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Introduction

In the recent years, homological algebra in additive categories which are not
abelian has been actively developing in connection with the study of homological
aspects of functional analysis, topological algebra, some algebraic problems. Vari-
ous classes of additive categories with kernels and cokernels have been considered
(see, for example, [1, 4, 10, 11, 12, 13, 14, 16, 17]).

In [3, 5], the Ker-Coker-sequence

Kerα ε→ Kerβ
ζ→ Ker γ δ→ Cokerα τ→ Cokerβ θ→ Coker γ (I)

corresponding to the commutative diagram

A0
ϕ0−−−−→ B0

ψ0−−−−→ C0 −−−−→ 0

α

y β

y γ

y
0 −−−−→ A1

ϕ1−−−−→ B1
ψ1−−−−→ C1

satisfying the conditions ψ0 = cokerϕ0, ϕ1 = kerψ1, was studied in an arbitrary
quasi-abelian category. It was found out how an assumption about the properties
of one of the morphisms α, β, or γ influences the exactness of sequence (I) and the
properties of the morphisms that constitute the sequence.

In this article, we consider two generalizations of [5].
In Section 1, we consider the question about the Ker-Coker-sequence in a P-

semi-abelian category, i.e., in a category semi-abelian in the sense of Palamodov
(in [1, 3, 5, 6], such categories were called pre-abelian). The difference with the case
of a quasi-abelian category is that in a P-semi-abelian category, for the validity of
many of the arguments of [5], we have to impose the condition of stability under

1991 Mathematics Subject Classification. 18A20,18E05.
Key words and phrases. strict morphism, P-semi-abelian category, quasi-abelian category, Ker-

Coker-sequence.
Supported by the Specific Targeted Project GALA within the NEST Activities of the Commis-

sion of the European Communities (Contract No. 028766) and the State Maintenance Program
for the Leading Scientific Schools of the Russian Federation (Grant NSh 8526.2006.1).

1
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push-outs (pull-backs) on the kernels (cokernels) of some morphisms in the diagram.
For example, the construction of the connecting morphism δ for the Ker-Coker-
sequence is possible if cokerψ0 is a stable cokernel or kerϕ1 is a stable kernel in
the above sense.

In Section 2, we consider the diagram

A0
ϕ0−−−−→ B0

ψ0−−−−→ C0

α

y β

y γ

y
A1

ϕ1−−−−→ B1
ψ1−−−−→ C1,

(II)

in which the rows are semi-exact, in a quasi-abelian category. To this diagram,
there correspond two semi-exact “halves” of the Ker-Coker-sequence

Kerα ε→ Kerβ
ζ→ Ker γ (III)

and
Cokerα τ→ Cokerβ θ→ Coker γ. (IV )

In [9] Nomura proved that, in a Puppe-exact category, sequence (III) is exact at
Kerβ if ϕ1 and the canonical morphism of the rows in (II) χ : H(B0)→ H(B1) are
monomorphisms and (IV) is exact at Cokerβ if ψ0 and χ : H(B0) → H(B1) are
epimorphisms.

In this article, we prove that these assertions holds in a quasi-abelian category if
we require that ϕ1 be a kernel and ϕ0 be strict (respectively, that ψ0 be a cokernel
and ψ1 be strict).

1. Ker-Coker-Sequence in a P-Semi-Abelian Category

We consider additive categories satisfying the following axiom.
Axiom 1. Each morphism has kernel and cokernel.
We denote by kerα (cokerα) an arbitrary kernel (cokernel) of α and by Kerα

(Cokerα) the corresponding object; the equality a = ker b (a = coker b) means that
a is a kernel of b (a is a cokernel of b).

In a category meeting Axiom 1, every morphism α admits a canonical decom-
position α = (imα)α(coimα), where imα = ker cokerα, coimα = coker kerα. A
morphism α is called strict if α is an isomorphism.

We use the following notations:
Oc is the class of all strict morphisms;
M is the class of all monomorphisms;
Mc is the class of all strict monomorphisms (= kernels);
P is the class of all epimorphisms;
Pc is the class of all strict epimorphisms (= cokernels).
We write α |β if α = kerβ and β = cokerα.

