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Abstract

Using twistor methods, a complete classification of irreducible holonomies of
torsion-free affine connections which can be represented as a tensor product of non-
Abelian representations, is given.

As a by-product, a complete list of all compact complex homogeneous-rational
manifolds X and ample line bundles L — X such that H*(X,TX ® L*) # 0 and/or
HYX,TX ® L*) # 0 is obtained.

1 Introduction

Holonomy group is one of the most informative characteristics of an affine connection.
The problem of classification of holonomy groups has a long history which starts in 1920s
with the works of Cartan [16, 17| where he used this notion to classify locally symmetric
Riemannian manifolds. In 1955, Berger [7] showed that the list of irreducibly acting matrix
Lie groups which can, in principle, occur as the holonomy of a torsion-free affine connection
must be very restrictive. This is in a sharp contrast to the result of Hano and Ozeki [20]
which says that there is no interesting holonomy classification in the class of arbitrary
affine connections — any closed subgroup of GL(n,R) can be realized as the holonomy of
an affine connection (with torsion, in general).

Berger presented his classification list of all possible candidates to irreducible
holonomies' in two parts — the first part is claimed to contain all possible groups which
preserve a non-degenerate symmetric bilinear form, and the second part is claimed to con-
tain all the rest, up to a finite number of missing terms which Bryant [13] suggested to
call the exotic holonomies. The proof of the second part was omitted; as of this writing,
no proof has yet been published.

The classification of all metric holonomies has been recently completed [14]. This is a
culmination of efforts of many people to show that most entries of Berger’s original metric
list do occur as holonomies of Levi-Civita connections and that just a few of them are
superious (see, e.g., [3, 9, 12, 13, 14, 33] and the references cited therein).

'From now on by a holonomy group we always understand the irreducibly acting holonomy of a torsion-
free affine connection which is not locally symmetric. The second assumption is motivated by the fact
that, due to Cartan [17] and Berger [8], the list of locally symmetric affine spaces is completely known.



BERGER’S ORIGINAL LIST OF NON-METRIC HOLONOMIES

group G representation V restrictions
R" n>?2
Tr - SL(n, R) OR" ~ Rr(n+1)/2 n>3
AZR" ~ R#n-1)/2 nzo
C* ~ R* nxl
T¢ - SL(n, C) O2C" ~ Rrn+1) n>=3
A2C ~ ]Rn(nwl) nzo
R* - SL(n,C) {A e M,(C): A= A} ~R” n>3
H* ~ an nzl1
Tg - SL(n, H) {4 € My(H) : 4* = —A'} = RMC+D n>2
{A € M,(H) : A* = A'} ~ RM2—D) nz3
Tr - Sp(n, R) R?" n>2
Tc - Sp(n, C) Cn ~ R nz2
R* - SO(p, q) Re+a p+q23
Tz - SO(n, C) C" ~ R* n>3
Tgr - SL{m, R) - SL(n, R) Rm» m>nz2orm2
T¢ - SL(m, C) - SL(n, C) C"®C* ~ R m>nxz2orm2
Tgr - SL(m, H) - SL{n, H) R!6mn m>nzlorm2
SU(2) - SO(n, H) R? @ R*" ~ R®" n>2

NoOTATIONS: Ty denotes any connected Lie subgroup of F*,
Tg denotes any non-trivial connected Lie subgroup of F*,
M, (F) denotes the algebra of n x n matrices with entries in F.

Table 1: List of non-metric holonomies (Part I)




L1sT OF EXOTIC HOLONOMIES

group G representation V| restrictions
Tgr - Spin(5, 5) R!6
Tx - Spin(1, 9) R'®
16 . Tp32
T¢ - Spin(10, C) C®~R
TR . E(]s R?T
TR . E‘é R‘Z?
Te - ES C¥ ~ R
Tr - SL(2,R) O’R* ~ R!
T¢ - SL(2,C) o°'C’ ~R®
R* - SO(2) - SL(2,R) R’ ® R* ~ R
C* - SU(2) ¢’ ~ K
SL(2,R) - SO(p, q) RZQRHYI ~ R¥PH2 | pyg>2
SL(2,C) - SO(n,C) CeC ~R" n>3
ES RS
E7 R
EC RUZ o CF
Sp(3,R) RY c A3RS
Sp(3, C) R® ~ CM" ¢ A3CS
SL(6, R) R® ~ ASRS
SL(6,C) R ~ A3CS
Spin(2, 10) R32
Spin(6, 6) R32
Spin(12, C) RS ~ 32

NoTATIONS: TF denotes any connected Lie subgroup of F*

Table 2: List of non-metric holonomies (Part II)




Berger’s second list of non-metric holonomies, refined and extended, is given in Tables 1
and 2. The 4-dimensional representations of Tg-SL(2,R), T¢-SL(2,C), R* -SO(2)-SL(2, R)
and C*-SU(2), and the fundamental representations of various real forms of T¢-Spin(10, C)
and T¢ - Ef have been added to the list of non-metric holonomies by Bryant [13, 14]. The
series SL(2, R)-SO(p, ¢) and SL(2, C)-SO(n, C) have been found by Chi et al [18]. Recently
[30] it has been shown that representations of ES, EI, ES, Sp(3,R), Sp(3,C), SL(6,R),
SL(6,C), Spin(2, 10), Spin(6, 6) and Spin(12,C) listed in Table 2 also occur as holonomies
of torsion-free affine connections.

In summary, duc to [5, 13, 14, 18, 30, 33] all entries of Tables 1 and 2 are known
to occur as holonomies. The completeness status of these tables is not clear at present.
However, we can make a definite statement about a part of modified Berger’s non-metric
list.

Theorem A Let G be the irreducible holonomy of a torsion-free affine connection which
is not locally symmetric and does not preserve any (pseudo-)Riemannian metric. If the
semisimple part of G is not stmple, then G is one of the groups listed in the following table

| LIST OF NON-METRIC SEGRE HOLONOMIES |

group G | representation V restrictions |
Tg - SL{m, R) - SL(n, R) R™" m>nz2ormzn>2
Te - SL(m,C) -SL(n,C) | C"RC* ~R*™ | m>n22ormz2n>2
Tg - SL(m, H) - SL(n, H) R!6mn m>n2lorm>2n>1
R - SO(p, q) R p=qgq=2o0rp=4,4=0
Tz - SL(2,C) - SL(2,C) R~ C'
SL(2,R) -SO(p,q) | R2 @ RP+¢ ~ R+ p4q>2
SU(2) - SO(n, H) R? @ R'"™ ~ R®» nz2
SL(2,C) - SO(n,C) CPC" ~R*" n>3

NoOTATIONS: Ty denotes any connected Lie subgroup of F*,
Ty denotes any non-trivial connected Lie subgroup of F*.

The class of holonomy groups (and the associated geometric structures) studied by
Theorem A appear in the literature under different names. For example, the authors of
[2, 26] call these almost Grassmanian, the authors of [5] call these pareconformal. In
this paper we follow the terminology of Bryant [14] who suggested to call them Segre
holonomies. Some applications of Segre structures to high energy physics are discussed in
125, 27].



The second classification result of this paper has, at first sight, nothing to do with the
holonomy problem.

Theorem B  Let X be a compact complez homogeneous-rational manifold and L an ample
line bundle on X. Then

C  for (X,L)=(CPy,0(2))

() HH(X,TX®L*)={ C* for (X,L)=(CP,,0(1)), n>1
0  otheruise

(ii) HY(X,TX ® L*) = 0 unless (X, L) is one of the entries in Table 3.

One may compare this result with the vanishing theorem of Kobayashi and Ochiai [24]
which says that if X is a compact complex rational manifold and L — X a line bundle
such that det(TX) ® L* is ample, then H(X,TX ® L*) = 0 for all i > 2.

The paper is organized as follows. After recalling a few basic facts about holonomy
groups in the beginning of section 2, we show in sections 2 and 3 that Theorem B implies
Theorem A (more precisely, it is the part of Table 3 classifying all (X, L) with HY{(X,TX ®
L*) # 0 which implies Theorem A). As a by-product, we get a very simple group-theoretic
explanation of the effectiveness of twistor methods in differential geometry. In the second
half of the paper (section 4) we prove Theorem B.

