# Classification of Segre holonomies of torsion-free affine connections 

S.A. Merkulov

| University of Glasgow | Max-Planck-Institut |
| :--- | :--- |
| Department of Mathematics | fur Mathematik |
| 15 University Gardens | Gottfried-Claren-Str. 26 |
| Glasgow G12 8QW | 53225 Bonn |
|  |  |
| United Kingdom | Germany |

# Classification of Segre holonomies of torsion-free affine connections 

MPI, Bonn

S.A. Merkulov<br>University of Glasgow


#### Abstract

Using twistor methods, a complete classification of irreducible holonomies of torsion-free affine connections which can be represented as a tensor product of nonAbelian representations, is given.

As a by-product, a complete list of all compact complex homogeneous-rational manifolds $X$ and ample line bundles $L \rightarrow X$ such that $\mathrm{H}^{0}\left(X, T X \otimes L^{*}\right) \neq 0$ and/or $\mathrm{H}^{1}\left(X, T X \otimes L^{*}\right) \neq 0$ is obtained.


## 1 Introduction

Holonomy group is one of the most informative characteristics of an affine connection. The problem of classification of holonomy groups has a long history which starts in 1920s with the works of Cartan [16, 17] where he used this notion to classify locally symmetric Riemannian manifolds. In 1955, Berger [7] showed that the list of irreducibly acting matrix Lie groups which can, in principle, occur as the holonomy of a torsion-free affine connection must be very restrictive. This is in a sharp contrast to the result of Hano and Ozeki [20] which says that there is no interesting holonomy classification in the class of arbitrary affine connections - any closed subgroup of $\mathrm{GL}(n, \mathbb{R})$ can be realized as the holonomy of an affine connection (with torsion, in general).

Berger presented his classification list of all possible candidates to irreducible holonomies ${ }^{1}$ in two parts - the first part is claimed to contain all possible groups which preserve a non-degenerate symmetric bilinear form, and the second part is claimed to contain all the rest, up to a finite number of missing terms which Bryant [13] suggested to call the exotic holonomies. The proof of the second part was omitted; as of this writing, no proof has yet been published.

The classification of all metric holonomies has been recently completed [14]. This is a culmination of efforts of many people to show that most entries of Berger's original metric list do occur as holonomies of Levi-Civita connections and that just a few of them are superious (see, e.g., $[3,9,12,13,14,33]$ and the references cited therein).

[^0]| BERGER'S ORIGINAL LIST OF NON-METRIC HOLONOMIES |  |  |
| :---: | :---: | :---: |
| group $G$ | representation $V$ | restrictions |
| $\mathrm{T}_{\mathbf{R}} \cdot \mathrm{SL}(n, \mathbb{R})$ | $\mathbb{R}^{n}$ $\begin{aligned} & \odot^{2} \mathbb{R}^{n} \simeq \mathbb{R}^{n(n+1) / 2} \\ & \Lambda^{2} \mathbb{R}^{n} \simeq \mathbb{R}^{n(n-1) / 2} \end{aligned}$ | $\begin{aligned} & n \geqslant 2 \\ & n \geqslant 3 \\ & n \geqslant 5 \end{aligned}$ |
| $\mathrm{T}_{\mathbb{C}} \cdot \mathrm{SL}(n, \mathbb{C})$ | $\begin{aligned} \mathbb{C}^{n} & \simeq \mathbb{R}^{2 n} \\ \odot^{2} \mathbb{C}^{n} & \simeq \mathbb{R}^{n(n+1)} \\ \Lambda^{2} \mathbb{C}^{n} & \simeq \mathbb{R}^{n(n-1)} \end{aligned}$ | $\begin{aligned} & n \geqslant 1 \\ & n \geqslant 3 \\ & n \geqslant 5 \end{aligned}$ |
| $\mathbb{R}^{*} \cdot \operatorname{SL}(n, \mathbb{C})$ | $\left\{A \in M_{n}(\mathbb{C}): \bar{A}=A^{t}\right\} \simeq \mathbb{R}^{n^{2}}$ | $n \geqslant 3$ |
| $\mathrm{T}_{\mathbb{R}} \cdot \mathrm{SL}(n, \mathbb{H})$ | $\begin{gathered} \mathbb{H}^{n} \simeq \mathbb{R}^{4 n} \\ \left\{A \in M_{n}(\mathbb{H}): A^{*}=-A^{t}\right\} \simeq \mathbb{R}^{n(2 n+1)} \\ \left\{A \in M_{n}(\mathbb{H}): A^{*}=A^{t}\right\} \simeq \mathbb{R}^{n(2 n-1)} \end{gathered}$ | $\begin{aligned} & n \geqslant 1 \\ & n \geqslant 2 \\ & n \geqslant 3 \end{aligned}$ |
| $\begin{aligned} & \mathrm{T}_{\mathbb{R}} \cdot \operatorname{Sp}(n, \mathbb{R}) \\ & \mathrm{T}_{\mathbb{C}} \cdot \operatorname{Sp}(n, \mathbb{C}) \end{aligned}$ | $\begin{gathered} \mathbb{R}^{2 n} \\ \mathbb{C}^{2 n} \simeq \mathbb{R}^{4 n} \end{gathered}$ | $\begin{aligned} & n \geqslant 2 \\ & n \geqslant 2 \end{aligned}$ |
| $\begin{gathered} \mathbb{R}^{*} \cdot \mathrm{SO}(p, q) \\ \mathrm{T}_{\mathbb{C}}^{*} \cdot \mathrm{SO}(n, \mathbb{C}) \end{gathered}$ | $\begin{gathered} \mathbb{R}^{p+q} \\ \mathbb{C}^{n} \simeq \mathbb{R}^{2 n} \end{gathered}$ | $\begin{gathered} p+q \geqslant 3 \\ n \geqslant 3 \end{gathered}$ |
| $\begin{gathered} \mathrm{T}_{\mathbf{R}} \cdot \mathrm{SL}(m, \mathbb{R}) \cdot \mathrm{SL}(n, \mathbb{R}) \\ \mathrm{T}_{\mathbf{C}} \cdot \mathrm{SL}(m, \mathbb{C}) \cdot \mathrm{SL}(n, \mathbb{C}) \\ \mathrm{T}_{\mathbf{R}} \cdot \mathrm{SL}(m, \mathbb{H}) \cdot \mathrm{SL}(n, \mathbb{H}) \\ \mathrm{SU}(2) \cdot \mathrm{SO}(n, \mathbb{H}) \end{gathered}$ | $\mathbb{R}^{m n}$ $\begin{gathered} \mathbb{C}^{m} \otimes \mathbb{C}^{n} \simeq \mathbb{R}^{2 m n} \\ \mathbb{R}^{16 m n} \\ \mathbb{R}^{2} \otimes \mathbb{R}^{4 n} \simeq \mathbb{R}^{8 n} \end{gathered}$ | $\begin{gathered} m>n \geqslant 2 \text { or } m \geqslant n>2 \\ m>n \geqslant 2 \text { or } m \geqslant n>2 \\ m>n \geqslant 1 \text { or } m \geqslant n>1 \\ n \geqslant 2 \end{gathered}$ |
| Notations: $\mathrm{T}_{\mathbf{F}}$ denotes any connected Lie subgroup of $\mathbb{F}^{*}$, $\mathrm{T}_{\mathbf{F}}^{*}$ denotes any non-trivial connected Lie subgroup of $\mathbb{F}^{*}$, $M_{n}(\mathbb{F})$ denotes the algebra of $n \times n$ matrices with entries in $\mathbb{F}$. |  |  |

Table 1: List of non-metric holonomies (Part I)

| LIST OF EXOTIC HOLONOMIES |  |  |
| :---: | :---: | :---: |
| group $G$ | representation $V$ | restrictions |
| $\begin{array}{r} \mathrm{T}_{\mathbf{R}} \cdot \operatorname{Spin}(5,5) \\ \mathrm{T}_{\mathbf{R}} \cdot \operatorname{Spin}(1,9) \\ \mathrm{T}_{\mathbf{C}} \cdot \operatorname{Spin}(10, \mathbb{C}) \end{array}$ | $\begin{gathered} \mathbb{R}^{16} \\ \mathbb{R}^{16} \\ \mathbb{C}^{16} \simeq \mathbb{R}^{32} \end{gathered}$ |  |
| $\begin{aligned} & \mathrm{T}_{\mathbf{R}} \cdot \mathrm{E}_{6}^{1} \\ & \mathrm{~T}_{\mathbf{R}} \cdot \mathrm{E}_{6}^{4} \\ & \mathrm{~T}_{\mathbf{C}} \cdot \mathrm{E}_{6}^{\mathbf{C}} \end{aligned}$ | $\begin{gathered} \mathbb{R}^{27} \\ \mathbb{R}^{27} \\ \mathbb{C}^{27} \simeq \mathbb{R}^{54} \end{gathered}$ |  |
| $\begin{gathered} \mathrm{T}_{\mathbb{R}} \cdot \mathrm{SL}(2, \mathbb{R}) \\ \mathrm{T}_{\mathbb{C}} \cdot \mathrm{SL}(2, \mathbb{C}) \\ \mathbb{R}^{*} \cdot \mathrm{SO}(2) \cdot \mathrm{SL}(2, \mathbb{R}) \\ \mathbb{C}^{*} \cdot \mathrm{SU}(2) \end{gathered}$ | $\begin{aligned} & \odot^{3} \mathbb{R}^{2} \simeq \mathbb{R}^{4} \\ & \odot^{3} \mathbb{C}^{2} \simeq \mathbb{R}^{8} \\ & \mathbb{R}^{2} \otimes \mathbb{R}^{2} \simeq \mathbb{R}^{4} \\ & \mathbb{C}^{2} \simeq \mathbb{R}^{4} \end{aligned}$ |  |
| $\begin{aligned} & \mathrm{SL}(2, \mathbb{R}) \cdot \mathrm{SO}(p, q) \\ & \mathrm{SL}(2, \mathbb{C}) \cdot \mathrm{SO}(n, \mathbb{C}) \end{aligned}$ | $\begin{aligned} \mathbb{R}^{2} \otimes \mathbb{R}^{p+q} & \simeq \mathbb{R}^{2 p+2 q} \\ \mathbb{C}^{2} \otimes \mathbb{C}^{n} & \simeq \mathbb{R}^{4 n} \end{aligned}$ | $\begin{gathered} p+q>2 \\ n \geqslant 3 \end{gathered}$ |
| $\begin{aligned} & \mathrm{E}_{7}^{5} \\ & \mathrm{E}_{7}^{7} \\ & \mathrm{E}_{7}^{\mathrm{C}} \end{aligned}$ | $\begin{gathered} \mathbb{R}^{56} \\ \mathbb{R}^{56} \\ \mathbb{R}^{112} \simeq \mathbb{C}^{56} \end{gathered}$ |  |
| $\begin{aligned} & \operatorname{Sp}(3, \mathbb{R}) \\ & \operatorname{Sp}(3, \mathbb{C}) \end{aligned}$ | $\begin{gathered} \mathbb{R}^{14} \subset \Lambda^{3} \mathbb{R}^{6} \\ \mathbb{R}^{28} \simeq \mathbb{C}^{14} \subset \Lambda^{3} \mathbb{C}^{6} \end{gathered}$ |  |
| $\begin{aligned} & \mathrm{SL}(6, \mathbb{R}) \\ & \mathrm{SL}(6, \mathbb{C}) \end{aligned}$ | $\begin{aligned} & \mathbb{R}^{20} \simeq \Lambda^{3} \mathbb{R}^{6} \\ & \mathbb{R}^{40} \simeq \Lambda^{3} \mathbb{C}^{6} \end{aligned}$ |  |
| $\begin{gathered} \operatorname{Spin}(2,10) \\ \operatorname{Spin}(6,6) \\ \operatorname{Spin}(12, \mathbb{C}) \end{gathered}$ | $\begin{gathered} \mathbb{R}^{32} \\ \mathbb{R}^{32} \\ \mathbb{R}^{64} \simeq \mathbb{C}^{32} \end{gathered}$ |  |
| Notations: $\mathrm{T}_{\mathrm{F}}$ deno | any connected Lie subis | group of $\mathbb{F}^{*}$ |

Table 2: List of non-metric holonomies (Part II)

Berger's second list of non-metric holonomies, refined and extended, is given in Tables 1 and 2. The 4-dimensional representations of $\mathrm{T}_{\mathbf{R}} \cdot \mathrm{SL}(2, \mathbb{R}), \mathrm{T}_{\mathbb{C}} \cdot \mathrm{SL}(2, \mathbb{C}), \mathbb{R}^{*} \cdot \mathrm{SO}(2) \cdot \mathrm{SL}(2, \mathbb{R})$ and $\mathbb{C}^{*} \cdot \mathrm{SU}(2)$, and the fundamental representations of various real forms of $\mathrm{T}_{\mathbf{C}} \cdot \operatorname{Spin}(10, \mathbb{C})$ and $\mathrm{T}_{\mathbb{C}} \cdot \mathrm{E}_{6}^{\mathbb{C}}$ have been added to the list of non-metric holonomies by Bryant $[13,14]$. The series $\operatorname{SL}(2, \mathbb{R}) \cdot \mathrm{SO}(p, q)$ and $\mathrm{SL}(2, \mathbb{C}) \cdot \mathrm{SO}(n, \mathbb{C})$ have been found by Chi et al [18]. Recently $[30]$ it has been shown that representations of $\mathrm{E}_{7}^{5}, \mathrm{E}_{7}^{7}, \mathrm{E}_{7}^{\mathbf{C}}, \operatorname{Sp}(3, \mathbb{R}), \operatorname{Sp}(3, \mathbb{C}), \operatorname{SL}(6, \mathbb{R})$, $\operatorname{SL}(6, \mathbb{C}), \operatorname{Spin}(2,10), \operatorname{Spin}(6,6)$ and $\operatorname{Spin}(12, \mathbb{C})$ listed in Table 2 also occur as holonomies of torsion-free affine connections.

In summary, due to $[5,13,14,18,30,33]$ all entries of Tables 1 and 2 are known to occur as holonomies. The completeness status of these tables is not clear at present. However, we can make a definite statement about a part of modified Berger's non-metric list.

Theorem A Let $G$ be the irreducible holonomy of a torsion-free affine connection which is not locally symmetric and does not preserve any (pseudo-)Riemannian metric. If the semisimple part of $G$ is not simple, then $G$ is one of the groups listed in the following table

| LIST OF NON-METRIC SEGRE HOLONOMIES |  |  |
| :---: | :---: | :---: |
| $\operatorname{group} G$ | representation $V$ | restrictions |
| $\mathrm{T}_{\mathbb{R}} \cdot \mathrm{SL}(m, \mathbb{R}) \cdot \mathrm{SL}(n, \mathbb{R})$ | $\mathbb{R}^{m n}$ | $m>n \geqslant 2$ or $m \geqslant n>2$ |
| $\mathrm{~T}_{\mathbb{C}} \cdot \mathrm{SL}(m, \mathbb{C}) \cdot \mathrm{SL}(n, \mathbb{C})$ | $\mathbb{C}^{m} \otimes \mathbb{C}^{n} \simeq \mathbb{R}^{2 m n}$ | $m>n \geqslant 2$ or $m \geqslant n>2$ |
| $\mathrm{~T}_{\mathbb{R}} \cdot \mathrm{SL}(m, \mathbb{H}) \cdot \mathrm{SL}(n, \mathbb{H})$ | $\mathbb{R}^{16 m n}$ | $m>n \geqslant 1$ or $m \geqslant n>1$ |
| $\mathbb{R}^{*} \cdot \mathrm{SO}(p, q)$ | $\mathbb{R}^{4}$ | $p=q=2$ or $p=4, q=0$ |
| $\mathrm{~T}_{\mathbf{C}}^{*} \cdot \mathrm{SL}(2, \mathbb{C}) \cdot \mathrm{SL}(2, \mathbb{C})$ | $\mathbb{R}^{8} \simeq \mathbb{C}^{4}$ |  |
| $\mathrm{SL}(2, \mathbb{R}) \cdot \mathrm{SO}(p, q)$ | $\mathbb{R}^{2} \otimes \mathbb{R}^{p+q} \simeq \mathbb{R}^{2 p+2 q}$ |  |
| $\mathrm{SU}(2) \cdot \mathrm{SO}(n, \mathbb{H})$ | $\mathbb{R}^{2} \otimes \mathbb{R}^{4 n} \simeq \mathbb{R}^{8 n}$ | $n+q>2$ |
| $\mathrm{SL}(2, \mathbb{C}) \cdot \mathrm{SO}(n, \mathbb{C})$ | $\mathbb{C}^{2} \otimes \mathbb{C}^{n} \simeq \mathbb{R}^{4 n}$ | $n \geqslant 2$ |
| $\mathrm{NOTATIONS}: \mathrm{T}_{\mathbf{F}}$ denotes any connected Lie subgroup of $\mathbb{F}^{*}$, |  |  |
| $\mathrm{T} \mathrm{T}_{\mathbf{F}}^{*}$ denotes any non-trivial connected Lie subgroup of $\mathbb{F}^{*}$. |  |  |

The class of holonomy groups (and the associated geometric structures) studied by Theorem A appear in the literature under different names. For example, the authors of [2, 26] call these almost Grassmanian, the authors of [5] call these paraconformal. In this paper we follow the terminology of Bryant [14] who suggested to call them Segre holonomies. Some applications of Segre structures to high energy physics are discussed in [25, 27].

The second classification result of this paper has, at first sight, nothing to do with the holonomy problem.

