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ABSTRACT. In this note we introduce a family £;, ¢ =0,...,n — 2 of discriminants in the space
Pr of polynomials of degree n in one variable and study some of their algebraic and topological
properties following [Ar]-[Va] and [GKZ]. The discriminant £; consists of all polynomials p such
that some nontrivial linear combination agp-+a1p’+-- -+a,-p(") has a zero of multiplicity greater
or equal ¢+ 2. In particular, using the inversion of differential operators with constant coefficients
(which induces the nonlinear involution on P, ) we obtain the algebraic isomorphism of ¥; and
Tn—a—; for all 1.

§0. INTRODUCTION
It is well known that every solution to a finite nonperiodic Toda lattice

a; = a;(biy1 — bi) , bi = a; — a;
0,

i=0,...,1; a;,b ER; apa1...0n-1 #0; a1 =a, =0),

——

can be presented as

() = A?—l(w)Agd-l(m) (o _f_i N A?(i’)
(o) = 25— o= v (37 05)

T dz

where AY(z) is the i¢th principal minor of the Hankel matrix

y’(m) - yE";(:{:)
H,(z) = Y (:$) y :(3;) |
y™N () ...y (z)

and y(z) is some solution to the linear ordinary differential equation with constant coefficients
of order n + 1 determined by the Toda lattice, see ¢.g. [BGS]. Therefore singularities of
solutions correspond to the zeros of the determinants of AY(z). They are also intrinsically
related with Schubert calculus, see [F1],[GS].

1This project was started while the first author was visiting the University of Stockholm
supported by the grant R-RA 01599-307 of the Swedish Natural Sciences Research Council.
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2 A. L. GORODENTSEV AND B. Z..SHAPIRO

The subset of solutions for which the ith principal minor AY(z) has a multiple zero for some
z is a hypersurface in the space of all solutions. The union of these hypersurfaces separates
the space of (real) solutions into domains of solutions with different qualitative behavior.

A similar situation occurs both in the theory of linear Hamiltonian systems and linear
ordinary differential equations with one essential difference that instead of the space of solu-
tions one has to consider the space of fundamental systems. Vanishing of principal minors is
related, for example, to the index of the trajectory of a Lagrange subspace. Again the space
of fundamental solutions contains certain discriminants formed by all fundamental solutions
for which at least one of principal minors vanishes with multiplicity > 2. The study of the
stratification of the space of (fundamental) solutions coming from the union of these dis-
criminants is an important open problem even for linear Hamiltonian systems and ordinary
differential equations with constant coeflicients.

The present paper is an attempt to study some properties of the above discriminants in
the space of polynomials, i.e. in the space of solutions to the simplest equation z(»+1 = 0.
The paper is organized as follows. §1 contains some general information on induced and
associated discriminants. In §2 we present the corresponding Sylvester formula for associated
discriminants. §3 contains various algebro-topological information, i.e. duality induced by a
special nonlinear involution of the space of monic polynomials, resolution of singularities and
a natural stratification. Finally, in §4 we calculate the cohomology with compact supports
for a specific example.

Acnowledgements. The authors are sincerely grateful to M. Gekhtman and M. Shapiro
who attracted our attention to the singularities of solutions of nonperiodic Toda lattices
and mentioned the reference [HMP]. The authors want to acknowledge the hospitality, nice
research atmosphere and financial support provided by the Deparment of Mathematics of the
University of Stockholm during the beginning and by the Max-Planck Institute during the
final stage of this project.

§1. INDUCED DISCRIMINANTS i:,' AND GENERALIZED MULTIPLE ZEROS.

1.1. Notations. Given a function y(z) and a positive integer ¢ let us consider AY(z) the
determinant of the ith principal subminor of the above matrix Hy(z). Zeros of AY(z) are
called (7 — 1)-generalized zeros of y. (We shift the index for the sake of convenience.)

Consider now a family F(z, Ay,..., Ax) of functions in one variable z. The ith induced
discriminant of the family F is the set f)i(f) of values of parameters Ay,..., A;x for which
AL, (considered as a function in = only) has a multiple zero.

The 1th associated discriminant of the family F is the set 3;(F) of values of parameters
A1, ..., A for which A; satisfies the following condition. There exists a nontrivial linear
combination cgF + a1 F' +- - -+ ; F& which has a zero of multiplicity 7+ 2 at some point .

The relation between the induced discriminants and the associated discriminants is de-
scribed by the following proposition.

1.2. Proposition. The ith induced discriminant f),-(}"), © > 1 of the family F coincides
with the union of two associated discriminants Z;_1(F) U L;(F) while Lo(F) = Lo(F).

Proof. First of all, £5 = £ by definition. The proof of the fact f],-(}') =3 1((FYUZi(F)
for all ¢ > 1 is based on manipulations with the subminors in the following Hankel matrix of
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the family F(z, A1,... Ax)
F, F,ooo., FE2)
F, Frooo..., Fut2)
H.‘F'(-'Bg’\la---’/\n)"—" . : . . )
}-(i#-z), _7:'(1':+-3)’ - F(2it4)

where FU) denotes the jth derivative of F w.r.t. . Let us denote by H. ,l,i{, ' in, the subma-

trix in Hr formed by the rows with numbers {;,...,{, and the columns with the numbers
mi,...,Mq. By dctl” ”mq we denote the detummdnt of H,l,i;' g
E, consists of all q,’) € F such that the determinant A? a(z) = det1 ’:E has a multiple

zero as a function in z, i.e. there exists z such that A-"fH = (A7,,)’ = 0. Differentiating
A7, w.r.t. z one gets that (Af) = detl' :ﬁ-z Thus ¢ € ;(F) if and only if there exists
z such that det’ :ﬂ = det} L, =0.

At the same time ¢ € L;_1(F) if 3z such that thc submatrix H,” "+lllas the rank < i

and ¢ € E;(F) if 3z such that the submatrix H i +1 or equlvalently H L :1'21 has the rank
<i+ 1L
Obviously, the union ¥;_,(F) U X;(F) is contained in I; (.7-') Indeed, if H:z: such that
L1

H1 '+1 has the rank < 4 then for the samec x one gets dct1 Yip1 = de £y’ :ﬂ-z = 0.
l+1

is less than ¢+ 1 then all its (z+ 1) x (i+1)-
determinants vanish and, in particular, det1 :i% = det]’ ’:fiz = 0.

Let us prove the opposite inclusion. Given ¢ and = such that det1 ‘:ﬁ = det;"" :t—iz 0
we get two cases. If for this ¢ and z the submatrix H "'H has the rank < ¢ then ¢ belongs
to E, 2(F) by definition. At the same time if the rank of H 1,_“": *1 equals 4 then the system

dety’ :i} = dety " t1, = 0 is exactly equivalent to 7k Hpyoihy <i+

Analogously, if 9z such that the rank of H

1.3. Generalized discriminants and generalized roots for polynomials. In what
follows we will study the generalized discriminants only for the families of polynomials over
the field C. Let P, denote the set of all monic polynomials of degree n

plz) =z + Xz '+ + A, N eC.

