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ABSTRACT. We consider the class Ass@ of algebras that appear
from associative algebras under the taking of g-commutator a o,
b=aob+qgboa, where ¢ € K,q?> #0,1, and p = char K # 2, 3.
We establish that this class forms a variety and satisfies the identity
ass'® = 0, where ass'? = (q — 1)2(t1,t3,t2) + q[t3, [t1,t2]]. If
q®> —4q+1# 0, the variety of g-associative algebras is generated
by this identity. If ¢ —4g + 1 = 0, then this identity is not
enough to generate Ass(? and it should be supplemented by the
Lie-Admissibility identity [[t1,t2],ts] + [[t2,t3], t1] + [[t3, t1], t2] =
0. In the exceptional case the variety generated by the identity
ass(D =0 is equivalent to the variety of alternative algebras.

It is well known that every associative algebra under the taking of
commutator becomes a Lie algebra, and under the taking of anticom-
mutator becomes a Jordan algebra. In this paper we study the class
of algebras that appear from associative algebras under the taking of
q-commutator, with ¢? # 0, 1.

Let A = (A, o) bean algebra with multiplication o. Throughout, all
vector spaces are considered over a field K of characteristic p # 2,3.
Denote a g-commutator of o by o,:

ao,b=aob+qgboa.

For example, [a,b] = ao_1b is a Lie commutator, and {a,b} =aoyb
is a Jordan commutator. Let

ass(a,b,c) = (a,b,c) =ao(boc)—(aob)oc

denote an associator. Given ¢ € K, define A@ = (A, o4) to be the
algebra with the underlying vector space A and the multiplication o,.

For a non-commutative non-associative polynomial g = g(t1,%2,...),
denote by Fjg the polynomial that appears from ¢ under the multi-
plication rule t; -, t; = t;t; + qt;t;. For example,

F,(ti(tats)) = ti(tats) + qti(tsta) + q (tats)ts + ¢ (tata)ts, (1)

F,((tita)ts) = (Lita)ts + qts(tits) + q (tat1)ts + P ts(taty)  (2)
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and
F,ass(ty,ta,t3) = ass(t1, ta, t3) + (3)

q(ass(ty, ts, ta) — ass(ts, ty,ta) — ass(ta, ts, t1)+
CLSS(tQ, tl, t3) + Htl, tg], tQ]) — q2 CLSS(tg, tg, t1>
Similarly, for an algebra A = (A, o), we also denote the algebra (A4, o,)
by F,A.
For ¢ € K,q> # 0,1, q-associativity polynomial ass@ is defined as

assD (ty, o, t3) = (q — 1)%(t1, b3, 2) + q [ts, [t1, ta]].
Then

0)

CLSS( = ass.

The Lie-Admissibility polynomial lia is defined as

lia(ty, ta, t3) = [[t1, ta], ta] + [[t2, t3], t1] + [[t3, 1], to].
Recall that here (t;,t;,t5) = t;(t;t;) — (t;t;)ts is the associator and
ti, t;] = tit; — t;t; is the commutator. An algebra A satisfying the
identity lia = 0 is called Lie-Admissible.

For a non-commutative, non-associative polynomial f = f(tq,... ,t)
in k variables, we say that f = 0 is an identityon (A, o) if f(ay,...,ax) =
0 for any substitutions t; = aq,...,t, = a, € A. Here the multipli-
cations are done in terms of o. Given polynomials fi, fo,..., f., we
denote the variety generated by the identities f; =0, fo,=0,...,f. =
0 by Var(fi, f2,.-.,fr). Let 2Uss be the category of associative
algebras, and ss@ the category of algebras of the form (A, 0,),
where (A,o) is an associative algebra. It is well known that Ass =
Var(ass) is a variety, and Ass ™Y is a variety generated by the anti-
commutativity and Jacobi polynomials (Lie algebras). In that time
Ass) (class of special Jordan algebras) is not a variety,

AssV C Var(acom, jor), Wss™Y % Var(acom, jor),
where
acom = tity — toty, jor = (£3,tg,11).

For details we refer, for example, to [4]. Let

lalt = (tl, tg, t3) — (tl, t3, tl),

’f’Cth = (tl, tQ, tg) — (tz, tl, t3)
be the left and right-alternative polynomials, and let 24lt = Var(lalt, ralt)
be the variety of alternative algebras.

In this paper we study the category Ass? for ¢ # 0, 1. Recall that

every ¢-algebra (A, o,) of an associative algebra (A, o) is said to be
quasi-associative. We call such a q-algebra ¢ -associative. Recall also
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that a flexible algebra with the Jordan identity (¢2,¢s,¢;) = 0 is called
non-commutative Jordan. Connections between quasi-associative alge-
bras, associative algebras and noncommutative Jordan algebras were
studied in [1],[2],[3].

