QUASI-ASSOCIATIVE ALGEBRAS

A.S. DZHUMADIL'DAEV

Abstract

We consider the class $\mathfrak{A s s}^{(q)}$ of algebras that appear from associative algebras under the taking of q-commutator $a \circ_{q}$ $b=a \circ b+q b \circ a$, where $q \in K, q^{2} \neq 0,1$, and $p=\operatorname{char} K \neq 2,3$. We establish that this class forms a variety and satisfies the identity ass $^{(q)}=0$, where ass ${ }^{(q)}=(q-1)^{2}\left(t_{1}, t_{3}, t_{2}\right)+q\left[t_{3},\left[t_{1}, t_{2}\right]\right]$. If $q^{2}-4 q+1 \neq 0$, the variety of q-associative algebras is generated by this identity. If $q^{2}-4 q+1=0$, then this identity is not enough to generate $\mathfrak{A l s s}^{(q)}$ and it should be supplemented by the Lie-Admissibility identity $\left[\left[t_{1}, t_{2}\right], t_{3}\right]+\left[\left[t_{2}, t_{3}\right], t_{1}\right]+\left[\left[t_{3}, t_{1}\right], t_{2}\right]=$ 0 . In the exceptional case the variety generated by the identity ass $^{(q)}=0$ is equivalent to the variety of alternative algebras.

It is well known that every associative algebra under the taking of commutator becomes a Lie algebra, and under the taking of anticommutator becomes a Jordan algebra. In this paper we study the class of algebras that appear from associative algebras under the taking of q-commutator, with $q^{2} \neq 0,1$.

Let $A=(A, \circ)$ be an algebra with multiplication \circ. Throughout, all vector spaces are considered over a field K of characteristic $p \neq 2,3$. Denote a q-commutator of \circ by \circ_{q} :

$$
a \circ_{q} b=a \circ b+q b \circ a .
$$

For example, $[a, b]=a \circ_{-1} b$ is a Lie commutator, and $\{a, b\}=a \circ_{1} b$ is a Jordan commutator. Let

$$
\operatorname{ass}(a, b, c)=(a, b, c)=a \circ(b \circ c)-(a \circ b) \circ c
$$

denote an associator. Given $q \in K$, define $A^{(q)}=\left(A, \circ_{q}\right)$ to be the algebra with the underlying vector space A and the multiplication \circ_{q}.

For a non-commutative non-associative polynomial $g=g\left(t_{1}, t_{2}, \ldots\right)$, denote by $F_{q} g$ the polynomial that appears from g under the multiplication rule $t_{i} \cdot{ }_{q} t_{j}=t_{i} t_{j}+q t_{j} t_{i}$. For example,

$$
\begin{gather*}
F_{q}\left(t_{1}\left(t_{2} t_{3}\right)\right)=t_{1}\left(t_{2} t_{3}\right)+q t_{1}\left(t_{3} t_{2}\right)+q\left(t_{2} t_{3}\right) t_{1}+q^{2}\left(t_{3} t_{2}\right) t_{1}, \tag{1}\\
F_{q}\left(\left(t_{1} t_{2}\right) t_{3}\right)=\left(t_{1} t_{2}\right) t_{3}+q t_{3}\left(t_{1} t_{2}\right)+q\left(t_{2} t_{1}\right) t_{3}+q^{2} t_{3}\left(t_{2} t_{1}\right) \tag{2}
\end{gather*}
$$

and

$$
\begin{gather*}
F_{q} \operatorname{ass}\left(t_{1}, t_{2}, t_{3}\right)=\operatorname{ass}\left(t_{1}, t_{2}, t_{3}\right)+ \tag{3}\\
q\left(\operatorname{ass}\left(t_{1}, t_{3}, t_{2}\right)-\operatorname{ass}\left(t_{3}, t_{1}, t_{2}\right)-\operatorname{ass}\left(t_{2}, t_{3}, t_{1}\right)+\right. \\
\left.\operatorname{ass}\left(t_{2}, t_{1}, t_{3}\right)+\left[\left[t_{1}, t_{3}\right], t_{2}\right]\right)-q^{2} \operatorname{ass}\left(t_{3}, t_{2}, t_{1}\right)
\end{gather*}
$$

Similarly, for an algebra $A=(A, \circ)$, we also denote the algebra $\left(A, \circ_{q}\right)$ by $F_{q} A$.

For $q \in K, q^{2} \neq 0,1, q$-associativity polynomial ass ${ }^{(q)}$ is defined as

$$
\operatorname{ass}^{(q)}\left(t_{1}, t_{2}, t_{3}\right)=(q-1)^{2}\left(t_{1}, t_{3}, t_{2}\right)+q\left[t_{3},\left[t_{1}, t_{2}\right]\right] .
$$

Then

$$
a s s^{(0)}=a s s .
$$

The Lie-Admissibility polynomial lia is defined as

$$
\operatorname{lia}\left(t_{1}, t_{2}, t_{3}\right)=\left[\left[t_{1}, t_{2}\right], t_{3}\right]+\left[\left[t_{2}, t_{3}\right], t_{1}\right]+\left[\left[t_{3}, t_{1}\right], t_{2}\right] .
$$

Recall that here $\left(t_{i}, t_{j}, t_{s}\right)=t_{i}\left(t_{j} t_{s}\right)-\left(t_{i} t_{j}\right) t_{s}$ is the associator and $\left[t_{i}, t_{j}\right]=t_{i} t_{j}-t_{j} t_{i}$ is the commutator. An algebra A satisfying the identity lia $=0$ is called Lie-Admissible.

