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Abstract. In this note we shall study the Witten multiple zeta function associated to the Lie

algebra so(5) defined by Matsumoto. Our main result shows that its special values at nonnegative

integers are always expressible by alternating Euler sums. More precisely, every such special value

of weight w ≥ 3 is a finite rational linear combination of alternating Euler sums of weight w and

depth at most two, except when the only nonzero argument is one of the two last variables in which

case ζ(w − 1) is needed.

1. Introduction

The Witten multiple zeta function associated to the Lie algebra so(5) is defined by Matsumoto
as follows:

ζso(5)(s1, . . . , s4) =
∞∑

m,n=1

1
ms1ns2(m+ n)s3(m+ 2n)s4

, (1.1)

which converges whenever <(s1 + s3 + s4) > 1, <(s2 + s3 + s4) > 1 and <(s1 + s2 + s3 + s4) > 2.
We call s1 + s2 + s3 + s4 the weight. Essouabri [2] and Matsumoto [9] have defined more general
multiple zeta functions and studied their analytic continuations. However, the function in (1.1) itself
already generalizes both the zeta function ζso(5)(s, s, s, s) suggested by Zagier [17, §7] after Witten
[16] and the Mordell-Tornheim double zeta function [12, 13] (see §2.2). Zagier and Garoufalidis
independently showed that for every positive integer m there is some c(m) ∈ Q such that

ζso(5)(2m, 2m, 2m, 2m) = c(m) · π8m. (1.2)

Special values like these are the main objects of study in this note.
In [15] Tsumura considered the special values of of (1.1) at nonnegative integers. In particular,

when the weight is an odd number he showed that the special values of (1.1) are Q-linear combi-
nations of products of Riemann zeta values at positive integers, with slightly stronger restrictions
on the arguments than just to guarantee convergence. Since the function ζso(5)(s1, . . . , s4) has
depth two this type of results is commonly referred to as a “parity” relation. For example, the
(Euler-Zagier) multiple zeta value (MZV for short) at positive integers

ζ(s1, . . . , sd) :=
∑

m1>···>md≥1

m−s11 m−s22 · · ·m−sd
d (1.3)

has the well-known property that if the weight (> 2) and the depth have different parities then
it can be written as a Q-linear combination of products of MZVs of lower depths (see [4, 14]). In
general it is expected that when the weight is even (and large enough) we do not always have such
relations.

In this note we will investigate all the convergent special values of ζso(5)(s1, . . . , s4) at nonnegative
integers without any parity restriction on the weight. It turns out that they are closely related to
the alternating Euler sums (see §2.1). Our main result is
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Theorem 1.1. Let s1, . . . , s4 be nonnegative integers such that s1 +s3 +s4 > 1, s2 +s3 +s4 > 1 and
w := s1 + s2 + s3 + s4 > 2. Then ζso(5)(s1, . . . , s4) can be expressed as a finite Q-linear combination
of alternating Euler sums of weight w and depths at most two, except when s1 = s2 = s3 = 0 or
s1 = s2 = s4 = 0 in which cases ζ(w − 1) is needed.

In [22] we considered the Witten multiple zeta function associated to the Lie algebra sl(4). We
plan to treat other types of Lie algebra in the near future. However, we know that not only MZVs
and the alternating Euler sums but also the more general special values of multiple polylogarithms
at roots of unity (see [20]) should be used to study many other types of Witten multiple zeta
functions such as those appearing in the recent work of Komori, Matsumoto and Tsumura [5, 6, 7].
These will be carried out in detail in other works (see, for example, [23]).

The author would like to thank the Max-Planck-Institut für Mathematik for providing financial
support during his sabbatical leave when this work was done.

