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FOLIATIONS ON 3-MANIFOLDS

A report on D.Gabai's work
by .

Ulrich Hirsch

It is well-known that every compact 3-manifold, M , (under
certain conditions on 3M ) admits a foliation of codimension
one. The proof of this result (in the closed orientable case)
relies heavily on the fact that every such manifold can be
obtained by Dehn surgery on a braid in the 3-sphere. This in
turn implies that all foliations constructed in this way
necessarily do admit a Reeb component. Indeed, by the work of
S.P.Novikov, Reeb components cannot be avoided in any foliation
on M when the fundamental group of M is finite. |

Consequently, it is an intéresting problem to characterize
in some way all those compact 3-manifolds which admit a foliation
0of codimension one without Reeb components. In its generality
this problem is still unsolved although meanwhile there are
many contributions to it, mainly in the direction to generalize
" the condition on the fundamental group of M for the necessary
existence of a Reeb component; see for instance.....

D.Gabai's work, however, must be considered as a very

important step towards a complete solution of the above stated
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problem. In [GaIll he proves the following.theorem:

Let M be a compact irreducible oriented 3-manifold
whose boundary is a (possibly empty) union of tori. Let § be
any norm minimizing surface in (M,5M) such that [S] € HZ(M,BM)
is non-trivial. Then there exists a codimension-one foliation,

F , on M without Reeb components and such that F is trans-
verse to 38M and contains S as a leaf. Moreover, if S is
not a torus then F is smooth.

A more detailed version of this theorem, again.:due to Gabai,
and some of the most striking consequences following from it
will be given in chapter III.

Note that, by work of Thurston, any compact leaf in a
foliation without Reeb components is norm minimizing, snd, by
results of Alexander and Rosenberg, the underlying manifold must
be irreducible; [Al], [Ro]. Also a standard argument using the
Euler characteristic shows that the condition on the non-triviality
of [S] cannot be dropped.

These notes refer mainly to the paper [Gal]. They are based
on lectures I gave at the University.of Bielefeld in 1985 and
are organized as follows:

In chapter I we study the basic theory of coloured 3-mani-
folds. (Gabai calls them "sutured" 3-manifolds, but the sutures
do not play any role in our context.) The éentral result here
will be the proof of the existence of a suitable splitting
surface in any taut coloured 3-manifold such that the decomposed
manifold is again taut. (For unexplained definitions see chp.I,

§ 4 and 5.)
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In chapter II we adapt the classical concept of Haken
hierarchies to coloured manifolds and show the existence of
coloured manifold hierarchies. This will be done in an inductive
way of proof using the notion of complexity for taut coloured
manifolds.

Coloured manifold hierarchies are used in chapter III to
construct the desired foliations. After having performed these
constructions we shall discuss some corollaries following from the

existence of such foliations.






CHAPTER I

Coloured 3-manifolds-basic theory and decomposition theorem
1. Preliminaries

2. Incompressibility

3. The Thurston norm

4. Coloured 3-manifolds

5. Coloured manifold decompositions

6. The coloured manifold decomposition theorem






1. Preliminaries

The goal of this first chapter is thevproof of the decom-
position theorem for taut coloured 3-manifolds (see 6.1). This
provides the first of threesmain steps by which the principal
result of these notes is composed.

Although most often the 3-manifold M under conside-
ration will be connected we also have to deal with non-
connected compact 3-manifolds. Whenever this occurs and it
is essential for the argument that M 1is not necessarily
~connected we will point out this fact by speaking of a

3-manifold system.

A surface is always connected. If we have to do with
a not necessarily connected compact 2-manifold then we refer

to it as a surface system. #

1.1. - Orientations. In what follows all 3-manifolds M and

surfaces are smooth and oriented. Then &M supports an induced

orientation which is determined by the requirement that the
normal to 3M be pointing outwards of M .

Also when S 1is a properly embedded orientable surface
in M then fixing an orientation of S amounts to choosing

a normal direction to S . We then can speak of the right

+ For definitions concerning 3-manifolds and surfaces related
to them we refer the reader to the books [Hel, [Jal and [JS]

of Hempel, Jaco and Shalen.



(resp. left) hand side of S
Note that 39S , if non-empty, also carries an orientation
which is determined by that of S in just the same way as

that of &8M above.

1.2. - Gluing. Suppose we are given 3-manifolds M

and M1 and a diffeomorphism

@ : Ro —_— R1

where Ri is a system of compact surfaces in aMi, i=20,1,

possibly with non-empty boundary. Then

v
(0]

and M

denotes the manifold obtained by gluing together My 1

by means of ¢
If MO and M1 are oriented and ¢ 1is orientation
preserving then we obtain an orientation of N by changing

the orientation of M but nct that of 3M

1 1"
Similarly, when Si denotes a properly embedded surface

system in ‘Mi meeting Ri transversely and such that o

maps S, N R, diffeomorphically onto 8, N R, then

S = S0 u S1 is a properly embedded surface system in M .
Moﬁeover, smoothing the corners possibly arising in this
process all of N, R = R0 = R1 and S become smooth.
The case most interesting for us is when M, = M

0 17



and ¢ = id . The resulting manifold is then referred to as

the double of M along R(= R0 = R1) .
1.3. - Transversality. In what follows we always

require that surfaces in M occuring in the argument inter-
sect one another transversely. In particular, any proper
surface S meets the boundary ocf M transversely. More-
over, 1f R 1s a compact subsurface of 3M arising from
context then S 1is required to be transverse to R and to
3R .

Note that transversality can always be established by
an arbitrarily small isotopy of one of the involved surfaces.
Actually, all we do in the sequel is independent of such

small 1sotopies.

1.4. - Modifying transverse surfaces. Let M be a

compact oriented 3-manifold, possibly -with &M # ¢ and let
K be a surface system in M , possibly with 23K # ¢
Suppose that S and T are properly embedded 6riented
surface systems such that 23S U 3T <« int K . We modify §
and T in a neighbourhood of S N T so as to obtain a new
oriented surface system, denoted S>cT , with the following

properties:
(1) [s>cT] = [S] + [T] € H,y(M,K) ,

(2) x(8§2=T) = x(8) + x(7T)



By transversality, S N T consists of finitely many arcs
and circles. Let ¢ be any such component. Then in a neigh-

bourhood of ¢ , S U T 1looks like X x ¢ , where

X = {({x,y) Eimz | -1 s x,y s1,x=0 or y =20}

We now modify S and T by replacing X x ¢ by X' x c ,

where

X'={(x,y) € R°|0sxys1, (x=-1)2+(y=-1)%=1 or (x+1)+(y+1) %=1}
or by X" x ¢ , where
X" = {(x,y) EIR2|-15xy$0,(x+1)2+(y—1)2=1 or (x~1)2+(y+1)2=1} '

according as S and T are (transversely) oriented as

indicated in fig.1 a) or b),.

a) ///<4>

b)
Figure 1



It is clear from this construction that conditions (1)

and (2) hold.

1.5. - The Pontryagin construction for proper surfaces

By our discussion above, an orientation of a surface
system S in an oriented 3-manifold is the same as choosing
a normal field or, what is the same, a framing of S . If §
is proper and 3S # @ then, by our transversality convention,
a framing may be always found sc that its restriction on 38
is a framing of 35S < M

Pontryagin gave a construction which he used to prove the
following result. You can find this construction and a proof
of the theorem in Milnor's~book [Mi]. There you also find the
corresponding definitions. Although Milnor considers only the
case that § and M are closed the theorem holds for arbi-
trary surface systems which are transverse to the boundary

of M . Indeed, this generalization is routine work.

Theorem (Pontryagin [Po1], [Po2]) Let M be an orientable

compact 3-manifold. Then there exists a one to one corres-

pondence between homotopy classes of smooth maps of M to S1

and framed cobordism classes of framed surface systems in M .

Furthermore, every properly embedded orientable surface

system S in M is of the form S = £ '(t) for some smooth

map £ : M —> S1 and regular value t € S1 .




1.6. — Simple curves on surfaces. Later we shall

frequently use the following result on the homology of curves

in surfaces.

Proposition. Let V be a compact oriented surface,

possibly with 3V # § , and let C be a system of pairwise

disjoint proper curves in V such that one of the following

two conditions holds:

(1) 0 + [C] € H1(V,BV) and <C,c> = 0 for every

component ¢ of 3V

(2) V is planar and <C,c> *# 0 for at most two

COmEonents c of av

Then there exists a sequence of systems of pairwise

disjoint proper curves Coreees- ,Cp such that

Ch =C Ci+1 V] (-Ci) = OW, (mod 3V)

for some compact sub-surface W, of V (with orientation in-

herited from V ), and for some Kk € Z we have according as

(1) or (2) holds:

(1) Cp is a system of k ©parallel oriented simple closed
curves.
(2') Cp is a system of k parallel oriented proper arcs.




Proof. We first consider the case that {1) holds. Then
Cq is obtained from C0 = C Dby reducing the number of points
in C N 3V two by two as indicated in figure 2. If necessary
we iterate this process until we have a system of curves, Cj '

[+

consisting entirely of circles in V .

C, U (—CO) =W

0 mod 3V C2 = C

Figure 2

Now let W denote the closure of some component of
V—Cj . If more than two components of 3W come from different
components of Cj then two of these are cobordant in W to

a simple closed curve; see figure 3.



Figure 3

This shows that by a series oflreductions of the number of
components of Cj we obtain a system Cy such that the
boundary of every component of V-Ck has exactly two curves
belonging to Cp - This shows that (1') holds.

For the proof of (2') we can assume (possibly after a
series of reductions as above) that C 1s a system of proper

arcs such that
|< C,c >| = # (Cn c)

for every boundary curve ¢ of V . Then, since V. is planar,
any two arcs belonging to C are homologous mod 3V . We

conclude as in the proof of (1') to see that (2') holds.



1.7. - Existence of suitable homology classes.

In the decomposition thecorem (6.1) we have to find a
splitting surface S in M whose intersection with &M is
non-trivial in homology. The existence of such a surface is
based on 3.2, iii) together with the following general fact on

the homology of the pair (M,3M) .

Proposition. Let M # D3 be a ceompact oriented irreducible

3-manifold with M # ¢ and let 'R be a compact sub-manifold of

: =]
3M such that I = 3M-R consists of annuli and tori or is empty.

Then there exists o € Hz(M,aM) such that

(1) 0 # 3a € H_'(BM) ,

(2) for each non-planar component, V , of R and each component,

c , of 3V we have <a,[cl> =0,

(3) for each planar component V of R there exist at most two

components, ¢, and ¢, , of 3V such that

<a,[ci]> ¥ 0, 1i=1,2

Proof. Let k = % b1(3M)>0 be the number of handles of 3M

and let
J ¢ HZ(M,BM) —_— H1(BM)

be the boundary homomorphism. From the exact homology sequence

of (M,3M) we deduce



b3(M,aM)—bz(aM)+b2(M)—b2(M,8M)+ rank(im3) = 0 ,

and thus (as bO(M,aM)=0 and b2(M) = b1(M,3M))

rank (imj) x (M, aM) + b2(BM)

1

= bz(aM) -5 x (9M)
- 1

=3 b1(aM)

=k .

Now we choose generators for H2(M,3M)

a1,...,ak ' ak+1,...
in such a way that aa1,...,8ak are linearly independent in
H1(3M) @ R . We also select a maximal family of annuli AyreeeiBy
in I such that no component of M - U gi is planar. Clearly,
0sj=k-1, ad j =0 only if © = ¢ or all annulus com-
ponents of I 1lie on tori. In these cases conditions (2) and (3)
are, however, trivially fulfilled.

It follows that there exists an integer linear combination

a of the oy such that
<3&,Ci> = 0 for i = 1,ooolj ¥
where cy is any boundary curve of A
Let S be a proper surface system in M representing a .

We may assume that

VA, =
SN Al ¢



When S N Ai contains circles or proper arcs each of which
separates Ai , this can be achieved simply by pushing S off
Ai . If s n Ai consists of pairs of oppositely oriented
parallel arcs none of which is separating then we remove two
innermost of these arcs by attaching a square Q in Ai to S
and then pushing the surface so obtained along Q slightly into

o
M ; see figure 4. This process can be repeated.

Figure 4: Pushing the square Q into M

Let V be a component of R and let W be the component

of &M - UAi which contains V

If V is non-planar then, by the maximality of UAi Y
and W have the same genus. It follows that every boundary circle
of V 1is homologous in W to a union of boundary circles of W ;

see fig.5. Since 3W N S = ¢ this implies (2).



VoW

Figure 5

If VvV 1is planar then let c¢ be a boundary circle of VvV

1

such that <S,c1> + 0 ., Then) since S N 3W = ¢ , c1 is contained
=]
in W and is not homologous in W to a set of boundary curves of

W . We conclude that W-c is connected and, a second time by the

1
maximality of U Ai  the component of W-V containing = in
its boundary must be planar, with exactly one further boundary
circle, Co s belonging to V (see fig.6). It follows that
<S,c2> + 0 ,

Again by the maximality of U Ay o all other boundary curves

of V are null-homologous mod 3aW and thus have trivial algebraic

intersection with S . This proves (3).

VW

Figure 6



2, Incompressibility

According to Jaco [Ja] we use the following definition

of incompressibility.

2.17. - Definition. Let S be a surface system in M

whose components are either sub-surfaces of boundary components

or properly embedded. We say that S 1is compressible in M if

either S contains a 2-sphere bounding a ball or there exists
a disk D in M such that D N S = 3D and

0 # [3D] € = (So) , Where SO c S is the component

1
cohtaining 3D
Otherwise the system S 1is referred to as being

incompressible in M

Note that, by this definition, any system of properly

embedded disks is incompressible in M .

2.2, - Remarks. 1) If every component of a surface
system S 1s incompressible then clearly so is S . It is
not hard to see that the converse of this statement is also
true. We leave this as an exercise to the reader.

ii) (Cf. [He; 6.1 and 6.2]) Suppose as always that M
and S are orientable. Then S incompressible implies that
for each component SO of S the inclusion of Sy in M
induces an injection “150 —_ n1ﬂ of fundamental groups.

Conversely, if ker(n1S0 _— n1M) = 1 for some

non-spherical component So of S then 5o is incompressible.



iii) Suppose that the 3-manifold N 1is obtained by
gluing together (M,K) and (M',K') by means of a homeo-
morphism between K and K' , where K (and similarly K' )
is a surface system in 9M , possibly with 3K #% ¢ . Then
K = K' 1is incompressible in N if and only if K and K’
are incompressible in M resp. M'

iv) Moreover, if K 1is incompressible in N then N
islirreducible if and only if both M and M' are irreducible.