For a non-commutative, non-associative polynomial $f=f\left(t_{1}, \ldots, t_{k}\right)$ in k variables, we say that $f=0$ is an identity on (A, \circ) if $f\left(a_{1}, \ldots, a_{k}\right)=$ 0 for any substitutions $t_{1}=a_{1}, \ldots, t_{k}=a_{k} \in A$. Here the multiplications are done in terms of \circ. Given polynomials $f_{1}, f_{2}, \ldots, f_{r}$, we denote the variety generated by the identities $f_{1}=0, f_{2}=0, \ldots, f_{r}=$ 0 by $\operatorname{Var}\left(f_{1}, f_{2}, \ldots, f_{r}\right)$. Let $\mathfrak{A s s}$ be the category of associative algebras, and $\mathfrak{A s s}^{(q)}$ the category of algebras of the form $\left(A, \circ_{q}\right)$, where (A, \circ) is an associative algebra. It is well known that $\mathfrak{A s s}=$ $\operatorname{Var}($ ass $)$ is a variety, and $\mathfrak{A s s}^{(-1)}$ is a variety generated by the anticommutativity and Jacobi polynomials (Lie algebras). In that time $\mathfrak{A s s}^{(1)}$ (class of special Jordan algebras) is not a variety,

$$
\mathfrak{A s s}^{(1)} \subset \operatorname{Var}(\text { acom }, j o r), \quad \mathfrak{A s s}^{(1)} \neq \operatorname{Var}(\text { acom }, \text { jor }),
$$

where

$$
\text { acom }=t_{1} t_{2}-t_{2} t_{1}, \quad \text { jor }=\left(t_{1}^{2}, t_{2}, t_{1}\right) .
$$

For details we refer, for example, to [4]. Let

$$
\begin{aligned}
& \text { lalt }=\left(t_{1}, t_{2}, t_{3}\right)-\left(t_{1}, t_{3}, t_{1}\right), \\
& \text { ralt }=\left(t_{1}, t_{2}, t_{3}\right)-\left(t_{2}, t_{1}, t_{3}\right)
\end{aligned}
$$

be the left and right-alternative polynomials, and let $\mathfrak{A l t}=\operatorname{Var}($ lalt, ralt $)$ be the variety of alternative algebras.

In this paper we study the category $\mathfrak{A s s}^{(q)}$ for $q^{2} \neq 0,1$. Recall that every q-algebra $\left(A, \circ_{q}\right)$ of an associative algebra (A, \circ) is said to be quasi-associative. We call such a q-algebra q-associative. Recall also
that a flexible algebra with the Jordan identity $\left(t_{1}^{2}, t_{2}, t_{1}\right)=0$ is called non-commutative Jordan. Connections between quasi-associative algebras, associative algebras and noncommutative Jordan algebras were studied in [1],[2], [3].

Let \mathfrak{L}° and \mathfrak{L}^{\star} be categories of algebras. The objects of \mathfrak{L}° are algebras (A, \circ) with multiplication \circ, and the objects of \mathfrak{L}^{\star} are algebras (A, \star) with multiplication \star. The morphisms between objects are usual homomorphisms between the corresponding algebras. Recall that a map between categories

$$
F: \mathfrak{L}^{\circ} \rightarrow \mathfrak{L}^{\star}, \quad F(A, \circ)=(A, \star)
$$

is called a morphism of categories if each morphism $\alpha \in \operatorname{Mor}((A, \circ),(B, \circ))$ of the category \mathfrak{L}° goes to a morphism in the category \mathfrak{L}^{\star}. In our case this means that if $\alpha:(A, \circ) \rightarrow(B, \circ)$ is a homomorphism of algebras, then

$$
\alpha:(A, \star) \rightarrow(B, \star)
$$

is a homomorphism of algebras too. In this sense the map

$$
F_{q}: \mathfrak{L}^{\circ} \rightarrow \mathfrak{L}^{\circ q}
$$

is a morphism of categories.
We say that F is an equivalence of categories if there exists a morphism

$$
G: \mathfrak{L}^{\star} \rightarrow \mathfrak{L}^{\circ}
$$

such that the compositions

$$
G F: \mathfrak{L}^{\circ} \rightarrow \mathfrak{L}^{\circ}, \quad F G: \mathfrak{L}^{\star} \rightarrow \mathfrak{L}^{\star}
$$

are the identity morphisms:

$$
G F(A, \circ)=(A, \circ), \quad F G(A, \star)=(A, \star)
$$

Theorem 1. The class $\mathfrak{A s s}^{(q)}$ of q-associative algebras forms a variety if $q^{2} \neq 0,1$. Namely,

$$
\begin{gathered}
\mathfrak{A s s}^{(q)}=\operatorname{Var}\left(\text { ass }^{(q)}\right) \text { if } q^{2}-4 q+1 \neq 0, \\
\mathfrak{A s s}^{(q)}=\operatorname{Var}\left(\text { ass }^{(q)}, \text { lia }\right) \text { if } q^{2}-4 q+1=0 .
\end{gathered}
$$