2. Some preliminaries

2.1. Alternating Euler sum. For positive integers s1, . . . , sd ∈ we define the alternating Euler
sum by

ζ(s1, . . . , sd;x1, . . . , xd) :=
∑

m1>···>md≥1

xm1
1 · · ·x

md
d

ms1
1 · · ·m

sd
d

, (s1, x1) 6= (1, 1), (2.1)

where xj = ±1 for all 1 ≤ j ≤ l. We call s1 + · · ·+ sd the weight and d the depth. To save space,
if xj = −1 then sj will be used. For example, we have ζ(1) = ζ(1;−1) = − ln 2 and the striking
identity [19] that for every positive integer n

ζ({3}n) = 8nζ({2̄, 1}n),

where {S}n means the string S repeats n times. Identities like these which are derived by (regu-
larized) double shuffle relations will be crucial to simplify our computations in the last section.

2.2. Mordell-Tornheim zeta functions. They are defined by (see [12, 13])

ζMT(s1, . . . , sd; s) =
∞∑

m1,...,md=1

m−s11 m−s22 · · ·m−sd
d (m1 + · · ·+md)−s. (2.2)

Recently Zhou and Bradley have shown [24, Thm. 4] that (2.2) converges absolutely if <(s) +∑`
j=1<(sij ) > ` for each nonempty subset {i1, . . . , i`} of {1, 2, . . . , d}. We can use integral test and

the well-known formula
n∑

m=1

mt =
1

t+ 1

(
Bt+1(n+ 1)−Bt+1(0)

)
,

where Bt+1(x) is the Bernoulli polynomial, to extend their proof to the following necessary and
sufficient conditions for convergence when all arguments are integers.

Proposition 2.1. Let s1, . . . , sd and s be arbitrary integers. Then the Mordell-Tornheim zeta
function ζMT(s1, . . . , sd; s) converges if and only if

s+
∑̀
j=1

sij > `

for each nonempty subset {i1, . . . , i`} of {1, 2, . . . , d}.

The main result of [24] is the following
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Proposition 2.2. ([24, Thm. 5]) Let s1, . . . , sd and s be nonnegative integers. If at most one of
them is equal to 0 then the Mordell-Tornheim zeta value ζMT(s1, . . . , sd; s) can be expressed as a
Q-linear combination of MZVs of the same weight and depth.

In this note we will only need this proposition when the depth is two.

2.3. Convergence domain of ζso(5)(s1, . . . , s4). In the following proposition we only consider
integer arguments although it is not hard to extend it to the complex variable situation. The
result can be derived from the concrete singularity set given in [6] but the following proof is more
straight-forward.

Proposition 2.3. Let s1, . . . , s4 be nonnegative integers. Then

ζso(5)(s1, . . . , s4) =
∞∑

m,n=1

1
ms1ns2(m+ n)s3(m+ 2n)s4

converges if and only if

s1 + s3 + s4 > 1, s2 + s3 + s4 > 1, and s1 + s2 + s3 + s4 > 2. (2.3)

Proof. First we observe that for all m,n > 0

m+ n < m+ 2n < 2(m+ n).

Hence

1
2s4

ζMT(s1, s2; s3 + s4) =
∞∑

m,n=1

1
ms1ns2(m+ n)s3(2m+ 2n)s4

≤
∞∑

m,n=1

1
ms1ns2(m+ n)s3(m+ 2n)s4

≤
∞∑

m,n=1

1
ms1ns2(m+ n)s3+s4

= ζMT(s1, s2; s3 + s4).

The proposition now follows immediately from the the convergence criterion of the Mordell-Tornheim
double zeta function in Prop. 2.1. �

2.4. A combinatorial lemma. The following lemma will be used heavily throughout the proof
of Theorem 1.1.

Lemma 2.1. ([24, Lemma 1]) Let r and n1, . . . , nr be positive integers, and let x1, . . . , xr be
non-zero real numbers such that x1 + · · ·+ xr 6= 0. Then

r∏
j=1

1
x
nj

j

=
r∑
j=1

(
r∏

k=1
k 6=j

nk−1∑
ak=0

)
Mj

xnj+Aj

r∏
k=1
k 6=j

1
xnk−ak
k

,

where the multi-nomial coefficient

Mj =
(nj +Aj − 1)!

