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Abstract. We consider the class Ass
(q) of algebras that appear

from associative algebras under the taking of q -commutator a ◦q

b = a ◦ b + q b ◦ a, where q ∈ K, q2 6= 0, 1 , and p = char K 6= 2, 3.

We establish that this class forms a variety and satisfies the identity
ass(q) = 0, where ass(q) = (q − 1)2(t1, t3, t2) + q [t3, [t1, t2]]. If
q2 − 4q + 1 6= 0 , the variety of q -associative algebras is generated
by this identity. If q2 − 4q + 1 = 0 , then this identity is not

enough to generate Ass
(q) and it should be supplemented by the

Lie-Admissibility identity [[t1, t2], t3] + [[t2, t3], t1] + [[t3, t1], t2] =
0. In the exceptional case the variety generated by the identity
ass(q) = 0 is equivalent to the variety of alternative algebras.

It is well known that every associative algebra under the taking of
commutator becomes a Lie algebra, and under the taking of anticom-
mutator becomes a Jordan algebra. In this paper we study the class
of algebras that appear from associative algebras under the taking of
q -commutator, with q2 6= 0, 1.

Let A = (A, ◦) be an algebra with multiplication ◦ . Throughout, all
vector spaces are considered over a field K of characteristic p 6= 2, 3 .
Denote a q -commutator of ◦ by ◦q :

a ◦q b = a ◦ b + q b ◦ a.

For example, [a, b] = a ◦−1 b is a Lie commutator, and {a, b} = a ◦1 b
is a Jordan commutator. Let

ass(a, b, c) = (a, b, c) = a ◦ (b ◦ c) − (a ◦ b) ◦ c

denote an associator. Given q ∈ K , define A(q) = (A, ◦q) to be the
algebra with the underlying vector space A and the multiplication ◦q.

For a non-commutative non-associative polynomial g = g(t1, t2, . . . ) ,
denote by Fqg the polynomial that appears from g under the multi-
plication rule ti ·q tj = titj + q tjti. For example,

Fq(t1(t2t3)) = t1(t2t3) + q t1(t3t2) + q (t2t3)t1 + q2 (t3t2)t1, (1)

Fq((t1t2)t3) = (t1t2)t3 + q t3(t1t2) + q (t2t1)t3 + q2 t3(t2t1) (2)
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and

Fq ass(t1, t2, t3) = ass(t1, t2, t3) + (3)

q(ass(t1, t3, t2) − ass(t3, t1, t2) − ass(t2, t3, t1)+

ass(t2, t1, t3) + [[t1, t3], t2]) − q2 ass(t3, t2, t1).

Similarly, for an algebra A = (A, ◦) , we also denote the algebra (A, ◦q)
by FqA .

For q ∈ K, q2 6= 0, 1 , q -associativity polynomial ass(q) is defined as

ass(q)(t1, t2, t3) = (q − 1)2(t1, t3, t2) + q [t3, [t1, t2]].

Then
ass(0) = ass.

The Lie-Admissibility polynomial lia is defined as

lia(t1, t2, t3) = [[t1, t2], t3] + [[t2, t3], t1] + [[t3, t1], t2].

Recall that here (ti, tj, ts) = ti(tjts) − (titj)ts is the associator and
[ti, tj] = titj − tjti is the commutator. An algebra A satisfying the
identity lia = 0 is called Lie-Admissible.

For a non-commutative, non-associative polynomial f = f(t1, . . . , tk)
in k variables, we say that f = 0 is an identity on (A, ◦) if f(a1, . . . , ak) =
0 for any substitutions t1 = a1, . . . , tk = ak ∈ A. Here the multipli-
cations are done in terms of ◦ . Given polynomials f1, f2, . . . , fr , we
denote the variety generated by the identities f1 = 0, f2 = 0, . . . , fr =
0 by V ar(f1, f2, . . . , fr) . Let Ass be the category of associative

algebras, and Ass
(q) the category of algebras of the form (A, ◦q),

where (A, ◦) is an associative algebra. It is well known that Ass =

V ar(ass) is a variety, and Ass
(−1) is a variety generated by the anti-

commutativity and Jacobi polynomials (Lie algebras). In that time

Ass
(1) (class of special Jordan algebras) is not a variety,

Ass
(1) ⊂ V ar(acom, jor), Ass

(1) 6= V ar(acom, jor),

where
acom = t1t2 − t2t1, jor = (t21, t2, t1).