Moreover, the following categories (varieties) are equivalent:

$$
\begin{gathered}
\operatorname{Var}\left(\operatorname{ass}^{(q)}\right) \sim \mathfrak{A s s}, \quad \text { if } q^{2}-4 q+1 \neq 0, \\
\operatorname{Var}\left(\operatorname{ass}^{(q)}, \operatorname{lia}\right) \sim \mathfrak{A s s}, \quad \text { if } q^{2}-4 q+1=0, \\
\operatorname{Var}\left(\operatorname{ass}^{(q)}\right) \sim \mathfrak{A l t}, \quad \text { if } q^{2}-4 q+1=0
\end{gathered}
$$

The equivalence morphisms are given by the map F_{-q} :

$$
F_{-q}: \operatorname{Var}\left(a s s^{(q)} \rightarrow \operatorname{Var}(a s s), \quad \text { if } q^{2}-4 q+1 \neq 0\right.
$$

$$
\begin{gathered}
F_{-q}: \operatorname{Var}\left(\text { ass }^{(q)}\right) \rightarrow \operatorname{Var}(\text { ralt }, \text { lalt }), \quad \text { if } q^{2}-4 q+1=0, \\
F_{-q}: \operatorname{Var}\left(\text { ass }^{(q)}, \text { lia }\right) \rightarrow \operatorname{Var}(\text { ass }), \quad \text { if } q^{2}-4 q+1=0 .
\end{gathered}
$$

The inverse morphisms are given by the map $\left(1-q^{2}\right)^{-2} F_{q}$.
Notice that in the exceptional case $q^{2}-4 q+1=0$, we have

$$
a s s^{(q)}=q a s s_{0}^{(q)}
$$

where

$$
a s s_{0}^{(q)}=2\left(t_{1}, t_{3}, t_{2}\right)+\left[t_{3},\left[t_{1}, t_{2}\right]\right] .
$$

Corollary 2. The following identities are consequences of the identity ass ${ }^{(q)}=0$:

$$
\begin{gathered}
\operatorname{elast}\left(t_{1}, t_{2}, t_{3}\right)=\left(t_{1}, t_{2}, t_{3}\right)+\left(t_{3}, t_{2}, t_{1}\right) \\
\operatorname{assq}_{1}\left(t_{1}, t_{2}, t_{3}, t_{4}\right)= \\
\left(t_{1} t_{2}\right)\left(t_{3} t_{4}\right)+\left(t_{1} t_{3}\right)\left(t_{4} t_{2}\right)+\left(t_{1} t_{4}\right)\left(t_{2} t_{3}\right)-\left(t_{1}\left(t_{3} t_{4}\right)\right) t_{2}-\left(t_{1}\left(t_{4} t_{2}\right)\right) t_{3}-\left(t_{1}\left(t_{2} t_{3}\right)\right) t_{4} \\
a s s q_{2}\left(t_{1}, t_{2}, t_{3}, t_{4}\right)= \\
\left(t_{1} t_{2}\right)\left(t_{3} t_{4}\right)+\left(t_{2} t_{3}\right)\left(t_{1} t_{4}\right)+\left(t_{3} t_{1}\right)\left(t_{2} t_{4}\right)-t_{3}\left(\left(t_{1} t_{2}\right) t_{4}\right)-t_{1}\left(\left(t_{2} t_{3}\right) t_{4}\right)-t_{2}\left(\left(t_{3} t_{1}\right) t_{4}\right), \\
a s s q_{3}\left(t_{1}, t_{2}, t_{3}, t_{4}\right)= \\
t_{1}\left(\left[t_{2}, t_{4}\right] t_{3}\right)-\left(t_{3} t_{1}\right)\left[t_{2}, t_{4}\right]+\left[t_{3},\left(t_{1} t_{2}\right) t_{4}-\left(t_{1} t_{4}\right) t_{2}\right]
\end{gathered}
$$

In particular, every q-associative algebra is non-commutative Jordan.
One can show that the identities elast $=0, a s s q_{1}=0, a s s q_{2}=$ $0, a s s q_{3}=0$ are independent.

Lemma 3. If $g=g\left(t_{1}, \ldots, t_{l}\right)$ is a homogeneous non-commutative, non-associative polynomial of degree k, then

$$
F_{-q} F_{q} g=F_{q} F_{-q} g=\left(1-q^{2}\right)^{k-1} g
$$

Proof. There exist $\frac{1}{n}\binom{2(n-1)}{n-1}$ bracketing types on n letters. For example, there exist two bracketing types on three letters: $t_{1}\left(t_{2} t_{3}\right)$ and $\left(t_{1} t_{2}\right) t_{3}$.