2 Holonomy groups in the Borel-Weil context
1. Definition of holonomy groups. Consider the following data:
e Let M be a smooth connected and simply connected n-manifold.

e Fix a point z € M.

Let £, = {v:[{0,1] > M | ¥(0) = v(1)} be the set of piecewise smooth loops based
at x.

Let V be an affine connection on M.

Fory € £;, let Py : T,M—T, M be a linear automorphism induced by the V-parallel
translations along 7.

The holonomy of V at z € M is defined as a subset H, := {P, |y € L;} C GL(T. M).
Its basic properties are: (i) H, is a connected Lie subgroup of GL(T,M); (ii) if one fixes
an isomorphism ¢ : T,M ~ V, where V is any fixed vector space with dimV = dim M
(typically, V = R"), then the conjugacy class of i(H;) C GL(V) does not depend on the
choice of z € M (see, e.g., [9]). The holonomy group of V is defined as any linear subgroup
G C GL({V) in the conjugacy class of i(H,) for some z € M. The Lie algebra g C ¢i(V) of
G is called the holonomy algebra of V.

Let V be a vector space and g C gl(V) a Lie subalgebra. What is a necessary condition
for g to be the holonomy algebra of a torsion-free affine connection? One of the answers
is that at least one of the Spencer g-modules, g(!) or H'*(g), must be non-zero. We shall
recall their definition in the next subsection.



g e R

Aut®X (X,L) HY(X,TX ® L*)
E (k> 9 k12
3 0
0 2 0 C
L 0 0 0 1
B (I123) 9 0.2
2 0.0 0.0
Ci(l>2) $e? C
0 1 0 0 0O
——e ...
0
D, (I>4) R C
F, 0 0.0 1 C
k 2 k-202
A X 4 X @ x (k=22 oF-2C
Axalz)] E@ 3083 k2| o2cecH

NoTATION: Aut’X denotes the universal covering of the component
the identity of the group of all automorphisms of X

Table 3: The list of all (X, L) with H'(X,TX ® L*) # 0




2. Spencer cohomology. Let V be a vector space and g a Lie subalgebra of gl(V) ~
V ® V*. Define recursively the g-modules

El(—l) - V
g9 =g
g = [ NeviInVeotV, k=1.2,...,

and define the map
a-: g(k) ® Al—lvt_)g(k-l) ® Alvw

as the antisymmetrisation over the last { indices. Here and elsewhere the symbols ®* and
A¥ stand for k-th order symmetric and antisymmetric powers respectively.
Since 9? = 0, there is a complex

g @ Ay Ly gk=D g Aty 2y koD g ATy

whose cohomology at the center term is denoted by H*(g) and is called the (k,!) Spencer
cohomology group. In particular,

H*'(g) = 0
Ker : g*=1) @ A2V* & gt+-2 g A3V

H(g) = : (1)
Image : g @ V* LA -1 @ A2V~

The g-module H*?(g) has the following geometric meaning: if G is a matrix Lie group
whose Lie algebra is g and G — M is a G-structure on a manifold M which is infinitesimally
flat to k-th order, then the obstruction for G to be infinitesimally flat to (k + 1)-th order
is given by a section of the associated vector bundle G x¢ H*?*(g).

Another g-module g{V) has a clear gecometric interpretation as well. If a G-structure
G — M is infinitesimally flat to 1st order (which is equivalent to saying that G admits a
torsion-free affine connection), then the set of all torsion-free affine connections in G is an
affine space modelled on the vector space H*(M, G x¢ ¢M). In particular, if G € GL(V) is
such that g = 0, then any G-structure admits at most one torsion-free affine connection.
If K(g) denotes the g-module of formal curvature tensors of torsion-free affine connections
with holonomy in g, i.e.

K(g) =[g@ AV |Nn{Ker: VRV @AV* - V@AV,

then K(g)
1,20\ _ g
= e v
i.e. the cohomology group H'*#(g) represents the part of K (g) which is invariant under g*)-
valued shifts in a formal torsion-free affine connection with holonomy in g. For example,
if (G,V) = (CO(n,R),R"), then g = V* and H"?(g) is the vector space of formal Weyl
tensors.

If g = 0, then H*(g) is exactly K(g), the g-module which plays a key role in the
theory of torsion-free affine connections with holonomy in g. The case g{¥) = 0 is generic
— there are very few irreducibly acting Lie subgroups g C g/(V') which have g(!) # 0. For
future reference we list in Table 4 all complex irreducible Lie subgroups G C GL(V) with
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[ THE LIST OF ALL IRREDUCIBLE COMPLEX LIE SUBGROUPS G C GL(V,C) with g'" #0 |

group G representation V' gt
SL(n,C) V=C_C,n>2 (Ve oV
GL(n,C) V=C,n2>1 Veoev:
GL(n, C) Vo~ @C, 0> 2 v
GL{n,C) V~AC,n25 v
GL(m,C) -GL{(n,C) | V~C"@C*, m,n > 2 %
Sp(n, C) V=C,n>4 oM %
C* - Sp(n,C) V=C',n2>4 oV
CO(n, C} V=C"'n25 1%
C* - Spin(10, C) V =C¢ %
C' - E§ V=C” 1%

Table 4: Classification list of Cartan (1909) and Kobayashi & Nagano (1965)

gV # 0 which is due to Cartan [15] and Kobayashi & Nagano [23]. As of this writing, the
list of all irreducibly acting g C g{(V') which have H"?(g) s 0 is not known — otherwise
the holonomy classification problem would be solved long ago.

Another g-module, K'(g), which is of interest in the holonomy context can be defined
as the kernel of the composition

K(g)@V'—g® AV @ V'—g @ A’V

where the first map is the natural inclusion and the second map is the antisymmetrization on
the last three indices. If there exist a torsion-free affine connection V on a smooth manifold
M with the holonomy algebra in g, then the curvature tensor R of V can be represented
locally as a function on M with values in K(g), while the covariant derivative VR can
be represented locally as a function on M with values in K'(g). Therefore, K'(g) # 0
(in particular, K(g) # 0) is one of the necessary conditions for V to be the holonomy of
a torsion-free affine connection which is not locally symmetric. Note that g’ C g implies
K(g') C K(g) and K'(g') C K'(g).

It is well-known [22] that the classification of real irreducible representations of real
reductive Lie algebras can be accomplished via the classification of complex irreducible
represcntations of complex reductive Lie algebras. The problem of classifying real reductive
holonomies can, in principle, be handled in a similar way (see subsection 5 in §3), with
the first and the most important step being the classification of all possible candidates to
complez reductive holonomies. With this motivation, we restrict our attention in the rest
of Section 2 and in the most of Section 3 to complex irreducible representations of complex
reductive Lie groups GG and their Lie algebras g.

Unless otherwise explicitly stated, T¢ denotes in what follows either a trivial group or
the multiplicatitive group C* and t¢ denotes the Lie algebra of T¢.

8



3. Twistor formulae for Spencer cohomology. Let V be a finite dimensional
complex vector space and G C GL(V) an irreducible representation of a reductive complex
Lie group in V. Then G also acts irreducibly in V* via the dual representation. Let X
be the G-orbit of a highest weight vector in ¥V*\ 0. Then the quotient X := X/C* is a
compact complex homogeneous-rational manifold canonically embedded into P(V*), and
there is a commutative diagram

X < v*\0

i \’

X <= P(V*)
In fact, X = G,/P, where G, is the semisimple part of G and P is the parabolic subgroup
of G, leaving a highest weight vector in V* invariant up to a scale. Let L be the restriction
of the hyperplane section bundle O(1} on P(V*) to the submanifold X. Clearly, L is an

ample homogeneous line bundle on X.
In summary, there is a natural map

(G,V)—(X, L)

which associates with an irreducibly acting reductive Lie group G C GL(V) a pair (X, L)
consisting of a compact complex homogeneous-rational manifold X and an ample line
bundle L on X. We call (X, L) the Borel- Weil data associated with (G, V).
Can this map be reversed? According to Borel-Weil, the representation space V can
be reconstructed very easily:
Vv =H"X,L).

What about G? According to Onishchik, with a few (but notable) exceptions, G can
be reconstructed as well.

