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ABSTRACT. We study the question of the validity of the Snake Lemma in a
P-semi-abelian category. We also obtain a generalization of the Snake Lemma
in a quasi-abelian category.
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INTRODUCTION

In the recent years, homological algebra in additive categories which are not
abelian has been actively developing in connection with the study of homological
aspects of functional analysis, topological algebra, some algebraic problems. Vari-
ous classes of additive categories with kernels and cokernels have been considered
(see, for example, [1, 4, 10, 11, 12, 13, 14, 16, 17]).

In [3, 5], the Ker-Coker-sequence

Ker o = Ker 8 AN Ker~ 2, Cokera 5 Coker 3 9, Coker vy (I)
corresponding to the commutative diagram
Ay =2 By —2 G 0
el ol
0 4 2 M

satisfying the conditions ¥y = coker ¢, p1 = ker;, was studied in an arbitrary
quasi-abelian category. It was found out how an assumption about the properties
of one of the morphisms «, 3, or « influences the exactness of sequence (I) and the
properties of the morphisms that constitute the sequence.

In this article, we consider two generalizations of [5].

In Section 1, we consider the question about the Ker-Coker-sequence in a P-
semi-abelian category, i.e., in a category semi-abelian in the sense of Palamodov
(in [1, 3, 5, 6], such categories were called pre-abelian). The difference with the case
of a quasi-abelian category is that in a P-semi-abelian category, for the validity of
many of the arguments of [5], we have to impose the condition of stability under
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push-outs (pull-backs) on the kernels (cokernels) of some morphisms in the diagram.
For example, the construction of the connecting morphism ¢ for the Ker-Coker-
sequence is possible if coker g is a stable cokernel or ker ¢; is a stable kernel in
the above sense.

In Section 2, we consider the diagram

Ag =2 By 2
al ﬁl vl (11)
A 2 B 2 q,

in which the rows are semi-exact, in a quasi-abelian category. To this diagram,
there correspond two semi-exact “halves” of the Ker-Coker-sequence

KeraiKerﬁiKer'y (II1)

and
Coker @ = Coker 8 % Coker . (IV)

In [9] Nomura proved that, in a Puppe-exact category, sequence (III) is exact at
Ker (3 if ¢1 and the canonical morphism of the rows in (II) x : H(By) — H(B;) are
monomorphisms and (IV) is exact at Coker 8 if ¢y and x : H(By) — H(B) are
epimorphisms.

In this article, we prove that these assertions holds in a quasi-abelian category if
we require that o1 be a kernel and ¢g be strict (respectively, that ¢y be a cokernel
and 11 be strict).

1. Ker-Coker-Sequence in a P-Semi-Abelian Category

We consider additive categories satisfying the following axiom.

Axiom 1. Each morphism has kernel and cokernel.

We denote by ker o (coker o) an arbitrary kernel (cokernel) of o and by Ker «
(Coker ) the corresponding object; the equality a = ker b (a = coker b) means that
a is a kernel of b (a is a cokernel of b).

In a category meeting Axiom 1, every morphism « admits a canonical decom-
position a = (im a)a@(coim «), where im « = ker coker o, coim o = cokerkera.. A
morphism « is called strict if @ is an isomorphism.

We use the following notations:

O, is the class of all strict morphisms;

M is the class of all monomorphisms;

M. is the class of all strict monomorphisms (= kernels);

P is the class of all epimorphisms;

P. is the class of all strict epimorphisms (= cokernels).

We write a | 8 if @ = ker 8 and 8 = coker a.

Lemma 1. [1, 2, 7, 12] The following assertions hold in an additive category
meeting Axiom I

(1) kera € M. and coker € P, for every «;

(2) a € M., <= a=imaq, a« € P, < « = coim q;

(3) a morphism « is strict if and only if it is representable in the form o = oy
with ag € P, a1 € M,; in every such representation, g = coima and o = im «;
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(4) if a commutative square

gl fl (1)
A . B
is a pull-back then f € M —> g€ M, f € M. = g € M., if the square is push-out
thenge P— feP,ge P.— f€P..

An additive category meeting Axiom 1 is abelian if and only if @ is an isomor-
phism for every «.