(nj − 1)!

r∏
k=1
k 6=j

1
ak!

and Aj =
r∑

k=1
k 6=j

ak.

The notation
r∏

k=1
k 6=j

nk−1∑
ak=0

means the multiple sum
n1−1∑
a1=0

· · ·
nj−1−1∑
aj−1=0

nj+1−1∑
aj+1=0

· · ·
nr−1∑
ar=0

.
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3. Proof of Theorem 1.1

We now use a series of reductions to prove the theorem.

Case (i). If s4 = 0 then we just get a Mordell-Tornheim double zeta value so the theorem is mostly
handled by Prop. 2.2 except for the case s1 = s2 = 0. Then assuming s ≥ 3 we have

ζso(5)(0, 0, s, 0) = ζ(s, 0) =
∑

m>n≥1

1
ms

=
∞∑
m=1

m− 1
ms

= ζ(s− 1)− ζ(s). (3.1)

Thus Theorem 1.1 is true in this case. This is the first one of the two exceptional cases in which
we need the Riemann zeta value with the weight lowered by one.

We now assume s4 > 0 in the rest of the proof. If s3 = 0 and s2 > 0 (resp. s2 = 0 and s1 > 0,
resp. s1 = s2 = 0) then one can go directly to Case (iii.a) (resp. Case (iii.b), resp. Case (iii.c))
below. Otherwise we must have s2, s3, s4 > 0 which is Case (ii) next.

Case (ii). Assume s2, s3, s4 > 0. In Lemma 2.1 taking x1 = n and x2 = m+ n we get:

ζso(5)(s1, . . . , s4) =
s2−1∑
a2=0

(
s3 + a2 − 1

a2

)
ζso(5)(s1, s2 − a2, 0, s4 + s3 + a2) (3.2)

+
s3−1∑
a3=0

(
s2 + a3 − 1

a3

)
ζso(5)(s1, 0, s3 − a3, s4 + s2 + a3). (3.3)

We recommend the interested reader to check the convergence of the above values by (2.3). The
rule of thumb is as follows: if we apply Lemma 2.1 with each xj a positive combination of indices
then the convergence is automatically guaranteed. In each of the following steps we often omit this
convergence checking since it is straight-forward in most cases. The only exception is (3.7) which
in fact poses the most difficulty.

Note that the weight is kept unchanged in the above so we are led to the following three cases:

(iii.a). s3 = 0, s2, s4 > 0 from (3.2) since s2 − a2 > 0,

(iii.b). s2 = 0, s1, s4 > 0 from (3.3) if we started with s1 > 0,

(iii.c). s1 = s2 = 0, s4 > 0 from (3.3) if we started with s1 = 0.

Case (iii.a). Suppose s3 = 0, s2 > 0 and s4 > 0. With x1 = m, x2 = m+ 2n Lemma 2.1 yields

ζso(5)(s1, s2, 0, s4) = 2s2
∞∑

m,n=1

1
ms1(2n)s2(m+ 2n)s4

= 2s2−1
∞∑

m,n=1

1 + (−1)n

ms1ns2(m+ n)s4
. (3.4)
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Breaking this into two parts and applying the Lemma with x1 = m, x2 = n to the second part we
have

(3.4) =2s2−1

{
ζMT(s1, s2; s4) +

s1−1∑
a1=0

(
s2 + a1 − 1

a1

) ∞∑
m,n=1

(−1)n

ms1−a1(m+ n)s4+s2+a1

+
s2−1∑
a2=0

(
s1 + a2 − 1

a2

) ∞∑
m,n=1

(−1)n

ns2−a2(m+ n)s4+s1+a2

}

=2s2−1

{
ζMT(s1, s2; s4) +

s1−1∑
a1=0

(
s2 + a1 − 1

a1

)
ζ(s4 + s2 + a1, s1 − a1)

+
s2−1∑
a2=0

(
s1 + a2 − 1

a2

)
ζ(s4 + s1 + a2, s2 − a2)

}
.