Lemma 1. [1, 2, 7, 12] The following assertions hold in an additive category
meeting Axiom 1:

(1) kerα ∈Mc and cokerα ∈ Pc for every α;
(2) α ∈Mc ⇐⇒ α = imα, α ∈ Pc ⇐⇒ α = coimα;
(3) a morphism α is strict if and only if it is representable in the form α = α1α0

with α0 ∈ Pc, α1 ∈Mc; in every such representation, α0 = coimα and α1 = imα;
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(4) if a commutative square

C
α−−−−→ D

g

y f

y
A

β−−−−→ B

(1)

is a pull-back then f ∈M =⇒ g ∈M , f ∈Mc =⇒ g ∈Mc, if the square is push-out
then g ∈ P =⇒ f ∈ P , g ∈ Pc =⇒ f ∈ Pc.

An additive category meeting Axiom 1 is abelian if and only if α is an isomor-
phism for every α.

An additive category is called P-semi-abelian, semi-abelian in the sense of Palam-
odov [10, 11], or pre-abelian [1] if it meets Axiom 1 and the following

Axiom 2. For every morphism α, α is a monomorphism and an epimorphism.

Lemma 2. [5] The following hold in a P-semi-abelian category:
(1) gf ∈Mc =⇒ f ∈Mc, gf ∈ Pc =⇒ g ∈ Pc;
(2) if f, g ∈ Mc and fg is defined then fg ∈ Mc; if f, g ∈ Pc and fg is defined

then fg ∈ Pc;
(3) if fg ∈ Oc, f ∈M then g ∈ Oc; if fg ∈ Oc, g ∈ P then f ∈ Oc.

An additive category satisfying Axiom 1 is called quasi-abelian [16] (semiabelian
in the sense of Răıkov [12], or almost abelian [13]) if it meets the following

Axiom 3. If square (1) is a pull-back then f ∈ Pc =⇒ g ∈ Pc. If (1) is a
push-out then g ∈Mc =⇒ f ∈Mc.

As is well-known [7, 12, 13, 16], every quasi-abelian category is P-semi-abelian.
As has been recently discovered by Rump [15], there exist semi-abelian categories
that are not quasi-abelian.

In [7][Theorem 1], Kuz′minov and Cherevikin established the following fact:

Lemma 3. An additive category A with kernels and cokernels is P-semi-abelian if
and only if the following two conditions are fulfilled:

(P1) if (1) is a pull-back then f ∈ Pc =⇒ g ∈ P ;
(P2) if (1) is a push-out then g ∈Mc =⇒ f ∈M .

If, for a morphism f ∈ Pc in a pull-back (1) in an additive category with kernels
and cokernels, g ∈ Pc (for a morphism g ∈ Mc in a push-out (1), f ∈ Mc) then f
is called a stable cokernel (g is called a stable kernel).

A sequence . . . a→ B
b→ . . . in a P-semi-abelian category is said to be exact at

the term B if im a = ker b (or, equivalently, coker a = coim b).
For a commutative square (1), denote by ĝ : Kerα → Kerβ the morphism

defined by the condition g(kerα) = (kerβ)ĝ and by f̂ : Cokerα → Cokerβ, the
morphism defined by the condition f̂(cokerα) = (cokerβ)f .

Lemma 4. [2] For an arbitrary pull-back (1) in an additive category meeting Ax-
iom 1, ĝ is an isomorphism.

The dual assertion also holds.
Throughout the rest of the section, the ambient category A is assumed P-semi-

abelian.
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Suppose that square (1) is a pull-back, β = β1β0, β0 ∈ P , β1 ∈ Mc. Consider
the pull-back

E
α1−−−−→ D

h

y f

y
F

β1−−−−→ B.

(2)

Since square (2) is a pull-back, there exists a morphism α0 : C → E such that
α1α0 = α and hα0 = β0g.

Lemma 5. If β ∈ Oc then α0 ∈ P . If f ∈ Mc and g is an isomorphism then h is
an isomorphism and α0 ∈ P .

Proof. The square
C

α0−−−−→ E

g

y h

y
A

β0−−−−→ F
is a pull-back [2]. By Lemma 3, the condition β ∈ Oc (i.e., β0 ∈ Pc) implies that
α0 ∈ P . Suppose that f ∈ Mc and g is an isomorphism. By Lemma 1, h ∈ Mc.
Since β0g ∈ P and β0g = hα0, we have h ∈ P . Consequently, h is an isomorphism
and α0 = h−1β0g is an isomorphism. The lemma is proved.

Lemma 6. Suppose that square (1) is a pull-back. If β ∈ Oc, then f̂ ∈M .