Theorem B Let $X$ be a compact complex homogeneous-rational manifold and $L$ an ample line bundle on $X$. Then
(i) $\mathrm{H}^{0}\left(X, T X \otimes L^{*}\right)= \begin{cases}\mathbb{C} & \text { for }(X, L)=\left(\mathbb{C P}_{1}, \mathcal{O}(2)\right) \\ \mathbb{C}^{n} & \text { for }(X, L)=\left(\mathbb{C P}_{n}, \mathcal{O}(1)\right), n \geqslant 1 \\ 0 & \text { otherwise }\end{cases}$
(ii) $\mathrm{H}^{1}\left(X, T X \otimes L^{*}\right)=0$ unless $(X, L)$ is one of the entries in Table 3.

One may compare this result with the vanishing theorem of Kobayashi and Ochiai [24] which says that if $X$ is a compact complex rational manifold and $L \rightarrow X$ a line bundle such that $\operatorname{det}(T X) \otimes L^{*}$ is ample, then $H^{i}\left(X, T X \otimes L^{*}\right)=0$ for all $i \geqslant 2$.

The paper is organized as follows. After recalling a few basic facts about holonomy groups in the beginning of section 2, we show in sections 2 and 3 that Theorem B implies Theorem A (more precisely, it is the part of Table 3 classifying all $(X, L)$ with $H^{1}(X, T X \otimes$ $\left.L^{2 *}\right) \neq 0$ which implies Theorem A). As a by-product, we get a very simple group-theoretic explanation of the effectiveness of twistor methods in differential geometry. In the second half of the paper (section 4) we prove Theorem B.

## 2 Holonomy groups in the Borel-Weil context

1. Definition of holonomy groups. Consider the following data:

- Let $M$ be a smooth connected and simply connected $n$-manifold.
- Fix a point $x \in M$.
- Let $\mathcal{L}_{x}=\{\gamma:[0,1] \rightarrow M \mid \gamma(0)=\gamma(1)\}$ be the set of piecewise smooth loops based at $x$.
- Let $\nabla$ be an affine connection on $M$.
- For $\gamma \in \mathcal{L}_{x}$, let $P_{\gamma}: T_{x} M \longrightarrow T_{x} M$ be a linear automorphism induced by the $\nabla$-parallel translations along $\gamma$.

The holonomy of $\nabla$ at $x \in M$ is defined as a subset $H_{x}:=\left\{P_{\gamma} \mid \gamma \in \mathcal{L}_{x}\right\} \subseteq \mathrm{GL}\left(T_{x} M\right)$. Its basic properties are: (i) $H_{x}$ is a connected Lie subgroup of $\mathrm{GL}\left(T_{x} M\right)$; (ii) if one fixes an isomorphism $i: T_{x} M \simeq V$, where $V$ is any fixed vector space with $\operatorname{dim} V=\operatorname{dim} M$ (typically, $V=\mathbb{R}^{n}$ ), then the conjugacy class of $i\left(H_{x}\right) \subset G L(V)$ does not depend on the choice of $x \in M$ (see, e.g., [9]). The holonomy group of $\nabla$ is defined as any linear subgroup $G \subseteq \mathrm{GL}(V)$ in the conjugacy class of $i\left(H_{x}\right)$ for some $x \in M$. The Lie algebra $\mathfrak{g} \subseteq g l(V)$ of $G$ is called the holonomy algebra of $\nabla$.

Let $V$ be a vector space and $\mathfrak{g} \subseteq g l(V)$ a Lie subalgebra. What is a necessary condition for $\mathfrak{g}$ to be the holonomy algebra of a torsion-free affine connection? One of the answers is that at least one of the Spencer $\mathfrak{g}$-modules, $\mathfrak{g}^{(1)}$ or $\mathrm{H}^{1,2}(\mathfrak{g})$, must be non-zero. We shall recall their definition in the next subsection.

| $\mathrm{Aut}^{0} \mathrm{X}$ | $(X, L)$ | $\mathrm{H}^{1}\left(X, T X \otimes L^{*}\right)$ |
| :---: | :---: | :---: |
| $A_{l} \quad(l \geqslant 1)$ |  | $\odot^{k-4} \mathbb{C}^{2}$ <br> $\mathbb{C}$ <br> $\mathbb{C}$ <br> $\mathbb{C}$ |
| $B_{l} \quad(l \geqslant 3)$ |  | $\begin{aligned} & \mathbb{C} \\ & \mathbb{C} \end{aligned}$ |
| $C_{l}(l \geqslant 2)$ | $\begin{aligned} & 0=x_{0}^{2} \\ & 0 \quad 1 \\ & 0 \quad 0 \quad 0 \end{aligned}$ | $\begin{aligned} & \mathbb{C} \\ & \mathbb{C} \end{aligned}$ |
| $D_{l} \quad(l \geqslant 4)$ | $2 \times 0$ | $\mathbb{C}$ |
| $F_{4}$ | $0 \xrightarrow{0} \rightarrow 0 \xrightarrow{1}$ | $\mathbb{C}$ |
| $A_{1} \times A_{1}$ | $\stackrel{k}{\times} \otimes \stackrel{2}{\times} \quad(k \geqslant 2)$ | $\odot^{k-2} \mathbb{C}^{2}$ |
| $A_{1} \times A_{l}(l \geqslant 1)$ | $\stackrel{k}{\times} \otimes \stackrel{1}{\times} 0 . \ldots 0{ }^{0} 00 \quad(k \geqslant 2)$ | $\odot^{k-2} \mathbb{C}^{2} \otimes \mathbb{C}^{l+1}$ |

Notation: Aut ${ }^{0} X$ denotes the universal covering of the component the identity of the group of all automorphisms of $X$

Table 3: The list of all $(X, L)$ with $\mathrm{H}^{1}\left(X, T X \otimes L^{*}\right) \neq 0$
2. Spencer cohomology. Let $V$ be a vector space and $\mathfrak{g}$ a Lie subalgebra of $g l(V) \simeq$ $V \otimes V^{*}$. Define recursively the $\mathfrak{g}$-modules

$$
\begin{aligned}
\mathfrak{g}^{(-1)} & =V \\
\mathfrak{g}^{(0)} & =\mathfrak{g} \\
\mathfrak{g}^{(k)} & =\left[\mathfrak{g}^{(k-1)} \otimes V^{*}\right] \cap\left[V \otimes \odot^{k+1} V^{*}\right], k=1,2, \ldots,
\end{aligned}
$$

and define the map

$$
\partial: \mathfrak{g}^{(k)} \otimes \Lambda^{l-1} V^{*} \longrightarrow \mathfrak{g}^{(k-1)} \otimes \Lambda^{l} V^{*}
$$

as the antisymmetrisation over the last $l$ indices. Here and elsewhere the symbols $\odot^{k}$ and $\Lambda^{k}$ stand for $k$-th order symmetric and antisymmetric powers respectively.

Since $\partial^{2}=0$, there is a complex

$$
\mathfrak{g}^{(k)} \otimes \Lambda^{l-1} V^{*} \xrightarrow{\partial} \mathfrak{g}^{(k-1)} \otimes \Lambda^{l} V^{*} \xrightarrow{\partial} \mathfrak{g}^{(k-2)} \otimes \Lambda^{l+1} V^{*}
$$

whose cohomology at the center term is denoted by $\mathrm{H}^{k, l}(\mathfrak{g})$ and is called the ( $k, l$ ) Spencer cohomology group. In particular,

$$
\begin{align*}
\mathrm{H}^{k, 1}(\mathfrak{g}) & =0 \\
\mathrm{H}^{k, 2}(\mathfrak{g}) & =\frac{\text { Ker }: \mathfrak{g}^{(k-1)} \otimes \Lambda^{2} V^{*} \xrightarrow{\partial} \mathfrak{g}^{(k-2)} \otimes \Lambda^{3} V^{*}}{\text { Image }: \mathfrak{g}^{(k)} \otimes V^{*} \xrightarrow{\partial} \mathfrak{g}^{(k-1)} \otimes \Lambda^{2} V^{*}} \tag{1}
\end{align*}
$$

The $\mathfrak{g}$-module $\mathrm{H}^{k, 2}(\mathfrak{g})$ has the following geometric meaning: if $G$ is a matrix Lie group whose Lie algebra is $\mathfrak{g}$ and $\mathcal{G} \rightarrow M$ is a $G$-structure on a manifold $M$ which is infinitesimally flat to $k$-th order, then the obstruction for $\mathcal{G}$ to be infinitesimally flat to $(k+1)$-th order is given by a section of the associated vector bundle $\mathcal{G} \times{ }_{G} \mathrm{H}^{k, 2}(\mathfrak{g})$.

Another $\mathfrak{g}$-module $\mathfrak{g}^{(1)}$ has a clear geometric interpretation as well. If a $G$-structure $\mathcal{G} \rightarrow M$ is infinitesimally flat to 1 st order (which is equivalent to saying that $\mathcal{G}$ admits a torsion-free affine connection), then the set of all torsion-free affine connections in $\mathcal{G}$ is an affine space modelled on the vector space $\mathrm{H}^{0}\left(M, \mathcal{G} \times{ }_{G} \mathfrak{g}^{(1)}\right)$. In particular, if $G \subseteq G L(V)$ is such that $\mathfrak{g}^{(1)}=0$, then any $G$-structure admits at most one torsion-free affine connection. If $K(\mathfrak{g})$ denotes the $\mathfrak{g}$-module of formal curvature tensors of torsion-free affine connections with holonomy in $\mathfrak{g}$, i.e.

$$
K(\mathfrak{g})=\left[\mathfrak{g} \otimes \Lambda^{2} V^{*}\right] \cap\left[\text { Ker }: V \otimes V^{*} \otimes \Lambda^{2} V^{*} \rightarrow V \otimes \Lambda^{3} V^{*}\right]
$$

then

$$
\mathrm{H}^{1,2}(\mathfrak{g})=\frac{K(\mathfrak{g})}{\partial\left(\mathfrak{g}^{(1)} \otimes V^{*}\right)}
$$

i.e. the cohomology group $\mathrm{H}^{1,2}(\mathfrak{g})$ represents the part of $K(\mathfrak{g})$ which is invariant under $\mathfrak{g}^{(1)}$ valued shifts in a formal torsion-free affine connection with holonomy in $\mathfrak{g}$. For example, if $(G, V)=\left(\mathrm{CO}(n, \mathbb{R}), \mathbb{R}^{n}\right)$, then $\mathfrak{g}^{(1)}=V^{*}$ and $\mathrm{H}^{1,2}(\mathfrak{g})$ is the vector space of formal Weyl tensors.

If $\mathfrak{g}^{(1)}=0$, then $\mathrm{H}^{1,2}(\mathfrak{g})$ is exactly $K(\mathfrak{g})$, the $\mathfrak{g}$-module which plays a key role in the theory of torsion-free affine connections with holonomy in $\mathfrak{g}$. The case $\mathfrak{g}^{(1)}=0$ is generic - there are very few irreducibly acting Lie subgroups $\mathfrak{g} \subset g l(V)$ which have $\mathfrak{g}^{(1)} \neq 0$. For future reference we list in Table 4 all complex irreducible Lie subgroups $G \subset \mathrm{GL}(V)$ with

| THE LIST OF ALL IRREDUCIBLE COMPLEX LIE SUBGROUPS $G \subseteq G L(V, \mathbb{C})$ WITH $\mathfrak{g}^{(1)} \neq 0$ |  |  |
| :---: | :---: | :---: |
| $\operatorname{group} G$ | representation $V$ | $\mathfrak{g}^{(1)}$ |
| $\mathrm{SL}(n, \mathbb{C})$ | $V=\mathbb{C}^{n}, n \geqslant 2$ | $\left(V \otimes \odot^{2} V^{*}\right)_{0}$ |
| $\mathrm{GL}(n, \mathbb{C})$ | $V=\mathbb{C}^{n}, n \geqslant 1$ | $V \otimes \odot^{2} V^{*}$ |
| $\mathrm{GL}(n, \mathbb{C})$ | $V \simeq \odot^{2} \mathbb{C}^{n}, n \geqslant 2$ | $V^{*}$ |
| $\operatorname{GL}(n, \mathbb{C})$ | $V \simeq \Lambda^{2} \mathbb{C}^{n}, n \geqslant 5$ | $V^{*}$ |
| $\mathrm{GL}(m, \mathbb{C}) \cdot \mathrm{GL}(n, \mathbb{C})$ | $V \simeq \mathbb{C}^{n} \otimes \mathbb{C}^{n}, m, n \geqslant 2$ | $V^{*}$ |
| $\operatorname{Sp}(n, \mathbb{C})$ | $V=\mathbb{C}^{n}, n \geqslant 4$ | $\odot^{3} V^{*}$ |
| $\mathbb{C}^{*} \cdot \operatorname{Sp}(n, \mathbb{C})$ | $V=\mathbb{C}^{n}, n \geqslant 4$ | $\odot^{3} V^{*}$ |
| $\operatorname{CO}(n, \mathbb{C})$ | $V=\mathbb{C}^{n}, n \geqslant 5$ | $V^{*}$ |
| $\mathbb{C}^{*} \cdot \operatorname{Spin}(10, \mathbb{C})$ | $V=\mathbb{C}^{16}$ | $V^{*}$ |
| $\mathbb{C}^{*} \cdot \mathrm{E}_{6}^{\mathbf{C}}$ | $V=\mathbb{C}^{27}$ | $V^{*}$ |

Table 4: Classification list of Cartan (1909) and Kobayashi \& Nagano (1965)
$\mathfrak{g}^{(1)} \neq 0$ which is due to Cartan [15] and Kobayashi \& Nagano [23]. As of this writing, the list of all irreducibly acting $\mathfrak{g} \subseteq g l(V)$ which have $\mathrm{H}^{1,2}(\mathfrak{g}) \neq 0$ is not known - otherwise the holonomy classification problem would be solved long ago.

Another $\mathfrak{g}$-module, $K^{1}(\mathfrak{g})$, which is of interest in the holonomy context can be defined as the kernel of the composition

$$
K(\mathfrak{g}) \otimes V^{*} \longrightarrow \mathfrak{g} \otimes \Lambda^{2} V^{*} \otimes V^{*} \longrightarrow \mathfrak{g} \otimes \Lambda^{3} V^{*}
$$

where the first map is the natural inclusion and the second map is the antisymmetrization on the last three indices. If there exist a torsion-free affine connection $\nabla$ on a smooth manifold $M$ with the holonomy algebra in $\mathfrak{g}$, then the curvature tensor $R$ of $\nabla$ can be represented locally as a function on $M$ with values in $K(\mathfrak{g})$, while the covariant derivative $\nabla R$ can be represented locally as a function on $M$ with values in $K^{1}(\mathfrak{g})$. Therefore, $K^{1}(\mathfrak{g}) \neq 0$ (in particular, $K(\mathfrak{g}) \neq 0$ ) is one of the necessary conditions for $\nabla$ to be the holonomy of a torsion-free affine connection which is not locally symmetric. Note that $\mathfrak{g}^{\prime} \subseteq \mathfrak{g}$ implies $K\left(\mathfrak{g}^{\prime}\right) \subseteq K(\mathfrak{g})$ and $K^{1}\left(\mathfrak{g}^{\prime}\right) \subseteq K^{1}(\mathfrak{g})$.

It is well-known [22] that the classification of real irreducible representations of real reductive Lie algebras can be accomplished via the classification of complex irreducible representations of complex reductive Lic algebras. The problem of classifying real reductive holonomies can, in principle, be handled in a similar way (see subsection 5 in $\S 3$ ), with the first and the most important step being the classification of all possible candidates to complex reductive holonomies. With this motivation, we restrict our attention in the rest of Section 2 and in the most of Section 3 to complex irreducible representations of complex reductive Lie groups $G$ and their Lie algebras $\mathfrak{g}$.

Unless otherwise explicitly stated, $\mathrm{T}_{\mathbf{C}}$ denotes in what follows either a trivial group or the multiplicatitive group $\mathbb{C}^{*}$ and $t_{\mathbf{c}}$ denotes the Lie algebra of $\mathrm{T}_{\mathbf{C}}$.
3. Twistor formulae for Spencer cohomology. Let $V$ be a finite dimensional complex vector space and $G \subseteq \mathrm{GL}(V)$ an irreducible representation of a reductive complex Lie group in $V$. Then $G$ also acts irreducibly in $V^{*}$ via the dual representation. Let $\tilde{X}$ be the $G$-orbit of a highest weight vector in $V^{*} \backslash 0$. Then the quotient $X:=\tilde{X} / \mathbb{C}^{*}$ is a compact complex homogeneous-rational manifold canonically embedded into $\mathbb{P}\left(V^{*}\right)$, and there is a commutative diagram

$$
\begin{array}{ccc}
\tilde{X} & \hookrightarrow & V^{*} \backslash 0 \\
\downarrow & & \downarrow \\
X & \hookrightarrow & \mathbb{P}\left(V^{*}\right)
\end{array}
$$

In fact, $X=G_{s} / P$, where $G_{s}$ is the semisimple part of $G$ and $P$ is the parabolic subgroup of $G_{s}$ leaving a highest weight vector in $V^{*}$ invariant up to a scale. Let $L$ be the restriction of the hyperplane section bundle $\mathcal{O}(1)$ on $\mathbb{P}\left(V^{*}\right)$ to the submanifold $X$. Clearly, $L$ is an ample homogeneous line bundle on $X$.

In summary, there is a natural map

$$
(G, V) \longrightarrow(X, L)
$$

which associates with an irreducibly acting reductive Lie group $G \subseteq \mathrm{GL}(V)$ a pair $(X, L)$ consisting of a compact complex homogeneous-rational manifold $X$ and an ample line bundle $L$ on $X$. We call $(X, L)$ the Borel-Weil data associated with $(G, V)$.

