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Abstract

Using twistor mcthods, a complete c1assification of irreducible holonomies of
torsion-free affine connections which can be represented as a tensor product of nOll
Abelian representations, is givell.

As a by-product, a cmnplete list of all compact complex homogeneous-rational
manifolds X and alnplc line bundles L ---7 X such that HO (X, T X ® L *) :j:. 0 and!or
H I (X, T X ® L*) =F 0 is obtained.

1 Introduction

Holonomy group is one of the luost infonuative eharaeteristics of an affine eonnection.
The problem of classification of holonomy groups has a long history which starts in 1920s
with the works of Cartan [16, 17] whcrc he uscd this notion to classify loeally symmetrie
Rieluannian luanifolds. In 1955, Berger [7] showed that the list of irreducibly aeting matrix
Lie groups which eau, in principlc, oeeur as thc holonomy of a torsion-free affine connection
must be very restrietive. This is in a 5harp contrast to thc rcsult of Hano and Ozeki [20]
whieh says that thcre is no intercsting holonoroy classification in the class of arbitrary
affine connections - any closed subgroup of GL(n, IR) can be realized as the holonomy of
an affine eonnection (with torsion, in general).

Berger presented his classificatioll list of all possible candidates to irreducible
holonomies 1 in two parts - the first part is claimed to contain all possible groups which
preserve a non-degenerate symluetric biliIlCar form, and the second part is claimed to con
tain all the rest, up to a finite rLumber of missing terms which Bryant [13] suggested to
call the exotic holonomies. The proof of the seeond part was omitted; as of this writing,
no proof has yet been published.

The classifieation of all Inetric holonolnies has been recently cOlnpleted [14]. This is a
cuhnination of efforts of luany people to show that Ill0st entries of Bergerls original metric
list do occur as holononlies of Levi-Civita connections and that just a few of them are
superious (see, e.g., [3, 9, 12, 13, 14, 33] and the references cited therein).

1 From IlOW on by a holonomy group wo always understand the irreducibly acting holonomy of a torsion
free affine eonnection whieh is not loeally symmetrie. The seeond assumption is motivated by the fact
that, due to Cartan [17] and Berger [8], the list of loeally symmetrie affine spaees is eompletely known.
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BERGER'S ORIGINAL LIST OF NON-METRIC HOLONOMIES

group G representation V restrietions

lRn
n~2

T R . SL(n, IR) 8 2IRn :::: IRn(n+l)/2 n~3

A2IRn :::: IRn(n-l)/2 n~5

cn :::: IR.2n n~l

Tc' SL(n, C) 8 2(:71 :::: IRn(n+l) n~3

A2cn :::: IRn(n-l) n~5

lR· . SL(n, C) {A E Mn(C) : A = At} :::: ]Rn:l n~3

lHF :::: JR4n n~l

TlR • SL(n, lliI) {A E !\t[n (lliI) : A· = -At} :::: IRn(2n+l) n~2

{A E iVln(lliI) : A· = At} :::: IRn(2n-l) n~3

T lR • Sp(n, IR) IR2n
n~2

Tc . Sp(n, C) (C2n :::: IR4n n~2

IR· . 80(p, q) JRP+q p+q~3

Tc . 80(n, C) cn :::: IR2n n~3

T R . SL(m, lR) . SL(n, lR) lRmn m > n ~ 2 or 171 ~ n > 2

Tc . SL(m, C) . SL(n, C) cm ® CO' :::: IR2mn m > n ~ 2 or 771 ~ n > 2

T R . SL(m, lliI) . SL(11, IHr) lR16mn m > n ~ 1 or m ~ n > 1

3U (2) . SO(n, IHr) IR2 ® IR4n :::: IR8n n~2

NOTATIONS: TF denotes any connected Lie subgroup of lF'",
T~ denotes any non-trivial connected Lie subgroup of r,
Aln (IF) denotes the algebra of n x n matrices with entries in IF.

Table 1: List of non-Inetric holonomies (Part I)
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LIST OF EXOTIC HOLONOMIES

group G representation V restrictions

Ta . 8pin(5, 5) IR16

T R . Spin(l, 9) IR16

Tc . Spin(lO, C)
C16 ~ ]R32

TR • E~ IR27

TR ·E: ]R27

Tc·E~ C27 ~ JR54

TlR . 8L(2, IR) 0 3IR2 ~ JR4

Tc' 8L(2, C) 0 3C2 ~]RB

lR* . 80(2) . 8L(2, IR) ]R2 01R2 ~ r
C* ·8U(2) C2~r

8L(2, IR) . 80(p, q) IR2 0 IRp+q ~ IR2p+2q p+q>2

8L(2, C) . 80(n, C) ()! ® cn ~ IR4n n~3

E5 IR56
7

E7 IR56
7

EC IR11 2 ~ CS6
7

8p(3, IR) IR14 C A3JR6

Sp(3, C) }R28 ~ C14 C A3C6

8L(6, IR) IR20 ~ A3JR6

8L(6, C) JR40 ~ A3Ci

Spin(2, 10) JR32

8pin(6, 6) JR32

Spin(12, C) 1R64 ~ (:32

NOTATIONS: T IF denotcs any connected Lie SUbgrOllP of F'

Table 2: List of non-metric holonomies (Part 11)
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Berger's seeond list of non-metrie holonomies, refined and extended, is given in Tables 1
and 2. The 4-dimensional representations of T R •SL(2, IR), Tc' SL(2, C), }R* •SO(2) .SL(2, IR)
anel C* .8U (2), and the fundamental representations of various real fonns of Tc' Spin(10, C)
anel Tc . E~ have been added to the list of non-metrie holonomies by Bryant [13, 14). Thc
series 8L(2, IR) ·SO(p, q) and SL(2, C) ·SO(n, C) have been found by Chi et al [18]. Recently
[30] it has been shown that representations of E~, E~, E~, Sp(3, IR), Sp(3, C), SL(6, IR),
SL(6, C), 8pin(2, 10), Spin(6,6) and Spin(12, C) listed in Table 2 also oecur as holonolnies
of torsion-frec affine connections.

In summary, duc to [5, 13, 14, 18, 30, 33] all entries of Tables 1 anel 2 are known
to oecur as holonomies. The eompleteness status of these tables is not dear at present.
However, 've can make a definite statement about apart of Inodificd Berger's non-metrie
list.

Theorem A Let G be the irredueible holonorny 01 a torsion-/ree affine eonneetion whieh
is not loeally symmetrie and does not preserve any (pseudo-)Riemannian metrie. 1/ the
semisimple part 0/ G is not simple, then G is one 0/ the groups listed in the /ollowing table

LIST OF NON-METRIC SEGRE HOLONOMIES

group G I rcpresentation V I restrietions

T R . SL(m, IR) . SL(n, IR) IRmn m > n ~ 2 or m ~ n > 2

Tc . SL(m, C) . SL(n, C) cm 0 erz ~ IR2mn m > n ~ 2 01' m ~ n > 2

T lR • SL(m, lHI) . SL(n, lliI) ]R16mn m > n ~ 1 or m ~ n > 1

IR* ·SO(p,q) JR4 p = q = 2 or p = 4, q = 0

Tc . SL(2, C) . SL(2, C) IRB ~ et

8L(2, IR) . SO(p, q) IR2 ® JRP+q ~ IR2p+2q p+q>2

8U(2) . 80(n, IHI) IR2 0 JR4n ~ JR8n n~2

SL(2, C) . 80(n, C) C2 0 cn ~ IR4n
n~3

NOTATIONS: T F denotes any connected Lie subgroup of ~,
T;' denotes any non-trivial conneeted Lie subgroup of IF* .

The dass of holonomy groups (and thc associated geometrie struetures) studied by
Theoreln A appear in the literature under different narnes. For example, the authors of
[2, 26] eall these almost Grassmanian, the authors of [5] eall these paraconlormal. In
this paper we follow the tenninology of Bryant [14] who sllggested to call thenl Segre
holonomies. SOIne applieations of Segre structures to high energy physies are discussed in
[25, 27J.
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The second dassification result of this paper has, at first sight, nothing to do with thc
holonoIllY probleIll.

Theorem B Let X be a compact complex homogeneous-rational manifold and L an arnple
line bundle on X. Then

{

C for (X,L) = (CIP 1,CJ(2))
(i) HO(X,T.I\®L*) = cn for (X,L) = (CIPn , 0(1)), n~l

o otherwise

(ii) H1(X, TX ~ L*) = 0 unless (X, L) is one 0/ the entries in Table 3.

One may compare this result with the vanishing theorem of Kobayashi and Ochiai [24]
which says that if X is a compact complex rational manifold anel L ---t X a line bundle
such that det(TX) ~ L* is anlple, then Hi(X, TX ~ L*) = 0 for all i ~ 2.

The paper is organized as folIows. After recalling a few basic facts about holonomy
groups in the beginning of section 2, we show in sections 2 anel 3 that Theorem B implies
Theorem A (more precisely, it is the part of Table 3 dassifying all (X, L) with H 1(X, T X ®
L 2*) =1= 0 which implies Theorem A). As a by-procIuct, we get a very simple group-theoretic
explanation of the effectiveness of twistor methods in differential geometry. In the second
half of the paper (section 4) we prove TheoreIn B.