For details we refer, for example, to [4]. Let

lalt = (t1, t2, t3) − (t1, t3, t1),

ralt = (t1, t2, t3) − (t2, t1, t3)

be the left and right-alternative polynomials, and let Alt = V ar(lalt, ralt)
be the variety of alternative algebras.

In this paper we study the category Ass
(q) for q2 6= 0, 1. Recall that

every q -algebra (A, ◦q) of an associative algebra (A, ◦) is said to be
quasi-associative. We call such a q -algebra q -associative. Recall also
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that a flexible algebra with the Jordan identity (t21, t2, t1) = 0 is called
non-commutative Jordan. Connections between quasi-associative alge-
bras, associative algebras and noncommutative Jordan algebras were
studied in [1],[2],[3].

Let L◦ and L? be categories of algebras. The objects of L◦ are
algebras (A, ◦) with multiplication ◦ , and the objects of L? are al-
gebras (A, ?) with multiplication ? . The morphisms between objects
are usual homomorphisms between the corresponding algebras. Recall
that a map between categories

F : L
◦ → L

?, F (A, ◦) = (A, ?)

is called a morphism of categories if each morphism α ∈ Mor((A, ◦), (B, ◦))
of the category L

◦ goes to a morphism in the category L
?. In our case

this means that if α : (A, ◦) → (B, ◦) is a homomorphism of algebras,
then

α : (A, ?) → (B, ?)

is a homomorphism of algebras too. In this sense the map

Fq : L
◦ → L

◦q

is a morphism of categories.
We say that F is an equivalence of categories if there exists a mor-

phism
G : L

? → L
◦

such that the compositions

GF : L
◦ → L

◦, FG : L
? → L

?

are the identity morphisms:

GF (A, ◦) = (A, ◦), FG(A, ?) = (A, ?).

Theorem 1. The class Ass
(q) of q -associative algebras forms a vari-

ety if q2 6= 0, 1. Namely,

Ass
(q) = V ar(ass(q)) if q2 − 4q + 1 6= 0,

Ass
(q) = V ar(ass(q), lia) if q2 − 4q + 1 = 0.

Moreover, the following categories (varieties) are equivalent:

V ar(ass(q)) ∼ Ass, if q2 − 4q + 1 6= 0,

V ar(ass(q), lia) ∼ Ass, if q2 − 4q + 1 = 0,

V ar(ass(q)) ∼ Alt, if q2 − 4q + 1 = 0.

The equivalence morphisms are given by the map F−q :

F−q : V ar(ass(q) → V ar(ass), if q2 − 4q + 1 6= 0,
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F−q : V ar(ass(q)) → V ar(ralt, lalt), if q2 − 4q + 1 = 0,

F−q : V ar(ass(q), lia) → V ar(ass), if q2 − 4q + 1 = 0.

The inverse morphisms are given by the map (1 − q2)−2Fq.

Notice that in the exceptional case q2 − 4q + 1 = 0, we have

ass(q) = q ass
(q)
0 ,

where

ass
(q)
0 = 2(t1, t3, t2) + [t3, [t1, t2]].

Corollary 2. The following identities are consequences of the identity
ass(q) = 0 :

elast(t1, t2, t3) = (t1, t2, t3) + (t3, t2, t1),

assq1(t1, t2, t3, t4) =

(t1t2)(t3t4)+(t1t3)(t4t2)+(t1t4)(t2t3)−(t1(t3t4))t2−(t1(t4t2))t3−(t1(t2t3))t4,

assq2(t1, t2, t3, t4) =

(t1t2)(t3t4)+(t2t3)(t1t4)+(t3t1)(t2t4)−t3((t1t2)t4)−t1((t2t3)t4)−t2((t3t1)t4),

assq3(t1, t2, t3, t4) =

t1([t2, t4]t3) − (t3t1)[t2, t4] + [t3, (t1t2)t4 − (t1t4)t2].

In particular, every q -associative algebra is non-commutative Jordan.

One can show that the identities elast = 0, assq1 = 0, assq2 =
0, assq3 = 0 are independent.