Proof coincides almost literally with the proof of Lemma 6 in [5].

Lemma 7. Suppose that the square

A
α−−−−→ D

id

y f

y
A

β−−−−→ B

(3)

is commutative, f ∈ M , and a morphism h : Cokerβ → Coker f is defined by the
condition coker f = h(cokerβ). Then

(1) if β ∈ Oc then f̂ ∈M ;
(2) if f ∈Mc and cokerβ is a stable cokernel then f̂ = kerh.

Proof. (1) Since f ∈ M , square (3) is a pull-back. Therefore, item 1 follows
from Lemma 6.

(2) Suppose that f ∈Mc. By Lemma 5 we may assume that β ∈Mc.
Let x : X → Cokerβ be a morphism with hu = 0. Consider the pull-back

Y
s−−−−→ X

v

y x

y
B

coker β−−−−→ Cokerβ.

(4)

Since (coker f)v = hxs = 0 and f = ker coker f , there is a morphism w : Y → D
such that v = fw. Since (4) is a pull-back, v(ker s) = ker(cokerβ) = β. Therefore,

f̂(cokerα)w(ker s) = (cokerβ)fw(ker s) = (cokerβ)v(ker s) = (cokerβ)β = 0.
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Since cokerβ is a stable cokernel, s ∈ Pc and hence s = coker(ker s). Consequently,
there exists a morphism c : X → Cokerα such that (cokerα)w = cs. We infer

f̂ cs = f̂(cokerα)w = (cokerβ)fw = (cokerβ)v = xs.

Since s ∈ P , it follows that x = f̂ c. This condition determines c uniquely because
f̂ ∈M (Lemma 6). Thus, f̂ = kerh.

The lemma is proved.

Suppose that in a commutative diagram

A0
ϕ0−−−−→ B0

ψ0−−−−→ C0 −−−−→ 0

α

y β

y γ

y
0 −−−−→ A1

ϕ1−−−−→ B1
ψ1−−−−→ C1

(5)

ψ0 = cokerϕ0, ϕ1 = kerψ1. As in the case of an abelian category, diagram (5)
gives rise to two semi-exact parts of a Ker-Coker-sequence:

Kerα ε→ Kerβ
ζ→ Ker γ (6)

and
Cokerα τ→ Cokerβ θ→ Coker γ. (7)

Here ε = ϕ̂0, ζ = ψ̂0, τ = ϕ̂1, θ = ψ̂1.
Suppose now that ψ0 is a stable cokernel. Then there is a connecting morphism

δ : Ker γ → Cokerα that unites (6) and (7) in the Ker-Coker-sequence

Kerα ε→ Kerβ
ζ→ Ker γ δ→ Cokerα τ→ Cokerβ θ→ Coker γ. (8)

The morphism δ is constructed as follows. Let

X
s−−−−→ Ker γ

u

y ker γ

y
B0

ψ0−−−−→ C0

(9)

be a pull-back and let

A1
ϕ1−−−−→ B1

cokerα

y v

y
Cokerα t−−−−→ Y

(10)

be a push-out. Since ψ0ϕ0 = 0, there exists a unique morphism w : A → Kerψ0

such that ϕ0 = (kerψ0)w. Since kerψ0 = imϕ0, it follows that w = ϕ0(coimϕ0) ∈
P . Since ψ1βu = γ(ker γ)s = 0 and ϕ1 = kerψ1, there is a unique morphism
m : X → A1 with ϕ1m = βu. Next, by Lemma 4, ker s = kerψ0, which implies the
chain of equalities

ϕ1m(ker s)w = βu(ker s)w = β(kerψ0)w = βϕ0 = ϕ1α,

from which α = m(ker s)w. Hence, (cokerα)m(ker s)w = (cokerα)α = 0, whence
(cokerα)m(ker s) = 0 because w ∈ P . Since ψ0 is a stable cokernel, s = coker ker s.
Therefore, there exists a unique morphism δ : Ker γ → Cokerα satisfying the
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relation (cokerα)m = δs. For the morphism δ, we have tδs = t(cokerα)m =
vϕ1m = vβu. Since t ∈M (Lemma 3), the condition

tδs = vβu (11)

defines δ uniquely once squares (9) and (10) have been chosen and makes it possible
to prove the naturality of δ.

The dual argument shows that, in the case where ϕ1 is a stable kernel, a con-
necting morphism δ̃ satisfying (11) is also defined. Since t ∈ M , s ∈ P , when ψ0

is a stable cokernel and ϕ1 is a stable kernel, the two so-constructed connecting
morphisms δ coincide.