2 Holonomy groups in the Borel-Weil context

1. Definition of holonomy groups. Consider the following data:

• Let !vI be a smooth connected anel simply connected n-manifold.

• Fix a point x E Ai.

• Let Lx = {, : [0, 1] ---t !vI ! ,(0) = ,(I)} be the set of piecewise sInooth loops based
at x.

• Let \7 be an affine connection on Ai.

• For, E Lx, let P-y : TxM ------+TxM be a linear automorphism inducecl by the \7-parallel
translations along ,.

The holonomy 0/ \7 at x E M is defincd as a subset H x := {Pl' I, E Lx} ~ GL(TxM).
Its basic properties are: (i) Hx is a connected Lie subgroup of GL(TxA1); (ii) if one fixes
an isomorphisIn i : TxM ::: \I, wherc \I is any fixed vector space with dirn V = dirn M
(typically, V = Rn), thcn the conjugacy dass of i(Hx) C GL(\I) does not depend on thc
choice of x E !vI (see, e.g., [9]). The holonomy group of \7 is defincd as any linear subgroup
G ~ GL(\I) in the conjugacy dass of i(Hx ) far SOlne x E M. Thc Lie algebra g ~ gl(\I) of
G is called the holonomy algebra of \7.

Let \I be a vector space anel g ~ gl(V) a Lie subalgebra. What is a necessary condition
for g to be the holonomy algebra of a torsian-frec affine connection? One of thc answers
is that at least one of thc Spencer g-Illodules, g(1) or H1,2(g), mllst be non-zero. 'vVe shall
recall their definition in the next subsection.
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(X,L) I H'(X, TX ® L*) I
k 0 k - 4C2X (k;?; 4)

Al (l ;?; 1) 3 0 C~

0 2 0 C• )( •
1 0 0 0 1 C)( • •... ...----..-)(

BI (l ;?; 3) 0 0 2 C• ; :(

2 0 o 0 0 C)( • ....~
Cl (l ;;::: 2) 0 2 C~

0 1 0 0 0 C• )( ....~
0

DI (l ;?; 4) 2 0 L.~ c>< •

F4
0 o 0 1 C• >I )(

Al X Al k ®~ (k ;?; 2) 0 k - 2C2
X

Al X Al (l ;?; 1) ~® 1 0 0 0 (k ;?; 2) 0 k - 2C2 ® C+l
~ ... "'-"'"

NOTATION: AutOX denotes thc universal covering of the component
thc identity of the group of all automorphisms of X

Table 3: The list of all (X, L) with H1(X, T X ® L*) =j:. 0
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2. Spencer cohomology. Let 1I be a vector space and .0 a Lie subalgebra of gl(lI) :::
1I ® 1I"'. Define recursively thc g-modulcs

1I

.0
[g{k-l) \SIll"'] n [V ® 8 k+l V"'] , k = 1,2, ... ,

and define thc map
8 : g{k) 0 1\l-lV'" -----7.o{k-l) 0 AlV·

as the antisymmetrisation over the last l indices. Here and elsewhere the symbols Gi and
Ak stand for k-th order symlnetric and antisymmetrie powers respectively.

Bince 82 = 0, therc is a complex

.o{k) ® Al-lV· ~ g{k-l) ® AIV· ~ g{k-2) ® AI+1V·

whose cohomology at the center term is dcnoted by Hk,l(.o) and is called the (k, l) Spencer
cohomology group. In particular,

Hk,l (.0)

Hk,2(.o) _

o
Ker: .o{k-l) 0 A2V· ~ .o{k-2) ® A3V·

a .
Image: .o{k) ® V· -+ g{k-l) 0 A2V·

(1)

The g-Inodule Hk ,2(.o) has the following geometrie meaning: if G is a rnatrix Lie group
whose Lie algebra is .0 and Q ---t NI is a C-structure on a manifold M which is infinitesimally
flat to k-th order, then the obstruction for Q tobe infinitesiIually flat to (k + l)-th order
is given by a section of the associated vector bundle 9 X G Hk

,2 (.0).
Anothcr g-rnodule .0(1) has a clear geometrie interpretation as weil. If a G-structure

9 ---7 A1 is infinitesin1ally flat to 1st order (which is equivalent to saying that Q admits a
torsion-free affine connection), then the set of all torsion-free affine connections in 9 is an
affine spacc modelled on the vector space HO(M, Q Xa g(1)). In particular, if G ~ GL(V) is
such that .0(1) = 0, then any G-structure admits at IUOSt one torsion-free affine conncction.
If K(.o) denotes the .o-module of formal curvature tensors of torsion-free affine connections
with holonolny in .0, i.e.

then
H l ,2 _ J{(.o)

(.0) - 8(.o{l) ® V.)

Le. the coholnology group H 1,2(g) represents the part of K(.o) which is invariant under .0(1)_
valued shifts in a fonnal torsion-free affine connection with holouorny in g. For example,
if (C, V) = (CO(n, R) l Rn), then .o(1) = \1'* and H 1

,2 (.0) is thc vector space of forn1al \iVeyl
tensors.

If .0(1) = 0, then H 1,2(.o) is exactly J{(.o), the .o-rnodule which plays a key role in the
theory of torsion-free affine connections with holollomy in .o. The case .0(1) = 0 is generic
- there are very few irreducibly acting Lie subgroups .0 C gl(V") which have .0(1) f:. O. For
future reference we list in Table 4 all complex irreducible Lie subgroups G c GL(V) with
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ITHE LIST OF ALL IRREDUCIBLE COMPLEX LIE SUBGROUPS G ~ GL(1/, C) WITH g{I) #- °I
group G representation V 9(1)

SL(n, C) V=cn,n~2 (V ® 8 2 y·)o

GL(n, C) V=C\n~l V ® 8 2V·

GL(n, C) V ~ 8 2(;1, n ~ 2 V·

GL(n, C) V ~ A2cn, n ~ 5 V·

GL(rn, C) . GL(n, C) V ~ cm ® cn, m, n ~ 2 V·

Sp(n, C) V=cn,n~4 8 3y.

C· . Sp(n, C) V=cn,n~4 8 3V·

CO(n, C) V=cn,n~5 V·

C* . Spin(10, C) V = C16 V·

C· ·E~ Y = ((;27 V·

Table 4: Classification list of Cartan (1909) anel Kobayashi & Nagano (1965)

g(1) #- 0 which is due to Cartan [15] and Kobayashi & Nagano [23]. As of this writing, thc
list of all irreducibly acting 9 ~ gl(V) which havc H1,2(g) =1= 0 is not known - otherwise
the holonorny classification problem would be solvccl long ago.

Another g-module, K 1 (g) 1 which is of intcrest in the holonorny context can be defined
as the kernel of the composition

wherc the first Inap is the natural inclusion anel thc sccond map is the antisymmetrization on
the last three indices. If there exist a torsion-free affine connection V' on a smooth manifold
A1 with the holonomy algebra in g, then thc curvature tensor R of V' can be represented
locally as a function on A1 with values in J{(g), while the covariant derivative V' R can
be represented locally as a function on JI/I with values in K 1 (g). Therefore, K 1 (9) =j:. 0
(in particlllar, J{(g) =j:. 0) is one of thc necessary conditions for V' to be the holonomy of
a torsion-free affine connection which is not locally symmetrie. Note that g' ~ 9 implies
K(g') ~ K(g) and Kl(g') ~ K 1(g).

It is wcll-known [22] that the classification of real irreclucible representations of real
reductive Lie algebras can be accomplished via thc classification of complex irrcducible
reprcscntations of complex reductivc Lic algebras. The problem of classifying real reeluctivc
holonolnies can, in principle, be handled in a sinlilar way (see subsection 5 in §3), with
the first and the most important step being the classification of all possible candidatcs to
complex reeluctive holonomies. With this motivation, we restriet our attention in thc rest
of Section 2 anel in the most of Section 3 to complex irreducible representations of c0I11plex
reductive Lie groups G and their Lie algebras g.

Unlcss othcrwise explicitly stated, Tc denotes in what follows either a trivial group 01'

the rllllitiplicatitive group C* and te denotes thc Lie algebra of Tc-
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3. Twistor formulae for Spencer cohomology. Let V be a finite dimensional
complex vector space anel C ~ GL(V) an irreducible representation of a reductive complex
Lie group in V. Then G also acts irreducibly in V· via the dual representation. Let X
be the C-orbit of a highest weight vector in V· \ O. Thcn the quotient X := XjC· is a
cOlllpact complex homogeneous-rational ruanifold canonically erubedded into IP(V·), allel
there is a comnHItative diagrarll

V·\O
-!

IP(V*)

In fact, X = CsiP, where Cs is the seruisimple part of C and P is the parabolic subgroup
of C s leaving a highest weight vector in V· invariant up to ascale. Let L bc the restrietion
of the hyperplanc seetion bundle 0(1) on IP(V·) to the submanifold X. Clearly, L is an
ample homogencous line bundle on X.

In summary, there is a natural map

(C, V)--+(X, L)

which associates with an irreducibly acting reductive Lie group C ~ GL(V) a pair (X, L)
consisting of a compact cOlllplex homogeneous-rational manifold X and an ample line
bundle L on X. We call (X, L) the Borel- Weil data associated with (C, V).