Can this map be reversed? According to Borel-Weil, the representation space $V$ can be reconstructed very easily:

$$
V=\mathrm{H}^{0}(X, L)
$$

What about $G$ ? According to Onishchik, with a few (but notable) exceptions, $G$ can be reconstructed as well.

Fact 2.1 [1] Assume that $G$ is simple. The Lie algebra of $G$ is isomorphic to $\mathrm{H}^{0}(X, T X)$ unless one of the following holds:
(i) $G$ is the representation of $\mathrm{Sp}(n, \mathbb{C})$ in $\mathbb{C}^{2 n}$ in which case $\mathrm{H}^{0}(X, T X) \simeq \operatorname{sl}(n, \mathbb{C})$;
(ii) $G$ is the representation of $\mathrm{G}_{2}$ in $\mathbb{C}^{7}$ in which case $\mathrm{H}^{0}(X, T X) \simeq \operatorname{so}(7, \mathbb{C})$;
(iii) $G$ is the fundamental spinor representation of $\mathrm{SO}(2 n+1, \mathbb{C})$ in which case $\mathrm{H}^{0}(X, T X) \simeq \operatorname{so}(2 n+2, \mathbb{C})$.

Another proof of this fact is given in [35].
Therefore, if $G \subseteq \mathrm{GL}(V)$ is semisimple then, with a few exceptions, $G$ can be reconstructed from $(X, L)$. However, it is often undesirable to restrict oneself to semisimple groups only (especially in the context of the holonomy classification problem). There is a natural central extension of the Lie algebra $\mathrm{H}^{0}(X, T X)$ :

Fact 2.2 For any $(X, L), \mathfrak{g}:=H^{0}\left(X, L \otimes\left(J^{1} L\right)^{*}\right)$ is a reductive Lie algebra canonically represented in $\mathrm{H}^{0}(X, L)$.

This fact is easy to explain $-\mathrm{H}^{0}\left(X, L \otimes\left(J^{1} L\right)^{*}\right)$ is exactly the Lie algebra of the Lie group $G$ of all global biholomorphisms of the line bundle $L$ which commute with the projection $L \rightarrow X$.

In summary, with a given irreducible representation $G \subseteq G \mathrm{GL}(V)$ there is canonically associated a pair ( $X, L$ ) consisting of a compact complex homogenous-rational manifold $X$ and a very ample line bundle on $X$ such that much of the original information about $G$ can be restored from $(X, L)$. For our purposes the crucial observation is that the $\mathfrak{g}$-modules $\mathfrak{g}^{(k)}$ and $\mathrm{H}^{k, 2}(\mathfrak{g})$ also admit a simple description in terms of $(X, L)$.

Theorem 2.3 For a compact complex manifold $X$ and a very ample line bundle $L$ on $X$, there is an isomorphism

$$
\mathfrak{g}^{(k)}=\mathrm{H}^{0}\left(X, L \otimes \odot^{k+1} N^{*}\right), \quad k=0,1,2, \ldots
$$

and an exact sequence of $\mathfrak{g}$-modules,

$$
0 \longrightarrow \mathrm{H}^{k, 2}(\mathfrak{g}) \longrightarrow \mathrm{H}^{1}\left(X, L \otimes \odot^{k+2} N^{*}\right) \longrightarrow \mathrm{H}^{1}\left(X, L \otimes \odot^{k+1} N^{*}\right) \otimes V^{*}, \quad k=1,2, \ldots
$$

where $\mathfrak{g}:=\mathrm{H}^{0}\left(X, L \otimes N^{*}\right), N:=J^{1} L$, and $\mathrm{H}^{k, 2}(\mathfrak{g})$ are the Spencer cohomology groups associated with the canonical representation of $\mathfrak{g}$ in the vector space $V:=H^{0}(X, L)$.

Proof. Since $L$ is very ample, there is a natural "evaluation" epimorhism

$$
V \otimes \mathcal{O}_{X} \rightarrow J^{1} L \rightarrow 0
$$

whose dualization gives rise to the canonical monomorphism $0 \rightarrow N^{*} \rightarrow V^{*} \otimes \mathcal{O}_{X}$. Then one may construct the following sequences of locally free sheaves,

$$
\begin{equation*}
0 \longrightarrow L \otimes \odot^{k+1} N^{*} \longrightarrow L \otimes \odot^{k} N^{*} \otimes V^{*} \longrightarrow L \otimes \odot^{k-1} N^{*} \otimes \Lambda^{2} V^{*} \tag{2}
\end{equation*}
$$

and

$$
\begin{equation*}
0 \longrightarrow L \otimes \odot^{k+2} N^{*} \longrightarrow L \otimes \odot^{k+1} N^{*} \otimes V^{*} \longrightarrow L \otimes \odot^{k}\left(N^{*}\right) \otimes \Lambda^{2} V^{*} \longrightarrow L \otimes \odot^{k-1} N^{*} \otimes \Lambda^{3} V^{*} \tag{3}
\end{equation*}
$$

and notice that they both are exact. [Hint: for any vector space $W$ one has $W \otimes \Lambda^{2} W \bmod$ $\Lambda^{3} W \simeq W \otimes \odot^{2} W \bmod \odot^{3} W$.]

Then computing $\mathrm{H}^{0}(X, \ldots)$ of (2) and using the inductive definition of $\mathfrak{g}^{(k)}$ one easily obtains the first statement of the Theorem.

The second statement follows from (3) and the definition (1) of $\mathrm{H}^{k, 2}(\mathfrak{g})$. Indeed, define $E_{k}$ by the exact sequence

$$
0 \longrightarrow L \otimes \odot^{k+2} N^{*} \longrightarrow L \otimes \odot^{k+1} N^{*} \otimes V^{*} \longrightarrow E_{k} \longrightarrow 0
$$

The associated long exact sequence implies the following exact sequence of vector spaces

$$
0 \longrightarrow \mathrm{H}^{0}\left(X, E_{k}\right) / \partial\left[\mathfrak{g}^{(k)} \otimes V^{*}\right] \longrightarrow \mathrm{H}^{1}\left(X, L \otimes \odot^{k+2} N^{*}\right) \longrightarrow \mathrm{H}^{1}\left(X, L \otimes \odot^{k+1} N^{*}\right) \otimes V^{*} .
$$

On the other hand, the exact sequence

$$
0 \longrightarrow E_{k} \longrightarrow L \otimes \odot^{k} N^{*} \otimes \Lambda^{2} V^{*} \longrightarrow L \otimes \odot^{k-1} N^{*} \otimes \Lambda^{3} V^{*}
$$

implies

$$
\mathrm{H}^{0}\left(X, E_{k}\right)=\operatorname{ker}: \mathfrak{g}^{(k-1)} \otimes \Lambda^{2} V^{*} \xrightarrow{\partial} \mathfrak{g}^{(k-2)} \otimes \Lambda^{3} V^{*}
$$

which in turn implies

$$
\mathrm{H}^{k, 2}(\mathfrak{g})=\mathrm{H}^{0}\left(X, E_{k}\right) / \partial\left[\mathfrak{g}^{(k)} \otimes V^{*}\right] .
$$

This completes the proof of the second part of the Theorem.
In 1976 Penrose [32] considered the data $(X \hookrightarrow Z, N)$ consisting of a rational curve $X=\mathbb{C P}^{1}$ embedded into a complex 3 -fold $Z$ with normal bundle $N=\mathcal{O}(1) \oplus \mathcal{O}(1)$; and showed that the Kodaira moduli space of all rational curves obtained by holomorphic deformations of $X$ inside $Z$ is a complex 4 -dimensional manifold $M$ which comes equipped with a canonically induced self-dual conformal structure. Moreover, he showed that any local conformal self-dual structure arises in this way. Since this pioneering work, several other manifestations of this strange phenomenon have been observed when a complex analytic data of the form $(X \hookrightarrow Z, N)$ gives rise to a full category of local geometric structures $C_{g e o}$. More precisely, it is asuccessful choice of a pair $(X, N)$ consisting of a complex homogeneous manifold $X$ and a homogeneous vector bundle $N$ on $X$ which uniquely specifies $C_{g e o}$, the choice of a particular ambient manifold $Z$ corresponding to the choice of a particular object in $C_{g e o}$.

The fact that, according to Theorem 2.3, the spaces of formal curvature tensors fit nicely into the Borel-Weil paradigm gives a simple group-theoretic explanation of why a twistorial data $(X, N)$ can, in principle, be used as a building block for basic differentialgeometric objects. If rank $N \geqslant 2$, then, following a common practice in complex analysis, one should replace the pair $(X, N)$ by an equivalent one $\left(\hat{X}=\mathbb{P}\left(N^{*}\right), L=\mathcal{O}(1)\right)$ and then apply Theorem 2.3 to find out which geometric category $C_{g e o}$ may correspond to $(X, N)$. Applying this procedure, e.g., to the pair $\left(\mathbb{C P}_{1}, \mathbb{C}^{2 k} \otimes \mathcal{O}(1)\right), k>1$, one immediately concludes that $C_{\text {geo }}$ can only be the category of complexified quaternionic manifolds.

Also, this purely group-theoretic result suggests that there should exist a universal twistor construction for all torsion-free geometries. Details of this construction are given in [28, 29].

## 3 Classification of Segre holonomies

1. Cohomology on reducible rational homogeneous manifolds. From now on we assume that $\mathbb{X}=X_{1} \times X_{2}$ is a direct product of two compact complex homogeneous-rational manifolds $X_{1}$ and $X_{2}$ and that $\mathbb{L}$ is an ample holomorphic line bundle on $X$. Denoting by $\pi_{1}: \mathbb{X} \rightarrow X_{1}$ and $\pi_{2}: \mathbb{X} \rightarrow X_{2}$ the natural projections, we may write $\mathbb{L}=\pi_{1}^{*}\left(L_{1}\right) \otimes \pi_{2}^{*}\left(L_{2}\right)$ for some uniquely specified ample line bundles $L_{1}$ and $L_{2}$ on $X_{1}$ and $X_{2}$ respectively. We denote $\mathbb{N}:=J^{1} \mathbb{L}$ and $N_{i}:=J^{1} L_{i}, i=1,2$.

Since

$$
0 \longrightarrow \Omega X_{i} \otimes L_{i} \longrightarrow N_{i} \longrightarrow L_{i} \longrightarrow 0
$$

one has

$$
0 \longrightarrow \pi_{1}^{*}\left(\Omega^{1} X_{1}\right) \otimes \mathbb{L}+\pi_{2}^{*}\left(\Omega^{1} X_{2}\right) \otimes \mathbb{L}-\longrightarrow \pi_{1}^{*}\left(N_{1}\right) \otimes \pi_{2}^{*}\left(L_{2}\right)+\pi_{2}^{*}\left(N_{2}\right) \otimes \pi_{1}^{*}\left(L_{1}\right) \longrightarrow \mathbb{L}+\mathbb{L} \longrightarrow 0
$$

The latter extension combined with

$$
0 \longrightarrow \pi_{1}^{*}\left(\Omega^{1} X_{1}\right) \otimes \mathbb{L}+\pi_{2}^{*}\left(\Omega^{1} X_{2}\right) \otimes \mathbb{L} \longrightarrow \mathbb{N} \longrightarrow \mathbb{L} \longrightarrow 0
$$

implies

$$
0 \longrightarrow \mathbb{N} \longrightarrow \pi_{1}^{*}\left(N_{1}\right) \otimes \pi_{2}^{*}\left(L_{2}\right)+\pi_{1}^{*}\left(L_{1}\right) \otimes \pi_{2}^{*}\left(N_{2}\right) \longrightarrow \mathbb{L} \longrightarrow 0,
$$

or

$$
\begin{equation*}
0 \longrightarrow \mathbb{L}^{*} \longrightarrow \pi_{1}^{*}\left(N_{1}^{*}\right) \otimes \pi_{2}^{*}\left(L_{2}^{*}\right)+\pi_{1}^{*}\left(N_{1}^{*}\right) \otimes \pi_{2}^{*}\left(L_{2}^{*}\right) \longrightarrow \mathbb{N}^{*} \longrightarrow 0, \tag{4}
\end{equation*}
$$

which in turn implies the following two exact sequences

$$
\begin{gather*}
\\
\left.0 \longrightarrow \begin{array}{c}
\pi_{1}^{*}\left(N_{1}^{*}\right) \otimes \pi_{2}^{*}\left(L_{2}^{*}\right) \\
+ \\
\pi_{1}^{*}\left(L_{1}^{*}\right) \otimes \pi_{2}^{*}\left(N_{2}^{*}\right)
\end{array} \begin{array}{c}
\pi_{1}^{*}\left(L_{1} \otimes \odot^{2} N_{1}^{*}\right) \otimes \pi_{2}^{*}\left(L_{2}^{*}\right) \\
+ \\
\\
\\
\\
\pi_{1}^{*}\left(L_{1}^{*}\right) \otimes \pi_{2}^{*}\left(N_{1}^{*}\right) \otimes \pi_{2}^{*}\left(N_{2}^{*}\right) \\
+
\end{array} \longrightarrow \mathbb{L} \odot^{2} N_{2}^{*}\right) \tag{5}
\end{gather*} \longrightarrow \odot^{2} \mathbb{N}^{*} \longrightarrow 0
$$

and

$$
\begin{array}{cc} 
& \pi_{1}^{*}\left(L_{1} \otimes \odot^{3} N_{1}^{*}\right) \otimes \pi_{2}^{*}\left(L_{2}^{*}\right)^{2} \\
+ & + \\
\pi_{1}^{*}\left(\odot^{2} N_{1}^{*}\right) \otimes \pi_{2}^{*}\left(L_{2}^{*}\right)^{2} \\
+ & \pi_{1}^{*}\left(\odot^{2} N_{1}^{*}\right) \otimes \pi_{2}^{*}\left(L_{2}^{*} \otimes N_{2}^{*}\right) \\
\left.L_{1} \otimes N_{1}^{*}\right) \otimes \pi_{2}^{*}\left(L_{2}^{*} \otimes N_{2}^{*}\right) \longrightarrow \\
+ & + \\
\pi_{1}^{*}\left(L_{1}^{*}\right)^{2} \otimes \pi_{2}^{*}\left(\odot^{2} N_{2}^{*}\right) & \pi_{1}^{*}\left(L_{1}^{*} \otimes N_{1}^{*}\right) \otimes \pi_{2}^{*}\left(\odot N_{2}^{*}\right)
\end{array} \longrightarrow \mathbb{L}
$$

Proposition 3.1 Let $X$ be a compact complex homogeneous-rational manifold and $L$ an ample line bundle on $X$. Then

$$
\mathrm{H}^{0}\left(X, T X \otimes L^{*}\right)= \begin{cases}\mathbb{C} & \text { for }(X, L)=\left(\mathbb{C P}_{1}, \mathcal{O}(2)\right) \\ \mathbb{C}^{n+1} & \text { for }(X, L)=\left(\mathbb{C P}_{n}, \mathcal{O}(1)\right), n \geqslant 1 \\ 0 & \text { otherwise }\end{cases}
$$

Proof. If $\operatorname{dim} X=1$, i.e. $X=\mathbb{C P}^{1}$, then the statement follows from the isomorphism $T X \simeq \mathcal{O}(2)$.

Asssume now that $\operatorname{dim} X \geqslant 2$. Then, by the Kodaira vanishing theorem, $\mathrm{H}^{1}\left(X, L^{*}\right)=$ 0 for any ample line bundle $L$ on $X$. Applying the Künneth formular to the long exact sequence of (5) with $\mathbb{X}=X \times X$ and $\mathbb{L}=\pi_{1}^{*}(L) \otimes \pi_{2}^{*}(L)$, one easily obtains

$$
\mathrm{H}^{0}\left(\mathbb{X}, \mathbb{L} \otimes \odot^{2} \mathbb{N}^{*}\right)=\mathrm{H}^{0}\left(X, N^{*}\right) \otimes \mathrm{H}^{0}\left(X, N^{*}\right)=\mathrm{H}^{0}\left(X, T X \otimes L^{*}\right) \otimes \mathrm{H}^{0}\left(X, T X \otimes L^{*}\right)
$$

On the other hand, by Theorem 2.3,

$$
\mathrm{H}^{0}\left(\mathbb{X}, \mathbb{L} \otimes \odot^{2} \mathbb{N}^{*}\right)=\mathfrak{g}^{(1)}
$$

where $\mathfrak{g}$ is the irreducible representation of

$$
\mathrm{H}^{0}\left(\mathbb{X}, \mathbb{L} \otimes \mathbb{N}^{*}\right) \simeq \mathbb{C} \oplus \mathrm{H}^{0}(X, T X) \oplus \mathrm{H}^{0}(X, T X)
$$

in $V \otimes V$ with $V=\mathrm{H}^{0}(X, L)$. Table 4 implies that such a $\mathfrak{g}^{(1)}$ can be non-zero if and only if $\mathrm{H}^{0}(X, T X) \simeq s l(n+1, \mathbb{C})$ irreducibly represented in $\mathbb{C}^{n+1}$, i.e. $X=\mathbb{C P}_{n}$. Then the isomorphism $\mathrm{H}^{0}(X, L)=\mathbb{C}^{n+1}$ implies $L=\mathcal{O}(1)$. Therefore, $\mathrm{H}^{0}\left(\mathbb{X}, \mathbb{L} \otimes \odot^{2} \mathbb{N}^{*}\right)$ with $\mathbb{X}=X \times X$ and $\mathbb{L}=\pi_{1}^{*}(L) \otimes \pi_{2}^{*}(L)$ vanishes unless $(X, L)=\left(\mathbb{C P}^{n}, \mathcal{O}(1)\right)$ which implies that $\mathrm{H}^{0}\left(X, T X \otimes L^{*}\right)$ vanishes unless $(X, L)=\left(\mathbb{C P}_{n}, \mathcal{O}(1)\right)$. Finally, the extension

$$
0 \longrightarrow \mathcal{O}(-1) \longrightarrow \mathbb{C}^{n+1} \otimes \mathcal{O}_{\mathbb{P}_{n}} \longrightarrow T \mathbb{C P}_{n}(-1) \longrightarrow 0
$$

implies $\mathrm{H}^{0}\left(\mathbb{C P}_{n}, T \mathbb{C P}_{n}(-1)\right)=\mathbb{C}^{n+1}$ which completes the proof of Proposition 3.1 in the case $\operatorname{dim} X \geqslant 2$.

