiltonian to
H = w(z, z̄)p which generates a linear diffeomorphism of T ∗Σ, coming from a diffeo-
morphism on Σ isotopic to the identity.

For general g, there is a copy of Teichmüller space inside:

Proposition 4.6. There is an injective map from Teichmüller space into the moduli
space T̂g.

Proof. The proposition follows from the map ψ ∶ Hilb(sl2)→ Hilbreg(g) constructed
in Equation (1.2) in Section 1.4. This map restricts to a map between the zero-fibers
and extends over the surface Σ. Finally the map descends to the quotient by higher
diffeomorphisms since for sl2 we only quotient by diffeomorphisms of Σ. In terms of
higher Beltrami differentials, this map is simply given by ψ([µ2]) = [(µ2,0, ...,0)].

For injectivity, suppose [(µ2,0, ...,0)] is equivalent to [(µ′2,0, ...,0)] via a higher
diffeomorphism generated by H. Since terms of degree 2 or more do not affect µ2,
the equivalence is already obtained by the linear part of H, which is the extension
of a diffeomorphism of Σ. This diffeomorphism of Σ sends µ2 to µ′2, so they are
equivalent. �



28 ALEXANDER THOMAS

Furthermore, the moduli space has the following properties:

Theorem 4.7. For g of type An,Bn or Cn, and a surface Σ of genus g ≥ 2, the moduli
space T̂g is a contractible manifold of complex dimension (g−1)dimg. Further, along
the copy of Teichmüller space from Proposition 4.6, the cotangent bundle at any point
I is given by

T ∗
I T̂g =

r

⊕
m=1

H0(Kmi+1)

where (m1, ...,mr) are the exponents of g and r = rkg denotes the rank of g.

For type Dn, the moduli space T̂g is a contractible topological space. The locus where
the zero-set of the higher Beltrami differential σn is a discrete set on Σ is a smooth
manifold with the same properties as above (dimension, cotangent space), with the
only difference that we have to take another copy of Teichmüller space (not the one
from Proposition 4.6).

Notice that the differentials in H0(Kmi+1) are holomorphic with respect to the
complex structure induced from the g-complex structure (see Proposition 3.2).

For the case Dn, we conjecture that the moduli space T̂g is a topological manifold
everywhere. The points where the zero-set of σn is not discrete can have a cotangent
space which is strictly bigger than the space of holomorphic differentials. One can
think for example of the curve in R2 given by t↦ (t3, t2), shown in Figure 4, which
has a cusp at the origin, but is still a topological manifold.

Figure 4. Curve with cusp

Proof. The case for An has been treated in Theorem 2 of [FT19]. The cases Bn and
Cn are exactly analogous:

One shows that at every point, the cotangent space exists. From this follows
that T̂g is a manifold. We have to check the appearance of the exponents of the
Lie algebra. Since µ2i is a section of K1−2i ⊗ K̄ (see Equation (3.1)) its dual t2i is
a section of K2i. Since the exponents for Bn and Cn are the same and equal to
(1,3, ...,2n − 1), we get the desired form stated in the theorem.

For g of type Dn we consider the subset on T̂g where the zero-locus of σn is discrete
in Σ. Note that the copy of Teichmüller space given by Proposition 4.6 has σn(z) = 0

for all z ∈ Σ. Instead, we consider an injection T̂ 2 ↪ T̂g given by µ2i(z) = 0 for all
i = 2, ..., n − 1 and σn(z) a fixed smooth section vanishing on a finite number of
points.

Along this part, we know that the variation of µ2i under a higher diffeomorphism
generated by H = w−p̄+∑n−2

k=0 w2k+1p2k+1 is given by δµ2i = ∂̄w2i−1 and Equation (4.2)
gives δσn = ∂̄(w−σn). The variation of µ2i is the same as in the case of type An, so
we know that these contribute to the cotangent bundle by a term H0(K2i). For the
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term σn we use the pairing between differential of type (1 − n,1) and of type (n,0)
given by integration over the surface. We get

({δσn}/∂̄(w−σn))∗ = {tn ∈ Γ(Kn) ∣ ∫ tn∂̄(w−σn) = 0 ∀w− ∈ Γ(K̄)}
= {tn ∈ Γ(Kn) ∣ ∫ ∂̄tnw−σn = 0 ∀w− ∈ Γ(K̄)}
= {tn ∈ Γ(Kn) ∣ ∂̄tn = 0}
=H0(Kn)

where we used that σn vanishes only on a discrete set.
Hence the cotangent bundle is given by

T ∗
I T̂g =

n−1

⊕
m=1

H0(K2m)⊕H0(Kn).