An additive category is called P-semi-abelian, semi-abelian in the sense of Palam-
odov [10, 11], or pre-abelian [1] if it meets Axiom 1 and the following

Axiom 2. For every morphism «, @ is a monomorphism and an epimorphism.

Lemma 2. [5] The following hold in a P-semi-abelian category:

(1) gfeM.= fe M. gf € Po.= g€ P;

(2) if f,g € M. and fg is defined then fg € M.; if f,g € P. and fg is defined
then fg € Pe;

(3) if fg€ O, f €M then g € O; if fg € O, g € P then f € O..

An additive category satisfying Axiom 1 is called quasi-abelian [16] (semiabelian
in the sense of Raikov [12], or almost abelian [13]) if it meets the following

Axiom 3. If square (1) is a pull-back then f € P. = g € P.. If (1) is a
push-out then g € M. = f € M..

As is well-known [7, 12, 13, 16], every quasi-abelian category is P-semi-abelian.
As has been recently discovered by Rump [15], there exist semi-abelian categories
that are not quasi-abelian.

In [7][Theorem 1], Kuz’'minov and Cherevikin established the following fact:

Lemma 3. An additive category A with kernels and cokernels is P-semi-abelian if
and only if the following two conditions are fulfilled:

(P1) if (1) is a pull-back then f € P. = g € P;

(P2) if (1) is a push-out then g € M, = f € M.

If, for a morphism f € P, in a pull-back (1) in an additive category with kernels
and cokernels, g € P. (for a morphism g € M, in a push-out (1), f € M,) then f
is called a stable cokernel (g is called a stable kernel).

A sequence ... = B LY .. in a P-semi-abelian category is said to be ezact at
the term B if ima = ker b (or, equivalently, coker a = coim b).

For a commutative square (1), denote by § : Keraw — Ker 8 the morphism
defined by the condition g(kera) = (ker 8)§ and by f : Cokerow — Coker 3, the
morphism defined by the condition f (coker o) = (coker 3) f.

Lemma 4. [2] For an arbitrary pull-back (1) in an additive category meeting Az-
iom 1, ¢ is an isomorphism.

The dual assertion also holds.
Throughout the rest of the section, the ambient category A is assumed P-semi-
abelian.
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Suppose that square (1) is a pull-back, 8 = 159, 8o € P, 51 € M.. Consider
the pull-back

E—22.D

hl fl (2)

B1

F —— B.
Since square (2) is a pull-back, there exists a morphism «g : C' — FE such that
arag = a and hag = Gog.

Lemma 5. If 3 € O, then ag € P. If f € M. and g is an isomorphism then h is
an isomorphism and og € P.

Proor. The square

AR
is a pull-back [2]. By Lemma 3, the condition 5 € O. (i.e., By € P.) implies that
ag € P. Suppose that f € M, and g is an isomorphism. By Lemma 1, h € M..
Since Bpg € P and [Byg = hag, we have h € P. Consequently, h is an isomorphism
and ag = h~'fyg is an isomorphism. The lemma is proved.

Lemma 6. Suppose that square (1) is a pull-back. If 8 € O,, then feM.
PROOF coincides almost literally with the proof of Lemma 6 in [5].

Lemma 7. Suppose that the square

A—2-D

idl fl (3)

A4 B
is commutative, f € M, and a morphism h : Coker § — Coker f is defined by the
condition coker f = h(coker 3). Then
(1) if B € O, then f € M;
(2) if f € M, and coker § is a stable cokernel then f = ker h.

ProOOF. (1) Since f € M, square (3) is a pull-back. Therefore, item 1 follows
from Lemma 6.

(2) Suppose that f € M,.. By Lemma 5 we may assume that 5 € M..

Let x : X — Coker 8 be a morphism with hu = 0. Consider the pull-back

y —~°* ., X

vl mi (4)
B ks, Coker .
Since (coker f)v = hxzs = 0 and f = kercoker f, there is a morphism w : Y — D

such that v = fw. Since (4) is a pull-back, v(ker s) = ker(coker ) = . Therefore,

f(coker a)w(ker s) = (coker 3) fw(ker s) = (coker S)v(ker s) = (coker 3)5 = 0.
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Since coker 3 is a stable cokernel, s € P, and hence s = coker(ker s). Consequently,
there exists a morphism ¢ : X — Coker « such that (coker o)w = cs. We infer

fes = f(coker a)w = (coker 3) fw = (coker B)v = xs.