Corollary 3.2 Let $X$ be a compact complex homogeneous-rational manifold, $L$ an ample line bundle on $X$ and $N=J^{1} L$. Then, for any $k \geqslant 1$,

$$
\mathrm{H}^{0}\left(X, \odot^{k} N^{*}\right)= \begin{cases}\odot^{k} \mathbb{C}^{n+1} & \text { for }(X, L)=\left(\mathbb{C P}^{n}, \mathcal{O}(1)\right), n \geqslant 1 \\ 0 & \text { otherwise. }\end{cases}
$$

Proof. The statement is true for $(X, L)=\left(\mathbb{C P}^{n}, \mathcal{O}(1)\right)$ since $J^{1} \mathcal{O}(1)=\mathbb{C}^{n+1} \otimes \mathcal{O}_{X}$.
The case $k=1$ of the required statement follows immediately from Propostion 3.1 and the extension

$$
\begin{equation*}
0 \longrightarrow L^{*} \longrightarrow N^{*} \longrightarrow T X \otimes L^{*} \longrightarrow 0 \tag{7}
\end{equation*}
$$

The latter also implies

$$
0 \longrightarrow \odot^{k} N^{*} \longrightarrow L \otimes \odot^{k+1} N^{*} \longrightarrow \odot^{k+1} T X \otimes L^{* k} \longrightarrow 0
$$

which in turn implies

$$
\mathrm{H}^{0}\left(X, \odot^{k} N^{*}\right) \subseteq \mathrm{H}^{0}\left(X, L \otimes \odot^{k+1} N^{*}\right)
$$

According to Cartan [15] (see also [34] for another proof), the only irreducible complex Lie subalgebras $\mathfrak{g} \subseteq \operatorname{gl}(V)$ which have $\mathfrak{g}^{(k)} \neq 0$ for $k \geqslant 3$ are $g l(m, \mathbb{C}), \operatorname{sl}(m, \mathbb{C})$, $s p(m / 2, \mathbb{C})$ and $s p(m / 2, \mathbb{C}) \oplus \mathbb{C}$ standardly represented in $\mathbb{C}^{m}, m \geqslant 2$. The Borel-Weil data $(X, L)$ associated with these four representations are $\left(\mathbb{C P}_{m-1}, \mathcal{O}(1)\right)$. Therefore, if $(X, L) \neq\left(\mathbb{C P}_{n}, \mathcal{O}(1)\right)$, then, by Theorem $2.3, \mathrm{H}^{0}\left(X, L \otimes \odot^{k+1} N^{*}\right)=0$ for all $k \geqslant 3$. Hence $\mathrm{H}^{0}\left(X, \odot^{k} N^{*}\right)=0$ for all $k \geqslant 3$. This proves our Corollary for $k \geqslant 3$.

Asume now that $k=2$ and denote $\tilde{L}:=L^{2}$ and $\tilde{N}:=J^{1} \tilde{L} \simeq L \otimes N$. Then

$$
\mathrm{H}^{0}\left(X, \tilde{L} \otimes \odot^{2} \tilde{N}^{*}\right)=\mathrm{H}^{0}\left(X, \odot^{2} N^{*}\right)
$$

Again, using Theorem 2.3 and Table 4 one concludes that the only irreducibly acting reductive Lie subalgebra $\mathfrak{g} \subset g l(V)$ which has $\mathfrak{g}^{(1)} \neq 0$ and whose associated pair $(X, \tilde{L})$ is such that $\tilde{L}$ is a square of an ample line bundle on $X$ is $g l(n, \mathbb{C})$ represented in $\odot^{2} \mathbb{C}^{n}$ with the associated Borel-Weil data ( $\left.\mathbb{C P}_{n-1}, \mathcal{O}(2)\right)$. Therefore, $\mathrm{H}^{0}\left(X, \odot^{2} N^{*}\right)=0$ for all $(X, L) \neq\left(\mathbb{C P}_{n}, \mathcal{O}(1)\right)$. The proof is completed.
2. The case $\mathbb{X}=X_{1} \times X_{2}$ with $\operatorname{dim} X_{i} \geqslant 2$. The long exact sequence of (5) implies

$$
\begin{equation*}
\mathrm{H}^{0}\left(\mathbb{X}, \mathbb{I} \otimes \odot^{2} \mathbb{N}^{*}\right)=\mathrm{H}^{0}\left(X_{1}, N_{1}^{*}\right) \otimes \mathrm{H}^{0}\left(X_{2}, N_{2}^{*}\right) \tag{8}
\end{equation*}
$$

while the long exact sequence of (6) contains the following piece

$$
\begin{array}{r}
0 \longrightarrow \begin{array}{r}
\mathrm{H}^{0}\left(X_{1}, \odot^{2} N_{1}^{*}\right) \otimes \\
\mathrm{H}^{1}\left(X_{2}, T X_{2} \otimes L_{2}^{* 2}\right) \\
+ \\
\mathrm{H}^{0}\left(X_{2}, \odot^{2} N_{2}^{*}\right) \otimes \mathrm{H}^{1}\left(X_{1}, T X_{1} \otimes L_{1}^{* 2}\right)
\end{array} \\
\quad \longrightarrow \mathrm{H}^{1}\left(\mathbb{X}, \mathbb{L} \otimes \odot^{3} \mathbb{N}^{*}\right) \longrightarrow \\ \tag{9}
\end{array}
$$

Lemma 3.3 Let $G_{i} \subseteq \mathrm{GL}\left(V_{i}\right), i=1,2$, be an irreducible complex semisimple matrix Lie group such that the associated Borel-Weil data $\left(X_{i}, L_{i}\right)$ satisfies $\operatorname{dim} X_{i} \geqslant 2$. Then $G=\mathrm{T}_{\mathbf{C}} \cdot G_{1} \cdot G_{2} \subset \mathrm{GL}\left(V_{1} \otimes V_{2}\right)$ can have $K(\mathfrak{g}) \neq 0$ only if each $G_{i}$ is isomorphic to one of the following representations

| Group: | $\mathrm{SL}(n, \mathbb{C})$ | $\mathrm{Sp}(m, \mathbb{C})$ | $\mathrm{SO}(p, \mathbb{C})$ | $\mathrm{G}_{2}$ | $\mathrm{Spin}(7, \mathbb{C})$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Representation space: | $\mathbb{C}^{n}$ | $\mathbb{C}^{2 m}$ | $\mathbb{C}^{p}$ | $\mathbb{C}^{7}$ | $\mathbb{C}^{8}$ |

where $n \geqslant 3, m \geqslant 2$ and $p \geqslant 4$.
Proof. $K(\mathfrak{g}) \neq 0$ if only if $\mathfrak{g}^{(1)} \neq 0$ and/or $\mathrm{H}^{1,2}(\mathfrak{g}) \neq 0$. By Theorem 2.3, Corollary 3.2 for $k=1$ and (8), one has

$$
\mathfrak{g}^{(1)}=\mathrm{H}^{0}\left(\mathbb{X}, \mathbb{L} \otimes \odot^{2} \mathbb{N}^{*}\right)= \begin{cases}\mathbb{C}^{n_{1}+1} \otimes \mathbb{C}^{n_{2}+1} & \text { for }\left(X_{i}, L_{i}\right)=\left(\mathbb{C P}_{n_{i}}, \mathcal{O}(1)\right), n_{i} \geqslant 1 \\ 0 & \text { otherwise } .\end{cases}
$$

On the other hand, a glance at Table 3 shows that $H^{1}\left(X, T X \otimes L^{* 2}\right) \neq 0$ only if $(X, L)=\left(Q_{n}, j^{*} \mathcal{O}(1)\right)$ where $Q_{n}$ is the $n$-dimensional quadric and $j: Q_{n} \hookrightarrow \mathbb{C P}_{n+1}$ is its standard embedding. Then Theorem 2.3, Corollary 3.2 for $k=2$ and (9)imply that $\mathrm{H}^{1,2}(\mathfrak{g})$ can be non-zero only if each pair $\left(X_{i}, L_{i}\right)$ is isomorphic either to $\left(\mathbb{C P}_{n}, \mathcal{O}(1)\right)$ or to $\left(Q_{n}, j^{*} \mathcal{O}(1)\right)$.

These observations combined with Fact 2.1 imply that $K(\mathfrak{g})$ can be non-zero only for representations listed in Lemma 3.3.

Example 1. Let $G$ be the representation of $\mathrm{T}_{\mathbf{C}} \cdot \mathrm{SL}(m, \mathbb{C}) \cdot \mathrm{SL}(n, \mathbb{C})$ in the vector space $V=V_{m} \otimes V_{n}$ where $V_{m}$ and $V_{n}$ are $m$ - and, respectively, $n$-dimensional complex vector spaces with $m, n \geqslant 3$. The associated Borel-Weil data $(\mathbb{X}, \mathbb{L})$ is $\left(\mathbb{C P}_{m-1} \times \mathbb{C P}_{n-1}, \pi_{1}^{*}(\mathcal{O}(1)) \otimes\right.$ $\left.\pi_{2}^{*}(\mathcal{O}(1))\right)$ implying

$$
\mathfrak{g}^{(1)}=\mathrm{H}^{0}\left(\mathbb{X}, \mathbb{L} \otimes \odot^{2} \mathbb{N}^{*}\right)=V^{*}, \quad \mathrm{H}^{1,2}(\mathfrak{g})=\mathrm{H}^{1}\left(\mathbb{X}, \mathbb{L} \otimes \odot^{3} \mathbb{N}^{*}\right)=0 .
$$

Therefore, $K(\mathfrak{g})=\partial\left(\mathfrak{g}^{(1)} \otimes V^{*}\right) \simeq V^{*} \otimes V^{*}$. Denoting typical elements of $V, V_{m}$ and $V_{n}$ by $v^{a}, v^{A}$ and $v^{\dot{A}}$ respectively ${ }^{2}$ and identifying $v^{a} \in V$ with its image $v^{A \dot{A}}$ under the isomorphism $V=V_{m} \otimes V_{n}$, one may write a typical element $R_{a b c}{ }^{d} \in K(\mathfrak{g}) \subset \Lambda^{2} V^{*} \otimes V^{*} \otimes V$ as

$$
\begin{equation*}
R_{a b c}^{d} \equiv R_{A \dot{A} B \dot{B} C \dot{C}}{ }^{D \dot{D}}=\left[\delta_{A}^{D} Q_{B \dot{B} C \dot{A}}-\delta_{B}^{D} Q_{A \dot{A C B}}\right] \delta_{\dot{C}}^{\dot{D}}+\left[\delta_{\dot{A}}^{\dot{D}} Q_{B \dot{B} A \dot{C}}-\delta_{\dot{B}}^{\dot{D}} Q_{A \dot{A} B \dot{C}}\right] \delta_{C}^{D} \tag{10}
\end{equation*}
$$

for some $Q_{a b} \equiv Q_{A \dot{A} B \dot{B}} \in V^{*} \otimes V^{*}$. Therefore, a torsion-free connection $\nabla$ on an $m n$ dimensional manifold $M$ with holonomy in $\mathrm{T}_{\mathbf{C}} \cdot \operatorname{SL}(m, \mathbb{C}) \cdot \mathrm{SL}(n, \mathbb{C})$ has at an arbitrary point $x \in M$ the curvature tensor of the form (10) for some $Q_{a b}(x) \in \Omega_{x} M \otimes \Omega_{x} M$. It is not hard to show that the second Bianchi identities for $\nabla$,

$$
\nabla_{e} R_{a b c}^{d}+\nabla_{b} R_{e a c}^{d}+\nabla_{a} R_{b e c}^{d}=0
$$

imply

$$
\begin{align*}
0= & m\left(\nabla_{A \dot{A}} Q_{B \dot{B} C \dot{C}}-\nabla_{B \dot{B}} Q_{A \dot{A} C \dot{C}}\right)+n\left(\nabla_{C \dot{C}} Q_{A \dot{A} \dot{B}}-\nabla_{A \dot{A}} Q_{C \dot{C} B \dot{B}}\right) \\
& +\left(\nabla_{B \dot{B}} Q_{A \dot{C} C \dot{A}}-\nabla_{A \dot{C}} Q_{B \dot{B} C \dot{A}}\right)+\left(\nabla_{B \dot{A}} Q_{C \dot{C} A \dot{B}}-\nabla_{C \dot{C}} Q_{B \dot{A} A \dot{B}}\right) \tag{11}
\end{align*}
$$

[^1]Example 2. Keeping notations of the preceeding paragraph, we consider a subgroup $G_{o} \subset G$ which is $\mathrm{T}_{\mathbf{C}} \cdot \mathrm{SL}(m, \mathbb{C}) \cdot \mathrm{SO}(n, \mathbb{C})$ represented in $V=V_{m} \otimes V_{n}$ with $m, n \geqslant 3$. The $G_{o}$-module $K\left(\mathfrak{g}_{o}\right)$ is a subset of $K(\mathfrak{g})$ consisting of all elements $R_{a b c}{ }^{d}$ satisfying

$$
R_{A \dot{A} B \dot{B} C \dot{C}} \dot{D}^{D \dot{D}} g_{\dot{E} \dot{D}}+R_{A \dot{A} B \dot{B} C \dot{E}}{ }^{D \dot{D}} g_{\dot{C} \dot{D}}=0
$$

where $g_{\dot{E} \dot{D}} \in \odot^{2} V_{n}^{*}$ is the $\mathrm{SO}(n, \mathbb{C})$-invariant quadratic form. Substituting (10) into the above equation, one obtains after elementary algebraic manipulations that

$$
Q_{A \dot{A} B \dot{B}}=P_{A B} g_{\dot{A} \dot{B}}
$$

for some symmetric tensor $P_{A B} \in \odot^{2} V_{m}^{*}$. [Another way to obtain this result is to note that the Borel-Weil data $(\mathbb{X}, \mathbb{L})$ associated to $\left(G_{o}, V\right)$ is $\left(\mathbb{C P}_{m-1} \times Q_{n-1}, \pi_{1}^{*}(\mathcal{O}(1)) \otimes \pi_{2}^{*}\left(j^{*} \mathcal{O}(1)\right)\right)$ implying $\mathfrak{g}_{o}^{(1)}=\mathrm{H}^{0}\left(\mathbb{X}, \mathbb{L} \otimes \odot^{2} \mathbb{N}^{*}\right)=0$ and $K\left(\mathfrak{g}_{o}\right)=\mathrm{H}^{1}\left(\mathbb{X}, \mathbb{L} \otimes \odot^{3} \mathbb{N}^{*}\right)=\odot^{2} V_{m}^{*} \otimes C \subset$ $V^{*} \otimes V^{*}$, where $C$ is the 1 -dimensional subspace of $\odot^{2} V_{n}$ spanned by $g_{\dot{A} \dot{B}}$.] Then the second Bianchi identitites (11) imply $\nabla_{a} Q_{b c}=0$ which in turn imply $\nabla_{m} R_{a b c}{ }^{d}=0$. These arguments imply essentially the following

Lemma 3.4 Let $G$ be the irreducible representation of a subgroup of $\operatorname{SL}(m, \mathbb{C})$. $\mathrm{SO}(n, \mathbb{C})$ in the mn-dimensional vector space $V_{m} \otimes V_{n}$. If $m, n \geqslant 3$, then $K^{1}(\mathfrak{g})=0$.

Example 3. Keeping notations of Example 1, consider a subgroup $G_{s} \subset G$ which is $\mathrm{T}_{\mathbf{C}} \cdot \mathrm{SL}(m, \mathbb{C}) \cdot \operatorname{Sp}(n, \mathbb{C})$ represented in $V=V_{m} \otimes V_{2 n}$ with $m \geqslant 3, n \geqslant 2$, and note that $K\left(\mathfrak{g}_{s}\right)$ is a subset of $K(\mathfrak{g})$ consisting of all elements $R_{a b c}{ }^{d}$ satisfying
where $\varepsilon_{\dot{E} \dot{D}} \in \Lambda^{2} V_{2 n}^{*}$ is the $\operatorname{Sp}(n, \mathbb{C})$-invariant symplectic form. Substituting (10) into this equation, one easily finds

$$
Q_{A \dot{A} B \dot{B}}=S_{A B} \varepsilon_{\dot{A} \dot{B}}
$$

for some antisymmetric tensor $S_{A B} \in \Lambda^{2} V_{m}$. Then the second Bianchi identitites (11) imply $\nabla_{a} Q_{b c}=0$ which in turn imply $\nabla_{m} R_{a b c}{ }^{d}=0$. We may summarize these arguments as follows.

Lemma 3.5 Let $G$ be the irreducible representation of a subgroup of $\operatorname{GL}(m, \mathbb{C})$. $\operatorname{Sp}(n, \mathbb{C})$ in the $2 m n$-dimensional vector space $V_{m} \otimes V_{2 n}$. If $m \geqslant 3, n \geqslant 2$, then $K^{1}(\mathfrak{g})=0$.