Statements i), iii) and iv) are proved by standard argu-
ments and are left as exercises to the reader. A proof of ii)
involves the Loop theorem. Note also that N need not be

irreducible when K or K' 1is compressible in M resp. M'

2.3. - Boundary incompressibility. ©Let K < 3M be as

above and let S be a properly embedded surface system in
M with S N K = 3S

We say that § 1is K-compressible if either there exists

a disk component of S which is parallel to a disk in K or
there exist a component S0 ¥ D2 of S§ and a disk D in M

such that

4

is an arc in 3D and

3 =c U d, ¢ n.d

t
@
Q

L}
a
o3



where d is an arc in K and either S0 is separated
by c¢ , in which case none of the resulting surfaces is a
disk, or ¢ does not separate S0 ; see fig. 7.

Otherwise we call S K-incompressible.

When K = 3M , we simply write 3-compressible resp.

d-incompressible and say that S 1is boundary compressible

resp. boundary incompressible.

Figure 7

Again it is not hard to see that in case S 1is in-
compressible the K-incompressibility of S 1s equivalent

to the K-incompressibility of each of its components.

2.4, - Compressions. 1) Let (M,K) be as above and

suppose we are given a surface system S with S N K = 35



and such that every component of S 1is either contained

in 3M or is properly embedded.

0 # 82 is a compressible component of S then we

If S
can "compress" S0 by means of a spanning disk in the usual
way so as to obtain from S0 a new surface system 86
{(consisting of one or two components) and leaving S - S0
unchanged. This process is described in detail for instance
in [ 1; compare also 2.2, 1i).

The system 86 and similarly the system (S - SO) u Sé
enjoys the following properties:

(1) Sy 1is homologous to S, rel K
(2) x(SO) = x(SO) + 2
(3) If S0 is a torus then 86 is a sphere. Thus

[SO] = 0 € HZ(M,K) when M is irreducible.

(4) .If S is an annulus then Sé consists of two disks.

0

Therefore if K 1is incompressible and M 1is irreducible

then again [SO] =0

(5) If S is a punctured torus then Sé is a single disk
or consists of a disk and a torus. If K is incompressible
and M 1is irreducible then it follows that {SO] =0
or [SO] # 0 and is represented by a torus in M

2

ii) In a similar way we proceed when S, % D is

0
K-compressible. We have that

(1) Sy 1s homologous to S, rel X ,



(2)  x(sy) = x(5y) + 1,

(3) if 'So is an annulus then S! is a disk. So if M

is irreducible and K is incompressible then

[SO] =0 € HE(M,K) .

3. The Thurston norm

3.1. - Definitions and remark. 1) Let S

be a properly

embedded surface in M We define the Thurston seminorm of

S (or the norm of S for short) by

4
0 if S =D or S = §

|x (S)| otherwise.

-

When S = U Si , Where the Si are connected, we define

Isil = Ilsl

i

ii) Now let (as always in these notes) K be a



2-dimensional submanifold of &M , possibly with 23K # ¢

For a € HZ(M,K;Z) we define

[l @ || = min {||s||; (5,38) properly embedded in (M,K),[S]l=a}

Note that a system S with [S] = o« always exists.

iii} The surface system S 1s called norm minimizing

if the following conditions are satisfied:

(1) S 1is incompressible,
(2) no proper sub-system of S 1is null-homologous rel K ,
3y s [l = [t [s]] .

When S 1is a surface system satisfying condition (3)
then a sub-system of S which is null-homologous consists
only of components with non-negative Euler characteristic.

In general, (1) is not a consequence of {(2) and (3).
However, when M 1is irreducible, K 1is incompressible and
S 1is not a null-homologous torus, annulus or sphere then (1)

can be deduced from (2) and (3); cf. 2.4,

3.2. - Examples and observations. i) Let M = Tx[-1,1]

where 1T is a compact (oriented). surface with 3T % ¢ and

x(T) <0 . Then S§ =T x {0} is incompressible. If K = 3M



or K=Tx {-1,1} then S is not norm minimizing. However,
if K = 23T x [-1,1] then S 1is norm minimizing in (M,K)
"ii) If S is norm minimizing then obviously so is

any sub-system of S . On the other hand, if S and T are
(disjoint and) norm minimizing then evidently T U S need
not be norm minimizing.

iii) Let o € HZ(M,K;Z) . If K = ¢ suppose that
« # 0 . Then o 1is representable by a norm minimizing
surface system.

Indeed, when o = 0 any properly embedded K-compressible
disk is a norm minimizing representative of a . Otherwise,
among all possible surface systems T with [T] = o # 0
choose one satisfying conditions (2) and (3) of 3.1, iii).
Then either this T is automatically incompressible or we
can perform on T the necessary compressions in order to
make it incompressible, without changing the norm of T .
Thus in both cases we obtain a norm minimizing representative
of «o

iv) If S is norm minimizing and [S] # 0 then every
component S0 of S with x(SO) # 0 1is K-incompressible.
Indeed, when S0 is a disk this follows from 3.1, iii),
condition (2), and when x(SO) < 0 it follows from 2.4, ii),
(3). Recall also 2.4, ii), (3).

v) It should be clear that the Thurston norm is not a
genuine norm on HZ(M,K) . Indeed, every incompressible torus
or annulus gives rise to an element a € H2(M,K) with

l || = 0, but in general o« * 0 .



On the other hand, when M is irreducible, closed and

atoroidal (i.e. does not contain any incompressible torus)

then || a || = 0 implies « = 0
3.3. - Disks and spheres in modified norm minimizing
systems

When (S,3S) and (T,3T) are (properly embedded,
oriented, transversely intersecting) surface systems in (M,K)
we denote by |S N T| the number of components of S n T
(recall 1.3). By é(% etc.) we denote that part of S con-
sisting bnly of those components which are neither disks nor
spheres.

We are interested in the behaviour of disks and spheres

of S and T under modification.

Lemma. - Let S and T be norm minimizing such that

|]S n T| is minimal under homology rel K . Then the disk

(sphere) components of S o= T were already disk

(resp. sphere) components of S U T . In particular, we have

that

x (S :ACT) z x(é) + X('E') .

Proof. To begin with, we show that in S > T no new
disks are created. For that let us assume to the contrary
that D 1is a disk component of S o= T but not of § or

T . Then D stems from a disk D' that is embedded in

L4



S UT ; the situation is schematized in fig. 8. In D' we

have proper arcs and circles

Figure 8

which are components of S N T . We distinguish between two
cases.

First assume that D' contains no circles of S n T
in its interior. Then let d « S N T be an outermost arc
in D' . Then d dissects D' into two disks one of which,

D, , does not contain any further arc component of S n T

0

Let us say without loss of generality that Dy = 5
Clearly, 4 belongs also to a component, Ty o of T

We can therefore compress T0 along D and thus obtain a

system T' such that
[T'] = [T] € H,y(M,K;%) and [§ n T'[<|s n T

But, by 3.2, iv), TO is either an annulus or X(TO) ¥ 0

and TO is K-incompressible.



In the first case, T' 1is again norm minimizing. In
the second case, the arc d must split off a disk from Ty
whence it also follows that T' is norm minimizing. This
provides the desired contradiction to the minimality of
ls n 1| . |

Secondly, we assume that 1int D' contains at least
one circle component of S N T . Let ¢ be an innermost of
these circles. Then c¢ bounds a disk D, < D' which lies

0

entirely, say, in S . On the other hand, 3D also lies in

0

scme component, T0 r of T and thus we can compress TO

along D0 . It follows from the incompressibility of TO
that the system T' arising from T in this way is again

norm minimizing. Since obviously
s nT'| < |snT|

we again have a contradiction.

The investigation of a sphere component of S o= T goes
similarly.

Finally, the relation between the Euler characteristics

is now easily deduced.

Corollary. If S and T are norm minimizing and

diskless (resp. sphereless) and |S N T| is minimal then
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S = T 1s diskless (sphereless).

3.4. - Homogeneity and subadditivity. In the next

proposition we denote for n € N by nS an oriented surface
system consisting of n parallel copies of the originally
given oriented surface system S in (M,K)

Proposition. i) |l noaf| = n|ja|| for all n € Z and

eéerx o € HZ(M,K;Z)

ii) || a+B]|| 5[] || +]} B]| for all «a,8 € H,(M,K;Z)

Proof of i). Clearly, we may assume that o # 0 and

n EN . et S and T be norm minimizing surface systems

such that

[8] = o and [T] = na .

By 1.5, there are smooth maps f,g : M —> S1 such

that

(1) and T

g (1 .

Furthermore, we may assume that the n-th roots of unity

C1 = T'CZ"""Cn are all regular values df f .

Denote by g : S1 _— S1 the covering map given by

gl(z) = 2" for =z € S‘I c T . Since
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[T] = [nS] = [(g°f) (D] € H,(M,K) ,

1 -1

the systems T and (gef) (1) = U f (c;) are framed

u
. i

cobordant. Therefore the maps f = gqef and g are homo-
topic. It follows by homotopy lifting that there exists a

> S1 homotopic to £ and with qoé =g

map é t M

~

Now with T, = g_1(;i), i=1,...,n , we have that

T=g (1) =uT,
1

Since £ and g are homotopic, we know from 1.5 that

[s] = [Ti] for i=1,....,n

Consequently,

ool = {l I3l = {l ol =} oy li 2]l

i

IS

|| [s1]]

1l
[ TR SR e B R A

I all



On the other hand, since

T and nS are homologous

rel K and S and T are norm minimizing, we see that

Ina |l = [l Tl < |Ins] =

This establishes 1i).

Proof of ii). We assume

minimizing representatives S

respectively. Then by 3.3, we

[ a+8f| <] 8 == T

nlf sll = nll «ff .

that «,8 # 0 and take norm
and T of a« and B8 ,

obtain

o ll + 1 8 1]

Corollary. When S 1s norm minimizing then so is ’

nS for any n € Z-{0}



3.5. - Extending the Thurston norm. We recall two important

facts on seminorms; for a proof see Thurston [Th] and Fried [Fr].

Proposition. i) A seminorm on 2" with values in z,

extends uniquely to a seminorm on B" with values in R,

n

ii) A seminorm || || : R > R, takes integer values

on Z" if and only if there is a finite set T < Hom{Zn,z) such

that

Hx || = max [y (x)]|
Yy €T

Consequence. For the extended Thurston norm on HZ(M,K; R)

the unit ball B is a finite convex polyhedron and the domains
where equality holds in the triangle inequality are precisely the

cones over the faces of 3B with the origin as vertex; see fig. 9.

domain of equality

Figure 9
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3.6. - Exercises. 1) Find (M,K) and a properly embedded
surface S with 98S €< K and [S] # 0 which is norm minimizing
but not K-incompressible.

ii) PFind (M,K) such that the Thurston norm is not a norm
on HZ(M,K)

iii) Let S Dbe a surface system in (M,K) such that no
sub-system of S 1is null-homologous rel K . Then S 1is norm
minimizing if and only if é "is norm minimizing (cf. 3.3).

iv) Let § be a surface system in (M,K) such that
s || = 1{s] || . If S is incompressible then any sub-system

of S that is null-homologous rel K consists only of compo-

nents with non-negative Euler characteristic.

4., Coloured 3-manifolds

Let us keep in mind that our final goal consists of the
construction of foliétions on a compact manifold M which are
transverse to the boundary. This will be done by means of a
hierarchy of M . Clearly, a foliation of M can be transverse
to the boundary only when aM consists of tori. However, the
manifolds occuring in the hierarchy of M may have boundary
components with non-zero Euler chararcteristic. Therefore we have
to consider these 3-manifolds as manifolds with corners where
the foliation is transverse to one part of the boundary, consisting

of tori and annuli, and is tangent to the rest of the boundary.
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4,17. - Definition. i) Let M be a compact oriented
3-manifold with B3M # ¢ . By a colouring of 3aM we understand

a partition of 3M ,

into compact sub-manifolds which only intersect in boundary

circles and such that the following holds:

(1) I is a union of pairwise disjoint annuli and tori.

(2) R+ NR_=4¢ and R+ (resp. R_ ) is oriented so that its

normal points out of (into) M .

(3) If A 1is an annulus component of I then one boundary

circle of A belongs to R_ and the other to R_

The examples following below are to illustrate this definition.
Note that I or @R, _(R_} may be empty.

ii) By a coloured 3-manifold we mean a compact 3-manifold

together with a colouring of &M .

iii) Two coloured manifolds (M,Z,R+) and (M',:i', R;) are
considered as being the same if there exi;ts an orientation_preser—
ving diffeomorphism between M and M' taking R, to R; and
R_ to R!

Instead of (M,z,R) we often simply write (M,I) . The part
of ¢ consisting of th; annuli components is denoted by A(I) ,

and R stands for R_ U R_ . In pictures we indicate R,
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(resp. R_ ) simply by a +sign (-sign).

4.2. - Examples. i) The taut coloured 3-ball. Here

D2 x [0,1], £ = 3D2 x I, R, = D2 x {1}, .R_ = 02 x {i+1},

=
il

i=10,1T (mod 2)
More generally, when P 1is any compact orientable surface

with boundary, we obtain a coloured manifold by

M="Px [0,1], £ = 3P x [0,1},R+=Px {0}, R_ =P x {1}

ii) M = D2 x S1, I = aD2 x I where I < S1 is an inter-
val, R+ = 3M - g, R_ = ¢ , does not constitute a coloured mani-
fold because condition (3) is violated.

iii) Any compact oriented 3-manifold whose boundary is a
union of tori is coloured whether a specification of orientations
for some of these tori is given or not.

iv) A typical colouring of the closed orientable surface

of genus three is depicted in fig. 10a). The decomposition in

fig. 10b}, however, does not constitute a colouring.

NG

Figure 10
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4.3, - Taut coloured 3-manifolds. We call a coloured

3-manifold (M,I,R,) taut if M is irreducible and R_ and
R_ are norm minimizing in H,(M,I) .
Here it is understood that R_ (resp. R_ ) is norm mini-

mizing if it is empty. For example, (D2x51r aszS1

; &) 1s taut.
On the other hand, the handle body of genus three with the
colouring presented in fig. 7a) is not taut, for both R, and
R_ are compressible.

The next result provides one of the key ingredients of the

splitting theorem 6.1.

4.4. - Doubling taut coloured 3-manifolds. When (M,E,R+)

is a coloured 3-manifold, we wish to perform modifications using
the manifold R = R, UR_ . Since R 1is not proper in M , we
first double M along R and then do the desired modifications.
The next result will be needed in the proof of the decompo-
sition theorem. It relies on 2.2 iii) and iv) and is easily

verified.