Observe that the last component of every alternating Euler sum (or double zeta value) in the above
sums is positive and its weight is unchanged. So Theorem 1.1 holds in this case.

Case (iii.b). Suppose s2 = 0, s1 > 0 and s4 > 0. Applying Lemma 2.1 with x1 = m, x2 = m+ 2n
to

ζso(5)(s1, 0, s3, s4) =
∞∑

m,n=1

1
ms1(m+ n)s3(m+ 2n)s4

,

we get

ζso(5)(s1, 0, s3, s4) =
s1−1∑
a1=0

(
s4 + a1 − 1

a1

)
1

2s4+a1
ζ(s3 + s4 + a1, s1 − a1) (3.5)

+
s4−1∑
a4=0

(
s1 + a4 − 1

a4

)
1

2s1+a4
ζso(5)(0, 0, s3 + s1 + a4, s4 − a4). (3.6)

Note that all the double zeta values in (3.5) have the same weight as the one we start with. We
remind the reader that to determine the weight of a MZV it’s not enough just to add all the
components to see that weight does not change. We also need to check that every component is
positive. In particular the last component s1−a1 > 0 in (3.5). So we are reduced to the case (iii.c):
s1 = s2 = 0, and because of the convergence restriction that the sum of all components is at least
3 we may also assume that s3 + s4 ≥ 3 holds in case (iii.c). Further, since we assume s1 > 0 and
s4 − a4 > 0 in (3.6) we are in fact reduced to the subcase (iii.c.2) of (iii.c) where we can assume
s3, s4 > 0.

Case (iii.c). Suppose s1 = s2 = 0 and s4 > 0. We divide the case further into two subcases: (iii.c.1)
s1 = s2 = s3 = 0 and s4 > 0, and (iii.c.2) s1 = s2 = 0, s3, s4 > 0. In case (iii.c.1) setting s4 = s ≥ 3
(by convergence restraint) we get

ζso(5)(0, 0, 0, s) =
∞∑

m,n=1

1
(m+ 2n)s

=
1
2

∞∑
m,n=1

1 + (−1)n

(m+ n)s
=

1
2

{
ζ(s, 0) +

∑
k>m≥1

(−1)m+k

ks

}
.

Now the sum over m is 0 unless k is even so by (3.1) we have

ζso(5)(0, 0, 0, s) =
1
2

{
ζ(s− 1)− ζ(s) +

∑
2k≥1

−1
(2k)s

}
=

1
2

{
ζ(s− 1)− ζ(s)− 1

2s
ζ(s)

}
.

Thus Theorem 1.1 holds in this case. This is the second exceptional case when we need the Riemann
zeta value with the weight decreased by one.
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Case (iii.c.2). Suppose s3 = r > 0, s4 = t > 0 and r + t ≥ 3 (by convergence restraint). Taking
x1 = −m− n, x2 = m+ 2n in Lemma 2.1 we get

ζso(5)(0, 0, r, t) =
∞∑

m,n=1

(−1)r

(−m− n)r(m+ 2n)t

=
r−2∑
a=0

(
t+ a− 1

a

) ∞∑
m,n=1

(−1)a

nt+a(m+ n)r−a
+

t−2∑
a=0

(
r + a− 1

a

) ∞∑
m,n=1

(−1)r

nr+a(m+ 2n)t−a

+ (−1)r
(
t+ r − 2
r − 1

) ∞∑
m,n=1

(
1

nr+t−1(m+ 2n)
− 1
nr+t−1(m+ n)

)
(3.7)

The inner infinite sum of the first sum is exactly (−1)aζ(r − a, t+ a) while the second sum can be
dealt with by the method similar to (3.4). For any positive integer u, v with v > 1 we have

∞∑
m,n=1

1
nu(m+ 2n)v

= 2u−1
∞∑

m,n=1

1 + (−1)n

nu(m+ n)v
= 2u−1

{
ζ(v, u) + ζ(v, ū)

}
.