An immediate corollary of Lemmas 3.3-3.5 is the following
Proposition 3.6 Let $G_{i} \subseteq \mathrm{GL}\left(V_{n_{\mathfrak{i}}}\right), i=1,2$, be an irreducible complex semisimple matrix Lie group such that the associated Borel-Weil data $\left(X_{i}, L_{i}\right)$ satisfies $\operatorname{dim} X_{i} \geqslant 2$. Then $G=\mathrm{T}_{\mathbb{C}} \cdot G_{1} \cdot G_{2} \subset \mathrm{GL}\left(V_{n_{1}} \otimes V_{n_{2}}\right)$ can have $K^{1}(\mathfrak{g}) \neq 0$ only if $G_{1}=\mathrm{SL}\left(n_{1}, \mathbb{C}\right)$ and $G_{2}=\mathrm{SL}\left(n_{2}, \mathbb{C}\right)$.
3. The case $\mathbb{X}=X \times \mathbb{C P}_{1}$ with $\operatorname{dim} X \geqslant 2$. Any ample line bundle on $\mathbb{X}$ is of the form $\mathbb{L}=\pi_{1}^{*}(L) \otimes \pi_{2}^{*}(\mathcal{O}(k))$ for some ample line bundle $L \rightarrow X$ and $k \geqslant 1$. We denote in this subsection $V_{n}:=\mathrm{H}^{0}(X, L), V_{2}:=\mathrm{H}^{0}\left(\mathbb{C P}_{1}, \mathcal{O}(1)\right), N:=J^{1} L$, and $\mathfrak{g}$ stands for the Lie algebra $\mathrm{H}^{0}\left(X, L \otimes N^{*}\right)+s l(2, \mathbb{C})$ represented in $V=V_{n} \otimes V_{2}$.

If $k \geqslant 2$, then the associated matrix Lie group $G=\exp (\mathfrak{g})$ is an irreducible matrix subgroup of either $\mathrm{GL}(n, \mathbb{C}) \mathrm{SO}(p, \mathbb{C})$ represented in $\mathbb{C}^{n p}$ for some $n, p \geqslant 3$ or $\mathrm{GL}(n, \mathbb{C}) \mathrm{Sp}(q, \mathbb{C})$ represented in $\mathbb{C}^{2 n q}$ for some $n \geqslant 3, q \geqslant 2$. Then, by Lemmas 3.4 and $3.5, K^{1}(\mathfrak{g})=0$.

So we may assume that $k=1$.
Proposition 3.7 Let $(X, L)$ be a pair consisting of a compact complex homogeneousrational manifold $X$ and an ample line bundle $L \rightarrow X$. If $\operatorname{dim} X \geqslant 2$, then

$$
\mathfrak{g}^{(1)}=\mathrm{H}^{0}\left(X, N^{*}\right) \otimes V_{2}^{*}
$$

and there is an exact sequence of $\mathfrak{g}$-modules

$$
0 \longrightarrow \mathrm{H}^{2,2}(\mathfrak{g}) \longrightarrow \begin{gathered}
\mathrm{H}^{0}\left(X, \odot^{3} T X \otimes L^{* 2}\right) \otimes \Lambda^{2} V_{2}^{*} \\
+ \\
\mathrm{H}^{1}\left(X, T X \otimes L^{* 2}\right) \otimes \odot^{2} V_{2}^{*}
\end{gathered} \longrightarrow \mathrm{H}^{1}\left(X, T X \otimes L^{*}\right) \otimes V^{*} \otimes V_{2}^{*}
$$

Proof. Since $\operatorname{dim} X \geqslant 2$, the Kodaira vanishing theorem implies $\mathrm{H}^{1}\left(X, L^{*}\right)=0$. Then the long exact sequence of

$$
0 \longrightarrow L^{*} \longrightarrow N^{*} \longrightarrow T X \otimes L^{*} \longrightarrow 0
$$

implies $\mathrm{H}^{1}\left(X, N^{*}\right)=\mathrm{H}^{1}\left(X, T X \otimes L^{*}\right)$, while the long exact sequence of (5) with $\left(X_{1}, L_{1}\right)=$ $(X, L)$ and $\left(X_{2}, L_{2}\right)=\left(\mathbb{C P}_{1}, \mathcal{O}(1)\right)$ implies

$$
\begin{gathered}
\mathrm{H}^{0}\left(\mathbb{X}, \mathbb{L} \otimes \odot^{2} \mathbb{N}^{*}\right)=\mathrm{H}^{0}\left(X, N^{*}\right) \otimes V_{2}^{*} \\
\mathrm{H}^{1}\left(\mathbb{X}, \mathbb{L} \otimes \odot^{2} \mathbb{N}^{*}\right)=\mathrm{H}^{1}\left(X, N^{*}\right) \otimes V_{2}^{*}=\mathrm{H}^{1}\left(X, T X \otimes L^{*}\right) \otimes V_{2}^{*} .
\end{gathered}
$$

Analogously, the long exact sequence of (6) implies


Comparing this with the long exact sequence of

$$
\begin{equation*}
0 \longrightarrow \odot^{2} N^{*} \longrightarrow L \otimes \odot^{3} N^{*} \longrightarrow \odot^{3} T X \otimes L^{* 2} \longrightarrow 0 \tag{12}
\end{equation*}
$$

one obtains

$$
\mathrm{H}^{1}\left(\mathbb{X}, \mathbb{L} \otimes \odot^{3} \mathbb{N}^{*}\right)=\mathrm{H}^{0}\left(X, \odot^{3} T X \otimes L^{* 2}\right) \otimes \Lambda^{2} V_{2}^{*}+\mathrm{H}^{1}\left(X, T X \otimes L^{* 2}\right) \otimes \odot^{2} V_{2}^{*}
$$

Then Theorem 2.3 implies the desired result.

Lemma 3.8 Let $G \subseteq \mathrm{GL}(V)$ be an irreducible complex representation of a complex reductive Lie group such that the associated Borel-Weil data is of the form $\left(\mathbb{X}=X \times \mathbb{C P}_{1}, \mathbb{L}\right)$ with $\operatorname{dim} X \geqslant 2$ and $\mathrm{H}^{1}\left(X, T X \otimes L^{* 2}\right)=0$. Then $G$ can be the holonomy of a non-metric torsion-free affine connection only if $G$ is $\mathrm{T}_{\mathbb{C}} \cdot \mathrm{SL}(n, \mathbb{C}) \cdot \mathrm{SL}(2, \mathbb{C})$ represented in $V=V_{n} \otimes V_{2}$.

Proof. If $(X, L)=\left(\mathbb{C P}_{n}, \mathcal{O}(1)\right)$, then $G$ has both modules $K(\mathfrak{g})$ and $K^{1}(\mathfrak{g})$ non-zero only if it is $\mathrm{T}_{\mathbb{C}} \cdot \mathrm{SL}(n, \mathbb{C}) \cdot \mathrm{SL}(2, \mathbb{C})$ represented in $V_{n} \otimes V_{2}$.

Assume now that $(X, L) \neq\left(\mathbb{C P}_{n}, \mathcal{O}(1)\right)$. Then

$$
\begin{aligned}
K(\mathfrak{g}) \subseteq & \mathfrak{g} \otimes \Lambda^{2} V^{*}=\mathfrak{g} \otimes \odot^{2} V_{n}^{*} \otimes \Lambda^{2} V_{2}^{*}+\mathfrak{g} \otimes \Lambda^{2} V_{n}^{*} \otimes \odot^{2} V_{2}^{*} \\
\subseteq & \operatorname{End}\left(V_{n}\right) \otimes \odot^{2} V_{n}^{*} \otimes \Lambda^{2} V_{2}^{*}+\operatorname{End}\left(V_{n}\right) \otimes \Lambda^{2} V_{n}^{*} \otimes \odot^{2} V_{2}^{*}+\odot^{2} V_{n}^{*} \otimes \odot^{2} V_{2}^{*} \\
& +\Lambda^{2} V_{n}^{*} \otimes \odot^{4} V_{2}^{*} \otimes \Lambda^{2} V_{2}+\Lambda^{2} V_{n}^{*} \otimes \odot^{2} V_{2}^{*}+\Lambda^{2} V_{n}^{*} \otimes \Lambda^{2} V_{2}^{*}
\end{aligned}
$$

On the other hand, by Proposition 3.8,

$$
K(\mathfrak{g}) \subseteq \mathrm{H}^{0}\left(X, \odot^{3} T X \otimes L^{* 2}\right) \otimes \Lambda^{2} V_{2}^{*} \subseteq \operatorname{End}\left(V_{n}\right) \otimes V_{n}^{*} \otimes V_{n}^{*} \otimes \Lambda^{2} V_{2}^{*}
$$

Therefore,

$$
K(\mathfrak{g}) \subseteq \operatorname{End}\left(V_{n}\right) \otimes \odot^{2} V_{n}^{*} \otimes \Lambda^{2} V_{2}^{*}+\Lambda^{2} V_{n}^{*} \otimes \Lambda^{2} V_{2}^{*}
$$

In notations of Example 1, a generic element of $\operatorname{End}\left(V_{n}\right) \otimes \odot^{2} V_{n}^{*} \otimes \Lambda^{2} V_{2}^{*}+\Lambda^{2} V_{n}^{*} \otimes \Lambda^{2} V_{2}^{*}$ satisfying the first Bianchi identities is, as one may easily check, of the form

$$
R_{a b c}{ }^{d}=\left[W_{A B C}{ }^{D}+\epsilon_{B C} \delta_{A}^{D}+\epsilon_{A C} \delta_{B}^{D}\right] \varepsilon_{\dot{A} \dot{B}} \delta_{\dot{C}}^{\dot{D}}+\left[\varepsilon_{\dot{A} \dot{C}} \delta_{\dot{B}}^{\dot{D}}+\varepsilon_{\dot{B} \dot{C}} \delta_{\dot{B}}^{\dot{A}}\right] \epsilon_{A B} \delta_{C}^{D}
$$

for some $W_{A B C}^{D} \in V_{n} \otimes \odot^{3} V_{n}^{*}$ and $\epsilon_{A B} \in \Lambda^{2} V_{n}^{*}$. Here $\varepsilon_{\dot{A} \dot{B}} \in \Lambda^{2} V_{2}^{*}$ denotes the nondegenerate $\operatorname{SL}(2, \mathbb{C})$-invariant symplectic form.

Therefore, if there exist a connection $\nabla$ with holonomy $G$, its curvature tensor must be of the above form for some tensor fields $W_{A B C}{ }^{D}$ and $\epsilon_{A B}$. However, from the second Bianchi identities it easily follows that

$$
\nabla_{c}\left(\epsilon_{A B} \varepsilon_{\dot{A} \dot{B}}\right)=0
$$

By the Ambrose-Singer theorem, $\epsilon_{A B}$ is non-zero. Since $G$ is irreducible, $\epsilon_{A B}$ is nondegenerate. Therefore, such a $\nabla$ must preserve the non-degenerate symmetric form $g_{a b}=$ $\epsilon_{A B} \varepsilon_{\dot{A} \dot{B}}$.

Lemma 3.9 Let $G \subseteq \mathrm{GL}(V)$ be an irreducible complex representation of a complex reductive Lie group such that the associated Borel-Weil data is of the form ( $\mathbb{X}=X \times$ $\left.\mathbb{C P}_{1}, \mathbb{L}\right)$ with $\operatorname{dim} X \geqslant 2$ and $\mathrm{H}^{1}\left(X, T X \otimes L^{* 2}\right) \neq 0$. Then $K^{1}(\mathfrak{g}) \neq 0$ only if $G$ is either $\mathrm{T}_{\mathbb{C}} \cdot \mathrm{SL}(n, \mathbb{C}) \cdot \mathrm{SL}(2, \mathbb{C})$ or $\mathrm{T}_{\mathbf{C}} \cdot \mathrm{SO}(n, \mathbb{C}) \cdot \mathrm{SL}(2, \mathbb{C})$, both represented in $V_{n} \otimes V_{2}$.

Proof. It follows from Table 3 that $\mathrm{H}^{1}\left(X, T X \otimes L^{* 2}\right) \neq 0$ only if $(X, L)=\left(Q_{n}, j^{*} \mathcal{O}(1)\right)$ where $Q_{n}$ is the $n$-dimensional quadric and $j: Q_{n} \hookrightarrow \mathbb{C P}_{n+1}$ is its standard embedding. This together with Fact 2.1 imply that $G$ must be of the form $\mathrm{T}_{\mathbb{C}} \cdot H \cdot \mathrm{SL}(2, \mathbb{C}) \subseteq g l\left(V_{n} \otimes V_{2}\right)$ where $H$ is one of the following representations

| Group $H:$ | $\mathrm{SO}(n, \mathbb{C})$ | $\mathrm{G}_{2}$ | $\operatorname{Spin}(7, \mathbb{C})$ |
| :---: | :---: | :---: | :---: |
| Representation space $V_{n}:$ | $\mathbb{C}^{n}$ | $\mathbb{C}^{7}$ | $\mathbb{C}^{8}$ |

Since the Borel-Weil data associated to $G=\mathrm{T}_{\mathbf{c}} \cdot \mathrm{SO}(n, \mathbb{C}) \cdot \mathrm{SL}(2, \mathbb{C})$ represented in $V_{n} \otimes V_{2}$ is $\left(Q_{n-1} \times \mathbb{C P}_{1}, \pi_{1}^{*}\left(j^{*} \mathcal{O}(1)\right) \otimes \pi_{2}^{*}(\mathcal{O}(1))\right.$, one has $\mathfrak{g}^{(1)}=H^{0}\left(\mathbb{X}, \mathbb{L} \otimes \odot^{2} \mathbb{N}^{*}\right)=0$ and

$$
K(\mathfrak{g})=\mathrm{H}^{1}\left(\mathbb{X}, \mathbb{L} \otimes \odot^{3} \mathbb{N}^{*}\right)=\Lambda^{2} V_{n}^{*} \otimes \Lambda^{2} V_{2}^{*}+C \otimes \odot^{2} V_{2}^{*}
$$

where $C$ is the 1-dimensional subspace of $\odot^{2} V_{n}$ spanned by the $\operatorname{SO}(n, \mathbb{C})$-invariant metric $g_{A B}$. Then a generic element of $K(\mathfrak{g})$ must be of the form (cf. [18])

$$
\begin{align*}
R_{a b c}^{d}= & {\left[\varepsilon _ { \dot { A } \dot { B } } g ^ { D E } \left(g_{A B} S_{C E}+g_{A C} S_{B E}+g_{B C} S_{A E}\right.\right.} \\
& \left.-g_{A E} S_{B C}-g_{B E} S_{A C}\right)+\Phi_{\dot{A} \dot{B}}\left(g_{B C} \delta_{A}^{D}-g_{A C} \delta_{B}^{D}\right] \delta_{\dot{C}}^{\dot{D}} \\
& +\left[g_{A B} \varepsilon_{\dot{A} \dot{B}} \varepsilon^{\dot{D} \dot{E}} \Phi_{\dot{C} \dot{E}}-S_{A B}\left(\varepsilon_{\dot{B} \dot{C}} \delta_{\dot{A}}^{\dot{D}}+\varepsilon_{\dot{A} \dot{C}} \delta_{\dot{A}}^{\dot{B}}\right)\right] \delta_{C}^{D} \tag{13}
\end{align*}
$$

for some $S_{A B} \in \Lambda^{2} V_{n}^{*}$ and $\Phi_{\dot{A} \dot{B}} \in \odot^{2} V_{2}^{*}$.
Let $g \subset g l(V)$ be the Lie algebra of the representation of $\mathrm{T}_{\mathbb{C}} \cdot \mathrm{G}_{2} \cdot \mathrm{SL}(2, \mathbb{C})$ (resp. $\mathrm{T}_{\mathbb{C}} \cdot \operatorname{Spin}(7, \mathbb{C}) \cdot \mathrm{SL}(2, \mathbb{C})$ ) in $V=\mathbb{C}^{7} \otimes \mathbb{C}^{2}$ (resp. in $V=\mathbb{C}^{8} \otimes \mathbb{C}^{2}$ ). It is a proper matrix subalgebra of the Lie algebra $\mathfrak{g}$ of the representation of $\mathrm{T}_{\mathbf{C}} \cdot \mathrm{SO}(7, \mathbb{C}) \cdot \mathrm{SL}(2, \mathbb{C})$ (resp. $\mathrm{T}_{\mathbf{C}} \cdot \mathrm{SO}(8, \mathbb{C}) \cdot \mathrm{SL}(2, \mathbb{C})$ ) in $V=\mathbb{C}^{7} \otimes \mathbb{C}^{2}$ (resp. in $\left.V=\mathbb{C}^{8} \otimes \mathbb{C}^{2}\right)$. Then

$$
K(g) \subseteq K(\mathfrak{g})=\Lambda^{2} V_{n}^{*} \otimes \Lambda^{2} V_{2}^{*}+C \otimes \odot^{2} V_{2}^{*}
$$

and $K^{1}(g) \subseteq K^{1}(\mathfrak{g})$. We claim

$$
\begin{equation*}
K(g) \subseteq \Lambda^{2} V_{n}^{*} \otimes \Lambda^{2} V_{2}^{*} \tag{14}
\end{equation*}
$$

If not, then a typical element $R_{a b c}{ }^{d} \in K(g)$ contains a non zero term $\Phi_{\dot{A} \dot{B}}\left(g_{B C} \delta_{A}^{D}-\right.$ $\left.g_{A C} \delta_{B}^{D}\right) \delta_{\dot{C}}^{\dot{D}}$ which easily implies that the image of the map

$$
\Lambda^{2} V \longrightarrow g
$$

defined by $R_{a b c}{ }^{d} \in g \otimes \Lambda^{2} V^{*}$ contains $\Lambda^{2} V_{n}^{*} \simeq s o(n, \mathbb{C})$. This contradicts to the fact that $g$ is a proper subalgebra of $\mathfrak{g}$.

Finally, it is straightforward to check that the inclusion (14) implies that $K^{1}(g)=0$.

