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ABSTRACT. In this note we introduce a family 'Ei l i :;::: 0, ... ,11 - 2 of discriminants in the space
'Pn of polynomials of degree n in one variable and study some of their algebraic and topological
properties following [Ar]-[Va] and [GKZ]. The discrimillant Ei consists of all polynomials p such
that some nontriviallinear combination aüp+cl'1p' + ... +aip(i) has a zero of multiplicity greater
or equal i +2. In particular, using the inversion of differential operators with constant coefficients
(which induces the nonlinear involution on 'Pn ) we obtain thc algebraic isomorphism of ~i and
'En -2-i for all i.

§O. INTRODUCTION

It is weH known that every solution to a finite nonpcriodic Toda latticc

Q.i = ai(bi+l - bd , hi = ai - (Li-l

(i = 0, ... , i ; ai, bi E IR ; aO(LI ...an-1 i= 0 ; CL-I = (Ln = 0) ,

can be prcsented as

.( ) _ L\Y_I(X)L\Y+I(X) cl (L\r(x))
a1 X - (L\f(X))2 ,bi(x) = clx In L\f_I(X) ,

where L\f (x) is the i th principal minor of thc Hankel lnatrix

y(x)
y'(x)

y(n)(x)

y(n)(x)

and y(x) is SOlne solution to the linear ordinary differential equation with constant coefficients
of order n + 1 determined by the Toda lattice, see e.g. [BG8]. Therefore singularities of
solutions correspond to the zeros of the deternünants of L\; (x). They are also intrinsically
related with 8chubert calculus, see [FI],[GS].

IThis project was started while the first atlthor was visiting the University of Stockholm
supported by the grant R-RA 01599-307 of the Swedish Natural Sciences Research Council.
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2 A. L. GORODENTSEV AND B. Z.-~SHAPIRO

The subset of solutions for which the ith principal nlinor .6.; (x) has a multiple zero for SOlne
x is a hypersurface in the space of a11 solutiolls. Thc union of these hypersurfaces separates
the space of (real) solutions into domains of solutions with different qualitative behavior.

A sinlilar situation occurs both in the thcory of linear Hallliltonian systems and linear
ordinary differential equations with one essential difference that instead of thc space of solu­
tions onc has to consider the space of fundalllental systenls. Vanishing of principalluinors is
related, for exalnple, to thc index of the trajcctory of a Lagrange subspace. Again the space
of fundamental solutions contains certain discrimiuants formed by a11 fundamental solutions
for which at least oue of principal minors vanishes with luultiplicity 2: 2. The study of the
stratification of the space of (fundamental) solutiollS cOluing from the union of these dis­
criIninants is an important open problelu evell for linear Haluiltonian systems anel ordinary
differential equations with constant coefficients.

The present paper is an attelnpt to study SOlne properties of the above discriIninants in
the space of polynomials, i.e. in the space of solutions to the siInplest equation x(n+l) = O.
The paper is organized as folIows. §l contains son1e general information on induced and
associated discriminants. In §2 we present the corresponding Sylvester formula for associated
discriminants. §3 contains various algebro-topological infonnatiOll, i.e. duality induced by a
special nonlinear involution of the space of nl0lüc polynonüals, resolution of singularities alld
a natural stratification. Fina11y, in §4 we calculate the cohomology with cOlnpact supports
for a specific example.

Acnowledgements. The authors are sincerely grateful to M. Gekhtman and M. Shapiro
who attracted our attention to the singularities of solutions of nonperiodic Toda lattices
and Ulelltioned the reference [HMP]. The authors want to acknowledge the hospitality, nice
research atmosphere and financial support provided by thc Deparment of Mathematics of the
University of Stockholm during the beginning and by thc Max-Planck Institute during the
final stage of this project.

§l. INDUCED DISCRIMINANTS ~i AND GENERALIZED MULTIPLE ZEROS.

1.1. Notations. Given a function y(x) and a positive integer i let us consider .6.;(x) the
determinant of the ith principal subnünor of the above lnatrix Ify(x). Zeros of .6.;(x) are
called (i - l)-generalized zeros of y. (We shift thc index for the sake of convenience.)

Consider now a fanüly F (x, Al, ... , Ak) of functions in one variable x. The i th indnced
discrirninant of the family F is the set Ei(F) of values of parUlucters Al, ... ,Ak for which
~41 (considered as a function in x only) has a multiple zero.

The ith associated discrirninant 01 the farnily F is the set Ei(F) of values of parameters
Al, ... , Ak for which .6. i satisfies the following condition. There exists a nontrivial linear
cOlubination CY.oF +CY.IF' +... +CY.jF(i) which has a ~ero of multiplicity i +2 at SOUle point x.

The relation between the induced discrhninants and the associatcd discriIninants is de­
scribed by the following proposition.

1.2. Proposition. The ith induced discri7ninant ~i(F), i 2: 1 01 the lamily F eoincides
with the uni 0 n 01 two as~'ioeiated dis criminants Ei -1 (F) U ~i (F) while Eo(F) = ~o (F) .

Proof. First of all, Eo = Eo by definition. Thc proof of the fact Ei(F) = Ei-I(F) U Ei(F)
for all i > 1 is based on luanipulations with thc subnünors in the following Hankel matrix of
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(

:F,
:F'

F(i~'2) ,

F' ,
:F" ,

... ,

... ,

... ,

:F(i+2) )
F(i+2)

F(2;+4) ,

where F(j) dcnotcs thc jth derivative of :F w.r.t. x. Let n8 dcnote by H~~·,·...'.',~q thc subma­
trix in HF formed by the rows with numbers LI, ... ,Lp anel thc columns with the numbers

B 1 t 'l, ... ,lp d t t}· cl t: . t f H h , ,lpmI, ... , TTLq . Y (C m tn we eno e ,le e ,el'lUlnl:Ln 0 m\ m .1,···, q , , q

I;i consists of all fjJ E F such that thc detcnuinant ßt+l (x) = deti:::::~ti has a multiple
zero as a function in X, i.e. there exists x such that ß4I = (ß41)/ = O. Differentiating

ß41 w.r.t. x one gets that (ßF)' = det~:::::~~~2' Thus fjJ E ~i(F) if and only if there exists
h th t d t1, ,i+l - d t1, ,i+l - 0x suc a e l, ,i+l - e 1, ,i,i+2 - .

At the same time 4> E Ei-1(F) if :3x such that thc snbmatrix Hi:......:;+lhas the rank< i

and fjJ E Ei(F) if:3x such that the subnlatrix J1i:......::ti or equivalently Hi:......::ti has the rank
< i + l.

Obviously, the union Ei- 1(F) U Ei(F) is contained in ~i(:F). Indeed, if :3x such that
H 1, ,i+l h th k < . tl r th· t d t 1, ,i+l d t1, ,i+l 0

1, ,i as c ran 'l len lor c sanle x OrIC ge s e l, ,i+l = e 1, ,i,i+2 = .
Analogously, if:3x such that the rank of Hi: :tti is less than i+ 1 then all its (i+ 1) x (i+ 1)-
d t . t . h d' t' 1 d t 1, ,i+l - 1 t 1, ,i+l - 0e eruunan s vanlS an , In par ICU ar, e l, ,i+l - (e 1, ,i,i+2 - .

Let us prove thc opposite inclusion. Given<p and :c such that det~:::::~t~ = det~:::::~~~2 = 0

we get two cases. If for this <p and x the sublnatrix Hi:.....·::+1 has the rank< i then fjJ belongs

to Ei- 2(F) by definition. At the sanle time if the rank of Hi:......:t+1 equals i then thc systeul

cl t l, ,i+l d t 1, ,i+l 0 . tl . I t t k H 1 , ,i+l < .+ 1e l, ,i+l = e 1, ,i,i+2 = IS exac y equlva en 0 l' 1, ,i+2 ~ .
o
1.3. Generalized discriminants and generalized roots für polynümials. In what
follows we will study the generalized discriminants only for the families of polynomials over
the field C. Let Pn denote the set of all ulonic polynomials of dcgree n

From now we will omit the indication of the fanüly if F = Pn .