Since s € P, it follows that x = fc. This condition determines ¢ uniquely because
f € M (Lemma 6). Thus, f = ker h.
The lemma is proved.

Suppose that in a commutative diagram

Ay =22 By — 0
al ﬁl Wl (5)
0 A -2 B o

1o = coker ¢g, 1 = kerw;. As in the case of an abelian category, diagram (5)
gives rise to two semi-exact parts of a Ker-Coker-sequence:

Ker o 5 Ker 3 -5 Ker~y (6)

and
Coker a - Coker 3 % Coker . (7)
Here € = G, ( = g, 7 = 31, 0 = 1.
Suppose now that g is a stable cokernel. Then there is a connecting morphism
0 : Kery — Coker a that unites (6) and (7) in the Ker-Coker-sequence

Ker oo = Ker 8 5 Ker~ 2, Cokeraw = Coker 3 2, Coker 5. (8)
The morphism ¢ is constructed as follows. Let

X —— Kery

ul ker'yl 9)

BOL Co

be a pull-back and let

Al L) Bl

cokcral ul (10)

Cokera —-— Y
be a push-out. Since ¥ypo = 0, there exists a unique morphism w : A — Ker g
such that ¢o = (kerp)w. Since ker )y = im ¢y, it follows that w = Fy(coim ¢g) €
P. Since Y1fu = y(kery)s = 0 and ¢; = kert)y, there is a unique morphism
m: X — Ay with oym = fu. Next, by Lemma 4, ker s = ker 19, which implies the
chain of equalities

prm(ker s)w = Pu(ker s)w = B(ker vo)w = By = p1a,

from which o = m(ker s)w. Hence, (coker a)m(ker s)w = (coker a)a = 0, whence
(coker a)m(ker s) = 0 because w € P. Since vy is a stable cokernel, s = coker ker s.
Therefore, there exists a unique morphism § : Kery — Coker «a satisfying the
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relation (coker «)m = ds. For the morphism §, we have tds = t(cokera)m =
vp1m = vfu. Since t € M (Lemma 3), the condition

tds = vfu (11)

defines 0 uniquely once squares (9) and (10) have been chosen and makes it possible
to prove the naturality of §.

The dual argument shows that, in the case where ¢ is a stable kernel, a con-
necting morphism & satisfying (11) is also defined. Since t € M, s € P, when v
is a stable cokernel and ¢, is a stable kernel, the two so-constructed connecting
morphisms ¢ coincide.

Suppose that the morphism § in (5) is represented as 8 = 8100, 0o : Bo — B,
(1 : B — B;. Consider the pull-back

A —*- B
ol ol
A, —2— By
Suppose that ¥ = coker ¢, ¥ : B — C. By Lemma 1 ¢ € M, and hence ¢ = ker 1.

There are morphisms «g : Ag — A, v : Cg — C, 71 : C — C for which ayag = «
and the diagram

Ay =22 By — 0
o wlnl
0 A% .B Y. (C 0 (12)
ol sl ol
0 A, 2B o

commutes. It is easy to verify that y1v9 = 7.

Lemma 8. If 5y € P, 51 € M., coker« is a stable cokernel, the morphism &y :
Coker ay — Coker v is defined by the condition (coker a)ay = @ (coker o), and
the morphism 7 : Cokeraw — Coker 8 is defined by the condition T(cokera) =
(coker B)p1 then a = kerT.

PrOOF. The stability of coker «v justifies application of Lemma 7 to the commu-
tative square

Im oy mao -y
idJ{ (Xll
Tm g a1 (im agp) By,

which yields a; = ker h, where the morphism h : Coker a — Coker a; is defined by
the condition h(coker o) = coker ;. Now follow the proof of Lemma 10 in [5]. The
lemma is proved.
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Consider the commutative diagram

Ay —20 By - o 0
@o l Bo l 0 l (13)
0 A%, B Y.

in which vy = coker g, ¢ = kert). Let 6 : Kervyy — Coker ag be the connecting
morphism for (13) (which is defined if ¢ is a stable kernel or 4 is a stable cokernel).