The exponents of so2n are precisely (1,3, ...,2n − 3, n − 1), so the cotangent bundle
is of the form stated in the theorem.

For the dimension of T̂g, we use dimH0(Kmi+1) = (g − 1)(2mi + 1) by Riemann-
Roch (using g ≥ 2). We get

dim T̂g = (g − 1)
r

∑
i=1

(2mi + 1) = (g − 1)dimg

using a well-known formula coming from the decomposition of g as sl2-module using
the principal sl2-triple.

Contractibility for all types is analogous to the case An. �

From the previous theorem, we see that our moduli space T̂g shares a lot of proper-
ties with the G-Hitchin component, in particular the dimension, contractibility and
the copy of Teichmüller space. For G-Hitchin components, this copy of Teichmüller
space can be described as follows: any representation of the G-Hitchin component
is a deformation of a representation of the form

π1(Σ)→ PSL2(R)→ G

where the first map is a Fuchsian representation and the second one is the prin-
cipal map. These maps form a copy of T̂ 2. Note that in both situations, Hitchin
component and T̂g, the copy of Teichmüller space is constructed using the principal
map.

Of course, we conjecture the equivalence of Hitchin’s component and the moduli
space of g-complex structures:

Conjecture 4.8. The moduli space T̂gΣ is canonically homeomorphic to Hitchin’s
component in the character variety Hom(π1(Σ),G)/G where G is the real split Lie
group associated to g.

4.5. Spectral curve. In this part, we construct a spectral curve in T ∗CΣ associated
to a cotangent vector to T̂g, i.e. a g-complex structure and a set of holomorphic
differentials.

The case for g of type An was treated in [FT19], Section 4. In that paper, we
proved that the zero-fiber Hilbn0(C2) is Lagrangian in the reduced Hilbert scheme
Hilbnred(C2). This stays true for all classical g:

Proposition 4.9. The regular zero-fiber Hilbreg0 (g) is a Lagrangian subspace of
Hilbreg(g) for classical g.
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Proof. Since we are in the regular part, Proposition 1.8 gives a parametrization. For
classical g, via the standard representation we can consider Hilbreg(g) as subset of
Hilbmred(C2) which remains symplectic and we can explicitly check that the zero-fiber
Hilbreg0 (g) is Lagrangian. �

For general g, we conjecture the following, based on Conjecture 1.22:

Conjecture 4.10. The conjectural smooth version of the g-Hilbert scheme is sym-
plectic and the zero-fiber is a Lagrangian subspace.

If we assume Conjecture 1.16 true, stating that the modified version of the g-
Hilbert scheme is a minimal resolution of h2/W , we get a symplectic structure.
Indeed h2 = T ∗h has a canonical symplectic structure, which is invariant under the
action of W . Hence it lifts to the minimal resolution.

Now we construct the spectral curve. First, we look at g of type An, Bn or Cn.
We can write a cotangent vector in T ∗T̂g as an equivalence class of higher Beltrami
differentials µi and holomorphic differentials ti. To write in a uniform way, set µi
or ti to 0 whenever it does not appear for g. For example for type Bn or Cn all
variables with odd index are 0.

Associate polynomials P (p) = pm +∑i tipm−i and Q(p, p̄) = −p̄ +∑i µipi−1 (where
m is the dimension of the standard representation of g). Put I = ⟨P,Q⟩. Define the
spectral curve Σ̃ ⊂ T ∗CΣ by the zero set of P and Q. It is a ramified cover over Σ
with m sheets.

For g of type Dn, a generic point in the cotangent bundle T ∗T̂g corresponds to
the ideal

I = ⟨p2n + t2p2n−2 + ... + t2n−2p
2 + τ 2

n,−p̄ + µ2p + ... + µ2np
2n−1⟩

which can be seen as a special case of An. Thus we can proceed as above. In the
case where τn = 0 we have seen in 2.4 that the ideal changes to an ideal with three
generators. The zero-set of these generators still define a spectral curve in T ∗CΣ. It
is the limit of the curve when τn → 0.

Proposition 4.11. The spectral curve Σ̃ is Lagrangian to order 1 in the holomorphic
differentials t.

