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COHOMOLOGY - OF . SMALL. CATEGORIES

Dedicated to "Jan Erik Roos on his 50th birthday

by Hans-Joachim Baues and Giinther Wirsching

In this paper we introduce and study the cohomology of a small category
with coefffcients in a natural system. This generalizes the known concepts
of Watts [23](resp. of Mitchell [17]) which use modules (resp. bimodules)
as coefficients. We were led to consider natural systems since they arise
in numerocus examples of linear Méxtensions of éategories; in section §3
four examples are discussed explicitly which indicate the deep connection
with >alglebr‘aic': and topological probleams: »

(1) The category of Z/pz—modules, P prime.
(2) The homotopy category of Moore sﬁaces' in degree n, nz2.

(3) The category of group rings of cyclic groups.

(4) The homotopy category of Eilenberg-Mac Lane fibrations.

We prove the following results on the cohomology with coefficients in
a natural system:

(5) An equivalence of small categories induces an isomorphism in
cohomology.

(6) Linear e‘i;;ené’ions of categories are classified by the second
' cohomology group HZ. ‘
(7) The group H1 can be described in terms of derivations.

{8)  Free categories have cohomological dimension sS1, and category
. of fractions preserve dimension one.

(9) A double cochain complex associated to a cover yields a method
of computation for the cohomology; two examples are given.

The results (7) and (8) correspond to known prope;;ies of the Hochschild-
Mitchell cohomology, see [7] and Q7] .
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In the final section we discuss the various notions of cohomology of
small categories, and we show that all these can be described in terms of
Ext functors studied in the classical paper [11] of Grothendieck.

The authors would like to acknowledge the support of the Sonderforschungs-
bereich 40 "Theoretische Mathematik" and the Max-Planck-Institut fiir Mathe-
. matik in Bonn. We also remember with pleasure the. stimulating Qqnvéfsqtions
with J. Benabou in Oberwolfach 1983.

In this paper, we use the following notations: A letter underlined like
C denotes a category, Ob(C) and Mor(C) are the classes of objects and
morphisms respectively. We identify an object A with its identity IA-el.
The set of morphisms A —+ B is C(A,B) , and the group of automorphisms
of A is Auté(A) . ‘ '

§1 Cohomology of a small category

An eariy épproach to the cohomology of small categories is due to
Jan Erik Roos [22] in his classical result on the derived li_fn) of the
lim functor. As pointed out by Quillen [21] the singular cohomology
of the classifying space of a small category is an exaample of lim () o On
the other hand, Mitchell [17] introduces a cohomology by imitating as closely
as possible the classical ring theory on the level of categories. This
Hochschild-Mitchell cohomology uses bimodules as coefficients, while [21] and
[23] use modules. The approach here generalizes these two concepts by taking
"natural systems" as coefficients which are more adapted to categories.
Indeed, a module (resp. a bimodule) associates an abelian group to an object
(resp. to a pair of objects), while a natural system associates an abelian
group to each morphism.

Let C be a category.
The category of factorizations in C , denoted by FC , is given as follows:

Objects are the morphisms f, g, ... in C and morphisas f — g are



pairs. (a,B) for which

B 3 — B'
(1.1) lf , [g
A+ - g At

commutes in C . Composition is defined by (a',B') (a,8) = (a'a,B8') .
We clearly have (a,B) = (a,1) (1,8) = (1,8) (a,1) where 1 denotes the
identity.

A natural system (of abelian groups) on C is a functor,

(1.2) D: FC—— Ab,

from the category of factofizations to the category of abelian groups.
The functor D carries the object £ to D = D(f) and carries the
morphism (a.B) f—rg above to the induced homomorphisa

(1.3) D(@,8) =ay 8" : D —D = D,

where D(a,1) -'a,, and D(1,8) = 8" .

(1.4) Definition: Leét C be a small category. We define the cohomology H"(C,D)
of [ vith coefficfents in _the natural system D by the cohomology
of the fonov:lng cochain complex {F",8}. The n-th cochain group
Fa l’-’n(_.D) is the abelian group of all functions

£: N(© — U T
f6Mor(C)
'ith f()tl, s 'A ) ‘ Alo...ox .

H

Here Nn(_(_:) is the set of sequences (Al. cee .An) of n composable
morphisms

":10 Ay - .oe T A,

in C (which are the n-simplices of the nerve of C). For n=0
let No(C) = Ob(C) be the set of objects in C and let F°(C,D)
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be the set of all functions

D

(a)' £f: Ob(C — A

A€0b(C)

with £(A) €D, = D(1,) . Addition in F* is given by adding
pointwise in the abelian groups Df . The coboundary

(b) §: Pl —— "

is defined by the fomuia (n>1) :

(C) (Gf) (Ala LR vln) - Al* f(Azo soe ’An) +
n-1 i
+ X (‘1) f(ll. so e ’Aixi‘*’l, sos .An) +
i=l '
n ¥
+ (—1) Xn f(Al' oo 'An“l) .

For n=1 the coboundary § in (b) is given by
(&' (65 (M) = A £(A) - A" £(B)  for (A: A—> B) €N (O .

One can check by (1.3) that 8f € F* for £ € F*! and that 86=0.