Lemma 9. If the connecting morphism d : Kerryg — Coker oy is defined for (13)
and By € P, then § € P.

PRrOOF. Consider the pull-back

X —— Kern

ul ker vo l

By — . ¢,

and the push-out
A —? . B

coker ag l ’UJV

Coker ag 'y
Since Gou = yo(ker v0)s = 0, there exists a morphism h : X — A with ph = Syu.
Reasoning as in the proof of Lemma 11 in [5], we conclude that the square

X 2 B

hl Bol
A—* ., B
is a pull-back. -

By Lemma 3 h € P; therefore, (coker ag)h € P. Since tos = vfBou = vph =
t(coker ag)h and t € M by Lemma 3, we have s = (coker ag)h € P, which yields
0 € P. The lemma is proved.

Now we are in a condition to prove the following version of Theorem 1 of [5] for
P-semi-abelian categories.

Theorem 1. The following hold:

(1) if in (5) 1o and coker a are stable cokernels and B € O, then sequence (8) is
exact at Coker «;

(2) if in (5) @1 and ker~y are stable kernels and 8 € O, then sequence (8) is exact
at Ker~y.

ProoF. (1) Suppose that 8 = (180, Bo € P., 1 € M.. In diagram (12)
corresponding to this factorization of 3, we have v; € M by Lemma 6 and hence
kery = ker~y. Since 1)y is a stable cokernel, the connecting morphism § for (13)
is defined. By the naturality of the conecting morphism, § = @;6. By Lemma 9,
d € P, and by Lemma 8, &; = ker 7. Consequently, im § = ker 7, i.e., sequence (9)
is exact at Coker a.

Item (2) is obtained from (1) by duality.
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The theorem is proved

The proof of the following lemma repeats the first part of the proof of Theorem 2
in [5].

Lemma 10. Suppose that in (5) @9 = kertpy (11 = cokerw;). Then ¢ = ker(
(0 = coker ).

Theorem 2. The following hold:

(1) if in (5) o € O, and ker « is a stable kernel then sequence (6) is exact at
Ker 8 and € € Og; if in (5) a € O, then sequence (6) is exact;

(2) if in (5) 1 € O, and coker~ is a stable cokernel then sequence (7) is exact
at Coker 8 and 6 € Og; if in (5) a € O, then sequence (7) is exact.

PRrROOF. Represent ¢g as a composition pg = ¢(vg, ¢4 € P, ¢y € M., ¢ :
Ay — Aj, ¢ + Ay — Bo. Since ¢ = ker ¢y, there exists a morphism o' : A — A
such that g1/ = Byj. Then o'y} = a. Since ¢f, € P, the square

AOL)Al

a

A2 A,

is a push-out. The morphism ¢f, induces the morphism @y’ : Ker @« — Ker o and
¢( induces the morphism y” : Ker o/ — Ker 3; by Lemma 10 @y” = ker C.

Let ¢g € O.. Then ¢} € P.. By the assertion dual to item (2) of Lemma 7, we
conclude that @y’ € P.. Hence, € € O, and ime = ker (.

Assume now that a € O.. The assertion dual to item (1) of Lemma 7 yields the
relation @ € P. We again have @y” = ker (.

Item (1) is proved, and item (2) is obtained from it by duality. The theorem is
proved.

Theorem 3. Ifin (5) a € O. and kery and ¢y are stable kernels then sequence (8)
is exact at Ker B and Ker~y. If v € O, and coker a and 1y are stable cokernels then
sequence (8) is exact at Coker 8 and Coker .

PrOOF. Represent 5 as 0 = (100, fo € P., f1 € M, and consider the corre-
sponding diagram (12). By Lemma 1 a; € M, and by Lemma 6 v; € M. Con-
sequently, ker o = ker g, ker 3 = ker 3y, ker v = keryy. The Ker-Coker-sequences
corresponding to (5) and (13) are connected with each other by the following com-
mutative diagram:

Ker ag 5 Ker (g AN Ker vy KN Coker g — 0 — 0

| l |

Keraa = Kerf i Ker~y 2 Cokera o Coker 3 O, Coker 5.