For Pn only the first n determinants ß m , In = 1, ... , n are functions depending on pa­
rameters A1' ... , A~ anel ßn+l = (n + l)!n+l. ThllS the only nontrivial induced discriminants
of Pn are Eo,· .. , En - 1 .

Let us denote by Ei the standard associated discrin1illant Ei(Pn ). Eo is the usual dis­
criminant (also called the swallowtail), Le. the set of polynonüals with multiple zeros and
the O-generalized Iuultiple roots are the usual lnultiple roots. One has -Eo = Eo, -En- 1 =
L;n-2, -Ei = Ei - 1 n Ei for i = 1, ... , (n - 2).

In the last part of this section we show that any polynoulial has a finite number of i­
gcneralized roots counteel with multiplicities anel therefore a finite number of pairwise different
multiple roots. This result can be also interpreted as the estimation of the complexity of thc
selfintersection of the discriminant Ei.
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1.3.1. P roposition. The 11.umber 0f i -generalized roo ts (count ed with m ultiplicities) 0 f any
polynomial p 0f degree n is equal to (i + 1) (11. - 'i). Thus lhe nurn ber 0f rnultiple i -generalized

roots of any polynomial of degree 11. does not exceed (i+I)Jn-i) .

Proof. One can easily see that for any p(x) E Pu the degree of ~i+l(p) as a function of x
is equal to (i+ 1)(11. - i). Let us now consider in the space P(i+l)(n-i) the following 2 subsets,
naillely, the n-dimensional image ~i+l (Pn ) and thc usual discriminant ~o consisting of all
polynomials with Inultiple zeros. It is not hard to show that ßi+I("Pn ) <t. "Eo. Thus a typical
polynomial in ßi+l (Pn ) has cxactly (i + 1)(11. - i) pairwise different i-generalized zeros. The
estiInation of the nUillber of pairwise different Inultiple roots follows.
o
1.3.2. Remark. To calculate the exact value of the Inaximal number of pairwise different
multiple i-generalized roots for polynomials of degree 11, is apparently a very nontrivial problem
for all i > O. (For i = 0 the obvious answer is [~J).

The authors have Illade SOIlle ca1culations for i = 1 anel snlall n. Recall that in this case
the upper bound for thc maximal number ~ma.T. (i, n) of rnultiple l-generalizeel footS equals
n-l.

For i = 1 anel n = 2,3,4,5,6 the nlunber ~max (i, 11.) equals 1, 1,3,4,4 resp. For thc
interesting cases 11. = 4 anel 11. = 5 thc corresponding polynomials p with the maximal number
of pairwise different l-gcneralizeel roots are of the fOrIn :1;4 + (LX and x 5 + ax resp.

§2. SYLVESTER FORMULA FOR ~i

2.1. Projective closure Ei Of~i' In order to write an explicit equation for thc hypcrsurface
"Ei let HS consider a TIlOre general hOlnogeneous problcrn. Let IPI = IP(U) bc the projectivc
line obtained by projectivization of a 2-diInensional vcctor space U with a base {co, Cl} and
let {ta, tt} be the dual base of U*. We denote by Vn thc space of all homogeneous forms of
degree n in (to : tt):

n

Vu = {p(t) = L Avtot~-V I Al) E C} .
v=o

Let us cOllsider the linear operator D : Vn ----1' Vn sellcling an elClnent p to to g~ and denote

by Vi C Endc(Vn) the subspace of all operators of the form

2.1.1. Lemma. Projeetive closure Ei C Pu = IP(Vn ) 01 the surlace "Ei consists 01 alt f017ns
P sueh that 'Irp ha8 a zero 01 1ftultiplicity 2:: (i + 2) at S01ne point '/l, E Ir1 for 8 ome 'l' E IP(Vi) .

Proof. The standard affine chart {to = I} on PI = IP(U) is an affine line Al with thc
coordinate x = t l / to and the standard affine chart {Ao = I} on IPn = IP(Vn) coincieles with

the affine space Pn of all monie polynomials of order n. The operator D = -!Ix on this space

is induced by thc operator D = to a~l on the space Vn . It remains to note that for any p E Pn

and any nontrivial i-tuple ao, a1, ... ,ai thc polynonlial cyop+ alP' + ... + aip(i) has no zeros
of multiplisity ~ (i + 2) at infinity, because its degree is greater or equal n - i. Thercfore the
affine restriction of the hypersurface ~i coincides with our original discriminant "Ei.
o
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0:=0,1, ... , (i+1).

2.2. Sylvest~r formula. In order to writc an cxplicit homogeneous equation dcfining the
hypersurface l:i' consider thc prodlict

and denote by 8(d I , d2 ) the spaee ofbihomogeneolls fOrIns ofbidegree (d ll d2 ) on this prodllct.
In other words, 8(d1 , d 2 ) is the spaee of fornls

F('I!, t) = F(7/Jo, ... ,7~i; to, t 1)

on two groups of variables 'I! = (7/Ja, . .. , 7/Ji) and t = (ta, td, which are homogeneous of degree
dI in 'I! and homogeneous of degree d2 in t. We associate to cach p E Vn the collcction of
(i + 2) forms F~, Fi, ... ,F;+l E 8(1, n - i-I) defined by

(
a ) a ( a ) i+l-o

F; ('l! , t) = Bio ah \lJp(t) l

2.2.1. Lemma. A form 'l1p has a zero of multiplicity 2:: (i + 2) at a point t E 1FI if and only
if all (i + 2) fonns F;: vanish at the pair ('l!, t) E 1Fi X 1FI .

Proof. This follows imIncdiately frolll Taylors fonnula for \lJp.
o
2.2.2. Resultant hypersurface. It is shown in [GKZ] (eh. 13, §2) that all collections of
(i + 2) forms on Pi X Ir!, which have a COllunon ~cro form an irreducible hypersurface in
thc projective space of all collections of (i + 2) fOrIns on Pi x PI of the same biclegree. An
irreducible equation of this hypersurface is called the rcsultant of (i + 2) forms of a givcn
bidegree.

In our case the condition that i + 2 rorms F~, F;+I havc a common zero is equivalent
(see (GKZ], p.439) to the fact that the ideal (F~, Fl~+I) generated by these forms does not
contain the sllbspace 8(2,211, - 2i - 3). More preeiscly, if we eonsider the linear operator

Bp : 8(1, n - i - 2) EB ... ffi 8(1,11, - i - 2) -1 8(2, 211, - 2i - 3)
, ;

V'

i+2

induced by nulltiplieation by our forms Fg, ... F;+l, i. e.

i+!

EJp : (Go, Cl,"" Gi+d H L GOFl~ ,
0=0

then the forms F;: have a cOlnmon zero on Pi x IPI if anel only if this operator is not epimorphic.
Since both spaces 8(1, n - i - 2)6h+2 and 8(2, 2n - 2';, - 3) have the same dilnension equal to
(i + l)(i + 2)(n - i-I) the last condition takes the fOrIn det (ap ) = 0 as soon as we choose
SOIne bases in both spaces. So, wc get

2.2.3. Proposition. The projective closure Ei C IPn = IP(Vn ) of the discriminant Ei C P n

is an irreducible hypersurface of degree (i + 1)0 + 2)(n - 'i - 1).