Fact 2.1 [1] Assume that G is simple. The Lie algebra of G is isomorphic to
H%(X,TX) unless one of the following holds:

(i) G is the representation of Sp(n,C) in C** in which case H*(X,TX) ~ sl(n,C);
(ii) G is the representation of Gy in €7 in which case HY(X,TX) =~ so(7,C);

(1ii) G is the fundamental spinor representation of SO(2n + 1,C) in which case
HY(X,TX) ~ so(2n + 2, C).

Another proof of this fact is given in [35].

Therefore, if G C GL(V) is semisimple then, with a few exceptions, G can be recon-
structed from (X, L). However, it is often undesirable to restrict oneself to semisimple
groups only (especially in the context of the holonomy classification problem). There is a
natural central extension of the Lie algebra H(X, T X):

Fact 2.2 For any (X, L), g:= H'(X, L&(J'L)*) is a reductive Lie algebra canonically
represented in H*(X, L).

This fact is easy to explain — H*(X, L® (J'L)*) is exactly the Lie algebra of the Lie group
G of all global biholomorphisms of the line bundle L which commute with the projection
Lo X.



In summary, with a given irreducible representation G C GL(V) there is canonically
associated a pair (X, L) consisting of a compact complex homogenous-rational manifold X
and a very ample line bundle on X such that much of the original information about G can
be restored from (X, L). For our purposes the crucial observation is that the g-modules
g® and H*?(g) also admit a simple description in terms of (X, L).

Theorem 2.3 For a compact complez manifold X and a very ample line bundle L on
X, there is an isomorphism

g® =H* (X, L®*'N*), k=0,1,2,...
and an exact sequence of g-modules,
0—HM(g)—H' (X, L®0**N*) —H' (X, Leo*'N ) e V", k=12, ..

where g = H°(X,L ® N*), N := J'L, and H**(g) are the Spencer cohomology groups
associated with the canonical representation of g in the vector space V := H°(X, L).

Proof. Since L is very ample, there is a natural "evaluation” epimorhism
VeOx - J'L—0

whose dualization gives rise to the canonical monomorphism 0 =+ N* — V* ® Oy. Then
one may construct the following sequences of locally free sheaves,

0—LRO*N' S LN @ V' — Lo 'N* @ A%V? (2)
and
0— LN S LN @V — Lo (N ) QA V' — LR IN*®A3V*, (3)
and notice that they both are exact. [Hint: for any vector space W one has W ® AW mod
AW =~ W @ ©*W mod &*W ]
Then computing H*(X,...) of (2) and using the inductive definition of g*) one easily
obtains the first statement of the Theorem.

The second statement follows from (3) and the definition (1) of H*%(g). Indeed, define
E; by the exact sequence

0—L® N —L® oFIN* @ V' — E,—0.
The associated long exact sequence implies the following exact sequence of vector spaces
0—H(X, Ex)/0[g"®) @ V*]—H' (X, L ® &***N*) —H' (X,L® &*"'N*) @ V*.
On the other hand, the exact sequence
0—Er— L RO N* @A’V '— LR 'N" @ A*V*
implies

HY(X, E;) = ker : g*~ 1 @ A?V* -2, g2 @ A%Y*,
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which in turn implies
H*%(g) = HO(X, £,)/0g™ ® V7).

This completes the proof of the second part of the Theorem. O

In 1976 Penrose [32] considered the data (X <« Z, N) consisting of a rational curve
X = CP! embedded into a complex 3-fold Z with normal bundle N = O(1) & O(1);
and showed that the Kodaira moduli space of all rational curves obtained by holomorphic
deformations of X inside Z is a complex 4-dimensional manifold M which comes equipped
with a canonically induced self-dual conformal structure. Moreover, he showed that any
local conformal self-dual structure arises in this way. Since this pioneering work, several
other manifestations of this strange phenomenon have been observed when a complex
analytic data of the form (X — Z, N) gives rise to a full category of local geometric
structures Cye,. More precisely, it is asuccessful choice of a pair (X, N) consisting of
a complex homogeneous manifold X and a homogeneous vector bundle N on X which
uniquely specifies Cy,, the choice of a particular ambient manifold Z corresponding to the
choice of a particular object in Cg,.

The fact that, according to Theorem 2.3, the spaces of formal curvature tensors fit
nicely into the Borel-Weil paradigm gives a simple group-theoretic explanation of why a
twistorial data (X, N) can, in principle, be used as a building block for basic differential-
geometric objects. If rank/N 2> 2, then, following a common practice in complex analysis,
one should replace the pair (X, N) by an equivalent one (X = P(N*),L = ©(1)) and then
apply Theorem 2.3 to find out which geometric category Cy., may correspond to (X, N).
Applying this procedure, e.g., to the pair (CP;,C* ® O(1)), k > 1, one immediately
concludes that Cy,, can only be the category of complexified quaternionic manifolds.

Also, this purcly group-theoretic result suggests that there should exist a universal
twistor construction for all torsion-free geometries. Details of this construction are given
in [28, 29].

3 Classification of Segre holonomies

1. Cohomology on reducible rational homogeneous manifolds. From now on we
assume that X = X x X is a direct product of two compact complex homogeneous-rational
manifolds X; and X, and that L is an ample holomorphic line bundle on X. Denoting by
m : X = Xj and 7, : X — X, the natural projections, we may write L = n}(L;) ® n3(L,)
for some uniquely specified ample line bundles L, and L, on X, and X, respectively. We
denote N := J!'IL and N; := J'L;, i =1, 2.
Since
0—OX;, ® Li— N;— L;—0,

one has
0—7 (X)) @ L+ 73 (2 X3) @ L7 (N1) @ m3(La) + m3(No) @ 71 (L) —L + L——0.
The latter extension combined with

O (' X) QL+ m3 (2 X,) ® L—N—L—0.

implies
0—N——7}(N}) @ m3(Lo) + 7 (L) ® 73 (N2)—L—0,

11



or
0— L —7 (N]) @ w5 (L3) + 71 (N]) @ m3(L3) — N —0, (4)

which in turn implies the following two exact sequences

(L1 ® ©*Ny) @ w3(L3)

T (N}) @ m3(L3) +
0— + —  m(N])®m(N;)  —L®eO°N'—0 (5)
T (L}) ® m3(N3) +
w1 (L7) @ 73 (Ly ® O*N3)
and
w1 (L1 ® @*NY) @ m3(L3)?
TH{O?N}) ® 73 (L3)? +
+ THO*N) @ w3 (L5 @ Ny)
0— 7i (L1 ® N7) ® m3(L5 ® N3) — + —L® O'N*—0.
+ 7 (L1 @ N}) @ m3(ON3)
T (L) @ m3(O*Ny) +

L) @ w3 (Ly ® @3N o
6

Proposition 3.1 Let X be a compact complex homogeneous-rationel manifold and L
an ample line bundle on X. Then

{ C for (X, L) = (CPy,0(2))

H(X,TX®L)={ C*' for (X,L)=(CP,,0(1)), n21

0 otherwise

Proof. If dimX = 1, i.e. X = CP', then the statement follows from the isomorphism
TX ~ O(2).

Asssume now that dim X > 2. Then, by the Kodaira vanishing theorem, H} (X, L*) =
0 for any ample line bundle L on X. Applying the Kiinneth formular to the long exact
sequence of (5) with X = X x X and L = 7{(L) ® 73(L), one easily obtains

H(XL®ON)=HX,N)H(X,N)=H' (X, TX® L) H'(X,TX ® L").
On the other hand, by Theorem 2.3,
H(X,L ® ©°N) = gV,
where g is the irreducible representation of
HXLoN)~CoH (X, TX)® H'(X,TX)

in V@V with V = H(X,L). Table 4 implies that such a g{!) can be non-zero if and
only if H*(X,TX) ~ si(n + 1,C) irreducibly represented in C**!, i.e. X = CP,. Then
the isomorphism H%(X, L) = C**! implies L = O(1). Therefore, H*(X,L ® ®>N*) with
X=X x X and L = 7](L) ® m3(L) vanishes unless (X, L) = (CP", O(1)) which implies
that H*(X,TX ® L*) vanishes unless (X, L) = (CP,, O(1)). Finally, the extension

0—O(-1)—C""' ® Op, —TCP,(—1)—0
implies H°(CP,,, TCP,(-1)) = C**' which completes the proof of Proposition 3.1 in the
case dimX > 2. O

12
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Corollary 3.2 Let X be a compact complex homogeneous-rational manifold, L an
ample line bundle on X and N = J'L. Then, for any k > 1,

HO (X, 0FN*) = { O@‘f@ﬂ“ for (X, L) = (CP",0(1)), n > 1
otherwise.
Proof. The statement is true for (X, L) = (CP", O(1)) since J'O(1) = C**! @ Oy.
The case k = 1 of the required statement follows immediately from Propostion 3.1
and the extension
0—L"—N'—=TX® L —0 (7)

The latter also implies
0— F N Lo N — o TX @ L*—0

which in turn implies
HO(X, Gth) g HO(X, L® ®k+1N$).