Notice that all the alternating Euler sums have the same weight (and the second components are
all positive since r, t > 0). So now we need to consider the sum in (3.7). Assume s = r + t− 1 > 1
and let

S(N) :=
N∑

m,n=1

(
1

ns(m+ 2n)
− 1
ns(m+ n)

)
=

N∑
n=1

1
ns

(
N+2n∑
m=1+2n

−
N+n∑
m=1+n

)
1
m

=
N∑
n=1

1
ns

(
N+2n∑

m=N+n+1

+
n∑

m=1

−
2n∑
m=1

)
1
m
.

Noticing that s > 1 and therefore
N∑
n=1

1
ns

N+2n∑
m=N+n+1

1
m
<

N∑
n=1

1
ns−1N

� logN/N → 0 as N →∞,

we quickly see that

lim
N→∞

S(N) =
∑

n≥m≥1

1
nsm

−
∑

2n≥m≥1

1
nsm

=ζ(s+ 1) + ζ(s, 1)− 2s−1
∑

n≥m≥1

1 + (−1)n

nsm

=(1− 2s−1)
(
ζ(s+ 1) + ζ(s, 1)

)
− 2s−1

(
ζ(s̄, 1) + ζ(s+ 1)

)
,

where all the Euler sums have the same weight. This concludes the proof of Theorem 1.1. �.

Remark. Notice that Theorem 1.1 does not imply Tsumura’s result concerning odd weight values
since the parity relations do not hold in general for alternating Euler sums. For example, we know
the Q-linear space generated by the Riemann zeta values of weight three has dimension one since
ζ(3) = ζ(2, 1). Broadhurst conjectures that the dimension Fn of the space generated by weight n
alternating Euler sums is a Fibonacci number: F1 = 1, F2 = 2, F3 = 3, F4 = 5, and so on. It is
easy to verify [21] that the weight three space is spanned by ζ(3), ζ(1̄, 2) and ζ(1̄, 1, 1). Also note
that the depth one subspace is generated by ζ(3) since ζ(3̄) = −3

4ζ(3). Therefore the alternating
Euler sum ζ(1̄, 2) can not be reduced to depth one according to Broadhurst conjecture despite the
parity difference between its weight and its depth.
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4. Some examples and a conjecture

In this last section we present some numerical examples and put forward a conjecture on the
space generated by the special values of ζso(5). In [15] Tsumura provided some evaluations of
ζso(5)(s1, . . . , s4) when the weight is odd. By our general approach we can now compute all the
convergent values and in particular we are able to confirm all the odd weight values of ζso(5) found
in [14]. In practice one may first convert our formulas to computer programs and then compute
with Maple. As a safeguard we have checked numerically all the equations in this section with
EZface [1]. In what follows we will only consider the regular cases, i.e., not the two exceptional
cases in each weight.

We first list all the regular weight three values below:

ζso(5)(1, 0, 0, 2) = 3
2ζ(1̄, 2) + 1

16ζ(3), ζso(5)(0, 0, 1, 2) = −1
2ζ(3) + 3ζ(1̄, 2),

ζso(5)(0, 1, 0, 2) = 5
4ζ(3)− 3ζ(1̄, 2), ζso(5)(1, 0, 2, 0) = ζso(5)(0, 1, 2, 0) = ζ(3),

ζso(5)(0, 1, 1, 1) = 3
4ζ(3), ζso(5)(1, 1, 1, 0) = 2ζ(3), ζso(5)(1, 0, 1, 1) = 5

8ζ(3),
ζso(5)(0, 0, 2, 1) = 1

4ζ(3), ζso(5)(1, 1, 0, 1) = 11
8 ζ(3).