Proof. As we have seen above, the condition that for given p E Vn thcre exists a nontrivial
operator W E P(Vi ) such that \lJp has a root of Inultiplicity 2:: i + 2 at sorne point on PI is
equivalent to the detcrIninantal condition det (ap ) = 0, where ap is thc square matrix of the
size (i + l)(i + 2)(n - i-I) the entries of which are equal to SOI1le coefficients of p Inultiplied
by appropriate constants.
o
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2.3. Some examples of Sylvester formula. In order to write down the matrix 8p , let us
fix the standard luononlial bases in all spaces. Naluely, in the space

8(1, n - i - 2) EB ... EB 8(1, n - i - 2)
, #

'Y'

i+2

we fix the basis {W~a)trit~-i-2-'Y}, where a = 0, ... 1 'i + 1 entuuerates the direct summands,
, = 0, ... 1 n - i - 2 indicates thc power of t, and ß = 0, ... , i enunlerates the basic vectors of
Vi giving the coefficients of W= ~WßDß.

Similarly, in the space 8(2, 2n - 2i - 3) we fix thc basis {Wj'l./Jkt~tin-2i-3-l}. (Note that
Wj'l/Jk and 'l/Jk'l/Jj are two different notations for thc salne basic vectors; they are convenient
and we hope this will not lead to any confusion in the following formulas).

After SOlne efforts one gets:

8 ("I,(et)t'Ytn- i - 2-"Y) - "(/.W . "I. ,,/, t"Y+llt2n-2i-3-('Y+v)
p o/ß '0 I - W aß, o/ßo/n+J' 0 I ,

~,v

where thc summation is taken over all /-L,II such that

0:::;v:::=;n-i-1

o::; ! + v :; 2n - 2i - 3

- (n - v) ::; IL :::; II

o::; a + /j ::; i

Thc matrix elements (~ß"Y are given by

(~ß"Y = SII + 1Hv + 2) ... (lI + 0), .5n - v - iHn - 11 - i + 1) ... (n - v + /-L), . Av-~ ,
v y

a i+I+J'

where the factors in both undcrbraced groups are consequently increasing positive integers.

2.3.1. Example. The usual discriminant corresponds to thc case i = O. In this case for a
given p = Aot? + Altot~-l + ... + Antö E Vn we have to construct two forms

Fg = :~ = '\lt~-l + 2'\2tOt~-2 + ... + n'\nt~-l

P I 8p \ n-I ( 1) \ n-2 \ n-l
p = -8 = nAot l + n - Altot l + ... + An-ltoh

and consider the linear operator

sending (Go, GI) to GoF~ + GlFi·
The above bases spccialize to the standard rnonolnial bases tötf of the spaces in question

and the rnatrix of 8p gives thc classical Sylvester reprcsentation for the usual discriminant of
a homogencous form p. For cxaInple, we get the well-known fonnula
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>\1 2A2 3A3 4.-\4 0 0
o Al 2.-\2 3.-\3 4A4 0
o 0 Al 2.-\2 3A3 4A4

det Op = det 4Ao 3A
I

2A2 A3 0 0

o 4Ao 3A1 2A2 A3 0
o 0 4Ao 3A1 2A2 A3

= IB( -AfA~A~ - 25BA~Ag + 4AfA~A4 + 27A5Aj + 4At A~ + 27At A~ + BAfA~A4Ao + 192A1A3A~A5­

18AIA~AoA2 - 18AtA3 A4 A2 + 80AIA3A4AoA~ - 144A4A5A5A2 - 144AfA~AoA2 + 128A~A5A~ +
4A~A~AO - 166A~A4Ao) for n = 4.

2.3.2. Example. In another extremal case i = n - 2 for a givcn ]J = L: Avtot~-V we have
to construct n bilinear fonns

n-2

FO:('ljJ, t) = L 'ljJj(cjoto + ej1t1) , a = 0,1, ... , n - 1 .
j=o

Coefficicnt in parenthesis is equal to

stants c:* are givcn by
(

0 )0: ( 0 )n-1-0: '( a )iBto ar; t~ or; p(to, t1) and the con-

c\lo = { (0:+ l)!(n+j - 0: -l)!An +l-j, for -1::; 0: -j::; n-1
J 0, otherwise

and
v _ { (a)!(n + i - O:)!Ao-i, for °::; a - i ::; n

C'1 -
1. 0, otherwise

The operator of 11lultiplication by these fonns

Op : 8(1,0) ffi ... EB 8(1,0) ---+ 8(2, 1)
, -#

V

n

is represented by a square matrix of the size n(n - 1) and acts on the vectors of thc above
basis by the rule

n-2

0lJ('l/Jio») = L 'ljJk'ljJj(cjoto + cj\t 1 ) = L~jkl'ljJj'lj;ktl ,
i=O i,l

where

{

(0:+1)!(n+j-0:-1)!Ao-j+l [orl=O; -1::;0:-j::;n-1

~jkl = (o:)!(n + j - a)!Ao _ j for l = 1; 0 ::; 0: - j ::; 11

0, otherwise

and v = 0, ... , n - 1; j, k = 0,1, , , . n - 2; l = 0,1.
If we order 7/Jifi ) as

,,/,0 ,,/,0 ,,/,1 ,,/,1 ,,1,n-1 ,,/,n-l
0/0'···'o/n-1, lf'0'·"'o/n-2'·""··'o/O , "·'o/n-2'
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take WjWktl only with j ~ k, and order theIn lexicographically, thcn, for example, for n = 3
wc get

21.-\1 3!.-\0 0 3!.-\0 0 0
0 2.-\1 31Ao 0 3!.-\0 0

8p =
2.-\2 4Al 0 2.-\1 3!.-\0 0

0 2A2 4).1 0 2).1 3!).0
3!).3 3L\2 0 2"\'2 4).1 0

0 31).3 3!).2 0 2).2 4).1

dct 8p = 512(72).f).0).2 -189).6).~).i -108).6).~).3 -729A~A~ + 108).g).~ - 8)'~ +486).g).2A1"\'3) .

For n = 4 the operator 8p has the nlatrix

6).1 24).0 0 0 0 0 24).0 0 0 0 0 0
0 6).1 0 24Ao 0 0 0 24,,\.0 0 0 0 0
0 0 6"\'1 0 24Ao 0 0 0 24).0 0 0 0

4A2 12"\'1 48).0 0 0 0 6).1 24Ao 0 0 0 0
0 4).2 0 12).1 48Ao 0 0 6"\'1 0 24,,\.0 0 0

8p =
0 0 4).2 0 12).1 24,,\.0 0 0 6).1 0 24Ao 0

6A3 12).2 36).1 0 0 0 4"\'2 12).1 48 Ao 0 0 0

0 6).3 0 12).2 36).1 0 0 4).2 0 12).1 48).0 0
0 0 6).3 0 12).2 36).1 0 0 4).2 0 12"\'1 48).0

24).4 24"\'3 48).2 0 0 0 6).3 12).2 36A1 0 0 0
0 24).4 0 24).3 48).2 0 0 6).3 0 12).2 36"\'1 0

0 0 24A4 0 24..\3 48).2 0 0 6A3 0 12..\2 36).1

and zero set of its determinant consists of all polynonüals

,,\. 4 ). 3 ). 22). 3 ). 4P = ot 1 + 1t I t O + 2t1tO + 3t1to + 4to

such that there exists a nontriviallinear cOInbination O'.oP + Ct1P' + Ct2P", which has a zero of
nlultiplicity 4.