We now describe the natural properties of the cohomology. To this end
we introduce the category Nat of all natural siL'gtenJg_ + Objects are

pairs (C,D) where D 1is a natural system on the small category C .
Morphisms are pairs

(1.5) (+°%,7) : (c,D) (¢',n")

*
where ¢: C' —* C 1is a functor and where T: ¢ D —> D' is a natural
* : ‘
transformation of functors. Here ¢ D: FC' — Ab is given by
(1.6) ¢'D); = Dys for £ € Mor(C')

» .
and a, = ¢(a), , B = 6(8)* . A natural transformation t: D —+ D
yields as well the natural tranformation

(1.7) 't : ¢*p — ¢'D .
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Now morphisms in Nat are composed:by the formula
(1.8) @P.0) (1,0 = ( (WP, 00¥'T) .
The cohomology introduced above is a functor,
(1.9) H': Nat ——— Ab  (n€Z),
vhich carries the morphism (Qgp.‘r) -0f (1.5) to the induced homomorphism

(1.10) ¢'t, : HYC,D) "(c',D')

given on cochains £ € F* by (8'T)(Af, ... ,A1) = Tf(8A], ... ,0A)) .

We have (QOP,T) - (¢°p,l) (1,1) = (1,0*1:) (00?,1’) and we write
o' = (¢°P,1), end (1,10, =71, .

(1.11) Theorem: Suppose ¢: C' —+ Q' is an equivalence of small categories.
Then ¢ -induces an isomorphism

o : HYGD) = HC',6'D)

for all natural sy#tens D on C, n é Z.

For the proof oi’ this result we consider first a natural equivalence
t:O:" 0001’:9'_—-—’2
which induces an isomrphisil of natural systems

~ * -~ %*
(1.12). St ¢ D~ f v D e 3
with €t = ¢, (t ) = D°f = Dwf

Here we have ¥f = t (¢f) t.l since t 1is a natural equivalence.

(1.13) Lenma: £, 6" = '  on HYCD) .

(1.14) Proof of theorem (1.11): Let ¢': C—+ C' be a functor and let
ti ¢S 1 , t: & =1

be equivalences. Then by (1.13) we have



B (09 = 1" =1 and
T 00 = 1 -1

Here t, and T, are isomorphisms and therefore ¢ is an isomorphism. //

(1.15) Proof of lemma (1.13):
We construct a chain homotopy h for the diagram of cochain maps

& F'(C',0'D)
oY) F'(C,D) | lt,,
" 3 Fea'n

{ f, 0 -¥ = 6h+hé  with

(2)
h : F*(c,0) — F(c',9'D)

Here h 1is given by the following formula
n

* 1 i
(3 MOA, oo A = ()T T DV WAL, oo WALE L, e 00)
i=0 ,
The terms in the alternating sum correspond to paths in the commutative
diagramm ’
oA oAz 2
X L I ves * B %
(4) lt lt lt [t
* < L I  JPUDNNISC
VA, (2 e VA

A somewhat tedious but straightforward calculation shows that formula (2)
is satisfied for h . ‘ /!

There are various special cases of natural systems which we obtain by
the functors:

(1.16) FC T Q_OPXQ —P [4 S T nc —2

Here ® and p are the obvious forgetful functors and q is the localization

functor for the fundamental groupoid :
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e = (Morg)TC , see [10].

—

Moreover * in (1.16) is the trivial category consist:lxig of one object
and one uo:phisn and o is the trivial functor. Using the functors in
(1. 16) we get special natural systems on C by pulling back func.tors in
Fun (K, __A_b;) wvhere K 1s one of the categories in (1.16). Such functors
are denoted as folldws:

(1.18) Definition:

M isa C-bimodule if M € Fun(C°PxC,Ab).
F is a C-module if FE€Fun(C,Ab).

L is a local system ‘on c if L eF_utl(ﬂQ_._Al).

- A 1is a trivisl system om C if A is an abelian group or

o)

(2)
(3
(4)

equivalently if A € Fun(*,Ab).

Clearly we define the cohomology of C with coefficients in M,
F, L and A respectively by the groups

HYC,M) = H™(C,m'M)
HC,F) = HYC,¥ p F)
BYC,L) = H™C,m pq'L)
Hn(g,A) - H"(g,‘lr*p*q*o*A) .

(1.19) Remark As we will show in section §8, the cohomology (1) can be

identified with the cohomology introduced by Hochschild and Mitchell,
see [17] end [7] . Moreover the cohomology (2) is the one used by
Roos [22], Quillen [21] and Grothendieck (see [15] for the definition
of topos cohomology). Next the cohomologies (3) and (4) are the usual
singular cohomlogies of the cleasifying space BC with local
coefficients and with coefficients in an abelian group respectively.

(1.20) Remark: :The ,cphpnology n“(_g,n) -with coefficients in a natural system

as well generalizes canonically the cohomology of a group G with
coefficients in a right G-module A : We denote the action of £ €G
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on a€A by a®. Consider the category G with a single object
and with Mor(G) = G . Then one has a natural system p* on G by

oY, = a for £ €G and

a, = 1, B*(a) - af " for aéA. a,BEG .
Now one can check by the usual definition of H?(G,A) that (1.4)
yields the equation

H'(G,4) = H'(G,0)

Compare for example [6], [14], [16].

§2 Linear extensions of categories and_H?2

An extension of a group. G by a G-module A is a short exact sequence
of groups

(2.1) 0 + A 17‘E p>G + 0

where i is compatible with tﬁe action of G , namely i(aE) = x-l(ia)x
for x € p-l(E) . Two such extensions E and E' are equivalent if there
is an isomorphism €: E = E' of groups with p'e = p and €i =1i' ., It
is wellknown that the equivalence classes of extensions are classified

by the cohomology H2(G,A) in (1.20).

We now consider linear extensions of a small category C by a natural
system D and we show that the equivalence classes of such extensions
are equally classified by the cohomology Hz(_C_,D) defined in section §1.

(2.2) Definition: We say that

D+ -+ E p:g

is a linear extension if (a), (b) and (c) hold

(a) E and C have the same objects and p is a full functor which
is the identity on objects.