Proposition 3.10 Let $G \subseteq G L(V)$ be an irreducible complex representation of a complex reductive Lie group such that the associated Borel-Weil data is of the form $(\mathbb{X}=$ $X \times \mathbb{C P}_{1}, \mathbb{L}$ ) with $\operatorname{dim} X \geqslant 2$. Then $G$ can be the holonomy of a non-metric torsion-free affine connection only if it is either $\mathrm{T}_{\mathbf{C}} \cdot \operatorname{SL}(n, \mathbb{C}) \cdot \mathrm{SL}(2, \mathbb{C})$ or $\mathrm{SO}(n, \mathbb{C}) \cdot \mathrm{SL}(2, \mathbb{C})$, both represented in $V_{n} \otimes V_{2}$.

Proof. By Lemmas 3.8 and 3.9 , one has only to rule out the case $\mathbb{C}^{*} \cdot \mathrm{SO}(n, \mathbb{C}) \cdot \mathrm{SL}(2, \mathbb{C})$. But this follows from $R_{a b c}{ }^{c}=0$ which itself follows from (13).
4. The case $\mathbb{X}=\mathbb{C P}_{1} \times \mathbb{C P}_{1}$. This is the case of $T_{\mathbb{C}} \cdot \mathrm{SL}(2, \mathbb{C}) \cdot \mathrm{SL}(2, \mathbb{C})$ represented in $\odot^{m} V_{2} \otimes \odot^{n} V_{2}$. In the context of the holonomy classification, this class of representations has been studied in [19] and [28] where the following result has been established by two different methods.

Proposition 3.11 Let $G \subseteq \mathrm{GL}(V)$ be an irreducible complex representation of a complex reductive Lie group such that the associated Borel-Weil data $(\mathbb{X}, \mathbb{L})$ has $\mathbb{X}=\mathbb{C P}_{1} \times$ $\mathbb{C P}_{1}$. Then $K^{1}(\mathfrak{g}) \neq 0$ only if $G$ is either the representation of $\mathrm{T}_{\mathbb{C}} \cdot \mathrm{SO}(4, \mathbb{C})$ in $\mathbb{C}^{4}$ or the representation of $\mathrm{T}_{\mathbb{C}} \cdot \mathrm{SO}(3, \mathbb{C}) \cdot \mathrm{SL}(2, \mathbb{C})$ in $\mathbb{C}^{6}$.

In fact, for the above representation, $K(\mathbb{C}+s o(3, \mathbb{C})+s l(2, \mathbb{C}))=K(s o(3, \mathbb{C})+s l(2, \mathbb{C}))$ which means that $\mathbb{C}^{*} \cdot \operatorname{SO}(3, \mathbb{C}) \cdot \mathrm{SL}(2, \mathbb{C})$ can not occur as the holonomy of a torsion-free affine connection.
5. Proof of Theorem A. Let $G \subseteq \mathrm{GL}(V)$ be an irreducible complex representation of a complex reductive Lie group which can be represented as a tensor product of two or more non-Abelian complex representations. Then, by Propositions 3.6, 3.10 and 3.11, $G$ may occur as the holonomy of a non-metric torsion-free affine connection only if it is either $\mathrm{T}_{\mathbb{C}} \cdot \operatorname{SL}(m, \mathbb{C}) \cdot \mathrm{SL}(n, \mathbb{C})$ represented in $\mathbb{C}^{m} \otimes \mathbb{C}^{n}$ for $m, n \geqslant 2$, or $\operatorname{SO}(l, \mathbb{C}) \cdot \mathrm{SL}(2, \mathbb{C})$ represented in $\mathbb{C} \otimes \mathbb{C}^{2}$ for $l \geqslant 3$.

Let $\rho: G \rightarrow \mathrm{GL}(V)$ be an irreducible representation of a real reductive Lie group $G$ in a real vector space $V$ and let $\rho: \mathfrak{g} \rightarrow g l(V)$ be the associated real irreducible representation of the Lie algebra $\mathfrak{g}$ of $G$. The latter defines naturally a complex representation $\rho_{\mathbb{C}}: \mathfrak{g}_{\mathbb{C}} \rightarrow$ $g l\left(V_{\mathbf{C}}\right)$, where $\mathfrak{g c}=\mathfrak{g} \otimes \mathbb{C}$ and $V_{\mathbf{C}}=V \otimes \mathbb{C}$. Then two situations may arise [22]:
(i) the complex representation $\rho_{\mathbf{C}}: \mathfrak{g}_{\mathbb{C}} \rightarrow g l\left(V_{\mathbf{C}}\right)$ is irreducible; in this case we denote $\rho_{\mathrm{C}}$ by $\tilde{\rho}$;
(ii) there is a complex vector space $W_{\mathbf{C}}$ and an irreducible complex representation $\rho^{\prime}: \mathfrak{g} \rightarrow$ $g l\left(W_{\mathbf{C}}\right)$ such that $V$ is the underlying real vector space of $W_{\mathbf{C}}$ and $\rho$ is the composition $\rho: \mathfrak{g} \xrightarrow{\rho^{\prime}} g l\left(W_{\mathbf{C}}\right) \longrightarrow g l(V)$, where the second arrow is the natural inclusion of the algebra of all complex automorphisms of $V$ into the algebra of all real automorphisms of $V$. Then the $\mathfrak{g}_{\mathrm{C}}$-module $V_{\mathrm{C}}$ splits as a direct sum of two irreducible $\mathfrak{g}_{\mathrm{c}}$-submodules $W_{\mathbf{C}}+W_{\mathbf{C}}$ and we denote by $\tilde{\rho}: g_{\mathbf{C}} \rightarrow g l\left(W_{\mathbf{C}}\right)$ the restriction of $\rho_{\mathbb{C}}$ to one of these.
In both cases, the $\mathfrak{g}$-modules $K(\rho(\mathfrak{g}))$ and $K^{1}(\rho(\mathfrak{g}))$ are subsets of $K\left(\tilde{\rho}\left(\mathfrak{g}_{\mathrm{C}}\right)\right)$ and $K^{1}(\tilde{\rho}(\mathbf{g c}))$ respectively. In particular, if $K(\rho(\mathfrak{g}))$ and $K^{1}(\rho(\mathfrak{g}))$ are non zero, then $K(\tilde{\rho}(\mathfrak{g c}))$ and $K^{1}\left(\tilde{\rho}\left(\mathfrak{g}_{\mathbb{C}}\right)\right)$ are non zero as well.

Assume now that the semisimple part of $\mathfrak{g}$ has at least two non-Abelian ideals. Then the Borel-Weil data associated to the irreducible matrix subalgebra $\tilde{\rho}(\mathrm{gc})$ must be of the form $(\mathbb{X}, \mathbb{L})=\left(X_{1} \times X_{2}, \pi_{1}^{*}\left(L_{1}\right) \otimes \pi_{2}^{*}\left(L_{2}\right)\right)$ for some compact complex homogeneous-rational manifolds $X_{1}$ and $X_{2}$ and ample line bundles $L_{1} \rightarrow X_{1}$ and $L_{2} \rightarrow X_{2}$.

We claim that if $\rho(\mathfrak{g})$ is the holonomy of a torsion-free affine connection $\nabla$ which is not locally symmetric and does not preserve any (pseudo-)Riemannian metric, then $\tilde{\rho}\left(\mathfrak{g}_{\mathbf{c}}\right)$ is either $t_{\mathbb{C}}+s l(m, \mathbb{C})+s l(n, \mathbb{C})$ represented in $\mathbb{C}^{n} \otimes \mathbb{C}^{n}$, or $s o(l, \mathbb{C})+s l(2, \mathbb{C})$ represented in $\mathbb{C}^{m} \otimes \mathbb{C}^{n}$.

Indeed, if

$$
\operatorname{dim} X_{1} \geqslant 2, \quad \operatorname{dim} X_{2} \geqslant 2
$$

or

$$
\operatorname{dim} X_{1}=\operatorname{dim} X_{2}=1
$$

or

$$
\operatorname{dim} X_{1} \geqslant 2, \quad \operatorname{dim} X_{2}=1, \quad \mathrm{H}^{1}\left(X_{1}, T X_{1} \otimes L_{1}^{* 2}\right) \neq 0
$$

then the claim follows from Propositions 3.6 and 3.11 and Lemma 3.9.
Let us next show that the only remaining case

$$
\operatorname{dim} X_{1} \geqslant 2, \quad \operatorname{dim} X_{2}=1, \quad \mathrm{H}^{1}\left(X_{1}, T X_{1} \otimes L_{1}^{* 2}\right)=0
$$

implies that $\rho(\mathfrak{g C})$ is the representation of $t_{\mathbb{C}}+s l(n, \mathbb{C})+s l(2, \mathbb{C})$ in $\mathbb{C}^{n} \otimes \mathbb{C}^{2}$. If $\left(X_{1}, L_{1}\right) \neq$ $\left(\mathbb{C P}_{n}, \mathcal{O}(1)\right)$, then, using the same arguments as in the proof of Lemma 3.8, one may show that $\nabla$ must preserve a non-degenerate complex symmetric form $g_{a b}=\epsilon_{A B} \varepsilon_{\dot{A} \dot{B}}$ and hence its real part and imaginary parts. At least one of these must be non-zero and, by irreducibility of $\rho(\mathfrak{g})$, non-degenerate. Since $\nabla$ is non-metric, this is impossible. Hence the only other option is $\left(X_{1}, L_{1}\right)=\left(\mathbb{C P}_{n}, \mathcal{O}(1)\right)$ and $\left(X_{2}, L_{2}\right)=\left(\mathbb{C P}_{1}, \mathcal{O}(k)\right)$ for some $k \in \mathbb{N}$. By Lemmas 3.4 and $3.5, k=1$ implying that $\rho(\mathrm{gc})$ is the representation of $t_{\mathbb{C}}+s l(n, \mathbb{C})+s l(2, \mathbb{C})$ in $\mathbb{C}^{n} \otimes \mathbb{C}^{2}$.

Therefore, $\rho(G) \subseteq \mathrm{GL}(V)$ must be of the form $\mathrm{T}_{\mathbb{C}} \cdot G_{1} \cdot G_{2}$, where $\mathrm{T}_{\mathbb{C}}$ is a connected real Lie subgroup of $\mathbb{C}^{*}$ and $G_{i} \subseteq \mathrm{GL}\left(V_{i}\right), i=1,2$, is one of the following real matrix groups

| Group $G_{i}:$ | $\mathrm{SL}(n, \mathbb{C})$ | $\mathrm{SL}(n, \mathbb{R})$ | $\mathrm{SU}(n)$ | $\mathrm{SL}(m, \mathrm{H})$ |
| :---: | :---: | :---: | :---: | :---: |
| Representation space $V_{i}:$ | $\mathbb{R}^{2 n}$ | $\mathbb{R}^{n}$ | $\mathbb{R}^{2 n}$ | $\mathbb{R}^{4 m}$ |
| Group $G_{i}:$ | $\mathrm{SO}(l, \mathbb{C})$ | $\mathrm{SO}(p, q)$ | $\mathrm{SO}(n, \mathrm{H})$ |  |
| Representation space $V_{i}:$ | $\mathbb{R}^{2 l}$ | $\mathbb{R}^{p+q}$ | $\mathbb{R}^{4 n}$ |  |

with $n \geqslant 2, m \geqslant 1, l \geqslant 3, p+q \geqslant 3$.
Since we know $K(\tilde{\rho}(\mathfrak{g c}))$ explicitly, it is straightforward to check that the only combinations $\rho(G)=\mathrm{T}_{\mathbb{C}} \cdot G_{1} \cdot G_{2}$ which (i) have $K^{1}(\rho(\mathfrak{g})) \neq 0$, (ii) have no proper subgroup $G^{\prime} \subset G$ with $K\left(\rho\left(\mathfrak{g}^{\prime}\right)\right)=K(\rho(\mathfrak{g}))$ and (iii) do not preserve any non-degenerate symmetric bilinear form are the ones given in the table of Theorem A.

## 4 Classification of $(X, L)$ with $H^{1}\left(X, T X \otimes L^{*}\right) \neq 0$

1. Review of the representation theory [6,21]. Let $\mathfrak{g}$ be a semisimple complex Lie algebra and $G$ the associated simply connected Lie group. Fix a maximally Abelian self-normalizing subalgebra $\mathfrak{h} \subset \mathfrak{g}$ (any two such subalgebras, called Cartan subalgebras, are conjugate under the adjoint action of $G$ ). If $\rho: \mathfrak{g} \rightarrow g l(V)$ is a representation of $\mathfrak{g}$ in a complex vector space $V$, then with any $\omega \in \mathfrak{h}^{*} \equiv \operatorname{Hom}_{\mathbb{C}}(\mathfrak{h}, \mathbb{C})$ one may associate the weight space of $V$ by $V_{\omega}=\{v \in V: \rho(h) v=\omega(h) v$ for all $h \in \mathfrak{h}\}$. An element $\omega \in \mathfrak{h}^{*}$ is called a weight of $V$ if $V_{\omega} \neq 0$.

In the particular case when $V=\mathfrak{g}$ and $\rho: \mathfrak{g} \rightarrow g l(\mathfrak{g})$ is the adjoint representation of $\mathfrak{g}$ on itself, the non-zero weights of $\mathfrak{g}$ are called the roots of $\mathfrak{g}$. Thus

$$
\mathfrak{g}=\mathfrak{h} \oplus \sum_{\alpha \in \mathscr{\Phi}} \mathfrak{g}_{\alpha}
$$

where $\Phi$ is the set of all roots of $\mathfrak{g}$ and all sums are direct. A subset $\Delta=\left\{\alpha_{1}, \ldots, \alpha_{r}\right\} \subset \Phi$ with the property that every $\omega \in \Phi$ may be expressed as a linear combination $\omega=\sum_{i=1}^{r} a_{i} \alpha_{i}$
with all $a_{i}$ being non-negative or all non-positive integers is called a system of simple roots of $\mathfrak{g}$. Such $\Delta$ exists and any two such $\Delta$ 's are conjugate under the adjoint action of $G$. Then $\Phi=\Phi^{+} \cup \Phi^{-}$, where $\Phi^{+}=\left\{\omega \in \Phi: \omega=\sum_{i=1}^{r} a_{i} \alpha_{i}\right.$ with $\left.a_{i} \geqslant 0\right\}$ is the set of positive roots and $\Phi^{-}=\left\{\omega \in \Phi: \omega=\sum_{i=1}^{r} a_{i} \alpha_{i}\right.$ with $\left.a_{i} \leqslant 0\right\}$ is the set of negative roots (both with respect to to $\Delta$ ).

For any root $\alpha \in \Phi^{+}$there is a unique element $H_{\alpha}$ in $\left[\mathfrak{g}_{\alpha}, \mathfrak{g}_{-\alpha}\right] \subset \mathfrak{h}$ such that $\alpha\left(H_{\alpha}\right)=2$. If $\Delta=\left\{\alpha_{1}, \ldots, \alpha_{r}\right\}$ is the set of simple roots, then the associated set $\left\{H_{\alpha_{1}}, \ldots, H_{\alpha_{r}}\right\}$ form a basis of $\mathfrak{g}$. Its dual basis $\left\{\omega_{\alpha_{1}}, \ldots, \omega_{a_{r}}\right\}$ of $\mathfrak{h}^{*}$ is called the set of fundamental weights. One may use it to define the following three importants subsets of $\mathfrak{h}^{*}$ : the set of (integral) weights $\Lambda=\left\{\lambda \in \mathfrak{h}^{*}: \omega=\sum_{i=1}^{r} \lambda_{i} \omega_{i}\right.$ with $\left.\lambda_{i} \in \mathbb{Z}\right\}$; the set of dominant weights $\Lambda^{+}=\left\{\lambda \in \Lambda: \lambda=\sum_{i=1}^{r} \lambda_{i} \omega_{i}\right.$ with $\left.\lambda_{i} \geqslant 0\right\}$; and the set of strongly dominant weights $\Lambda^{++}=\left\{\lambda \in \Lambda^{+}: \lambda=\sum_{i=1}^{r} \lambda_{i} \omega_{i}\right.$ with $\left.\lambda_{i}>0\right\}$. Note that $\lambda_{i}=\lambda\left(H_{\alpha_{i}}\right)$. The minimal integral element $\omega_{1}+\omega_{2}+\ldots+\omega_{r}$ in $\Lambda^{++}$is denoted by $\eta$. Any integral weight $\lambda$ of $\mathfrak{g}$ can be graphically represented by inscribing the integer $\lambda_{i}$ over $i$-th node of the Dynkin diagram for $\mathfrak{g}$. For example, the fundamental weight $\omega_{1}$ of $s l(3, \mathbb{C})$ is 1.0 .

Let $\lambda \in \Lambda$ be an integral weight. It is called singular if $\lambda\left(H_{\alpha}\right)=0$ for some $\alpha \in \Phi^{+}$, and regular otherwise. The index of $\lambda$ is defined to be the number of positive roots $\alpha$ for which $\lambda\left(H_{\alpha}\right)<0$ holds; it is denoted by ind $(\lambda)$.