Lemma. Let (M,E) be taut and let (N,3N,4) be the

coloured manifold obtained by doubling (M,Z) along R . Then

(N,3N) 1is taut;,; unless N = D2 X S1 and (M,I) 4is the taut

3-ball.

4.5, - Proposition. Let (M,E,R+) be a taut coloured

manifold and let N be the manifold obtained by doubling M




along

R = R+ U R_ . Then for any «a € HZ(N,BN; Z), o« # 0 , there

exists an integer n 2 0 and a properly embedded oriented surface

T

(1)

(2)

(3)

when

N such that

[T] = n[R] + o € H, (N, oN)

T 1is norm minimizing.

If Vv is a component of R then T meets V transversely

and no union of components of V N T represents the trivial

element in H1(V,8V) .

Furthermore, the following holds:

(a) If <a,lcl> =0 for every component ¢ of sV then

T NV 1is a union of k 2 0 parallel oriented homo-

logically non-trivial simple closed curves.

(b) If Vv is plaﬂar such that <a,[ci]> *# 0 for exactly

two components C,1Cy cof 3V then T N V 1is a union

of [<a,lc;]>| parallel oriented proper arcs.

Proof. First of all we observe that the proposition is true

(M,z) is the taut 3-ball. So for the rest of the proof we

suppose that (M,Z) 1is not the taut 3-ball.

According to 3.5 there exists m 2 0 such that for all k 2 0

we have that

(*)

| m+k)[R] + a || = [|mIR] + o || + k || [R] ||

see figure 11. Note that then (*) also holds for all m + £ ,
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£ em .
(m+k) [R]
m[R_],,/\
aB
(m+k) [R]+a
m{R]+a
[R]+a
Figure 11
Now let T0 be a norm minimizing surface in (N, 3N)
representing mlR] + a (see 3.2, iii)). T0 may be chosen such
that for any boundary component B of N , T, N B 1is a union

0
of parallel oriented simple closed curves. This can be seen by
capping off pairs of bppositely oriented curves of T0 N B by
annuli within § . Moreover, we may assume that for any component
d of 3R the following holds.

Either <4,T.> # 0 then

0

|<d,T0>| = # (an TO)

or <d,TO> = 0 , 1n which case d n TO = ¢ and
[T0 n Bl = k[dl € H1(B) with k 2 0 .
(In order to achieve that k € Z indeed is non-negative, we

only have to take m € N sufficiently large.)
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Next we consider T1 = T0 >= R and recall 1.6. Let W be
a subsurface of R such that W = C U (-D) (mod 5R) and
int.Ww N T0 = ¢ , where D 1is a union of components of T0 N R

and C N TO = ¢ . Then we can isotope T1 slightly near W so

that '

T1 N R = (T0 NR=-D)UC.

This shows that modifying stepwise T0 and r parallel copies
of R and performing the necessary isotopies we obtain a surface

system T2 with

[TZ] = [TO] + r[R] € H, (N, 3N)

and such that for any component V of R no union of components
of vn T2 is null-homologous in V {(mod 3V ) . More precisely,
since the subsurfaces W above are chosen as in 1.6, we see that .
conditions a) and b) of (3) can be satisfied additionally. So it
remains to show that T2 contains a norm minimizing homologous
sub-system.

By 2.2, 1ii) and iv), N 1is irreducible and thus any sphere
possibiy contained in T2 may be omitted. So we assume that T,
is sphereless. Moreover, the existence of a disk component, D , of
T2 or T0 would imply that either 0 * [D] € HZ(N,BN) , 1in which

2

case D can be omitted, or that N = D~ «x Sj. whence: it would

follow that (M,z) is the taut 3-ball. As this is excluded here,

we now have that



Tyl = =x(Ty) = =x(Ty) - r x(R)

Tl + il R

ol

I m(R] + a ||+ c|[ R |

1

I tm+x) [R] + o ||, bY (%),

| Lz,

This also shows that every component of T2 with negative
Euler characteristic is incompressible. Consequently, if Q is a
"maximal system of components of T2 (necessarily tori) such that
[Q) = 0 in H,(N,3N} then

T="T, - Q
is as required.
s}
4.6. - Observation. The proof of 4.5 also showed the
following. If S = (T o= R} N M , where (M,I) is viewed as

being embedded in (N,3N) , then, if necessary after a slight
isotopy of S , each component, ¢ , of S N ¢ satisfies one of

the following conditions:

(1) ¢ 1s a properly embedded non-separating arc in A(rI)
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(2) c 1is a simple closed curve in an annular component A
of I and, with the orientation induced by that of § ,

is homologous to any of the boundary curves of A

(cf. 4.1)

(3) ¢ 1is a homologically non-trivial curve in a torus
component B of I , and . if ¢' 1is another component
of BNS then ¢ and c¢' , with their induced orientations,

are homologous in B

4.7. - Exercises. 1) Let (M,Z,R+) be taut. If one
component of R 1is a disk then (M,I) is the taut 3-ball.
If (N,3N) denotes the double of M along R then

N = D2 x S1 if and only if (M,Z) is the taut 3-ball.

ii) Find all taut coloured 3-manifolds with D2 x &

as underlying manifold.

iii) If (M,z) 1s taut then I 1is incompressible unless

(M,Z) is the taut 3-ball or (M,5} = (D x §', 3D% x s')

’
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5. Coloured manifold decompositions

5.7. - Definition. Let (M,Z,R+) be a c¢oloured 3-manifold

and suppose we are given a properly embedded surface system S

in M such that either S N & = ¢ or for every component of
N8 one of the three conditions of 4.6 is satisfied.

Now we copstruct a new coloured manifold (M',Z',R;) by
cutting M along S . To be more precise we do the foliowing.

First we choose a regular neighbourhood N(S) of (S5,38S) in

{M,3M} and set

M' = M - int N(S)

Next, letting S; (resp. S' ) be that component of 3aN(S) N M'

whose normal points out of (into) M' , we create R; (resp. R' )
by adding S (s') to what is left of R, w(R_) . Finally, we
separate R; from R'! by introducing an annulus resp. disk for each

component of R N R! ; see figures 12 and 13.

N(S)

Figure 12
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In formulae this reads as follows:

E' = (£ N M) UN(S! N R UN(S'NR)
R; = ((R+ n M) u Sl) - int I°

R' = ((R_N M) US') - int 1°

This process is referred to as a coloured manifold decompo-

sition and is denoted by

]
(M, L) ~~> (M',L') .

We point out that the manifold M' obtained by splitting

M along S need not be connected even if S 1is connected.

S
’VV\-'}
- +_-.-. - —— \_... -— +— —_—
- S
1
z 3 S

Figure 13



5.2, - Remarks. i) If 8 = S0 v S1 then the coloured
manifolds obtained by decomposing (M,ZI) along S is the same
as that obtained from (M,Z) by first decomposing along S0

and then along S1 .

ii) Suppose that (M,ZI)} ~Ep (M' ,2' ) is a coloured mani-
fold decomposition. Then it follows as in 2.2, iii) that § 1is
~incompressible in M if and only if s! and S; are incom-
pressible in M .

Similarly, if S is incompressible then M is irreducible
if and only 1f M is irreducible.

On the other hand, if (M' ,E' ) is. taut then standard argu-

ments show that M 1s irreducible independent of whether S is

incompressible or not.

5.3. - A necessary condition for tautness

We want to know under what circumstances in a decomposition
{M, L) A (M' ,2' ) the tautness of one of the two involved
manifolds implies that ofAthe other. The next exercises are to
show that there is no Qeneral result in this direction.

Since, in general, a decomposition does not yield a connected
manifold M' , even if S 1is connected, we agree that a system
of coloured manifolds is taut if each of its components is taut.

At first let us prove the following necessity criterion and.

a preliminary lemma.

Lemma. Let (D3,z) /éxaq {M' ,£' ) Dbe a coloured manifold

decomposition with I # ¢ and S a system of disks such-that
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(M' ,£') 1is taut. Then (D3,£) is the taut 3-ball.

Proof. We induct on the number of components of S . At first

let us consider the case that S 1is a single disk. Then, by hypo-

3

thesls, (M' ,I' } consists of two taut 3-balls (DO,Z -and

0!
3
(D1,21) .

When S Nt = ¢ , we easily see that (D3,E) is taut. So let

us assume that S N I # ¢ . Assuming furthermore without loss of
generality that the copy of S belonging to aDg is SL , we
have the following pictuire (fig. 14a)} .

3
D
a) b)
Figure 14
Q
The disk EO = aDg - S; contains bands coming from I

Each of these bands is outermost in that it splits off a disk

from E0 that does not contain any further band.

Now the only possibility to connect these bands in order

to obtain the annulus I is as indicated in fig. 14b).

0

A similar argument holds for (D?,E1) . Let a be

1,-.-,ak
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the cyclically ordered arcs of £ N 3S . Then it follows from

the fact that (DS,EO) and (D?,E1) are taut that if a; and

a

i+1 Dbelong to the same band in E; then a; and a, , belong

[~}
to the same band in E, = BD? - Sl . This implies that I 1is

connected whence it follows that (D3,z) is taut.

Finally, when § is not connected, we take a component, D ,

of S and consider the diagram of coloured manifold decomposi-

tions

,Z) /\MM/\AW {M'

BN

(My,2,)

Since S <consists of disks, each component of M1 is a 3-ball.
Therefore, by what was just proved, (M1,z1) is taut. The in-

duction hypothesis thus shows that (D3,Z) is taut.

Proposition. Let (M,Z,R+) «ngvvv (M',Z',Rl) be a coloured

manifold decomposition such that (M',z') 1is taut and S is

incompressible. If M = D2 X S1 and I = ¢ suppose that S 1is

not a system of k 2 1 parallel oriented meridional disks. Then

(M, Z) is taut.

Proof. The case M = D3 was already proved in the preceding
3

.

lemma. Consequently, we may now assume that M *+ D



By 5.2, ii), M 1is irreducible, so it remains to show that
R, and R_ are norm minimizing.
Assuming that R_ is not norm minimizing means that

(a) either there exists a properly embedded surface system

(T,3aT) in (M,Z} such that
[T]=[R,]€H,(M,2}) and |[T|l < | R_|l

(b) or R, has minimal norm within its homology class but at
least one component of R, is compressiblel
To begin with, let us assume that b) holds but not a). Then
clearly x(RO) = 0 for any compressible component R0 of R

Moreover, if the component B of 3M containing R is a torus

0
then M = D2 x S1 . The only incompressible proper surfaces in

D2 x S1 are disks or annuli whose fundamental groups inject

into that of D2 x S§' . It is not hard to check that in this
situation either the exceptional case in the statement of the
proposition holds or the tautness of (M',£') implies that of
(M,I) .

If B 1is not a torus then R_ has a compressible compo-
nent with negative Euler characteristic and we henceforth could
arque with R_ instead of R_ . It suffices therefore to consider

the case a).

To this end let T be as in a). Moreover, since

Il <[l R, if and only if || T|[ < || R



(see the-beginning of 3.3 and 3.6, iii)) we may choose T such

that if
T = E U (&disks) and R _ = §+ U (n disks)
then
(*) n st
Next, let
T, =T >= 8§

and let T' be the surface system in M' resulting from T1

after cutting M along S ; see fig.15. Then we have
'] = [R]] € Hy(M',z2') .
Moreover, since (M',z') 1s supposed to be taut, it follows,

possibly after suppressing pairs of oppositely oriented parallel

disk components of T' that
(**) m s p ’
where m and p are the number of disk components of T' and

Rl , respectively. All together this yields a contradiction as

follows.
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[F Tl = =x(T*)+m

]

-x (T) -x (S) +m

I Tl} =x(8) +m
<|l R (| =x (8) +m-¢

= =x(R,)~x(8)-m-£+n

—X(Rl)+m-£+n

i}

|| R} || +m=-g+n-p

1A

IRl , by (*) and (**).

t
/T/J/é///// /

/Zj/‘"*/‘777/777>\

Figure 15



5.4, - A criterion for tautness.

When the decomposing surface is of a special kind, we
even have the following necessary and sufficient condition for

tautness.

Proposition. Let (M,I,R+)} ﬁJ§-~o (M',z',R}} be a coloured

manifold decomposition where S 1is either a disk and [S n r| = 2

or an incompressible annulus such that one component of 38S lies

in R, and the other in R_ . Then (M,I) is taut if and only if

(M',%') is taut.

EEQQE- We only have to show that (M,I) being taut implies
that (M',£') is taut, for the converse is an immediate conse-
quence of 5.3.

If (M,z) is taut then obviously M' is irreducible. So it
remains to prove that R, and R! are norm minimizing, i.e.
incompressible and with minimal norm within their homology classes.

Thus assuming that, say, Rl is compressible means that the
component of Rl containing Sl is compressible. However, by
the special choice of S , a compressing disk may then be_chosen
so that it does not meet S! at all. This yields no contradiction
to the tautness of R, only when S is an annulus and the com-
ponent of 3S lying in R0 < R, separates Ry in such a way
that one of the resulting pieces is a disk. But this is impossible

because S8 1is incompressible. Hence R+ » and similarly R_ , is

incompressible.
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Finally, we have to show that || R;H is minimal. Otherwise
there exists a proper surface system T' in (M',Z') such that
('] = [R}] € H,(M',z') and Il < I rLI|

Then, similar to the proof of proposition 5,3, we construct from

T' and S a surface system T in M such that

[T] = [R,] € H,(M,2) and ||| < [ Rl .
=]
5.5. - Exercises. 1) Find an example of-a coloured manifold
decomposition (M,Z) -Ji~>(M',z') where (M',I') is taut but

the splitting surface S 1is compressible (resp. I-compressible).
ii) Find a decomposition (M,I) v\§An9 (M',2') where (M,1I)
is taut, S is incompressible but (M',Z') 1is not taut.
iii) Let (M,I) ngﬁf9 (M',2') be a decomposition such

that 3S <€ £, § 1s incompressible and has minimal norm in

(M,£) . Then (M,IZ) is taut if and only if (M',2') is taut.

iv) Prove 5.2, ii).

6. The coloured manifold decomposition theorem

We are now ready to prove the decomposition theorem for taut

coloured manifolds which is the chief result of this chapter.



6.1. - Theorem. Suppose that (M,I,R+)}) is taut and

H2(M,8M) # 0 . Then there exists a proper surface S in

(M, 9M) such that

(1) S 1is incompressible. .

(2) 0 # [oM] € H1(3M) provided that oM # ¢ ,

{3) S 1is a splitting surface for (M,I) ,

(4) the coloured manifold (M',r') obtained by decomposing

(M,Z) by means of S 1is taut.