2.3.1. Example. In the siInplest nonextrelual case EI C P4 we gct the following explicit

expression für 8p (where the coordinates üf ap(7j;~O:)triti-i) will bc written in rows to save

space):

12).0 6A1 2).2 0 0 24,,\.0 6'\1 0 0 0 0 0
0 12..\0 6..\1 2..\2 0 0 24,,\.0 6).1 0 0 0 0
0 0 0 0 12Ao 6).1 2A2 0 0 24..\0 6..\1 0
0 0 0 0 0 12Ao 6"\'1 2A2 0 0 24).0 6.-\1

3).1 4..\2 3"\'3 0 12).0 12Al 6).2 0 0 0 0 0

8p =
0 3'\1 4"\'2 3'\3 0 12).0 12Al 6..\2 0 0 0 0
0 0 0 0 3).1 4).2 3'\3 0 12'\0 12).1 6).2 0

0 0 0 0 0 3'\1 4'\2 3A3 0 12).0 12).1 6"\'2
2).2 6..\3 12A4 0 6..\1 12A2 12..\3 0 0 0 0 0

0 2).2 6'\3 12).4 0 6"\'1 12).2 12).3 0 0 0 0
0 0 0 0 2).2 6A3 12).4 0 6).1 12'\2 12).3 0
0 0 0 0 0 2'\2 6"\'3 12).4 0 6"\'1 12).2 12"\'3
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Thc zero set of the clctenllinant2 det 8p consists of all polynonüals

9

such that there exists a nontriviallinear combination O:oP + alP', which has a zero of Inulti­
plicity 2:: 3.

§3. AFFINE GEOMETRIC AND TOPOLOGICAL PROPERTIES OF Ei

3.1. Differential operators. Dur stuelying of the affine geometry of thc hypersurface
Ei C Pn is based on the (non-canonical) affine isoIllorphisrll between the spaces of nlonic
polynomials anel invertible linear differential operators with constant coeffitients.

3.1.1. Notation. Consider the vector space Vn C C[:r,] of all polynomials of debrree ::; n
and denote by An C Endc(Vn) the subalgebra of all linear endoIllorphisrns cornmuting with
all translations p(x) t---+ p(x - a). It is weIl known (see [Bo]) that An coincides with the
truncated polynomial ring C[D]/Dn+l, wherc D = d/r! x. As in the previous section, we
denote by Vi C An the subspace formed by differential operators of order less or equal i and
by IP(Vi ) - the projectivization of Vi.

Let Un C An be the Inultiplicative subgroup of a11 unipotent operators, Le.

Note that all unipotent operators are invertible. For a subset M C Un we will denote by
M-I = {'Tn- l I m E M} the set of all inverse operators.

2In order to amuse the reader let us present this dcterminant calculated by MAPLE: ;keJi?6 =

- 7962624'\~ ,\~,\g

+ 6272'\~'\~

+ 262440'\~ '\2'\~'\O

+ 2985984'\f'\2 '\~'\~'\4

+ 419904'\~'\2"\5'\g'\4

+ 207360,\i '\~'\g'\4

+ 53460'\~ '\~'\0'\5

+ 2160,\1 ,,\~,,\o

+ 653184'\~ '\~'\g

- 11943936'\~ '\6'\5

- 151632,,\I "\~"\O"\3"\4

- 435456"\1 ,\~,,\~,\~

+ 2239488,\i '\~'\~'\4'\5

- 215784'\1'\2'\~"\~

- 21870'\~'\5 '\0'\4

- 279936,\1 '\5'\~'\~

- 19683'\~0 ,\~

- 129024"\~'\~'\4

- 5225472,,\1 "\2"\~"\~

- 3732480'\f'\~'\3'\~'\~

- 1492992'\1 '\~'\8'\~'\4

+ 3048192,\t'\~'\~'\5

- 2916'\~ '\~'\4

+ 1944,\I '\~'\3

- 8957952,\i ,\~,\8

- 20088,\f '\~'\0'\3

+ 404352,\y '\~'\5'\~

- 57600'\1"\~"\g"\3

+ 575424"\f "\~"\~'\4"\3

- 27702,,\I '\2"\3'\0

- 11943936"\1"\3"\8"\~"\2

- 419904'\~ '\~"\~'\4

+ 2916'\~'\~

+ 143769G'\~'\5'\~

+ 13122"\1 '\2'\4'\3

+ 2985984'\1 '\~'\3'\g'\~

- 191289G"\1"\~'\~'\5'\4

- 3442176,\i ,\~,\~,\~

- 67G8,\i '\~).6

+ 186624"\f'\~'\~

+ 373248'\~).3'\~

- 829440,\f '\~'\~'\4'\3

+ 58752"\i"\~"\~"\5

+ G3936,,\r '\~'\5'\3

- 233280,\i ,\~,\~,\~

- 27993G,,\I "\3'\~"\~

- 2239488,\i "\~'\3'\4

+ 8957952'\1'\~'\g'\~

- 216'\~'\~

+ 2985984'\~'\~'\g'\~

+ 11943936'\i'\~ '\~"\8

+ 1959552,\i '\2'\3'\5'\~

- 1244160'\~'\8'\~'\4

+ 525312'\1 )'~'\~'\4'\3

- 5103)'~ '\~'\5

+ 44469,\6,\4,\2130

+ 89856'\5,\~,\g

+ 33048'\~'\~ "\0'\4

- 154872,,\t ,,\~ "\6'\5
- 129600'\t'\~'\5'\4

- 1306368,\~ ,\~ ,\ ~,,\g

+ 5971968,,\i "\3"\5"\~

- 4478976,\i '\5'\8'\~'\2

+ 23887872'\:'\6'\2 .
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3.1.2. Affine identiflcation of Pn with Un • Let us definc the affine isornorphism

by taking a polynomial P E Pu to the uniquc differential operator 'l1 p E Un such that p =
'l1 p (x n ). In the rest of paper we will usually identify both spaces by this isomorphism.

Almost all our geolnetric constructions will be done in the space Un . First of all, in the
proposition 3.2. below we dcscribe the ith associated discriminallt "Ei in tenns of Uno In what
follows we will denote this hypersurface in Un by ~i as weIl anel will freely use both versions
~i C Pn and Ei C Un without special indicatioll.

3.2. Proposition. The above isomorphism, /, betwecn Un and P n identifies Ei with the
hypersnrface in Un consisting of aU opemtors 'l1 jor which thcre exists a triple

(2,8, a) E IP(1\) x IP(Dn - i - 2 ) x C

such that 2'lJ = e exp (-aD).

Proof. By definition, Ei consists of polynonlials ]J E Pn for which there exists a nontrivial
i-tuple ao, al, ... , ai such that aop +alP' +... +aip(i) has a zero of multiplicity at least i +2
at some point a E C, i. C. aop+atp' +...+aip(i) = (:D - n)i+2q(x), where deg(q) :::; (n - i - 2).
In terms of differential operators this Ineans that there exists a pair of operators :=: E IP(Vd,
8 E IP(Vu - i - 2 ) anel a point a E C such that 3(p) = 8(x - a)n.

Furthermore, the I-paralneter family (x - a)n can bc prcsented as the orbit of the poly­
nOlnial x n under the action of the I-paraulCter subgroup exp (-aD) C Un , where exp (aD) =
~(aD)j /j! E Uno Thereforc the condition p E Ei is equivalent to the existence of a triple

such that P satisfics 3(p) = 8 exp (-aD) (xn). Thc isolnorphisln l, : Un -1 Pn identifies p with
the uniclue \]11) such that P = 'l1 p (x n ). Thus p E Ei if and only if 3'l1p = 8 exp (-aD).
o
3.2.1. Corollary. The involution inv: W-1 \]!-l of Un ind71ces the biregular isomorphism
between the affine algebraic hypersurjaces Ei und E 7I - 2- i for alt i = 0, ... , n - 2.