This is the precise analogue of Proposition 5 in [FT19].

Proof. In the case where the ideal has two generators P and Q this is equivalent to
{P,Q} = 0 mod I mod t2 for I ∈ T ∗T̂g. For An, the proof is given in loc. cit. For
Bn and Cn it is completely analogous since the g-complex structure can be seen as
a special case of An.

For g of type Dn, a generic ideal has still two generators, so we have a special
case of An. If the ideal has three generators, the spectral curve is still Lagrangian
since it can be obtained as a limit of Lagrangian curves, and the property of being
Lagrangian is closed. �

Since the spectral curve is Lagrangian to order 1, the periods are well-defined up
to this order. The ratios of these periods should give coordinates on T ∗T̂g and also

on T̂g. For the trivial g-complex structure (where all higher Beltrami differentials
are 0) we recover Hitchin’s spectral curve.
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Finally, we can recover the same spectral data as Hitchin in his paper on stable
bundles [Hi87]. From a g-complex structure we get a bundle V over the surface Σ
whose fiber at a point z ∈ Σ is C[p, p̄]/I(z) where we use the idealic viewpoint. We
also get a line bundle L on Σ̃ whose fiber is the eigenspace of Mp, the multiplication
operator by p in the quotient C[p, p̄]/I. This gives the spectral data for type An.

For g of type Cn, we get in addition an involution σ on the spectral curve Σ̃ given
by (p, p̄) ↦ (−p,−p̄). For g of type Dn, the spectral curve is singular, having a
double point. The spectral data is given by a desingularization of Σ̃, the involution
σ as for Cn and the line bundle L. For g of type Bn, there is a canonical subbundle
V0 ⊂ V = C[p, p̄]/I generated by the span of the image of 1 ∈ C[p, p̄] in the quotient
C[p, p̄]/I (since for Bn, we have I ⊂ ⟨p, p̄⟩). Thus the vector bundle V is an extension
V0 → V → V1. The spectral data is given by (V0, V1, σ,L, Σ̃).

5. Higher complex structures for real Lie algebras

5.1. Motivation and preliminaries. Hitchin’s approach to character varieties
proceeds in two steps: he considers Higgs bundles for a complex group GC, which
by the non-abelian Hodge correspondence describe the complex character variety
Rep(π1Σ,GC), and then he finds a subset, invariant under an involution, which
corresponds to the representations in the split real group.

There is a notion of Higgs bundles, associated to some real Lie group GR, whose
representations have values in GR. For the definition of these GR-Higgs bundles (or
just G-Higgs bundles), see [GPR18], Section 5.

We want to define a counterpart of GR-Higgs bundles in our language of punctual
Hilbert schemes. To do this, we need a generalisation of Kostant’s theory of regular
elements and principal slices to a real Lie algebra. This was done in the paper of
Kostant and Rallis [KR71]. We give a short summary of the material we need in
this section.

Consider a simple real Lie algebra gR. Fix a Cartan decomposition

gR = kR ⊕ pR.

All elements of pR are semisimple, so there are no nilpotent elements. This is why
we pass to the complexifications pC and kC. Whenever we speak about a complex
object, we might omit the index, so we will write p instead of pC etc.

Denote by aR a maximal abelian subalgebra of pR. The dimension of aR is called
the real rank of gR. Its complexification a is called the “baby Cartan”. For an
element x ∈ p, it can be shown that

dimZp(x) ≥ dima

where Zp(x) denotes the centralizer of x inside p. Elements for which equality holds
are called regular.

Denote by θ the Cartan involution, defined by θ = id on kR and θ = − id on pR. It
extends to a Lie algebra involution on the complexification g and on the group G.
A central role is played by Kθ ∶= {g ∈ G ∣ θ(g) = g}. It clearly contains K = exp(k)
but is strictly bigger (see Proposition 1 in [KR71]).

The philosophy of the Kostant-Rallis can then be summarized by: the analogue
of the Kostant theory for g in the “real” case is obtained by replacing g by p and
G by Kθ. Note that the objects we manipulate are complex, but come from a real
form.
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Let us give three examples of this philosophy. First, the analogue of greg/G ≅
h/W for real Lie algebras reads (see Theorem 12 in [KR71] for the version on the
polynomial function level)

(5.1) preg/Kθ ≅ a/W (a).
Second, there is a unique open dense Kθ-orbit in the nilpotent variety of p (see
Theorem 6 in [KR71]). This is the precise analogue of the principal nilpotent orbit
for complex Lie algebras. Third, the nilpotent orbits of gR are in one-to-one corre-
spondence to the nilpotent K-orbits in p. This is the so-called Kostant-Sekiguchi
correspondence.