Furthermore, S can be chosen specifically so that it meets

every component, V , of R+(R_) in a system of k z 0 parallel

oriented (each) non-separating simple closed curves if V is

non-planar or proper arcs if V is planar.

For the proof of this theorem we need another observation
that follows. Its proof is easy and therefore omitted. Note that
in this observation we do not require that S be norm minimizing

in that condition (2) of 3.1, iii) may fail. Cf. also 5.5, iii).

6.2. - Lemma. Let (N,3N) be the double of M along
R =R_UR_ (where (M,r) 1is as in 6.1) and let
(N,BN)-«vE*fvv (N',9¢') be a coloured manifold decomposition
where T' is incompressible and has minimal norm. Then (N',6¢')

is taut.
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Proof of 6.1. When M 1is closed, let S be any norm

minimizing surface in M ., When 3M % ¢ , let a € H2(M,3M) be
as provided by proposition 1.7 and let P be a proper surface
system such that [P] = « . Doubling P along BP-E yields a
proper surface system P' in (N,3N) . (Note that if 3P < I
then we are in the easy case of exercise 5.5, iii).)

Next we apply proposition 4.5 to a' = [P'] € H2(N,3N) and
let T be the resulting surface system. Then, by the special
choice of P , T meets each non-planar component of R in a
system of k 2 0 parallel oriented simple closed homologically
non-trivial curves and T meets each planar component of R in
a system of Kk 2z 0 parallel oriented proper arcs. Moreover,

k > 0 for at least one component.

Now put

and let S be a component of S' such that 0 % [3S] € H1(3M)
Clearly S' and thus S 1is incompressible. We consider the
commutative diagram of coloured manifold decompositions and

inclusions
1]
(M, 2) T—> (N,3N) A~ (N',0')
1]
g S | J

(M',zl) Vé\':\s/\,> (Mli'zll)C_> (N“,@“)

where T' = T o= R and J 1is a system of annuli and disks of



the form Jg = ¢ x [0,1] where ¢ 1is a component of T N R ;
see 1.4 and figure 16.

As in proposition 4.5 we see that T' 1is incompressible
and has minimal norm. Therefore, by lemma 6.1, (N',@f) is taut.

Furthermore, each component of the system J satisfies the
hypothesis of proposition 5.4. Indeed, the only point here that
is not quite obvious is the incompressibility of the annular
components of J . However, any such annulus, A , comes from-a
circle component, ¢ , of T N R . If A 1is compressible then
¢ bounds a disk in N and thus , by the incompressibility of
R , also a disk in R . But this contradicts the fact that the
circles of T N R are homologically non-trivial. Now, by 5.4,
(N",¢") and thus (M",I") as a component of it are taut.

Finally, since §' is incompressible, it follows from

proposition 5.3 that (M',z') 1is taut. o

Remarks. 1) We do not claim and cannot prove that the surface
S obtained by the theorem is norm minimizing or at leasf
d~-incompressible. This will be one reason for the difficulties
we have to encounter in chapter II.

ii) M. Scharlemann (sutured manifolds and generalized Thurston
norms) improved the proof of theorem 6.1 considerably by working

directly in (M,Z)  instead of its double.
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P'" =T in (N,3N)

T' = T == R in (N,3N)

- Figure 16
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Chapter IT

EXISTENCE OF COLOURED MANIFOLD. HIERARCHIES

We recall that our aim is to construct foliations without
Reeb components on compact 3-manifolds. It is well known that
such a foliation can exist only when the underlying manifold
is irreducible (see [Al] and [Ro]).

In our construction we want to use hierarchies. This
concept from the general theory of compact 3-manifolds permits
it to decompose a given manifo}d M by a finite number of
splittings at properly embedded surfaces into balls. We adapt
this concept to our purposes. In particular, we do not insist
that the final pieces be balls.

Hierarchies exist always when M 1is of Haken type, for
instance, when M is irreducible and 3M * ¢ (see I; 1.5, 1.7,
and 3.2, as well as [Ha; p.101], [He; p.62f], [Jal, and
IWa: p.60]). Therefore, in what follows we restrict our interest
to Haken manifolds. Moreover, for reasons which will become
evident later we have to require in most cases that coloured
manifolds are taut.

Of course, our transversality and orientability assumptions
on 3-manifolds and surfaces lying in them remain valid also in

this chapter.

1. Coloured manifold hierarchies

To begin with let us make precise what a hierarchy for a

coloured manifold is to be.



1.1. - Definition. - i) A coloured manifold hierarchy is

a finite sequence of coloured manifold decompositions

Sy S, Siet
(MO,ZO)vawa» (M1,Z1)/V«A4¢ s ANAR> (Mm,zm) '

where (Mm,Em) is a system of coloured products, i.e.
(Mrnlzm)=(Rfo dR x I), (Rm)_,_=Rx1!

for some compact surface system R .

ii) A coloured manifold hierarchy for a coloured manifold

(M,Z) is one with (MO,ZO) = (M,ZL) .

The goal of this chapter is to show that coloured manifold
hierarchies exist for a big class of coloured manifolds. Follo-
wing Gabai [Ga 1] we shall use for the construction of such
hierarchies the notion of complexity of a coloured 3-manifold.
Roughly the complexity measures how far a coloured manifold is
from being a coloured product. The existence of a coloured
manifold hierarchy is then established by induction on the

complexity.

1.2, - The length of a.Haken manifold

Let us briefly recall the notion of length of a Haken
manifold. This notion enters in the definition of complexity

and is based on the following observations which are proved,
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for instance, in [Ja, p.42f and p.57-61].

Proposition. ILet M be a Haken manifold, then we have:

i)} There exists a minimal integer h(M) (the so-called

closed Haken number of M ) such that if S1,...,Sn is any

system of pairwise disjoint incompressible, 3-incompressible,

closed surfaces in M then either n < h(M) or for some

i+ 3, Sy is parallel to Sj in M .

ii) Suppose
s, - S _
(*Y M = M0f-«&»> Mo~ AR s M

is a sequence of decompositions where each Si is an incom-

pressible, 9-incompressible surface in Mi which is not

9-parallel and not a disk. Then m £ 3h(M) .

These statements permit us to define the length-of M to
be the maximal number of decompositions occuring in any sequence
(*) for M .

If the manifold M 1is not connected then the length of M

is understood to be the sum of the lengths of its components.

Remarks. - i) If szgnﬁ> M' 1is a decomposition between

Haken manifolds where the surface § = D2 is incompressible,
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d-incompressible and not 3-parallel then

length M' < length M
ii) Since

length M 5 3h(M) ,

and h(M) = 0 if and only if M is a handlebody, it follows that
any sequence (*) with m = length M terminates with a system
of handlebodies.
These remarks make it plausible that the notion of length
is useful in an inductive construction of hierarchies for
coloured manifolds.
The length of a Haken manifold behaves well with respect to

splitting at disks. This will be made precise in the next section.

1.3. - Complexity disks. - Supposing that M 1is a Haken

manifold one may induct on the Euler characteristic of 9M in
order to see that there exists a system of proper disks U in
M such that each component of M split along 0 is 3-irre-
ducible or a 3-ball.

We call U a system of complexity disks for M .

Lemma. Let 0 be any proper disk system in M and let

M' be obtained by splitting M at 0 . Then we have

length M' = length M
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Proof. It suffices to give a proof for 0 being a single

disk D . Let

be a length defining sequence of splittings for M , i.e length
M = m , and each Si * D2 is incompressible, Jd-incompressible
and not d-parallel in Mi . In particular, the components of

Mm are handlebodies.

Now, as M is irreducible, we can isotope S0 so that

Furthermore, if D' and D" denote the two copies of D in

dM' then we may assume that

s, ND' =5, ND"=¢

Procceding inductively, we thus obtain a commutative diagram

of decompositions

(*) D D D
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Note that Mé consists of handlebodies if and only if M
consists of handlebodies. As each Si is incompressible and

o—incompressible in Mi it follows that

length M' $ length M .
Conversely, if the bottom line of (*) 1is length

defining for M' then we may clearly assume that

Therefore we again obtain a diagram (*) . We know that each §
is incompressible also in Mi-(cf.I, 2.2) . Moreover, Si is
g-incompressible in Mi , for any boundary compressing disk
for Si in Mi , even if its intersection with D is non-empty,

would lead to a boundary compressing disk for Sy in Mi . We

conclude

length M < length M' .

1.4. - Special complexity disks

In the definition of the complexity of a coloured manifold
we need a special sort of complexity disks. The existence of

such a special disk system is established by the next lemma.
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Lemma. Let M be a Haken manifold. Then there exists a

system D of complexity disks for M such that the following

conditions hold.

(1y If MK denotes any d3-irreducible component of M - int N(D)

and if V 1is a component of 'aMK then V n N(D) has at

most one component.

(2) If By is any ball component of M - int N(D) and

\ then VvV n N(?P) has exactly three components or

is empty, unless V intersects a unique N(Dv) {where Dv

is a component of ¥ ) and |V N N(Dv)| = 2

Proof. The existence of such a system is fairly obvious.
We simply start with an arbitrary system of complexity.disks E
for M so that no two components of E are parallel and no
component is 3-compressible. Then, if M, is a component of
M - int N(E} which does not satisfy conditions (1) and (2),

we split M0 along an additional proper disk lying in M SO

0
as to diminish the number of components of N(E)N Mg . This creates
a new ball component satisfying (2).

The system 7?7 then arises from E by adding these new

disks.

2. The complexity of a coloured 3-manifold

It is convenient to define the complexity for coloured

manifolds which need not be connected.
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2.1, - Definition and remarks. - Let (M,Z) be a system

of taut coloured 3-manifolds.

i) A system of complexity disks D = D, U ... U D for

(M,Z) satisfies by definition the following
(1) D 1is a system of complexity disks for M .

(2) If V is a component of 3M, (where M, 1is a 3-irreducible
component of M - int N(P) ) then V n N(D) 1is connected

(possibly empty).

(3) TIf Vv = BBA (where BA is a ball component of M - int N(D) )
then . VvV n N(D) 1is empty or has exactly three components,

unless V intersects a unique N(Dv) and |v n N(Dv)| = 2

(4) D 1is a splitting disk system for (M,I) . In particular,

D n A(Z) consists of proper (each) non-separating arcs.

ii} As condition (4) can always be arranged, the existence
of a system of complexity disks for any taut coloured 3-manifold

is established by the preceding lemma.

iii) If BDv < T(I). for some component DV of ¥ then
the component of (M,%) containing Dv is (D2 x S1, BDZ X S1) .

This is the last one of the possibilities listed in (3).

iv) If D, N A(L) # ¢ then each component of Dv n A(ZL)

connects R+ with R_ . It follows that |Dv N A(Z)! is even.

’

v) Condition (3) of the definition is put in order to

distinguish between taut coloured handlebodies.
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vif

If V is a component of 3M_, with VvV N N(D) = ¢
then V 1is an incompressible component of M
2.2, - Minimal complexity disks
y
Suppose we are given a system of complexity disks
D = D1 u ... U Dn for (M,Z) such that M-int N(D) decomposes
into 3-irreducible components M1,...,Mk and 3-balls B1,...,B£
Then, if necessary after re-indexing the M,  we may assume that
for some r s k M, 1is diffeomorphic to P x I for some closed
surface P if and only if £ r Observe that then P 1is
necessarily incompressible in M
Next, let |
SRS
be the sub-system of 5 consisting of those Dv such that

N(Dv) N oM, * ¢ for some «k S r
We set
a; = ]51 na(ny| , 1 =1,...,8,
and order the a; so that ai1 2 ... 2 AQ,
Cy = (ai resesy ) .

. Finally, we set
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-

If all a, are zero or D = ¢ then we simply write cg =0

*

Similarly, we define

|Ib, n A(Z)| if |D_ n A(Z)]| > 2
b = { v v
v 0 if D, nA(D)] s 2
and order the bv so that
b 2 ... 2Dhb > Db = ... =D =0
v v v v
1 n, n0+1 n
Now we set
Ly = (b\)1,..-.bvn) '
0
and QZ = 0 when all bv =0 or D nA(Z) =¢ .

We say that P is a system of minimal complexity disks 4if
.0, . E E
(€3rc4) = M;n (§3f§4) ’

where E ranges over all systems of complexity disks for
(M,Z) , and the pairs is given the dictionary ordering. To be
more precise, we define (;3,c4) < (n3,n4) if either ;3 < N4

n3 and g4 < n4 . Here we have ¢ < n for tuples

or C3

Ca = (a1lﬁ'olan) and n

i Pl
(b1,...,bm) with a; 2 a]._+1
1 €311 <n, bj 2 bj+1 r 13 £m, if for some 3j , a, = b,

for i < j and either aj < bj or n = j < m holds.
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2.3. - Two basic properties of complexity disks

Systems of complexity disks are unique -in the following

sense.

Lemma 1. Let ¥ and U' be systems of complexity disks

for (M,L) and denote by MK » ¥ = 1,...,k , resp. Mé, '

k' =1,...,k' , the 3-irreducible components of M-int N(D)

and M-int N(D') . Then k = k' and, if necessary after a

permutation of indices, MK is homeomorphic to Mé by an isotopy

of M . In particular we have

(1) r=r',
(2} |D| = |D'| '

where r' and D' are defined similarly to r zresp. D "in 2.2.

(3) If VvV denotes a cogpohent of BMK and . V! is the corres-.
ponding component of oM! then V n N(D) = ¢ if and only
if v' n N(D") = ¢ .

Proof. We show that the MK for « £ r are uniquely

determined, independent of the choice of 0 . For this let
M =P xI, 1 s8&«ksr,
where P is a closed surface which is, moreover, incompressible

in M . Then, if necessary after an isotopy of MK , we may

assume that



. .
PK x I n7D ¢ .

Now let MO be the component of M-int N(P')} that
contains PK x T . As PK is incompressible MO is not a
ball. Therefore MO is 3-irreducible and we can isotope 7

so that

It follows that

MO c PK x I and PK x I < MO ‘
up to isotopy.

Thus to each component MK + K § r , corresponds a component
of M-int N(?P'} which is homeomorphic to it. Interchanging the
rS8les of D and D' we see that this correspondence is bijective.
In particular we have condition (1).

In a similar way one shows that the components M'< '

Kk 2 r+1 , are uniquely determined up to.isotopy.

The above analysis also shows that the component MK is

glued together with MU if and only if Mé is glued together

with ML . This finally shows that conditions (2) and (3) hold.