Lemma 3. If g = g(t1, . . . , tl) is a homogeneous non-commutative,
non-associative polynomial of degree k, then

F−qFqg = FqF−qg = (1 − q2)k−1g.

Proof. There exist 1
n

(

2(n−1)
n−1

)

bracketing types on n letters. For

example, there exist two bracketing types on three letters: t1(t2t3)
and (t1t2)t3.

It is enough to prove that

FqF−qσ = (1 − q2)k−1σ

for any bracketing type σ on k letters.
We use the induction on k.
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In case k = 2 , we have only one bracketing type: t1t2. In this case
our statement is true:

Fq(ti1ti2) = ti1ti2 + q ti2ti1 ,

and
F−qFq(ti1ti2)

= ti1ti2 − q ti2ti1 + q ti2ti1 − q2ti1ti2
= (1 − q2)ti1ti2 = (1 − q2)(ti1ti2).

Suppose that our statement is true for k − 1 . Let σ be one of the
bracketing types on k letters. It can be presented in the form

σ(ti1 , . . . , tik) = σ′(ti1 , . . . , tik′
)σ′′(tik′+1

, . . . , tik)

for some bracketing types σ′ and σ′′ on k′ and k′′ = k − k′ letters,
1 ≤ k′ ≤ k.

Then
Fqσ(ti1 , . . . , tik)

= Fqσ
′(ti1 , . . . , tik′

)Fqσ
′′(tik′+1

, . . . , tik)

+q Fqσ
′′(tik′+1

, . . . , tik)Fqσ
′(ti1 , . . . , tik′

)

and
F−qFqσ(ti1 , . . . , tik)

= F−qFqσ
′(ti1 , . . . , tik′

)F−qFqσ
′′(tik′+1

, . . . , tik)

−q F−qFqσ
′′(tik′+1

, . . . , tik)F−qFqσ
′(ti1 , . . . , tik′

)

+q F−qFqσ
′′(tik′+1

, . . . , tik)F−qFqσ
′(ti1 , . . . , tik′

)

−q2F−qFqσ
′(ti1 , . . . , tik′

)F−qFqσ
′′(tik′+1

, . . . , tik)

= F−qFqσ
′(ti1 , . . . , tik′

)F−qFqσ
′′(tik′+1

, . . . , tik)

−q2F−qFqσ
′(ti1 , . . . , tik′

)F−qFqσ
′′(tik′+1

, . . . , tik)

By the induction hypothesis,

F−qFqσ
′(ti1 , . . . , tik′

)

= (1 − q2)k′
−1σ′(ti1 , . . . , tik′

),

F−qFqσ
′′(tik′+1

, . . . , tik)

= (1 − q2)k−k′
−1σ′′(tik′+1

, . . . , tik).

Therefore,

F−qFqσ
′(ti1 , . . . , tik′

)F−qFqσ
′′(tik′+1

, . . . , tik)
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= (1 − q2)k−2σ(ti1 , . . . , tik),

−q2F−qFqσ
′(ti1 , . . . , tik′

)F−qFqσ
′′(tik′+1

, . . . , tik)

= −q2(1 − q2)k−2σ(ti1 , . . . , tik)

and

F−qFqσ(ti1 , . . . , tik)

= F−qFqσ
′(ti1 , . . . , tik′

)F−qFqσ
′′(tik′+1

, . . . , tik)

−q2F−qFqσ
′(ti1 , . . . , tik′

)F−qFqσ
′′(tik′+1

, . . . , tik)

= (1 − q2)k−1σ(ti1 , . . . , tik).

The lemma is proved.

Lemma 4. If q2 − 4q + 1 6= 0, then the identity lia = 0 follows from
the identity ass(q) = 0.

If q2 − 4q + 1 = 0 and p 6= 2, 3, then the identities ass(q) = 0 and
lia = 0 are independent.

Proof. The following relation holds:

ass(q)(t1, t2, t3) + ass(q)(t2, t3, t1) + ass(q)(t3, t1, t2)−

ass(q)(t1, t3, t2) − ass(q)(t2, t1, t3) − ass(q)(t3, t2, t1) =

(q2 − 4q + 1) lia(t1, t2, t3).