It is enough to prove that

$$
F_{q} F_{-q} \sigma=\left(1-q^{2}\right)^{k-1} \sigma
$$

for any bracketing type σ on k letters.
We use the induction on k.

In case $k=2$, we have only one bracketing type: $t_{1} t_{2}$. In this case our statement is true:

$$
F_{q}\left(t_{i_{1}} t_{i_{2}}\right)=t_{i_{1}} t_{i_{2}}+q t_{i_{2}} t_{i_{1}},
$$

and

$$
\begin{gathered}
F_{-q} F_{q}\left(t_{i_{1}} t_{i_{2}}\right) \\
=t_{i_{1}} t_{i_{2}}-q t_{i_{2}} t_{i_{1}}+q t_{i_{2}} t_{i_{1}}-q^{2} t_{i_{1}} t_{i_{2}} \\
=\left(1-q^{2}\right) t_{i_{1}} t_{i_{2}}=\left(1-q^{2}\right)\left(t_{i_{1}} t_{i_{2}}\right) .
\end{gathered}
$$

Suppose that our statement is true for $k-1$. Let σ be one of the bracketing types on k letters. It can be presented in the form

$$
\sigma\left(t_{i_{1}}, \ldots, t_{i_{k}}\right)=\sigma^{\prime}\left(t_{i_{1}}, \ldots, t_{i_{k^{\prime}}}\right) \sigma^{\prime \prime}\left(t_{i_{k^{\prime}+1}}, \ldots, t_{i_{k}}\right)
$$

for some bracketing types σ^{\prime} and $\sigma^{\prime \prime}$ on k^{\prime} and $k^{\prime \prime}=k-k^{\prime}$ letters, $1 \leq k^{\prime} \leq k$.

Then

$$
\begin{gathered}
F_{q} \sigma\left(t_{i_{1}}, \ldots, t_{i_{k}}\right) \\
=F_{q} \sigma^{\prime}\left(t_{i_{1}}, \ldots, t_{i_{k^{\prime}}}\right) F_{q} \sigma^{\prime \prime}\left(t_{i_{k^{\prime}+1}}, \ldots, t_{i_{k}}\right) \\
+q F_{q} \sigma^{\prime \prime}\left(t_{i_{k^{\prime}+1}}, \ldots, t_{i_{k}}\right) F_{q} \sigma^{\prime}\left(t_{i_{1}}, \ldots, t_{i_{k^{\prime}}}\right)
\end{gathered}
$$

and

$$
\begin{gathered}
F_{-q} F_{q} \sigma\left(t_{i_{1}}, \ldots, t_{i_{k}}\right) \\
=F_{-q} F_{q} \sigma^{\prime}\left(t_{i_{1}}, \ldots, t_{i_{k^{\prime}}}\right) F_{-q} F_{q} \sigma^{\prime \prime}\left(t_{i_{k^{\prime}+1}}, \ldots, t_{i_{k}}\right) \\
-q F_{-q} F_{q} \sigma^{\prime \prime}\left(t_{i_{k^{\prime}+1}}, \ldots, t_{i_{k}}\right) F_{-q} F_{q} \sigma^{\prime}\left(t_{i_{1}}, \ldots, t_{i_{k^{\prime}}}\right) \\
+q F_{-q} F_{q} \sigma^{\prime \prime}\left(t_{i_{k^{\prime}+1}}, \ldots, t_{i_{k}}\right) F_{-q} F_{q} \sigma^{\prime}\left(t_{i_{1}}, \ldots, t_{i_{k^{\prime}}}\right) \\
-q^{2} F_{-q} F_{q} \sigma^{\prime}\left(t_{i_{1}}, \ldots, t_{i_{k^{\prime}}}\right) F_{-q} F_{q} \sigma^{\prime \prime}\left(t_{i_{k^{\prime}+1}}, \ldots, t_{i_{k}}\right) \\
=F_{-q} F_{q} \sigma^{\prime}\left(t_{i_{1}}, \ldots, t_{i_{k^{\prime}}}\right) F_{-q} F_{q} \sigma^{\prime \prime}\left(t_{i_{k^{\prime}+1}}, \ldots, t_{i_{k}}\right) \\
-q^{2} F_{-q} F_{q} \sigma^{\prime}\left(t_{i_{1}}, \ldots, t_{i_{k^{\prime}}}\right) F_{-q} F_{q} \sigma^{\prime \prime}\left(t_{i_{k^{\prime}+1}}, \ldots, t_{i_{k}}\right)
\end{gathered}
$$

By the induction hypothesis,

$$
\begin{gathered}
F_{-q} F_{q} \sigma^{\prime}\left(t_{i_{1}}, \ldots, t_{i_{k^{\prime}}}\right) \\
=\left(1-q^{2}\right)^{k^{\prime}-1} \sigma^{\prime}\left(t_{i_{1}}, \ldots, t_{i_{k^{\prime}}}\right), \\
F_{-q} F_{q} \sigma^{\prime \prime}\left(t_{i_{k^{\prime}+1}}, \ldots, t_{i_{k}}\right) \\
=\left(1-q^{2}\right)^{k-k^{\prime}-1} \sigma^{\prime \prime}\left(t_{i_{k^{\prime}+1}}, \ldots, t_{i_{k}}\right) .
\end{gathered}
$$