Cau this map be reversed? According to Borel-Weil, the rcpresentation space V cau
be rcconstructed very easily:

V = HO(X, L).

What about G? According to Onishchik, with a few (but notable) exceptions, G can
be reconstructed as weIl.

Fact 2.1 [1] Assume that G is sirnple. The Lie algebra 0/ G is isomorphie to
HO(X, TX) unless one of the following holds:

(i) C is the representation of Sp(n, C) in C2n in which case HO(X, T X) ~ sl(n, C);

(ii) G is the representation of G2 in C7 in which case HO(X, T X) ~ 80(7, C);

(iii) G is the fundamental spinor representation 0/ SO(2n + 1, C) in whieh ease
HO(X, T X) ~ 8o(2n + 2, C).

Another proof of this fact is given in [35].
Therefore, if G ~ GL(V) is semisinlple then, with a few exeeptions, C enn be reCOI1

structed from (X, L). However j it is often undesirable to restrict oneself to semisiInple
groups only (especially in the context of the holonomy classification problenl). There is a
natural central extension of the Lie algebra HO (./\, T X):

Fact 2.2 For any (X, L), 9 := HO (X, L ® (Jl L)*) is a reductive Lie algebra canonically
represented in HO(X, L).

This fact is easy to explain - HO(X, L® (J I L)*) is exactly the Lie algebra of the Lie group
G of all global biholomorphisrlls of the line bundle L which corurllute with the projection
L-rX.
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In summary, with a given irreducible representation G ~ GL(V) there is canonically
associated a pair (X, L) consisting of a compact complex homogenous-rational manifold X
and a very ample line bundle on X such that nluch of the original information about G can
be restored fronl (X, L). For our purposes the crucial observation is that the g-modules
gCk) and Hk ,2(g) also admit a sirnplc description in terms of (X, L).

Theorem 2.3 For a compact complex rnanifold X and a very ample line bundle L on
X, there is an isomorphism

g{k} = HO (X, L 0 8 k+ 1N*) , k = 0,1,2, ...

and an exact sequence 0/ g-modules,

where 9 := HO(X, L ® N*), N := Jl L, and Hk ,2(g) are the Spencer cohomology groups
associated with the canonical representation 0/ 9 in the vector space V := HO(X, L).

Proof. Bince L is very ample, there is a natural II evaluation" epimorhisrn

whose dualization gives rise to the canonical monomorphism 0 ---t N· ---t V* 00x. Then
one may construct the following sequences of locally free sheaves,

and

O---+L '9 0 k+1N* ---+L 0 0 k N· 0 V· ---+L 0 0 k - 1N· 0 A2V· (2)

O---+L 0 8 k+2N* ---+L 0 0 k+1N* 0 V* ---+L 0 0 k (N·) ® A2V* ---+L ® 0 k- 1N* 0 A3V*, (3)

and notice that they both are cxact. [Rint: for any vector space vV one has Hf ® A2Hf Inod
A3W ~ W ® 0 2VV fiod 0 3W.]

Thcn computing HO(X, ... ) of (2) and using the indllctive definition of gCk) one casily
obtains tbe first statelnent of tbe Theorem.

The second statement follows from (3) and the definition (1) of Hk ,2(g). Indeed, define
Ek by the exact sequence

The associated long exact sequence implies thc following exact sequence of vector spaces

On the otber hand, thc exact sequence

implies
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which in turn implies
Hk,2(g) = HO(X, Ek )/8[g(k) ® V*].

This completes the proof of the second part of the Theorem. 0

In 1976 Penrose [32] considered the data (X Y Z, N) consisting of a rational curve
X = CIP 1 elubedded into a complex 3-fold Z with normal bundle N = 0(1) EB 0(1);
and sbowed tbat tbe Kodaira moduli space of all rational curves obtaincd by holomorphie
deformations of )( inside Z is a complex 4-dimensional manifold A1 whieh comes equipped
with a canonieally indueed self-clual conformal structure. Moreover, he showeel that any
loeal eonformal self-dual structure arises in this way. Since this pioneering work, several
other manifestations of this strange phenomenon have been observed when a complex
analytie elata of tbe fOrIn (X Y Z, N) gives rise to a fuH category of loeal geometrie
structures Cgeo ' More precisely, it is asuccessful cboice of a pair (X, N) consisting of
a complex bOIllogeneous manifold X anel a hOlnogeneous vectoT bundle N on X whieh
uniquely specifies Cgeo , tbe choiee of a particular ambient manifold Z corresponeling to tbe
choice of a particular objeet in Cgeo '

The fact that, according to Theorelll 2.3, the spaces of formal curvature tensors fit
nieely into the Borel-Weil paradigm gives a siInple group·tbeoretie explanation of why a
twistorial data (..Y, N) can, in principle, be used as a building block for basic diffcrential
geolnetric objeets. If rankN ~ 2, then, following a common practice in complex analysis,
one should replaee the pair (X, N) by an equivalent one (X = IP(N*), L = 0(1)) anel then
apply Theoreln 2.3 to find out whieh geometrie category Cgeo nlay eorrespond to (..tY, N).
Applying this proeeclure, c.g., to thc pair (CIP 1, C2k (9 0(1)), k > 1, one iInmediatcly
eoncludes that Cgeo ean only be the category of eomplexified quaternionie manifolds.

Also, this purcly group-theoretic result suggests that there should exist a universal
twistor eonstruction for all torsion-free geometries. Details of this eonstruetion are given
in [28, 29].

3 Classification of Segre holonomies

1. Cohomology on reducible rational homogeneous manifolds. Fronl BOW on we
assulue tbat X = Xl X X2 is a direct product of two compact eOInplex hOIllogeneous-rational
Iuanifolds Xl and X2 anel that JL is an ample holomorphic line bundle on X. Denoting by
1f1 : X ---t Xl anel 7T2 : X ---t X2 tbe natural projections, we may writc lL = 7T;(Ld (91f~(L2)

for some uniquely speeified ample Ene bundles LI and L 2 on XI anel X 2 respeetively. V'Je
denote N := JIJL and Ni := Jl Li, i = 1,2.

Since

one has

Tbe latter extension COlnbined with

iInplies
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or
O----+IL: ----+7f;(N;) 0 7f;(L;) + 7f;(N;) 0 7f;(L;)----+N* ----+0,

wbicb in turn irnplies thc followiug two cxact sequences

7f;(L I 0 (~iN;) ® 7f;(L2)
7f;(Ni) 0 7f;(L2) +

0----+ + ---+ 7f;(N;) ® 7fi(Ni)
7fi(Ln ® 7f2(N~) +

7fi(Li) ® 7f;(L2 ® 0 2Ni)

anel

(4)

(5)

7fi (LI 0 0 3N;) 0 7f; (L2)2
7fU02Ni) ® 7f;(L2)2 +

+ 7fi(02Ni) 0 7f;(L20 Ni)
0---+ 7fi(LI0N;)07fi(L20Ni) ---+ + ---+lL083N*---+0.

+ 7f;(Li ® Ni) 07f;(01V;)
7f;(Li)2 ® 7f;(02Ni) +

7fi (Li) 2 ® 7f; (L2 ® 0 3Ni)
(6)

Proposition 3.1 Let X be a compact complex homogeneous-rational manifold and L
an ample line bundle on X. Then

{

C for (X,L) = (CIP1,O(2))
HO(X,TX0L*)= (;1+1 for (./\,L) = (CIF n ,O(l)), n~l

o otherwise

Proof. If diIn X = 1, Le. X = CIP 1, then the stateIl1ent follows from thc isornorphism
T)( ~ 0(2).

Asssunle now that dimX ~ 2. Then, by the Kodaira vanishing theorem, H1(X, L*) =
o for auy anlple line bundle L on X. Applying tbe Künneth formular to the long exact
sequence of (5) with X = X x X and lL = 7f;(L) ® 7f;(L), one easily obtains

HO(X,lL ® 0 2N*) = HO(X, N*) ® HO(X, N*) = HO(X, TX ® L*) ® HO(X, TX ® L*).

On the other hand, by Theorell1 2.3,

HO (X, lL ® 0 2N*) = 9(1),

where 9 is the irreducible representation of

HO(X,lL ® N*) ~ C ffi HO(X, TX) ffi HO(X, T X)

in V 0 V with V = HO(X, L). Table 4 implies that such a 9(1) can be non-zero if anel
only if HO(X, T X) ~ sl(n + 1, C) irredl1cibly represented in (71+1, i.e. X = CIP'n. Then
the isolnorphisln HO(./\, L) = cn+ 1 implies L = 0(1). Therefore, HO(X, IL ® 0 2N*) with

X = X x X anel IL = 7f;(L) ® 7f;(L) vanishes unless (X, L) = (OP n ,O(l)) which implies
that HO (X, T X ® L*) vanishes unless (X, L) = (CIPn, 0 (1)). Finally, thc extension

0---+0 (-1) ---+cn+ 1 ® V(p n ----+TOPn ( -1)---+0

implies HO (CIPn , TCIP n (-l)) = (:'1+1 which cornpletes the proof of Proposition 3.1 in the
case dirn X ~ 2. D
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Corollary 3.2 Let X be a eompaet eomplex hornogeneoUS-iational manifold, L an
ample line bundle on X and N = Jl L. Then, fOi any k ~ 1,

Proo! The statement is true for (X, L) = (CPn
, 0(1)) since Jl(?(I) = (;1+1 ® Ox.