If D is a system of complexity disks and S 1is a splitting

surface in M such that D N S = ¢ then D7 need not be a
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system of complexity disks for M-int N(S) , even if S is
incompressible and 3-incompressible. However, we have the

following special result which will. be used later.

Lemma 2. Let 70 be a system of minimal complexity disks

for the taut coloured manifold (M,Z) . Denote by (M',L') the

coloured manifold obtained by decomposing (M,I) along the

sub-system DO of D . Suppose, moreover, that |Dv nA(L)| = 2

for every Dv c DO . Then D' =70 - DO is a system of minimal

complexity disks for (M',L') and

1 1
2l s @l

Proof. By I; 5.4, (M',I') is taut, and it suffices to
consider the case that DO is a single disk.

Certainly 0' is a system of complexity disks for (M',Z')
Also it is easily seen that

D’ D D! D

D D Pt D
C3 C3 Or' (C3 I‘) - §3 .

Now, if ©0' was not minimal then there would exist a system

fl

for |DO N A(Z) |=2 and thus either

of complexity disks E for (M',L') with

E E pr D!
(T3004) < (gg ,z4 ) -
We want to run into a contradiction by showing that then

EO = E U DO is a system of complexity disks for (M,Z) with
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smaller complexity than that of 0¥ . That EO indeed is a
system of complexity disks for (M,I) follows from lemma 1.

Let ? (and similarly E, D', EO ) be the sub-system of

U as above in the definition. We know from lemma 1 that

(*) 9'] = [E] and |0} = [Eg| -

Therefore, assuﬁing that

E D!
* %
(**) g3 < g
we have
E _ D
§3 = (a‘l""’as) ' C3‘ = (b.]r---rbs) ’

A
n

i.e. both tuples have the same length, and there exists j}

such that a; = bi for i1 < j and aj < bj . By lemma 1, we

have to discuss two possibilities.

~

If DO is a component of 0¥ and of EO then (**) implies

that
= (a a ,2) < (b b_,2) = 4
LA - A iy gt g3

This contradicts the minimality of 0 .

If DO is neither a component of ¥ nor of EO then

we have

e _ ,E v _ D
C3 - C3 and C3 - C3 r

and thus obtain a contradiction to (**)
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Finally, if

E D! E D!
* %k =
(***) 3=ty and ¢, <L,
. Eo o

then the above discussion shows that Ly = c3 and, since
|0y N A(Z)| = 2, we conclude by (**¥)

E

0 _ ,E 7

This again is incompatible with the minimality of D

2.4, - Definition of complexity

We now complete the definition of the complexity of a taut

coloured 3-manifold as follows.

As before let D = D, U ... VLD, be a system of minimal

. complexity disks for (M,I) and let M1""'Mk and B,,...,B

be the 3-irreducible resp. ball components of M-int N(7) .

£

Again we fix r £ k so that M is diffeomorphic to PK x I

if and only if «k = r .

We define the complexity of (M,Z) +to be the 4-tuple

C(MIZ) = (C1Ic2IC3IC4) r

where
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k
cC, =C,M = Yy length M
K=r+1
c,=cC (M) =t , a=3,4
5] o f G.' ’ !

and C2 is the 6-tuple of non-negative integers

C2 = Cz(M,E) = (a1,...,a6) ’
with
k
a, = [(U M) nND|,
K=r+1

a, = #{x|x £ r and |MK nN(M| =2},
ag = #{c|k s r anad M, 0 N(D)| = 1},
a, = #{V|V c M, for x >r and V N A(D) #* ¢},

ag = #{k|c s x and V N0 A(L) # ¢ for every V c M/}

ag = #{x|lk € xr and V n A(I) # ¢ for exactly one

component V < 8MK}

{(Here as always N{D) denotes a regular neighbourhood of 7 in
ML)
In words, a1(a4) is the number of components of

aMr+1 u ... u BMk which (non-trivially) intersect N(D)
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(resp. A(Z) ); cf.2.1; (2). Further, a2(a3) is the number

of product components MK , K $r , such that both (resp. exactly
one) components of BMK intersect N(P) , and a5(a6) is the
number of product components MK r K S r , such that both

(resp. exactly one) components of BMK meet A(L) .

37C4
and the first

Clearly, the colouring of (M,L) comes in only in C

and the last three components of C2 ; Whereas C1

three components of C2 depend only on the topology of M .

Example. - If (M,I) is a taut 3-ball or is homeomorphic
to (0? xs', ap% x s') then cC(M,I) = (0,0,0,0) .
2.5. - Invariance of the complexity

The following alternative characterization of complexity
will turn out to be very useful in applications. It also shows
that the complexity of a taut coloured manifold is independent
of the special choice of the system used in its definition.

For D Dbeing any system of complexity disks for (M,ZI)
define the D-complexity of (M,I) , denoted CD(M,E) , in just

the same way as C(M,1I)

Proposition. For a taut coloured 3-manifold (M,I) we have

C(M,Z) = Min CD(M,Z)

D

where 7 runs through all systems of complexity disks for

(M, Z) .

Moreover, C1(M,E) and the first three components of

CZ(M;Z) can be computed using any system of complexity disks

for (M, I) .
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Proof. Without loss of generality we may assume that

no component of (M,X) 1is a taut 3-ball or is homeomorphic to
(D2 X S1, 8D2 P 81)
Let D and D' be systems of complexity disks for (M,Z) .

By 2.3, lemma 1, we have (using the same notation as there)

C?(M,Z)

I
r~1

length MK

[
(@]

Next, coming to the invariance of
CD(M ) = {(a a.)
24V 17°°°'%6" 7

condition (3) of the same lemma tells us that

Moreover, an incompressible component V of ©OoM with

VN A(Z) £# ¢ counts in the same way for both a; and ai ’
where i = 4,5 or 6 . Furthermore, as (M,I) is taut and no
component of it is a taut 3-ball or is homeomorphic to

1

(D2 x s, BD2 X S1) . every component of D or 7' meets

A(Z) non-trivially.
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Therefore, if 0V and 7' are minimal then

C(M,Z) = CD(M,Z) = CD'(M,Z)

Finally, taking a system E so that
cFw,z2) = min ¢’ (M, 1)
D

it clearly follows by what we have already proved that E is

minimal and thus

CE (Mlz) = C(MIZ) .

2.6, - Trivial complexity and a first reduction step

Obviously, every strictly decreasing sequence of
complexities is finite. This enables us to use the complexity
as an inductive method for the construction of coloured mani-
fold hierarchies. We can see this more clearly once we know
what the taut coloured manifolds with trivial (zero) complexity

are.

Proposition. - A connected taut coloured 3-manifold

(M,Z,R,) has trivial complexity if and only if it belongs

to the following list:
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a)  (M,5) = (02 xs', % x s ,

b)  (MyD) = (T x I, T° x 0) , and R=R, = T° x 1,

¢)  (M,I) = (T x I,4) , and" R = 3M = R,

a o,z = (r? x 1, T x 1)

e) (M,Z) = in x I,¢) , where Pg is a closed orientable
surface of genus g 2 1 , and R+ = Pg x 1, R_ = Pg x 0 ,

f) (M,Z) = (P x I, 3P x I) , where P 1is a compact orientable
surface with 3P * ¢ , and R+ =P x1, R_=Px0,

Proof. At first let us consider the case that M is
d-irreducible, i.e. D = ¢ . Then Cy = 0 implies that
M= Pg x I for some closed surface Pg of genus g 2 1 .
Here we use the fact that a 3-manifold has length zero if and

only if it is a handlebody and that handlebodies are 3-reducible.
Further, since a_. = ag = 0 , we see that
M N A(Z) = ¢ .

Thus either g > 1 and R = gM , a situation that is covered

by e), or g=1 and (M,IZ} 1is one of those coloured manifolds

listed in b), c), d), or constitutes the remaining case of e).
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Now let us investigate what is going on when M is
o-reducible, so .that the underlying system 0 of minimal
complexity disks for (M,L) is non-empty. As before we denote
by M.I,...,Mr,...,Mk ' B1,...,B£ the components of M-int N{(D)
where the M. are d~irreducible and M, =P xI if and only

K
if kK £ r . As no MK can be a hahdlebody,‘we conclude that

r =k
Moreover, the hypothesis a, = a3 = 0 implies that

i.e. M-int N(?) consists entirely of balls. This shows that M

is a handlebody.

Next, since C4 = 0 , every component Dv of U intersects
A(Z) in at most two components. However if [D N A(I}| =0
then, by norm-minimality of R_ and R_ , necessarily
BDv c T(Z) which means that a) holds. It therefore remains to

consider the case that
’Dv n A(x)| = 2 for every D, < D

We want to show that then (M,Z) is of type f).
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Proceeding by induction on the genus of M we first
assume that M is a solid torus. Then 0 1is a meridional
disk, and our assertion is easily verified (especially by those

having mastered exercise 4.7, ii) of chapter I).

To establish the induction claim we take a disk D, of D
which is non-separating in M . Then, by I; 5.4, decomposing
(M,Z) along D,, provides a taut coloured handlebody (M',ZI').
By 2.3, lemma 2, (M',Z') has trivial complexity whence it follows

by the induction hypothesis that
(M',Z2') = (P' x I, 9P' x I} .

Now we look at P' as a bouquet of bands. Then (M',L')
can be visualized as indicated in fig. 3a).

To reconstruct (M,I) from (M',Z) we have to identify
two disks E, and E_ in 3M' , where E_ (and similarly E_)

is a union of disks E; and E: with

E; c Rl and EI < A(Z') ;

cf. fig. 3a).

We now modify (M',I') homeomorphically so that E, and
E_ come to lie in the vertical part of 3M ; see fig. 3b). It
is then evident that identification of E,Z and E_ again gives

a product of type f).
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To complete the proog\we observe that each member of

our list indeed has zero complexity.

a)

b)

Figure 3
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As another application of our new concept let us prove
the following generalization of lemma 2 of section 2.3 which

will be used later in an essential manner.

Lemma. Let 0 be a system of minimal complexity disks

for the taut coloured manifold (M,Z) and let 0. <« P be a

0
sub-system such that |D N A(Z)| = 2 for every component
D of U, . Then
\Y 0
cC(M',2') s C(M, ) ,
where (M',L') 1is obtained by splitting (M,Z) along DO .
Proof. By I; 5.4, (M',I') 1is taut, so its complexity is

defined. Also we already know from lemma 2 of section 2.3 that
P =D - DO is a system of minimal complexity disks for

(M',Z') and

(M',Z'))

(Cy(M,5), C,(M,5)) £ (C3(M',2), C,

Furthermore
C1(M,Z) = C1(M',Z')

holds trivially. Also inspecting the components a of

ERRNL-Y
CZ(M,E) we convince ourselves immediately that



- 74 -

and

L] 4 1
a3y > ag only if al < a

2 2

Finally, as VvV N A(Z) *= ¢ if and only if Vv n A(Z') #* ¢

for any component V c BMK we conclude that

2.7. - Exercises. - i) Find a Haken manifold M

D of complexity disks and a proper surface S = D2 in M which

, a4 system

is incompressible (3-incompressible, not 3-parallel) such that

D nNs=¢ and 0 1is not a system of complexity disks for

M-int N(S) .

ii} Show that the coloured manifolds listed in the

proposition of section 2.6 indeed have trivial complexity.

iii) For any k 2 1 find a taut coloured manifold (M,I)
where M is the handlebody of genus two such that C(M,Z)}) is

non-trivial and I consists of k components.

iv) Find a taut coloured manifold (M,Z) and a system D
of complexity disks for M such that |D n A(Z)| = 2 f£for every

component D of ? but (M,X) 1is not a coloured product.
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3. Splitting surfaces and complexity disks

Sﬁppose we are given a taut coloured manifold (M,I)
with <C(M,Z) # 0 . We are looking for a (non-separating)
incompressible splitting surface S for (M,I) such that
the coloured manifold (M',Z') obtained by splitting
(M,Z) along S 1is taut and has complexity smaller than
that of (M,I) . When HZ(M,E) # 0 such a surface is
provided by theorem I; 6.1. However, to decide that C(M',I')
is indeed smaller than C(M,I) we first have to put § in
a special position with respect to a system of complexity
disks 0D for (M,IZ) . We shall do this in two steps.

To simplify language we call a splitting system S taut

if the coloured manifold obtained by splitting along S 1is
taut.

Now among all non-separating incompressible taut
splitting surfaces for (M,I) we choose one so that
|D n 8| is minimal. It follows by the incompressibility of
S and the irreducibility of M that then D N S does not

contain any circle.

3.1 Deforming the splitting surface in a nice position

To begin with we deform the splitting surface S so

that it becomes nice in the complement of D .

Lemma 1. - Let (M,2) be a taut coloured manifold

and let 7 be a system of complexity disks for (M,I)
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‘Suppose S is a splitting surface. for (M,X} as above.

Then S can be deformed into a taut splitting surface,

again denoted S , such that |D n S| is also minimal

and, furthermore, the following holds.

(1) If A is a component of A(I) then each

component of S N A either intersects each

component of D N A in exactly one point or

SNAND =9

(2) There exists a tubular neighbourhood

N(D) =0 x1I, I=1[-1,1 of D such that
we have:

If M, 1is a component of cl{M-N(D)) and

S denotes a component of S N M, then either

a) S = Sy and is 3-parallel in My » or

b) S0 is not 9-parallel in MO : OF

——

c) So is parallel into cl(BMO-N(D))rel N(D) ,

i.e. there exists an embedding

©:(5*[0,11, SoNN(D) x [0,11) = (My,M; N N(D))

0

such that @[S, x 0 = id and

©(Sy x 1) = cl(aMy - N(D))

Proof. At first we deform S so that condition (1)

holds. Then we choose a small tubular neighbourhood
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N (D)

1]

D xI of VP in M such that

N{(D) n & (D nti) x1I

and

N(D) n S

(P ns)y xI

Now for a component MO of cl(M-N(D)) we consider

an arbitrary component S0 of §n M0 . If SO is
d-parallel and neither a) nor c¢) holds for S0 then

is 8-parallel in the component Mé of

%)) containing My - We choose a correspon-

clearly S

—BO

M-(D x (—

ding isotopy whose restriction to 23S may be assumed to

0

stay within an arbitrarily small neighbourhood of BSO in

M6 » and first deform S by means of this isotopy to lie

in a small collar to ama in M6 ; see fig.4. Then the

components of the deformed surface S0 lying in M satisfy

0
condition c¢). Note also that there is no problem in

extending such an isotopy to one on M > Mé which is

constant outside a small neighbourhood of M6 in M . So

condition (1) 1is still satisfied.