5.2. Hilbert scheme associated to real Lie algebras. Following the philosophy
of the Kostant-Rallis paper, we define a Hilbert scheme associated to a real Lie
algebra gR by imitating Definition 1.1.

Definition 5.1. The punctual Hilbert scheme associated to a real simple Lie algebra
gR is defined by

Hilb(gR) = {(A,B) ∈ p2 ∣ [A,B] = 0,dimZp(A,B) = rkgR}/Kθ

where Zp(A,B) is the common centralizer in p and Kθ = {g ∈ G ∣ θ(g) = g}.
The zero-fiber are those pairs (A,B) which are nilpotent.

Remark. Conceptually, it might be better to consider pairs (g, θ) of a complex Lie
algebra g and a holomorphic involution θ. We get the setting for gR by taking the
Cartan involution, and we get the setting for g by considering g × g and θ(x, y) =
(y, x). Hence, this puts both situations into the same framework and emphasizes
that all objects are holomorphic.

Let us analyze the example of the split real form sl2(R). We will see the necessity
of using Kθ, and not only K = exp(k).
Example 5.2. Consider gR = sl2(R). The Cartan decomposition is given by

sl2(R) = so(2)⊕ pR

where pR = {A ∈ sl2(R) ∣ AT = A} is the set of symmetric matrices. Thus, a matrix
in p is given by

(5.2) (a b
b −a)

for a, b ∈ C. Further, we have K = SO(2,C) and Kθ = O(2,C).
A direct computation gives that two matrices A and B in p commute iff B = µA

for some µ ∈ CP 1 (µ =∞ means that (A,B) = (0,B)).
In the zero-fiber, we have nilpotent matrices in p, so we have a2 + b2 = 0 using

the parametrization from Equation (5.2). Hence we have b = ±ia and we get two
possibilities:

(5.3) a(1 i
i −1

) or a( 1 −i
−i −1

) .

Let us first compute the action of K = SO(2,C). An element of K is of the form
( cos t sin t
− sin t cos t ) where t is a complex parameter. One computes that the action of this

element on a nilpotent matrix is given by multiplication by cos(2t) + i sin(2t) which
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can be any non-zero complex number (recall that t ∈ C). Therefore, in the list (5.3)
we can choose a = 1 using the SO(2,C)-action.

We see that there are two nilpotent K-orbits which would give two components in
the zero-fiber of the punctual Hilbert scheme for sl2(R). Using the conjugation by
Kθ = O(2,C), the two matrices from Equation (5.3) are O(2,C)-conjugated to each
other. So we get only one principal nilpotent Kθ-orbit.

Let us analyze some properties of the Hilbert scheme Hilb(gR). First, there is a
natural map

(5.4) Hilb(gR)→ Hilb(g)
coming from the inclusions p ⊂ g and Kθ ⊂ G. This map is injective since G-
conjugated points in p are Kθ-conjugated.

Using this inclusion, we can define an idealic map by composition Hilb(gR) →
Hilb(g)→ Ig. For sl2(R), this gives as one might expect

(( 1 i
i −i ) , µ ( 1 i

i −i ))↦ ⟨x2, y − µx⟩ .
In analogy with the complex case, we conjecture that modulo some identifications

of points, Hilb(gR) is a resolution of (a×a)/W (a) and is covered by charts associated
to the nilpotent orbits of gR. Note that by the Kostant-Sekiguchi correspondence,
the nilpotent K-orbits in p are in bijection to the nilpotent orbits in gR. Thus, the
second statement generalizes Conjecture 1.23 to the real case.

In the case of a split real form, our Hilbert scheme gives in fact nothing new:

Theorem 5.3. For the split real form gsplit, we have

Hilbreg(gsplit) ≅ Hilbreg(g).
Proof. The split form has one key property which makes the link to g: the Cartan
subalgebra h of g can be chosen to be the baby Cartan a ⊂ p. In particular, the real
rank of gsplit is the same as the rank of g.