From now we will omit the indication of the family if 7 = P,,.

For P, only the first n determinants A,,, mn = 1,...,n are functions depending on pa-
rameters A, ..., A, and Apyp = (n+ 1)!*t1 Thus the only nontrivial induced discriminants
of P, are }50, ceny in_l.

Let us denote by %; the standard associated discriminant ¥;(P,). g is the usual dis-
criminant (also called the swallowtail), i.e. the set of polynomials with multiple zeros and
the 0- generahzed multiple roots are the usual multiple roots. One has Eo = Yo, $ho1 =
Thoo, i =i N fori=1,...,(n-2).

In the last part of this section we show that any polynomial has a finite number of -
generalized roots counted with multiplicities and therefore a finite number of pairwise different
multiple roots. This result can be also interpreted as the estimation of the complexity of the
selfintersection of the discriminant ;.



4 . -A. L. GORODENTSEV AND B. Z. SHAPIRO

1.3.1. Proposition. The number of i-generalized roots (counted with multiplicities) of any
polynomial p of degree n is equal to (i + 1)(n —4). Thus the number of multiple i-generalized
roots of any polynomial of degree n does not exceed Kil)_zil‘_‘il

Proof. One can easily see that for any p(z) € P, the degree of A;;(p) as a function of ©
is equal to (¢+1)(n—1). Let us now consider in the space P(it1)(n—s) the following 2 subsets,
namely, the n-dimensional image A;+1(P,) and the usual discriminant ¥ consisting of all
polynomials with multiple zeros. It is not hard to show that A;,(P,) ¢ . Thus a typical
polynomial in A; ;1 (P,,) has exactly (i + 1){(n — 7) pairwisc different i-generalized zeros. The
estimation of the number of pairwise different multiple roots follows.

[

1.3.2. Remark. To calculate the exact value of the maximal number of pairwise different
multiple i-generalized roots for polynomials of degree n is apparently a very nontrivial problem
for all ¢ > 0. (For i = 0 the obvious answer is [3]).

The authors have made some calculations for « = 1 and small n. Recall that in this case
the upper bound for the maximal number Y4,,4(¢,7) of multiple 1-generalized roots equals
n—1.

For i = 1 and n = 2,3,4,5,6 the number #,,,-(¢,n) equals 1,1,3,4,4 resp. For the
interesting cases n = 4 and n = 5 the corresponding polynomials p with the maximal number
of pairwise different 1-generalized roots are of the form z* + ez and z° + az resp.

§2. SYLVESTER FORMULA FOR X;

2.1. Projective closure $; of &;. In order to write an explicit equation for the hypersurface
¥ let us consider a more general homogeneous problem. Let P; = P(U) be the projective
line obtained by projectivization of a 2-dimensional vector space U with a base {e,,e1} and
let {to,t1} be the dual base of U*. We denote by V, the space of all homogeneous forms of
degree n in (to : t1):

n
V= {p(t) =D Atht?™ | A, €C} .
v=0
Let us consider the linear operator D : V,, — V,, sending an element p to togt% and denote
by D; C Endc (V) the subspace of all operators of the form

U(D) = g + 1D + - - + ¢, DY, P; € C.

2.1.1. Lemma. Projective closure ﬁ,- C P, = P(V,.) of the surface ¥; consists of all forms
p such that Up has a zero of multiplicity > (i + 2) al some point uw € Py for some ¥ € P(D;).

Proof. The standard affine chart {fp = 1} on P, = P(U) is an affine line A; with the
coordinate « = t/to and the standard affine chart {A¢ = 1} on P, = P(V,,) coincides with

the affine space P, of all monic polynomials of order n. The operator D = EdE on this space
is induced by the operator D = t“?fat_l on the space V,,. It remains to note that for any p € P,

and any nontrivial i-tuple ag, @1, . . ., @; the polynomial cop + c1p’ + - - - + a;p® has no zeros
of multiplisity > (¢ + 2) at infinity, because its degree is greater or equal n — ¢. Therefore the

affine restriction of the hypersurface L; coincides with our original discriminant ¥;.
O
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2.2. Sylvester formula. In order to write an explicit homogeneous equation defining the
hypersurface ¥;, consider the product

IP,'_ X Pl = P(D,) X IP(U)

and denote by S(d;, d2) the space of bihomogeneous forms of bidegree (dy, d3) on this product.
In other words, S(d;,ds) is the space of forms

F(\Ijvt) = F('l/)(h s .ﬂpi; t()atl)

on two groups of variables ¥ = (1)g,...,%¥;) and t = (¢g,t;), which are homogeneous of degree
dy in ¥ and homogeneous _of degree do in t. We associate to each p € V), the collection of
(i +2) forms FJ, F},...,Fi*! € §(1,n — i — 1) defined by

a o 6 i+l—a -
Fp(\Il,t)=(8—to) (B_tl) Up(t) , a=0,1,..., i+1).

2.2.1. Lemma. A form ¥Up has a zero of multiplicity > (i + 2) at a point t € Py if and only
if all (i +2) forms F; vanish at the pair (¥,t) € P; x Py,

Proof. This follows immediately from Taylors formula for ¥p.
()

2.2.2. Resultant hypersurface. It is shown in [GKZ] (ch. 13, §2) that all collections of
(i + 2) forms on P; x Py, which have a comumon zero form an irreducible hypersurface in
the projective space of all collections of (z + 2) forms on P; x P; of the same bidegree. An
irreducible equation of this hypersurface is called the resultant of (i + 2) forms of a given
bidegree.

In our case the condition that i + 2 forms Fr? ye e .F;“ have a common zero is equivalent
(see {GKZ], p.439) to the fact that the ideal (F), ... Fi*!) generated by these forms does not
contain the subspace S(2,2n — 21 — 3). More preciscly, if we consider the linear operator

8yt S(lin—i—2)@®---&S(1,n~i—-2) — S(2,2n — 2i - 3)

i+2

induced by multiplication by our forms Fy,... F;*! i e.

i+1

Bp : (Go,G1, .., Gip1) = Y _ GoFyY,

a=()
then the forms F} have a common zero on P; xP, if and only if this operator is not epimorphic.
Since both spaces S(1,n —i—2)®*+2 and S(2,2n — 2i — 3} have the same dimension equal to
(t+ 1)(¢ + 2)(n — i — 1) the last condition takes the form det (3,) = 0 as soon as we choose
some bases in both spaces. So, we get

2.2.3. Proposition. The projective closure $iCP, = P(V,,) of the discriminant ; C Py,
is an irreducible hypersurface of degree (i + 1)(i + 2)(n — i — 1).

Proof. As we have seen above, the condition that for given p € V,, there exists a nontrivial
operator ¥ € P(D;) such that ¥p has a root of multiplicity > ¢ + 2 at some point on P, is
equivalent to the determinantal condition det (J,) = 0, where 0, is the square matrix of the
size (1 -+ 1)(i + 2}(n — i — 1) the entries of which are cqual to some coefficients of p multiplied
by appropriate constants.