Therefore,

$$
F_{-q} F_{q} \sigma^{\prime}\left(t_{i_{1}}, \ldots, t_{i_{k^{\prime}}}\right) F_{-q} F_{q} \sigma^{\prime \prime}\left(t_{i_{k^{\prime}+1}}, \ldots, t_{i_{k}}\right)
$$

$$
\begin{gathered}
=\left(1-q^{2}\right)^{k-2} \sigma\left(t_{i_{1}}, \ldots, t_{i_{k}}\right) \\
-q^{2} F_{-q} F_{q} \sigma^{\prime}\left(t_{i_{1}}, \ldots, t_{i_{k^{\prime}}}\right) F_{-q} F_{q} \sigma^{\prime \prime}\left(t_{i_{k^{\prime}+1}}, \ldots, t_{i_{k}}\right) \\
=-q^{2}\left(1-q^{2}\right)^{k-2} \sigma\left(t_{i_{1}}, \ldots, t_{i_{k}}\right)
\end{gathered}
$$

and

$$
\begin{gathered}
F_{-q} F_{q} \sigma\left(t_{i_{1}}, \ldots, t_{i_{k}}\right) \\
=F_{-q} F_{q} \sigma^{\prime}\left(t_{i_{1}}, \ldots, t_{i_{k^{\prime}}}\right) F_{-q} F_{q} \sigma^{\prime \prime}\left(t_{i_{k^{\prime}+1}}, \ldots, t_{i_{k}}\right) \\
-q^{2} F_{-q} F_{q} \sigma^{\prime}\left(t_{i_{1}}, \ldots, t_{i_{k^{\prime}}}\right) F_{-q} F_{q} \sigma^{\prime \prime}\left(t_{i_{k^{\prime}+1}}, \ldots, t_{i_{k}}\right) \\
=\left(1-q^{2}\right)^{k-1} \sigma\left(t_{i_{1}}, \ldots, t_{i_{k}}\right) .
\end{gathered}
$$

The lemma is proved.
Lemma 4. If $q^{2}-4 q+1 \neq 0$, then the identity lia $=0$ follows from the identity ass ${ }^{(q)}=0$.

If $q^{2}-4 q+1=0$ and $p \neq 2,3$, then the identities ass ${ }^{(q)}=0$ and lia $=0$ are independent.

Proof. The following relation holds:

$$
\begin{gathered}
a s s^{(q)}\left(t_{1}, t_{2}, t_{3}\right)+a s s^{(q)}\left(t_{2}, t_{3}, t_{1}\right)+a s s^{(q)}\left(t_{3}, t_{1}, t_{2}\right)- \\
a s s^{(q)}\left(t_{1}, t_{3}, t_{2}\right)-a s s^{(q)}\left(t_{2}, t_{1}, t_{3}\right)-a s s^{(q)}\left(t_{3}, t_{2}, t_{1}\right)= \\
\left(q^{2}-4 q+1\right) \text { lia }\left(t_{1}, t_{2}, t_{3}\right)
\end{gathered}
$$

Therefore,

$$
\operatorname{ass}^{(q)}=0, q^{2}-4 q+1 \neq 0, \Rightarrow l i a=0
$$

Let $\mathbf{C a}$ be the 8 -dimensional Cayley-Dickson algebra corresponding to the Cayley octonians (the algebra $\mathbf{C}(-4 / 5,-1,-1)$ in the notation of [4], Chapter 2, $\S 2$, p. 48, Exercise 3). Recall that Ca is an alternative algebra. Take a basis $e_{0}, e_{1}, \ldots, e_{7}$ for $\mathbf{C a}$ with the multiplication table of [4], p. 48, Exercise 3.

It is not hard to see that the three-linear maps lia and ass ${ }^{(q)}$ on Ca are skew-symmetric. Moreover,

$$
(q-1)^{2}\left(q^{2}-4 q+1\right) \text { lia }(a, b, c)-6 a s s^{(q)}(a, b, c)=0
$$

for any $a, b, c \in \mathbf{C a}$. It is easy to check that

$$
\begin{gathered}
\operatorname{lia}\left(e_{1}, e_{2}, e_{4}\right)=12 e_{7}, \\
\text { ass }^{(q)}\left(e_{1}, e_{2}, e_{4}\right)=2(q-1)^{2}\left(q^{2}-4 q+1\right) e_{7} .
\end{gathered}
$$

Thus, the octonian algebra is not Lie-Admissible and satisfies the identity ass $^{(q)}=0$ if $q^{2}-4 q+1=0$ and $p \neq 2,3$. This means that the identities $a s s^{(q)}=0$ and lia $=0$ are independent if $q^{2}-4 q+1=0$.