Consider the open dense part of Hilbreg(g) where the first element in a pair
[(A,B)] is regular. Then we can quotient out the G-conjugation action on the
first element to get

Hilbreg(g) ≅ greg/G ×Crk g

since Z(A) ≅ Crk g. The same argument applied to gsplit yields

Hilbreg(gsplit) ≅ p/Kθ ×Crk gsplit .

Now, we have
greg/G ≅ h/W = a/W (a) ≅ p/Kθ

where we used a = h, and rkg = rkgsplit.
Therefore we get a bijection between the two Hilbert schemes. �

Let us analyze the functorial behavior for Hilb(gR). The two natural maps from
Subsection 1.4 generalize. In [KR71], Theorem 11, Kostant-Rallis prove the exis-
tence of a principal sl2-triple (e, f, h) in p (unique up to Kθ-action) and provide a
principal slice given by e+Z(f). Hence, we can imitate exactly the argument which
gave Equation (1.2) to get a map

Hilbreg(sl2)→ Hilbreg(gR).
As in the case for complex g, there is a map µ2 ∶ Hilbreg0 (gR) → C which to

[(A,B)] associates the unique complex number µ2 such that A−µ2B is not principal
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nilpotent. The proof is completely analogous to the one of Proposition 1.21 using
[KR71], Theorem 5.

5.3. gR-complex structures. Once we have the notion of a punctual Hilbert scheme
associated to gR, it is straight forward to define a gR-complex structure, imitating
Definition 3.1:

Definition 5.4. A gR-complex structure on Σ is a K-gauge class of matrix-
valued 1-forms which locally can be written as Φ1(z)dz + Φ2(z)dz̄ ∈ Ω1(Σ,p), such
that [(Φ1(z),Φ2(z))] ∈ Hilbreg0 (gR) and µ2µ̄2 ≠ 1.

From the inclusion Hilb(gR)↪ Hilb(g) we get:

Proposition 5.5. A gR-complex structure induces a g-complex structure. In par-
ticular it induces a complex structure.

Proof. The inclusion Hilb(gR)→ Hilb(g) (see Equation 5.4) stays true on the level of
the regular part of the zero-fiber. Hence, by the definition, a gR-complex structure
induces a g-complex structure. The rest follows from Proposition 3.2. �

Next, we wish to define higher diffeomorphisms and the moduli space. As for g,
we have to use an embedding of gR into some slm(R) which always exists by Ado’s
theorem.

Fix some inclusion gR ↪ slm(R) inducing an inclusion p↪ slm(C). By simultane-
ous diagonalization inside slm(C), a pair [(A,B)] ∈ Hilbreg(gR) gives m points in C2

(the coordinates of these points being the eigenvalues of (A,B)). These m points
satisfy some symmetry property, expressing the fact that they come from Hilb(gR).

In analogy with Definition 4.1, we define a higher diffeomorphism of type
(gR, ρ) as a Hamiltonian diffeomorphism of T ∗Σ whose extension to T ∗CΣ preserves
this symmetry property. For gR a real form of a classical Lie algebra g, we use the
standard inclusion. We restrict to classical types from now on.

Finally, we define the moduli space of gR-complex structures, denoted by
T̂gR , as the equivalence classes of gR-complex structures under the action of higher
diffeomorphisms of type gR.

Since a gR-complex structure induces a complex structure (see Proposition 5.5), we

get a map from T̂gR to Teichmüller space. Using the map Hilbreg(sl2)→ Hilbreg(gR)
(see paragraph before 5.3), we get an injection from Teichmüller space into T̂gR .
Further, we get the following theorem:

Theorem 5.6. There is a map
T̂gR → T̂g

which is an isomorphism for the split real form gsplit.

Proof. Equation (5.4) gives the map between the corresponding Hilbert schemes.
Further, a higher diffeomorphism of type gR is always a higher diffeomorphism of
type g.

Consider now the split real form. By Theorem 5.3, we have Hilbreg0 (gsplit) ≅
Hilbreg0 (g). This implies that a gsplit-complex structure is the same as a g-complex
structure.

Finally, we prove that a higher diffeomorphism of type gsplit is the same as a
higher diffeomorphism of type g. Again by Theorem 5.3, the possible eigenvalues
of a pair [(A,B)] ∈ Hilbreg(gsplit) are the same as for a pair in Hilbreg(g), since
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both are in bijection. So the extra symmetry which has to be preserved by a higher
diffeomorphism is the same. The equivalence between the two notions of higher
diffeomorphisms, and thus of the two moduli spaces follows. �

It would be very interesting to compute the moduli space for a non-split real form.
In [GPR18], the authors construct an analogue to the Hitchin fibration between

the moduli space of GR-Higgs bundles and the Hitchin base, using invariant poly-
nomials. They also construct a section to this fibration, called the Hitchin-Kostant-
Rallis section. In the split real case, this simply gives the Hitchin section.