(b) For each morphism f: A—+ B in C the abclm group D, acts
transitively and effectively on the subset p~ (f) of morphisms
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in E . We write fo+a for the action of o €D, on f, €p (f) .
(c) The action satisfies the ) linear: distributivity law :

| (fo+G) (80+B) = fogo + £,8 +g 0"

Two linear extensions E and E' are g/ quivalent if there is an

isomorphism €: E = B' ; of categories with p'e = p and with
€(fo+0) = €(fe) + & for fo €Mor(E), a €D . .

The extension E is a split extension if there is a functor
s8: C—+E with ps=1,

(2.3‘),‘ Theorem (Classification): Let D be a natural system on a small category
C and let M(C,D) be the set of equivalence classes of linear
extensions of C by D , Then there is a canonical bijection

¥ : M(C,D) = H*(C,D)
which maps the split extension to the zero element in the cohomology
group H3(C,D) .

(2.4) Example: Let ‘G be a group and let A be a right G-module. For the
natural system l)A on G in (1.20) the set M(Q.DA) can be identi-
fied easily with the set E(G,A) of all equivalence classes of
extensions in (2.1). Therefore (2.3) and (1.20) yield the result:

E(G,A) = r«_,n‘) = (G, 0Y) = H(G,A)

This, in fact, is the wellknown classification of group extensions,
see for example [14], [16] .

Proof of theorem (2.3): Let p: E—— C be a linear extension by D .
Since b is surjective on morphisms there exists a function

(1) 8 : Mor(C) ——— Mor(E)

with ps = 1 . If we have two such functions s and s' the condition
pS = 1 - ps inplies that there is a unique element

2 d € F}(C,D)
with s'(f) = s(f) + d(f) , £ € Mor(C)

Moreover, each d € F‘(_Q,D) - gives us by (s+dk) (£) = s(f) +d(f)
a function s+d: Mor(C) --?*Hor(g) ‘with p(s+d)=ps =1,
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For a (y,x) € N2(C) the formula

3 s(yx) = s(y) s(x) + 4,(y,x)
determines the element
%) 8, € F2(c,D) .

This element measures the deviation of s from being a functor.
If s is a splitting then As = 0 , We now define the function
¥ in (2.3) by

%) v{E} - {n} .

Here {E} € M(C,D) is the equivalence class of the extension E

and {As} € H3(C,D) is the cohomology class represented by the cocycle
A8 in (4) where s is chosen as in (1). First we have to check

the cocycle condition for As ¢ We compute

s((zy)x) = s(z)s(y) s(x) +'x*As(z.y) + 4 (2y,x)
s(z(yx)) = s(z)s(y) s(x) + z,8_(y,x) + 8.(z,yx)
Therefore associativity of composition implies
o = A (y,%) - B (27,0) + B (z,5%) - X' B (z,y) =
= (88) (z,y,x) , see (1.4)(c).

(6)

Moreover the cohomology class {As} does not depend on the choice
of s : We compute

(s+d) (3x) = s(y)s(x) + x d(y) + 7,d(x) + A 4(y,%) .
Therefore we have by (3)
B(3am) = B 4(3sx) = yyd(x) - d(yx) + X d(y) =
= (6d)(y,x) , see (1.4)(c),
In addition, we see that for an equiialence € we have

(8) AEB - AB .

By (6), (7) and (8) the function ¥ in (5) is well@efined. The function
¥ is surjective by the following construction: Let A € F%(c,D) ,
6A = 0 . We get an extension

{ Pp: Ep—™C

e vith  ¥{E} = {4}
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The morphisms in EA are the pairs (f,a) with f & Mor(C),a € Df .
The composition in E, - is defined by

(10) (2.8) (£,0) = (gf, B(g.6) +g,a+£ B)
The action of D on _gA is defined by (f,a)+a' = (f,a+a'),
a'€ D .

Since we have an equivalence
€

E, ———E
(11) —As
“with e(f,a) = s(f) + &
we see that ¥ is also injective. //
(2.5) Remark: For a linear extension
(1) D+ *E—C

the corresponding cohomology class Y{E} € H3(C,D) has the follow-
ing universal property with respect to the groups of automorphisms
in E : For an object A in E the extension (1) yields the group

extension

(2) 0 — A - — Autp(A) — Aut(A) — 0

by restriction. Here a € AutC(A) actson x € A = D(1 A) by

- (a’l)* a* (x) . The cohzmology class corresponding to the ex-
tension (2) is given by the image of the class ’i’[l_!} under the
homomorphisa * -

@ H*(C,D)

Here i is the inclusion functor Autc(A) €&—pC and t: i D — ph
is the isomorphism of natural systems, see (1.20), with

H*(Aucgu) A .

(4) t = (@, : D -7 .

u-———-*D(l

i A)
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§3 Algebraic ggd topological examples

of linear extensions

(3.1) The category of Z/p’-modules ( p prime):

Let R be a commutative ring and let HR be the (small) category
of finitely generated free R-modules: Objects are

(1) R = R®...0R, n summands, n21.

and morphisms R®*——R® are mXn-matrices (aij) over R , and
composition is multiplication of matrices. We have the canonical
ﬁg-bimodule

(2) Hom : P_i;pxﬁk——-—-*é_t_{

which carries (R",R") to the abelian group Hom(R",R") = M™*"(R)
of mXn-matrices.