Proof. We have to show that the involution illV : Un ---t Un which sends each operator
'lJ E Un onto its inverse 'l1- 1 maps Ei isomorphically onto En - i - 2 . Indeed, 'l1 belongs to Ei
if and only if therc exists at least one triplc

3 E IP(Dd, 8 E IP(Dn - i - 2 ), a E C such that 3'lJ = 8 cxp (-aD) .

Thc last identity is cquivalent to 3 exp (aD) = 8'l1- 1
, which exactly nIeans that 'l1- l belongs

to En - i - 2 •

o
3.2.2. Remark. The involution inv acts on thc I-paralllcter subgroup cxp (aD) C Un by the
change of the sign of a. So, under the above iS0l110rphislTI between Ei and En - 2- i polynomials
with a Illultiple gcneralizecl zero at a point CL E C are transformed into polynoIllials with a
multiple gencralizcd zero at thc opposite point -a.
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3.2.3. Remark. Since the projective hypersurfaces hypcrsurfaces Ei anel En - i- 2 (consid­
cred in the previous paragraph) have different clegrees, the iS01110rphisms betwecn ~i and
~n-i-2 can not be extenclecl to the regular isolnOrphis111S of thcir projective closures and
gives only abirational equivalence.

3.3. Subdivision of ~i by ~i,j. One can easily extcnd the above results to more general

loci ~i,j C Pn'
By thc definition, Ei,j C Pu is the set of all polynonüals p E Pu such that some nontrivial

linear cOlnbination QoP + QIP' + ... + QiP(i) has a zero of lnultiplicity greater Or equal j + 2.
Fixing a E C one gets ~i,j (a) C ~i,j consisting of all p E l:i,j with a multiple i-generalized
zero at a. We will denote by Ei,j (a) the fiber of Ei,j (Lt the point (L E C.

The locus ~i,i coincides with our original discrinlinant hypersurface l:i. In the general
case, the coelimension of Ei,j anel Ei,j(a) in Pu is equal to j - i + 1 anel j - i + 2 respectively.
We have a natural stratification

j

Obviously, Eij C n l:v = Ei n Ej .
v=i

Exactly same way as in prop. 3.2. we gct

3.3.1. Proposition. The stratum Ei,j is isornoryJhic to the set of all operators 'lJ for which
there exists a tripie

(3, B, a) E IP(Dd x IP(Dn - j - 2 ) x C

such that 3'lJ = e exp (-aD).

o
3.3.2. Corollary. The involution inv: 'lr --+ 'lr- 1 of the affine space Un induces the biregular
algebraic isomorphisms between ~i,j and En - 2-j,n-2-i for' all 0 ::; i ::; j ::; n - 2 and between

Ei,j(a) and En - j - 2,n-i-2(-a) for all i + j + 1 ~ n.

o
3.4. Desingularization of Ei,j. Now we clescribc a natural resolution of singularities of
Ei,j, which follows froln prop. 3.3.1. Let

be thc snbvariety of tripies (3, 'lr, a) such that 3w = e exp (-uD) for at least one e E

IP(Dn - i - 2 ).

We denote by 'Hi,j (a) the fiber of Hi,j over the point -a E C (i. e. the set of all the tripIes
(3, W, -a) with the same a). Note that any Hi,j(a) can bc nattlrally algebraically identified
with Hi,j (0):

(3, 'lr , -a) E Hi,j(a) <==} (3, Wcxp(aD), 0) E 1li,j(O) .

Hence, Hi,j = C X ?-li,j(O).
We fix the notation

1r: ?-lid ~ Lij E Un

for the natural projection of Hilj onto thc second factor in IP(Di ) x Un x C.
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3.4.1. Proposition. tli,j(O) is a smooth cornpletel:ntersection of quadries and thus the
restrietion

gives aresolution of singularities of Ei,j (a). Moreover, this resolution is semismall, i. e. it
satisfies the condition:

codim{p E Ei,j(a) : dirn 7r;l(p) 2:: l} = 2l for nUl .

Proof. A pair (3, '1J) = ( ao + alD + ... + aiD, 1 + 'ljJ1D + ... + 'l/JnDn ) presents a point

(2, w) E tli,j(O) if anel only if the coefficients of dcgrees Tl, - j - 1, ... , n in the expansion of

vanish. Thus tli,j(O) is elcfined in IP(Di ) X Un by thc systmn of j + 2 quadratic equations in
variables (ao, ... ,ai, 'l/Jl' ... Wn). In the case i + j + 1 < Tl, this systeln has the form

ao'l/Jn + alWn-l + + ai'I/Jn-i = 0

ao'l/Jn-l + al'ljJn-2 + + Cii'l/Jn-i-l = 0

ao'I/Jn-j-l + alWn-i-3 + ... + C'ij'ljJn-i-j-l = 0

The Jacobi Inatrix J of this system is the (j + 2) x (2'i + j + 3) Inatrix of the form

Wn Wn-l 'l/Jn-i 0 ° Cii Cl:i-l ao

'l/Jn-l Wn-2 Wn-i-l Cii ai-l ao 0

0
'ljJn-j-l Wn-i-j-l ai Cii-l ao 0 0

Since (aa, ab ... , ad =J. (0,0, ... ,0) the rank of J is always cqual to j + 2. This mcans that
tli,j(O) is a sInooth conlplete intersection. Thc case i + j + 1 2:: n is analogous. Thc Jacobi
matrix contains a unit subnlatrix anel a complcnlentary sublnatrix of maximal rank.

Let us now consider thc map 7r : Hi,j(O) ---+ "Ei,j(O). The inverse image 7r- 1 (p) of any
polynomial p E "Ei,j (0) is a projective subspace. Olle has that dim(7r-1(p)) equals to the
corank of thc above linear system reduced by 1. One can ea....,ily show that for a generic
'1J E "Ei,j (0) the corank of the system equals 1 and one gets that Hi,j (0) is aresolution of
singularities of ~i,j (0). Moreover, more detaileel consiclera.tion of thc linear system (or of
the space of Hankellnatrices, see §4) show that the set {p E 'Ei,j(a): dirn 7r- 1 (p) 2:: l} has
codimension 2l in 'Ei,j (a )ancl a.
D

3.4.2. Corollary. 7r: Hi,j ---+ ~ij is aresolution of sl:ngulanties of ~i,j.
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3.4.3. Remark. In the case i+ j + 1 < 11, thc set 'Hi,j (0) hW3 a nonsingular projcctive closure

Hi,j(O) C IP('Dd x IPVn .

Hi,j (0) also is a srllooth coruplctc intcrsection of qlladrics and onc can calculate its cohomol­
ogy as weIl as that of 'Hi,j (0) .

The existence of a seruislllall resolution also givcs a hope that Olle can calculate thc inter­
section hOlllOlogy of :Ei,j (0). In the case i + j + 1 2:: 11, thc variety Hi,j (0) is singular at infinity
with a conie type of singularities.

3.5. Topology of the fiber ~i,j(O). Here wc are going to clarify the topology of the zero
fiber ~i,j(O). Recall that in terms of the space Un of unipotent differential operators the
space ~i,j (0) consists of all operators 'l' E Un such that

Consider tbe dccreasing filtration

:E- -(0) = ~~ .(0) :> ~~ -(0) :> ... :> :E~ .(0)1,J 1,J 1,) 1 ,) ,

where E~,j(O) consists of all W E ~i,j(O) such that any :=: E 'D i \ 0 with the property that

3w E 'Dn -j-2 is divisible by D i
•

In terms of thc prop. 3.4.1, the closed subset l:~,j (0) C l:i,j (0) consists of all W such that
the projectioll of the fiber 71'"-1 (w) c Hi,j C lP('Dd x Un onto the first factor P('Dd is contained
in the subspace IP(D i . 'Dd c r(Dd.

3.5.1 Lemma. The differcnce ~?,j(O) \ EI,j(O) is isorno17Jhic to the space CoPr(i, n - i - 2)
of all pairs of coprime espolynomials

( 1 + CilD + ... + CirDr
, 1 + lllD + ... + 1Js D s

)

such that r ::; i, s ::; (n - j - 2).