O
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2.3. Some examples of Sylvester formula. In order fo write down the matrix d,, let us
fix the standard monomial bases in all spaces. Namely, in the space

S(ln-i-2)®---®&S(l,n—1-2)

it2
we fix the basis {¢(“)f7t" *=2-7} where @ = 0,...,i+ 1 enumerates the direct summands,
y=0,...,n—1—2 md]cates the power of t, and = 0,...,7 enumerates the basic vectors of

D} giving the coefficients of ¥ = Y"1 DP.

Similarly, in the space S(2,2n — 2i — 3) we fix the basis {¢;yxtht2*"2~37!}. (Note that
p;¢r and Yry; are two different notations for the same basic vectors; they are convenient
and we hope this will not lead to any confusion in the following formulas).

After some efforts one gets:

), 2n—21—3—~ v
P (w(a)tqtn i—2— 7) Z 257'¢ﬂ¢c!+ut3+l tl = {(v+v) ,
B
where the summation is taken over all p, ¥ such that
0<vn—1—-1
0<~y+v<2n—~21-3
—(n-v)<p<v
0<a+p<

The matrix clements (},, are given by

aﬁ-,—(”+1)(V+2) (1/+al-En—u—z’)(n—u—i+1)...(n—u+ul-/\u__p,

« i+1+4p

where the factors in both underbraced groups are consequently increasing positive integers.

2.3.1. Example. The usual discriminant corresponds to the case i = 0. In this case for a
given p = Aot} + Altot'l'_l + -+ 4 Apty € V,, we have to construct two forms

F) = g:; At 200t TR+ H Aty !
d -
Fl= 3tp = nAot? ™ 4 (n = D) Artot? 2 - - o+ Ayt

and consider the linear operator
81) : vn-—Z S vn—Z — V2n—3

sending (Go,G1) to GoFy + G F,.
The above bases specialize to the standard monomial bases t.g’tf of the spaces in question

and the matrix of g, gives the classical Sylvester representation for the usual discriminant of
a homogeneous form p. For example, we get the well-known formula

Al 2X2 3A3 O

0 A1 22X 3As

3d0 2M1 A 0

03X 2A1 Az

det 9, = det, = 3(AA3 N3 4 dXgAS + 270222 — AZXZ — 18XpA 1 A2)3) .
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for n =3 and v
A1 2X 33 4a O 0

0 A 2 3Xx3 4As O

_ 0 0 A 2x 33 4dAg | _
det 9, = det Mo 3A 2 A 0 0 | =

0 4hp 3A1 2X2 A3 O
0 0 4dxp 3A1 2X2 A3

= 16(=A2A202 — 256303 +4AZA3A4 + 272208 + 423X + 270302 1 622020 A0 + 19201 A3 X202 —
18A1 230042 — 18A3A30 4 + 80A1A3Ag 023 — 144X A2A%N — 144A2A2 00X, + 128020202 +
4/\%)\%)\0 - 166Ag/\4/\0) for n = 4.

2.3.2. Example. In another extremal case : = n — 2 for a given p = 3 A, t§t7™" we have
to construct n bilinear forms

n—-2

Fe(y,t) = Zl/)j(c;-"oto +cgit), a=0,1,...,n—1.
e

Pl o 9 n—l—-a . o ]
Coefficient in parenthesis is equal to (31‘_0) (3??) th (Bt_l) p(to,t1) and the con-

stants ¢}, are given by

| F—a— 1) . - — 9 -
. Aat1l—7s — —
N {(a—i—l)(n—l—_y a— 1) t1-j, for —1<a-j<n-1
ciy =
70

0, otherwise
and

o= { (@) n+i—a)hoy, for0<a—i<n
i1 = .

0, otherwise

The operator of multiplication by these forms

8,:5(1,0)®--- & S(1,0) = S(2,1)

"
113

is represented by a square matrix of the size n{n — 1) and acts on the vectors of the above
basis by the rule

n—2
(i) = > i (choto + €itn) = 3 Eftbihut
i=0 il
where
(a+)n+j—a-1hgjp forl=0; -1<a—-j3<n-1
=S (@ n+j-—a) g forl=10<a-j<n
0, otherwise

and v=0,...,n—-1; 7,k=0,1,...n—2; 1 =0, 1.
If we order 1,[;,(;') as

0 0 1 1 -1 -1
'll)o,...,"’[]n_l,wo,...,¢n_2’...,...,¢0 y vy ::_2,
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take ;1 only with j < k, and order them lexicographically, then, for example, for n = 3

we get

210 3 0 3 O 0
0 2x 3 0 3N 0

2y 4A) 0 2X\ 31X O
0 2h2 4N 0 2A01 3l

3y 3 02Xy 4N 0
0 33 3Ay 02X 4N

det 8, = 512(72A1 Ao A2 — 189AZAIAZ —108AZAIN; — 729A0A3 + 108A3A5 — 8AS +486A5 A2 A1 3) .

9, =

bl

For n = 4 the operator J, has the matrix

/6 2o 0 000 2N 00000
0 6\ 0 24 0 0 0 2% 0 0 0 0

0 0 6\ 0 24 0 0 0 2% 0 0 0

dhy 120, 48% 0 0 0 6A 2% 0 0 0 0

0 4\, 0 12\ 48% 0 0 6\ O 24 0 0

s | 0 0 an 0 12n o2 00 0 6 0 2y 0
P =1 6x 120 36\, 0 0 0 4r, 120 48\ 0 0 O
0 6As 0 12 360, 0 0 drx, 0 12) 48, O

0 0 6 0 12\ 367, 0 0 4x; 0 12X 48X

94X, 24X 48%, 0 0 0  6A; 12h 36X, 0 0 0

0 24A, 0 24X; 48%, 0 0 6\ 0 12\, 36X, O

\ 0 0 24n 0 24\ 48% 0 0 6\ 0 12 36X/

and zero set of its determinant consists of all polynomials

p = Aotd + Aitdto + Apt3t2 + At it + Aath
such that there exists a nontrivial linear combination cgp + c1p’ + @2p”, which has a zero of
multiplicity 4.

2.3.1. Example. In the simplest nonextremal case ¥ C P, we get the following explicit
expression for d, (where the coordinates of Bp(wé“)tgti“"’) will be written in rows to save
space):

e

/12/\0 6X1 2XA2 0 0 24Xy 6\ 0 0
0 12hg  6A1  2A9 0 0 24)y 66Xy 0 0 0
0 0 0 0 12X 6XA1 2. 0 0 24Xy  6X
0 0 0 0 0 12X0 6A1 22X 0 0 24X
3A1 4Xhe 3As 0 12h9 12X 69 0 0
0 3d1 42 3A; 0 12X 12X 6Ag 0
0 0 0 0 3A1 44X 33 0 12X9 1221 6X2
0 0 0 0 0 3y 4hy 33 0 1229 12X
20y 6Az 12Xy 0 6A1 12Xy 12X3 0 0
0 2X;  6Az 12Xy 0 6A1 12X 12A3 0 0 0
K 0 0 0 0 2A2  6Az3  12)y 0 6A1 12Xy 12)5
0 0 0 0 0 2Xg  GAg 12Xy 0 6A1 12X

[
—

)
)
=2}
COoOOMIODOO »O OO
1<)

et
[\
b

w
S—
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The zero set of the determinant? det 8, consists of all polynomials
P = dot] + MitSto + AotTtd + Astat] + Agth

such that there exists a nontrivial linear combination «gp + <1p’, which has a zero of multi-
plicity > 3. !