Let £° and £* be categories of algebras. The objects of £° are
algebras (A, o) with multiplication o, and the objects of £* are al-
gebras (A, ) with multiplication x. The morphisms between objects
are usual homomorphisms between the corresponding algebras. Recall
that a map between categories

F:£°— g% F(Ao) = (Ax)
is called a morphism of categories if each morphism « € Mor((A, o), (B, o))
of the category £° goes to a morphism in the category £*. In our case
this means that if a: (A,0) — (B, o) is a homomorphism of algebras,
then
a: (A %) — (B, *)
is a homomorphism of algebras too. In this sense the map
F,: £ — £
is a morphism of categories.
We say that F' is an equivalence of categories if there exists a mor-
phism
G: L2 — £°
such that the compositions
GF : £° — £°, FG: 2" — &
are the identity morphisms:
GF(A, o) = (A, o), FG(A,x) = (A, *).
Theorem 1. The class Ass'? of q-associative algebras forms a vari-
ety if ¢> # 0,1. Namely,
Ass @ = Var(ass9) if ¢ —4q+1#0,
Ass'? = Var(ass'?, lia) if ¢* —4q+1=0.
Moreover, the following categories (varieties) are equivalent:
Var(ass(q)) ~Ass, if ¢* —4q+1+#0,
Var(ass'?, lia) ~ Ass, if ¢*> —4g+1=0,
Var(ass(q)) ~ A, if ¢* —4g+1=0.

The equivalence morphisms are given by the map F_, :

F_,: Var(ass@ — Var(ass), if ¢ —4q+1#0,
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F_,: Var(ass'9) — Var(ralt,lalt), if ¢*> —4q+1=0,
F_,: Var(ass9, lia) — Var(ass), if ¢>—4q+1=0.
The inverse morphisms are given by the map (1 — ¢*)~*F,.

Notice that in the exceptional case ¢®> —4¢ + 1 = 0, we have

ass'? = ¢ asséq),

where

CLSSéq) = Q(tl, tg, tQ) + [tg, [tl, tQ]]

Corollary 2. The following identities are consequences of the identity
@ =0:
ass ;

elast(ty, ty, t3) = (t1,ta,t3) + (t3,12,11),

assqy(ty, ta, t3,ty) =
(tita)(tata)+(tats) (tata)+(tata) (tats) —(t1 (tsta) )ta—(t1 (tate) )ts—(t1 (tats) )ta,

assqa(ty, ta, t3,ty) =
(trto) (tsta)+(tats) (trta) +(tsty) (tata) —ts((trta)ta) —t1 ((tats)ta) —ta((tst)ta),

CLSSQg(tl, t27 t37 t4) —
t1([ta, talts) — (tsty)[ta, ta] + [ts, (trta)ts — (tita)ta).
In particular, every q-associative algebra is non-commutative Jordan.

One can show that the identities elast = 0,assq; = 0,assqs =
0,assqs = 0 are independent.

Lemma 3. If g = g(t1,...,t) is a homogeneous non-commautative,
non-associative polynomial of degree k, then

F b9 =FF 9= (1- q2)k_lg-

1
example, there exist two bracketing types on three letters: t;(tot3)

and (tltg)tg.
It is enough to prove that

E,F jo=(01-¢) "o

Proof. There exist %(2(:__1)) bracketing types on n letters. For

for any bracketing type ¢ on k letters.
We use the induction on k.
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In case k=2, we have only one bracketing type: tit,. In this case

our statement is true:
FQ(tilti2> - til tiQ + qtiztilv

and
F—qu(tiltiz)
= titi, — qtitiy + qtiti, — ¢Ctits,
= (1= ¢*)tisti, = (1 = ¢*)(tists,).
Suppose that our statement is true for £k — 1. Let o be one of the
bracketing types on k letters. It can be presented in the form

O'(tz‘l,... 7tlk> = O'/(til,... 7tik’>0//(tik’+1"" 7t2k)

for some bracketing types ¢’ and ¢” on K and K’ =k — k’ letters,

1<k <k.
Then
Foo(ti,... . t,)
=10 (tiy, oo tiy ) E0" (ti s o tiy)
+q an”(tik,H, ot ) Fo (ty, oty
and
F_ Foo(ti,... . t,)

,tik,)F_quOJ,(tik/+1, R

:F_quOJ tip"' t
g Fyo' (i, L)
t

—q F_quOJl(tl’k/+1, e ,tlk
+q F_quO'// tik’+1’ e 7tik>F—quU/(ti17 N

(
_q2F_quOJ(ti1, e ,tik/)F_quOJ,(tik/+1, e 7tlk)

7tik/)F—quO—”(tik/+1a s 7t2k)