/)f’/// /&J,ﬂ:
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Now for a compcnent T of Sg in My satisfying
condition (2), c) means that T separates MO and the
closure of one of the resulting components is of the
form T x [0,1] where T x 0 =T and T x 1 < BMO .
Therefore, if T1 is another component of S N MO
that lies in T x [0,1] then T1 is parallel to some
sub-surface of 3(T x [0,1])-T ; see [Wa; p.65]. Here we
use that S 1is connected and that B N N(D) 1is connected
for every boundary component B of MO » provided
My * 03 . It follows that the above deformation process
can be repeated with other components of S n My which
a£e g-parallel. This observation completes the proof

of the lemma.

Note that the minimality of |D N S| was used so far
only in that ? n § does not contain circle components.
Observe also that the new surface S evidently also

satisfies the minimality condition.

At this point we dispose of a tubular neighbourhood
N(P) of our fixed system of complexity disks for (M,I)
so that, in the complement of N(D) , the splitting surface
S 1is in a nice position. We now achieve more niceness by

also improving the position of § in N(D).

In the next lemma we have the same hypotheses as in

lemma 1.
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Lemma 2. - Let S be the surface in M obtained

by lemma 1. Then S can be isotopically deformed in

N(P) = P x I such that it still suffices conditions (1)

and (2) provided by lemma 1 and so that, moreover,

|P n 8] is still minimal and the restriction of S to

N(?P) can be described as follows.

For each component D of U we have

(*) N(D) n 3Ss = (D N 38) x I ,

and if (*) is not an equality between empty sets then

there exist numbers -1 = t1 S P < tm = 1 such that,

for 1§ jJsm, SN (D x tj) is a system of properly

embedded arcs aj P oess g aj and, for 1 & j sm -1,
1 k
each component of S n (D x [tj'tj+1]) is either of the
1) or is a saddle as indicated in

form a. X tt.,t.
form ay * 1t5:%y4y

fig.>5.

s n (D x tj)

I

S n(D x -[tj,tj+1

Figure 5
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Proof. 1Initially, every component of N(D) N S was
a disk’of the form a x [-1,1] where a is an arc in D .
By lemma 1, this situation is possibly changed in so far
as (possibly multi-pronged) saddles were pushed from
cl(M-N(P}) into N(D) . This shows that the components
of N(D) N S are still disks and that (*) holds.

Now when E denotes such a disk containing a saddle
that is multi-pronged we can isotope S so that (*) still
holds and the multi-pronged saddle is replaced by saddles
as.in fig.5 which are on different levels. As'this isotopy
can be chosen to be constant off N(?P) the results of

lemma 1 remain wvalid.

3.2 Special boundary compressions

Let us suppose that S and N(D) are as provided by

lemma 2. Then, with .the notation of lemma 2, a component

c of (D x t;) NS may occur a priori as in one of the

3

seven cases depicted in figure 6.

Figure 6
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Here the thickened arcs are components of (D x tj) n ag(z) ,
the shaded area is a disk E in D x tj , the ‘arrows as
usual denote normal orientation and the #-sign indicates

that the corresponding arc belongs to R, , respectively.

The essential point is that each such disk E
corresponds to a splitting disk for (M',I') with

|E n A(Z") | s 2

We are now going to show that in the special situation
at hand neither of these possibilities can occur, for the
appearance of any of these possibiligies would cqntradict
the minimality of |0 n S| . Let us first focus our interest on

case a) of figure 6.

Lemma 1. - In case a) of figure 6 the situation speci-

fically cannot occur as shown in figure 7.

Figure 7

Proof. Both cases would yield a splitting disk

E for (M',Z') such that

|E n A(Z'Y)]| =0
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As R' is incompressible, 3E would bound a disk E'
in R' . By the construction of A(M',z') from (M,I) ,
E' itself would be the union of two disks F and G
the first one of which belonging to S and the other

one to oM ; see figure 8.

Figure 8

Now E UPF UG 1is a sphere in M and thus bounds a
ball. Therefore, if G N A(IL) = @ then we can deform S
so that ¢ disappears. Obviously, this would contradict

the minimality of |[D n S| .

On the other hand, if G n A(Z) *#= ¢ then somewhere
a constellation as indicated in fig.9 a) must occur.
However, as (M',I') 1s required to be taut, we are
allowed to deform S as indicated in fig.9 b). The
important point is that if S 1is oriented as in a) then
the colouring of O9M must be necessarily as in a).
Otherwise (M',L') would not be taut. We can repeat
deforming S in this way until we eventually again have

G N A(X) = @ . As this is impossible the lemma is proved.
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Figure 9

We shall now treat the remaining cases of £fig.6. These

are the cases where |E n A(L')| = 2

Lemma 2. - Under the given assumptions none of the

cases illustrated by figure ¢ can appear.

Proof. Assume E 1is a disk in D X tj satisfying
one of the remaining cases of fig.6. If necessary after an
isotopy of S we may assume that one of the cases a), b),
f) or g) holds.

Now we perform a boundary compression of S along E
and thus obtain a splitting surface system T for (M,I) .
As (M',Zf) is taut, it follows from I ;.5.4 that -T

is taut. Moreover, by I ; proposition 5.3, we may assume
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that T 1s connected and non-separating. Therefore, in
order to produce a contradiction it suffices to show that
T can be deformed isotopically rel A(I) so that
(*) o nT| < |Dn s .
Clearly we have

D xt, NT}| = |.p x t. N S|-1
D xtynTf=|Dxt,ns|

and as D X tj is isotopic to D rel A(I) we can find

an isotopy of T rel A(I) so that (*) holds.
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3.4. Complexity disks for the decomposed manifold

Given a coloured manifold decomposition
(M,Z)Avéwb (M',Z') and a system of complexity disks D
for (M,r) , there is no general recipe how to obtain
from D and S a system of complexity disks for M'
or even for (M',I') . However, in order to decide that
C(M',Z') < C(M,Z) we always have to refer to such a
system.

The following situations will arise in the proof of
the existence theorem in the next paragraph. So let us
specify in either of these a system of complexity disks
for M' or (M',Z') .

As before we suppose that (M,I) énd (M',Z') are
taut and that S and N(D) are provided by lemma 3.2.

In particular, S 1is connected , incompressible and non-

separating. Recall also from paragraph 2 the decompoéition

of cl{(M-N(?)) into balls BA , and other pieces M1""'Mk
where MK =P, x1I (PK a closed surface}) if and only if
Ksr . '

1. case: S 1is closed.

Then S 1is contained in some component My of
cl(M-N(D)) . Furthermore, as S 1is incompressible,
cl(MO—N(S)) is ?3-irreducible. We conclude that D' =D

is a system of complexity disks for (M',Z') .
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2. case: 09S ¢+ ¢ and S ND = ¢

Also in this case S 1is contained in some MO as

above, but this time c¢l{(M-N(S)) need not be 3-irreducible.

i) If M0 F BA then let £ be any system of complexity
disks for -clL(MssN(S)) . Then'by D' = D U E we clearly

obtain a system of complexity disks for M'

ii) If MO = Bl then S 1is a disk. As

M. N BN(D) #* ¢

0
and consists of at most three disks, S 1is parallel to some
component D of 0 . Then it is easily seen that some sub-
system ?V' of UDV-D 1is a system of complexity disks for
(M',Z'}) ._(The choice of D' depends on the special situation.
However in the argument later we only need that ?' < D-D ,

so that further specification of 0' 1is unnecessarv.)

3. case: S N D * ¢

As D n S consists of arcs, the components of 0 n M’
are disks. The system of these disks can be completed to a

system E of complexity disks for M'

i) If there exists a component S0 of S N cl(M-N(D))

which "is contained in some _MK , K 2 r+1

, and is not

d-parallel in M. . then we take 0' = E (where ~
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E is as above) as a system of complexity disks for M' .

ii) If i) does not hold then we shall have to refer
to a system of complexity disks D' foF (M',Z') , not just
one for M' . However the system E as above in general
does not suffice condition (3) of definition 2.1, i) and
thus cannot serve as 0' . To overcome this difficulty we

start with the system

™
u
<
|}
<
x
n
D
=
<
1

1r-o~tn 7 j=j(\))=1:---:m(\))

o]
n
lw}
X
o
t
L.
+
-
N
D
x
—
]

N(D) ;

cf. 3.1, lemma 2. If B N S contains a saddle then

according to 3.1., lemma 2, cl(B-(N(S) U N(D x {tj,tj+1})))

consists of 3+2 balls B1, ..... ,Bp+2 where
if < 2
IBW N N(E)| = { if ST S pt2 .

Next we observe that if T is an incompressible
surface in a product P x I (where P 1is a closed surface)
then any component of cl(P x I - N(T)) is either a handle-

body or is homeomorphic to P x I
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It follows that a sub-system of E' may be completed
to a system D' for (M',I') where the additional disks
are needed to cut down the handlebody components of
cl(M-(N(D) U N(S))) to balls. (These additional disks are
completely irrelevant as in the present case we do not

need ;z in comparing C(M,Z) with C(M',Z') .)

4. Coloured manifold hierarchies exist

4,1. - The existence theorem (statement).

In this paragraph we show that a coloured manifold
hierarchy exists for most taut coloured 3-manifolds. More

precisely, we shall prove:

Theorem. - Every connected taut coloured manifold

(M,Z) , where M 1is not a rational homology sphere containing

no incompressible torus, has a coloured manifold hierarchy

S
(M,I) = (Mg, Ig) ™~~~ Rans (M, )~ s A s (M2 )

Moreover, each Si is connected and if BMi ¥ ¢ then

s, N aM; * ¢

As already mentioned, the proof of this result is by
induction on the complexity of (Mi,zi) . It is carried out
by several steps according to the several positions the

splitting surface may have. Before we start with the actual
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induction process, let us briefly recapitulate what we
already have achieved.

We are given a (connected) taut coloured manifold
(M,Z) whose complexity is supposed to be non-trivial
and a system of minimal complexity disks P for (M,Z) .
D is empty whenever the manifold M 1is 3-irreducible.
Furthermore, if A(I) # ¢ then, by lemma 2.6, we may

assume that
le NA(Z)|] 24 for all 1 <v sn .

Now in case H2(M,BM) # 0 we have found a non-
separating, incompressible taut splitting surface for
(M, L) whose position in M with respect to a regular
neighbouhood N(D}) of ©? and to the components M1""'Mk ,

B1,...,B£ of cl(M-N(P)) 4is nice; see 3.1.

4.2. - The induction step

We turn to the proof of theorem 4.1. First of all let
us perform the induction step under the special assumption
that there exists a nice splitting surface. So in the
next two lemmas S denotes an incompressible, non-separating
splitting surface for (M,L) which is in a nice position
as provided by section 3.1.'Furthermore, the coloured
manifold (M',Ef) obtained by splitting along S 1is taut
and as a system of complexity disks Df for M: resp.

(M',Z') we use the one supplied by 3.4.
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Lemma 1. - If D N S = ¢ then we have

C(M',Z') < C(M,Z) .

Proof. 1. case: S 1is closed.
Then S 1is contained in some 3d-irreducible component

M of cl(M-N(D)) .

0
If S is not 3-parallel in M, then, by [Wa; prop.3.11],

M *# P x I ., Therefore, by remark 1.2, i), we conclude
C1(M',E') < C1(M,Z) .
If S 1s 3-parallel in M, then clearly
C1(M',Z') = C1(M,Z) .

But in this case our hypothesis implies that N(?P) N B is
non-empty, where B 1is the component of BMO into which
S 1is parallel. Therefore, if MO #4 P x I then, with the

notation
Cz(M,Z) = (a1,...,a6) and C2(M',E') = (a%,...,aé)

we conclude that
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If M =P x I then both boundary components of My
necessarily meet N(D} . Hence it follows that in this

case we have that

Here we referred to proposition 2.5. Our claim is proved

when S 1is closed.

2. case: 95 * ¢
Clearly in this case S 1is also contained in some
component M, of cl(M-N(?)) which now, however, may be

a 3-ball. We thus distinguish between two possibilities.
i) M is not a 3-ball.

If S 1is 9-parallel in MO , and D' =D U E 1is as
in the corresponding case of 3.4, then E 1is a system of
complexity disks for the handlebody split off from MO by
S . As S 1is not g-parallel in M we conclude as in the

1. case that

C1(M',E') = C1(M,Z)

and

Cz(Mﬂ,Z{) < C2(M,Z)
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A similar argument holds if S 1is not 9-parallel

in MO and MO =P x I

Next we assume that ' § 1is not J-parallel in MO

and MO #+ Px I . If S 1is 9-compressible, we perform
the necessary compressions on S 1in order to obtain a

d-incompressible surface system S' (cf. [Ja; p.44]). As

S is irreducible and not 3-parallel in M the same holds

0

for S' . Moreover, S' 1is not a disk because MO

d-irreducible. We thus obtain a commutative diagramm of

is

decompositions

where €' denotes the disk system used to create S'

.

Now it follows from remark i) of section 1.2 and

lemma 1.3 that

length M6 = length M! < length M

0 0 °

Applying lemma 1.3 a second time we eventually see that

e e en

C1(M',Z') < C1(M,Z)
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ii) MO is a ball.

In this case S must be a disk. Furthermore, as
BMO N N(?) 1is non-empty and consists of at most three
disks, S 1is parallel to some component D of D

Furthermore, since by assumption
IDnaE| z 4,

D counts in CZ (cf. 2.2). Here we have to observe that

our hypotheses imply that A(I) # ¢ . Now, since D does

]
not count in c4 , we conclude that

DI

1 1 1 1 D !
(Cy(M',2%), C M',2")) S (25 + g, )

3, b

A

(C4(M,%), C,4(M,1))

Finally, as

C,.(M',2') = c1(M,Z)
and

c,(M',2') s C,(M,E) ,
we see that the lemma holds 4als& in this case.

Lemma 2, - If D n S * ¢ then we also have

C(M',z') < C(M,I)
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Proof. i) At first we assume that there exists a
component SO of s N cl(M=-N(D)) which is contained in
some My , K 2r + 1, and is not d9-parallel in M .

Then, again using the fact that splitting a product
P x I along an incompressible surface system never leads
to any non-product component (which possibly could give

rise to an increase of C1(M',Z')) , we conclude, as in

the proof of lemma 1 (2. case, 1)), that
C1(M',Z') < C1(M,Z)

ii) Now let us investigate the situation when i) does
not hold. Then a system 7' of complexity disks for (M',L')
which is adapted to this case is provided by 3.4 (3. case, ii)).