Lemma 5. If $q^{2}-4 q+1=0$, then

$$
\begin{gathered}
2 F_{-q} r a l t\left(t_{1}, t_{2}, t_{3}\right)= \\
(1-q)\left(\text { ass }^{(q)}\left(t_{1}, t_{2}, t_{3}\right)+\operatorname{ass}^{(q)}\left(t_{1}, t_{3}, t_{2}\right)\right) \\
+(1-3 q)\left(\text { ass }^{(q)}\left(t_{2}, t_{1}, t_{3}\right)+\operatorname{ass}^{(q)}\left(t_{3}, t_{1}, t_{2}\right)\right), \\
2 F_{-q} l^{2 l t}\left(t_{1}, t_{2}, t_{3}\right)= \\
(1-3 q) \text { ass }^{(q)}\left(t_{1}, t_{2}, t_{3}\right)+2 q \operatorname{ass}^{(q)}\left(t_{1}, t_{3}, t_{2}\right)+(-1+3 q) \text { ass }^{(q)}\left(t_{2}, t_{1}, t_{3}\right) \\
+2(1-2 q) \text { ass }^{(q)}\left(t_{2}, t_{3}, t_{1}\right)+2(1-3 q) \operatorname{ass}^{(q)}\left(t_{3}, t_{1}, t_{2}\right)
\end{gathered}
$$

and

$$
\begin{aligned}
& a s s^{(q)}\left(t_{1} t_{2}, t_{3}\right)= \\
& -2 \operatorname{lalt}\left(t_{1}, t_{2}, t_{3}\right)+6 q \operatorname{lalt}\left(t_{1}, t_{2}, t_{3}\right)+4 q \operatorname{lalt}\left(t_{1}, t_{3}, t_{2}\right)+2 \operatorname{ralt}\left(t_{1}, t_{2}, t_{3}\right) \\
& -4 q \operatorname{ralt}\left(t_{1}, t_{2}, t_{3}\right)+2 \operatorname{ralt}\left(t_{2}, t_{1}, t_{3}\right)-8 q \operatorname{ralt}\left(t_{2}, t_{1}, t_{3}\right)-2 q \operatorname{ralt}\left(t_{3}, t_{1}, t_{2}\right) .
\end{aligned}
$$

Proof. In the forthcoming calculations we use (1), (2) and (3). We have:

$$
\begin{gathered}
a s s^{(q)}\left(t_{1}, t_{2}, t_{3}\right)+a s s^{(q)}\left(t_{1}, t_{3}, t_{2}\right)= \\
t_{1}\left(t_{2} t_{3}\right)-2 q t_{1}\left(t_{2} t_{3}\right)+q^{2} t_{1}\left(t_{2} t_{3}\right)+t_{1}\left(t_{3} t_{2}\right) \\
-2 q t_{1}\left(t_{3} t_{2}\right)+q^{2} t_{1}\left(t_{3} t_{2}\right)+q t_{2}\left(t_{1} t_{3}\right)-q t_{2}\left(t_{3} t_{1}\right) \\
+q t_{3}\left(t_{1} t_{2}\right)-q t_{3}\left(t_{2} t_{1}\right)-\left(t_{1} t_{2}\right) t_{3}+q\left(t_{1} t_{2}\right) t_{3} \\
-q^{2}\left(t_{1} t_{2}\right) t_{3}-\left(t_{1} t_{3}\right) t_{2}+q\left(t_{1} t_{3}\right) t_{2}-q^{2}\left(t_{1} t_{3}\right) t_{2} \\
+q\left(t_{2} t_{1}\right) t_{3}+q\left(t_{3} t_{1}\right) t_{2}, \\
a s s^{(q)}\left(t_{2}, t_{1}, t_{3}\right)+a s s^{(q)}\left(t_{3}, t_{1}, t_{2}\right)= \\
-q t_{2}\left(t_{1} t_{3}\right)+t_{2}\left(t_{3} t_{1}\right)-q t_{2}\left(t_{3} t_{1}\right)+q^{2} t_{2}\left(t_{3} t_{1}\right) \\
-q t_{3}\left(t_{1} t_{2}\right)+t_{3}\left(t_{2} t_{1}\right)-q t_{3}\left(t_{2} t_{1}\right)+q^{2} t_{3}\left(t_{2} t_{1}\right) \\
+q\left(t_{1} t_{2}\right) t_{3}+q\left(t_{1} t_{3}\right) t_{2}-q\left(t_{2} t_{1}\right) t_{3}-\left(t_{2} t_{3}\right) t_{1} \\
+2 q\left(t_{2} t_{3}\right) t_{1}-q^{2}\left(t_{2} t_{3}\right) t_{1}-q\left(t_{3} t_{1}\right) t_{2}-\left(t_{3} t_{2}\right) t_{1} \\
+2 q\left(t_{3} t_{2}\right) t_{1}-q^{2}\left(t_{3} t_{2}\right) t_{1}
\end{gathered}
$$