The case k = 1 of the required statement follows immediately from Propostion 3.1
and the extension

The latter also irnplies

0----+L * ---+N* ---+T X ® L *----+0 (7)

which in turn irnplies
HO(X, 0 k N*) ~ HO(X, L ® 0 k+l N*).

According to Cartan [15J (see also [34] for another proof), the only irreelucible COln
plex Lie subalgebras 9 ~ gl(\I) which have g(k} :j:. 0 for k ~ 3 are gl(m, C), sl(m, C),
sp(m/2, C) anel sp(m/2, C) EB C standardly rcpresented in cm, m ~ 2. The Borel-Wcil
data (X, L) associated with these four representations are (CIPm - l , 0(1)). Therefore, if
(X, L) :j:. (CIPn , 0(1)), thcn, by Theorem 2.3, HO(X, L ® 0 k+l N*) = 0 for all k ~ 3. Hence
HO (..Y, 0 k N*) = 0 for all k ~ 3. This proves our Corollary for k ~ 3.

Asurne now that k = 2 and denoteL:= L2 anel N := Jl L ~ L ® N. Then

Again, using Thearern 2.3 allel Table 4 one concludes that the anly irreducibly acting
reductive Lie subalgebra 9 c gl(V) which has g(l) :j:. 0 and whase assaciated pair (X, L)
is such that L is a square af an anlple line bundle on X is gl (n, C) represented in 0 2(;1

with the associated Borel-Weil data (CJP n - l , 0(2)). Therefore, HO(X,02N*) = 0 for all
(X, L) f:. (CI?n, 0(1)). The proof is cOInpleteel. 0

2. The case X = Xl X X 2 with dirn Xi ~ 2. The lang exact sequence af (5) implies

(8)

while the lang exact sequence af (6) cantains the following piece

HO (Xl, 0 2N:) ® H l (X2 , TX2 ® L:/)
0----+ + ----+H1 (X, lL ® 0 3N*) ---+

HO (X2 , 0 2N2') ® H l (Xl, TX1 ® Li2
)

-+HI (Xl, TXt ® Li2
) (9 Hl (X2 , TX2 ® L;2) ---+.... (9)

Lemma 3.3 Let Gi ~ GL(Vi), i = 1,2, be an irreducible eomplex semisirnple rnatrix
Lie giOUp such that the associated BOiel- Weil data (Xi, Li) satisfies dirn Xi ~ 2. Then
G = Tc . GI . G2 C GL(VI (9 V2 ) ean have K(g) f:. 0 only if each Gi is isomorphie to one
of the following repiesentations

13



Group: 8L(n, C) 8p(m, C) 80(p, C) G2 8pin(7, C)

Representation spaee: cn CZm cP ([7 es

where n ~ 3, 1n ~ 2 and p ~ 4.

Proof 1«(g) #- 0 if only if g(1) #- 0 and/or H1,2(g) #- O. By Theorem 2.3, Corollary 3.2 for
k = 1 and (8), olle has

g(1) = HO (Je, lL ~ 02N*) = { 0(;11 +1 ® (712 +1 for (Xi, Ld = (CIPnjl 0(1)), ni ~ 1
otherwise.

On tbe other hand, a glanee at Table 3 shows that H 1(X, T...-Y ® L·2) #- 0 only if
(X,L) = (Qn,j·O(l)) where Qn is the n-dimcnsional quadrie and j : Qn Y CIPn +1 is
its standard embedding. Then Theorem 2.3, Corollary 3.2 for k = 2 and (9)imply that
H 1,2(g) ean be non-zero only if each pair (Xi, Ld is isomorphie either to (CIPn1 0(1)) or to
(Qn, j·0(1)).

These observations eombined with Fact 2.1 imply that K(g) can be non-zero only for
representations listed in Lemma 3.3. 0

EXAMPLE 1. Let G be thc representation of Tc' 8L(m, C) .8L (n, C) in the vector space
V = \Im ® Vn where Vm and Vn are m- and, respectively, n-dirnensional cODlplex vector
spaces with m, n ~ 3. Thc associated Borel-Weil data (X, IL) is (<Cr m - l xCIPn_I,1f~(O(l))®

1f:2(0(1))) inlplying

g(l) = HO(X, IL ® 8 2N·) = V·, H1,2(g) = H1 (X, IL ® 0 3N·) = O.

Therefore, 1«g) = 8(g(1) ® V·) :::: V* ® V·. Denoting typical elements of V, '~'l anel
Vn by va, VA and VA respectively2 anel identifying va E V with its image v AÄ under the
iSOIllorphism V = Vm® Vn, one Inay write a typical elell1ent Rab/ E /«g) C A2V· ® V· ® V
as

for some Qab - QAABB E V· ® V·. Therefore, a torsion-free connection \7 on an rnn
dimensional manifold M with holonoln)' in Tc . 8L(m, C) . SL(n, C) has at an arbitrary
point x E Al the curvature tensor of the fonn (10) for same Qab(X) E o'xAl ® o'xA1. It is
not harel to show that the seeond Bianehi identities for \7,

imply

o - m (\7AAQBBCC - \7 Bi3QAAC6) + n (\7C6QAABB - \7 AÄQCCBB)

+ (\7 BBQACCÄ - \7ACQBBCÄ) + (\7BÄQCCAiJ - \7CCQBAAiJ) . (11)

2 Üne may view indices of the type a, A or Aasrefering to some fixed basis in a relevant vector space or,
alternatively, as abstract labels providing us with a transparent notation for such basic tensor operations
as (anti)symmetrization, contraction, etc. (cf. [6, 32]).
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EXAMPLE 2. Keeping notations of the preceeding paragraph, we consider a subgroup
Go c Gwhich is Tc' SL(m, C) . SO(n, C) represented in V = Vm ® Vn with m, n ~ 3. The
Go-Illodule K(go) is a subset of K(g) consisting of all elelnents Rab/ satisfying

RAABBCCDD gED + RAABBCEOD gcb = 0,

where gED E 0 2V; is the SO(n, C)-invariant quadratic fonn. Substituting (10) into the
above equation, one obtains after elernentary algebraic manipulations that

for sOlne sylnmetric tensor PAß E 02V~. [Another way to obtain this result is to note that
the Borel-Weil data (X, IL) associated to (Go, V) is (CIPm - 1 X Qn-l, 7r~(O(l)) '3)7r2(j*O(I)))
iInplying gi1) = HO(X, IL ® 0 2 N*) = 0 and 1«(go) = H1 (X, IL ® 0 3N*) = 02V~ ® C c
V* '3) V*, where C is the I-dimensional subspace of 0 2Vn spanned by 9AB'] Then the
second Bianchi identitites (11) imply \7aQbc = 0 which in turn inlply \7mRaocd = O. These
arguments iInply essentially the following

Lemma 3.4 Let G be the irreducible representation 0/ a subgroup 0/ SL(m, C)
SO(n, C) in the mn-di1nensional vector space V';n 0 Vn. 1/ m, n ~ 3, then K 1(g) = O.

EXAMPLE 3. Keeping notations of Exalnple 1, consider a sllbgroup Gs C Gwhich is
Tc . SL(m, C) . Sp(n, C) represented in V = Vm ® V2n with m ;;: 3, n ~ 2, and note that
K(gs) is a subset of K(g) consisting of all elements Rabc

d satisfying

R OD R ob 0
AAßBCC EBb - AABBCE Eöb = ,

where EBb E A2V2~ is the Sp(n, C)-invariant symplectic form. Substituting (10) into this
equation, one easily finds

QAÄBB = SAß CAB

for some antisylllinetric tensor SAß E i\2 Y:.'l' Then the second Bianchi identitites (11)
imply \7aQlJc = 0 which in turn imply \7mRaocd = O. We nlay sUlnlnarize thesc argumcnts
as fallows.

Lemma 3.5 Let G be the irreducible representation 0/ a subgroup 0/ GL(m, C) .
Sp(n, C) in the 2mn-dimensional vector space Vm ® V2n . 1/ m ;;: 3, n ~ 2, then 1(1 (g) = O.

An inlnlediate corollary of Lernnlas 3.3-3.5 is the following

Proposition 3.6 Let Gi ~ GL(VnJ, i = 1,2, be an irreducible cornplex semisimple
matrix Lie group such that the associated Borel- Weil data (Xi, Li) satisfies dirn Xi ~ 2.
Then G = Tc . G l • G2 C GL(Vnl ® Vn~) can have ](l(g) i= 0 only i/ GI = SL(n1' C) and
G2 = SL(n2, C).
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3. The case X = X X CIP1 with diIn)( ~ 2. Any ample line bundle on X is of the
fann lL = 7r;(L) ® 7r~(CJ(k)) for saIne aInple line bundle L -+ J\ and k ~ 1. vVe denote in
this subsection Vn := HO(X, L), V2 := HO(CIP 1, 0(1)), N := Jl L, and 9 stands far the Lie
algebra HO(X, L 0 N*) + sl(2, C) represented in \I = \In ® \12.