§3. AFFINE GEOMETRIC AND TOPOLOGICAL PROPERTIES OF %;

3.1. Differential operators. Our studying of the affine geometry of the hypersurface
¥; C P, is based on the (non-canonical) affine isomorphism between the spaces of monic
polynomials and invertible linear differential operators with constant coefhitients.

3.1.1. Notation. Consider the vector space V,, C Clxz] of all polynomials of degree < n
and denote by A, C Endc(V,,) the subalgebra of all linear endomorphisms commuting with
all translations p(z) — p(z — a). It is well known (see [Bo]) that A, coincides with the
truncated polynomial ring C[D]/D™*!, where D = d/dz. As in the previous section, we
denote by D; C A,, the subspace formed by differential operators of order less or equal ¢ and
by P(D;) — the projectivization of D;.

Let U, C A, be the multiplicative subgroup of all unipotent operators, i.e.

Up = {1+ XD+ -+ A D" mod(D*) | Ay € C} .

Note that all unipotent operators are invertible. For a subset M C U,, we will denote by
M~1 ={m™!| m € M} the set of all inverse operators.

2In order to amuse the reader let us present this determinant calculated by MAPLE: detd =

— 7962624232378 — 1968311022 +2916A9 23 - 216A8 28

+ 62722523 —129024A3 A8 A4 + 1437696A3 A5 A3 + 298598403 222803

+ 26244028 x222 2 — 522547228 A2 A58 + 131222 Ao Aa Az + 11943936 A2 A2A303
+2985984A3 A A3 30, —3732480A322x3802 429850840, A303250% 4+ 195955223 Ao AsAd A
+ 4199042000202 0,  — 149299201 A3A3A3 s — 1012896ATAZAININ,  — 124416003 050% 0

+ 20736022 A5A3 )4 + 304819223 A322)3 — 344217622 2523802 + 52531221 A3 A A4 )3
+ 534602 A3 Ao A2 — 2916252324 ~ 67682252 — 5103282222

+ 2160A5 A% A0 + 1944270350 + 186624A3 X528 + 44469252372

+ 653184A8 AIA3 — 895795220224 75 + 373248232323 + 89856 20508

— 1194393623 A7 )2 — 20088A3 A3X0A3 —820440X3M308 0003 4330482525000,

— 15163227 A200Xaxs  +404352A3232303 + 5875202232322 — 1548722423222

— 435456 1 A3AEA3 — 576001 AZA3 A3 + 6393623 ASAZ X3 — 1296002323220,

+ 223948827 A3A80 402+ 5754240530205 — 23328022 22A303 — 130636825 A2 2222

— 2157843 A2 2323 — 2770227 2223 Ao — 27993627 A3 A2A2 + 597196823 A3 323

— 218700822 A0 Mg — 11943936A1 A3A8A T A2 — 223948822 A325 ), — 44789762202 A30% )
— 27993601 AZAEAS — 4199042523 A3 + 895795201 AZA5A3 + 238878722300 A2 .
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3.1.2. Affine identification of P,, with U,,. Let us definc the affine isomorphism
Ll L{n — ’Pn

by taking a polynomial p € P,, to the unique differential operator ¥, € U, such that p =
¥, (z™). In the rest of paper we will usually identify both spaces by this isomorphism.

Almost all our geometric constructions will be done in the space U,,. First of all, in the
proposition 3.2. below we describe the ith associated discriminant ¥; in terms of if,. In what
follows we will denote this hypersurface in i,, by ¥; as well and will freely use both versions
3 C Pn and £; C U,, without special indication.

3.2. Proposition. The above isomorphism + between U, and P, identifies T; with the
hypersurface in U, consisting of all operators U for which there exists a triple

(E: ea CL) € P(Dt) X ]P(Dﬂ—i—2) x C
such that E¥ = Qexp (—aD).

Proof. By definition, ¥; consists of polynomials p € Py, for which there exists a nontrivial
i-tuple ag, a1, . . ., @; such that agp+ayp’ + - -+ a;p'*) has a zero of multiplicity at least i+ 2
at some point a € C, i. e. agp+aonp'+- - +op® = (x—a)+2q(z), where deg(q) < (n—i—2).
In terms of differential operators this means that there exists a pair of operators = € P(D;),
© € P(D,,_i_2) and a point a € C such that Z(p) = ©(z — a)".

Furthermore, the 1-parameter family (z — @)™ can be presented as the orbit of the poly-
nomial z" under the action of the 1-parameter subgroup exp (—aD) C U,,, where exp (aD) =
Y (aD)? /3! € U,. Therefore the condition p € &; is equivalent to the existence of a triple

(E'a @) G) € P(Dz) x P('D”_i._z) x C

such that p satisfics Z(p} = @ exp (—aD)(z"). The isomorphism ¢ : U, — P, identifies p with
the unique ¥,, such that p = ¥,(z™). Thus p € E; if and only if 2¥, = O exp (—aD).
0

3.2.1. Corollary. The involution inv: U — U~! of U, induces the biregular isomorphism
between the affine algebraic hypersurfaces £; and ¥y_o; foralli=0,...,n—2,

Proof. We have to show that the involution inv : i,, — U, which sends each operator
T € U, onto its inverse ¥~! maps X; isomorphically onto ¥, _;_o. Indeed, ¥ belongs to ¥;
if and only if there exists at least one triple

ZeP(D;), ©cP(Dp_ij_z2), a€C such that ZV =0Bexp(—aD).

The last identity is equivalent to = exp (aD) = ©¥~!, which exactly means that ¥~! belongs
t0 Xy_i_o.
[

3.2.2. Remark. The involution inv acts on the 1-parameter subgroup exp (aD) C U, by the
change of the sign of a. So, under the above isomorphism between X; and £,,_»_; polynomials
with a multiple generalized zero at a point ¢ € C are transformed into polynomials with a
multiple generalized zero at the opposite point —a.
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3.2.3. Remark. Since the projective hypersurfaces hypersurfaces ﬁ,' and 5,_; o (consid-
ered in the previous paragraph) have different degrees, the isomorphisms between L; and
Zn—i—2 can not be extended to the regular isomorphisms of their projective closures and
gives only a birational equivalence.