For any prime p there is the canonical linear extension of cat-
egories

(3) Homt ——— -"ﬂ'z/p’—g__' Mz -

Here q 1is reduction mod p and the matrix B = (Bij) mod p acts
on the matrix a = (aij) mod p?> by the formula

(4) a+B = Cajy+pByy) -

It is an easy exercise to show that (3) is a welldefined linear ex-

tension of categories. By a result of Werner Meyer (Max-Planck-Institut

fiir Mathematik in Bonn) the extension (3) is not split. Therefore
by (2.3) it represents a nontrivial cohomology class in the canonical
abelian group ‘

(5) B (4, Hom) O

defined for each prime p . In fact, if restricted to the group of
automorphisms the extension in (3) yields elements in

(6) H?(G1 (z/p) M"*"(Z/p))

which are nontrivial for (n-1)(p-1) 2 2 . These elements actually
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turned: out to be of importance in ‘computations on the cohomology
of the general linear groups Gl (Z/p), [9].

(3.2) The homotopy category of Moore spaces in degree n , n2 2

Let Ab, be the small category of finitely generated abelian groups.
For each "A € Aby  we choose a Moore space M(A,n). This is a simply
connected CW-complex with a single nontrivial homology group in degree
n disomorphic to A . Let !gg;g? be the full homotopy category

of such Moore spaces. Then there is a canonical linear extension

of categories

| | H
(1) - E" —— Moore" ——+ b, .

Here Hn is the n-th homology functor and E" is the following
bifunctor on Ab, : '

(2) E'(A,B) = Extz(A[}B)

with P;B = BO®Z/2 for n2 3 and with B =TB . Here T is

the universal quadratic functor of J.H.C. Whitehead [24]. The extension
(1) is an easy consequence of the universal coefficient theorem for
homotopy groups with coefficients, see for example [13]. In fact,

the extension is not split for all n2 2 . For n2 3 the extension
for the category of Z/4-modules in (3.1) is actually a subextension
of (1). Again, by (2.3) the extension (1) represents a nontrivial
element of the abelian group

3) H2(Ab,,E") 4+ O .

The first named author computed a representing cocycle for the ex~
tension in (1), n2 2,

(3.3) The category ofgronpiiqgs of cyclic groups and the homotopy category
of pseudoprojective planes =~

ﬁe define the category R of group rings of cyclic groups. Objects
are the natural numbers in N. For f,g € N the set of morphisms
f — g is the set
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(1) R(f,g) = { A€ Z[Z/g) : £ divides 'gee(}) }

where € is the augmentation of the group ring Z[Z/g]. For X € R(f,8)
we define the homomorphism

0, : Z/f — Z/g
0(1) = gre(V)/f mod g .

(2)

Now the composition Au: h— f— g in R is
(3) Au = A0, € z[z/s) .

Here multipiication vis taken in the group ring. It is easy to check
that R is a welldefined category.

We define two natural euivalence relations = and %= on R as
follows: '

6, = © and B EZ|Z/g
(4) A=y Gmp{ oW 3 [z/s]
| vith Ao o= 0,,0,) 8 .

Here 9 g is the sum of all generators in Z[Z/f] .

(5 AR U G |
A-u o= (A-u)e0(1) .

3
We have the canonical linear extension of categories

(6) Er — » R/= —B— R/

Here E is the natural system defined for {A} in R/% by the
group cohomology

N CEy - uz(z/f,e’,'zlg) L oA f£——g

where ]Z8 denotes the augmém:ation ideal of Z(Z/ g] . If 2 is the
order of kernel(ex) then the group in (7) is isomorphic to

0 if E)A is injective or surjective

‘otherwise .

This shows that the natural system T is not a bimodule. It is an
open problem whether the extension (6) is split or not and wvhat the
universal graded group H*(g/s.'l.!') could be.
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The' extension in (6) has a nice ' topological interpretation : for
each f € N let

(9) Pf a’ S Uf

be the pseudoprojective plane with m(Pf) = Z/f . There is a canoni-
cal isomrphiam of categories

(10) r: R/= = P

where P is the full homotopy category of base point preserving
maps . hetween pseudoprojective planes. Moreover the equivalence rela-
tiox; = in (5) satisfies
the maps  r{i}, r{u}: pf,____-_., Pg
(11) ARy Ged induce the same homomorphism on the
: homotopy groups m, and mw; .

The groups of automorphisms in the extension (6) were considered by
Olum [19] who also showed that the structure of this groups is sur-
prisingly rich and that this structure is related to rather deep
results and problems in algebraic number theory. The authors expect
that the same is true for the extension in (6) and for the universal
cohomology groups H*(_lyz,g) . The results (6) and (10) are proved

by the first named author in his forthcoming book "Combinatorial
homotopy" [1].

(3.4) - The houotogz category of Eilenberg —-Mac Lane fibrations

Let T be a group and let M be the small category of finitely
generated right m-modules. We define for each n 2 2 the category
of k-invariants _15‘,‘,“ : Objects are pairs (A,k) where A is an
object in M and k 1isan element

1) k € " l(ma)

morphisms f: (A',k') —+ (A,k) are m-linear maps f: A" — A
whichi setisfy f,(k') = k. We choose for each object (A,k) a fibration
P‘k over the Eilenberg -Mac Lane space K(w,1):

(2) X(A,n) Gt By —— K(x,1)

~with €ibre- K(A,n) . which is determined up to equivalence by the
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k-invariant k, compare [3] « Now we haye the linear extension of

categories

m
(3) T . KO n__, kn-!-l

where the category ‘_K_:—ﬂis the ful?hbmotopy category qf maps over
K(7,1) consisting of the fibrations Ek in (2). The functor = n
is given by the n-th homotopy group. Moreover, the natural system
H" 1is the module

n
(4) Hﬂ . -k-:“'lc -qu‘ H (ﬂ.') *;Ab.

which carries the object (A,k) to the cohomology H“(n,’l) of the
group 7. It is not known to us whether the extension (3) is split,
but probably it does not. On the full subcategory of objects (A,k)
with k = 0, however, the extension splits. It is an interesting
fact that the cohomology groups

(5) gty , nz2,

are new invariants of the group w. This exami)le' is discussed in [2] .