It has the following helpful properties:

(1) For every 3-irreducible component Mé of cl(M'-N(D"))

there is exactly one component M, of cl(M-N(D)) which

is homeomorphic to M6 by an isotopy of M and contains

1
M9

(2) A component V' of 8M6 satisfies V' n N(D') % ¢ if
and only if the corresponding component V of &M

0
satisfies V N N(P) * ¢ . Moreover we have that

~

D' « E n M',
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where E = U b X tj ; see 2.2 for definition of D

-~

(resp. D', §)

(3} For every component D' of ©?0' which is properly
contained in some Dv X tj we have

ID* n A(z") ] < D, N A(Z) | .

Observations (1) and (2) are fairly clear, but (3)
needs an explanation. To see that it holds we let s be
the number of components of 3D' - B(Dv x t.)

]
least s disks, E1,...,Es ; in the complement of

. Then at

D' U N(S) in D\J X tj are outermost. In fig. 10 we have

s = 3

D'« D x t

Figure 10

Since none of them is of the type excluded by figure 6 of

section 3.2, it follows that
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(*) |E0 na(s'y] 24 for o =1,...,s

Furthermore, as C(M,I) is supposed to be non-trivial

we see that
(**) |[E n A(Z")] 2 2

for every component E of cl(DV x tj - N(S)) . Now, observing

that each arc of Dv x tj N S8 contributes two new components

of D' n A(L') , we deduce from (*) and (**)
S
D, * ty N A(Z)| + 2s 2 D' n A + ) |E, N A(ZY) |
o=1
2 |D' n A(L')]| + 4s

Finally, as
D, * £y N A(z)| = |D, n A(D) |

we see that (3) is indeed true.

To complete the proof of the lemma we note that (1)
to (3) imply that

'DI

Cy (M",z') = Ci(M,Z) for i =1,2,3

Moreover, if S N D = ¢ then, by (3), we have that

D' _ D
Ly < Ty s
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and if S N D = ¢ then (3) shows that
D! D
by < %y
a

4.3, - Proof of the existence theorem (end)

If M 1is closed then our hypotheses guarantee the
existence of a norm minimizing splitting surface S in M .
When H1(M;m) = 0 +this surface is a torus, otherwise it
may be chosen non-separating. We decompose (M,I) along
S and thus obtain a taut coloured 3-manifold (system)
(M1,Z1) with 21 = ¢ , and (R1)+ = S; . (R1)_ =8' ;
cf. I; 5.1, and I; 5.2. Therefore, no component of M1 is

a 3-ball and thus has non-trivial relative second homclogy.

Consequently, we are reduced to finding a coloured

manifold hierarchy for a taut coloured manifold (M,Z)
with oM * ¢
To begin with let us find a hierarchy when (M,Z)} has

trivial complexity. According to proposition 2.6, we only
have to investigate cases a) to d), whereas in cases e}

and f) of that proposition the desired hierarchy consists

only of (M,I)
In case a)

meridional disk

and d) we chose

form C x I

where

itself.

we simply take as splitting surface any
2

of M X S1 , and in cases Db), c),

as splitting surface an annulus of the

. 1ot g2

X

C S1 x {point} = S = In
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either of these cases the result of the splitting is a
taut coloured product as required.

So for the rest of the proof we suppose that the
complexity of (M,I) is non-trivial.

At first let us assume that A(I) = ¢ . This means
that either I = ¢ or I consists only of tori. In both

cases we have 0 = ¢ showing that

C(M,Z) = (C.I’OIOIO)

As C.| = length M # 0 , there is, by I; 6.1, a non-separating,

taut splitting surface S =* D2 in M so that

length cl(M-N(S)} < length M .

It follows that the taut coloured manifold (M1,Z1) obtained

by decomposing (M,Z) along S satisfies A(Z1) + ¢ and

Now it follows from lemma 2.6 and section 4.2 that there

is a splitting

S
1

such that (MZ,Zz) is taut and
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As A(Zz) is again non-empty, we conclude that after a
finite number of splittings along taut surfaces we arrive

at a taut coloured product.

Remark. Modifying the proof of the existence theorem
slightly it can be shown with not too much additional work

that all splitting surfaces Si can be found so that for

every component V of Ri ' Si nv is a system of k

(2 0) parallel oriented non-separating simple closed curves

Oor arcs.
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CHAPTER III

CONSTRUCTION OF FOLIATIONS FROM COLOURED MANIFOLD HIERARCHIES

The objective of this chapter is the proof of Gabai's
existence theorem of foliations without Reeb components
announced in the introduction (see also 4.1). The proof,
of course, will make explicit use of a coloured manifold
hierarchy for the underlying manifold. The existence of
such a hierarchy was established in chapter II.

Before giving the proof of Gabai's central result in
§ 4 we recollect in § 1 some general facts on Reeb components,
and in § 2 we illustrate Thurston's result telling us that
compact leaves are always norm minimizing, as long as the
foliation contains no Reeb component; cf [Th2]. This all is
to give the reader a better impression of the importance of
Gabai's theorem.

Again all 3-manifolds and surfaces embedded in them are
supposed to be compact and oriented unless otherwise stated.
We presuppose that the reader is familiar with some basic
concepts of geometric foliation theory. All we need can be
found for instance in [HH], except the notion of depth which

will, however, be explained in the text.

1. Generalities on Reeb components

Suppose specifically that the 3-manifold is closed and

fibres over S1 . Then every fibre is met by a closed trans-
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versal. Even more, when the fibre is connected, we can find
a global transversal, that is an embedded S1 intersecting
every fibre non-trivially and transversely.

In contrast to that the torus leaf of a Reeb component
embedded as part of a foliation in any 3-manifold does not
admit any closed transversal; see [No]l. Further, the manifold
M above can be endowed with a riemannian metric so that all
fibres become minimal 2Z2-manifolds, i.e. have mean curvature
zero. On the other hand, according to Sullivan [Sul, a
foliation Ff on a 3-manifold can be equipped with a
riemannian metric so that all leaves become minimal if and
only if F does not contain a Reeb component.

These two phenomena are to show that in order to discover
properties of (well-understood) surface bundles over S1 which
carry over to foliations of codimension-one the existence of

Reeb components is an essential obstruction.

1.1 - Reeb components cannot be always avoided

We here have to recall the following striking results

due to S.P. Novikov [No].

Theorem. — Let M be a closed orientable 3-manifold.

(1) If M has finite fundamental group ﬂ1M then every

codimension-cne foliation on M has a Reeb component.

(ii) If F 1is a codimension-one foliation on M such that

for some leaf- L of F the map mL —> m,M induced by

inclusion is not injective then F has a Reeb component.
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As already menticned, the boundary leaf of a Reeb
component does not admit any closed transversal. Thus, in
order to_show that a given foliation F has no Reeb
component it suffices to verify that each leaf of F 1is
met by a closed transversal . This criterion will be applied

in the proof of the main thecrem.

1.2 - Reeb components and irreducibility

Novikov's investigations go even further in proving that
the universal cover of a transversely orientable foliation
without Reeb components is contractible, and the leaves of
the lifted foliation are all planes. Moreover, H. Rosenberg
has shown the following result which, in connection with
theorem 1.1, implies that a closed 3-manifold admitting a
transversely orientable 2-dimendional foliation without Reeb

compenents must be irreducible.

Theorem. - ([Ro; theorem 6]) Let N be a 3—mahi£old;‘ﬁbt

necessarily compact. If N admits a foliation by planes then

every 2-sphere in N bounds an embedded ball.

These comments motivate our restriction to irreducible
3-manifolds in most parts of chapters I and II, and also in

the remainder of this chapter.

1.3 - Making surfaces transverse

Another crucial property of Reeb components is the fact

that they are an obstruction to making surfaces embedded in a
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foliated manifold transverse to the foliation. We shall
make use of the following result due to Roussarie, Thurston,
and Gabai; see [Roul], [Th1], and in particular [Gal] and

[Th2].

Theorem. - Let M be a compact oriented 3-manifold and

F a transversely orientable codimension-one foliation on M

without Reeb components. If S is a properly embedded

incompressible surface in M such that each component of

39S 1is either contained in a leaf of F or is tranéverse to

F then S is isotopic to a properly embedded surface which

is either a leaf of F , or has only saddle singularities for

the induced foliation with singularities on S . Moreover,

every boundary component of the deformed S is either a leaf

of F|dM or is transverse to F|[aM .

2. Norm minimality of compact leaves

2.1 - More on the Thurston norm

Using Poincaré-Lefschetz duality, the Thurston norm || |

{see I; 3) on HZ(M) or HZ(M,BM) gives rise to a dual map

| II* on H2(M) resp. H®(M,3M) (real coefficients) defined

by
| u|* = ‘sup <u,a> ,
ol s
where < , > denotes cup product. If || || is not a norm

then || |{|* may become infinite. So we understand | 1*
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as the restriction to the subspace where it is a norm.

2.2 - Theorem. - {Thurston [Th2]) Let M be a compact

oriented 3-manifold and F a transversely orientable foliation

on M without Reeb components. When 38M * ¢ , suppose further

that each component B of ©9M 1is either a leaf of F or F

is transverse to B and F|B has no (2-dimensional) Reeb

component. Then every compact leaf of F is norm minimizing.

The proof is carried out in [Th2]. It uses theorem 1.3 to
show that for the Euler class e(TF) € H2(M) resp. H2(M,8M)
F we have the inequality

*
| e(TF)|| < 1 .

Therefore, if L 1is any compact leaf of F with negative

Euler characteristic then we obtain
holl= Ix@] = [<e(F), (L]>] = er ||| el s || e
Showing that

il = Il tuli .

If x(L) 2 0 then the result follows from Reeb stability

and the hypothesis that there are no Reeb components in F
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3. Construction of foliations with corners

Given a coloured manifold hierarchy

S S
(M, E)~~ars (M D) ~oes o> (M ,5) = (PXI,0PXI)

we want to construct by means of this hierarchy a foliation
F on M which is transverse to I and tangent to
R =0M -1 . If the hierarchy is good enough then F will
not contain a Reeb component.

The foliation F will be constructed stepwise by starting
with the product foliation on PxI with leaves Px{t}, t € I ,
and then going backwards along the hierarchy.

Strictly speaking, the "foliations" we have to deal with
at this stage are not foliations in the usual sense because

they have corners.

3.1 - Foliations with corners

i) A foliation with corners F on a compact 3-manifold

is by definition a partition of M into injectively immersed
surfaces locally modelled on the space D2 x I . Thus the

points of ©9M correspond either to points of BD2 x I or of

D2 x 3I . The former constitute the set ¢ where F 1is
transverse to oM , the latter the subset R of 38M where

F is tangent. R and ¢ meet in a union of circles, the

"corners".
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As Fle is a genuine foliation, it follows that ¢ 1is
a union of annuli A and tori (possibly empty or all of aM ).
Note that the double of a foliation with corners on M

along A 1is a genuine foliation on the resulting manifold.

ii) A foliation with corners is transversely orientable

if its double A 1is transversely orientable.

iii) By a foliation on a coloured manifold (M,Z,R) we mean

a foliation with corners F on M such that F is transverse

to I and tangent to R

iv} A foliation F on (M,Z) 1is transversely oriented,

if a transverse orientation can be chosen so that on Rt the

two normal orientations agree, respectively.

Examples - i) p? x T with leaves D% x {t} 4is a foliation
on the taut coloured 3-ball. More generally, when P is any
{orientable) compact surface, we obtain a foliation on
(PxI, 9PxI) in the obvious way. Clearly this foliation is

transversely oriented once we have chosen an orientation for P

ii) Assume F 1is a foliation on the manifold M tangent
to 9M and A 1is an annulus, properly embedded and transverse
to F . Then cutting M along A yields a foliation with
corners on M' = M - int N(A) which is transverse precisely

to the two copies of A in 3M' .
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In the next section we will see how a coloured manifold

decomposition
S ] ]
(M, Z)~nins> (M',2') ,
together with a foliation on (M',¥') vyields a foliation on
(M, 2}

3.2 - Recursive construction of foliations

Suppose that we are given a coloured manifold decomposition

(M,E,R)'—\/\S/\/) (M. Izl rR')

and a foliation F' on (M',I') . We are going to show how

to obtain from F' a foliation F on (M,I) . The construction
of F , of course, will also depend on S . We have to discuss
three possibilities. In doing so we may restrict ourselves to
the special situation where S 1is connected, and for every
component V of R, VNS 1is a systemof k 2 0 parallel
homologically non-trivial simple closed curves (if V 1is
non-planar ) or arcs (if V 1is planar). Moreover, we assume that

F'|2® has no 2-dimensional Reeb component.

Case 1. 23S N R = ¢ . This is the easiest case. Our hypothesis
guarantees that the two copiles S, and "8' of S in O9M' are
components of R; resp. R' , and hence homeomorphic leaves of
F' . We can therefore reglue S, and S! and obtain by this from

F' a foliation F on (M,I) as required.
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Case 2. 095 <« R . By our assumption on S , a component
Vv of R wWith S NV % ¢ 1is non-planar, and V N S consists
of parallel, in particular coherently oriented, circles. Then,
to each of these circles corresponds an annular component of

' ; see fig. 1.

S.
AN —~—
v
Figure 1

Now again we glue S| to S! and thus this time obtain a
manifold M, homeomorphic to M and an induced foliation with
corners and singularities FO on M, . Note that FO is trans-

verse to I and toe k 2 0 annuli corresponding to the circles

of v.ns

Next, we thicken (MO,FO) in the obvious way so that only
the outermost ¢f these annuli, denoted A , remains in the
boundary, whereas all others disappear from the boundary. See
fig. 2. This is possible since the circles of Vv N S are
coherently oriented. Call the new foliation with corners again

(Mg, F o)

T
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Figure 2

In order to obtain a foliation on (M,I) we have to
spiral the leaves of F0 towards V . This process of
spiraling is analogous to the process of extending a foliated
pseudo bundle of rank one over S1 (in the sense of [HH]) to

a foliated bundle on S1xI . To be more precise , we view

M as empbedded in M so that N = M—Mo is homeomorphic to

0
VvxI and is endowed with a foliation with corners in the
following way.

Let C =A N S (see fig. 2) and let C' be a simple
closed curve on V whose geometric intersection with C is
one. We cut V open along C.U C' and give (V-N(C U C'))xI
the product foliation. Denote by £ : I - I the holonomy map

of FO\A , and let g : I - I be defined by g(0) = 0 and

g(t) = - £(2

oV (t-—g)) + — , for t ¢ (—]—. 1

—~——1 .
2 2 oV VT

So g maps each interval [-%v JL1]

2 2

homeomorphically onto
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itself and gI[JU, —6%71 is conjugate to £, v = 1,2,... .
2
This permits us to identify the two copies of C'xI on

9(V-N(C u C') x I) by means of
(x,t) —> (x,g(t)) .