3.3. Subdivision of %; by ¥; ;. One can casily extend the above results to more general
loci ¥;; C Py.

By the definition, £; ; C P, is the set of all polynomials p € P, such that some nontrivial
linear combination cgp + a1p’ + - - - + cip'®) has a zero of multiplicity greater or equal j + 2.
Fixing a € C one gets ¥; j(a) C I;; consisting of all p € ¥; ; with a multiple i-generalized
zero at a. We will denote by E; ;(a) the fiber of £; ; at the point a € C,

The locus X;; coincides with our original discriminant hypersurface ;. In the general
case, the codimension of E; ; and Z; ;(a) in P, is equal to j —i+1 and j — i + 2 respectively.
We have a natural stratification

Ti=iD8iit1 D D8in3 D Bin26.

i
Obviously, &;; € (] E, = ZiNE;.
Exactly same w;y as in prop. 3.2. we get
3.3.1. Proposition. The stratum %; ; is isomnorphic to the set of all operators W for which
there exists a triple

(E,@, G.) € ]P(D:) X P(D,l_j_g) x C
such that Z¥ = O exp (—aD).
O

3.3.2. Corollary. The involution inv: ¥ — ¥~ of the affine space Uy, induces the biregular
algebraic isomorphisms between ¥; ; and Bp_g_jn_2o—i for all0 <1 < j <n—2 and between
E,-,j(a) and En_j_gvn_,;_z(—a) fOT all 1 +j 41 2 .

O

3.4. Desingularization of ¥; ;. Now we describe a natural resolution of singularities of
Z;,;, which follows from prop. 3.3.1. Let

Hi; CP(D;) xU, xC

be the subvariety of triples (2, ¥,a) such that E¥ = ©exp(—aD) for at least one © €
P(Dy—i-2).

We denote by H; ;(a) the fiber of #; ; over the point —a € C (i. e. the set of all the triples
(2, ¥, —a) with the same a). Note that any #,; ;{a) can be naturally algebraically identified
with H; ;(0):

(E,¥, —a) € H;  (a) & (E, Texp(aD),0) € H;;(0).

Hence, H; ; = C x H; ;(0).
We fix the notation
e /H.,"j — ):,'j e U,

for the natural projection of H; ; onto the second factor in P(D;) x U, x C.
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3.4.1. Proposition. #; ;(0) is a smooth complete intersection of quadrics and thus the
restriction

Tla; 0y Hi i (0) — £45(0)

gwes a resolution of singularities of &; ;(a). Moreover, this resolution is semismall, 1. e. it
satisfies the condition:

codim{p € £; j(a) : dimn] '(p) >} =2l for alll .
Proof. A pair (Z,¥) = (ao +o D4+ .+ D, 1+ D+ ...+ w,,D“) presents a point
(E,¥) € H; ;(0) if and only if the coefficients of degrees n — j — 1,...,n in the expansion of
(o +arD+ ...+ o; DY1+ 991D+ ...+ 9, D") € A,

vanish. Thus H,; ;(0) is defined in P(D;) x U, by the system of j + 2 quadratic equations in
variables (o, ..., @, ¥1,...¢,). In the case 1+ j + 1 < n this system has the form

Q'Ol.bn + Ofltﬁbn—-l +- 4 O-'i'l,bn—i =0
op_1 + alwn—Z +- i1 =0
oPn—j—1+ 1¥n_i—g + + G Pn_i—jo1 =0

The Jacobi matrix J of this system is the (j 4 2) x (2¢ 4 j + 3) matrix of the form

Yo Yno1 ... Yn—i 0 ... 0 o @1 ... o
Yne1  WPn—z ... Ynoioi 1 &% @1 ... ag 0

: : : 0 :
’t/}n_j_l fe NN ",bn—i—j—l Qs Y1 ... kg 0 - 0

Since (g, @1, ...,;) # (0,0,...,0) the rank of J is always equal to j + 2. This means that
H:,;(0) is a smooth complete intersection. The case i + j -+ 1 > n is analogous. The Jacobi
matrix contains a unit submatrix and a complementary submatrix of maximal rank.

Let us now consider the map 7 : H; ;(0) — X, ;(0). The inverse image 7~(p) of any
polynomial p € I; ;(0) is a projective subspace. One has that dim(7~!(p)) equals to the
corank of the above linear system reduced by 1. One can easily show that for a generic
¥ € £;;(0) the corank of the system equals 1 and one gets that H; ;(0) is a resolution of
singularities of ¥; ;(0). Moreover, more detailed consideration of the lincar system (or of
the space of Hankel matrices, see §4) show that the set {p € £; ;{(a) : dimnx~!(p) > [} has
codimension 2 in ¥; j(a)and a.

O

3.4.2. Corollary. m: H;; = Zi; is a resolution of singularities of L ;.
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3.4.3. Remark. Inthe casei-+j+1 < n the set H; ;(0) has a nonsingular projective closure

H:;(0) C P(D;) x PV, .

Hi,;(0) also is a smooth complete intersection of quadrics and one can calculate its cohomol-
ogy as well as that of #; ;(0).

The existence of a semismall resolution also gives a hope that one can calculate the inter-
section homology of £; ;(0). In the case i-+j+1 > n the variety H; ;(0) is singular at infinity
with a conic type of singularities.

3.5. Topology of the fiber T; ;(0). Here we are going to clarify the topology of the zero
fiber X; ;(0). Recall that in terms of the space U, of unipotent differential operators the
space %; ;(0) consists of all operators ¥ € U, such that

E¥¢ =06  for someZ € P(D;), © € P(D,_j_2)
Consider the decreasing filtration
£:,;(0) = 22;(0) > £{;(0) >--- > T} (0),

where Eﬁ,j(O) consists of all ¥ € ¥; ;(0) such that any = € D; \ 0 with the property that
EV € D,,_; is divisible by D*.

In terms of the prop. 3.4.1, the closed subset £ ;(0) C X ;(0) consists of all ¥ such that
the projection of the fiber 7~1(¥) C H; ; C P(D;) xU, onto the first factor P(D;) is contained
in the subspace P(D! - D;) C P(D;).

3.5.1 Lemma. The difference I ;(0) \ T} ;(0) 4s isomorphic to the space CoPr{i,n — i~ 2)
of all pairs of coprime espolynomials

(1+a1D+-~-+a,.D’", 1+r/1D+---+.v,,D3)
such thatr <1, s < (n—j—2).
Proof. We are going to verify that the complement
525(0) \ {,;(0) € 4 4(0)

consists of all ¥(D) = A~Y(D)B(D), where A € U, N D;, B € U, N D,,_j_5 are any two
coprime (in C[D]) polynomials, and that ¥ and (A, B) are uniquely determined by each
other.

Ifwe E?’j (0)\ E}jj(O) then there exists at least one pair

A= 1+C¥1D+---+aiDi, B = 1+1/1D+-~-—|-un_j_2D"_j"2

such that WA’ = B’. If A’ and B’ are not coprime then A’ = HA, B’ = HB, where
H=1+hD+ -+ hy,, D™ is their maximal commeon factor. Since H is invertible in U,
one gets WA = B and ¥ = A~!B is represented in the required form.