Note that the first three values do not satisfy the conditions of Tsumura’s Theorem in [14] so there
is no contradiction even if they can not be rational multiples of ζ(3) by Broadhurst conjecture. On
the other hand, ζso(5)(0, 1, 1, 1) = 3

4ζ(3) does not satisfy the conditions either but it is reduced to
depth one. Therefore it would be interesting to find out the exact conditions on the reducibility of
special values of ζso(5) to Riemann zeta values.

Remark. The smallest weight of ζso(5)(s1, s2, s3, s4) is three because of the convergence restraint
(2.3). We have listed all the possible regular weight three values in the above and find that they
do not span the whole weight three space of alternating Euler sums because the whole space has
dimension three according to Broadhurst conjecture (see Remark 3). In fact, this was expected
because ζso(5)(s1, s2, s3, s4) only has depth two while all the depth one and two alternating Euler
sums only generate a proper subspace of dimension two over Q, and in fact, this subspace can be
generated by ζ(3) and ζ(1̄, 2). We believe this phenomenon happens in general.

Conjecture 4.1. Let w be a positive integer ≥ 3. Let Vw be the Q-vector space spanned by all the
weight w special values of ζso(5)(s1, s2, s3, s4) where s1, s2, s3 and s4 are nonnegative integers such
that (2.3) are satisfied, s1 + s2 + s3 > 0 and s1 + s2 + s4 > 0. Then Vw coincides with the Q-vector
space spanned by all the weight w alternating Euler sums of depth at most two.

We have verified this conjecture for all the weights up to weight five.
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We now list all the 25 regular weight four values below:

ζso(5)(0, 0, 2, 2) = 3
8ζ(4)− 4ζ(3̄, 1), ζso(5)(2, 1, 0, 1) = 7

8ζ(4)− ζ(3̄, 1),
ζso(5)(0, 1, 2, 1) = 1

2ζ(4)− 4ζ(3̄, 1), ζso(5)(0, 2, 0, 2) = 1
8ζ(4) + 4ζ(3̄, 1),

ζso(5)(0, 2, 1, 1) = 1
4ζ(4) + 4ζ(3̄, 1), ζso(5)(1, 2, 0, 1) = 3

4ζ(4) + 2ζ(3̄, 1),
ζso(5)(1, 0, 1, 2) = 3

16ζ(4)− ζ(3̄, 1), ζso(5)(2, 0, 1, 1) = 3
8ζ(4) + ζ(3̄, 1),

ζso(5)(1, 1, 0, 2) = 5
16ζ(4)− ζ(3̄, 1), ζso(5)(1, 1, 1, 1) = 1

2ζ(4)− 2ζ(3̄, 1),
ζso(5)(0, 1, 0, 3) = 17

24ζ(4)− 7
3ζ(1̄, 3), ζso(5)(0, 0, 3, 1) = −1

4ζ(4) + 4ζ(3̄, 1),
ζso(5)(0, 0, 1, 3) = − 7

12ζ(4) + 7
3ζ(1̄, 3), ζso(5)(1, 0, 2, 1) = 2ζ(3̄, 1),

ζso(5)(1, 0, 3, 0) = ζso(5)(0, 1, 3, 0) = 1
4ζ(4), ζso(5)(0, 1, 1, 2) = 1

8ζ(4),
ζso(5)(2, 0, 2, 0) = ζso(5)(0, 2, 2, 0) = 3

4ζ(4), ζso(5)(2, 2, 0, 0) = 5
2ζ(4),

ζso(5)(2, 1, 1, 0) = ζso(5)(1, 2, 1, 0) = 5
4ζ(4), ζso(5)(2, 0, 0, 2) = 9

32ζ(4),
ζso(5)(1, 0, 0, 3) = −19

96ζ(4) + 7
6ζ(1̄, 3)− 1

2ζ(3̄, 1), ζso(5)(1, 1, 2, 0) = 1
2ζ(4).