Therefore,

ass(q) = 0, q2 − 4q + 1 6= 0, ⇒ lia = 0.

Let Ca be the 8 -dimensional Cayley-Dickson algebra corresponding
to the Cayley octonians (the algebra C(−4/5,−1,−1) in the notation
of [4], Chapter 2, §2 , p. 48, Exercise 3). Recall that Ca is an alterna-
tive algebra. Take a basis e0, e1, . . . , e7 for Ca with the multiplication
table of [4], p. 48, Exercise 3.

It is not hard to see that the three-linear maps lia and ass(q) on
Ca are skew-symmetric. Moreover,

(q − 1)2(q2 − 4q + 1) lia(a, b, c) − 6 ass(q)(a, b, c) = 0,

for any a, b, c ∈ Ca. It is easy to check that

lia(e1, e2, e4) = 12 e7,

ass(q)(e1, e2, e4) = 2(q − 1)2(q2 − 4q + 1) e7.

Thus, the octonian algebra is not Lie-Admissible and satisfies the iden-
tity ass(q) = 0 if q2 − 4q + 1 = 0 and p 6= 2, 3. This means that the
identities ass(q) = 0 and lia = 0 are independent if q2 − 4q + 1 = 0.
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Lemma 5. If q2 − 4q + 1 = 0 , then

2 F−q ralt(t1, t2, t3) =

(1 − q)(ass(q)(t1, t2, t3) + ass(q)(t1, t3, t2))

+(1 − 3 q)(ass(q)(t2, t1, t3) + ass(q)(t3, t1, t2)),

2 F−q lalt(t1, t2, t3) =

(1− 3 q) ass(q)(t1, t2, t3)+2q ass(q)(t1, t3, t2)+ (−1+3 q) ass(q)(t2, t1, t3)

+2 (1 − 2 q) ass(q)(t2, t3, t1) + 2 (1 − 3 q) ass(q)(t3, t1, t2)

and
ass(q)(t1t2, t3) =

−2 lalt(t1, t2, t3) + 6q lalt(t1, t2, t3) + 4q lalt(t1, t3, t2) + 2 ralt(t1, t2, t3)

−4q ralt(t1, t2, t3)+2 ralt(t2, t1, t3)−8q ralt(t2, t1, t3)−2q ralt(t3, t1, t2).

Proof. In the forthcoming calculations we use (1), (2) and (3). We
have:

ass(q)(t1, t2, t3) + ass(q)(t1, t3, t2) =

t1(t2t3) − 2q t1(t2t3) + q2 t1(t2t3) + t1(t3t2)

−2q t1(t3t2) + q2 t1(t3t2) + q t2(t1t3) − q t2(t3t1)

+q t3(t1t2) − q t3(t2t1) − (t1t2)t3 + q (t1t2)t3

−q2 (t1t2)t3 − (t1t3)t2 + q (t1t3)t2 − q2 (t1t3)t2

+q (t2t1)t3 + q (t3t1)t2,

ass(q)(t2, t1, t3) + ass(q)(t3, t1, t2) =

−q t2(t1t3) + t2(t3t1) − q t2(t3t1) + q2 t2(t3t1)

−q t3(t1t2) + t3(t2t1) − q t3(t2t1) + q2 t3(t2t1)

+q (t1t2)t3 + q (t1t3)t2 − q (t2t1)t3 − (t2t3)t1

+2q (t2t3)t1 − q2 (t2t3)t1 − q (t3t1)t2 − (t3t2)t1

+2q (t3t2)t1 − q2 (t3t2)t1
and

F−q ralt(t1, t2, t3) =

t1(t2t3) − q t1(t2t3) + t1(t3t2) − q t1(t3t2)

+q t2(t1t3) − q2 t2(t3t1) + q t3(t1t2) − q2 t3(t2t1)

−(t1t2)t3 − (t1t3)t2 + q (t2t1)t3 − q (t2t3)t1

+q2 (t2t3)t1 + q (t3t1)t2 − q (t3t2)t1 + q2 (t3t2)t1.

Thus,

(1−q)(ass(q)(t1, t2, t3)+ass(q)(t1, t3, t2))+(1−3q)(ass(q)(t2, t1, t3)+ass(q)(t3, t1, t2))
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−2 F−q ralt(t1, t2, t3) =

2(1 − 4q + q2)(ass(t2, t3, t1) + ass(t3, t2, t1)).