and

$$
\begin{gathered}
F_{-q} r a l t\left(t_{1}, t_{2}, t_{3}\right)= \\
t_{1}\left(t_{2} t_{3}\right)-q t_{1}\left(t_{2} t_{3}\right)+t_{1}\left(t_{3} t_{2}\right)-q t_{1}\left(t_{3} t_{2}\right) \\
+q t_{2}\left(t_{1} t_{3}\right)-q^{2} t_{2}\left(t_{3} t_{1}\right)+q t_{3}\left(t_{1} t_{2}\right)-q^{2} t_{3}\left(t_{2} t_{1}\right) \\
-\left(t_{1} t_{2}\right) t_{3}-\left(t_{1} t_{3}\right) t_{2}+q\left(t_{2} t_{1}\right) t_{3}-q\left(t_{2} t_{3}\right) t_{1} \\
+q^{2}\left(t_{2} t_{3}\right) t_{1}+q\left(t_{3} t_{1}\right) t_{2}-q\left(t_{3} t_{2}\right) t_{1}+q^{2}\left(t_{3} t_{2}\right) t_{1} .
\end{gathered}
$$

Thus,

$$
(1-q)\left(a s s^{(q)}\left(t_{1}, t_{2}, t_{3}\right)+a s s^{(q)}\left(t_{1}, t_{3}, t_{2}\right)\right)+(1-3 q)\left(a s s^{(q)}\left(t_{2}, t_{1}, t_{3}\right)+a s s^{(q)}\left(t_{3}, t_{1}, t_{2}\right)\right)
$$

$$
\begin{gathered}
-2 F_{-q} \operatorname{ralt}\left(t_{1}, t_{2}, t_{3}\right)= \\
2\left(1-4 q+q^{2}\right)\left(\operatorname{ass}\left(t_{2}, t_{3}, t_{1}\right)+\operatorname{ass}\left(t_{3}, t_{2}, t_{1}\right)\right)
\end{gathered}
$$

Similarly,

$$
\begin{gathered}
(1-3 q) \operatorname{ass}^{(q)}\left(t_{1}, t_{2}, t_{3}\right)+2 q a s s^{(q)}\left(t_{1}, t_{3}, t_{2}\right)+(-1+3 q) \operatorname{ass}^{(q)}\left(t_{2}, t_{1}, t_{3}\right) \\
+2(1-2 q) a s s^{(q)}\left(t_{2}, t_{3}, t_{1}\right)+2(1-3 q) a s s^{(q)}\left(t_{3}, t_{1}, t_{2}\right)-2 F_{-q} \operatorname{lalt}\left(t_{1}, t_{2}, t_{3}\right)= \\
2\left(1-4 q+q^{2}\right)\left(a s s\left(t_{3}, t_{1}, t_{2}\right)+\operatorname{ass}\left(t_{3}, t_{2}, t_{1}\right)\right)
\end{gathered}
$$

and

$$
-2 \operatorname{lalt}\left(t_{1}, t_{2}, t_{3}\right)+6 q \operatorname{lalt}\left(t_{1}, t_{2}, t_{3}\right)+4 q \operatorname{lalt}\left(t_{1}, t_{3}, t_{2}\right)+2 \operatorname{ralt}\left(t_{1}, t_{2}, t_{3}\right)
$$

$$
-4 q \operatorname{ralt}\left(t_{1}, t_{2}, t_{3}\right)+2 \operatorname{ralt}\left(t_{2}, t_{1}, t_{3}\right)-8 q \operatorname{ralt}\left(t_{2}, t_{1}, t_{3}\right)-2 q \operatorname{ralt}\left(t_{3}, t_{1}, t_{2}\right)
$$

$$
-F_{q} \operatorname{ass}\left(t_{1}, t_{2}, t_{3}\right)=
$$

$$
\left(1-4 q+q^{2}\right)\left(2 \operatorname{ass}\left(t_{2}, t_{3}, t_{1}\right)+\left[\left[t_{1}, t_{2}\right], t_{3}\right]\right)
$$

The lemma is proved.
Calculations in the next lemmas are similar to those above and thus omitted.

Lemma 6.

$$
\begin{gathered}
F_{q} \operatorname{ass}^{(q)}\left(t_{1}, t_{2}, t_{3}\right)= \\
(q-1)^{2}\left(q \operatorname{ass}\left(t_{1}, t_{2}, t_{3}\right)+\operatorname{ass}\left(t_{1}, t_{3}, t_{2}\right)\right)- \\
q(q-1)^{2}\left(\operatorname{ass}\left(t_{2}, t_{1}, t_{3}\right)+q \operatorname{ass}\left(t_{2}, t_{3}, t_{1}\right)\right)+ \\
q(q-1)^{2}\left(\operatorname{ass}\left(t_{3}, t_{1}, t_{2}\right)-\operatorname{ass}\left(t_{3}, t_{2}, t_{1}\right)\right)
\end{gathered}
$$

Lemma 7.