Suppose that the morphism β in (5) is represented as β = β1β0, β0 : B0 → B,
β1 : B → B1. Consider the pull-back

A
ϕ−−−−→ B

α1

y β1

y
A1

ϕ1−−−−→ B1.

Suppose that ψ = cokerϕ, ψ : B → C. By Lemma 1 ϕ ∈Mc and hence ϕ = kerψ.
There are morphisms α0 : A0 → A, γ0 : C0 → C, γ1 : C → C1 for which α1α0 = α
and the diagram

A0
ϕ0−−−−→ B0

ψ0−−−−→ C0 −−−−→ 0

α0

y β0

y γ0

y
0 −−−−→ A

ϕ−−−−→ B
ψ−−−−→ C −−−−→ 0

α1

y β1

y γ1

y
0 −−−−→ A1

ϕ1−−−−→ B1
ψ1−−−−→ C1

(12)

commutes. It is easy to verify that γ1γ0 = γ.

Lemma 8. If β0 ∈ P , β1 ∈ Mc, cokerα is a stable cokernel, the morphism α̂1 :
Cokerα0 → Cokerα is defined by the condition (cokerα)α1 = α̂1(cokerα0), and
the morphism τ : Cokerα → Cokerβ is defined by the condition τ(cokerα) =
(cokerβ)ϕ1 then α̂1 = ker τ .

Proof. The stability of cokerα justifies application of Lemma 7 to the commu-
tative square

Imα0
imα0−−−−→ A

id

y α1

y
Imα0

α1(imα0)−−−−−−→ B1,

which yields α̂1 = kerh, where the morphism h : Cokerα→ Cokerα1 is defined by
the condition h(cokerα) = cokerα1. Now follow the proof of Lemma 10 in [5]. The
lemma is proved.
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Consider the commutative diagram

A0
ϕ0−−−−→ B0

ψ0−−−−→ C0 −−−−→ 0

α0

y β0

y γ0

y
0 −−−−→ A

ϕ−−−−→ B
ψ−−−−→ C,

(13)

in which ψ0 = cokerϕ0, ϕ = kerψ. Let δ̄ : Ker γ0 → Cokerα0 be the connecting
morphism for (13) (which is defined if ϕ is a stable kernel or ψ0 is a stable cokernel).

Lemma 9. If the connecting morphism δ̄ : Ker γ0 → Cokerα0 is defined for (13)
and β0 ∈ Pc then δ̄ ∈ P .

Proof. Consider the pull-back

X
s−−−−→ Ker γ0

u

y ker γ0

y
B0

ψ0−−−−→ C0

and the push-out
A

ϕ−−−−→ B

cokerα0

y v

y
Cokerα0

t−−−−→ Y.
Since ψβ0u = γ0(ker γ0)s = 0, there exists a morphism h : X → A with ϕh = β0u.
Reasoning as in the proof of Lemma 11 in [5], we conclude that the square

X
u−−−−→ B0

h

y β0

y
A

ϕ−−−−→ B
is a pull-back.

By Lemma 3 h ∈ P ; therefore, (cokerα0)h ∈ P . Since tδ̄s = vβ0u = vϕh =
t(cokerα0)h and t ∈ M by Lemma 3, we have δ̄s = (cokerα0)h ∈ P , which yields
δ̄ ∈ P . The lemma is proved.

Now we are in a condition to prove the following version of Theorem 1 of [5] for
P-semi-abelian categories.

Theorem 1. The following hold:
(1) if in (5) ψ0 and cokerα are stable cokernels and β ∈ Oc then sequence (8) is

exact at Cokerα;
(2) if in (5) ϕ1 and ker γ are stable kernels and β ∈ Oc then sequence (8) is exact

at Ker γ.

Proof. (1) Suppose that β = β1β0, β0 ∈ Pc, β1 ∈ Mc. In diagram (12)
corresponding to this factorization of β, we have γ1 ∈ M by Lemma 6 and hence
ker γ = ker γ0. Since ψ0 is a stable cokernel, the connecting morphism δ̄ for (13)
is defined. By the naturality of the conecting morphism, δ = α̂1δ̄. By Lemma 9,
δ̄ ∈ P , and by Lemma 8, α̂1 = ker τ . Consequently, im δ = ker τ , i.e., sequence (9)
is exact at Cokerα.