Similarly,

(1 − 3q)ass(q)(t1, t2, t3) + 2q ass(q)(t1, t3, t2) + (−1 + 3q)ass(q)(t2, t1, t3)

+2(1−2q)ass(q)(t2, t3, t1)+2(1−3q)ass(q)(t3, t1, t2)−2 F−q lalt(t1, t2, t3) =

2(1 − 4q + q2)(ass(t3, t1, t2) + ass(t3, t2, t1))

and

−2 lalt(t1, t2, t3) + 6q lalt(t1, t2, t3) + 4q lalt(t1, t3, t2) + 2 ralt(t1, t2, t3)

−4q ralt(t1, t2, t3)+2 ralt(t2, t1, t3)−8q ralt(t2, t1, t3)−2q ralt(t3, t1, t2)

−Fq ass(t1, t2, t3) =

(1 − 4q + q2)(2 ass(t2, t3, t1) + [[t1, t2], t3]).

The lemma is proved.
Calculations in the next lemmas are similar to those above and thus

omitted.

Lemma 6.

Fq ass(q)(t1, t2, t3) =

(q − 1)2 (q ass(t1, t2, t3) + ass(t1, t3, t2))−

q(q − 1)2 (ass(t2, t1, t3) + q ass(t2, t3, t1))+

q(q − 1)2 (ass(t3, t1, t2) − ass(t3, t2, t1)).

Lemma 7.

(q − 1)(q2 − 4q + 1) F−q ass(t1, t2, t3) =

(3 q−1) ass(q)(t1, t3, t2)−q (q−1) ass(q)(t1, t2, t3)+q(q−1) ass(q)(t2, t1, t3)+

q(1 − q) ass(q)(t2, t3, t1) + 3 q2 ass(q)(t3, t1, t2) − q3 ass(q)(t3, t1, t2)−

q ass(q)(t3, t2, t1) + q2 ass(q)(t3, t2, t1).

Lemma 8. If q2 − 4q + 1 = 0 , then

2 q F−q ass(t1, t2, t3) =

(1 − 3 q) ass(q)(t3, t1, t2) + (1 − q) ass(q)(t1, t3, t2) − 2 q2 lia(t1, t2, t3).
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Proof of Theorem 1. By Lemma 4, lia = 0 is a consequence of
the identity ass(q) = 0 if q2 − 4q + 1 6= 0. In other words,

Ass
(q) = Ass

(q, lia) if q2 − 4q + 1 6= 0.

By Lemma 6, if (A, ◦) an associative algebra, then the algebra
(A, ◦q) satisfies the identity ass(q) = 0.

Let q2 − 4q + 1 6= 0. By Lemma 7, if an algebra (A, ◦) satisfies
the identity ass(q) = 0, then the algebra (A, ◦−q) satisfies the identity
ass = 0.

Now, consider the case of q2 − 4q + 1 = 0. By Lemma 8, if (A, ◦)
satisfies the identities ass(q) = 0 and lia = 0, then (A, ◦−q) satisfies
the identity ass = 0. By Lemma 5, if (A, ◦) satisfies the identity
ass(q) = 0, then (A, ◦−q) is alternative and, vice versa, if (A, ◦) is
alternative then (A, ◦q) satisfies the identity ass(q) = 0.

So, if (A, ◦) is an associative algebra, then (A, ◦q) satisfies the iden-
tities ass(q) = 0 and lia = 0 . Vice versa, if (A, ?) satisfies the identi-
ties ass(q) = 0, lia = 0 then (A, ?−q) is associative. Thus, by Lemma
3 the functor

Fq : Ass → Ass
(q), (A, ◦) → (A, ◦q)

is well defined and has the inverse

(1 − q2)−2F−q : Ass
(q) → Ass,

if q2 − 4q + 1 6= 0. Similarly, the functors

Fq : Ass → Ass
(q,lia), (A, ◦) → (A, ◦q),

(1 − q2)−2F−q : Ass
(q,lia) → Ass, (1 − q2)−2F−q : Ass

(q) → Alt,

are also well defined and

(1 − q2)−2F−qFq = id

if q2 − 4q + 1 = 0.
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