(15)

By Lemma 7, the strictness of « implies that @; € M. Therefore, ker § = kerd.
By item (2) of Theorem 1, the upper row of (15) is exact at Ker . Therefore, the
lower row is exact at Ker .

Exactness at Ker 8 follows from Theorem 2.

The second claim of the theorem is obtained from the first by duality.

The theorem is proved.




KER-COKER-SEQUENCE AND ITS GENERALIZATION 9
2. A Generalization of the Ker-Coker-Sequence
in a Quasi-Abelian Category

Throughout the section we work in a quasi-abelian category A.
Consider a commutative diagram

AO Yo B() Yo C()

al ﬁl vl (16)

Y1

A1 21 Bl Cl i
where oo = 0 and 101 = 0.
As above, there are two semi-exact sequences
Ker a = Ker AN Ker~y (17)
and
Coker v = Coker 8 2. Coker . (18)

By the (co)homology H(B) of a sequence A % B Y C such that Yo = 0 we
mean the cokernel of the natural morphism r : Im ¢ — Ker v or, equivalently, the
kernel of the natural morphism ¢ : Coker ¢ — Coim ¢ (see [6]).

For diagram (16), we have a commutative diagram of natural morphisms:

Imgy —2— Kerty

‘| a
A =TImy; —— Keriy

Here t : Ker 1)y — Ker 1, is the morphism of the kernels of the rows of the square

BOL Co

ol

Bl L} Clv

s : Impg — Imy; is the morphism of the kernels of the rows of the square

By okero, Goker ©o
5| 5 (19)
By coker o1 Coker 1,

where B is the morphism of the cokernels of the rows of the square

AOLBO

L

Ay ., B,
and the morphisms 7y and r; arise from the semi-exactness of the rows in (16).
Thus, we have a natural norphism in homology x : H(By) — H(B1), the morphism
of the cokernels of the rows of (19).
We prove the following assertion which is a quasi-abelian version of Corollary B2
in Nomura’s article [9].
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Theorem 4. The following hold:

(1) if in (16) o € O, ©1 € M., and the morphism x : H(By) — H(By) is a
mononmorphism then sequence (17) is exact;

(2) if in (16) ¢1 € O, Vg € P., and x is an epimorphism then sequence (18) is
exact.

PRrROOF. (1) Take a morphism z : X — Ker 8 with (z = 0. Show that z = (ime)Z
for some unique .

We may assume without loss of generality that © = imx € M,.

We have the commutative diagram

Impy —— Kery cokerro, H(By) = Cokerrg

'] a gl
A =Imyp; —— Ker _cokerra, H(B;) = Cokerr;.

Since 0 = (ker y)Cz = g (ker §)z, there exists a morphism z : X — Ker ¢y with
(ker B)x = (kertp)z. Furthermore, (kert)tz = B(kertpg)z = Bker B)z = 0 and
ker 11 € M,; therefore, tz = 0. Moreover, since y(coker rg)z = (cokerry)tz = 0 and
X € M, we have (cokerrg)z = 0. Since ro € M., it follows that ro = ker coker ro;
therefore, there is a morphism o : X — Im g with z = rgo.

We have r1soc = trqo = tz = 0. Since r1 € M., we infer that so = 0.

Represent ¢g as ¢g = (im ¢g)e). Then ¢} € P.. Consider the pull-back

Y Y2

yll O'l
Ao L Im ©®0-

Note that s = S(im¢g). We have

pray; = Pyoyr = B(im @o)poyr = B(im po)oyz = 0.

Since @1 € M, this implies that ay; = 0. Hence, there exists a morphism y : ¥ —
Ker o with the property y; = (ker @)y. We infer

(ker B)ays = (ker vg)zys = (kervg)rooys
= (im @o)oya = (impo)@oyr = oy = po(ker a)y = (ker B)ey.
Since ker 3 € M., this gives
TYo = €Y. (20)

Let ¢ = (ime)e’. In (20), x € M, y2 € P. and hence z = im(zy2) = (ime)(im(e'y)).
We may take & = im(e’y). The condition x = (im€)Z defines Z uniquely since ime
is a monomorphism.

Item (1) of the theorem is proved. Item (2) follows by duality.

The theorem is proved.
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