Proof. We are going to verify that thc conlplement

:E?,j (0) \ Ef,j (0) C Ei,j (0)

consists of all w(D) = A- 1(D)B(D), where A E Un n Vi, B E Un n V n- j - 2 are any two
coprime (in C[DJ) polynoIuials, and that 'l' and (A, B) are uniquely determined by each
other.

Ir WE l:?,j (0) \ E;,j (0) then there exists at least one pair

A' = 1 + C'ilD + ... + C'iiDi, B' = 1 + lllD + ... + IJn_j_2Dn-j-2

such that WA' = B'. If A' and B' are not coprirne then A' = HA, B' = H B, where
H = 1 + h1D + ... + hmDm is their Iuaxirnal COllunon factor. Since H is invertiblc in Un ,

one gets WA = Band w= A -1 B is represented in the requircd form.
On the other side, if A E Un n 'D i and B E Un n 'Dn - j - 2 are coprime then the quotient

W= A- 1B, obviously, belongs to :E?d(O)E;,j(O) anel it rCInains to show that this quotient in
Un eletenuines A E Un n Vi and B E Un n 'Dn - j - 2 llniqllely. Let us assurne that for SOIne
Al E Un n Vi, BI E Un n Dn - j - 2 . Wc have AllBI = A -1 B in Un anel after multiplying by
A1A in Un wc get the identity AlB = ABI, which holels in the llsual polynomial ring C[D].
Since A and B are coprime, thereforc Al is divisible by A. Thus Al = A and hellce BI = B.
o
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3.5.2. Lemma. The homomorphism 01 reduction rnodulo D n - k + l :

which sends A(D) Inoel (Dn+l) 1---1' A(D) Ill0el (Dn-k+l), ma]Js the k-th complement

epimoryhically onto the O-th complement

E~ .(0) \ E ~ .(0)
S,) S,)

and the corresponding restrietion

In

In

is the trivial btLndle with the fiber Ck .

Proof. If \lf E Ef,j(O) \ E~JI(O) C Ei,j(O) c Un , then

D k A'lt = BDk In Un

for SOlne A E Un n Di - k , B E Un n Dn - j - 2 . Hencc, in Un - k we have A'lt
W= resn,kW anel

B, where

reSn,k (EL(O) \ E~.r(O)) c Ef,j(O) \ Ei,j(O),

To finish the proof, we clescribe the cOll1plete pullback rcs~,~ (E?,j (0) \ Et,j (0)) 0 Lct WE

E?,j(O) \ Et,j(O) inside Li-k,j(O) C Un - k . As we have seen above, A~ = B in Un - k for SOlne
A E Un- k n D i - k , B E Un-k n 'Dn- j - 2 0 If we consicler these A, B as elements of Un , then
for any W E Un such that resn,k W = Wwe get D k WA = D k B in Un 0 Thus, W belangs to
Ef,j(O) E Un and

res~,~ (Ef,j(O) \ E},/O)) c E~)O) c Ei C Uno

It remains to prove that the left siele locus lies inside E7,j(0) \ E7,jI(O)o But if above W has

thc property 'l' E E~,tl (0) then we get the relation

In Uno

After the rcduction modulo D n - k+1 it takes thc fonn ~DAI = DEI, whieh contradicts to
thc condition ~ ~ El,j(O)'
o
3.5.3. Topology of CoPr(r, s). The space CoPr(r, s) can be also interpreted as thc space
of all pairs of lnonic polynolnials of degree rand s with no coml11on roots possibly except for
the origin. It would bc very interesting to ca.lculatc thc coholnology of the space CoPr(r, s)
and to COlllpare it with that of thc usual space of rational flll1ctions and the braid space, see
e.g. [Va]. But, unfortunately, the complete infonnation about the cohornology of Ei,j (0) is
unavailablc at the prescnt 111omcnto This makes it iInpossible to calclllate the cohomology
even for the ease of stable strata whieh have the sirnp1est form arnong ~i,j, (see n° 3.7 below) 0
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CONJECTURE. The Leray speetral sequence 01 the above filtrations with Z-coejficients col­
lapses at the E 2 -term.

3.6. Rationality of .Ei,j' In this subsection wc will prove thc rationality of .Ei,j using thc
filtration of thc fiber Ei,j(O) considered in thc previous section.

3.6.1. Lemma. .Ei ,j (0) is a rational variety.

Proof. In fact, abirational equivalence between Ei,j(O) anel IP(Vi) x IP(Vn- j- 2) is given
in thc proof of Lemma 3.5.1. Namely, Ei,j(O) contains a Zariski open subset of all pairs of
coprilne polynomials

which havc thc degrees exactly equal to i and (71, - J" - 2).
D

Thc following proposition implies the rationality of Ei,j.

3.6.2. Proposition. There exists a Zariski open s11.bset in the space IP(Vi ) x IP'(Vn - j - 2 ) xe
isomorphie to a Zariski open subset in Ei,j and therefore Ei,j is rational.

Proof. As abovc we have a family of codimcllsion 1 subvarieties Ei,j(a), a E C in Ei,j such
that for all al =j:. a2 Ei,j (al) and Ei,j (a2) are iSOlllorphic. By propositon 3.6.1 cvery Ei,j (a)
is a rational variety. Since group of affine transfonnatiol1s x -t cx + d acts bitransitively on
C, to prove rationality of Ei ,j it suffices to show that codinl(: (Ei ,j (0)) n Ei ,j (1)) in Ei ,j (0)
is at least 2. This will hnply that for a Zariski open subset in Ei,j there exists exactly Olle
tripIe (3,8, a) E IP(Vd x IP(Vn -j-2) x C such that 3wp = 8eaD .

Indeed, consider n = U (Ei,j(aI) nEi,j(a2))' Ir codim c(Ei,j(O)) nEi,j(l)) in Ei,j(O)
a2EC\a l

is at least 2 then n has codhnension at least 1 in Ei,j (a) and its cornplement is a Zariski open
subset. Varying al and taking the union" of thc cOlllplernents wc get a Zariski open subset in
the whole Ei,j for which there exists only one tripie (3, S, a) such that 3'1Jp = SeaD . The
following ICllllua accomplishes the proof.
D

3.6.3. Lemma. For any pair (al =j:. a2) the intersection "Ei,i(aI) n "Ei,j(a2) has codimension
2 in Ei,j.

Proof. As was nlentioned before codim(Ei,j(al) n Ei ,j(a2)) eIoes not depend on particular
choice of (al, (2)' Now let Ei,j(a) C Pn be the projective closure of Ei,j(a) C Pn and let
Ei,j C Pn be the projective closure of Ei,j. One can ea."ily see that the fiber at infinity
Eid (00) = Ei,j \ Ei,j is a projective subspace of eIiIncnsion n - 2 - j + i.

Take thc correspodence Gor in thc space of Ei,j x C consisting of all pairs ('11, a) whcre

'11 E Ei,j and a is a generalized zero of Wand consider its closure c;;. C Ei,j X TI\. The

inverse inlage of any point a E IP t is Ei,j(a). It suffices to show that codim(Ei,j(oo) nEi,j(a2))
in .Ei,j equals 2 since thc coclimension of intersection oi" any two fibers gives the upper bound
for thc codimension of intersection of two generic fibers.