We close by enlarging Conjecture 4.8 about the link between our moduli space
and Hitchin’s component to the following:

Conjecture 5.7. Our moduli space T̂gR is canonically homeomorphic to the image
of the Hitchin-Kostant-Rallis section.

Note that the image of the HKR-section through the non-abelian Hodge corre-
spondence is not in general a component in the character variety Rep(π1(Σ),GR).

To attack this conjecture, one should either try to generalize the techniques de-
veloped in [Th20] (where several steps for the case sln(C) has been proven), or to
use a representation ρ ∶ g → slm(R) and Theorem 5.6 to recast the problem in the
realm of slm(C).

Appendix A. Punctual Hilbert schemes revisited

In this appendix, we review the punctual Hilbert scheme of the plane with its
various viewpoints. Main references are Nakajima’s book [Na99] and Haiman’s paper
[Ha98].

A.1. Definition. To start, consider n points in the plane C2 as an algebraic variety,
i.e. defined by some ideal I in C[x, y]. Its function space C[x, y]/I is of dimension
n, since a function on n points is defined by its n values. So the ideal I is of
codimension n. The space of all such ideals, or in more algebraic language, the
space of all zero-subschemes of the plane of given length, is the punctual Hilbert
scheme:

Definition A.1. The punctual Hilbert scheme Hilbn(C2) of length n of the
plane is the set of ideals of C [x, y] of codimension n:

Hilbn(C2) = {I ideal of C [x, y] ∣ dim(C [x, y] /I) = n}.
The subspace of Hilbn(C2) consisting of all ideals supported at 0, i.e. whose as-
sociated algebraic variety is (0,0), is called the zero-fiber of the punctual Hilbert
scheme and is denoted by Hilbn0(C2).

A theorem of Grothendieck and Fogarty asserts that Hilbn(C2) is a smooth and
irreducible variety of dimension 2n (see [Fo68]). The zero-fiber Hilbn0(C2) is an
irreducible variety of dimension n − 1, but it is in general not smooth.

A generic element of Hilbn(C2), geometrically given by n distinct points, is given
by

I = ⟨xn + t1xn−1 +⋯ + tn,−y + µ1 + µ2x + ... + µnxn−1⟩ .
The second term can be seen as the Lagrange interpolation polynomial of the n
points.
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A generic element of the zero-fiber is given by

I = ⟨xn,−y + µ2x + ... + µnxn−1⟩ .

A.2. Resolution of singularities. Given an ideal I of codimension n, we can
associate its support, the algebraic variety defined by I, which is a collection of
n points (counted with multiplicity). The order of the points does not matter, so
there is a map, called the Chow map, from Hilbn(C2) to Symn(C2) ∶= (C2)n/Sn,
the configuration space of n points (Sn denotes the symmetric group). A theorem
of Fogarty asserts that the punctual Hilbert scheme is a minimal resolution of the
configuration space.

In order to get a feeling for a general Lie algebra, notice that n points of C2 is
the same as two points in the Cartan h of gln, and that the symmetric group is the
Weyl group W of gln. So the configuration space equals h2/W for g = gln.

A.3. Matrix viewpoint. To an ideal I of codimension n, we can associate two
matrices: the multiplication operators Mx and My, acting on the quotient C[x, y]/I
by multiplication by x and y respectively. To be more precise, we can associate a
conjugacy class of the pair: [(Mx,My)].

The two matrices Mx and My commute and they admit a cyclic vector, the image
of 1 ∈ C[x, y] in the quotient (i.e. 1 under the action of both Mx and My generate
the whole quotient).

Proposition A.2. There is a bijection between the Hilbert scheme and conjugacy
classes of certain commuting matrices:

Hilbn(C2) ≅ {(A,B) ∈ gl2n ∣ [A,B] = 0, (A,B) admits a cyclic vector}/GLn
The inverse construction goes as follows: to a conjugacy class [(A,B)], associate

the ideal I = {P ∈ C[x, y] ∣ P (A,B) = 0}, which is well-defined and of codimension
n (using the fact that (A,B) admits a cyclic vector). For more details see [Na99].