§4 Homological algebra in functor categories

We first recall from the literature some facts on functor categories.
For a small category C let Fun(C,Ab) be the category of functors from

€ to the category of ‘abelian groups Ab. Morphisms are the natural trans-
formations.

(4.1) Remark: Fun(C,Ab) is an abelian category with enough projectives and
by a theorem of Grothendieck [11] also with enough injectives. Com-
pare [§].

We denote by HomC(F,G) the abelian group of all natural transformations
F——+ G in Fun(C,Ab). By (4.1) each F has a projective resolution

P* : ‘oo :Pn fpn.l—--" sv e A,Po %p—_)o

On the other hand by (4.1) also each G has an injective resolution

I*: ces + " - I"'lf cee = I° « G « o .




-17 -

Now the functors Extg(',') derived from the bifunctor llo-c(°.-) are
given by the cohomology -

Ext (F,G) = H Homy(P,,G)

(4.2) { | ¢ R

- = H" Homo(F,T)

It is a wellknown fact of homological algebra that the cohomologies in (4.2)
defined in terms of P, and I* are naturally isomorphic, see for example

[18].

The cohomology : (C,D) of a small category C with coefficients in
a natural system D can be described by an Ext" functor on the category
E_‘_x_n_(Fg,_Ap_) where FC is the category pf factorizations, see §1 . Here
we use the canonical functor

(4.3) Z: K——* Ab

which carries an object x of the category K to the free abelian group
with one generator x , denoted by Z{x} , and which carries a morphisa

m: x — y to the isomorphisa m,: Z{x} ¥ Z(y} with m,(x) = y. Clearly
Z is isomorphic to the constant functor on X with value Z.

(4.4) Theorem: For Z: FC—— Ab there is an isomorphisa
. N
H*(C,D) = Extpe(Z,D)

which is natural in D,

We proof this result by constructing the generalized bar resolution B,
of Z in Fun(FC,Ab) .

Proof of (4.4): For a morphism f in C 1let

Nn(f) = { (Al' cee .An) eun(g) H f = XIO veo oAn}
8,41
(1}' f=1

(1) NGO - {

We define a chain complex B, = (Bn.d} of Z in Fun(FC,Ab) by
the functors



()

(3)

(4)

(5)

(6)

€))

Bn(f) - ZZNn+2(f) ’ Bn = 0 for n< -1,

B,(a,8) : B, (f) —— B (g)

(Aoo o 'Aﬂ-i'l) b——p (GXO.A19 oo .Xn.)\mlﬁ)

\

Here ZM is the free abelian group generated by the set M . The
boundary d: B, — B, is the natural transformation

dg : B (f) —— B__ (f) |
‘ o n , :
df(xot cee ’)‘n+1)‘ - kEO ('1) ()\0' e .Xklkﬂ. cer ’An-o-l)

For each f there is a contracting chain homotopy S¢ with
desg+s.de =1 on B (f) defined by

S ¢ Bn(f) —_— Bn+1(f)
sf(xon see iAn+1) - (15)&0- oo ')‘n+1)

The homology of B, in Fun(FC,Ab) is given objectwise, that is
H, (B,) (f) = ker'df"/ im d¢ .

Therefore the homotopy (4) implies H,(B,) = o and thus B, is exact.
We point out that 8¢ in (4) yields no natural tranformation Bn -— Bn +1
but by (5) this is not needed.

Next consider the definition of F" in (1.4). There is the natural
isomorphism of abelian groups

ndeg(Bn,n) = F%,0) , nz 0,

which carries F: Bn —+ D to the function f € F* with f(A_l, .o ,An)
= F(I,Xl, oo ,An,l) . Indeed by (6) we have the isomorphism of cochain
complexes ' 4

Homgo(Py,D) = { F*(C.D), 6 }

where P_ is the part of B, in nonnegative degrees n 2 0. We
have



-19 -

(8). \B_-l\,.,-‘z.iz - FC, ot AD

‘by définition in (2) and in (4.3). Since B, is exact ve see by

(8) that P, is a resolution of Z in Fun(FC,Ab) . Moreover P,
is’pr'ojective since : by (6) each Bu (n20) is a free natural sys-
‘tem. In fact B, ‘is 'freely generated by the system of sets {Nn(f):
£ € Mor(C)}. Now the isomorphism in (4.4) is induced by the iso-
morphisas in (6), see (1.4) and (4.2). //

§ 5 Derivations and H®

A derivation from a group G into a right G-module A is a function
d: G— A with the property

(5.1) d(xy) = (dx)Y +dy .

An inner derivation i: G — A :i.s one for which there exists an element
a €A with i(x) = a - a® . It is a classical result that

(5.2) H'(G,A) = Der(G,A) / Ider(G,A)

vhere Der and Ider denote the abelian groups of derivations and of
inner derivations respectively. Compare for example [14].

We now consider derivations from a small category C into a natural
system D on C and-show that the cohomology H!(C,D) can be described

similarly as in (5.2). In the following definition we use the groups F“(g,n)
defined in (1.4).

(5.3) Definition: A derivation d: C—— D 1is a function in F!(C,D)
with

d(xy) = x,(dy) + ¥ (dx)

An inner derivation i: C——— D is one for which there exists
_an element a €F°(C,D) such that for x: A — B

d(x) = x,a(A) - x* a(B) .
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(5.4) Example: Let G and DA be defined as in (1.20) then a derivation

G— DA is exactly given by a derivation G — A . The same holds
for inner derivations.