Item (2) is obtained from (1) by duality.
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The theorem is proved
The proof of the following lemma repeats the first part of the proof of Theorem 2

in [5].

Lemma 10. Suppose that in (5) ϕ0 = kerψ0 (ψ1 = cokerψ1). Then ε = ker ζ
(θ = coker τ).

Theorem 2. The following hold:
(1) if in (5) ϕ0 ∈ Oc and kerα is a stable kernel then sequence (6) is exact at

Kerβ and ε ∈ Oc; if in (5) α ∈ Oc then sequence (6) is exact;
(2) if in (5) ψ1 ∈ Oc and coker γ is a stable cokernel then sequence (7) is exact

at Cokerβ and θ ∈ Oc; if in (5) α ∈ Oc then sequence (7) is exact.

Proof. Represent ϕ0 as a composition ϕ0 = ϕ′′0ϕ
′
0, ϕ′0 ∈ P , ϕ′′0 ∈ Mc, ϕ′0 :

A0 → A′0, ϕ′′0 : A′0 → B0. Since ϕ′′0 = kerψ0, there exists a morphism α′ : A′0 → A1

such that ϕ1α
′ = βϕ′′0 . Then α′ϕ′0 = α. Since ϕ′0 ∈ P , the square

A0
α−−−−→ A1

ϕ′
0

y id

y
A′0

α′

−−−−→ A1

is a push-out. The morphism ϕ′0 induces the morphism ϕ̂0
′ : Kerα → Kerα′ and

ϕ′′0 induces the morphism ϕ̂0
′′ : Kerα′ → Kerβ; by Lemma 10 ϕ̂0

′′ = ker ζ.
Let ϕ0 ∈ Oc. Then ϕ′0 ∈ Pc. By the assertion dual to item (2) of Lemma 7, we

conclude that ϕ̂0
′ ∈ Pc. Hence, ε ∈ Oc and im ε = ker ζ.

Assume now that α ∈ Oc. The assertion dual to item (1) of Lemma 7 yields the
relation ϕ̂′0 ∈ P . We again have ϕ̂0

′′ = ker ζ.
Item (1) is proved, and item (2) is obtained from it by duality. The theorem is

proved.

Theorem 3. If in (5) α ∈ Oc and ker γ and ϕ1 are stable kernels then sequence (8)
is exact at Kerβ and Ker γ. If γ ∈ Oc and cokerα and ψ0 are stable cokernels then
sequence (8) is exact at Cokerβ and Cokerα.

Proof. Represent β as β = β1β0, β0 ∈ Pc, β1 ∈ M , and consider the corre-
sponding diagram (12). By Lemma 1 α1 ∈ M , and by Lemma 6 γ1 ∈ M . Con-
sequently, kerα = kerα0, kerβ = kerβ0, ker γ = ker γ0. The Ker-Coker-sequences
corresponding to (5) and (13) are connected with each other by the following com-
mutative diagram:

Kerα0
ε̄→ Kerβ0

ζ̄→ Ker γ0
δ̄→ Cokerα0 → 0 → 0∥∥∥ ∥∥∥ ∥∥∥ α̂1

y y y
Kerα ε→ Kerβ

ζ→ Ker γ δ→ Cokerα τ→ Cokerβ θ→ Coker γ.
(15)

By Lemma 7, the strictness of α implies that α̂1 ∈ M . Therefore, ker δ̄ = ker δ.
By item (2) of Theorem 1, the upper row of (15) is exact at Ker γ0. Therefore, the
lower row is exact at Ker γ.

Exactness at Kerβ follows from Theorem 2.
The second claim of the theorem is obtained from the first by duality.
The theorem is proved.
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2. A Generalization of the Ker-Coker-Sequence
in a Quasi-Abelian Category

Throughout the section we work in a quasi-abelian category A.
Consider a commutative diagram

A0
ϕ0−−−−→ B0

ψ0−−−−→ C0

α

y β

y γ

y
A1

ϕ1−−−−→ B1
ψ1−−−−→ C1,

(16)

where ψ0ϕ0 = 0 and ψ1ϕ1 = 0.
As above, there are two semi-exact sequences

Kerα ε→ Kerβ
ζ→ Ker γ (17)

and
Cokerα τ→ Cokerβ θ→ Coker γ. (18)

By the (co)homology H(B) of a sequence A
ϕ→ B

ψ→ C such that ψϕ = 0 we
mean the cokernel of the natural morphism r : Imϕ → Kerψ or, equivalently, the
kernel of the natural morphism q : Cokerϕ→ Coimψ (see [6]).