It is this bijection which we use in the main text to generalize the punctual Hilbert
scheme. Notice that the zero-fiber of the Hilbert scheme corresponds to nilpotent
commuting matrices.

A.4. Reduced Hilbert scheme. We wish to define a subspace of Hilbn(C2) cor-
responding to matrices in sln in the matrix viewpoint. A generic point should be a
pair of points in the Cartan h of sln modulo order. This corresponds to n points in
the plane with barycenter 0.

Definition A.3. The reduced Hilbert scheme Hilbnred(C2) is the space of all
elements of Hilbn(C2) whose image under the Chow map (n points with multiplicity
modulo order) has barycenter 0.

With this definition, we get

Proposition A.4.

Hilbnred(C2) ≅ {(A,B) ∈ sl2n ∣ [A,B] = 0, (A,B) admits a cyclic vector}/SLn.

Finally, it can be proven that the reduced Hilbert scheme is symplectic and that
the zero-fiber Hilbn0(C2) is a Lagrangian subspace of Hilbnred(C2).
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Appendix B. Regular elements in semisimple Lie algebras

In this appendix, we gather all properties we need in the main text of regular
elements in semisimple Lie algebras and we give precise references for these results.
The main references are the books of Collingwood and McGovern [CM93], Steinberg
[St74] and Humphreys [Hu95], as well as the papers [Ko59] and [Ko63] by Kostant.

Definition B.1. An element x ∈ g is called regular if the dimension of its central-
izer Z(x) is equal to the rank of the Lie algebra rk(g). A regular nilpotent element
is called principal nilpotent.

Remark. Notice that in older literature, regular elements are defined in another
way, using the characteristic polynomial of the adjoint map. The “old” notion in-
cludes only semisimple regular (in the sens above) elements.

The condition that the dimension of the centralizer has to be equal to the rank,
does not come from nowhere: in fact it is the minimal possible dimension.

Proposition B.2. For any x ∈ g, we have dimZ(x) ≥ rk(g).

See for example Lemma 2.1.15. in [CM93].
For the Lie algebras gln and sln, we have the following characterization of regular

elements from Steinberg [St74], Proposition 2 in Section 3.5:

Proposition B.3. For g = gln or sln and x ∈ g, we have the following equivalence:

x is regular⇔ µx = χx⇔ x admits a cyclic vector

where µx and χx denote respectively the minimal and the characteristic polynomial
of x, seen as a matrix.

Let us turn to the study of regular elements which are nilpotent.

Theorem B.4. There is a unique open dense orbit in the nilpotent variety consisting
of principal nilpotent elements.

The original proof is due to Kostant, see Corollary 5.5. in [Ko59]. See also
Theorem 4.1.6. in [CM93].

There is a useful characterization of principal nilpotent elements in coordinates.
For this, fix a root system R, and a direction giving the positive roots R+. Denote
by (eα)α∈R a basis of g given by root vectors. Denote by n+ the positive nilpotent
elements generated by (eα)α∈R+ (for sln, we get upper triangular matrices).

Proposition B.5. Let A ∈ n+. Then A = ∑α∈R+ Aαeα is principal nilpotent iff Aα ≠ 0
for all simple roots α.

This proposition can be found in [Ko59], Theorem 5.3.
For a principal nilpotent element f , its centralizer Z(f) has properties quite

analogous to a Cartan, the centralizer of a regular semisimple element:

Theorem B.6. For f a principal nilpotent element, its centralizer Z(f) is abelian
and nilpotent.

Kostant proves even more, using a limit argument: for any element x ∈ g, there
is an abelian subalgebra of Z(x) of dimension rkg, see [Ko59], theorem 5.7. The
nilpotency of Z(f) can be found in [St74], corollary in Section 3.7. The more precise
structure of Z(x) for any nilpotent x is described in [CM93], Section 3.4.
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A principal nilpotent element permits to give a preferred representative of a con-
jugacy class of regular elements. Given f principal nilpotent, denote by e the other
nilpotent element in a principal sl2-triple constructed from f (see Kostant [Ko59]).
Then we get

Proposition B.7. Any regular orbit intersects f + Z(e) in a unique point. So we
have greg/G ≅ f +Z(e).

This follows from Lemma 10 of [Ko63]. The set f +Z(e) is called a principal slice
of g (also Kostant section).