We denote by Der(C,D) and Ider(C,D) the abelian groups of“all derivations

and of all inner defiyations C —> D respectively. These are actually
functors

(5.5) Der , Ider : Nat — Ab

which are defined on morphisms (¢°p.r) exactly as in (1.10).

(5.6) Remark: There is a natural isomorphism

H}(C,D) = Der(C,D) / Ider(C,D)

of functors on Nat .

This is clear since derivations are just cocycles and inner derivatiomns
*
are just coboundaries in the cochain complex {F (C,D),6}, see (1.4).

For later use we conside: the augmentation ideal J(C) € Fun(FC,Ab).
This is the natural system determined by the exact sequence

(5.7) 0 ——+ J(€) — By(C) —4+ Z —— o

—pe

where B,(C) and d are ;hé same as in the proof of (4.4), We point out

that the kernel J(C) of d is given objectwise, that is J(C)(f) = kernel de .

(5.8) Lemma: There is a natural isomorphism
§* ¢ Homg(J(C),D) = Der(C,D)

of functors on Nat .

Proof: We have a derivation

[ j: C—J©
HE) = (1,£) - (£,1)

(1)

*
and we set j*(t) = toj . We define the inverse k of j by the
formula
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@ K@) () = Ing oy dB) €Dy

for x =Zn, (a;,8,) €J(©) (£) end d €Der(C,D) . /]
i

. § 6 Cohomological dimension one

The cohomological dimension of a small category C and of a group G
are fundamental notions in the literature which have been discussed by many
authors. We introduce five possibly different dimensions of C depending
on the type of coefficients, see (1.18).

(6.1) Definition: Let dim(C) s © be defined by the condition that dim(C) s N
if H“(g,n) =0 for n >N and for all natural systems D . We
define the dimensions

dbim(C), dmod(C), dloc(C) and dtriv(C)

in the same way where, however, D ranges over all C-bimodules,
C-modules, local systems on C and trivial systems on C respective-
ly, see (1.18).

Clearly -by the definition of the cohomology groups in (1.18) we have the
‘inequalities ‘

(6.2) dtriv(C) 3 dloc(C) 5 dmod(C) s dbim(C) S dim(C)

(6.3) Theorem:
(A) If F is a free category, then dim(F) s1 .
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(B) If C is a small category and if z"lg is the localization
of C with respect to a subset Z of Mor(C) , then

dim(C) S 1 =——p din€ lg) 51 .

(6.4) Remark: The theorem generalizes the following wellknown facts of homo-
logical algebra (see for example [6], [14] and [16]):

(A) If F is a free monoid, then the associated small category F with
a single object and with Mor(F) = F is a free category and thus

cd(F) = dmod(F) s dim(F) s 1

by (6.3)(A) and (6.2). Here cd(F) is the usual cohomological di-
mension with respect to coefficients in left F-modules.

(B) If G is the free group generated by a set S , then we have
¢ = sTlF

where F = Mon(S) is the free monoid generated by S . Now (6.3)(B)

shows
cd(G) = dmod(6) s dim(s”lF) s 1 .

Here again c¢cd(G) is the usual cohomological dimension of G .

(6.5) Remark: Moreover theorem (6.3) corresponds to the following results
of Cheng-Wu-Mitchell [7]:

(A) dbim(F) s 1 for a free category F .
(B) dbim(C) S I wemd dbim (I"C) s 1 .

This as well generalizes the classical results in (6.4).

(6.6) Remark: It is clear that for a free category F each linear extension
of F is a split extension. Therefore the classification in (2.3)
shows that for all natural systems D on F we have

Hz(E,D) = o .
By (6.3)(A) we actually know that for all n 2 2 also n"(g,n) =0,
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For the proof of theorem (6.3) we use the following lemmas.
(6.7) Lemma: dim(C) S5 1 Guuud J(C) projective .
Here J(C) is the augmentation ideal in (5.7).

(6.8) Lemma: The localization q: C —* z“l_q induces the isomorphisa
q" : Der(zlc,D) = Der(C.q'D)

which is natural in D €_F‘£Q(F(Z"1g) »Ab), compare (5.5).

(6.9) Proof of theorem (6.3): Proposition (A) is equivalent to the following
statements (1), (2), (3) which are all equivalent to each other:

(1) J(F) projectiv, see(6.7).

(2) HonFF(J(_F_),-) is an exact functor.

(3) Deré,-) is an exact functor, see (5.8).
Here (3) follows from the presentation

f€S
where F is freely generated by S & Mor(F) .
Similarly proposition (B) is a consequence of (6.8) and (6.7) since

(1), (2) and (3) are as well equivalent for F replaced by }:—lg
and C respectively. //

(6.10) Proof of (6.7): " wemd " 1is obvious.

Now assume dii(_C) s 1. For the exact sequence (5.9) we have the
short exact sequence

(1) 06—+ K—u B —3 4 J—1o

which induces the exact sequence
' d
@ B (G,By) —— B (G = B(ECED = 0

where § is the Bockstein homomorphiss. Here H*(C,K) = O since

dim(C) s 1. Now d, isembedded in the commutative diagram with
short exact rows, seée (5.6):

0 —s Ider(C,B; ) ~—+ Der(C,B;) — H!(C,B;) —— O

o E TR
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Here d; and d; are as well induced by d in (1). Since d, is
surjective by (2) and since d, is seen to be surjective by use of
the definition of inner dérivations in (5.3) also d, is surjective.
Now by (5.8) the homomorphism d2 is isomorphic to

(4) d, : Homp.(J,By) —* Homp,(J,J)
Therefore there is s: J — B; in Fun(FC,Ab) with ds =1,
Since B, 1is free J is projective. /!