For diagram (16), we have a commutative diagram of natural morphisms:

Imϕ0
r0−−−−→ Kerψ0

s

y t

y
A1 = Imϕ1

r1−−−−→ Kerψ1

Here t : Kerψ0 → Kerψ1 is the morphism of the kernels of the rows of the square

B0
ψ0−−−−→ C0

β

y γ

y
B1

ψ1−−−−→ C1,

s : Imϕ0 → Imϕ1 is the morphism of the kernels of the rows of the square

B0
cokerϕ0−−−−−→ Cokerϕ0

β

y β̂

y
B1

cokerϕ1−−−−−→ Cokerϕ1,

(19)

where β̂ is the morphism of the cokernels of the rows of the square

A0
ϕ0−−−−→ B0

α

y β

y
A1

ϕ1−−−−→ B1,

and the morphisms r0 and r1 arise from the semi-exactness of the rows in (16).
Thus, we have a natural norphism in homology χ : H(B0)→ H(B1), the morphism
of the cokernels of the rows of (19).

We prove the following assertion which is a quasi-abelian version of Corollary B2
in Nomura’s article [9].
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Theorem 4. The following hold:
(1) if in (16) ϕ0 ∈ Oc, ϕ1 ∈ Mc, and the morphism χ : H(B0) → H(B1) is a

mononmorphism then sequence (17) is exact;
(2) if in (16) ψ1 ∈ Oc, ψ0 ∈ Pc, and χ is an epimorphism then sequence (18) is

exact.

Proof. (1) Take a morphism x : X → Kerβ with ζx = 0. Show that x = (im ε)x̃
for some unique x̃.

We may assume without loss of generality that x = imx ∈Mc.
We have the commutative diagram

Imϕ0
r0−−−−→ Kerψ0

coker r0−−−−−→ H(B0) = Coker r0

s

y t

y χ

y
A1 = Imϕ1

r1−−−−→ Kerψ1
coker r1−−−−−→ H(B1) = Coker r1.

Since 0 = (ker γ)ζx = ψ0(kerβ)x, there exists a morphism z : X → Kerψ0 with
(kerβ)x = (kerψ0)z. Furthermore, (kerψ1)tz = β(kerψ0)z = β(kerβ)x = 0 and
kerψ1 ∈Mc; therefore, tz = 0. Moreover, since χ(coker r0)z = (coker r1)tz = 0 and
χ ∈ M , we have (coker r0)z = 0. Since r0 ∈ Mc, it follows that r0 = ker coker r0;
therefore, there is a morphism σ : X → Imϕ0 with z = r0σ.

We have r1sσ = tr0σ = tz = 0. Since r1 ∈Mc, we infer that sσ = 0.
Represent ϕ0 as ϕ0 = (imϕ0)ϕ′0. Then ϕ′0 ∈ Pc. Consider the pull-back

Y
y2−−−−→ X

y1

y σ

y
A0

ϕ′
0−−−−→ Imϕ0.

Note that s = β(imϕ0). We have

ϕ1αy1 = βϕ0y1 = β(imϕ0)ϕ′0y1 = β(imϕ0)σy2 = 0.

Since ϕ1 ∈ M , this implies that αy1 = 0. Hence, there exists a morphism y : Y →
Kerα with the property y1 = (kerα)y. We infer

(kerβ)xy2 = (kerψ0)zy2 = (kerψ0)r0σy2

= (imϕ0)σy2 = (imϕ0)ϕ′0y1 = ϕ0y1 = ϕ0(kerα)y = (kerβ)εy.

Since kerβ ∈Mc, this gives

xy2 = εy. (20)

Let ε = (im ε)ε′. In (20), x ∈Mc, y2 ∈ Pc and hence x = im(xy2) = (im ε)(im(ε′y)).
We may take x̃ = im(ε′y). The condition x = (im ε)x̃ defines x̃ uniquely since im ε
is a monomorphism.

Item (1) of the theorem is proved. Item (2) follows by duality.
The theorem is proved.

Acknowledgment. The first named author expresses his gratitude to the Max
Planck Institute for Mathematics in Bonn for warm hospitality.



KER-COKER-SEQUENCE AND ITS GENERALIZATION 11

References
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