This gluing clearly ‘respects the product foliation. What we have
produced is a foliation on (V-N(C)) x I such that the two
induced foliations on the two copies AO and A1 of C x I

are the same and have holonomy equal to g . Now the construction
of the desired foliation on N 1is accomplished by gluing

A0 = C x [0,1] to C x [0,%] by means of the map

A g A1 r (xl’t)  E— (xr )

0

Nt

Finally we glue N to M, so as to obtain the foliation
F on (M,Z) as required. As the preceding construction can be
carried out independently for each component V of 3M with

S NV % ¢ we have completed our discussion of case 2.

Case 3. There is a planar component V # D2 of R meeting

S non-trivially. Thus S N V 1s a system of parallel properly

embedded arcs between different boundary components of V .
Recalling how (M',I') was obtained from (M,Z) by means

of S , we see that aSl is the union of two systems of arcs

q:,...,q; and r¥,...,r; where a, < 3L' and r, < R

v =1...,n, and similarly for 3S' . Now we reidentify S;

with §'! in such a way that q: is glued to r; and r: is

glued to q;, v=1...,n; see fig. 3,a).



r-.‘-' r/v-_‘ﬁrh“““—
L e
- =N dr
S (0 %
v /7
D
r, 7
Sl
a)
b) c)
Figure 3

The manifold MO obtained by this gluing process has a
"singular foliation with corners"' - (' whichsis induced by
F' . Each of the arcs q$ and q; is contained in the boundary
of a disk D: resp. D; where all these disks belong to I' ,
see fig. 3b). Clearly, we may assume that F' induces on each
D a product foliation. Thus we can extend C' by gluing a

AR

product Dt x I to M, where the identification is along



- 112 -

D: x {0} v q: x I ; see fig. 3c). Denote the resulting singular

foliation on M by C

0

Now let us have a closer lock at C . As in case 2 we

consider MO as being embedded in M so that M-M, is

contained in a neighbourhood of R . Then, if V is a component

of R as before ,h we have established a situation as in fig. 4.

Here we (again can and do) assume that S N V 1is connected.

Figure 4

More precisely, fig. 4 shows N(V) N MO which is homeomorphic

to V x I where

with J contained in a leaf L of C(, ¢ x 0 a properly

embedded arc in both V x 1 and L , and ¢ x 1 < 3L properly
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embedded in V x 1 . Moreover, C|(c x I) is the product

foliation with leaves ¢ x t, t € I

Next, let
M, = M U J' x I
1 0 J'x0
where
J' = cl(J~-N{c x 0))

with ©N(c x 0} a collar neighbourhood of ¢ x 0 in J
Clearly, M1 is homeomorphic to MO . We now have to fill out

the ditch formed by

N(c x 0) U (c x [0,2]) U (cg X [0,1]) = oM,

where ¢ is the copy of ¢ = ¢ x 0 in ©9dN(c x 0} « J ; see

1
fig. 5. This is done by taking the product N{c x 0) x I ,
gluing N(c x 0) x 0 onto N{c x 0) , and identifying ¢ x I
and cq I 1leaf preservingly with the corresponding walls of

the ditch. Note that this gluing proceduce necessarily produces

holonomy in F|L .

We observe that spiraling F' in a neighbourhood of V in

order to eliminate transversality near VvV N $ can be exhibited

successively for every planar component V o0of R with VvV n S # ¢

This completes the discussion of case 3.

-



Note that if F' is transversely orientable then so is F

Summarizing we obtain:

Proposition. - Let (M,E,Ryxa§us>(m‘,2',R') be a coloured

.manifold decomposition where S is-connected and such that for

f R n j fami 2 0
every‘cemgqnent v of » VNS is a'_aglly oﬁ& k 2 ?érallel

T

homologically non-trivial simple closed curves (if V 1is non-

planar) or arcs (if V is planar). Then any foliation F' on

(M',Z2') where F'|L' has no Reeb component induces in a natural
where p

way a foliation F on (M,I) such that F|I has no Reeb compo-

nent. Moreover, if F' 1is transversely orientable then so is F

Proof. We glue S to S! . If case 1 holds then we are

done. Otherwise in each of the cases 2 and 3 we perform



- 115 -

the constructions described above. This gives us the foliation

F on (M,Z) .

In the next three sections we discuss some relevant

properties of the foliation F .

3.3 - Differentiability of F

A feoliation on an arbitrary coloured 3-manifold (M,I) 1is
said to be of class c® if its double along I isa C*
foliation in the usual sense. We call the foliation smooth if-
it is of class C .

Now let F' and F be as in the previous section.
Unfortunately, F need not be smooth even if F' is. This
happens necessarily to be the case when the gluing somewhere is
as in case 2 and the corresponding holonomy map £ : I - I of
F0|A (cf. 3.2, case 2) is not the identity. For in this case
the map g : I - I defined by means of £ 1is only of class
Co , at least at 0. This, however, implies that the leaf V of
F  has only C0 holonomy.

Nevertheless, we shall see in a minute how Gabai proceeds
in order to obtain a smooth foliation even if f % Id , at least
when V = T2 .

On the other hand, when F' is smooth and the gluing is
as in case 1 then a sufficient condition for F to be smooth
is that the holonomy of the two leaves s, and 8! of F'

which are going to be identified is everywhere c” flat , i.e.

if

£ : [0,e) —> [0,8)
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denctes an element of the holonomy pseudogroup of such a leaf

then

— (0) = -
dt 0 if r>1

-

cf. [HH; Iv, 4.1.3].

A similar remark applies in case 3 provided that the
filling out of the ditch is made by means of a diffeomorphism
of the interval which is ¢~ flat at both end points.

Let us now see how Gabai proceeds in order to obtain a
smooth foliation even in case 2, provided V # T2 . Of course,
we need that F' is smooth. Furthermore, we have to require
that F' be C~ flat near R' and that (with the notation
of 3.2, case 2) the holonomy map f£ : I —> I of F0|A be
c® flat at both end points. All these conditions will turn
out to be satisfied later in the applications.

To begin with let us assume that o8V * ¢ . We choose a
collar C x [0,1] of an arbitrary boundary component C of
V . Then we give (C x [0,1]) x I the structure of a foliated
I-bundle with foliation transverse to the third factor and
with holonomy f-1 . Next we connect C x 1 x I and the
annulus A by a thickened band (I x I) x I ., This is done
by gluing 0 x I x I to Cx 1 x I, 1 xIxI to A and
I xIxO0 to 3M0 ; see fig.6. Moreover, when (I x I) x1I

is endowed with the product foliation transverse to the third

factor, we do these identifications so that we create a new
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foliation with corners which is transverse to the annulus A'
composed by sub-disks of A and C x 1 x I , together with
I x 3I x I . By construction, the holonomy along A' now has

become trivial. We thus have reduced to the case f = Id.

c x 1 x1I

(I x I) x I

Figure 6

When V 1is closed and has genus greater than one we have
to refer to the following result ascribed by Gabai to Mather,

Sergeraert, and Thurston (cf. [Se; théoréme 6.61]).

Proposition. -— Let f : I —> I be a c” diffeomorphism

which is C° flat at both end points. Then there exist c”

diffeomorphisms gv'hv : I —> I, v=1...,n, which are all

c”  flat ét both end points of I such that

-1 -1 -1
9, °hy

.o lgyoh booowel e (gn°hn°g;1°hn ) = 1d .

1



- 118 -

In order to apply this result to our situation we glue,
similarly to the previous case, thickened bands G1 and H1 ’
both homeomorphic to S1 x I x I , on the component of
BMO - I' that contains the annulus A . This gluing is done
along S1 x I x 0 and so that A 1is not met. Moreover, the

intersection of G1 and H1 should consist of a single cube;

see fig.7.

Figure 7

We endow G1 and H1 both with the structure of a foliated

bundle where the holonomy on G1 is g, and on H1 is h, . We

1

may assume that on the cube G1 n Hy both foliations agree.

Next, we connect one of the bands G1 and H1 ; say H1 '

by a third thickened band, this time homeomorphic to I x I x I

with the annulus A . This is done as indicated in fig.7. If the
gluing is performed correctly, we obtain by this operation an
extension of F0 with a transverse annulus A1 such that the
holonomy along A1 is given by f o gq o h1 o g;1 o h;1

Exhibiting this operation n times, we therefore finally get an
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extended foliation of FO with a transverse annulus A such

that the holonomy along An is trivial.

We have shown:

Proposition. - Suppose we are given a decomposition

(M,Z,R)~3a> (M',I',R")

and a foliation F' on (M',I') such that F'|Z' has no

Reeb components, as before. Suppose further that no component

[a 0]
of R is a torus and F' is smooth and C flat at R' . Then

the foliation F on (M,I) may be constructed to be smooth and

¢® flat at R .

3.4 - The closed transversal property

Definition. - A foliation on a coloured manifold has the

closed transversal property (c.t.p. in short) if every leaf it met

by a closed transversal or by a properly embedded transverse arc.

Note that a Reeb component whether embedded or not does not

have the c.t.p.

s S ,
Given a coloured manifold decomposition (M, Z) e~~~ (M, L")

as before, and a foliation F' on (M',I') we want to see to
what extend the c.t.p. of F' carries over to the foliation
F on (M,f) obtained from F' Dby the constructions of the

preceding paragraphs.
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Proposition. Let (M,Z,R)Axgvg{M‘,Z',R') be as in 3.2.

Suppose that no component of R 1is closed. On (M',I'} let a

transversely orientable foliation F' be given where F'|[Z'

has no 2-dimensional Reeb component.

If F' has the c.t.p. then so does the foliation F on

{M,Z) obtained by the recipe of sections 3.2 and 3.3.

Proof. By section 3.2, F is obtained from F' by gluing
S, to 8! and a series of extensions of the foliation with
corners (and singularities) obtained by this gluing procedure.
Now the proof of our assertion is based on the following three

observations.

(1) If W, and W_ are components of R' such that

W, NA+¢ and W_NA =+ ¢ for some annular component

A of &' then for any two points x,_ € W, and xX_ & W_

there is a proper transversal t of F' with end points

X, and x_

(2) If t is a proper transversal of F' connecting x, € S

with x_ € S' then we may assume that x,  and x_ are

identified under the gluing of §. to S

(3) If there is a proper transversal t of F!' connecting the

point x,_ of R} to 5! and (2) does not apply then

after gluing S to S' the arc t can be extended to a

properly embedded transversal through x_
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Clearly, (3) follows from (1). Note also that if (2) applies
then the transversal +t+ gives rise to a closed transversal
through the leaf of F c¢ontaining S . This situation holds for
instance when (M',F') 1is a coloured product and S; = R;

Now, in case 1 of section 3.2, our claim ménifestly follows
from (1), (2), (3). The same holds in case 2 whenever no
component of R 1is closed. For then 23V % ¢ and the existence
of a proper transversal also for the boundary leaf V of the
spiraled foliation follows from (1) and the fact that the
foliated pseudobundle that is attached has a global transversal,
i.e. one intersecting every leaf. Observe, however, that the
exceptional.case actually occurs, for instance when
({M,Z,R) = (D2 P S1,¢,8D2 % 51) and S 1is a meridian disk. In
this case, when F' 1is a product we obtain as F a Reeb
component.

Finally, in case 3, it suffices to observe that a proper
transversal t of F' with one end point in the leaf of F!
containing S (resp. S! ) can be isotopically deformed through
proper transversals meeting the same leaves as t but not
sy (81)

The proof is completed by noticing that the modifications
performed in 3.3 in order to make F differentiable do not have

any influence on the c.t.p.
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3.5 - Boundary triviality

Let us say that a foliation F on the coldéured manifold

(M,Z) is boundary trivial (d-trivial) if F|I is trivial on

each of its components.

Boundary triﬁiality will play a rdle in'chapter IV when
Gabai's machinery of coloured manifolds is applied to the surgery
problem for knots in S3 . There we shall be interested in
foliations without Reeb components on knot complements so that
the foliation induced on the boundary torus is by circles each of

which represents a prescribed homology class.

Proposition. - Let the decomposition

(M,E)/\/\gvxm) (M"Z')

be as in 3.2. Suppose further that the foliation F' on (M',L'")

is d-trivial. Then the foliation F on (M,Z) obtained from F'

by the-procedure of section 3.2 also is.d-trivial, provided that

for the construction of F only gluing and exténsions as in

case 1 and 2 of 3.2 are used.

Proof. The assertion is obviously true when the gluing of S;
and S' is as in case 1, for then F|I is obtained from F'|Z'
by identifying certain components of &' along boundary curves.

In case 2, the attached pseudobundle over V < aM by ‘

construction is trivial over 9V . This implies our claim.
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4., The Main Theorem

In this paragraph we present the main result of these notes

(Gabai's theorem [Ga I; 5.5]) and draw a first consequence.

4.1 - Main theorem. - Let M be a compact (connected)

irreducible oriented 3-manifold whose boundary is a (possibly

empty) union of tori. Let S be a norm minimizing properly embedded

surface system in M representing a non-trivial element of

H2(M,8M) . Then there exists a transversely oriented foliation

F on M such that:

(1) F is transverse to oM and F|3M has no Reeb component.

(2) Every leaf of F 1is met by a closed transversal.

(3) The components of S are leaves of F

(4) F 1is smooth except possibly along torus components of S .

Proof. Consider the decomposition

(*) (M, M) ~~Rs (M, )

Since S is norm minimizing, (M1,21) is taut. As BM1 + 0 we
have that H,(M,,3M;) * 0 . We can therefore apply theorem 4.1 of

chapter II to (M1,E1) and extend the decomposition (*) to a

coloured manifold hierarchy

S S S
(M'Z)/\N\-n} (M1'Z1)AN1'/\’> .../\/\E-:l\,) (Mm’zm)
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where each Su is connected and has non-empty boundary, and

/
L = 3M . We can moreover assume (see remark at the end of proof

of IT; 4.1) that for every Su and every component V of

=]

Ru = BMu - Zu , VN Sp is a system of k(2 0) parallel
homologically non-trivial simple closed curves (if V is non-
planar) or afcs (if V is planar).

Now, starting with the product foliation on (Mm,zm) we
construct recursively foliations Fu on (MU'ZU) . As no Su is
closed, it follows by section 3.4 that F1 has the closed
transversal property and satisfies the hypotheses of proposition
3.3. We conclude that the foliation F on (M,3M) which is
constructed by means of F1 as in § 3 satisfies conditions (1),

(3) and (4). Finally, as 3M = I we deduce from proposition 3.4

that F satisfies also condition (2).