If k ~ 2, then the associated Inatrix Lie group G = exp(g) is an irrcduciblc matrix sub
group of either GL(n, C)SO (p, C) represented in cnp for same 71, p ~ 3 or GL(n, C)Sp(q, C)
represented in (:2nq for SOIllC n ~ 3, q ~ 2. Then, by LeInmas 3.4 and 3.5, 1(1 (g) = O.

So we rnay assurne that k = 1.

Proposition 3.7 Let (X, L) be a pair consisting 01 a compact cornplex homogeneous
rational manifold X and an ample line bundle L --+ X. 1f dirn X ~ 2, then

and there is an exact sequence 01 g-modules

HO(X, (o) 3T X 0 L*2) ® A2Y2*
O-tH2,2(g)---+ + -tH1(X, TX 0 L*) ® '1* 0 Y2*

Hl(X, TX ® L*2) 082y2*

Proof. Since dimX ~ 2, the Kodaira vanishing theoreIn implies H1(X,L*) = O. Then the
lang exact sequence of

0---+L *-tN* ---+T X ® L *-t0

implies H 1(X, N*) = H1(X, T X 0 L*), while the lang exact sequence of (5) with (Xl, Ld =
(X, L) and ("-\2, L 2 ) = (OF\, 0(1)) implies

HOP(,IL ® 8 2N*) = HO(X,N*) ® V2*,

H1(X, IL ® (~iN*) = H l (X, N*) ® Y2* = H1(X, TX ® L*) ® Y2*.

Analogously, the lang exact sequence of (6) implies

HO(X, 8 2N*) ® A2 y2*
o -tHO(X, lL ® 0 3N*)-t +

o

H1 (X, 8 2N*) ® 1\2\12*
-tHl(X, lL ® 03~)--+ +

o

C0I11paring this with the lang exact sequence of

HO(X, L ® 0 3N*) ® A2V2*
-t +

o

H1(X, L 003N*) ® A2V2*
-t +

H2 (X, L* ® N*) ® 0 21/2*

---+

---+ ...

one abtains

(12)

Then Theorem 2.3 implies thc desired reslllt. 0
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Lemma 3.8 Let G ~ GL(V) be an irreducible cornplex rcpresentation 0/ a complex
reduetive Lie group such that the associated B orel- Weil data is 0/ the form (X = X x CIP 1, lL)
with dirn X ~ 2 and H1(X, T X ® L·2 ) = O. Then C ean be the holonomy 0/ a non-metne
torsion-fr'ee affine eonneetion only ifC is Tc' 8L (11" C) .8L (2, C) represented in V = Vn (9 V2 .

Proo/. If (X,L) = (CIPn , 0(1)), then G has both rnodules K(g) and K1(g) non-zero only
if it is Tc . 8L(n, C) . 8L(2, C) represented in Vn (9 V2 .

Assurne now that (..-\,L):/= (CIPn , 0(1)). Then

K(g) C 9 ® A2V· = 9 (9 8 2V; ® A2V2• + 9 0 A2Vn• ® 0 2 V2•

C End(Vn ) (9 (~iv: (9 A2V2• + End (l/n ) (9 A21/; (9 0 2V2• + 0 2Vn• ® 0 2V2•

+ A2Vn• ® 0 4V2• (9 A2V2 + A2V: (9 8 2V2• + A2Vn• ® A2V2"'·

On the other hand, by Proposition 3.8,

K(g) C HO(X 8 3T X (9 L·2 ) ® A2V· C End(V: ) (9 V· 0 V· (9 A2v:•.-, 2- n n n 2

Therefore,
K(g) ~ End(Vn ) (9 0 2 V; ® A2V2• + A2V'; ® A2 V2••

In notations of Example 1, a generic element of End(Vn ) ® 0 2Vn• ® A2 V2• + A2V; ® A2 112•

satisfying the first Bianchi identities is, as one may easily check, of the form

Rabc
d = [VVABC

D + tBCO!1 + tAc5~]EAiJ5g + [EA65~ + EBc5~]tAB5g

for sorne WABc
D E Vn ® 0 3V; and tAB E A2Vn•. Here EAB E A2V2• denotes the nOI1

degenerate SL(2, C)-invariant syrnplectic form.
Therefore, if there exist a connection \7 with bolonomy C, its curvature tensor must

be of the above form for some tensor fields WABC
D alld fAB. However, from the second

Biancbi identities it easily follows that

By the Ambrose-Singer theorcnl, tAB is nOIl-zero. 8ince G is irreducible, tAB is non
degenerate. Thereforc, such a \7 must preserve the non-degencratc symlnetric form gab =
fABc ),iJ. 0

Lemma 3.9 Let G ~ GL(V) be an irredueible complex representation 0/ a complex
reductive Lie group such that the associated Borel- Weil data is 0/ the form (X = X x
ClPlJ lL) with dirn X ~ 2 and H 1(X, T X (9 L·2 ) -f; O. Then Kl (g) -f; 0 only if G is either
Tc . 8L(n, C) . 8L(2, C) 01' Tc . 80(n, C) . 8L(2, CL botk rcpresented in l /n (9 V2 .

Proo/. It follows from Table 3 that H1(..-\,TX (9 L·2
) i= 0 only if (X,L) = (Qn,j·O(l))

wbere Qn is thc n-dimensional quadric and j : Qn Y ClPn+l is its standard elnbedding.
This together with Fact 2.1 imply that G Inust bc of the form Tc' H· SL(2, C) ~ gl(~~ ®V2 )

where H is one of the following representations

Group H: SO(n, C) G2 8pin(7, C)

Representation space Vn : cn C7 es
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Since the Borel-\Veil data associated to G = Tc . SO(n, C) . SL(2, C) represented in
Vn ® V2 is (Qn-l x ClP\, 7I"i (j*0(1)) ® 71"2 (0(1)), one has g(1) = HO (X,lL ® 0 2N*) = 0 and

1«(g) = H1(X,lL ® 0 3N*) = A2y; ® A2V2* + C ® 0 2V2*

where C is the I-dimensional subspace of 0 21ln spanned by the SO(n, C)-invariant Iuetric
gAB. Then a gcneric element of ]«(g) must be of the form (cf. [18))

d DE
Rabe = [co4Bg (gABSCE + gACSBE + gBCSAE

- gAESBC - 9BESAC) + <Po4B(gBc5~ - gAc5E]5g

+ [gABeo4BcDE<PCE - SAB(cBc5~ + co4c51)]58 (13)

for some SAß E A2V; and <P AB E 0 2V2*·
Let 9 C gl{Y) be the Lie algebra of the representation of Tc . G2 . SL(2, C) (resp.

Tc . Spin(7, C) . SL(2, C)) in V = C7 ® C2 (resp. in V = es ® C2). It is a proper matrix
subalgebra of the Lie algebra 9 of the representation of Tc . SO(7, C) . SL(2, C) (resp.
Tc . SO(8, C) . SL(2, C)) in Y = C7 ® C2 (resp. in V = es ® (2). Then

1{(g) ~ K(g) = A2V'; ® A2y2* + C ® 02V2*

and ](l(g) ~ ](l(g). We claim

(14)

Ir not, then a typical element Rabe d E K(g) contains a non zero term cI> AB (gBC5;? 
9AC5E)5g which easily implies that thc iIllage of the map

defined by Rabe d E 9 ® A2y* contains A2V; ~ so(n , C). This contradicts to the fact that
9 is a proper subalgebra of g.

Finally, it is straightforward to check that thc inclusion (14) implies that K1(g) = O.
o

Proposition 3.10 Let G ~ GL(V) be an irreducible complex representation of a
complex reductive Lie group such that the associated Borel- Weil data is of the form (X =
X X CIP 1, IL) with dirn X ~ 2. Then G can be the holonomy 01 a non-metne torsion-Iree
affine eonneetion only if it is either Tc . SL(n, C) . SL(2, C) or SO(n, C) . SL(2, C)J botk
represented in Vn ® V2 .

Proof. By LenlInas 3.8 and 3.9, one has only to rule out thc case C* . SO(n, C) . SL(2, C).
But this follows from Rabe C = 0 which itself follows from (13). 0

4. The case X = CIP t X ClP 1• This is the case of Tc . SL(2, C) . SL(2, C) represented in
0 m V2 ® 0 n V2 . In the context of the holonolny classificatioll, this class of representations
has been studied in [19] and [28] where the following result has been established by two
different rnethods.
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Proposition 3.11 Let G ~ GL(V) be an irreducible cornplex representation 01 a
complex reductive Lie group such that the associated Borel- Weil data (X, L) has X = CIT\ X

<C1P I . Then KI(g) #- 0 only il G is either the representation 01 Tc ·80(4, C) in l!Y or the
representation 01 Tc . 80(3, C) . 8L(2, C) in (:6.

In fact, for the above representation, K(C+so(3, C) +sl(2, C)) = K (so(3, C) +sl(2, C))
which means that C* ·80(3, C) . 8L(2, C) can not oeeur as thc holonomy of a torsion-free
affine cOllnection.

5. Proof of Theorem A. Let G ~ GL(V) be an irreducible complex representatioll
of a eornplex redllctive Lie group whieh ean be represented as a tensor product of two
or more llon-Abelian complex representations. Then, by Propositions 3.6, 3.10 and 3.11,
G may oeeur as the holonorny of a non-rnetrie torsion-free affine eonneetion only if it is
either Tc . 8L(m, C) . SL(n, C) represented in cm 0 cn for m, n ;:: 2, or 80(l, C) . 8L(2, C)
represented in C es C2 for l ~ 3.