According to Cartan [15] (see also [34] for another proof), the only irreducible com-
plex Lie subalgebras g C gl(V) which have g®) # 0 for k& > 3 are gl(m,C), sl(m,C),
sp(m/2,C) and sp(m/2,C) @ C standardly represented in C™, m > 2. The Borel-Weil
data (X, L) associated with these four representations are (CP,,.1,O(1)). Therefore, if
(X, L) # (CP,, O(1)), then, by Theorem 2.3, H*(X, L ® @**!N*) = 0 for all k > 3. Hence
HO(X, ®FN*) =0 for all k£ > 3. This proves our Corollary for k& > 3.

Asume now that k = 2 and denote L := L? and N := J'L ~ L ® N. Then

HY(X,L ® @*N*) = H'(X, ©*N™).

Again, using Theorem 2.3 and Table 4 one concludes that the only irreducibly acting
reductive Lie subalgebra g C gl(V) which has gV # 0 and whose associated pair (X, L)
is such that L is a square of an ample line bundle on X is gl(n, C) represented in ©2C*
with the associated Borel-Weil data (CP,_;, O(2)). Therefore, H*(X,®?N*) = 0 for all
(X, L) # (CP,,0(1)). The proof is completed. O

2. The case X = X, x X, with dim X; 2 2. The long exact sequence of (5) implies
HO (XL®®2N‘) :HO(XI:NI*)(&HD(X%NZ') (8)
while the long exact sequence of (6) contains the following piece
H® (X1, ©2N7) @ H! (X2, TX, ® L3?)
0— + —H' (XL ® O°N*) —
H® (X2, ©N;) @ H (X1, TX; ® L}?)
—H' (X1, TX: ® L) @ H' (X2, TX, ® L32) —.... (9)

Lemma 3.3 Let G; C GL(V}), i = 1,2, be an irreducible complex semisimple matriz
Lie group such that the associated Borel-Weil data (X;, L;) satisfies dim X; > 2. Then
G=Tc G -Gy C GL(V| ® V,) can have K(g) # 0 only if each G; is isomorphic to one
of the following representations
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Group: SL(n,C) | Sp(m,C) | SO(p,C) | G2 | Spin(7,C)

Representation space: c Cc#m cr C’ cs

wheren 23, m 22 andp 2 4.

Proof. K(g) # 0 if only if g™ # 0 and/or H*(g) # 0. By Theorem 2.3, Corollary 3.2 for
k =1 and (8), one has

1} _ 170 2 _ Critl ®Cﬂ2+l for (Xi,Li) = (C]P’nl.,O(l)), ;21
g =H' (X Lo o'N) = { 0 otherwise.

On the other hand, a glance at Table 3 shows that H'(X,TX ® L*?) # 0 only if
(X,L) = (Qn, 7 O(1)) where @, is the n-dimensional quadric and j : @, — CP,4, is
its standard embedding. Then Theorem 2.3, Corollary 3.2 for £ = 2 and (9)imply that
H'?(g) can be non-zero only if each pair (X, L;) is isomorphic either to (CP,, O(1)) or to
(@n, 3" O(1)).

These observations combined with Fact 2.1 imply that K(g) can be non-zero only for
representations listed in Lemma 3.3. O

EXAMPLE 1. Let G be the representation of T¢-SL{m, C)-SL(n,C) in the vector space
V =V, ® V,, where V,, and V,, are m- and, respectively, n-dimensional complex vector
spaces with m, n > 3. The associated Borel-Weil data (X, L) is (CP,,,_; XxCP,_;, 71 (O(1))®
m3(O(1))) implying

g(]) — HO(X,]L ® OQN,&) — Vt, H1,2(H) = HI(X,L ® ®3N*) =0,

Therefore, K(g) = .‘9(9(]) ® V') =~ V* @ V*. Denoting typical elements of V, 1}, and
V. by v, v* and v* respectively? and identifying v® € V with its image v** under the
isomorphism V = V,, ® V,,, one may write a typical element R, ¢ € K(g) C A2V @V*®@V
as

R = Ryisel” = [08Qnoci ~ 08Quica) 02 + [65Qusac — 05Quinc| 98 (10)

for some Qu = Qi3 € V' ® V*. Therefore, a torsion-free connection V on an mn-
dimensional manifold M with holonomy in T¢ - SL{m,C) - SL(n,C) has at an arbitrary
point € M the curvature tensor of the form (10) for some Qu(z) € .M ® QM. It is
not hard to show that the second Bianchi identities for V,

VeRyt + VRt + VoRy,t = 0,

imply
0 = m(V4iQpsce — VeaQaice) + 7 (VeeQains — Vaileocss)
+(VppQacci — Vac@eici) + (VpiQecas — Veclpiag) - (11)

20ne may view indices of the type a, 4 or A as refering to some fixed basis in a relevant vector space or,
alternatively, as abstract labels providing us with a transparent notation for such basic tensor operations
as (anti)symmetrization, contraction, etc. (cf. [6, 32]).
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ExXAMPLE 2. Keeping notations of the preceeding paragraph, we consider a subgroup
G, C G which is T¢ - SL(m, C) - SO(n, C} represented in V = V,, ® V;, with m,n > 3. The
G,-module K(g,) is a subset of K(g) consisting of all elements R, ? satisfying

DD . . Dbb_ . ., _
RAABBCC‘ 9gp + RAABBCE 9¢p =10,

where g;; € ©?V; is the SO(n, C)-invariant quadratic form. Substituting (10) into the
above equation, one obtains after elementary algebraic manipulations that

Qains = PaB9,p

for some symmetric tensor Pyp € ©?V%. [Another way to obtain this result is to note that
the Borel-Weil data (X, L) associated to (G,, V) is (CP,,—1 X Qn—1, 71 (O(1)) & m3(5*O(1)))
implying g” = H'(X,L ® ®*N*} = 0 and K(g,) = H(X,LQO'N') = @*V. ® C C
V* ® V*, where C is the 1-dimensional subspace of ®*V, spanned by g;3.] Then the
second Bianchi identitites (11) imply V,Q;. = 0 which in turn imply VR, % = 0. These
arguments imply essentially the following

Lemma 3.4 Let G be the irreducible representation of a subgroup of SL(m,C) -
SO(n,C) in the mn-dimensional vector space V,, ® V.. If m,n > 3, then K'(g) = 0.

ExXAMPLE 3. Keeping notations of Example 1, consider a subgroup Gy, C G which is
Tc - SL(m,C) - Sp(n, C) represented in V = V,, ® Vo, with m > 3, n > 2, and note that
K(gs) is a subset of K(g) consisting of all elements R, ¢ satisfying

DD . .. DD ... _
Riipsce €ip~ Raippcr  €cp =0
where €y, € A%V, is the Sp(n, C)-invariant symplectic form. Substituting (10) into this
equation, one easily finds
Qains = SABEAp

for some antisymmetric tensor Syp € A?V,,. Then the second Bianchi identitites (11)

imply V,Qi. = 0 which in turn imply V,,,Rabcd = (. We may summarize these arguments
as follows.

Lemma 3.5 Let G be the irreducible representation of a subgroup of GL(m,C) -
Sp(n, C) in the 2mn-dimensional vector space Vi, @ Van. If m 2 3, n > 2, then K'(g) = 0.