$$
\begin{gathered}
(q-1)\left(q^{2}-4 q+1\right) F_{-q} \operatorname{ass}\left(t_{1}, t_{2}, t_{3}\right)= \\
(3 q-1) \operatorname{ass}^{(q)}\left(t_{1}, t_{3}, t_{2}\right)-q(q-1) \operatorname{ass}^{(q)}\left(t_{1}, t_{2}, t_{3}\right)+q(q-1) \operatorname{ass}^{(q)}\left(t_{2}, t_{1}, t_{3}\right)+ \\
q(1-q) \operatorname{ass}^{(q)}\left(t_{2}, t_{3}, t_{1}\right)+3 q^{2} \text { ass }^{(q)}\left(t_{3}, t_{1}, t_{2}\right)-q^{3} \operatorname{ass}^{(q)}\left(t_{3}, t_{1}, t_{2}\right)- \\
q a s s^{(q)}\left(t_{3}, t_{2}, t_{1}\right)+q^{2} \operatorname{ass}^{(q)}\left(t_{3}, t_{2}, t_{1}\right) .
\end{gathered}
$$

Lemma 8. If $q^{2}-4 q+1=0$, then

$$
\begin{gathered}
2 q F_{-q} a s s\left(t_{1}, t_{2}, t_{3}\right)= \\
(1-3 q) a s s^{(q)}\left(t_{3}, t_{1}, t_{2}\right)+(1-q) a s s^{(q)}\left(t_{1}, t_{3}, t_{2}\right)-2 q^{2} \operatorname{lia}\left(t_{1}, t_{2}, t_{3}\right)
\end{gathered}
$$

Proof of Theorem 1. By Lemma 4, lia $=0$ is a consequence of the identity ass ${ }^{(q)}=0$ if $q^{2}-4 q+1 \neq 0$. In other words,

$$
\mathfrak{A s s}^{(q)}=\mathfrak{A s s}^{(q, l i a)} \text { if } \quad q^{2}-4 q+1 \neq 0
$$

By Lemma 6, if (A, \circ) an associative algebra, then the algebra $\left(A, \circ_{q}\right)$ satisfies the identity ass $^{(q)}=0$.

Let $q^{2}-4 q+1 \neq 0$. By Lemma 7 , if an algebra (A, \circ) satisfies the identity ass $^{(q)}=0$, then the algebra $\left(A, \circ_{-q}\right)$ satisfies the identity ass $=0$.

Now, consider the case of $q^{2}-4 q+1=0$. By Lemma 8 , if (A, \circ) satisfies the identities $a s s^{(q)}=0$ and lia $=0$, then $\left(A, \circ_{-q}\right)$ satisfies the identity ass $=0$. By Lemma 5 , if (A, \circ) satisfies the identity $\operatorname{ass}^{(q)}=0$, then $\left(A, \circ_{-q}\right)$ is alternative and, vice versa, if (A, \circ) is alternative then $\left(A, \circ_{q}\right)$ satisfies the identity $a s s^{(q)}=0$.

So, if (A, \circ) is an associative algebra, then $\left(A, \circ_{q}\right)$ satisfies the identities ass $^{(q)}=0$ and lia $=0$. Vice versa, if (A, \star) satisfies the identities ass ${ }^{(q)}=0$, lia $=0$ then $\left(A, \star_{-q}\right)$ is associative. Thus, by Lemma 3 the functor

$$
F_{q}: \mathfrak{A l s s} \rightarrow \mathfrak{A s s}^{(q)}, \quad(A, \circ) \rightarrow\left(A, \circ_{q}\right)
$$

is well defined and has the inverse

$$
\left(1-q^{2}\right)^{-2} F_{-q}: \mathfrak{A s s}^{(q)} \rightarrow \mathfrak{A} \mathfrak{s s s}
$$

if $q^{2}-4 q+1 \neq 0$. Similarly, the functors

$$
\begin{gathered}
F_{q}: \mathfrak{A} \mathfrak{s s} \rightarrow \mathfrak{A s s}^{(q, l i a)}, \quad(A, \circ) \rightarrow\left(A, \circ_{q}\right), \\
\left(1-q^{2}\right)^{-2} F_{-q}: \mathfrak{A s s}^{(q, l i a)} \rightarrow \mathfrak{A s s},\left(1-q^{2}\right)^{-2} F_{-q}: \mathfrak{A s s}^{(q)} \rightarrow \mathfrak{A} \mathfrak{A t},
\end{gathered}
$$

are also well defined and

$$
\left(1-q^{2}\right)^{-2} F_{-q} F_{q}=i d
$$

if $q^{2}-4 q+1=0$.

References

[1] K. McCrimmon, A note on quasi-associtive algebras, Proc. AMS, 17(1966), No.6, 1455-1459.
[2] K. McCrimmon, Noncommutative Jordan rings, Trans. AMS, 158(1971), No.1, 1-33.
[3] K. McCrimmon, Noncomutative Jordan division algebras, Trans. AMS, 163(1972), 215-224.
[4] K.A. Zhevlakov, A.M. Slinko, I.P. Shestakov, A.I, Shirshov, Rings which are nearly associative [Russian], Nauka, Moscow, 1976.

Kazakh-British University, Tole bi 59, Almaty, 050000, Kazakhstan
E-mail address: askar@math.kz