Let P : G --+ GL(V) be an irredueible representation of areal rcductive Lie group G in
areal vector space V and let P : 9 --+ gl('/) be the associated real irreducible representation
of the Lie algebra 9 of G. Thc latter defines naturally a eomplex rcprescntation Pe : ge --+
gl(Ve ), where ge = 9 es C and Ve = V 0 C. Then two situations may arise (22]:

(i) the eornplex representation Pe : ge --+ gl(Vc ) is irreducible; in this ease we denote Pe
by jj;

(ii) there is a eornplex veetor spaee T'Ve and an irreducible eonlplex representation p' : 9 --+
gl(We) such that V is the underlying real veetor spaee of We and pis the composition

P : 9 Ä gl(lVc)-----+gl(V), where the seeond arrow is the natural inclusion of the
algebra of all eornplex automorphisrns of V into the algebra of all real automorphisms
of V. Then the ge-module Fe splits as a direet sum of two irredueible ge-submodules
IVc + IVc and we elenote by ß : ge --+ gl(Wc ) the restrietion of Pe to one of these.

In both eases, the g-modules K(p(g)) anel 1(1 (p(g)) are subsets of K(jj(gc)) anel
K I (ß(gc)) respeetively. In partieular, if ]((p(g)) and K I (p(g)) are non zero, then K (jj(ge))
and ](1 (p(gc)) are non zero as weil.

Assurne now that the selnisimple part of 9 has at least two non-Abelian ideals. Then
the Borel-Weil data associated to the irreducible rnatrix subalgebra p(ge) must be of the
form (X, L) = (..(\1 X X 2 , 1ri(Lt} es 1r2(L2 )) for SOIne eompaet cornplex homogeneous-rational
Inanifolels Xl anel X2 anel arnple line bunclles LI --+ Xl and L2 --+ X 2 .

\Ve claim that if p(g) is the holonomy of a torsion-free affine eonneetion \7 whieh is
not loeally symmetrie anel does not preserve any (pseudo-)Riemannian metric, then p(gc)
is either tc + sl(m, C) + sl(n, C) rcprescnted in Cm 0 C", or so(l, C) + sl(2, C) rcpresented
in cm 0 cn.

Ineleed, if

or

dirn XI = elilnX2 = 1

or
I· ''" ~ 2 d' X 1 H1(Xl, TX'"1 n.. L*12

) -I- 0,C 1m ..(\. I?" In1 2 = , 'C>' r
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i..

then the clairn follows from Propositions 3.6 and 3.11 and Lemma 3.9.
Let us next show that the only remaining case

dinlXl ~ 2, dimX2 = 1, H1 (X1, TXl ® Li2
) = 0

implies that p(gc) is thc representation of tc + si (n, C) + si (2, C) in cn ® (:2. If (Xl, LI) f:.
(CIP'n, 0(1)), then, using the same arguments as in the proof of Lemlna 3.8, one Inay
show that \7 must preserve a non-degenerate cOlnplex sYlnmetric form gab = tABeAB and
hence its real part and imaginary parts. At least one of these must be non-zero and, by
irreducibility of p(g), non-degenerate. Since \7 is non-metric, this is iInpossible. Hence
the only other option is (Xl, Ld = (CIPn1 0(1)) anel (X2, L2 ) = (CIPI,O(k)) for same
k E N. By Lemmas 3.4 and 3.5, k = 1 implying that p(gc) is the reprcsentation of
tc + sI(n, C) + sI(2, C) in Cn ® C2

•

Therefore, p(G) ~ GL(V) mnst be of the form Tc . GI . G2 , where Tc is a connected
real Lie subgroup of C· anel Gi t; GL(Vi), i = 1,2, is one of the following real matrix
groups

Group G( SL(n, C) SL(n, IR) SU(n) SL(rYL, H)

Representation space Vi; ]R2n Rn ]R2n JR4m

Group Gi: SO(l, C) SO(p, q) SO(n, H)

Representation space Vi: }R2l lRp+q JR'ln

with n ~ 2, m ~ 1, l ~ 3, p + q ~ 3.
Since we know K(p(gc)) explicitly, it is straightforward to check that the only com

binations p(C) = Tc . GI' C2 which (i) have Kl(p(g)) f:. 0, (ii) have no proper subgroup
Cf c G with J«p(g')) = J«p(g)) anel (iii) do not preserve any non-degenerate sylnlnetric
bilinear form are the olles given in tbe table of Theorem A. 0

4 Classification of (X, L) with H 1(X, T X ® L*) -=I- 0

1. Review of the representation theory [6, 21]. Let 9 be a seluisimple complex
Lie algebra anel G thc associated simply connected Lie group. Fix a nlaximally Abelian
self-normalizing subalgebra f) c g (any two such subalgebras, called Cartan subalgebras,
are conjugate uneler tbe adjoint action of G). If p : g -t gl (V) is a rcpresentation of g in a
complex vector space V 1 then with any w E ~* Hamc(f), C) one may associate the weight

space of V by Vw = {v E V : p(h)v = w(h)v for all h E ~}. An elelnent w E ~. is called a
weight of V if lfw f:. O.

In the particular case when lf = 9 anel p : 9 -t gl (g) is the adjoint representation of 9
on itself, the non-zero weights of gare called the raats of g. Thus

where tP is the set of all roots of g and all sums are direct. A subset ß = {Ql, ... , Qr} C tP
with the property that every w E tP Inay be expressed as a linear combination w = 2:~=1 ai0:i
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with all ai being non-negative 01' all non-positive integers is called a system of sirnple roots
of g. Such ~ exists and any two such .6's are conjugate under the adjoint action of G.
Tben <I> = <1>+ U <1>-, where <1>+ = {w E <1> : w = 2:~:=1 Utiai with ai ~ O} is the set of positive
roots and <1>- = {w E cI> : W= 2:;:=1 aiai with ai .:::;; O} is the set of negative roots (botb
with respect to to .6).

For any root a E <1>+ therc is a unique element Ho in [ga, 9-0] C ~ such that a(Ho) = 2.
Ir ~ = {al,"" a r} is the set of simple roots, then the associated set {Ho} , ... , Ha r }

form a basis of g. Its dual basis {WOI"'" War} of ~* is called tbe set of fundamental
weights. One may use it to define the following three importants subsets of fJ*: the set of
(integral) weights A = {A E ~* : W = l:~:=l AiWi with Ai E Z}; thc set of dominant weights
A+ = {A E A : A = 2:~:=1 AiWi with Ai ~ O}; and the set of strongly dorninant weights

A++ = {A E A+ : A = L:;:=l AiWi with Ai > O}. Note that Ai = A(HaJ. Tbe miniInal
integral element Wl + W2 + ... + Wr in A++ is denoted by 1]. Any integral weight A of 9
can be graphically represented by inscribing the integer Ai over i-th node of the Dynkin

diagram for g. For exanlple, the fundamental weight Wl of sl(3, C) is U .
Let A E A be an integral weight. It is called singular if A(Ha ) = 0 for some Q E <1>+,

and regular otherwise. The index of A is defined to be the number of positive roots a for
which A(Ha) < 0 holds; it is denoted by ind(A).

If p : 9 -7 gl(V) is an irreducible representation of g, then there exists a unique
weight w (V) E A+ of V, called thc highest weight of V (relative to the fixed ~ in 9 and
~ in fJ) such that dirn Vw = 1 and p(g(l,)Vw = 0 for all a E .6. This establishes a one
to-one correspondence, V {::} w(V), between finite-dimensional irreducible g-modules and
dominant weights; and allows us to use the graphical description of w(V) to represent
p : 9 -7 gl(V). For example, the standard representation of 8l(3, C) in es gets denoted by

1 0....---... .
Ir 9 is simple, then the adjoint representation p : 9 -7 gl(g) is irrcducible. The

associated highest weight of \l = 9 is a root /.l E A+ which is called the maxirnal root of g.
The following is the list of all maxinlal roots [6, 21]:

2 1 o 0 0
• • > •

1 0 0 0 1 0 0 0 0 0
• • . ... ....---... • • I1

• •

0 1 o 0 0 1 0 0 0 0 0• • • ...~ (~ 3 nodes) • • Io

• • •
(15)

2 0 o 0 0 0 0 0 0 0 0 1
• • • ...~ (~ 2 nodes) • • Io

• • • •

0
0 1 2...~ (~ 4 noeles) 1 0
• • ~

For any sinlple root (ti E .6, denote by ui the refiection in the hyperplane perpendicular
to Qi. The Weyl grou]) vV of 9 is thc group generated by all the silnple reflections Ui. The
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action of the simple rcflection O"j on a weight A E A can be described by the following rule
(6): to compute O"i("\), let C = A(HoJ be the coefficient of the node associated to Cl'j; add
c to the adjacent coefficients, with Inultiplicity if there is a multiple edge directed towards
the adjacent node, and then replace c by -co For example

a b c
• ;

a b c
• >

cl
•
cl
•

a+b -b c+2b cl. ; .
a b+c -c cl+c. ;, .

For any w E W, therc exists a minimal integer l(w) such that w can be expressed as
a composition of l(w) simple reflections. This integer is called thc length of w.