An immediate corollary of Lemmas 3.3-3.5 is the following

Proposition 3.6 Let G; C GL(V},), ¢t = 1,2, be an irreducible complez semisimple
matriz Lie group such that the associated Borel-Weil data (X;, L;) satisfies dim X; > 2.
Then G = T¢ - G, - G2 C GL(V,, ® V,,,) can have K'(g) # 0 only if G, = SL(n;,C) and
G2 = SL(TLQ, C)
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3. The case X = X x CP, with dimX > 2. Any ample line bundle on X is of the
form L = 7} (L) & m3(O(k)) for some ample line bundle L — X and & > 1. We denote in
this subsection V,, := H%(X, L), V; := H*(CP;,O(1)), N := J'L, and g stands for the Lie
algebra H(X, L ® N*) + si(2,C) represented in V =V, ® V5.

If k£ > 2, then the associated matrix Lie group G = exp(g) is an irreducible matrix sub-
group of either GL(n, C)SO(p, C) represented in C* for some n,p 2 3 or GL(n, C)Sp(g, C)
represented in €2 for some n > 3,¢ > 2. Then, by Lemmas 3.4 and 3.5, K'(g) = 0.

So we may assume that & = 1.

Proposition 3.7 Let (X, L) be a pair consisting of a compact complex homogeneous-
rational manifold X and an ample line bundle L — X. If dim X > 2, then

g = HOOX, N*) © 17
and there is an exzact sequence of g-modules
HO(X, ®3TX ® La2) R A2V;
0—H>?(g)— + —H' (X, TXQ L) V'RV,
HY(X,TX ® L**) @ 0%V

Proof. Since dim X > 2, the Kodaira vanishing theorem implies H'(X, L*) = 0. Then the
long exact sequence of

0—L"—N'"—=TX ® L*—0
implies H' (X, N*) = H(X,TX ® L*), while the long exact sequence of (5) with (X, L,) =
(X, L) and (Xy, L) = (CP;, O(1)) implies

H'(X,L ® ©°N*) = H*(X,N*) @ V;,
HEXLQO'N)=H'(X,N)®V, =H'(X,TX®L)®V;.
Analogously, the long exact sequence of (6) implies
HY(X,0%N*) ® A%V} HY(X,L ® @°N*) @ A*Vy

0 —H(XL®O’N)— + — + —
0 0

HY (X, 0*N*) ® A%V HY(X,L® O'N*) @ A*Vy
—HXLoo’N)— + — + o
0 H3(X,L* ® N*) @ 0%V
Comparing this with the long exact sequence of
0— N —=LRN*— O*TX ® L**—0 (12)
one obtains
H'(X,L ® @°N') = HY(X,0’TX ® L*}) @ A?V; + H'(X,TX ® L'*) ® 0%V},

Then Theorem 2.3 implies the desired result. O
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Lemma 3.8 Let G C GL(V) be an trreducible complez representation of a complex
reductive Lie group such that the associated Borel-Weil data is of the form (X = X xCP,,L)
with dim X > 2 and H' (X, TX ® L*?) = 0. Then G can be the holonomy of a non-metric
torsion-free affine connection only if G is T¢-SL(n, C)-SL(2, C) represented in V = V,QV,.

Proof. 1f (X, L) = (CP,, O(1)), then G has both modules K (g} and K'(g) non-zero only
if it is T¢ - SL{n, C) - SL(2, C) represented in V, ® V5.
Assume now that (X, L) # (CP,,O(1)). Then

K(g) gAYV =g OV @AV, +g @AW, @ OV
End(V,) ® @V ® A*V; + End(V,) ® A%V, ® OV, + &*V ® 0V

+ AV @ O, @ AV, + APV @ OV + AV ® A%V

-
-

On the other hand, by Proposition 3.8,
K(g) CHYX,0’TX ® L'?) @ A*V; C End(V,) @ V! @ V. @ A%V,

Therefore,
K(g) C End(V,)) ® @V @ A%V, + A%V} ® AV}

In notations of Example 1, a generic element of End(V,) ® @V @ AV, + A%V @ A2V
satisfying the first Bianchi identities is, as one may easily check, of the form

Ry’ = [Wapd + €803 + €acOhle 508 + [€4¢05 +€pcdpleandd

for some W, € V, ® @V and eap € AV, Here £;5 € A%V denotes the non-
degenerate SL(2, C)-invariant symplectic form.

Therefore, if there exist a connection V with holonomy G, its curvature tensor must
be of the above form for some tensor fields W, 52 and esp. However, from the second
Bianchi identities it easily follows that

Vc(eABEAB') = 0.

By the Ambrose-Singer theorem, €4p is non-zero. Since G is irreducible, e4p is non-
degenerate. Therefore, such a V must preserve the non-degenerate symmetric form g, =
€ABE Afy- O

Lemma 3.9 Let G C GL(V) be an irreducible compler representation of a complex
reductive Lie group such that the associated Borel-Weil data is of the form (X = X x
CP,,L) with dimX > 2 and H'(X,TX ® L*?) # 0. Then K'(g) # 0 only if G is either
Tg - SL{n,C) - SL(2,C) or T¢ - SO(n,C) - SL(2,C), both represented in V,, @ V5.

Proof. 1t follows from Table 3 that H'(X,TX ® L*?) # 0 only if (X, L) = (Q.,5*O(1))
where ¢, is the n-dimensional quadric and j : @, — CP,., is its standard embedding.
This together with Fact 2.1 imply that G must be of the form T¢: H-SL{2,C) C ¢i(V,®V3)
where H is one of the following representations

Group H: SO(n,C) | G2 | Spin(7,C)

Representation space Vj;: c olf C8
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Since the Borel-Weil data associated to G = T¢ - SO(n, C} - SL(2, C) represented in
Vo ® Va is (Qn_y x CPy, 71 (5*O(1)) ® m3(O(1)), one has g = H*(X,L ® ®?N*) = 0 and

K(g) =H'(X,L ® ©°N') = A2V @ A’V; + C @ ©0%Vy

where C is the 1-dimensional subspace of ®?V, spanned by the SO(n, C)-invariant metric
gas. Then a generic element of K{(g) must be of the form (cf. [18])

Ro.® = [€439°%(9anSce + 94cSpE + 9BcSar
— 9aeSBc — 98ESac) + ® ;i 3(98c65 — 9A05§]5CD

+ [gane 136" Dey — 5A3(63c5f? + 6Ac’<5ﬁ’ )68 - (13)

for some Syp € A%V and &, € OV,

Let g C ¢gl(V) be the Lie algebra of the representation of T¢ - Go - SL(2,C) (resp.
Te - Spin(7,C) - SL(2,C)) in V = C" ® C? (resp. in V = C* ® C?). It is a proper matrix
subalgebra of the Lie algebra g of the representation of T¢ - SO(7,C) - SL(2,C) (resp.
Te¢ - SO(8,C) - SL(2,C)) in V = C" ® C? (resp. in V = C* ® C?). Then

K(g) C K(g) = AV, @ AV + C® O™V
and K'(g) C K'(g). We claim
K(g) C A%V @ A%V, (14)

If not, then a typical element R, ¢ € K(g) contains a non zero term @ ;5(gpcd% —
9acOp)32 which easily implies that the image of the map

AV —yg

defined by R, ¢ € g ® A*V* contains A%V} ~ so(n,C). This contradicts to the fact that
¢ is a proper subalgebra of g.

Finally, it is straightforward to check that the inclusion (14) implies that K'(g) = 0.
O

Proposition 3.10 Let G C GL(V) be an irreducible complez representation of a
complez reductive Lie group such that the associated Borel-Weil data is of the form (X =
X x CPy,L) with dim X > 2. Then G can be the holonomy of a non-metric torsion-free
affine connection only if it is either Tc - SL{n,C) - SL(2,C) or SO(n,C) - SL(2,C), both
represented in V, @ V5.

Proof. By Lemmas 3.8 and 3.9, one has only to rule out the case C* - SO(n,C) - SL(2,C).
But this follows from R_,.¢ = 0 which itself follows from (13). O

4. The case X = CP, x CP,. This is the case of T¢ - SL(2,C) - SL(2,C) represented in
O™V, ® ©*V,. In the context of the holonomy classification, this class of representations
has been studied in [19] and [28] where the following result has been established by two
different methods.
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Proposition 3.11 Let G C GL(V)} be an irreducible complex representation of a
complez reductive Lie group such that the associated Borel-Weil data (X, L) has X = CP; x
CP,. Then K'(g) # 0 only if G is either the representation of Tc - SO(4,C) in C! or the
representation of T¢ - SO(3,C) - SL(2,C) in C°.