*
(6.11) Proof of (6.8): We construct the inverse k of q in (6.8) as follows:
Choose a free category F(S) generated freely by S§ such that C
is a quotient

()  p: F®——C = KO/~ .
This yields the quotient functor
@ p': KEUI®) —— g = Fsor’®) /o

Here "' 1is the natural equivalence relation generated by “~ on
F(S) and by

3) Gec®? ' 1, %P5 A 1 for O €L
where G € F(S) represents © .

*
For a derivation d: C ——— q D we define the derivation

k(d) : FEU°") ——p with

(4) k(d)(s) = d(ps) € Da(ps)

E(D) () = -(q0)7! (@)1 do for ce:

for s€ S

The second equation corresponds to the fact that for a derivation
d and for 1 = ee”} we have

(5) 0 = d(1) = d(eel) = e d(e) + (eh)*d(e)

This shows as well that k(d) factors over p' in (2). The factor-
ization k(d) with k(d) = k(d) p' yields the homomorphism

»
k: d —> k(d) which is the inverse of q . //
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§ 7 Computations of the cohomology by covers

We use a method which is analogous to the computation of the Cech
cohomology of a space by covers, see for example [4].

A double cochain complex K = (Kp ’q,d,d) » P»q € Z, consists of abelian
groups kP9 and homomorphisms

(7.1) d = dp'q : Kqu______'K]H'I.q
6 - Gp’q :" Kp’q JEEEE—— Kp.q+1

such that 66 =0, di=o , and 6d = d§ .
K is called (M,N)-acyclic if

-{ Hn(l*’q,d) = 0 for n>M, q2N

(7.2) ,
xP*.6) = 0 for n>N, pa M

The following proposition is a standard fact proved by the spectral sequence
which computes the cohomology of the total complex.

(7.3) Proposition: Suppose K is (M,N)-acyclic. Then
Mg = H*G) . n €z,

*
and WK are the cochain complexes defined by

- -]

where

= (kernel(du’*),é) for *2 M and S, = 0 otherwise

(7]
N‘*N * ’él)*
* %

= (kernel(G"M),d) for *z2 N and W, = O otherwise.

”

For a small category C and for a sequence Uu »a EN, of subcategories

of C weintroduce a double complex K as follows: Let U, o =
. N o..' p

Ua n ...n Ua be the intersection category and let
o - : v

P

(7.4) | CRAE >< Mo, D) .
00"

P
°°< ...<°p
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see (1.4). Here D is a natural system on C which yields by restriction
a natural system on each subca}teg’ory’of € . The coboundary §Peq is given
by the direct product of the corresponding coboundary & in (1.4). The

coboundary d carries a sequence w = ( W a i % < e €@ ) to

Go...(!p p

the sequence dw = ( (dw) ta € ,.. < a ) where
QgeeeOpyy” 0 p+l

a...a = L )7y y

(7.5) (dw)
o' *%p+l i=0 O i 1%141° %41

The terms in the sum are restricted to the subcatégory U and
u°.. .ap+1

,D) . Now the crucial lemma

the sum is taken in the group F*(U
a e .u
L) p+l

(7.6) Lemma: K in (7.4) is a (0,®)-acyclic double complex. Moreover, if

dim(Uu al s 2, see (6.1), then K 1is (0,2)-acyclic.
o'.. p

For the proof see [25].
The lemma implies by (7.3):

(7.7) Proposition: Suppose the sequence (Ua) has the following properties
(a) and (b):

(a) dim(U

b ...a ) s 1 for all ao < oo <a
o P

P
® N© = U N@), see (1.4).
aEN
Then H'*P(C,D) = H'*"(Sy) = HU(W) forall n with 1<ln<b.

This proposition can be used for effective compufation of the cohomology
Hl+n(Q,D) . Condition (a), in particular, is satisfied if all intersections
Uy a B8re free categories, see theorem (6.3).



- 27 -

We describe a simple example for the computation of H?, where we as well
use the result (5.6). Consider the commutative square

b
Y /8
For this category we have the free subcategories U, = {a,8} , Uz = {v,6}
and Uiz = {€} . The sequence (U1,Uz2) satisfies the conditions (a) and

(b) in proposition (7.7) for any b . Therefore H’(Q.D) - HY(W ) where

D is a natural gystem on Q . The first part of Wx is

Ba = € = 6y b.

0 d 1 2
(7.9) WK-DGXDBXDYX%————*WK-DS—-——-——*HK-O

with d(wa,ma,wy.mé) = u*wB + B*mc; - 6,,mY - "*“’6 . It follows that
(7.100  H'@D) = D/ (@'Dg+B,D +8,D +YDg) .

We remark that by (2.3) each cohomology class in this group represents
a category which is a linear extension of the commutative square.

In a similar way as (7.10) one computes the cohomology of the category K
given by the following finite commutative diagramm

* — —_—x .

B ) le *oe e x;
(7.11) "‘"““" e T .
\ :
n
— —-—-——-z—-»x *

Here all places * correspond to pairwise different objects. By commut-
ativity ve have

X = ‘¥°t§° ese OX: fOl’ k= 1,--..1‘! .

For any natural system D on K the second cohoitology is

n
(7.12) H2(X,D) = D(x)/1
(4 X (o)
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with
L

. * *
I = izl (XD oee (x]_) (xg) +ee (x5,)) D(x{) +

L
k .

k k k ¥ k * k
+ jZI (xpy oee (x5 u (xzk) cee (x51) D(xp) .

In particular, if n =1 the term (7.12) is trivial, indeed, this is
clear since K is a free category in this case, see (6.3).

§ 8 Further cohomologies of small categories

In this section we consider again the various cohomologies defined in
(1.18) and compare them with the corresponding notions in the literature.
This is the program announced in remark (1.19). Recall from §4 that homo-
logical algebra (with derived functors) is available in any functor cat-

egory Fun(K,Ab) .