2. Homogeneous manifolds and vector bundles. A maximal solvable subalgebra
of a semisilnple Lie algebra 9 is called a Borel subalgebra. A a subalgebra p ~ 9 is called
parabolic if it contains a Borel subalgebra. Every Borel subslagebra is G-conjugate to the
standard olle

b := ~ E9 n

where n := l::oE$+ 90' There is a standard form p for any parabolic subalgebra as weIl.
Let ß p be a subset of ß alld let '1>; = span {ßp } n '1>+. Then

p = ~ + n + L 9-0
aElPt

is the standard parabolic subsalgebra of g. A useful notation for a standard parabalic p ~ 9
(and for the associated subgroup P ~ G) is to cross all nades in the Dynkin diagram for 9
which correspond to siInple roots of 9 in ß \ ß p •

It is weIl known that any compact cOIllplex hOInogeneous-rational rnanifold X is iso
nlorphic to thc quotient space GIP, where G is a silnply cOllnected Lie group and P ~ G
is a parabolic subgroup. It is then very useful to denote X by the same Dynkin diagranl
as p, the Lie algebra of P. For cxample, the odd diInensional quadric Q2n-l gets denoted
by)( • • . .. e::::7=e .

The number of crossed nodes in the Dynkin diagram for X is called the rank of X and
is denoted by rankX. This IluInber is independent of the representation of X as a quotient
GIP.

A vector bundle E ---1 X = GIP is called G -homogeneous if there is a holomorphic
representation p : P --+ GL(V) such that E = G x p V, Le. E is thc quotient G xl/IP,
where every pEP acts on G x V as follows

GxV --+ GxV

(g l v) --+ (g. p, p(p-1 ) v) .

Ir p : P ---1 GL(V) is irreducible, then E is said to be irreducible as weIl.
The finite-dinlensional irreducible representations of P are in one-to-one correspon

dence with integral weights A E A whose Dynkin diagram has non-negative coefficients
over the uncrossed nodes for p. A usefnl notation for an irreducible homogeneous vector
bundle E ---1 ..-\ is to combine the Dynkin diagranl for the associated integral weight A with
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thc Dynkin diagram for p into one picture. For example, if X =~ is the projective

plane CIP2 , then 0(-1) = -Wand TX = W .
The cohomology ring H* (X, E) of an irreducible homogeneous vector bundle E --+ X

with integral weight A E A can be computed, according to Bott [10], as folIows:

(i) if A + Tl is singular, then H*(X, E) = 0;

(ii) if A+ 7] is regular and if ind (A + Tl) = p, then there is a unique element 0>. (of length
p) in the Weyl group of<I> such that 0>.("\ + Tl) E 1\++. Then H*(X, E) = HP(X, E)
and HP(X, E) is an irreducible g-module whose llighest weight is O>.(A + Tl) - Tl.

For future reference we introduce the following notation: if ,,\ E 1\ and ,,\ + 7] is regular,
then Jk(A) denotes the irreducible G-module with llighest weight O>.(A + 17) - 7] if k
ind("\ + 17) and 0 otherwise; if A + 17 is singular, then Jk(,,\) = 0 for all k.

3. Proof of Theorem B. The statement (i) follows from Proposition 3.1. Let us prove
the statement (ii).

If X is reducible, say X = .0'\1 X X2 and L = 7r; (Ld ® 1r~(L2)' then

H1 (X, T X ® L*) = HO(X1 , TX1 0 Li) ® H1
(.o'\2' L;) + HO(X2 , T X 2 es L;) 0 H 1(X}, Li).

This together with statelnent (i) implies that in the class of reducible X only two bottoln
lines in Table 3 contribute to the list of all (X, L) with H1 (X, T X es> L*) i- O.

Assunlc from now on that X is irreduciblc. Though the tangent bundle T X is hOlno
geneous, it is not irreducible in general; even worse, since the parabolic P is not reductive,
T X is not in general a direct sum of irreducible hOlnogcneous vector bundles. This makes
a naive idea of computing H* (X, T X 0 L*) by the straightforward application of the Bott
theorem impractical.

Consider thc Atiyah cxact sequellce

O---+Q---+g 0 Ox---+TX ---+0, (16)

where Q = G XAd p. Since thc central term of this extension is a trivial vector bundle and
Hi(X, L*) = 0 for 0 ~ i ~ dilll X - I, we have, in the case dirn X ~ 3,

An exact sequence of p-modules

0---+ö---+P---+P/ ii---+0,

where ii = n \ L:oE~+ go, givcs rise to an cxact sequence
p

o---+n1X ---+Q---+S ---+0

of homogeneous vector bundles, where S = G XAd p/ö and we used the isomorphism
G XAdn::::-; nIx. According to Nakano [31], for any compact complex manifold X and any
positive line bundle L on X the groups Hi(X, n1X 0 L*) = 0 vanish for all i ~ dirn X - 2.
Then, in thc case dirn X ~ 5, the long exact sequence of the latter extension iInplies
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which in turn implies
H1(X, T X ® L*) = H2 (.I\, S ® L*)

The advantage of working with S insteacI of T X is that S can always be decoInposed into
a direct SUIn of irreducible homogeneous subbundles.

The Lie algebra 5 = p/ti is reductive and the adjoint representation of p on .6 is
semisimple. Under the adjoint representation .6 -t gl(5) the Lie algebra .6 decomposes into
a clirect sum of its ideals

.9 = 6 + .. .~k +SI + ... +sm

where ~j, j = 1, ... , rank.l\, lie in the center of sand the non-Abelian ideals Si, i = 1, ... , m,
are simple. Then, by Bott theoreIn,

k rn

H2(X, S ® L*) = EB J2( -,,\) + EB J2(/-Li - "\),
j=1 i=1

where ,,\ is the weight of Land /-LI, ... , /-Lm are the maximal roots of the simple ideals
.91, ... ,Sm [10,35). Since, for dimX ~ 2, J2(_,,\) = H2(X,L*) = 0, we obtain the following

Lemma 4.1 1f dirn X ~ 5, then H1(X, T X ® L*) = EB~1 J2(J-li - "\).

There are seven irreducible compact complex homogeneous-rational rnanifolds X with
diIn X ~ 4: projective spaces CIPk for k = 1,2,3,4, quadrics Q3, Q4 and the complete Rag
manifold F(l, 2; ([3). It is elementary to check that Theorem B is true for this farnily.

vVe assurne from now on that X is an irreducible cOillplex homogeneous-rational man
ifold with dirn X ~ 5.

Let us introduce the following notation: if r is a connected subgraph of thc Dynkin
diagram for X, then the number of simple roots {aj I j E I} in this graph is denoted by
Ir!; if w is an integral weight such that w(Hoj ) ~ 0 for all aj E r, tohen we write wir ~ O.

Lemma 4.2 HI(X, TX ® L*) = 0 for any ample line bundle L on X if at least one
of the following conditions is satisfied:

(i) rankX ~ 3;

(ii) rankX = 2 and the cro.ssed nodes are adjacent;

(iii) rankX = 2, the crossed nodes are not adjacent and, for each maximal root /-Li of the
simple ideal Si, i = 1, ... , nl" at least one crossed node is contained in a connected
subgraph r 0/ the Dynkin diagram for.l\ such that Irl ~ 2 and /-Lilr ~ O.

(iv) rankX = 1 and, for each maximal root /-Li of the simple ideal Si, i = 1, ... ,m, the
crossed node is contained in a connected subgraph r 0/ the Dynkin diagram fOT X

such that lrl ~ 3 and /-Lilr ~ O.

Proof. (i) Let ,,\ be the weight of L. Since L is aInple, the coefficient of ,,\ over each crossed
Hode is a negative integer (its coefficient over cach uncrossed node is, of course, zero). Then
(-,,\ + tli + 'TJ)(Hoj ) ~ -"\(Hoj ) + 1 ~ 0 for all crossed nodes aj and all i E {I, ... , m}.
U the number of crossed Hodes is greater than 01' equal to 3, then either -,,\ + Mi + 'TJ is
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singular 01' ind( -A + /-Li + 77) ~ 3. \Vhence EB;:l J2(/-Li - A) = 0 and the statenlent follows
froln Lelnma 4.l.

(ii) If aj and t:lj+l are adjacent crossed nodes, then t:lj + t:lj+l is a positive root and one
has (-A+lli+7])(HoJ ~ 0, (-.A+ J.li+7]) (HOj+1 ) ~ 0 and hence (-.A+ J.li+7])(Hoj+Oj+l) ~ O.
Thus either -.A + J.li + 7] is singular 01' ind( -A + J.li + 7]) ~ 3 for all i and the statelnent
fo11o\vs from Lemma 4.l.

(iii) & (iv) If r' is a connected subgraph of the Dynkin diagram for X, then the sum
of all simple raots in r' is a positive root [11]. Under the canditions stated in (iii) and (iv),
one easily finds at least three positive roots t:lj such that (-.A + J.li + 1])(HQ j) ~ 0 for all
i E {1, ... ,m}. Then again either -.A + /Li + 1] is singular 01' ind(-.A + J.li + 1]) ~ 3 iInplying
P( -.A + J.li) = O. Thus the statement follows from Lemma 4.1. 0

Therefore, we can restriet our attention to thc cases rankX = 1,2.