On the other side, if A € U, ND; and B € U, N D,,_;_» are coprime then the quotient
¥ = A~!B, obviously, belongs to £ ;(0)£] ;(0) and it remains to show that this quotient in
Uy, determines A € U,, N D; and B € U, N D,,_;_, uniquely. Let us assume that for some
A eU,NDy, By € U, ND,_j_2. We have A{'lBl = A~!'B in U,, and after multiplying by
A1 A in U, we get the identity A;B = AB;, which holds in the usual polynomial ring C[D].
Since A and B are coprime, therefore A, is divisible by A. Thus A; = A and hence By = B.
]
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3.5.2. Lemma. The homomorphism of reduction modulo D™~ *+1;
res, it Un = Un_y
which sends A(D) mod (D"*1) — A(D) mod (D*~**1), maps the k-th complement
TEO\EEN0) i Si(0) C U
epimorphically onto the 0-th complement
2 ONZ0) in o B (0) C Uno

and the corresponding restriction

reSu Wk

IR M) %73 (0)\ Z¢,(0)

is the trivial bundle with the fiber C*.
Proof. If ¥ € £¥,(0) \ £77(0) C i ;(0) C Uy, then
D*A® = BD*  in U,

for some A € U, ND;_, B € U, N Dy_j_2. Hence, in U, we have AV = B, where
¥ = res, ¥ and

(>::-;<o> \ zfjl(m) c £0,(0)\ 1,(0).

To finish the proof, we describe the complete pullback rcs;}c (E?'j (0) \ E}’j (0)) Let ¥ €

E?,j (0) \ E}J—(O) inside £;_x ;(0) C Un—. As we have seen above, AT = B in Uy,_j, for some
A€ U xNDi_g, B € Up_t; N Dp_j_o. If we consider these A, B as elements of U, then
for any ¥ € U, such that res, ,¥ = U we get D¥VA = D*B in UY,,. Thus, ¥ belongs to
=¥ ;(0) € Uy, and

ez (SLO\BL0) € 2,0 ¢ B th

It remains to prove that the left side locus lies inside Zé‘, ;0\ Zﬁ;’l(O). But if above ¥ has
the property ¥ € Zf,j-'l((]) then we get the relation

DA, = DB in U,

After the reduction modulo D™=*+1 it takes the form VDA, = DB;, which contradicts to
the condition ¥ ¢ X} ;(0).
D b

3.5.3. Topology of CoPr(r,s). The space CoPr(r, s) can be also interpreted as the space
of all pairs of monic polynomials of degree  and s with no common roots possibly except for
the origin. It would be very interesting to calculate the cohomology of the space CoPr(r,s)
and to compare it with that of the usual space of rational functions and the braid space, see
e.g. [Va]. But, unfortunately, the complete information about the cohomology of £; ;(0) is
unavailable at the present moment. This makes it impossible to calculate the cohomology
even for the case of stable strata which have the simplest form among Z; ;, (see n® 3.7 below).
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CONJECTURE. The Leray spectral sequence of the above filtrations with Z-coefficients col-
lapses at the Eq-term.

3.6. Rationality of ¥; ;. In this subsection we will prove the rationality of ; ; using the
filtration of the fiber ; ;(0) considered in the previous section.

3.6.1. Lemma. 3; ;(0) is a rational variety.

Proof. In fact, a birational equivalence between ¥, ;(0) and P(D;) x P(Dn_;_2) is given
in the proof of Lemma 3.5.1. Namely, X; ;(0) contains a Zariski open subset of all pairs of
coprime polynomials

(1+ 0D+ + D', 14+ D+ + finjp D72 |

which have the degrees exactly equal to ¢ and (n — 7 — 2).
O

The following proposition implies the rationality of Z; ;.

3.6.2. Proposition. There exists a Zariski open subset in the space P(D;) x P(Dp—;_2) xC
isomorphic to a Zariski open subset in E; ; and therefore ¥; ; is rational.

Proof. As above we have a family of codimension 1 subvarieties £; ;(a), a € C in I; ; such
that for all a; # ag %, ;(a;1) and Z; j(az) are isomorphic. By propositon 3.6.1 every %, ;(a)
is a rational variety. Since group of affine transformations © — cz ++ d acts bitransitively on
C, to prove rationality of %; ; it suffices to show that codimg (E;;(0)) N E; ;(1)) in ¥; ;(0)
is at least 2. This will imply that for a Zariski open subset in ¥; ; there exists exactly one
triple (2,0, a) € P(D;) x P(Dy,-j-2) x C such that =¥, = Qe*P.

Indeed, consider @ = |J (%;;(ea1)NE;  (az)). I codim ¢(%;;(0))NE; ;(1)) in £, ;(0)

az€C\a,

is at least 2 then Q has codimension at least 1 in ¥; ;(e) and its complement is a Zariski open
subset. Varying a, and taking the union of the complements we get a Zariski open subset in
the whole X; ; for which there exists only one triple (E,0,a) such that Z¥, = Oe*P. The

following lemma accomplishes the proof.
O

3.6.3. Lemma. For any pair (a1 # a2) the intersection X; j(a1) NYE; j(az) has codimension
2 1in E,"j.

Proof. As was mentioned before codim(E; j(a1) N E; j(az)) does not depend on particular
choice of (a1,as). Now let E,J( a) C P, be the projective closure of Eij(a) C Pn and let
E, i C P,. be the projective closure of T; j- One can easily see that the fiber at infinity
3 5(00) = £;; \ Zi ; is a projective subspace of dimension n — 2 — 5 + 4.

Take the correspodence Cor in the space of £; ; x C consisting of all pairs (¥, @) where
U € %;; and « is a generalized zero of ¥ and consider its closure Cor C ﬁ,-jj x P1. The
inverse image of any point a € P is ﬁi,j (a). It suffices to show that codim(f);,j(oo) NZ; j(az))
in ¥; ; equals 2 since the codimension of intersection of any two fibers gives the upper bound
for the codimension of intersection of two generic fibers.

Notice that 3; ;(a) N P* € P™ is isomorphic to £; ;(a) C P! where P! is the projectivized
space of polynomials of dcgrce at most [ in #o : 1. Since the special fiber 3; _,,(oo) is isomorphic
to P92 one gets that 3; ;(00)NZ; j(az) C P™ is isomorphic to 5 j(az) € P*=I+~2, The



16 A. L. GORODENTSEV AND B. Z. SHAPIRO

latter space, obviously, has codimension 1 in i),-,j (c0). Thus the former space has codimension
2 in Ei,j-

a

3.6.4. Lemma. For a generic k-tuple (a1 # az # -+ # ag), k < j—?+2 the intersection
Bij(a1) N (a2) N N X j(ax) has codimension k in X, ;.

Proof. We are going to iterate the above arguments using induction on the number of points
and dimension. Namely, assume that we have proved that the codimension is the expected
one for a Zariski open set in the the space of £k — 1-tuples and for all m < n. For generic
ai,ay,...,a; one has

codim (Ei,j(al) M E,',j(az) NN Ei,j (ak)) < codim (i:i,j (OO) N Ei,j (ag) NN E,’_j(ak)) .