(8.1) Definition: Let C be a small category, and let M be a C-bimodule.
We have the canonical C-bimodule
(1) zC: CPxCc——ab ,

which carries the object (A,B) to the free abelian group ZC(A,B)
generated by the morphism set C(A,B) . The Hochschild-Mitchell
" cohomology of € with coefficients in M is defined by

2 Ext" ZC M
(2) 0P g M

as described in (4.2), see [17].

(8.2) Definition: Let C be a small category and F be a C-module, For the
constant functor

(1) Z: C—— Ab ,
compare (4.3), we have by (4.2) as well the groups
(2) Ext (Z,F) .
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This is a description of the cohomology of a small category used
by Watts [23] and Quillen [21]. Moreover, it is particular case of
the cohomology of topoi in the sense of Grothendieck [15].

(8.3) Remérk: Consider the Grothendieck topos
1) . g d £‘!P.(2,§.'£)

where Set is the category of sets. The abelian group objects in

é are just the C-modules. Now the Grothendieck cohomology of é
with coefficients in the abelian group object F is exactly the
group (8.2)(2) since Z is the free abelian group object over the
terminal object of § » compare [15]. In section 29 of [12] Grothen-
dieck calls a functor ¢: C —+ C' of small categories a weak
equivalence if ¢ induces an isomorphism

* = *
(2) ¢ : H'(C',F) —— H(C,6 F)
for all n and all C'-modules F and if ¢ satisfies in degrees
n=0, n=1 certain additional nonabelian criteria. It is as well
justified to define notions of weak equivalences by using in (2)
bimodules or even natural systems as coefficients. We do not know

whether these notions are actually stronger than the notion of
Grothendieck,

(8.4) Remark: We know by (4.2) that the group Extg(Z,F) can be defined by
a projective resolution B, of Z or by an injective resolution
I* of F in the catgeory of C-modules. When we take the injective
resolution we obtain canonically the derived of the functor L = lim
by

1) Exed@F) = EHon(z,1) = B(LT)) = 1™ (B

since 4]._1_!(') - Honc(z.") . When we take the projective resolution
B, of Z we obtain

(2) Ext;(Z,F) = H"Homy(B,,F) .

The cochain complex Honc(B*,F) is isomorphic to the cochain complex
constructed by Roos [22]—and more generally by Bousfield - Kan [SJ .
Therefore the equation
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(3 B Hoay(®,.F) = =™

corresponds to the classical result of Roos in the case of C-modules.
This actually is a very special case of the 'résﬁl"t‘ of Roos and Bous-
field - Kan since they consider }_ig(n)(F) for functoxfs F: C— A
vhere A is a suitable abelian category. Here a representation like
im(*) = HomC(Z,°) is not available and therefore a simple argument
as in (1) does not work,

(8.5) Proposition:
(A) For any C-bimodule M we have

HC,M) = Exth(Z7M) = Extzr zeM .

(B) For any C-module F we have

BCF) = ExtB(Z,7'p'F) = ExtA(Z,F) = Ln™(F)

Proof: ;
(A) Consider the standard projective bar resolution of Mitchell in [17],
p. 70f. If we compute the term on the righ; hand side of (A) we get
our definition of H"(g,n) , compare (1.4) and (1.18)(1).

(B) Consider the projective resolution B, of Z in (8.4). Now in the
same wa} the right hand side of (B) canonically coincides with our
definition of Hn(g,F) , compare (1.4) and (1.18)(2). //

(8.6) Remark: Quillen proves in [21], p. 91, that for a local system L on
C one has the natural equation

™"y = Whsc,l) .

Here q: C — wC is the localization functor in (1.16) and BC
is the classifying space of the category C (the realization of the
simplicial set defined by the nerve of C , see also (1.4)). The
fundamental groupoid of the space BC is canonically equivalent
to the fundamental groupoid uC . Th’erefore/ L determines a local

- system of coefficients for the space BC which we as well denote
by L.
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(8.7) Remark: By (8.5)(B) we know

(1)

(2)

B%C,D) = H'(FC,D)
whe;je the left hand side is a cohomology with coefficients in a natural
system D . The right hand side is the cohomology with coefficients
in the FC-module D which as we know by (1.18) is a special case

of the .cohomology of FC with coefficients in a natural system on
FC. Therefore one might consider inductively the cohomology groups

gD ., 121 .,

with D éf_u_q(F#Q,;A_b) as being a generalized cohomology of C.
Any reasonable cohomology of C , however, should have the property
that the cohomology vanishes in degree 2 2 if C is free., This
property is éétisfied for the group (2) if i =1, see (6.3)(4),
yet the example below shows that this property does not hold if
i>1, ' :

(8.8) Example: Consider the free category C generated by the graph

(1

(2)

3

A —2—p—8

*C .

Then FC is the category pictured in the commutative diagram

fa
f/ N
1y 1 e
In particular, FC 1is not a free category though C is free. In
addition, we show

dmod(FC) = dim(C) 5 1 < 2 = dim(FC) ,

compare the notation in (6.1). The first part is clear by (8.7)(1)
and (6.3)(A). Moreover, the last equation follows by the computation

of coho_llplogy groups u"_(ip_,n) » D a natural system on FC. Here

(4)

we use the method of section § 7 which shows similarly as in (7.9)
that ‘

2 . * x
H2(FC,D) De / (x;sz + x,Dyz + z,,.,Dxl + yz*sz)
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and Hn(FQ,D) =0 for n2 3 and any natural system D on FC .
Now (4) is nontrivial if we set De $0 and D = 0 for morphisms
f in FC, f €.
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