We are now going to “double” the previous setting. Define the commuting variety
to be Comm(g) ∶= {(A,B) ∈ g2 ∣ [A,B] = 0}.

Theorem B.8 (Richardson). The set of commuting semisimple elements is dense
in the commuting variety Comm(g).

See the paper of Richardson [Ri79] for a proof. As a consequence, Comm(g) is
an irreducible variety, but highly singular.

With this, we can explore the minimal dimension of a centralizer of a commuting
pair:

Proposition B.9. For (A,B) ∈ Comm(g), we have dimZ(A,B) ≥ rkg.

Proof. Consider the set M of elements with centralizer of minimal dimension. Since

M = {(A,B) ∈ Comm(g) ∣ rk(adA, adB) maximal}
we see that M is Zariski-open. By the theorem of Richardson it intersects the space
of semisimple pairs for which the common centralizer is a Cartan h, so of dimension
rkg. �

Appendix C. Haiman coordinates

We already mentioned a uniform way to get coordinates in the chart of Hilbn(C2)
associated to a Young diagram D. These are described by Haiman in his paper
[Ha98]. We describe them here for completeness and to give a detail of its symplectic
structure which seems to be new.

The construction of Haiman’s coordinates goes as follows: For each box Bx ∈ D
consider the rightmost box Br ∈D in the same row as Bx and the bottommost box
Bb ∈D in the same column as Bx (see Figure 5). The box Br+1 to the right of Br is
not in D, so gives a linear combination of boxes in D. Denote by bx,r the coefficient
of Bb in this linear combination. Similarly, denote by bx,b the coefficient of Br in the
linear combination associated to the box Bb+1 at the bottom of Bb. Haiman shows
that the set {bx,r, bx,b}x∈D is a coordinate system.

Bx Br

Bb

Br+1

Bb+1

Figure 5. Haiman’s coordinates

One can try to write the symplectic structure in the Haiman coordinates. In
general, this gives a quite complicated expression. In one special case, the situation
is easy:
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Proposition C.1. If the Young diagram is a rectangle, then Haiman’s coordinates
{bx,r, bx,b}x∈D are canonical coordinates with respect to the symplectic structure of
the punctual Hilbert scheme.

The idea of the proof is to compute the symplectic form in the basis adapted to
the Young diagram.

Proof. The symplectic structure of the punctual Hilbert scheme comes from the
canonical symplectic structure of C2n given by ω = ∑i dxi ∧ dyi. Consider the mul-
tiplication operators Mx and My in the quotient C[x, y]/I where I is an element
in the Hilbert scheme (idealic viewpoint). Diagonalizing these operators give di-
agonal matrices with entries (x1, ..., xn) and (y1, ..., yn). Hence we can express the
symplectic structure by

ω =∑
i

dxi ∧ dyi = trdMx ∧ dMy.

Changing to the base adapted to the Young diagram D (basis generated by mono-
mials xiyj where (i, j) ∈ D), the matrix Mx becomes a matrix Nx with entries 1 on
the line under the diagonal, apart from some columns where the linear combination
associated to some Br+1 is written. Similarly, the matrix My becomes a matrix Ny

where the only columns which are non-constant are the last ones where the linear
combination associated to the Bb+1 are written.

If we denote by T the transition matrix, we get d(TMxT −1) = d(T )MxT −1 +
Td(Mx)T −1 + TMxd(T −1). A lengthy but straight forward computation, using the
cyclicity of the trace and the fact that Mx and My commute, shows that

trMx ∧My = trd(TMxT
−1) ∧ d(TMyT

−1) = trNx ∧Ny.

Let us now use the fact that the Young diagram is a rectangle, say with k rows
and l columns. By definition of the Haiman coordinates, we can compute where
they appear in Nx and Ny. For α ∈ [1, ..., k] and β ∈ [1, ..., l], we get

(Nx)l(k−1)+β,αl = b(α,β),r and (Ny)αl,l(k−1)+β = b(α,β),b.
Finally, since the only non-zero rows of dNx are those in position αl and the only

non-zero columns of dNy are those in position l(k−1)+β, we see that trdNx∧dNy =
∑x∈D dbx,r ∧ dbx,b. Therefore we conclude:

ω = trdMx ∧ dMy = trdNx ∧ dNy = ∑
x∈D

dbx,r ∧ dbx,b.

�
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