In fact, for the above representation, K (C+s0(3,C)+si(2,C)) = K(s0(3,C)+sl(2,C))
which means that C* - SO(3,C) - SL(2, C) can not occur as the holonomy of a torsion-free
affine connection.

5. Proof of Theorem A. Let G C GL(V) be an irreducible complex representation
of a complex reductive Lie group which can be represented as a tensor product of two
or more non-Abelian complex representations. Then, by Propositions 3.6, 3.10 and 3.11,
G may occur as the holonomy of a non-metric torsion-free affine connection only if it is
either T¢ - SL(m, C) - SL(n, C) represented in C™ @ C* for m,n > 2, or SO(I,C) - SL(2,C)
represented in C' @ C? for I > 3.

Let p: G — GL(V) be an irreducible representation of a real reductive Lie group G in
a real vector space V and let p: g = ¢{(V) be the associated real irreducible representation
of the Lie algebra g of G. The latter defines naturally a complex representation pg : gc —
gl(V¢), where gc = g® C and Vg = V ® C. Then two situations may arise [22]:

(i) the complex representation pc : gc — gl(Vc) is irreducible; in this case we denote pg
by p;

(ii) there is a complex vector space W¢ and an irreducible complex representation p' : g —
gl(W¢) such that V is the underlying real vector space of W and p is the composition

p:g AN gl{W¢)—gl(V'), where the second arrow is the natural inclusion of the
algebra of all complex automorphisms of V into the algebra of all real automorphisms
of V. Then the gc-module Vi splits as a direct sum of two irreducible ge-submodules
We + W and we denote by 5 : g¢ — gl(Wc) the restriction of pe to one of these.

In both cases, the g-modules K(p(g)) and K'(p(g)) arc subsets of K(j(gc)) and
K'(p(gc)) respectively. In particular, if K (p(g)) and K'(p(g)) are non zero, then K(5(gc))
and K'(5(gc)) are non zero as well.

Assume now that the semisimple part of g has at least two non-Abelian ideals. Then
the Borel-Weil data associated to the irreducible matrix subalgebra g{gc) must be of the
form (X,L) = (X x X,, 7} (L) ®73(L2)) for some compact complex homogeneous-rational
manifolds X; and X3 and ample line bundles L; — X and L, — X.

We claim that if p(g) is the holonomy of a torsion-free affine connection ¥V which is
not locally symmetric and does not preserve any (pseudo-)Riemannian metric, then 5{gc)
is either t¢ + sl(m, C) + sl(n, C) represented in C"* & C*, or so{l, C) + sl(2, C) represented
in C" @ C".

Indeed, if

dimX; 22, dimX, > 2,

or
dim X, =dimX, =1

or
dimX; 22, dimX; =1, HY(X),TX;® L?) #£0,
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then the claim follows from Propositions 3.6 and 3.11 and Lemma 3.9.
Let us next show that the only remaining case

dimX; > 2, dimX,=1, HYX,,TX,®L{)=0

implies that p{gc) is the representation of t¢ + sl(n,C) + sl(2,C) in C* @ C%. If (X1, L) #
(CP,,, O(1)), then, using the same arguments as in the proof of Lemma 3.8, one may
show that V must preserve a non-degenerate complex symmetric form g., = €4p€ iy and
hence its real part and imaginary parts. At least one of these must be non-zero and, by
irreducibility of p(g), non-degenerate. Since V is non-metric, this is impossible. Hence
the only other option is (X, L;) = (CP,,O(1)) and (X, Ly) = (CP;,O(k)) for some
k € N. By Lemmas 3.4 and 3.5, & = 1 implying that p(gc) is the representation of
tc + sl(n,C) +s1(2,C) in C* @ C.

Therefore, p(G) C GL(V} must be of the form T¢ - G, - G2, where T¢ is a connected
real Lie subgroup of C* and G; C GL(V;), i = 1,2, is one of the following real matrix
groups

Group Gi: SL(n,C) | SL(n,R) | SU(n) | SL{m, H)
Representation space V: R%" R* R*® R4

Group Gj: SO(I,C) | SO(p,q) | SO(n,H)
Representation space V: R% RP+9 Ri"

withnz22,m21,0{23,p+q2=23.

Since we know K (p(gc)) explicitly, it is straightforward to check that the only com-
binations p(G) = T¢ - G; - G, which (i) have K'(p(g}) # 0, (ii) have no proper subgroup
G' c G with K(p(g")) = K(p(g)) and (iii) do not preserve any non-degenerate symmetric
bilinear form are the ones given in the table of Theorem A. O

4 Classification of (X, L) with H'(X,TX ® L*) # 0

1. Review of the representation theory [6, 21]. Let g be a semisimple complex
Lie algebra and G the associated simply connected Lie group. Fix a maximally Abelian
self-normalizing subalgebra h C g (any two such subalgebras, called Cartan subalgebras,
are conjugate under the adjoint action of G). If p: g — ¢l(V'} is a representation of g in a
complex vector space V, then with any w € h* = Homg(h, C) one may associate the weight
space of V by V,, = {v € V : p(h)v = w(h)v for all h € h}. An element w € b~ is called a
weight of V if V,, # 0.

In the particular case when V = g and p: g — g¢i(g) is the adjoint representation of g
on itself, the non-zero weights of g are called the roots of g. Thus

5=h0) ga
acd
where @ is the set of all roots of g and all sums are direct. A subset A = {ay,...,0,} C®

with the property that every w € ® may be expressed as a linear combinationw = >|_, a;ey
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with all a; being non-negative or all non-positive integers is called a system of simple roots
of g. Such A exists and any two such A’s are conjugate under the adjoint action of G.
Then ® = &+ UP~, where ot = {w € ¢ :w =3, a;e with a; > 0} is the set of positive
roots and @~ = {w € ® : w = 3_[_, ajo; with a; < 0} is the set of negative roots (both
with respect to to A).

For any root o € ®* there is a unique element H, in {g,, §—a] C b such that a(H,) = 2.
If A = {aj,...,a.} is the set of simple roots, then the associated set {H,,,..., Ha, }
form a basis of g. Its dual basis {wa,,...,wa,} Of h* is called the set of fundamental
weights. One may use it to define the following three importants subsets of h*: the set of
(integral) weights A = {A € §* 1w = >"7_, Mw; with \; € Z}; the set of dominant weights
At ={Ae A: A =31 Awi with A; > 0}; and the set of strongly dominant weights
ATt ={x e AT : X =3, Aw; with A; > 0}, Note that A; = A(H,,). The minimal
integral element w; +wy + ... + w, in AT is denoted by 1. Any integral weight A of g
can be graphically represented by inscribing the integer A; over i-th node of the Dynkin

diagram for g. For example, the fundamental weight w, of s{(3,C) is 9.

Let A € A be an integral weight. It is called singular if A(H,) = 0 for some « € &,
and regular otherwise. The indez of A is defined to be the number of positive roots « for
which A(H,) < 0 holds; it is denoted by ind(A).

If p: g — gl(V) is an irreducible representation of g, then there exists a unique
weight w(V} € AT of V, called the highest weight of V (relative to the fixed h in g and
A in h) such that dimV,, = 1 and p(ga)V. = 0 for all @ € A. This establishes a one-
to-one correspondence, V < w(V'), between finite-dimensional irreducible g-modules and
dominant weights; and allows us to use the graphical description of w(V) to represent
p:g— gl(V). For example, the standard representation of sl(3,C) in C* gets denoted by

1 0

*—e .

If g is simple, then the adjoint representation p : g — gl(g) is irreducible. The
associated highest weight of V' = g is a root u € A" which is called the mazimal root of g.
The following is the list of all maximal roots [6, 21]:

g i 0_0 0
1 0 0 0 1 0 0 0 06 O

1
:

0 1 0...9;::9(23n0des) 1 0 0 0 0 0

. (15)
2 0 0 ..On:Q(22nodes) 0 0 0 0 0 0 1

0

0
9_3__9% (> 4 nodes) LQ

For any simple root a; € A, denote by o; the reflection in the hyperplane perpendicular
to a;. The Weyl group W of g is the group generated by all the simple reflections ;. The
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action of the simple reflection o; on a weight A € A can be described by the following rule
[6): to compute g;(A), let ¢ = A(H,,) be the coefficient of the node associated to a;; add
c to the adjacent coefficients, with multiplicity if there is a multiple edge directed towards
the adjacent node, and then replace ¢ by —c. For example

a b_c¢ d o2, atb-bet2bd

a b _c d s, & _bic ¢ dic

For any w € W, there exists a minimal integer I{w) such that w can be expressed as
a composition of {(w) simple reflections. This integer is called the length of w.