= F_quOJ(til, NN
7tik,)F—qu0//(tik/+17 s 7tzk)

—¢*F_F, o' (ty,, - ..
By the induction hypothesis,
F_ Fo'(ti, ... ,ti,)
= (]_ — q2)k/—10_/(ti17 NN ’tik’>’
F_quO'//(tik,+l, ‘e 7tlk>
= (1 — q2)k_k/_10'//(tik,+l, e 7tlk>
Therefore,

F_quOJ(til, e ,tik/)F_quOJl(tik/+1, e 7tlk)
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=1 - 20(ty,... ,ti,),

— P F_gFy0'(tiy, . i ) F_gFyo" (i (oo L)
= _q2(1 - q2)k 2U(ti17 s 7tik)

and
F_qF 0'( R tlk)
= 0 (tiy, oot VB0 (tiy, 5o s ty)
_qQF_quO'/(til, e Zk/)F—qF O'”( gyt 7tlk)

= (]_ —q )k IU(til,... 7tlk>
The lemma is proved.

Lemma 4. If q —4q+ 1 # 0, then the identity lia =0 follows from
the zdentzty ass'? = 0.

If > —4¢g+1=0 and p # 2,3, then the identities ass'Y =0 and
lia =0 are independent.

Proof. The following relation holds:
CLSS(q) (tl, tg, tg) + CLSS(q) (tQ, t3, t1> + CLSS(q) (tg, tl, t2>_
ass\V(ty, s, ty) — ass'D(ty, t1,ts) — ass'D(ts, ty, t)) =
(¢* — 4q + 1) lia(ty, ta, t3).
Therefore,
ass'® =0, ¢* —4q+1#0, = lia = 0.

Let Ca be the 8-dimensional Cayley-Dickson algebra corresponding
to the Cayley octonians (the algebra C(—4/5,—1,—1) in the notation
of [4], Chapter 2, §2 | p. 48, Exercise 3). Recall that Ca is an alterna-
tive algebra. Take a basis eg, e1, ... ,e; for Ca with the multiplication
table of [4], p. 48, Exercise 3.

It is not hard to see that the three-linear maps lia and ass'? on
Ca are skew-symmetric. Moreover,

(¢ — 1)*(¢* = 4q + 1) lia(a, b, ¢) — 6 ass'9(a,b,c) = 0,
for any a,b,c € Ca. It is easy to check that
lia(ey, eq,€4) = 12 €7,
ass' D (e, ea,e4) = 2(q — 1) (¢? — 4q+ 1) e7.
Thus, the octonian algebra is not Lie-Admissible and satisfies the iden-

tity ass@ =0 if ¢> —4¢+1 =0 and p # 2,3. This means that the
identities ass(‘Y) =0 and lia =0 are mdependent if ¢>—4¢g+1=0.
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Lemma 5. If ¢> —4q+1 =0, then
2F_q Talt(tl,tQ,tg) =

(1 — q)(ass'D(ty, tg, t3) + ass'D(ty, ts, ts))
+(1 -3 q) (CLSS(q) (tQ, tl, tg) + CLSS(q) (tg, tl, tg)),

2F lalt(ty, ty, t3) =
(1—3¢q) assD(ty, ty, t3) +2qass'D(ty, ts, ta) + (—1+3q) ass'(ty, t1, t3)
+2(1—2¢q) ass(q)(tg, ts,t1) +2(1—3¢q) CLSS(q)(tg, t1,t2)
and
ass\D(tyty, ts) =
—2lalt(ty, ta, ts) + 6qlalt(ty, ta, ts) + Aqlalt(ty, ts, ta) + 2ralt(ty, ts, t)
—4qralt(ty, te, t3)+2ralt(te, t1, t3) —8q ralt(ts, t1,ts) —2q ralt(ts, t1, ts).
Proof. In the forthcoming calculations we use (1), (2) and (3). We
have:
ass\D(ty, ty, t3) + ass'D(ty, ts, ts) =
ti(tats) — 2qti(tats) + ¢* t1(tats) + ti(tats)
—2qt1(tstz) + ¢* t1(tsta) + qta(tits) — qta(tsts)
+q tg(tltg) — qtg(tgtl) - (tltg)tg +4q (tltg)tg
—q” (tits)ts — (tits)ts + q (tita)ts — ¢° (tats)ts
+q (tat1)ts + q (tst1)ts,

ass\D(ty, t,t3) + ass'D(ts, t1,ty) =
—qta(tits) + ta(tsts) — qta(tsts) + ¢ ta(tsty)
—qt3(tity) + ts(taty) — qts(taty) + ¢ ts(taty)
+q (tit2)ts + q (tits)ts — q (tat1)ts — (fat3)t
+2q (tats)ts — ¢° (tats)tr — q (tst1)t — (t3t2)ty
+2q (tsta)ts — ¢* (tsta)ta

and
F_ ralt(ty, ty, t3) =
ti(tats) — qti(tats) + ti(tsta) — qti(tsta)
+qta(tits) — ¢ ta(tsty) + qts(tits) — ¢* ta(taty)
—(tita)ts — (tits)ta + q (tat1)ts — q (tat3)ty
+q* (tats)ts + q (tst1)ta — q (tsta)ty + ¢° (tsta)t.
Thus,