If $\rho: \mathfrak{g} \rightarrow g l(V)$ is an irreducible representation of $\mathfrak{g}$, then there exists a unique weight $\omega(V) \in \Lambda^{+}$of $V$, called the highest weight of $V$ (relative to the fixed $\mathfrak{h}$ in $\mathfrak{g}$ and $\Delta$ in $\mathfrak{h}$ ) such that $\operatorname{dim} V_{\omega}=1$ and $\rho\left(\mathfrak{g}_{\alpha}\right) V_{\omega}=0$ for all $\alpha \in \Delta$. This establishes a one-to-one correspondence, $V \Leftrightarrow \omega(V)$, between finite-dimensional irreducible $\mathfrak{g}$-modules and dominant weights; and allows us to use the graphical description of $\omega(V)$ to represent $\rho: \mathfrak{g} \rightarrow g l(V)$. For example, the standard representation of $s l(3, C)$ in $\mathbb{C}^{3}$ gets denoted by 1.0

If $\mathfrak{g}$ is simple, then the adjoint representation $\rho: \mathfrak{g} \rightarrow g l(\mathfrak{g})$ is irreducible. The associated highest weight of $V=\mathfrak{g}$ is a root $\mu \in \Lambda^{+}$which is called the maximal root of $\mathfrak{g}$. The following is the list of all maximal roots [6, 21]:


For any simple root $\alpha_{i} \in \Delta$, denote by $\sigma_{i}$ the reflection in the hyperplane perpendicular to $\alpha_{i}$. The Weyl group $W$ of $\mathfrak{g}$ is the group generated by all the simple reflections $\sigma_{i}$. The
action of the simple reflection $\sigma_{i}$ on a weight $\lambda \in \Lambda$ can be described by the following rule [6]: to compute $\sigma_{i}(\lambda)$, let $c=\lambda\left(H_{\alpha_{i}}\right)$ be the coefficient of the node associated to $\alpha_{i}$; add $c$ to the adjacent coefficients, with multiplicity if there is a multiple edge directed towards the adjacent node, and then replace $c$ by $-c$. For example


For any $w \in W$, there exists a minimal integer $l(w)$ such that $w$ can be expressed as a composition of $l(w)$ simple reflections. This integer is called the length of $w$.
2. Homogeneous manifolds and vector bundles. A maximal solvable subalgebra of a semisimple Lie algebra $\mathfrak{g}$ is called a Borel subalgebra. A a subalgebra $\mathfrak{p} \subseteq \mathfrak{g}$ is called parabolic if it contains a Borel subalgebra. Every Borel subslagebra is $G$-conjugate to the standard one

$$
\mathfrak{b}:=\mathfrak{h} \oplus \mathfrak{n}
$$

where $n:=\sum_{\alpha \in \Phi+} \mathfrak{g}_{\alpha}$. There is a standard form $\mathfrak{p}$ for any parabolic subalgebra as well. Let $\Delta_{\mathfrak{p}}$ be a subset of $\Delta$ and let $\Phi_{\mathfrak{p}}^{+}=\operatorname{span}\left\{\Delta_{\mathfrak{p}}\right\} \cap \Phi^{+}$. Then

$$
\mathfrak{p}=\mathfrak{h}+\mathfrak{n}+\sum_{\alpha \in \Phi_{\dot{p}}^{+}} \mathfrak{g}_{-\alpha}
$$

is the standard parabolic subsalgebra of $\mathfrak{g}$. A useful notation for a standard parabolic $\mathfrak{p} \subseteq \mathfrak{g}$ (and for the associated subgroup $P \subseteq G$ ) is to cross all nodes in the Dynkin diagram for $\mathfrak{g}$ which correspond to simple roots of $\mathfrak{g}$ in $\Delta \backslash \Delta_{\mathfrak{p}}$.

It is well known that any compact complex homogeneous-rational manifold $X$ is isomorphic to the quotient space $G / P$, where $G$ is a simply connected Lie group and $P \subseteq G$ is a parabolic subgroup. It is then very useful to denote $X$ by the same Dynkin diagram as $\mathfrak{p}$, the Lie algebra of $P$. For example, the odd dimensional quadric $Q_{2 n-1}$ gets denoted by $x \longrightarrow \longrightarrow$.

The number of crossed nodes in the Dynkin diagram for $X$ is called the rank of $X$ and is denoted by rank $X$. This number is independent of the representation of $X$ as a quotient $G / P$.

A vector bundle $E \rightarrow X=G / P$ is called $G$-homogeneous if there is a holomorphic representation $\rho: P \rightarrow G L(V)$ such that $E=G \times{ }_{\rho} V$, i.e. $E$ is the quotient $G \times V / P$, where every $p \in P$ acts on $G \times V$ as follows

$$
\begin{aligned}
G \times V & \longrightarrow G \times V \\
(g, v) & \longrightarrow\left(g \cdot p, \rho\left(p^{-1}\right) v\right) .
\end{aligned}
$$

If $\rho: P \rightarrow \mathrm{GL}(V)$ is irreducible, then $E$ is said to be irreducible as well.
The finite-dimensional irreducible representations of $P$ are in one-to-one correspondence with integral weights $\lambda \in \Lambda$ whose Dynkin diagram has non-negative coefficients over the uncrossed nodes for $\mathfrak{p}$. A useful notation for an irreducible homogeneous vector bundle $E \rightarrow X$ is to combine the Dynkin diagram for the associated integral weight $\lambda$ with
the Dynkin diagram for $\mathfrak{p}$ into one picture. For example, if $X=\Varangle$ is the projective plane $\mathbb{C P}_{2}$, then $\mathcal{O}(-1)=\frac{-1}{\times} \quad 0$ and $T X=\frac{1}{\star} \quad 1$.

The cohomology ring $\mathrm{H}^{*}(X, E)$ of an irreducible homogeneous vector bundle $E \rightarrow X$ with integral weight $\lambda \in \Lambda$ can be computed, according to Bott [10], as follows:
(i) if $\lambda+\eta$ is singular, then $\mathrm{H}^{*}(X, E)=0$;
(ii) if $\lambda+\eta$ is regular and if $\operatorname{ind}(\lambda+\eta)=p$, then there is a unique element $\sigma_{\lambda}$ (of length $p$ ) in the Weyl group of $\Phi$ such that $\sigma_{\lambda}(\lambda+\eta) \in \Lambda^{++}$. Then $\mathrm{H}^{*}(X, E)=\mathrm{H}^{p}(X, E)$ and $\mathrm{H}^{p}(X, E)$ is an irreducible $\mathfrak{g}$-module whose highest weight is $\sigma_{\lambda}(\lambda+\eta)-\eta$.
For future reference we introduce the following notation: if $\lambda \in \Lambda$ and $\lambda+\eta$ is regular, then $J^{k}(\lambda)$ denotes the irreducible $G$-module with highest weight $\sigma_{\lambda}(\lambda+\eta)-\eta$ if $k=$ $\operatorname{ind}(\lambda+\eta)$ and 0 otherwise; if $\lambda+\eta$ is singular, then $J^{k}(\lambda)=0$ for all $k$.
3. Proof of Theorem B. The statement (i) follows from Proposition 3.1. Let us prove the statement (ii).

If $X$ is reducible, say $X=X_{1} \times X_{2}$ and $L=\pi_{1}^{*}\left(L_{1}\right) \otimes \pi_{2}^{*}\left(L_{2}\right)$, then

$$
\mathrm{H}^{1}\left(X, T X \otimes L^{*}\right)=\mathrm{H}^{0}\left(X_{1}, T X_{1} \otimes L_{1}^{*}\right) \otimes \mathrm{H}^{1}\left(X_{2}, L_{2}^{*}\right)+\mathrm{H}^{0}\left(X_{2}, T X_{2} \otimes L_{2}^{*}\right) \otimes \mathrm{H}^{1}\left(X_{1}, L_{1}^{*}\right)
$$

This together with statement (i) implies that in the class of reducible $X$ only two bottom lines in Table 3 contribute to the list of all $(X, L)$ with $\mathrm{H}^{1}\left(X, T X \otimes L^{*}\right) \neq 0$.

Assume from now on that $X$ is irreducible. Though the tangent bundle $T X$ is homogeneous, it is not irreducible in general; even worse, since the parabolic $P$ is not reductive, $T X$ is not in general a direct sum of irreducible homogeneous vector bundles. This makes a naive idea of computing $\mathrm{H}^{*}\left(X, T X \otimes L^{*}\right)$ by the straightforward application of the Bott theorem impractical.

Consider the Atiyah exact sequence

$$
\begin{equation*}
0 \longrightarrow Q \longrightarrow \mathfrak{g} \otimes \mathcal{O}_{X} \longrightarrow T X \longrightarrow 0 \tag{16}
\end{equation*}
$$

where $Q=G \times_{A d} \mathfrak{p}$. Since the central term of this extension is a trivial vector bundle and $H^{i}\left(X, L^{*}\right)=0$ for $0 \leqslant i \leqslant \operatorname{dim} X-1$, we have, in the case $\operatorname{dim} X \geqslant 3$,

$$
\mathrm{H}^{1}\left(X, T X \otimes L^{*}\right)=\mathrm{H}^{2}\left(X, Q \otimes L^{*}\right)
$$

An exact sequence of $\mathfrak{p}$-modules

$$
0 \longrightarrow \tilde{\mathfrak{n}} \longrightarrow \mathfrak{p} \longrightarrow \mathfrak{p} / \tilde{\mathfrak{n}} \longrightarrow 0,
$$

where $\tilde{\mathfrak{n}}=\mathfrak{n} \backslash \sum_{\alpha \in \Phi_{\mathrm{p}}^{+}} \mathfrak{g}_{\alpha}$, gives rise to an exact sequence

$$
0 \longrightarrow \Omega^{1} X \longrightarrow Q \longrightarrow S \longrightarrow 0
$$

of homogeneous vector bundles, where $S=G \times_{A d} \mathfrak{p} / \tilde{n}$ and we used the isomorphism $G \times_{A d} \tilde{n} \simeq \Omega^{1} X$. According to Nakano [31], for any compact complex manifold $X$ and any positive line bundle $L$ on $X$ the groups $H^{i}\left(X, \Omega^{1} X \otimes L^{*}\right)=0$ vanish for all $i \leqslant \operatorname{dim} X-2$. Then, in the case $\operatorname{dim} X \geqslant 5$, the long exact sequence of the latter extension implies

$$
\mathrm{H}^{2}\left(X, Q \otimes L^{*}\right)=\mathrm{H}^{2}\left(X, S \otimes L^{*}\right)
$$

which in turn implies

$$
\mathrm{H}^{1}\left(X, T X \otimes L^{*}\right)=\mathrm{H}^{2}\left(X, S \otimes L^{*}\right)
$$

The advantage of working with $S$ instead of $T X$ is that $S$ can always be decomposed into a direct sum of irreducible homogeneous subbundles.

The Lie algebra $\mathfrak{s}=\mathfrak{p} / \tilde{\mathfrak{n}}$ is reductive and the adjoint representation of $\mathfrak{p}$ on $\mathfrak{s}$ is semisimple. Under the adjoint representation $\mathfrak{s} \rightarrow g l(\mathfrak{s})$ the Lie algebra $\mathfrak{s}$ decomposes into a direct sum of its ideals

$$
\mathfrak{s}=\xi_{1}+\ldots \xi_{k}+\mathfrak{s}_{1}+\ldots+\mathfrak{s}_{m}
$$

where $\xi_{j}, j=1, \ldots, \operatorname{rank} X$, lie in the center of $\mathfrak{s}$ and the non-Abelian ideals $\mathfrak{s}_{i}, i=1, \ldots, m$, are simple. Then, by Bott theorem,

$$
\mathrm{H}^{2}\left(X, S \otimes L^{*}\right)=\bigoplus_{j=1}^{k} J^{2}(-\lambda)+\bigoplus_{i=1}^{m} J^{2}\left(\mu_{i}-\lambda\right)
$$

where $\lambda$ is the weight of $L$ and $\mu_{1}, \ldots, \mu_{m}$ are the maximal roots of the simple ideals $\mathfrak{s}_{1}, \ldots, \mathfrak{s}_{m}[10,35]$. Since, for $\operatorname{dim} X \geqslant 2, J^{2}(-\lambda)=\mathrm{H}^{2}\left(X, L^{*}\right)=0$, we obtain the following

Lemma 4.1 If $\operatorname{dim} X \geqslant 5$, then $\mathrm{H}^{1}\left(X, T X \otimes L^{*}\right)=\bigoplus_{i=1}^{m} J^{2}\left(\mu_{i}-\lambda\right)$.
There are seven irreducible compact complex homogeneous-rational manifolds $X$ with $\operatorname{dim} X \leqslant 4$ : projective spaces $\mathbb{C P}_{k}$ for $k=1,2,3,4$, quadrics $Q_{3}, Q_{4}$ and the complete flag manifold $F\left(1,2 ; \mathbb{C}^{3}\right)$. It is elementary to check that Theorem B is true for this family.

We assume from now on that $X$ is an irreducible complex homogeneous-rational manifold with $\operatorname{dim} X \geqslant 5$.

Let us introduce the following notation: if $\Gamma$ is a connected subgraph of the Dynkin diagram for $X$, then the number of simple roots $\left\{\alpha_{j} \mid j \in I\right\}$ in this graph is denoted by $|\Gamma|$; if $\omega$ is an integral weight such that $\omega\left(H_{\alpha_{j}}\right) \leqslant 0$ for all $\alpha_{j} \in \Gamma$, then we write $\left.\omega\right|_{\Gamma} \leqslant 0$.

Lemma $4.2 \mathrm{H}^{1}\left(X, T X \otimes L^{*}\right)=0$ for any ample line bundle $L$ on $X$ if at least one of the following conditions is satisfied:
(i) $\operatorname{rank} X \geqslant 3$;
(ii) $\operatorname{rank} X=2$ and the crossed nodes are adjacent;
(iii) rank $X=2$, the crossed nodes are not adjacent and, for each maximal root $\mu_{i}$ of the simple ideal $\mathfrak{s}_{i}, i=1, \ldots, m$, at least one crossed node is contained in a connected subgraph $\Gamma$ of the Dynkin diagram for $X$ such that $|\Gamma| \geqslant 2$ and $\left.\mu_{i}\right|_{\Gamma} \leqslant 0$.
(iv) $\operatorname{rank} X=1$ and, for each maximal root $\mu_{i}$ of the simple ideal $\mathfrak{s}_{\mathfrak{i}}, i=1, \ldots, m$, the crossed node is contained in a connected subgraph $\Gamma$ of the Dynkin diagram for $X$ such that $|\Gamma| \geqslant 3$ and $\left.\mu_{i}\right|_{\Gamma} \leqslant 0$.

Proof. (i) Let $\lambda$ be the weight of $L$. Since $L$ is ample, the coefficient of $\lambda$ over each crossed node is a negative integer (its coefficient over each uncrossed node is, of course, zero). Then $\left(-\lambda+\mu_{i}+\eta\right)\left(H_{\alpha_{j}}\right) \leqslant-\lambda\left(H_{\alpha_{j}}\right)+1 \leqslant 0$ for all crossed nodes $\alpha_{j}$ and all $i \in\{1, \ldots, m\}$. If the number of crossed nodes is greater than or equal to 3 , then either $-\lambda+\mu_{i}+\eta$ is
singular or $\operatorname{ind}\left(-\lambda+\mu_{i}+\eta\right) \geqslant 3$. Whence $\bigoplus_{i=1}^{m} J^{2}\left(\mu_{i}-\lambda\right)=0$ and the statement follows from Lemma 4.1.
(ii) If $\alpha_{j}$ and $\alpha_{j+1}$ are adjacent crossed nodes, then $\alpha_{j}+\alpha_{j+1}$ is a positive root and one has $\left(-\lambda+\mu_{i}+\eta\right)\left(H_{\alpha_{j}}\right) \leqslant 0,\left(-\lambda+\mu_{i}+\eta\right)\left(H_{\alpha_{j+1}}\right) \leqslant 0$ and hence $\left(-\lambda+\mu_{i}+\eta\right)\left(H_{\alpha_{j}+\alpha_{j+1}}\right) \leqslant 0$. Thus either $-\lambda+\mu_{i}+\eta$ is singular or $\operatorname{ind}\left(-\lambda+\mu_{i}+\eta\right) \geqslant 3$ for all $i$ and the statement follows from Lemma 4.1.
(iii) \& (iv) If $\Gamma^{\prime}$ is a connected subgraph of the Dynkin diagram for $X$, then the sum of all simple roots in $\Gamma^{\prime}$ is a positive root [11]. Under the conditions stated in (iii) and (iv), one easily finds at least three positive roots $\alpha_{j}$ such that $\left(-\lambda+\mu_{i}+\eta\right)\left(H_{\alpha_{j}}\right) \leqslant 0$ for all $i \in\{1, \ldots, m\}$. Then again either $-\lambda+\mu_{i}+\eta$ is singular or ind $\left(-\lambda+\mu_{i}+\eta\right) \geqslant 3$ implying $J^{2}\left(-\lambda+\mu_{i}\right)=0$. Thus the statement follows from Lemma 4.1.

Therefore, we can restrict our attention to the cases $\operatorname{rank} X=1,2$.
The case $\operatorname{rank} X=2$. It clear from items (ii) and (iii) of Lemma 4.2 that $\mathrm{H}^{1}\left(X, T X \otimes L^{*}\right) \neq$ 0 only for those $X$ which have the semisimple part $\mathfrak{s}^{\prime}$ of the parabolic algebra $\mathfrak{p}$ simple, i.e. the number $m$ of simple ideals of $s^{\prime}$ is 1 . Therefore, the crossed nodes must be located at the ends of the Dynkin diagram for $X$. Inspecting the list of maximal roots (15) leaves one with the following three candidates to the list of all $(X, L)$ with $\mathrm{H}^{1}\left(X, T X \otimes L^{*}\right) \neq 0$ :
(1) $(X, L)=\stackrel{8}{x} \quad 0 \quad \ldots \quad \stackrel{t}{x}$ for some $\mathrm{s}, \mathrm{t} \geqslant 1$. Computing $\sigma_{1} \circ \sigma_{n}\left(-\lambda+\mu_{1}+\eta\right)-\eta$ as shown in the following diagram

$$
\begin{aligned}
& \xrightarrow{-\eta} \underset{X}{\mathrm{~s}-1} \underset{\sim}{1-\mathrm{s}} \quad 0 \quad \ldots \xrightarrow{1-\mathrm{t}} \mathrm{t}-1
\end{aligned}
$$

one concludes

$$
\mathrm{H}^{1}\left(X, T X \otimes L^{*}\right)=J^{2}\left(-\lambda+\mu_{1}\right)= \begin{cases}\mathbb{C} & \mathrm{s}=\mathrm{t}=1 \\ 0 & \text { otherwise } .\end{cases}
$$

(2) $(X, L)=\stackrel{\mathrm{s}}{\times}$

$$
\begin{aligned}
& \xrightarrow{-\eta} \underset{\sim}{s-1} \underset{\sim}{1-s} \ldots \xrightarrow{-t} \underset{\sim}{t}
\end{aligned}
$$

implies $\mathrm{H}^{1}\left(X, T X \otimes L^{*}\right)=J^{2}\left(-\lambda+\mu_{1}\right)=0$ for all $\mathrm{s}, \mathrm{t} \geqslant 1$.