2. Homogeneous manifolds and vector bundles. A maximal solvable subalgebra
of a semisimple Lie algebra g is called a Borel subalgebra. A a subalgebra p C g is called
parabolic if it contains a Borel subalgebra. Every Borel subslagebra is G-conjugate to the
standard one

b:=hdn

where n := 3 .o+ fa. There is a standard form p for any parabolic subalgebra as well.
Let A, be a subset of A and let ;" = span {A,} N ®*. Then

p=h+n+ Y g

+
acd,

is the standard parabolic subsalgebra of g. A useful notation for a standard parabolicp C g
(and for the associated subgroup P C G) is to cross all nodes in the Dynkin diagram for g
which correspond to simple roots of g in A\ A,.

It is well known that any compact complex homogeneous-rational manifold X is iso-
morphic to the quotient space G/P, where G is a simply connected Lie group and P C G
is a parabolic subgroup. It is then very useful to denote X by the same Dynkin diagram
as p, the Lie algebra of P. For example, the odd dimensional quadric @5, gets denoted
by —e—e ... 69 .

The number of crossed nodes in the Dynkin diagram for X is called the rank of X and
is denoted by rankX . This number is independent of the representation of X as a quotient
G/P.

A vector bundle £ — X = G/P is called G-homogeneous if there is a holomorphic
representation p : P — GL(V) such that £ = G x, V, i.e. E is the quotient G x V/P,
where every p € P acts on G x V as follows

GxV — GxV
(9,v) — (g-p,p(p~")v).

If p: P — GL(V) is irreducible, then E is said to be irreducible as well.

The finite-dimensional irreducible representations of P are in one-to-one correspon-
dence with integral weights A € A whose Dynkin diagram has non-negative coefficients
over the uncrossed nodes for p. A useful notation for an irreducible homogeneous vector
bundle E — X is to combine the Dynkin diagram for the associated integral weight A with
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the Dynkin diagram for p into one picture. For example, if X = x—s is the projective

plane CP,, then O(—1) =% and TX =x—=s .

The cohomology ring H*(X, E) of an irreducible homogeneous vector bundle £ — X
with integral weight A € A can be computed, according to Bott {10], as follows:

(i) if A + 7 is singular, then H*(X, E) = 0;

(i) if A 47 is regular and if ind(A + ) = p, then there is a unique element o, (of length
p) in the Weyl group of ® such that ox(A + 1) € AT, Then H*(X, E) = H*(X, E)
and H?(X, E) is an irreducible g-module whose highest weight is o (A +1n) — 7.

For future reference we introduce the following notation: if A € A and A4 7 is regular,
then J*(\) denotes the irreducible G-module with highest weight ox(A +7) — n if k =
ind(A +n) and 0 otherwise; if A + 7 is singular, then J¥(A} = 0 for all k.

3. Proof of Theorem B. The statement (i) follows from Proposition 3.1. Let us prove
the statement (ii).
If X is reducible, say X = X; x X, and L = 7j(L;) ® m}(Lz), then
HYX,TX ® L") = H*(X,,TX, ® L}) ® H}(X,, L}) + H*(X,, TX, ® L}) ® H' (X, L}).

This together with statement (i) implies that in the class of reducible X only two bottom
lines in Table 3 contribute to the list of all (X, L) with H'(X,TX ® L*) # 0.

Assume from now on that X is irreducible. Though the tangent bundle TX is homo-
geneous, it is not irreducible in general; even worse, since the parabolic P is not reductive,
TX is not in general a direct sum of irreducible homogeneous vector bundles. This makes
a naive idea of computing H*(X,TX ® L*) by the straightforward application of the Bott
theorem impractical.

Consider the Atiyah exact sequence

0—Q—g @ Ox—TX—0, (16)

where Q = G X 244 p. Since the central term of this extension is a trivial vector bundle and
HY(X,L*) =0 for 0 <7< dimX — 1, we have, in the case dim X > 3,

H'(X,TX® L") =H(X,Q®L").
An exact sequence of p-modules
0—n—p—rp/0—0,
where 1 = n'\ Zaew fa, gives rise to an exact sequence
0— QX —Q—S—0

of homogeneous vector bundles, where S = G x44 p/n and we used the isomorphism
G X aq 1t > Q' X. According to Nakano [31], for any compact complex manifold X and any
positive line bundle L on X the groups H*(X,Q2'X ® L*) = 0 vanish for all i < dim X — 2.
Then, in the case dim X > 5, the long exact sequence of the latter extension implies

H3(X,Q® L*) = H3(X,S ® L*).
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which in turn implies
HY(X, TX®L")=H*X,S®L")

The advantage of working with S instead of TX is that S can always be decomposed into
a direct sum of irreducible homogeneous subbundles.

The Lie algebra s = p/n is reductive and the adjoint representation of p on s is
semisimple. Under the adjoint representation s — g¢l(s) the Lie algebra s decomposes into
a direct sum of its ideals

s=&64+ ... +51+... + 5y

where &;, 7 = 1,...,rankX, liein the center of s and the non-Abelian ideals s;,i = 1,...,m,
are simple. Then, by Bott theorem,

k ™m
H(X,S® L") =P (-2 + P I (1 — N,
j=1 =1
where A is the weight of L and p,,...,u,, are the maximal roots of the simple ideals

81,---,5m [10, 35]. Since, for dim X > 2, J2(—A) = H*(X, L*) = 0, we obtain the following
Lemma 4.1 IfdimX > 5, then H'(X,TX @ L*) = @, J* (i — 7).

There are seven irreducible compact complex homogeneous-rational manifolds X with
dim X < 4: projective spaces CPy for k = 1,2, 3,4, quadrics @3, 4 and the complete flag
manifold F(1,2;C*). It is elementary to check that Theorem B is true for this family.

We assume from now on that X is an irreducible complex homogeneous-rational man-
ifold with dim X 2 5.

Let us introduce the following notation: if I is a connected subgraph of the Dynkin
diagram for X, then the number of simple roots {c; | j € I} in this graph is denoted by
IT; if w is an integral weight such that w(H,,;) < 0 for all o; € ', then we write w|. < 0.

Lemma 4.2 HY(X,TX ® L*) = 0 for any ample line bundle L on X if at least one
of the following conditions is satisfied:

(i) rankX > 3;
(ii) rankX' = 2 and the crossed nodes are adjacent;

(iii) rankX = 2, the crossed nodes are not adjacent and, for each marimal root 1; of the
stmple ideal s5;, 1 = 1,...,m, at least one crossed node is contained in a connected
subgraph T' of the Dynkin diagram for X such that |I'| 2 2 and ;| < 0.

(iv) rankX = 1 and, for each mazimal root u; of the simple ideal s5;, i = 1,...,m, the
crossed node s contained in a connected subgraph U of the Dynkin diagram for X
such that |T'| 2 3 and w| < 0.

Proof. (i) Let A be the weight of L. Since L is ample, the coefficient of A over each crossed
node is a negative integer (its coefficient over each uncrossed node is, of course, zero). Then
(=A+ i + 1) (Ho;) € —A(Hqg;) + 1 < 0 for all crossed nodes ¢y and all i € {1,...,m}.
If the number of crossed nodes is greater than or equal to 3, then either —A + y; + 7 is
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singular or ind(—X + p; + 1) > 3. Whence @, J*(u; — A) = 0 and the statement follows
from Lemma 4.1.

(if) If o; and a4 are adjacent crossed nodes, then a; 4 «;44 is a positive root and one
has (—=A+pu;+n)(Ha;) < 0, (=A+pi+n)(Ha,,,) < 0and hence (—A+p;+7)(Haj4a;,,) < 0.
Thus either —A + y; + 7 is singular or ind(—A + g; + n) = 3 for all ¢ and the statement
follows from Lemma 4.1.