But the later intersection is isomorphic to the intersection of k—1-tuple in the space P?~7+i=2

and thus has the expected codimension by the inductive assumption.
O

3.6.5. Remark. It is worth mentioning that not for all a1, as,...ax, kK > 2 the intersection
¥i j(a1) NE; ;(az) N--- N E; j(ax) has the expected codimension. Namely, there exist poly-
nomials p € P, which have more than [n/2] i-generalized multiple zeros. This means that
the intersection of more that expected number of £;(a;) is still nonempty, see §1. It would
be very interesting to describe such 'Weierstrass’ k-tuples.

3.7. Some special cases. A stratum X, ; C P, is called stable if j—i+2 > [%] and unstable
otherwise. The following proposition reduces the study of the topology of any stable %; ; to
that of its 3; ;(0).

3.7.1. Proposition. Any stable stratum I; ; C U, is isomorphic to E; ;(0) x C.

Proof. One has to show that if j — ¢+ 2 > [n/2] then each p € X; ; belongs to the unique
Z; j(a), i.e. that the intersection £; j(a1) N E; j(az), a1 # az is empty. This can be proved
exactly along the same lines as lemma in 3.6.3. O

W

3.7.2. Remark. The stable stratum }:30,[%}-1 C P, is called the nullcone and is of a
fundamental importance in the representation theory of SLo(C). The following problem was
formulated to the authors by J.Weyman in April 95.

QUESTION. Is it true that 20,{%1_1 is a set-theoretical complete intersection?

(5]-1,

One can even speculate that set-theoretically one has 20,[%]_1 = (1 i
i+0

§4. EXAMPLE: COHOMOLOGY OF ¥; C P4

4.1. Vassiliev’s resolution. A natural approach to the problem how to calculate the
cohomology of £; C P, with compact supports is to try to generalize the simplicial resolution
which was succesfully used by V.Vassiliev for the series of strata ¥y, see [Va] (recall that
Pn \ Lo is the usual braid space). Such a generalized Vassiliev’s resolving space for ¥;
coincides with the set of all pairs {p, Sp}, where p € £; and S, is the formal simplex spanned
by all pairwise different multiple i-generalized roots of p. There exists a natural geometric
realization of &; in CV for some sufficiently big N.
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By construction, this resolving space £; has a natural filtration
i-:i=-FmD-F'm.—l D "’DFI;

where F; is the set of all pairs {p, S}}, p € £y, S}, denotes the (i — 1)-skeleton of Sp, and m is
the maximal possible number of multiple pairwise different i-generalized zeros. {We use the
convention that if dim§, < i then S} = §),.) Note that £y is homcomorphic to ;(0) x C.
One can easily sce that the obvious projection ¥; — ¥; is a homotopy equivalence extend-
able to their 1-point compactifications. Therefore, H}(Z;) = H}(Z;).
We will apply this program to ¥; C P4. In this case we have only the 3-term filtration

21=F3:)F23F1,

since the maximal number of multiple 1-generalized roots of a quartic polynomial equals 3,
see n°1.3. The main result of this section is the following

4.2. Proposition. The cohomology with compact supports of 1 C Py is equal
(0,0,0,0,0,Z,02,,2) .

The proof of this proposition splits into a series of lemmas and will be finished in n°4.6
below.

4.3. %;(0) and Hankel matrices. Recall that a matrix is called Hankel if it has the same
entry on each anti-diagonal. Let us denote by Hank(k,[) the set of all (k x I) Hankel matrices
with complex coefficients and we denote by Hankqe,(k,!) C Hank(k,l), k <1 the subset of
matrices of rank < k.

4.3.1. Lemma. Ifi+j+1 < n then T; j(a) is isomorphic to Hankqeg(i+1, j+2) x C* #7372,
Ifi4+j+12mn then £, ;(a) is isomorphic to £y_j_9 n—i—2(—a).

Proof. Since ¥; ;(a) is isomorphic to E; ;(0) we consider only the last case. For £, ;(0) the
statement follows directly from the definition.
g

Now we can describe the cohomology with compact supports of the first term of the
filtration F; = £,(0) x C.

4.3.2. Lemma. The cohomology with compact supports of the variety Hankgeg(2,n) is equal
(0,0,Z5,0,Z).

Proof. The set Hankqeg(2,n) in question is the cone with the vertex at the origin 0 over
the rational normal scroll in C**!. The set Hankqeg(2,n)\ 0 has the structure of a C*-bundle
over this rational normal scroll CP'. The first Chern class ¢; of this bundle is equal to the
degree of the scroll and therefore ¢; = n. Thus the usual cohomology of Hankgeg(2,7) \ 0 is
equal (Z,0,Z,,Z). Since it is a manifold its cohomology with compact supports is dual to
the usual cohomology and is equal (0,Z,Z,,0,Z). From the long exact sequence

H}(Hankgeg(2,n)) = HZ(Hankaeg(2,7))\ 0 = HZ(0)

one gets that H}(Hankgeg(2,7)) = (0,0,Z,,0,Z).
O
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4.3.3. Corollary. H?(F\) = (0,0,0,0,Z3,0,%).

Proof. F; is homeomorphic to Hankgeg(2,3) x C.
d

4.4. Cohomology of F, \ F;. We are going to describe explicitly the set of all quartic
polynomials, which have exactly two 1-generalized roots at given points a and b in C. We
use here the technique and notation from n°3.4 — n®3.5.

4.4.1. Lemma. For any pair of distinct points («,b) there crist ezactly 4 polynomials in
21 C Py such that their 1-generalized multiple zeros are « and b.

Proof. As above, it suffices to consider the case a = 0, b = t. Denote by L7 (¢) a Zariski
open subset in ;(t) consisting of all ¥ = A~Y(D)B(D)exp(tD), where A(D) = 1 + aD,
B =1+p8D, and a # 8. For t = 0 the set £]"*"(¢) is nothing more than the complement
$£9(0) \ £1(0) considered in n°3.5.