The case rankX = 2. It deal' froln items (ii) and (iii) of Lemnla 4.2 that H1(X, T X ®L*) i=
oonly for those X which have the scmisiInple part 5' of the parabolic algebra p simple, i.e.
the nUlnbcr m of simple ideals of .6' is 1. Therefore, the crossed nodes must be located at
the ends of the Dynkin diagram for X. Inspecting the list of rnaxilnal roots (15) leaves one
with the following three candidates to the list of a11 (X, L) with H1(X, T X ® L*) i= 0:

(1) (X, L) = ~( ~ ~ ... U for some s,t~ 1. COlnputing 01 0 On( -.A + J.ll + 1]) - 1] as
shown in thc following diagram

, -l-s 1
- /\ + J.ll =)( •

one condudes

o 1 -l-t +11 -s 2 1 2 -t
• . ..~ -------7 )*""(-----41.1---..... .. .~

-11 s-1 1-8 0 I-t t-1
--.:.t >( • • ...~

0"1 OO"~ S
)(

2-s 1 2-t t.....~

{
C 8=t=1

H
1
(X, T X ® L *) = J2( -.A + J.ld = 0 otherwise.

o 0 0 t
• • . .. -=7:X for some s,t~ 1. Then the graph

, -1-8 1
-/\+/-Ll =)( •

o 1 -2- t +11 -8 2 1 2 -1-t
• . ..~ -------7 >*(-----41.1---..... . ..~

-11 8-1 1-8 0 -t t
-------7 >( • • • .•~

0"1 0 0"r 8
>(

implies H1(X, TX ® L*) = J2(-.A + tLd = 0 for all s,t~ 1.

s

(3) (X L =- 2 ...LI( fr some S.t? In this case

-1

«=- 2 2

The only element of thc Weyl group ltV of length 2 which can, in principle, map -.A+ J.ll +1]

to a strictly dominant weight in A++ is On-l 0 On' However, a computation as above shows
that
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8-1
o Q -sV
····~1

which implies H1 (X, T X (9 L*) = J2( -.,\ + Ji,d = 0 for all S,t~ 1.

The case rankX = 1. The nUlnber m of simple ideals of the semisiInple part of the
parabolic algebra p can, in principle, be equal to 1, 2 01' 3. The case m = 3, however, is
ruled out by Lemma 4.2(iv). Ir m = 2, then, by Lemma 4.2(iv), at least one of the ideals
must be isomorphie to sl(2, C). Therefore, the crossed liode Inust be either an end node
(for m = 1) 01' the node adjacent to an end node (for m = 2) of the Dynkin diagram for
X. Inspecting thc list of maximal roots (15) excludes all but the following eandidates to
(X, L) with H1(X, TJ\' (9 L*) t= 0:

(1) (X, L) = (CIPn1 0(8)) = W ... U (n ~ 5 nodes) for sonle s ~ 1. The odd
dimensional projective space has another representation as

o 0 0• ... e:::<=- (n ~ 3 nodes).

Thc lang exact sequenee of

O-tO( -s)-+cn+1 ® 0(1 - s)-tTX (9 L*-+O

implies H1(X, T X (9 L*) = 0 for all s ~ 1.

(2) (X, L) -__0. --*s-.O 0 0 f '- 1 Th t . I t_ )( •. .. ..-. 01' some s ~. ere are wo maXlma 1'00 s

2 -1 0 0 0J-ll =. )( .. .. ..-. o -1 1 0 1
J-l2 =. )( .. .. ..-.

That J2( ->.. + J-lI) = 0 for all s ~ 1 follows from the proof of Lemlua 4.2(iv), while

( , ) s-2 0 l-s 0 1
al 0 a2 -/\ + J-.l2 + 1] - 1] = • )( •. .. ..-.

implies J2(->.. + P'2) = 0 for all s ~ 1 as weIl. Thus HI(X,TX (9 L*) = 0 for all s ~ 1.

(3) (X, L) = ~( ~ ~ ... W
pair is biholornorphie to ~

The Inaximal root is

(n ~ 3 liodes) for some s ~ 1. Note that for n = 3 this
(35] .

{
-)l ~ l ...~ 11 ~ 4 liodes

J-.lI = -1 0 '= 2
)( '" n = 3 nodes

TheH an easy computation shows

{

0 s-2 2-s 0 0
(

, ) )( • • . ..~ n ~ 4 Hodes
a 2 0 al - /\ + J-.lI + 1] - 1] = = 0 s-2 4-2s

)( > • n = 3 nodes
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which implies

HI(X, TX ® L*) = .]2(_.,\ + /Ld = {Co 8 = 2
othwerwise.

(4) ()(, L) = ~ 8 0
::> • for some 8 ~ 1. Thc maximal roots are

Then

2 -1 0
/LI =. :: ~

o -1 2
/L2 =. ::;:-, ·

2-8 -8 28-2
= • ;:> •

5-2 o 2-28
= • ;: ;::, .

03 0 02( -A + /LI + 1]) - 1]

01 0 02 ( - A + /L2 + 1]) - 1]

implying H1(X, T X ® L*) = J2( -.,\ + /Ld + J2( -A + J-l2) = 0 for all 8 ~ 1.

(5) (X, L) = ~ ~
the following Olle [35]

008•...~ (n nodes) for some 8 ~ 1. This pair is biholoIllorphic to

o
(X,L) =~....-.~-eL.~ (n + 1 nodes).

Then, by LeIllma 4.2(iv), HI(X: TX ® L*) = 0 for all 8 ~ 1.

(6) (X, L) = U ... ~ ~: ~~ for some 8 ~ 1. The Inaximal roots are

1 0 1 -1 0
/LI = .....--. . . . • J: ;

o 0 0 -1 2tl 2 = .....--. . . . • ) : ;,. .

The proof of Lemma 4.2(iv) implies J2( -A + J-l2 + 77) = 0 for all 8 ~ 1, while

( )
1 0 1 -8 28-2

on OOn-1 -,,\ + J.lI + 1] - Tl = .....--..... ):~

implies J2(_,,\ + fll + Tl) = 0 for all 8 ~ 1. 'iVhence, by Lemma 4.1, H1(X, TX ® L*) = 0
for all 8 ~ 1.

080 000(7) (X, L) = e-.~)of-(---e. ... e-.~I:::::::C::=-.

are
(n ~ 3 nodes) for some 8 ~ 1. The maximal roots

2 -1 0 0 0 0 0 -2 2 0 0 0
J-li -. )( •. . . • c:., J-l2 =. )( .. ... c: • .

The vanishing of J2( -A + J-ld for all n ~ 4, 8 ~ 1 follows from the proof of Lemma 4.2(iv).
That this module vanishcs for n = 3, 8 ~ 1 follows from a simple calculation:

( )
2-8 l-s 8-2

03 0 02 - A + J-ll + 7] - 7] = • ;::

Analogously, one fillds

8-1 0 1-8 0 0 0• x •. . . • c~ •
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Therefüre,

implying J2( -A, + 11.2) = 0 für all 8 ~ 2 and J2( -A, + tt2) = C für s = 1. Therefüre, by
Lemma 4.1,

H1(X,T4'Y0L*),={ Co 8=1
otherwise.

o
(8) (X, L) = ~*-(-----<II~t---"'~ ••• L-A fn ? 5 llodcs) [ r some 3 "' 1. Tae m fOot is

h=) ~ L.~

and an easy calculation shows that
o

J H 2;S ...~

o s 0(9) (X, L) =. ):> ~ for SOIne s ~ 1. The Inaximal roots are

2 -1 0 0
ttt -. ,:> •

o -1 1 1
11.2 =. )::> •

Froln the proof of Lemlna 4.2(iv) it follows that J2( -A, + JLl) = 0 for all 8 ~ 1. The only
element of the Weyl group of length 2 which can, in principle, nlake -A, + tt2 + 1] strictly
dominant is °20°1. Since

( )
8-1 0 1-28 1

a 2 0 al - A, + JL2 + ''7 - 1] = • , :; •

the module J2(_A, + tt2) vanishes for all 8 ~ 1. Therefore, H1(X, T)( ® L*) = 0 for all
8 ~ 1.

(10) (X, L) = ~ o s 0
>;( • for SOtne 8 ~ 1. The maximal roots are

1 1 -3 0
1),1 =. ;, :( · o 0 -1 2

tt2· ;: ( •

Fron1 the proüf of Lemnla 4.2(iv) it follows that J2( -A, + J-L2) = 0 for all 8 ~ 1. Since

the Inodule J2 ( - A, + {l2) vanishes for all 8 ~ 1. Therefore, H1(X, T X ® L*) = 0 for all
s ~ 1.

(11) (X, L) = ~ 0;, 0 ~ for SOtne s ~ 1. The tnaximal root is

o 1 0 -2
ttl =. ;, X
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Since

( \ ) 0 1-8 8-1 0
03 ° 04 -'" + /-L1 + 1] - 7] =. ; X

we obtain

(12) (X, L) = ~ for same 8 ;:: 1. The maxiInal root is {L1 = -W . Hence

( \ ) 3-25 38-4
02°01 -/\+/-L1+1J -7] = ~

implying H1(X, T X ® L*) = J2( -,\ + J-Ld = 0 for all 8 ;:: 1.
Theorem B is proved. 0
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