Notice that Ei,j(a) n pt c pn is isolllorphic to Ei,j(n) C pi where pt is the projectivized

space of polynoluials of clcgrce at IUOSt l in to : t 1. Since thc special fiber Eid (00) is isoIllorphic
to pn-j+i-2 one gets that Ei,j (00) nEid ((L2) c pn is isolllorphic to Ei,j (a2) C pn- j+i-2. The
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lattel' space, 0 bviously, has codinlension 1 in Ei lj ( 00). Thus the former space has codimension
2 in Ei,j.
o
3.6.4. Lemma. For a generic k-tuple (al "# a2 "# ... -# ak), k < j_:t+2 the intersection

E· '(al) n E· '(a2) n ... n E· ·(ak) has codimcnsion k in E· '.S,) S,] S,) t.,]

Proof. We are going to iterate the above arglunents using induction on the number of points
and dituension. Namely, assuille that we havc proved that the codituension is thc expected
one for a Zariski open set in the thc space of k - I-tuples and for all m < n. For generie
ab a2, . .. , ak oue has

But the later intersection is isomorphie to the intersection of k-l-tuple in the space pn-i+i-2
and thus has thc expected codinlension by thc incluctivc assumption.
o
3.6.5. Remark. It is worth mcntioning that not for all al, a2, ... ak, k > 2 the intersection
Ei,j(ad n Ei,j(a2) n ... n Ei,j(ak) has thc expectecl codinlcllSion. Namely, therc exist poly­
nomials p E Pn whieh have more than [n/2] i-generalized multiple zeros. This lueans that
the interseetion of luore that expectcd lllunber of Ei (al) is still nonempty, see §1. It would
be very interesting to describe such 'Weierstrass' k-tuplcs.

3.7. Some special cases. A stratum Ei,j C P n is callcd stable if j - i +2 > [~] and unstable
otherwise. The following proposition reduces the study of the topology of any stable ~i,j to
that of its Ei,j(O).

3.7.1. Proposition. Any stable stratum Ei,j C Un i8 isornorphic to Ei,j(O) x C.

Proof. One has to show that if j - i + 2 > [n/2] thcn each p E Ei,j belangs to the unique
Eiti(a), Le. that the intersection .Ei,j(ad n Ei ,j(a2), (LI "# a2 is empty. Trus can be proved
exactly a]ong the same lines as lcmma in 3.6.3. 0
o
3.7.2. Remark. The stable stratum EO,[~]-l C Pn is callcd the nullcone and is of a
fundamental iInportancc in the rcpresentation theory of SL2 (C). Thc following problelu was
formulated to the authors by J.Wcyman in April 95.

Q U ESTI0 N. Is it trlle tllat Eo,[~ ]-1 is a set- tllCorctical completc in tcrsec tion ?

" [~]-l "
One can even speculate that set-theoretically one has L:O,[~]-l = n Li,

i+O

§4. EXAMPLE: COHOMOLOGY OF .EI C P4

4.1. Vassiliev's resolution. A natural approach to the probleIn how to calculate the
cohomolobry of Ei C Pn with cOillpact supports is to try to generalize the simplicial resolution
whieh was succesfully used by V.Vassiliev for thc series of strata Eo, see [Va] (rccall that
Pn \ Lo is the usual braid space). Such a generalizecl Vassilicv's resolving space for Ei
coincides with the set of all pairs {p, Sp}, where p E Li aud Sp is the formal simplex spanned
by all pairwise different luultiple i-generalized roots of p. Therc exists a natural geometrie
realization of Ei in CN for some sufficiently big N.
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By construction, this resolving space Ei has a natural filtration

17

where Pi is the set of all pairs {p, S~}, P E Ei, S~ dellotes the (i - 1)-skeleton of Sp, and m is
the maxilllal possible nunlbcr of multiple pairwise different i-generalized zeros. (We use thc
convention that if dirn Sp :::; i thcn S; = Spo) Note that F1 is honlcoillorphic to Ei (0) X C.

One can easily see that the obvious projcction Ei -+ Ei is a hOlllOtOpy equivalence extend­
able to their I-point cOlupactifications. Therefore, fIZ(E i ) = H;(td.

We will apply this prograrn to EI C P4. In this case we have only the 3-term filtration

since the maximal nuruber of rnultiple I-generalizecl roots of a qllartic polynomial equals 3,
see n°1.3. Thc main result of this section is thc following

4.2. Proposition. The eohomology with e01n]Jact ,5UPP01tS 0/ EI C P 4 is equal

The proof of this proposition splits into aseries of ICllunas and will be finished in n04.6
below.

4.3. Ei (0) and Hankel matrices. Recall that a luatrix is callcd Hankel if it has thc same
entry on each anti-diagonal. Let us denote by Hank(k, l) the set of all (k x l) Hankel matrices
with coruplex coeffieients and we denote by Hankdcg(k, l) c Hank(k, l), k :::; I thc subset of
matrices of rank< k.

4.3.1. Lemma. I/i+j+I < n then Ei,j(a) is isomorphie to Hankdeg (i+I,j+2) xcn- i - j - 2 .

1/ i + j + 1 ~ 11, then Ei,j (a) is isomorphie to E n - j-2,n-i-2 (-(L).

Proof. Sincc Ei ,j (a) is isorllorphic to Ei ,j (0) we eonsiclcr only thc last case. For Ei ,j (0) thc
statement follows directly from the definition.
D

Now we ean dcscribc thc eohomology with eOHlpact supports of the first term of the
filtration PI = EI (0) X C.

4.3.2. Lemma. The cohomology with eompact supports 0/ the variety Hankdeg (2, n) is equal
(0,0, Zn, 0, Z).

Proof. Thc set Hankdeg (2, n) in question is the cone with thc vertex at the origin °over
tbe rational normal seroll in cn+I

. Tbe set Hankdeg (2, n) \ °has thc structure of a C*-bundle
over this rational normal seroll CIP'1. The first ehern class Cl of this bundle is equal to thc
degree of the seroll and therefore Cl = n. Thus the usual eoholllology of Hankdeg (2, n) \ °is
equal (Z, 0, Zu, Z). Sinee it is a manifold its eOh0I1101ogy with eOlnpact supports is dual to
the usual cohomology and is equal (0, Z, Zn, 0, Z). FrOlll the long exact sequenee

H;(Hankdeg (2, n)) --+ H~(Hankdeg(2, n)) \ °-+ H~(O)

one gets that H~ (Hankdeg (2, n)) = (0,0, Zn, 0, Z).
D
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4.3.3. Corollary. H~ (F1 ) = (0, 0,0,0, Z3, 0, Z).

Proof. F 1 is hOlneOlllOrphic to Hankdeg(2, 3) x C.
o
4.4. Cohomology of F2 \ F1. We are going to describe explicitly thc set of all quartic
polynomials, which have exactly two l-generalized roots at given points (L and b in C. We
use here thc technique and notation fronl n03.4 - n03.5.

4.4.1. Lemma. For any [Jair 01 distinct points (a, b) there cxist exactly 4 polynomials in
EI C P4 such that their l-generalized multiple zeros are (L and b.

Proof. As above, it suffices to consider the case a = 0, b = t. Dcnote by E~pen(t) a Zariski
open subset in ~l(t) consisting of all '1J = A-1(D)B(D) cxp(tD), where A(D) = 1 + aD,
B = 1 + ßD, and a =1= ß. For t = 0 thc set "E~pen(t) is nothing 1110re than thc complement
"E~(O) \ ~t(O) considered in n03.5.

In the casc l:l C A4 the intersection ~1(O)n~l(t) is, obviouslYI contained inside ~~pen(O)n

E~pen(t). Thus, W = A11(D)B1(D) belongs to E~pen(O) n E~pen(t) if and only if for sorrlC
unipotent linear differntial operators A 2 (D), B 2 (D) one gets

A11(D)B1(D) = etD A2"1(D)B2(D)

01', equivalently, A2(D)B1(D) = etDA1(D)B2(D).
To detennine Ab A 2 , B 1 .B2 we have to look at thc interscction TJ2 n exp(tD)TJ2 . Direct

computation shows that this intersection is I-dimensional subspace in 'D2 spanned by thc
polynonlial

1 + tD/2 + t 2D2/12 = (1 + (!tD) (1 + etD) ,

where -e, -g are the cOlnplex conjugate footS of thc quadratic polynomial x 2 + x/2 + 1/12,
1. e. g = (3 + iV3)/12, and wc havc

(1 + gtD) (1 + gtD) = exp( tD) . (1 - gtD) (1 - gtD) .