There are 46 regular weight five values and 74 regular weight six values. The following are some
interesting weight six ones:

ζso(5)(0, 2, 2, 2) = 1
105ζ(2)3 = 1

22680π
6 = .04238929428 . . .

ζso(5)(2, 0, 2, 2) = 1
210ζ(2)3 + 3

8ζ(3, 3)− 2
3ζ(3̄, 3) = .03772580207 . . .

ζso(5)(2, 2, 0, 2) = 4
105ζ(2)3 − 3

8ζ(3, 3) + 2
3ζ(3̄, 3) = .15302602205 . . .

ζso(5)(2, 2, 2, 0) = ζMT(2, 2; 2) = 8
105ζ(2)3 = 1

2835π
6 = .3391143543 . . .

ζso(5)(1, 2, 2, 1) = 1
30ζ(2)3 − 3

4ζ(3, 3) + 4
3ζ(3̄, 3) = .1153002199792 . . .

ζso(5)(2, 1, 1, 2) = 1
60ζ(2)3 = 1

12960π
6 = .07418126500 . . .

ζso(5)(1, 1, 2, 2) = 1
84ζ(2)3 − 3

8ζ(3, 3) + 2
3ζ(3̄, 3) = .0364554628649 . . .

ζso(5)(1, 2, 1, 2) = 3
140ζ(2)3 − 3

8ζ(3, 3) + 2
3ζ(3̄, 3) = .0788447571142 . . .

ζso(5)(2, 1, 2, 1) = 3
140ζ(2)3 + 3

8ζ(3, 3)− 2
3ζ(3̄, 3) = .1119070670077 . . .

ζso(5)(2, 2, 1, 1) = 23
420ζ(2)3 − 3

8ζ(3, 3) + 2
3ζ(3̄, 3) = .2272072869870 . . .

Finally, we return to the question related to Zagier’s original version of Witten’s zeta function
attached to so(5). We would like to know the rational coefficients in (1.2) so the following four
values can shed some light on this:

ζso(5)(2, 2, 2, 2) = 3
700ζ(2)4 = 2·3

5·9!π
8 = .031377417381 . . .

ζso(5)(4, 4, 4, 4) = 4311
297797500ζ(2)8 = 25·479

5·17! π
16 = .0007759700 . . .

ζso(5)(6, 6, 6, 6) = 2490861
45593675752625ζ(2)12 = 27·5·43·19309

32·7·13·23!
π24 = .00002144010 . . .

ζso(5)(8, 8, 8, 8) = 138835874547
670007833199392187500ζ(2)16 = 28·13·241·64009163

5·17·31! π32 = .000000595384 . . . .

For ζso(5)(2, 2, 2, 2) we can reduce our linear combination of alternating Euler sums to the correct
multiple of ζ(2)4. But we can not perform the same for the other three because there isn’t any
table of relations available for alternating Euler sums of weight greater than 15 although we can
check numerically that our formulas are all correct (with the errors bounded by 10−100). How-
ever, it turns out that by analytical methods Komori et al. [8] have found a closed formula of
ζso(5)(2m, 2m, 2m, 2m) which implies that

c(m) =
28m−3

(8m)!

m∑
ν=0

B2νB8m−2ν

(
8m
2ν

){ 2m−1∑
µ=0

(
22ν−1

22m+µ
− (−1)µ

)(
4m− µ− 2

2m− 1

)(
2m− 2ν + µ

2m− 2ν

)

+
2m−2ν∑
µ=0

(
1

22m+µ
+ (−1)µ

)(
4m− 2ν − µ− 1

2m− 1

)(
2m− 1 + µ

2m− 1

)}
,
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where B2ν are Bernoulli numbers. So we have come around a full circle and back to the original
values we began with, but this time the rational coefficients of the π-powers are determined precisely.
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