The only element of the Weyl group $W$ of length 2 which can, in principle, map $-\lambda+\mu_{1}+\eta$ to a strictly dominant weight in $\Lambda^{++}$is $\sigma_{n-1} \circ \sigma_{n}$. However, a computation as above shows that

$$
\sigma_{n-1} \circ \sigma_{n}\left(-\lambda+\mu_{1}+\eta\right)-\eta=0 \quad 0 \quad 0 \ldots e^{0} \quad . .
$$

which implies $\mathrm{H}^{1}\left(X, T X \otimes L^{*}\right)=J^{2}\left(-\lambda+\mu_{1}\right)=0$ for all $\mathrm{s}, \mathrm{t} \geqslant 1$.

The case $\operatorname{rank} X=1$. The number $m$ of simple ideals of the semisimple part of the parabolic algebra $\mathfrak{p}$ can, in principle, be equal to 1,2 or 3 . The case $m=3$, however, is ruled out by Lemma 4.2(iv). If $m=2$, then, by Lemma 4.2(iv), at least one of the ideals must be isomorphic to $s l(2, \mathbb{C})$. Therefore, the crossed node must be either an end node (for $m=1$ ) or the node adjacent to an end node (for $m=2$ ) of the Dynkin diagram for $X$. Inspecting the list of maximal roots (15) excludes all but the following candidates to $(X, L)$ with $\mathrm{H}^{1}\left(X, T X \otimes L^{*}\right) \neq 0$ :
(1) $(X, L)=\left(\mathbb{C P}_{n}, \mathcal{O}(\mathrm{~s})\right)=\mathrm{s} \_\ldots \quad(n \geqslant 5$ nodes) for some $\mathrm{s} \geqslant 1$. The odd dimensional projective space has another representation as

$$
\left(\mathbb{C P}_{2 n-1}, \mathcal{O}(s)\right)=\underset{\times}{\mathcal{S}} \quad 0 \ldots 0 \quad(n \geqslant 3 \text { nodes }) .
$$

The long exact sequence of

$$
0 \longrightarrow \mathcal{O}(-\mathrm{s}) \longrightarrow \mathbb{C}^{n+1} \otimes \mathcal{O}(1-\mathrm{s}) \longrightarrow T X \otimes L^{*} \longrightarrow 0
$$

implies $\mathrm{H}^{1}\left(X, T X \otimes L^{*}\right)=0$ for all $\mathrm{s} \geqslant 1$.
(2) $(X, L)=0 . \underbrace{0}_{0} \ldots 0$ for some $\mathrm{s} \geqslant 1$. There are two maximal roots

$$
\mu_{1}=\stackrel{2}{\bullet}-\frac{1}{x}
$$

That $J^{2}\left(-\lambda+\mu_{1}\right)=0$ for all $\mathrm{s} \geqslant 1$ follows from the proof of Lemma 4.2(iv), while

$$
\sigma_{1} \circ \sigma_{2}\left(-\lambda+\mu_{2}+\eta\right)-\eta=\stackrel{s-2}{\underbrace{}_{\times}} \stackrel{0}{\times} \text { 1-s } \ldots
$$

implies $J^{2}\left(-\lambda+\mu_{2}\right)=0$ for all $\mathrm{s} \geqslant 1$ as well. Thus $\mathrm{H}^{1}\left(X, T X \otimes L^{*}\right)=0$ for all $\mathrm{s} \geqslant 1$.

The maximal root is

$$
\mu_{1}=\left\{\begin{array}{lllll}
-1 & 0 & 1 \\
\times & 0 & 0 & 0 & 0 \\
-1 & 0 & 2 & n \geqslant 4 \text { nodes } \\
\times & & n=3 \text { nodes }
\end{array}\right.
$$

Then an easy computation shows
which implies

$$
\mathrm{H}^{1}\left(X, T X \otimes L^{*}\right)=J^{2}\left(-\lambda+\mu_{1}\right)= \begin{cases}\mathbb{C} & \mathrm{s}=2 \\ 0 & \text { othwerwise }\end{cases}
$$

(4) $(X, L)=0 \quad \underbrace{}_{x \rightarrow 0}$ for some $\mathrm{s} \geqslant 1$. The maximal roots are

$$
\mu_{1}=2 \xrightarrow{-1} \nrightarrow 0, \quad \mu_{2}=0 \quad-1 \neq 2
$$

Then

$$
\begin{aligned}
& \sigma_{3} \circ \sigma_{2}\left(-\lambda+\mu_{1}+\eta\right)-\eta=\underbrace{2-\mathrm{s}}_{0} \underbrace{-\mathrm{s}}_{-} 2 \mathrm{~s}-2 \\
& \sigma_{1} \circ \sigma_{2}\left(-\lambda+\mu_{2}+\eta\right)-\eta=\underbrace{0}_{-}-2 \mathrm{~s}
\end{aligned}
$$

implying $\mathrm{H}^{1}\left(X, T X \otimes L^{*}\right)=J^{2}\left(-\lambda+\mu_{1}\right)+J^{2}\left(-\lambda+\mu_{2}\right)=0$ for all $\mathrm{s} \geqslant 1$.
(5) $(X, L)=0 \quad 0 \quad 0 \quad 0 \rightarrow L^{5} \quad(n$ nodes $)$ for some $\mathrm{s} \geqslant 1$. This pair is biholomorphic to the following one [35]

$$
(X, L)=0.0 \ldots \underbrace{0}_{\times}(n+1 \text { nodes }) .
$$

Then, by Lemma 4.2(iv), $\mathrm{H}^{1}\left(X, T X \otimes L^{*}\right)=0$ for all $\mathrm{s} \geqslant 1$.
(6) $(X, L)=0 \quad 0 \quad 0 \quad \mathrm{~s} \rightarrow 0$ for some $\mathrm{s} \geqslant 1$. The maximal roots are

The proof of Lemma 4.2(iv) implies $J^{2}\left(-\lambda+\mu_{2}+\eta\right)=0$ for all $\mathrm{s} \geqslant 1$, while

$$
\sigma_{n} \circ \sigma_{n-1}\left(-\lambda+\mu_{1}+\eta\right)-\eta=\stackrel{1}{\bullet} \ldots \stackrel{-\mathrm{s}}{\overbrace{\leftrightharpoons}^{2 \mathrm{~s}}-2}
$$

implies $J^{2}\left(-\lambda+\mu_{1}+\eta\right)=0$ for all $s \geqslant 1$. Whence, by Lemma 4.1, $\mathrm{H}^{1}\left(X, T X \otimes L^{*}\right)=0$ for all $s \geqslant 1$.
(7) $(X, L)=0 \quad \underset{\sim}{0} \quad \ldots \quad 0 \quad 0 \quad(n \geqslant 3$ nodes $)$ for some $\mathrm{s} \geqslant 1$. The maximal roots are

The vanishing of $J^{2}\left(-\lambda+\mu_{1}\right)$ for all $n \geqslant 4, \mathrm{~s} \geqslant 1$ follows from the proof of Lemma $4.2(\mathrm{iv})$. That this module vanishes for $n=3, \mathrm{~s} \geqslant 1$ follows from a simple calculation:

$$
\sigma_{3} \circ \sigma_{2}\left(-\lambda+\mu_{1}+\eta\right)-\eta=\stackrel{2-\mathrm{s} 1-\mathrm{s}-\mathrm{s}-2}{ }
$$

Analogously, one finds

$$
\sigma_{1} \circ \sigma_{2}\left(-\lambda+\mu_{2}+\eta\right)-\eta=\stackrel{s-1 \quad 0}{0}-1-\mathrm{s} \ldots 0
$$

implying $J^{2}\left(-\lambda+\mu_{2}\right)=0$ for all $\mathrm{s} \geqslant 2$ and $J^{2}\left(-\lambda+\mu_{2}\right)=\mathbb{C}$ for $\mathrm{s}=1$. Therefore, by Lemma 4.1,

$$
\mathrm{H}^{1}\left(X, T X \otimes L^{*}\right)= \begin{cases}\mathbb{C} & s=1 \\ 0 & \text { otherwise } .\end{cases}
$$


and an easy calculation shows that

$$
\sigma_{2} \circ \sigma_{1}\left(-\lambda+\mu_{1}+\eta\right)-\eta=\stackrel{0}{x} \frac{\mathrm{~s}-2}{} 2-\mathrm{s}, 0 \quad 0
$$

Therefore,

$$
\mathrm{H}^{\mathrm{1}}\left(X, T X \otimes L^{*}\right)=J^{2}\left(-\lambda+\mu_{1}\right)= \begin{cases}\mathbb{C} & s=2 \\ 0 & \text { otherwise } .\end{cases}
$$

(9) $(X, L)=0 \rightarrow \underbrace{s}_{-}=0 \quad$ for some $\mathrm{s} \geqslant 1$. The maximal roots are

From the proof of Lemma 4.2 (iv) it follows that $J^{2}\left(-\lambda+\mu_{1}\right)=0$ for all $\mathrm{s} \geqslant 1$. The only element of the Weyl group of length 2 which can, in principle, make $-\lambda+\mu_{2}+\eta$ strictly dominant is $\sigma_{2} \circ \sigma_{1}$. Since

$$
\sigma_{2} \circ \sigma_{1}\left(-\lambda+\mu_{2}+\eta\right)-\eta=\stackrel{s-1}{-} \quad 0 \xrightarrow{1-2 s} 1
$$

the module $J^{2}\left(-\lambda+\mu_{2}\right)$ vanishes for all $\mathrm{s} \geqslant 1$. Therefore, $\mathrm{H}^{1}\left(X, T X \otimes L^{*}\right)=0$ for all $\mathrm{s} \geqslant 1$.
(10) $(X, L)=0 \quad 0 \Rightarrow{ }^{0} \quad 0 \quad$ for some $s \geqslant 1$. The maximal roots are

From the proof of Lemma 4.2(iv) it follows that $J^{2}\left(-\lambda+\mu_{2}\right)=0$ for all $s \geqslant 1$. Since
the module $J^{2}\left(-\lambda+\mu_{2}\right)$ vanishes for all $\mathrm{s} \geqslant 1$. Therefore, $\mathrm{H}^{1}\left(X, T X \otimes L^{*}\right)=0$ for all $s \geqslant 1$.
(11) $(X, L)=0 \xrightarrow{0} \xrightarrow{0} \xrightarrow{\mathbf{s}}$ for some $s \geqslant 1$. The maximal root is

$$
\mu_{1}=0 \quad 0 \quad 0 \quad-2 .
$$

Since

$$
\sigma_{3} \circ \sigma_{4}\left(-\lambda+\mu_{1}+\eta\right)-\eta=\stackrel{0}{\stackrel{1-s}{\Longrightarrow} \text { s-1 } 0}
$$

we obtain

$$
\mathrm{H}^{1}\left(X, T X \otimes L^{*}\right)=J^{2}\left(-\lambda+\mu_{1}\right)= \begin{cases}\mathbb{C} & \mathrm{s}=1 \\ 0 & \text { otherwise } .\end{cases}
$$

(12) $(X, L)=\xrightarrow{\mathrm{S}} 0$ for some $\mathrm{s} \geqslant 1$. The maximal root is $\mu_{1}=-\underset{\sim}{-1} 2$. Hence

$$
\sigma_{2} \circ \sigma_{1}\left(-\lambda+\mu_{1}+\eta\right)-\eta=\stackrel{3-2 \mathrm{~s}}{\rightleftharpoons} 3 \mathrm{~s}-4
$$

implying $\mathrm{H}^{1}\left(X, T X \otimes L^{*}\right)=J^{2}\left(-\lambda+\mu_{1}\right)=0$ for all $\mathrm{s} \geqslant 1$. Theorem B is proved.

Acknowledgement. It is a pleasure to thank Prof. S. Donaldson and Dr L. Schwachhöfer for valuable comments and discussions.

## References

[1] Ahiezer, D.N.: Homogeneous complex manifolds. In: Several Complex Variables IV. Springer, 1990
[2] Akivis, M.A.: Webs and almost-Grassmanian structures. Dokl. Akad. Nauk USSR, 252, 267-270 (1980)
[3] Alekseevski, D.V.: Riemannian spaces with unusual holonomy groups. Funct. Anal. Appl. 2, 97-105 (1968)
[4] Ambrose, W., Singer, I.M.: A theorem on holonomy. Trans. Amer. Math. Soc. 79, 423-443 (1953)
[5] Bailey, T.N., Eastwood, M.G.: Complex paraconformal manifolds - their differential geometry and twistor theory. Forum Math. 3, 61-103 (1991)
[6] Baston, R.J., Eastwood, M.G.: The Penrose transform, its interaction with representation theory. Oxford University Press, 1989.
[7] Berger, M.: Sur les groupes d'holonomie des variétés á connexion affine et des variétés Riemanniennes. Bull. Soc. Math. France 83, 279-330 (1955)
[8] Berger, M.: Les espaces symétriques noncompacts. Ann. Sci. École Norm. Sup. 74, 85-177 (1957)
[9] Besse, A.: Einstein manifolds. Springer, 1987
[10] Bott, R.: Homogeneous vector bundles. Ann. Math. 66, 203-248 (1957)
[11] Bourbaki, N.: Groupes et algébres de Lie. Hermann 1968
[12] Bryant, R.: Metrics with exceptional holonomy. Ann. of Math. 126, 525-576 (1987)
[13] Bryant, R.: Two exotic holonomies in dimension four, path geometries, and twistor theory. Proc. Symposia in Pure Mathematics 83, 33-88 (1991)
[14] Bryant, R.: Classical, exceptional, and exotic holonomies: a status report. Preprint, 1995
[15] Cartan, É.: Les groupes de transformations continus, infinis, simples. Ann. Éc. Norm. 26, 93-161 (1909)
[16] Cartan, É.: Les groups d'holonomie des espaces généralisés. Acta Math. 48, 1-40 (1926)
[17] Cartan, É.: Sur une classe remarquable d'espaces de Riemann. Bull. Soc. Math. France 54, 214-264 (1926); 55, 114-134 (1927)
[18] Chi, Q.-S., Merkulov, S.A., Schwachhöfer, L.J.: On the existence of an infinite series of exotic holonomies. Inv. Math., to appear
[19] Chi, Q.-S., Schwachhöfer, L.J.: Exotic holonomy on moduli spaces of rational curves. Preprint MPI/94-138.
[20] Hano, J., Ozeki, H.: On the holonomy groups of linear connections. Nagoya Math. J. 10, 97-100 (1956)
[21] Humphreys, J.E.: Introduction to Lie Algebras and Representation Theory. Springer-Verlag, 1987
[22] Iwahori, N.: On real irreducible representations of Lie algebras. Nagoya Math. J. 14, 59-83 (1959)
[23] Kobayashi, S., Nagano, K. On filtered Lie algebras and geometric structures II. J. Math. Mech. 14, 513-521 (1965)
[24] Kobayashi, S., Ochiai, T.: On complex manifolds with positive tangent bundles, J. Math. Soc. Japan 22, 499-525 (1970)
[25] Manin, Yu.I.: New dimensions in geometry. Springer Lect. Notes in Math. 1111, 59-99 (1985)
[26] Manin, Yu.I.: Gauge Field theory and Complex Geometry, 2nd Edition. Springer, in press
[27] Merkulov, S.A.: Paraconformal supermanifolds and non-standard supergravity theories, Class. Quantum Grav. 8, 557-569 (1991)
[28] Merkulov, S.A.: Existence and geometry of Legendre moduli spaces. Math.Z., to appear
[29] Merkulov, S.A.: Addendum in [26]
[30] under preparation
[31] Nakano, S.: On complex analytic vector bundles, J.Math.Soc.Japan 7, 1-12 (1955)
[32] Penrose, R.: Non-linear gravitons and curved twistor theory. Gen. Rel. Grav. 7, 31-52 (1976)
[33] Salamon, S.M.: Riemannian Geometry and Holonomy Groups. Longman, 1989.
[34] Singer, I.M., Sternberg, S.: The infinite groups of Lie and Cartan I. J. Analyse Math. 15, 1-114 (1965)
[35] Steinsick, M.: Transformations groups on homogeneous-rational manifolds. Math. Ann. 260, 423-435 (1982)


[^0]:    ${ }^{1}$ From now on by a holonomy group we always understand the irreducibly acting holonomy of a torsionfree affine connection which is not locally symmetric. The second assumption is motivated by the fact that, due to Cartan [17] and Berger [8], the list of locally symmetric affine spaces is completely known.

[^1]:    ${ }^{2}$ One may view indices of the type $a, A$ or $\dot{A}$ as refering to some fixed basis in a relevant vector space or, alternatively, as abstract labels providing us with a transparent notation for such basic tensor operations as (anti)symmetrization, contraction, etc. (cf. [6, 32]).