Thus ~l (0) n ~l (t) consists of the following foul' operators:

3 'J3 l'J3 'J3 l'J3
(1 + tD)(l- tD)-1 = 1 + + 1, tD + + 1, t 2D 2 + _1,_t3D 3 + - + 1, t4D 4

g g 6 12 36 144

3 - iJ3 1 - iJ3 iJ3 -1 - iJ3
(1 + gtD)(l - etD)-l = 1 + tD + t2n2

- _t3n3 + t4D 4

6 12 36 144
1 3 - iV3 2 1 - iVJ 3 3 iJ3 4 4

(1 + tD)(l - iltD)-l = 1 + -tD + t D2 + t D - -t De 2 24 48 144

1 3 + iJ3 1 + iJ3 iJ3
(1 + gtD)(l - etD)-l = 1 + -tD + t 2n 2 + t 3 D 3

- _t4 D 4

2 24 48 144

D
Thc previous formlIlas give also the exact dcscription of how thc fundamental group of

thc space of all pairs (a, b), a "# b, acts on thc constructcd quadruplcs of the polynomials.
Namely, the interchangc of a and b via the standart Z-gcnerator of this fundamental group
leads, obviously, to thc invertion of above foul' differential operators and change of the sign of
t. This procedure preserves the first and the sccond of thc above operators and intercllanges
the last two of thcm. We get
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4.4.2. Corollary. Fonr polynomials from LC1nmr1/.a 4.4.1. are naturaly organized in two
pairs such th at the replacement 0 f (a, b) by (b, a) (via the standart gen erator 01 th e lundamental
group of the space of aU pairs (a, b) such that (L t= b) preserves tJoth polynomials in one pair
and interchange polynornials in the other pair.

o
Now we cau easily calculate thc cohomology of F2 \ F I .

4.4.3. Lemma. The cohornology with compact SUP])()'rts 01 F2 \ F I zs

Proof. Indeed, the set F2\FI is a bundle over thc set of all unordered distinct pairs of points
with the fiber consisting of 4 segments. The action of the generator of the fundamental group
of the base inverts the orientation of two of these segnlents and interchanges two others with
the inversion of orientation. Thus our fiber bundle consists of two copies of a 3-dilnensional
cylinder over a Möbius band and a 3-diInensional cylindcr over an annulus. Cohomology with
compact supports of a Möbius band and an annulus is equal to (0,0, Z2) and (0, Z, Z) resp.
Thus, H~(F2 \ F I ) is cqual to

o
4.5. Cohomology of F3 \ F2 are also calculatccl via. thc cxact description of all polynomials
having three 1-generalized roots.

Lemma. The intersection L: 1(a)nI;1 (b)nE I (c) for a ]Jai,wise different tripie of points (a, b, c)
is nonempty if and only if there exist two constants d and e '# °such that a - d, b - d, c - d
are [I different roots of the equation x 3 = e.

In this case EI (a) n EI (b) n L: I (c) contains e:cactly one polynomial (x + d)4 - 2ex.

Proof. By proposition 1.3.1 a polynomial p E L: I C P4 has at 11l0St three 1-generalized
multiple zeros. Thus p belangs to at most SOlne tripIe intersection ~1 (a) n EI (b) n EI (c). Now
let us determine the set of all p which have exactly 3 pairwise different multiple 1-generalized
zeros. This is equivalent to finding such p that b. 1 (p) has 3 different double zeros which
are not lnultiple zeros of p itself. Using the action on the affine group we can assume that
p = x 4 + AIX

2 + A2X + A3 which gives

ß1 (p) has 3 zeros if and only if b. 1(p) = [(x + a)(:D + ß)(x - cy - ß)]2 for SOUle a '# ß '#
-a - ß. (Omitted) consideration of the last condition ilnplics that this is possible if and only
if p = x 4 + A2X. In this casc b.1(p) = -4(x3 - ~)2 with 3 pairwisc different double zeros.
This iUlplies that EI (a) n EI (b) n E 1 (c) is nonClnpty (and consists of exactly 1 polynomial
(x + d)4 - 2E) iff for SOllle d the numbcrs a - d, b - d, c - rl are roots of x 3 = E, E =1= o.
o
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4.5.1. Corollary. The cohomology with COm-lJ(Lct supports 0/ F3 \ F2 is equal

(O,O,O,O,O,Z,Z) .

Proof. Indeed, F3 \F2 is a bundle over the set of all equilateral triangles on C with the fiber
consisting of the siInplex forlllally spanned by triangle's vertices. The base is homeomorphic
to C x lR+ X SI. The generator of SI of the base acts triviallyon thc orientation of the fiber
since it induces the cyclic shift of vertices. Thus F3 \ Fz is honlcomorphic to IR.5 x SI.
o
4.6. End of the proof of Prop. 4.2. We acconlplish the proof of proposition 4.2 by using
thc Leray spectral sequence for the cohomolob'Y with cOlnpact supports for tbe whole t 1 .

Its E 1- and E2- pages are given on Fig.l. (Potentially llontrivial differentials are shown by
arrows.)

4.6.1. Lemma.
a) The differential Z --+ Z in the 3rd row 0/ EI is 1n.ultiplication by 3;
b) the differential Z --+ Z in the 4th row 0/ EI is an isomorphism.
c) the differential Z3 --+ Z3 on E 2 is an iSOl1Lorphism.

Proof. We consider thc boundary lnap for thc corresponding homology cycles. By lelnma
4.4 thc part F2 of F2 \ F1 to which F3 \ F2 is glucd is a bundle ovcr the braid space Br(2) with
the fiber consisting of 2 scgnlcnts which can be interpreteel as fonnal shnplices spanncd by the
ordered pairs of points. Uneler the action of 7fl they change placcs with the inversion of their
orientations. The 4-dimcnsional relative homology cycle 8 1 pairing with the 4-dinlensional
coholnology class in F2 \ F 1 is obtained by taking fibcrs over all horizontal pairs of points in
Br(2). Analogously, the 5-diInensional relative hOlllOlogy class 8 2 in F3 \ F2 pairing with the
5-dilnensional generator in cohomology consists of all fonnal 2-silnplices over all equilateral
triangles with one horizontal side. One easily guts 8(82 ) = 381 aud a) follows. At the same
time the boundary of thc fundamental cycle in F3 \F2 equals F2 anel ~) follows. More detailed
consideration of thc boundary lllaps iInplies c).
o
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Fig.1. E1- and ~ pages 01 the Leray spectral sequence.
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§6. FINAL REMARKS.

The above partial results on the algebraic and topological properties of the associated
discriminants show that their structurc is substantially Inore cOInplicated than that of the
classical d iscriIninants.

Below we formulate a few (of 111any 1110re) questions which seeIll natural in the context of
the associated discriminants.

1) Calculate the number of connectcd cOInponents to thc union of the associated discrim­
inants in the space Pn with real coefficients and, 1110re generally, for the space of solutions
to some linear hOlllogencous ordinary differential equation with constant coefficients. (This
question is the most interesting from the point of view of its application to Tocla lattices.)

2) Calculate the usual and intersection (CO)hOIllOlogy of L:i(O) or equivalently of the space
Hankdeg(i, i). (For the usual cohomology onc can use the stratification described in 3.5.
For the intersection hOl11010gy one can use the semisIllall desingularization. Many analogous
spaces of Inatrices were sucessfully studied berare.)

3) Calculate the lnaximal number of pairwisc different I11ultiple i-generalized zeros for
polynomials of degree n.
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