(iii) & (iv) If [ is a connected subgraph of the Dynkin diagram for X, then the sum
of all simple roots in I'" is a positive root [11]. Under the conditions stated in (iii) and (iv),
one easily finds at least three positive roots a; such that (=X + p; + 7)(Ha,) < 0 for all
i € {1,...,m}. Then again either —A + p; +7 is singular or ind(—A + x; +7) > 3 implying
J%(=X + 11;) = 0. Thus the statement follows from Lemma 4.1. O

Therefore, we can restrict our attention to the cases rankX =1, 2.

The case rankX = 2. It clear from items (ii) and (iii) of Lemma 4.2 that H' (X, TX ® L*) #
0 only for those X which have the semisimple part s’ of the parabolic algebra p simple, i.e.
the number m of simple ideals of s’ is 1. Therefore, the crossed nodes must be located at
the ends of the Dynkin diagram for X. Inspecting the list of mnaximal roots (15) leaves one
with the following three candidates to the list of all (X, L) with H'(X,TX ® L*) # 0:

(L) (X,L) = =90 9.0 & for some s,t> 1. Computing gy 0 0,(—A + g1 + 1) — 7 as
shown in the following diagram

1s 10 1 -1-t 49 -s 2 1 2 -t gioo0p 5 25 1 2.t ¢

=, s-1 1.8 0 “'l-t t-1

one concludes
C s=t=1

H(X,TX QL") = J*(-A+ ) = { 0 otherwise.

(2) (X, L) =39 0. %l for some s,t> 1. Then the graph

Ap =t 8 LA g 3 L Tt e g B [ LS

;n>s-1 1-s 0”'-t t

implies H'(X, TX ® L*) = J*(=A + 1) = 0 for all s,t> 1.

)

(3) (X, L) =299 9—(<; for some s,t> 1. In this case
1 0 0 0 1<
H = PN 1

The only element of the Weyl group W of length 2 which can, in principle, map —A+pu; +7
to a strictly dominant weight in A% is 0,,.; 0 0,,. However, a computation as above shows
that
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s-1

Un—l°Un(—/\+/J'1+T/)—-n=1._ 0. 0._”0 -§- o1
X

which implies H' (X, TX ® L*) = J?(=A + ) = 0 for all s,t> 1.

The case rankX = 1. The number m of simple ideals of the semisimple part of the
parabolic algebra p can, in principle, be equal to 1, 2 or 3. The case m = 3, however, is
ruled out by Lemma 4.2(iv}. If m = 2, then, by Lemma 4.2(iv), at least one of the ideals
must be isomorphic to si(2,C). Therefore, the crossed node must be either an end node
(for m = 1) or the node adjacent to an end node (for m = 2) of the Dynkin diagram for
X. Inspecting the list of maximal roots (15) excludes all but the following candidates to
(X, L) with HY(X, TX ® L*) # 0:

1) (X,L) = (CP,,0(s)) = £ 9..039 (n > 5 nodes) for some s > 1. The odd
dimensional projective space has another representation as

(CPyp—1,0(s)) = >S(—0Q—9 9.:.::-0 (n 2 3 nodes).
The long exact sequence of
0—0(=s)—C"*"' @ O(1 — 5)—TX @ L*—0

implies H'(X,TX @ L*) =0 for all s > 1.

(2) (X,L)zm...g—g for some s > 1. There are two maximal roots
2 .10 0 0 0 -1 1 0 1
H] = &——e ... 0—@ , [ = o—¥—e ...0—9 .

That J2(—A + p1) = 0 for all s > 1 follows from the proof of Lemma 4.2(iv), while

g100(—A+pa+n)—n = 3'02—)()(—138...9-—.1

implies J2(—A + pz) = 0 for all s > 1 as well. Thus H'(X,TX ® L*) =0 for all s > 1.

(3) (X,L) = 9 0 .8 (n 2 3 nodes) for some s > 1. Note that for n = 3 this
L. . 0 s
pair is biholomorphic to e=x [35] .

The maximal root is

-1 0 1 0 0
X—eo—s ... 7 2 4 nodes
Hi=494-1 0_ 2
H—a—re n = 3 nodes
Then an easy computation shows
0 s22s 0_0
H—eo—e ... e=xw n = 4 nodes
02001(—/\‘*‘#1‘1‘77)—77::{0 s-2 4-2s ~

—e>re n = 3 nodes

26



which implies

C s=2

Hl(X, TXQ®L)=J*-A+m)= { 0 othwerwise.

MO (X, L)= & $220  for some s 2 1. The maximal roots are

2 1.9 _0 -1 2
H1 = e—x>xs [y T e—x=xe
Then
0300(=A+ 1 +7) - 25 5,252
s-2 0.2-2s

n
g1o00(=A+p+n)—n =
(—

implying H/(X,TX ® L*) = J2(=A + ) + J2(—A + pz) = 0 for all s > 1

(5) (X, L) = A - (n nodes) for some s > 1. This pair is biholomorphic to
the following one [35]

0

(X,L):0 9 09—% (n + 1 nodes).

Then, by Lemma 4.2(iv), H(X, TX ® L*) =0 for all s > 1

(6) (X,L):Q—Q.. 529 for some s > 1. The maximal roots are
_1 0 1 -1 0 _0 0 0 -1_2
H1 = o—e .. . e—Z3e Ho = &—e ... 0—Cre .

The proof of Lemma 4.2(iv) implies J2(—=A + po +7) = 0 for all s > 1, while

OnO00n_1(=A+pu+n)—n = 1—9...1—'-%:::25"2
implies J2(=X + 1y +n) = 0 for all s > 1. Whence, by Lemma 4.1, H{(X, TX ® L*) =0
for all s > 1.
- _ 0 s 0 0 0 _0
(1) (X,L) = «—3¢—=...6—e=x=s (1 2= 3 nodes) for some s > 1. The maximal roots

are

=500 0 &0 =02 20 0D

The vanishing of J2(—A + ;) for all n > 4, s > 1 follows from the proof of Lemma 4.2(iv).
That this module vanishes for n = 3, s > 1 follows from a simple calculation:

o300y(= A+ +n)—n = 2-s 1-s_s-2

Analogously, one finds

o100 A+ pa+1n)—n = 5;1__)(_)&1;3___9_9:@9
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implying J2(—X + p2) = 0 for all s > 2 and J?(=X + py) = C for s = 1. Therefore, by
Lemma 4.1,
C s=1

1 - LAY
HI(X,TX® L )'_ { 0 otherwise.

(8) (X,L) = S U .—< > 5 nodes) for some s > 1. The maximal root is
0
0200'](—/\+M1+77)-77= 96—8502—2;8% .

C s=2
0 otherwise.

and an easy calculation shows that

Therefore,
HY(X,TX QL") = J* (=2 + 1) = {

(9 (X, L) = O 50 9 for some s 2 1. The maximal roots are

2 1.0 0 0 <11 1
H1 =e—X=—e—e [y = e—xr—e

From the proof of Lemma 4.2(iv) it follows that J?(—X + p;) = 0 for all s > 1. The only
element of the Weyl group of length 2 which can, in principle, make —A + po + 7 strictly
dominant is g 0 0. Since

ogo0(—A+p+n)—n = Swo——ece-g%—}

the module J2(—X + uy) vanishes for all s > 1. Therefore, H'(X,7X ® L*) = 0 for all
s 2 1.

(10) (X, L) = & 2% 0 for somes > 1. The maximal roots are

1 1.-3 0 0 0. -1 2
Ml =e—ea—e Ho =o—eaxr 20—

From the proof of Lemma 4.2(iv) it follows that J%(—X + up) = 0 for all s > 1. Since

cao03(—A+pm+n)—n = ! - :05 s-1

the module J(—\ + pp) vanishes for all s > 1. Therefore, H/(X,TX ® L*) = 0 for all
s =2 1.

(11) (X, L) = ¢ &0 & for somes > 1. The maximal root is



Since
o3004(= A+ +n)—-n = .0 1‘.:533'1 0

we obtain

C s=1
0 otherwise.

HY(X,TX @ L") = JA(=A + 1) = {

(12) (X, L) = Sl for some s 2 1. The maximal root is =Yes=f . Hence

3-25 3s-4
o200 (-A+tum+n)—n = .

implying HY{(X, TX ® L*) = J* (=X + 1) =0 for all s > 1.
Theorem B is proved. O
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