In the case &) C A4 the intersection ¥;(0)NE;(2) is, obviously, contained inside 37" (0)N
5P (). Thus, ¥ = A7'(D)B1(D) belongs to X37*"(0) N TP (¢) if and only if for some
unipotent linear (hﬁerntlal operators Az(D), Ba(D) one gets

AT (D)By(D) = e'? 47 (D) By (D)

or, equivalently, A5(D)B(D) = etP A,(D)By(D).
To determine Ay, Ay, B1.B2 we have to look at the intersection Dy N exp(tD)Dy. Direct
computation shows that this intersection is 1-dimensional subspace in D, spanned by the

polynomial
14+tD/2+t2D?/12 = (1 + otD)(1 + D),

where —p, -7 are the complex conjugate roots of the quadratic polynomial z2? + z/2 +1/12,
i. e. o= (3+414v/3)/12, and we have

(14 otD)(1+ gtD) = exp(tD) - (1 — otD)(1 — ptD) .
Thus £1(0) N £1(t) consists of the following four operators:
. L4
3+ ZﬁtD s +1v3

V3 ~1+14/3

— -1 _ 2D2 3D3 44
(1+ ptD){(1 - otD) +—% 5 36 144 —t*D
3—i\/§ 1—1iv3 ’L\/_ NG
_ 1— 5tD)-} = 22 _ 303 + 44
(1+ atD)(1 — ptD) 14 ——tD + —5—#°D* = ==°D —g t P
1 — i3 1-1/3 iV3
— gDy =1+ = 2p? 4 LT Ve ps V3 e
(14 ptD)(1 — ptD) 1+ 2tD+ TR i il
(1+atD)(1 - gtD)™ = 1+ %w + ?’—J’QZ—‘CHDQ Lt ;‘[ 33 "1‘:;15404

U

The previous formulas give also the exact description of how the fundamental group of
the space of all pairs (a,b), a # b, acts on the constructed quadruples of the polynomials.
Namely, the interchange of @ and b via the standart Z-generator of this fundamental group
leads, obviously, to the invertion of above four differential operators and change of the sign of
t. This procedure preserves the first and the sccond of the above operators and interchanges
the last two of them. We get
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4.4.2. Corollary. Four polynomials from Lemmma 4.4.1. are naturaly organized in two
pairs such that the replacement of (a,b) by (b, a) (via the standart generator of the fundamental
group of the space of all pairs (a,b) such that a # b) preserves both polynomials in one pair
and interchange polynomials in the other pair.

O

Now we can easily calculate the cohomology of F3 \ F}.

4.4.3. Lemma. The cohomology with compact supports of Fy \ Fy is

(0,0,0,0,Z,Z& Z, & Zy) .

Proof. Indeed, the set F3\ F} is a bundle over the set of all unordered distinct pairs of points
with the fiber consisting of 4 segments. The action of the generator of the fundamental group
of the base inverts the orientation of two of these segments and interchanges two others with
the inversion of orientation. Thus our fiber bundle consists of two copies of a 3-dimensional
cylinder over a Mobius band and a 3-dimensional cylinder over an annulus. Cohomology with
compact supports of a Mobius band and an annulus is equal to (0,0,Z5) and (0, Z, Z) resp.
Thus, H:(F; \ F1) is equal to

(0,0,0,0,Z,Z26% Zy & Zo) .

O

4.5. Cohomology of F3\ F; are also calculated via the exact description of all polynomials
having three 1-generalized roots.

Lemma. The intersection $1(a)NE1(b)NEy(c) for a pairwise different triple of points (a,b, c)
1s nonempty if and only if there exist two constants d and e # 0 such thata —d,b—d,c —d
are 3 different roots of the equation x> = e.

In this case £1(a) N L1(b) N T1(c) contains exactly one polynomial (z 4 d)* — 2ex.

Proof. By proposition 1.3.1 a polynomial p € £; C P, has at most three 1-generalized
multiple zeros. Thus p belongs to at most some triple intersection ¥, (a) N, (b)NE;(c). Now
let us determine the set of all p which have exactly 3 pairwise different multiple 1-generalized
zeros. This is equivalent to finding such p that A,(p) has 3 different double zeros which
are not multiple zeros of p itself. Using the action on the affine group we can assume that
p =z 4+ A122 4+ Aoz + A3 which gives

A

2 23 Ma M A

4y .3 (M 2 A2
Tt — Ax” + 33z + 5 5 4].

Av(p) = —4[z° + 2

A1(p) has 3 zeros if and only if Ai(p) = [(z + @)(z + B)(z — a — B)]? for some o # 3 #
—a ~ 3. (Omitted) consideration of the last condition implies that this is possible if and only
if p = z* + Apz. In this case A;(p) = —4(z® — 22)? with 3 pairwisc different double zeros.
This implies that ¥, (a) N $;(b) N Z1{c) is nonempty (and consists of exactly 1 polynomial
(z 4 d)* — 2¢) iff for some d the numbers a — d,b — d, ¢ — d are roots of z° = ¢, € # 0.

0
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4.5.1. Corollary. The cohomology with compact supports of F3 \ Fz is equal

(0,0,0,0,0,Z,Z).

Proof. Indeed, F3\ F; is a bundle over the set of all equilateral triangles on € with the fiber
consisting of the simplex formally spanned by triangle’s vertices. The base is homeomorphic
to C x R* x S!. The generator of S! of the base acts trivially on the orientation of the fiber

since it induces the cyclic shift of vertices. Thus F3 \ F» is homeomorphic to R® x S?.
O

4.6. End of the proof of Prop. 4.2. We accomplish the proof of proposition 4.2 by using
the Leray spectral sequence for the cohomology with compact supports for the whole ¥;.
Its E1- and Fs- pages are given on Fig.1. (Potentially nontrivial differentials are shown by
arrows. )

4.6.1. Lemma.
a) The differential Z — Z 1in the 3rd row of Ey is multiplication by 3;
b) the differential Z — Z in the 4th row of Eq is an tsomorphism.
c) the differential Zs — Z3 on Ey is an isomorphism.

Proof. We consider the boundary map for the corresponding homology cycles. By lemma
4.4 the part Fy of Fy\ Fy to which F3\ F; is glued is a bundle over the braid space Br(2) with
the fiber consisting of 2 segments which can be interpreted as formal simplices spanned by the
ordered pairs of points. Under the action of m; they change places with the inversion of their
orientations. The 4-dimensional relative homology cycle ©; pairing with the 4-dimensional
cohomology class in F3 \ F is obtained by taking fibers over all horizontal pairs of points in
Br(2). Analogously, the 5-dimensional relative homology class ©9 in F3 \ F pairing with the
5-dimensional generator in cohomology consists of all formal 2-simplices over all equilateral
triangles with one horizontal side. One easily gets 9(©2) = 39, and a) follows. At the same
time the boundary of the fundamental cycle in F3\ Fy cquals Fy and b) follows. More detailed
consideration of the boundary maps implies c).

O

a) b)

4| z|zmzidz | 4| Z|z#z| 2

\

3 z bz | 3| | rz
o 1 2 o 1 2

Fig.1. E- and E; pages of the Leray spectral sequence.
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§6. FINAL REMARKS.

The above partial results on the algebraic and topological properties of the associated
discriminants show that their structure is substantially more complicated than that of the
classical discriminants.

Below we formulate a few (of many more) questions which seem natural in the context of
the associated discriminants.

1) Calculate the number of connected components to the union of the associated discrim-
inants in the space P, with real coefficients and, more generally, for the space of solutions
to some linear homogencous ordinary differential equation with constant coefficients. (This
question is the most interesting from the point of view of its application to Toda lattices.)

2) Calculate the usual and intersection (co)homology of £;(0) or equivalently of the space
Hankgyeg(i,1). (For the usual cohomology one can use the stratification described in 3.5.
For the intersection homology one can use the semismall desingularization. Many analogous
spaces of matrices were sucessfully studied before.)

3) Calculate the maximal number of pairwise different multiple i-generalized zeros for
polynomials of degree n.
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