(1—q)(ass(q) (t1, 1o, t3)—|—a55(q) (t1, 13, tg))+(1—3q)(ass(q) (to, t1, t3)—|—a55(q) (t3,t1,12))



8 A.S. DZHUMADIL’DAEV
-2 F_q ’f’&lt(tl, tQ, tg) =
2(1 — 4(] -+ q2)(ass(t2, t3, tl) + CLSS(tg, tg, t1)>
Similarly,
(1-— 3q)ass(Q) (t1,ta, ts) + 2qass'D(ty, tg, ts) + (—1+ 3¢)ass@ (to,t1,13)
+2(1—2q)a33(q) (tQ, t3, t1)+2(1—3q)ass(q) (tg, tl, tg)—Q F_q lalt(tl, tQ, tg) =
2(1 — 4q + ¢°)(ass(ts, t1,ts) + ass(ts, ty, t1))

and

—2lalt(ty, ta, t3) + 6qlalt(ty, ta, t3) + 4qlalt(ty, ts, ta) + 2ralt(ty, ta, t3)

—4qralt(ty,te, t3)+2ralt(ts, t1,t3) —8qralt(ts, t1, t3) — 2q ralt(ts, t1,ts)
—F, ass(tq,ta,t3) =

(1 —4q + ¢*)(2ass(ta, ts, t1) + [[t1, 2], t3]).

The lemma is proved.
Calculations in the next lemmas are similar to those above and thus
omitted.

Lemma 6.
F,ass\D(ty, ty,t3) =
(q— 1)?(qass(ty, ta, t3) + ass(ty, s, ts))—
q(q — 1) (ass(ta, t1,t3) + qass(ta, t3, 1))+
q(q — 1)? (ass(ts, t1,t2) — ass(ts, ta,t1)).
Lemma 7.

(q—1)(¢* —4q + 1) F_,ass(ty, ta, t3) =
(3q—1) ass'D(ty, ts, ts)—q (q—1) ass'D(ty, ty, t3)+q(g—1) ass'D (ty, ty, t3)+
q(1 — q) ass'D(ty, ts,t1) + 3 q* ass'D(ts, t1, ts) — ¢ ass'D(ts, t1,ts)—
qass'D(tg, ta, t1) + ¢* ass'? (t3,t9,t1).
Lemma 8. If ¢> —4q+1 =0, then
2qF_,ass(ty,ta, t3) =

(1 —3¢q)ass'D(ts, ty,ta) + (1 — q) ass'D(ty, ts, ts) — 2% lia(ty, ta, ts).
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Proof of Theorem 1. By Lemma 4, lia = 0 is a consequence of
the identity ass@ =0 if ¢> —4¢+ 1 # 0. In other words,

Wss@ = Wss(® 1) if ¢2 —4g+1#£0.

By Lemma 6, if (A,o) an associative algebra, then the algebra
(A,o,) satisfies the identity ass? = 0.

Let ¢> —4g+ 1 # 0. By Lemma 7, if an algebra (A, o) satisfies
the identity ass@ = 0, then the algebra (A, o_,) satisfies the identity
ass = 0.

Now, consider the case of ¢> —4qg+ 1 = 0. By Lemma 8, if (4,0)
satisfies the identities ass'? = 0 and lia = 0, then (A,o_,) satisfies
the identity ass = 0. By Lemma 5, if (A,o) satisfies the identity
ass'? = 0, then (A,o_,) is alternative and, vice versa, if (A,o) is
alternative then (A,o,) satisfies the identity ass@ = 0.

So, if (A, o) is an associative algebra, then (A,o,) satisfies the iden-
tities ass'@ = 0 and lia = 0. Vice versa, if (A,*) satisfies the identi-
ties ass@ = 0,lia = 0 then (A,%_,) is associative. Thus, by Lemma
3 the functor

F, : Ass — Ass'?, (A,0) — (4,0,)
is well defined and has the inverse
(1—¢*)2F_, : Ass'? — Ass,
if ¢> —4q+ 1 # 0. Similarly, the functors
F, : Ass — Ass @9 (A,0) — (A4, 0,),
(1 —¢*)2F ,: Ass' 1) — Ass, (1 — ¢*)2F_, : Ass® — Alt,
are also well defined and
(1—¢*)*F  F,=id
if ¢>—4q+1=0.
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